WorldWideScience

Sample records for heavy metals contents

  1. Classification of Plants According to Their Heavy Metal Content ...

    African Journals Online (AJOL)

    Plants like other living organisms respond differently under different environmental conditions. An elevated level of heavy metals is one of the stresses which results into three classes of plants depending on their heavy metal content. The classes of plant species according to their accumulated heavy metals around North ...

  2. Heavy Metal Contents in Some Commonly Consumed Vegetables

    African Journals Online (AJOL)

    dell

    This work reports on the levels of cadmium, lead, copper, manganese and ... source of both heavy metals and essential trace elements due to their ... content, clay mineral and other soil chemical ... addition, the interactions of soil-plant root-.

  3. Heavy metal content of selected African leafy vegetables planted in ...

    African Journals Online (AJOL)

    Heavy metal content of selected African leafy vegetables planted in urban and peri-urban Nairobi, Kenya. ... African Journal of Environmental Science and Technology ... Government clean-up activities and monitoring of waste disposal is ...

  4. IMPACT OF BIOSLUDGE APPLICATION ON HEAVY METALS CONTENT IN SUNFLOWER

    Directory of Open Access Journals (Sweden)

    Marek Slávik

    2012-02-01

    Full Text Available The application of decomposed substrate after continual biogas production is one of the possible ways how to use alternative energy sources with following monitoring of its complex influence on the hygienic state of soil with the emphasis on heavy metal input. The substances from bilge and drain sediments from water panels, also biosludge gained by continual co-fermentation of animal excrements belong to these compounds. The biosludge application is connected with possible risk of cadmium and lead, also other risky elements input into the soil. The analyses of applicated sludge prove that the determined heavy metals contents are compared with limitary value. These facts - hygienic state of soil, pH influence this limitary value and biosludge is suitable for soil application. The total heavy metals content in soil is related to the increased cadmium, nickel, chromium and cobalt contents. The analyses of heavy metals contents in sunflower seeds show that the grown yield does not comply with the legislative norms from the stand point of heavy metals content due to high zinc and nickel contents. Copper, cadmium, lead, chromium contents fulfil limitary values, for cobalt content the value is not mentioned in Codex Alimentarius. The nickel value in the control variant seeds is 2.2 times higher than the highest acceptable amount, then in variant where the sludge was applicated the nickel content was increased by 1.6 times. In the case of zinc there was increasing content in individual variants 4.7, or 4.8 times. The direct connection with the higher accumulation of zinc and nickel in soil by the influence of biosludge application is not definitely surveyed, the increased heavy metals contents in sunflower were primarily caused by their increased contents in soils.

  5. Heavy metal content in compost and earthworms from home composters

    Directory of Open Access Journals (Sweden)

    Bożym Marta

    2017-12-01

    Full Text Available The paper presents the results of compost tests from home composters and earthworms living there, that treating waste into compost. The samples were taken from home composters and allotment gardens from Opole Region. The composting material was green waste. The total content of heavy metals (Cd, Pb, Cu, Zn, Ni Cr in compost and compost earthworms’ samples were determined. It was found that the compost samples were not contaminated with heavy metals. According to the Polish classification of composts from municipal wastes, the composts met the requirements for first class of quality. The composts did not exceed the limits of heavy metals specified in the Polish law for solid organic fertilizers. The degree of metal accumulation by compost earthworms depended on the type of metal. The high value of the bioaccumulation factor (BAF was obtained for Cd, Pb and Zn. No accumulation of other metals (Ni, Cr, Cu in earthworm bodies was found. It has been found that earthworm species, naturally occurring in Poland, can also be used as potential bioindicators of metals in the environment, such as the species Eisenia fetida. The aim of the study was to evaluate the heavy metal content in composts from home composters and ability to accumulate metals by compost earthworms.

  6. Heavy metal content of combustible municipal solid waste in Denmark.

    Science.gov (United States)

    Riber, Christian; Fredriksen, Gry S; Christensen, Thomas H

    2005-04-01

    Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.

  7. Effects of nitrogen enrichment on heavy metals content of cattle ...

    African Journals Online (AJOL)

    The research was carried out at John Ker Nigeria Organo-Mineral Company site at Ikot Ekpene, Akwa Ibom State, Nigeria, to investigate the effect of nitrogen enrichment on contents of heavy metals in cattle dung/poultry manure compost and the growth of maize. Cattle dung was mixed with poultry manure in the ratio of 3:1 ...

  8. Physico-chemical parameters and heavy metal contents of Ibuya ...

    African Journals Online (AJOL)

    The physico-chemical parameters and heavy metal contents of Ibuya River were investigated between September 2012 and August 2013 from four stations using standard methods to etermine acceptable water quality standards and evaluate possible sustainability of a thriving fisheries cum tourist sport fishing venture.

  9. HEAVY METAL CONTENT OF AYURVEDIC HERBAL MEDICINE PRODUCTS

    Science.gov (United States)

    Case reports of individuals taking Ayurvedic herbal medicine products (HMPs) suggest that they may contain lead, mercury, and/or arsenic. We analyzed the heavy metal content of Ayurvedic HMPs manufactured in India and Pakistan, available in South Asian grocery stores in the Bost...

  10. Studies of heavy metal contents and microbial composition of ...

    African Journals Online (AJOL)

    This study investigated the heavy metal content and microbial composition of rhizosphere of Panicum maximum obtained from some auto mechanic workshops in Benin City, Nigeria. The grass was uprooted and soil sample was taken from its rhizosphere. The sample were labeled appropriately and immediately transported ...

  11. classification of plants according to their heavy metal content around

    African Journals Online (AJOL)

    Mgina

    accumulated heavy metals around North Mara Gold Mine were not known. To study such ... heavy metal hyperaccumulator plants for possible future remediation of the study area. ... mine is about 100 kilometers east of Lake. Victoria and 20 ...

  12. Studies of heavy metal contents and microbial composition of ...

    African Journals Online (AJOL)

    FLEXI-DONEST

    the use of private electricity generating sets, in recent times, have ... soil and evaluate the impact of heavy metal on soil degradable ..... a reasonable length of time by herbivores may .... Heavy Metals in Root, Stem and Leaves of Acalypha.

  13. Heavy metals content in the stem bark of Detarium microcarpum ...

    African Journals Online (AJOL)

    The heavy metal analysis was carried out on the stem bark of D. microcarpum using an atomic absorption spectrophotometer (AAS). The heavy metals screened for include: lead, chromium, manganese, zinc and iron. The levels of manganese, zinc and iron were 13.91, 4.89 and 21.89 mg/L respectively. These heavy metals ...

  14. Heavy metals content in plant-growing products as the results of agroecological monitoring

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Lunev, M.I.; Pavlikhina, A.V.; Lobas, N.V.

    2008-01-01

    The generalised data on the heavy metals and arsenic contents in grain and vegetable cultures, green mass and hay of various grasses are presented. The dependence of heavy metal accumulation factors in plant-growing products on soil properties is shown. The estimation of levels of the heavy metals contents in accordance with the admissible content standards is given.

  15. THE EFFECT OF SEDIMENT GRAIN SIZE ON HEAVY METAL CONTENT

    Directory of Open Access Journals (Sweden)

    Svetlana Maslennikova

    2012-06-01

    Full Text Available In the natural surroundings tectonical, climatological, dynamic and physico-chemical conditions of sedimentation are the crucial factors in the process of sediment composition formation. Grain size is one of the most investigated reasons of space and temporary variability in heavy metal concentration. In general, the data on grain size measurement afford to appreciate sorption capacity of sediments and arrange them. The dependence heavy metal content on grain size of sediments has been examined in the enormous amount of research works. The main conclusion is that if grain size decreases, metal content increases.We have carried out sediment grain size measurement of two lakes (Chebachje Lake, Piketnoye Lake located in the South of Western Siberia, Russia. To define grain size of these sediments the sorting of samples collected layer-by-layer has been conducted by nest of sieves (from 43 to 1000 µm. Accomplished examinations allow to state that layer-by-layer grain size measurement of sediments has significant importance in reconstruction of paleoecologic peculiarities and also influences organic and inorganic matter concentrating in the sediments in dynamics

  16. Suspended matter and heavy metal content of the Elbe Estuary

    International Nuclear Information System (INIS)

    Vollbrecht, K.

    1980-01-01

    (1) In the River Elbe estuary there is a turbidity zone which is closely bound to the region of brackish waters. Its suspended matter content changes strongly with the tidal rhythm. Suspended matter and river bed sediments influence each other by exchanging their particles. Owing to that mechanism, the heavy metal ions bound or taken up by the suspended matter (sorption) enter the sediments. To obtain an estimation of the estuary's ability to cope with ( self purify ) a strong burden of industrial wastes, it is neccessary to take into consideration the absorbing capacity of both the mean suspension load and the sediments. (2) The concentration of nearly all heavy metal ions investigated in the suspension load decreases remarkably at the very beginning of the turbid zone already, in the Hamburg region. It indicates that the binding process are going on very rapidly and that the metal ion absorbing capacity of the Elbe estuary still requires only the first few miles of this self purification system. The results gained indicate that the suspended matter in Hamburg waters could bind or take up more heavy metal ions than are discharged into this area. (3) The concentration of most ions bound to the suspension material correlates very well with the grain size distribution of the (anorganic) particles. The concentration values decrease along the estuary and lead to a continuous transition to the values of the open sea. Cu, Ni and Cd appear to be captured preferably by organic suspended matter. This behaviour, however, is solely restricted to the turbid zone. In the open sea, after oxidation of the binding organic material, Cu and Ni correspond to the anorganic grain size distribution. (orig./HP) [de

  17. Contents of heavy metals in urban parks and university campuses

    Science.gov (United States)

    Zhang, Yong; Chen, Qian

    2018-01-01

    Because the city park has become an important place for people's daily leisure, and the university campus is one of the most densely populated areas of the city, their environmental pollution is critical for the health and safety of the residents. In this paper, two kinds of evaluation methods were used to evaluate the content of Cu, Zn, As and Pb in soils of city parks and university campus in Xiangtan. The results showed that only Juhuatang Park was a non-polluted area, and the other 7 sampling sites were lightly polluted; Analysis shows the heavy metal contents of soil in city parks are closely related to vehicle emissions, agriculture and irrigation, combustion of household waste, living area and commercial shops, the use of fossil fuels, industrial waste gas and waste residue and other human activities.

  18. Assessment of Heavy Metal Content of Branded Pakistani Herbal ...

    African Journals Online (AJOL)

    Erah

    analyzed using a flame atomic absorption spectrometer. Results: Most of the products exceeded the permissible limits for lead (100 %), cadmium (68 %), .... absorption spectrometry. M e ta l n a m ..... Determination of Heavy Metals in Medicinal.

  19. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  20. Assessment of heavy metal contents of green leafy vegetables

    Directory of Open Access Journals (Sweden)

    V. Jena

    2013-01-01

    Full Text Available Vegetables are rich sources of vitamins, minerals, and fibers, and have beneficial antioxidative effects. Ingestion of vegetables containing heavy metals is one of the main routes through which these elements enter the human body. Slowly released into the body, however, heavy metals can cause an array of diseases. In this study we investigated the concentrations of copper, chromium, zinc, and lead in the most frequently consumed vegetables including Pimpinella anisum, Spinacia oleracea, Amaranthus viridis, Coriandrum sativum, and Trigonella foenum graecum in various sites in Raipur city, India. Atomic absorption spectrophotometry was used to estimate the levels of these metals in vegetables. The mean concentration for each heavy metal in the samples was calculated and compared with the permissible levels set by the Food and Agriculture Organization and World Health Organization. The intake of heavy metals in the human diet was also calculated to estimate the risk to human health. Our findings indicated the presence of heavy metals in vegetables in the order of Cr > Zn > Cu > Pb. Based on these findings, we conclude that the vegetables grown in this region are a health hazard for human consumption.

  1. Effect of heavy metals on growth and heavy metal content of Allium porrum L. and Pisum sativum L

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhage, L.; Jaeger, H.J.

    1985-01-01

    The effects of cadmium, lead, zinc and copper, singly and in combination, on yield, heavy metal content and the mineral composition of Allium porrum L. and Pisum sativum L. have been investigated. The Cd, Pb, Zn and Cu concentrations of shoots and roots of Allium porrum increased with increasing heavy metal contamination of soil. However, no visible symptoms of heavy metal toxicity were recognized. The dry matter production was reduced as a function of heavy metal concentration and combination. The mechanisms of combinations were mostly synergistic. The correlation between pollutant contents (nmol/shoot) and yield was higher than the correlation between heavy metal concentrations of soil or shoots (ppm) and yield. Results of regression analyses showed that the inhibition of copper translocation caused by Cd, Pb and Zn was responsible for the yield depressions. The antagonism between Cd and N-deficiency showed that the level of N-supply was without negative effects on yield depressions of Pisum sativum caused by Cd. In contrast to this, the N-form played an important role in Cd-toxicity as the synergism between Cd and NH4 illustrated. K-deficiency as well as acidic nutrient solution (pH=4) diminished the root/shoot-barrier for Cd and therefore Cd-translocation from roots to shoots increased. Concerning calcium, magnesium and iron the decrease of ion uptake caused by Cd was statistically significant higher than yield depression.

  2. Assessment of Heavy Metal Content of Branded Pakistani Herbal ...

    African Journals Online (AJOL)

    Purpose: To investigate the heavy metals present in branded Pakistani herbal medicines used in the management of various human ailments. Method: The herbal dosage forms assessed were tablets, capsules and syrups. The samples were prepared for analysis by wet digestion method using nitric acid and perchloric acid ...

  3. Variations in the mineral composition and heavy metals content of ...

    African Journals Online (AJOL)

    Babayemi

    The parts of Moringa oleifera were assessed for mineral composition and some heavy metal ... cadmium from aqueous system (Sharma et al., 2006). ... Crude extracts and essential oil from M. oleifera possess ... into some probable chemical interactions between the .... processing methods that may lead to detoxification and.

  4. The effects of heavy metal ions on the chlorophyll content and cell membrane permeability of charophytes

    International Nuclear Information System (INIS)

    Fu Hualong; Chen Hao; Dong Bin; Qing Renwei

    2001-01-01

    The authors studied the effects of several heavy metal ions in different concentrations (Cd 2+ , Hg 2+ , Pb 2+ , Cr 6+ ) on the chlorophyll content and cell membrane permeability of Chara vulgaris L. It was discovered that the effects of heavy metal ions on the chlorophyll content and cell membrane permeability of Chara vulgaris L. changed with their different concentration. The trend was that the chlorophyll content and cell membrane permeability were decreased with the increase of the heavy metal ions. The degree of chlorophyll content affected was Cr 6+ , Cd 2+ , Hg 2+ , Pb 2+ , and that of cell membrane permeability affected was Cd 2+ , Cr 6+ , Hg 2+ , Pb 2+

  5. Heavy metal content of soil in urban parks of Belgrade

    Directory of Open Access Journals (Sweden)

    Kuzmanoski Maja M.

    2014-01-01

    Full Text Available This study focuses on soil pollution in four urban parks of Belgrade. The sampling locations within each park were chosen based on proximity to streets characterized by heavy traffic, and soil samples were taken at different depths down to 50 cm. Concentrations of six heavy metals (Cr, Cu, Fe, Mn, Ni and Zn were measured using Energy Dispersive X-Ray Fluorescence (EDXRF spectrometer. The following average abundance order of heavy metals was found: Fe >> Mn > Zn > Cr > Ni > Cu in topsoil samples. The highest enrichment in topsoil was observed for Zn. Copper and Zn, metals mainly related to traffic emissions, exhibited the highest concentrations at the sampling location close to a bus and trolleybus terminus. The highest Ni and Cr concentrations were observed in a park located in a city suburb, where a large number of individual heating units is present. The largest decrease in concentrations with soil dept was observed for Zn and Cu, followed by Ni and Cr, in the parks with the highest concentrations of these elements in topsoil. Generally high topsoil Cr and Ni concentrations were observed in comparison with average values reported in literature for other world cities. [Projekat Ministartsva nauke Republike Srbije, br. III43007

  6. Effects of residues from municipal solid waste landfill on corn yield and heavy metal content

    International Nuclear Information System (INIS)

    Prabpai, S.; Charerntanyarak, L.; Siri, B.; Moore, M.R.; Noller, Barry N.

    2009-01-01

    The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.

  7. Heavy Metal Content of Some Jordanian and American Cigarettes

    International Nuclear Information System (INIS)

    Jaradat, Q.; Momani, K.; Mutair, A.

    2003-01-01

    Flame and graphite furnace atomic absorption spectroscopy were employed to determine Cd, Pb, Cu, Zn and Fe in tobacco, wrapping paper, filter, smoke, and ash of some Jordanian and American cigarettes before and after smoking. The results of this study indicated that different constituents of cigarettes contain different concentrations of heavy metals in the different cigarette brands. Before smoking, most of the metals are found in the tobacco, whilst after smoking most of the metals remain in ash and only small amounts are with the smoke. The cigarette filters were capable of retaining some of the metals such as Cd, Pb, and Cu. The concentration of any analyte, in the constituent parts of a cigarette, varied from one brand to another, but among the different cigarette brands selected for this study, there is no specific brand that could be said to contain all the analytes at the highest or lowest concentration. The cigarette brands in this study contain relatively high average concentrations of Cd and Pb, but they are within the concentration range of foreign cigarettes that have been reported from various areas in the world . ( Author's) 21 refs., 12 tabs

  8. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Directory of Open Access Journals (Sweden)

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  9. Heavy Metal Content in Terraced Rice Fields at Sruwen Tengaran Semarang - Indonesia

    Science.gov (United States)

    Hindarwati, Yulis; Soeprobowati, Tri Retnaningsih; Sudarno

    2018-02-01

    The presence of heavy metal on agricultural soils can be caused not only natural factors but also due to human intervention. Differences in management and lack of understanding of farmers in the production input of fertilizers and pesticides ensued in land ravaged. Periodic testing of paddy fields is necessary to minimize the contaminants from being absorbed by plants that will have an impact on health decline. The purpose of the assessment was to identify the heavy metal content in the terraced rice field in Sruwen Village, Tengaran District, Semarang Regency. Survey was conducted in February 2017. Sampling on terraced rice fields of different heights consisted of upper, middle, and upper down. Taken as many as eight single points and composed at a depth of 0-20 cm and 20-40 cm. The identification results showed that heavy metal content of Pb, Cd, and Cu were present at all altitudes. Heavy Metals Pb and Cd at a depth of 0-20 cm were higher from 20-40 cm in the upper and lower rice fields but lower in the middle rice field. Cu heavy metal at a depth of 0-20 cm was higher than 20-40 cm in all altitude land. The heavy metal content of Pb, Cd, and Cu was still below the heavy metal standard set by the European Union and India.

  10. Evaluation of heavy metals content in dietary supplements in Lebanon

    Directory of Open Access Journals (Sweden)

    Korfali Samira

    2013-01-01

    Full Text Available Abstract Background The consumption of dietary supplements is widely spread and on the rise. These dietary supplements are generally used without prescriptions, proper counseling or any awareness of their health risk. The current study aimed at analyzing the metals in 33 samples of imported dietary supplements highly consumed by the Lebanese population, using 3 different techniques, to ensure the safety and increase the awareness of the citizen to benefit from these dietary supplements. Results Some samples had levels of metals above their maximum allowable levels (Fe: 24%, Zn: 33%, Mn: 27%, Se: 15%, Mo: 12% of samples, but did not pose any health risk because they were below permitted daily exposure limit and recommended daily allowance except for Fe in 6% of the samples. On the other hand, 34% of the samples had Cu levels above allowable limit where 18% of them were above their permitted daily exposure and recommended daily allowance. In contrast, all samples had concentration of Cr, Hg, and Pb below allowable limits and daily exposure. Whereas, 30% of analyzed samples had levels of Cd above allowable levels, and were statistically correlated with Ca, and Zn essential minerals. Similarly 62% of the samples had levels of As above allowable limits and As levels were associated with Fe and Mn essential minerals. Conclusion Dietary supplements consumed as essential nutrients for their Ca, Zn, Fe and Mn content should be monitored for toxic metal levels due to their natural geochemical association with these essential metals to provide citizens the safe allowable amounts.

  11. Evaluation of heavy metals content in dietary supplements in Lebanon.

    Science.gov (United States)

    Korfali, Samira Ibrahim; Hawi, Tamer; Mroueh, Mohamad

    2013-01-18

    The consumption of dietary supplements is widely spread and on the rise. These dietary supplements are generally used without prescriptions, proper counseling or any awareness of their health risk. The current study aimed at analyzing the metals in 33 samples of imported dietary supplements highly consumed by the Lebanese population, using 3 different techniques, to ensure the safety and increase the awareness of the citizen to benefit from these dietary supplements. Some samples had levels of metals above their maximum allowable levels (Fe: 24%, Zn: 33%, Mn: 27%, Se: 15%, Mo: 12% of samples), but did not pose any health risk because they were below permitted daily exposure limit and recommended daily allowance except for Fe in 6% of the samples. On the other hand, 34% of the samples had Cu levels above allowable limit where 18% of them were above their permitted daily exposure and recommended daily allowance. In contrast, all samples had concentration of Cr, Hg, and Pb below allowable limits and daily exposure. Whereas, 30% of analyzed samples had levels of Cd above allowable levels, and were statistically correlated with Ca, and Zn essential minerals. Similarly 62% of the samples had levels of As above allowable limits and As levels were associated with Fe and Mn essential minerals. Dietary supplements consumed as essential nutrients for their Ca, Zn, Fe and Mn content should be monitored for toxic metal levels due to their natural geochemical association with these essential metals to provide citizens the safe allowable amounts.

  12. Contents and localization of heavy metals in human placentae

    Energy Technology Data Exchange (ETDEWEB)

    Reichrtova, E.; Ursinyova, M.; Palkovicova, L.; Wsolova, L. [Institute of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1998-06-01

    The placenta was used as an exposure index for the risk evaluation of prenatal fetal chemical exposure. Full-term placenta samples collected at maternity hospitals in 4 regions of different environmental pollutants and traffic density were examined for lead and cadmium contents using atomic absorption spectrometry (AAS). The results showed similar lead contents in placental samples from all selected regions, except for a small town with a lower traffic density. The findings may implicate traffic-related environmental lead pollution, rather than industrial sources. The highest concentration of cadmium was shown to be in the samples collected from the region with the highest proportion of smoking mothers (including passive smoking). Simultaneously, the placental samples were processed histochemically to determine the location of lead in the placental tissue (using light microscopy). The degree of placental metal contamination was done semiquantitatively, and the difference between the rural and industrial region was statistically compared. Parallel quantitative AAS analyses and semiquantitative histochemical lead analyses of human placental samples revealed analogous results regarding the level of placental contamination with metals. (orig.) (orig.) With 4 figs., 12 refs.

  13. Heavy Metal Soil Content as an Indicator of Pollution

    Directory of Open Access Journals (Sweden)

    Ana-Maria Rusu

    2000-04-01

    Full Text Available Two soil sample series were collected from 7 contaminated sites situated along a transect from the pollutant source, Zlatna copper ore-processing plant, and analyzed using different analytical methods. The soils collected in 1998 were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES after extraction with DTPA for trace metals and those collected in 1999 were analyzed with flame atomic absorption spectrometry (FAAS following two acid digestion procedures. The DTPA extraction procedure produced lower results than the acid digestions. Also, the pH values for all samples was measured and the results obtained during autumn compared with those in spring after a long winter with heavy snow falls. The correlation between Cu, Pb, Zn (for samples collected in May 1999 and pH was investigated. The pattern of chemical abundance of contaminants (Cu, Pb, Zn, Fe, Cd and Ni was determined in soil at 0-50 cm depth. This study indicates that Pb is the most polluting element up to 25 km downwind from Zlatna town.

  14. Heavy metal content of tinned soup as a function of storage time

    Energy Technology Data Exchange (ETDEWEB)

    Stelte, W.

    1983-01-01

    Samples were taken from soups prior to their preservation in tins. None of the samples showed an increased content of the investigated heavy metals lead and mercury exceeding the amounts normally found in food. Thus it may be considered as certain that the heavy metal content of soups is not adversely affected by technical processes during their preparation. Increase in heavy metal content by metallic residues from tin manufacture is slight and mainly due to tin, whose content is on average increased in the soup by 0.4 mg/kg. For lead the influence is smaller and for mercury it is not significantly demonstrable. The metallic residues from tin manufacture are an irrelevant quantity in terms of nutrition physiology. Within the investigated 4-year storage-period the lead content shows a tendency to increase towards saturation. Cadmium remains essentially constant, the content of mercury has a downward tendency and reaches zero after 2 to 4 years. Consumers' exposure is in a range known for the consumption of other foodstuffs as well. The use of varnished tins to package industrial soups involves no exposure of consumers to heavy metals justifying any apprehension even after prolonged storage.

  15. HEAVY METALS (Ni, Cu, Zn AND Cd CONTENT IN SERUM OF RAT FED GREEN MUSSELS

    Directory of Open Access Journals (Sweden)

    Muhammad Yudhistira Azis

    2015-11-01

    Full Text Available Green mussel (Perna viridis can playing role as bio-indicator or biomonitoring agent for heavy-metalcontaminations in the sea. In this research, the concentrations of four elements Ni, Cu, Zn and Cd in P. viridis and in the serum of rat which orally feed by P. viridis were determined by Atomic Absorption Spectrometry (AAS following dry acid digestion. Parameter analysis was evaluated by determining confidence limit for the obtained results. The result showed that there was a sequence of heavy-metal content in green mussels sample and laboratory rats serum, such as Ni < Cd < Cu < Zn. Keywords: heavy metals, green mussels, laboratory rats serum, AAS

  16. Heavy metal content of lichens in relation to distance from a nickel smelter in Sudbury, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Nieboer, E; Ahmed, H M; Puckett, K J; Richardson, D H.S.

    1972-01-01

    The Sudbury region of Ontario has large deposits of nickel, iron, and copper, and thus a number of smelting plants which produce sulfur dioxide and heavy metal pollution. Since lichens are good indicators of SO/sub 2/ pollution levels, the pattern of heavy metal content in lichen species in the area of a copper smelter in Sudbury was correlated with distance from the smelter to ascertain whether lichens might also be good indicators of the amount of heavy metal fallout. The lichens were analyzed qualitatively and quantitatively. All seven species of lichens contained copper, iron, zinc, nickel, manganese, and lead. Cadmium and cobalt were detected in two species. Neither gold nor silver could be identified in lichen material with the tests used. A pollution model was developed and compared to field results. The simple dilution of the stack effluent was consistent with the fact that the lichen metal content was related to the reciprocal of the distance from the pollution source. The lichens from the area could tolerate simultaneously high concentrations of several heavy metals that are known to be toxic to other plants. The mechanism of metal uptake was not clearly established. The study showed that lichens and other epiphytes are potentially the most useful indicators of heavy metal fallout around industrial plants.

  17. The heavy metals content in wild growing mushrooms from burdened Spiš area

    Directory of Open Access Journals (Sweden)

    Marek Slávik

    2016-05-01

    Full Text Available In this work, we evaluated the rate of entry of heavy metals into the edible parts of wild mushrooms, from central Spiš area. The area is characterized by extremely high content of heavy metals particularly mercury in abiotic and biotic components of ecosystems. The toxicity of heavy metals is well known and described. Known is also the ability of fungi to accumulate contaminants from substrates in which mushrooms grow. We have collected commonly consumed species of mushrooms (Russula vesca., Macrolepiota procera, Lycoperdon pyriforme, Lecinum piceinum, Boletus reticulatus. Sampling was conducted for two years 2012 and 2013. The samples taken mushrooms and substrates on which to grow, we determined heavy metal content (Cd, Pb, Cu, including total mercury content modified by atomic absorption spectrometry (AMA - 254. In the substrate, we determined the humus content and pH value. The heavy metal content in soils were evaluated according to Law no. 220/2004 Z.z The exceedance limit values of Cd, Pb, Cu and Hg was recorded. Most significantly the respective limit was recorded in soil samples in the case of mercury. The determined concentration Hg was 39.01 mg.kg-1. From the results, we evaluated the degree of ability to bioaccumulate heavy metals different kinds of fungi. We also evaluated the health safety of the consumption of these fungi on the comparison with the limit values provided in the food code of SR. We recorded a high rate of accumulation of mercury in the species Boletus reticulatus and Macrolepiota procera. For these types we recorded the most significant than allowed concentrations of mercury in mushrooms. The highest recorded concentration reached 17.64 mg.kg-1 Hg in fresh matter. The limit value was exceeded also in the case of copper. We do not recommend to increased consumption of wild mushrooms in the reference area.

  18. A REVIEW ON HEAVY METALS CONTENTS IN HIDE, SKIN AND PROCESSED LEATHERS

    Directory of Open Access Journals (Sweden)

    KOIZHAIGANOVA Meruyert

    2016-05-01

    Full Text Available Heavy metals are metals with high atomic weight which can be deposited in soil, water, plants and animals. It is generally known that mammal tissues are good bioindicators of trace elements, including heavy metals. Heavy metal analysis serves to identify and quantify the elements that are a potential hazard to the consumer after varying levels of contact. Usage area of leather is increasingly expanding in these days and it has also become a material requested and demanded by effect of fashion. Leather must protect its appearance and physical stability and also be problem-free in ecological terms and harmless to human health. There is a lack of data concerning the content of toxic elements in raw hide and skin of animals. Mainly information concerning metals content, including toxic ones, in processed leathers may be found in the literature. The aim of the present study was to review and compare the content of some heavy metals in raw hide, skin and the processed leathers in order to evaluate their accumulation and transition to the end-up product.

  19. The study of heavy metals and microbial content in beef bowel and red meat

    International Nuclear Information System (INIS)

    Harsojo; Darsono

    2013-01-01

    Indonesia's population has increased every year so the need for food increased, especially the availability of nutritious foods such as red meat. Red meat is one of the foods that contain sufficient elements of protein, but it was likely to contain heavy metals and bacterial contamination that has met the threshold standards. On the otherhand, beef bowels are very popular among Indonesian consumers, but many heavy metlas could accumulated into the bowels. The purpose of this research are to study the content of heavy metals and bacterial contamination on beef bowel from some places of slaughtering houses and some red meats from the market in Jakarta. The beef bowels are lung, tripe, intestine and liver while the red meats were veal and tender loin. Parameter of heavy metals measured are As, Cd and Hg, while for the initial bacterial contamination are total number of aerobic bacteria, total amount of coliform, Escherichia coli, Staphylococcus sp and Salmonella contamination. The heavy metals were analyzed using Neutron Activation Analysis, and for the total number of bacteria is using Total Plate Count. Result of research shows the As content in lung and tripe as well as the mercuric content in bowel has exceeded in the normal level such as 1.0 and 0.03 ppm, respectively. On the other hand, no heavy metals were detected in all red meats. The total microbes in beef bowel have exceeded allowable limit (1.0 x 10 6 cfu/g). No Salmonella was detected in all beef bowels and red meats observed. Nuclear technique are very helpful analysis of the heavy metas content in bowel dan red meats beef. The cleanliness slaughtering house of animals are remarkably ascertaining the quality of the beef bowel and red meats who will be sent. (author)

  20. Assessment of arsenic and heavy metal contents in cockles (Anadara granosa) using multivariate statistical techniques

    International Nuclear Information System (INIS)

    Abbas Alkarkhi, F.M.; Ismail, Norli; Easa, Azhar Mat

    2008-01-01

    Cockles (Anadara granosa) sample obtained from two rivers in the Penang State of Malaysia were analyzed for the content of arsenic (As) and heavy metals (Cr, Cd, Zn, Cu, Pb, and Hg) using a graphite flame atomic absorption spectrometer (GF-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometer (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data. MANOVA showed a strong significant difference between the two rivers in term of As and heavy metals contents in cockles. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used only two parameters (Zn and Cd) affording more than 72% correct assignations. Results indicated that the two rivers were different in terms of As and heavy metal contents in cockle, and the major difference was due to the contribution of Zn and Cd. A positive correlation was found between discriminate functions (DF) and Zn, Cd and Cr, whereas negative correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metals and arsenic content. Taking into account of these results, it can be suggested that a continuous monitoring of As and heavy metals in cockles be performed in these two rivers

  1. Mineralogy and heavy metal content of secondary mineral salts: A ...

    African Journals Online (AJOL)

    Secondary minerals associated with acid mine drainage play an important role in metal cycling and may pose a geochemical hazard. The occurrence of secondary minerals indicates prevailing and past geochemical conditions. Detecting and characterising secondary minerals is necessary to the planning of remediation ...

  2. Analysis of caffeine and heavy metal contents in branded and unbranded tea available in Pakistan

    International Nuclear Information System (INIS)

    Khan, S.R.; Inayat, A.; Chowdhry, M.N.; Waheed, A.

    2010-01-01

    In the investigation of caffeine and heavy metal contents in four branded and six unbranded tea samples collected from local markets of Lahore, Faisalabad and Peshawar, the amount of caffeine and heavy metals in all the branded tea samples were in agreement with the international standards. In unbranded tea samples, though the amount of caffeine was within standard limits but two of the samples collected from Peshawar had high concentrations of lead being, 13.69 and 15.78 mg/kg, consumption of which can lead to serious problems. (author)

  3. Examinations of content of heavy metals in municipal solid waste and produced compost

    International Nuclear Information System (INIS)

    Golimowski, J.; Tykarska, A.; Orzechowska, K.

    1993-01-01

    The basic methods of utilization of municipal solid waste are biothermic and aerobic methods to compost. The content of heavy metals in composts depends on the initial their content in wastes as well as on the compost process. The voltammetric method has been applied for measurement of concentration of Zn, Cd, Pb, Cu, Cr, Ni and Hg in the waste and composts samples. (author). 24 refs, 2 figs, 3 tabs

  4. The impact of sewage sludge treatment on the content of selected heavy metals and their fractions.

    Science.gov (United States)

    Ignatowicz, Katarzyna

    2017-07-01

    The aim of the study was to assess the physicochemical properties of compost made of municipal sewage sludge from selected Municipal Sewage Treatment Plant. Content of basic macroelements and heavy metals (Zn, Cu, Cr, Cd, Ni, Pb, Hg, Mg, Ca, N, P, K, Na) and their fractions was determined by means of BCR method. Based on the analyzes, it was found that the content of heavy metals in compost did not exceed the limits set by natural land management of sewage sludge; the compost is very abundant in biogenic elements - nitrogen and phosphorus - and it can be also considered a significant source of calcium and magnesium. The analysis of results obtained from the three-stage chemical extraction revealed that deposits subjected to aerobic stabilization and composting accumulate metals (in descending sequence) in fractions III and II, i.e. fractions virtually inaccessible to the ecosystem in optimal conditions of use. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Magntic susceptibility as a proxy to heavy metal content in the sediments of Anzali wetland, Iran

    Directory of Open Access Journals (Sweden)

    Naseh Mohammad Reza Vesali

    2012-12-01

    Full Text Available Abstract Heavy metal concentrations and magnetic susceptibility of sediment samples were analyzed as indicators of urban and industrial contamination in Anzali wetland in Gilan, Iran. The aim was to investigate the suitability of magnetic properties measurements for indicating heavy metal pollution. The concentration of six heavy metals (Ni, Cr, Cd, Zn, Fe, and Pb was determined in different depths of four sediment core samples within four different regions of the wetland (Abkenar, Hendekhaleh, Shijan and Siakeshim. Average concentration of heavy metals in the sediment cores was higher than the severe effect level (SEL for Ni, Cr and Fe (77.26, 113.63 ppm and 5.2%, respectively and lower than SEL for Cd, Zn and Pb (0.84, 137.7, 29.77 ppm, respectively. It was found that the trend of metal concentrations with the depth is different in each core and is related to the pollution discharges into the rivers entering the wetland. Core magnetic susceptibility measurements also showed different magnetic properties in each core. Cluster analysis was applied using Pearson correlation coefficient between heavy metal concentrations and magnetic properties across each core. Significant relationship was found to exist between magnetic susceptibility and the concentration of Ni in Abkenar and the concentration of Fe in other regions. Whereas Abkenar is almost the isolated and uncontaminated region of the wetland, it revealed a difference in magnetic properties between contaminated and uncontaminated sediments. It was concluded that magnetic properties of samples from contaminated zone were mostly related to Fe content. The result of this study demonstrated that magnetic susceptibility measurements could be applied as a proxy method for heavy metal pollution determination in marine environments in Iran especially as a rapid and cost-effective introductory site assessments.

  6. Content Heavy Metal Pb, Cd In Perna viridis And Sediments In Semarang Bay

    Science.gov (United States)

    Suprapto, D.; Suryanti, S.; Latifah, N.

    2018-02-01

    Waste disposal from human activities, generally contain heavy metals such as Pb and Cd which derived from industrial activities. The aims of the study were to know the concentration of Pb and Cd heavy metals contained in Perna viridis tissue, sediment and water at Semarang Bay. This study was conducted in May 2017 at Semarang Bay. - Samples were collected using purposive sampling method. The heavy metal content in the water and clam was observed using- APHA method and was analyzed using AAS (Atomic Absorption Spectrophotometer). The results showed that concentration of heavy metal of Pb in the water was 0.00-50.5mg/L and the Cd content was of 26.9-51.7 mg/L, whereas the concentration of Pb in the sediment is 445.5-2.053.0mg/L and Cd 963.3-2,150.0 mg/L. Pb content in soft tissue of Perna viridis - is 67.1-1.933.9 mg/L and the concentration of Cd was 203.5-5.787.3 mg/L. The analysis of Pb and Cd in seawater, sediment and soft tissue of Perna viridis according to Enviroment Ministerial decree (KepMenLH ) number 51 of 2004 and applied by NOAA 1999 does not exceed the quality standard, that meant that the Perna viridis has been contaminated by metal Pb it is controversial with the above sentence and Cd. It concluded that the metal content of Pb and Cd in Perna viridis tissue exceeds the quality standard, so it is not suitable to be consumed, especially in high quantity

  7. The effect of bottom sediment supplement on heavy metals content in plants (Zea mays and soil

    Directory of Open Access Journals (Sweden)

    Baran A.

    2013-04-01

    Full Text Available Important aspect of bottom sediments is the problem of their management or disposal after their extraction from the bottom of rivers, dam reservoirs, ports, channels or ponds. The research aimed at an assessment of potential environmental management of bottom sediment used as an admixture to light soil basing on its effect on contents of heavy metals in plants and soil. The research was conducted on light soil with granulometric structure of weakly loamy sand. The bottom sediment was added to light soil in the amount of 0 (control 5, 10, 30 i 50%. The test plant was maize (Zea mays, “Bora” c.v. The sediment applied in the presented research revealed high share of silt and clay fractions, alkaline pH and low contents of heavy metals, therefore it may be used as an admixture to the above mentioned soils to improve their productivity. The applied bottom sediment to the soil affected a decreased in Zn, Cd and Pb content in maize in comparison with the treatment without the deposit whereas increased content of Cu, Cr and Ni. No exceeded permissible content of heavy metals concerning plant assessment in view of their forage usability were registered in maize biomass.

  8. Content of heavy metals and naturally occurring radioactive material in Leucaena leucocaphala (Lam.) de wit

    International Nuclear Information System (INIS)

    Nurul Sareeza Azidin

    2012-01-01

    This research was done to determine the content of heavy metals in Leucaena leucocaphala (Lam.) de Wit (Petai Belalang) at 5 different areas. Those areas were in the middle of city, former mining area, industrial area, domestic waste disposal area, and on expressway roadside. Heavy metal poisoning can happen if the concentration is too high and will cause severe damage to human health. For instance, it may cause gene mutation, cancer and damage to the human body systems. This plant was selected for the study of heavy metals and radionuclide content in the soil. The reason of selecting this plant is because this plant can live in extreme conditions, and perhaps able to absorb those elements better than other legumes. The aim of this study was to determine the content of toxic heavy metals in leaves, stems and roots of Leucaena leucocaphala including the soil where it is grown. The second objective was determine NORM in the soil where the plant grew and the last objective was to determine the transfer factor of heavy metals by the plant. The content analysis of toxic heavy metals for example Cu, Zn, Cd, Hg and Pb were determined by using the Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Gamma ray spectrometry on the other hand, was used to determine K-40, Ra-226, U-238 and Th-232 in the soil where the plant was sampled. The activity concentration of Ra-226, K-40, U-238 and Th-232 determined were 7.47 ± 3.03 Bq/ kg - 256.92 ± 164.36 Bq/ kg, 95.55 ± 72.62 Bq/ kg - 435.60 ± 88.32 Bq/ kg, 21.83 ± 8.83 Bq/ kg - 165.28 ± 109.61 Bq/ kg dan 43.41 ± 7.06 Bq/ kg - 91.19 ± 11.13 Bq/ kg respectively. In general, the former mining area recorded the highest heavy metal concentration for Cu (28.20 ± 32.54 mg/ kg), Zn (114.67 ± 75,61 mg/ kg), Cd (0.31 ± 0.11 mg/ kg) and Pb (48.08 ± 33.60 mg/ kg). Whereas the highest concentration of As recorded was on the roadside (261.92 ± 132.64) and Hg (0.44 ± 0.36 mg/kg) in the middle of the city. (author)

  9. Correlation between heavy metal contents and antioxidants in medicinal plants grown in mining areas

    International Nuclear Information System (INIS)

    Maharia, R.; Dutta, R.K.; Acharya, R.; Reddy, A.V.R.

    2010-01-01

    Full texts: Medicinal plants are widely used as alternate therapeutic agents for various diseases. Three medicinal plants grown in copper mining regions of Khetri in Rajasthan was analyzed for heavy metal contents by instrumental neutron activation analysis. The copper levels were found to be two to three folds higher in these plant leaves as compared to the reported copper levels in the medicinal plants grown in environmentally friendly regions. In our previous study on heavy metals in soil and medicinal plant of Khetri region we have shown bioaccumulation of Cu in the medicinal plants. In addition, the levels of Cr, Fe and Zn were also higher. Antioxidant properties of medicinal plants are one of their major therapeutic functionalities. The role of elevated levels of heavy metals in the medicinal plants was studied with respect to their antioxidant properties. Standard procedures were used for measuring total phenols, flavanoids and DPPH assay of these medicinal plants which were correlated with the heavy metals contents of these plants

  10. Evaluation of heavy metal content in irradiated sludge, chicken manure and fertilized soil in Indonesia

    International Nuclear Information System (INIS)

    Hilmy, N.; Suwirma, S.; Surtipanti, S.; Harsojo

    1997-01-01

    The contents of heavy metals, Hg, Cd, Cr, Cu, Ni, Pb, Zn and Co, were determined in two irradiated sludges, chicken manure and fertilized soil. Sludge I was collected from a treatment plant in Jakarta city, Sludge II from a sludge reservoir in a Jakarta suburb, chicken manure was obtained from a farm south of Jakarta, and the soil had been treated with phosphate fertilizer since 1967. The sludges and chicken manure were collected during the rainy and dry seasons, and the heavy-metal contents were determined by atomic-absorption spectrometry and neutron-activation analysis. The results obtained are compared with data from Canada, and are discussed in terms of permissible limits in the environment. (author)

  11. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  12. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia

    Science.gov (United States)

    Fitamo, Daniel; Itana, Fisseha; Olsson, Mats

    2007-02-01

    The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction

  13. Content of heavy metals in gleyic chernozem of Srem loess terrace under alfalfa

    Directory of Open Access Journals (Sweden)

    Jakšić Snežana

    2012-01-01

    Full Text Available Production of high-quality forage from alfalfa is influenced not only by the presence of nutrients, but also by the absence of harmful elements, such as heavy metals. The examination of the total heavy metals content (Ni, Cr, Pb and As in gleyic chernozem soil of Srem loess terrace in Hrtkovci, under alfalfa (Medicago sativa L. were carried out in 2011 in order to determine suitability for the production of safe forage. It total content of Pb, As and Crwas below the maximum permitted concentrations. The content of As, Cr and Ni was higher in the surface layer, unlike Pb, whose content was higher in the deeper layers of soil. A significant positive correlation was found between the total content of Ni, Cr and As. An increased concentration of Ni was found, which was above the maximum permitted concentration. It is necessary to further control its content and accessibility examination and extraction from plants, to prevent its entry into the food chain and provide safe food.

  14. Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid

    Science.gov (United States)

    Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria

    2016-04-01

    The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson

  15. [Heavy metals contents and Hg adsorption characteristics of mosses in virgin forest of Gongga Mountain].

    Science.gov (United States)

    Liang, Peng; Yang, Yong-Kui; He, Lei; Wang, Ding-Yong

    2008-06-01

    Seven main moss species in the Hailuogou virgin forest of Gongga Mountain were sampled to determine their heavy metals (Hg, Cr, Cd, Ni, Pb, Cu, Mn, Zn and Fe) content, and two widely distributed species, Pleurozium schreberi (Brid.) Mitt. and Racomitrium laetum Besch., were selected to study their Hg adsorption characteristics. The results showed that the heavy metals contents in the mosses were lower than the background values in Europe and America, except that the Cd had a comparable value, which indicated that the atmosphere in study area was not polluted by heavy metals and good in quality. The Hg adsorption by P. schreberi and R. laetum was an initiative and rapid process, with the equilibrium reached in about two hours, and could be well fitted by Freundlich and Langmuir equations. Based on Langmuir equation, the maximum Hg adsorption capacities of P. schreberi and R. laetum were 15.24 and 8.19 mg x g(-1), respectively, suggesting that the two mosses had a good capacity of Hg adsorption, and could be used as the bio-monitors of atmospheric Hg pollution.

  16. Distribution of Heavy Metal Content Hg and Cr of Environmental Samples at Surabaya Area

    International Nuclear Information System (INIS)

    Agus Taftazani

    2007-01-01

    Determination of Hg and Cr content of Surabaya river and coastal environmental samples using Instrumental Neutron Activation Analysis (INAA) have been done. The environmental samples were water, sediment, Eichhornia crassipes (Mart) Solmms, Rhizophora stylosa, Johnius (Johnieops) borneensis fish, and Moolgarda delicate fish at 12 locations selected of Surabaya area. Dry powder of sediment and biotic samples and concentrate water samples was irradiated by neutron flux 1.05 x 10 11 n.cm -2 .det -1 during 12 hours. The analytical result showed that the concentration of the heavy metals of river water are smaller than Perda Surabaya City No. 02/2004 for the 4 th level water which are Hg (0.005 ppm) and Cr (1.000 ppm). All locations coastal water samples have Hg and Cr concentrations are higher than Kepmen LH No.51/2004 Hg (0.001 ppm) and Cr (0.005 ppm). The Hg concentration of fish samples have exceeded the threshold according to Kep. Dirjen POM No.03725/B/SK/VII/89 about the maximum concentration of metal pollution in food. The concentration of heavy metals in sediment, Eichhornia crassipes (Mart) Solmms and Rhizophora stylosa are not regulated, so then heavy metals pollution can not be referred to. The concentration of Hg and Cr elements of water samples are smaller than that of biotic and sediment samples. The distribution factor (F d ) is bigger than bioaccumulation factor (F b ). (author)

  17. Heavy metals content in degraded agricultural soils of a mountain region related to soil properties

    Science.gov (United States)

    Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume; Zorpas, Antonis

    2017-04-01

    Agriculture has been practiced for long time in Mediterranean regions. Intensive agriculture and irrigation have developed mainly in the valleys and coastal areas. In the mountainous areas, dry farming has been practiced for centuries. Soils have been fertilized using mainly organic amendments. Plants extracted nutrients and other elements like heavy metals presented in soils and agricultural practices modified soil properties that could favor the presence of heavy metals. In this work, it has been checked the content of heavy metals in 100 agricultural soils samples of the NorthWest area of the province of Alicante (Spain) which has been long cultivated with cereals and olive trees, and now soils are abandoned and degraded because of the low agricultural yields. European policy has the aim to improve the sustainable agriculture and recover landscapes of mountain regions. So that, it is important to check the state of the soils (Marques et al. 2007). Soils samples (arable layer) were analyzed determining: pH (1:5, w/v, water extract), equivalent calcium carbonate content, organic matter by Walkley-Black method (Nelson and Sommers 1996), micronutrients (Cu, Fe, Mn, Zn) extracted with DTPA (Lindsay and Norvell, 1978) and measured by atomic absorption spectrometry, and total content of metals (Cd, Cr, Ni, Pb) measured in soil samples after microwave acid digestion (Moral et al. 1996), quantifying the content of metals by ICP analysis. The correlation between soil properties and metals. The results indicated that pH and carbonates are the most important properties of these soils correlated with the metals (both micronutrients and heavy metals). The available micronutrients (all of them) are close correlated with the pH and carbonates in soils. Moreover, heavy metals like Pb and Ni are related to available Mn and Zn. Keywords: pH, carbonates, heavy metals, abandoned soils. References: Lindsay,W.L., andW.A. Norvell. 1978. "Development of a DTPA Soil Test for Zinc, Iron

  18. Mineral and heavy metal contents of the outer and inner tissues of commonly used fruits.

    Science.gov (United States)

    Özcan, Mehmet Musa; Harmankaya, Mustafa; Gezgin, Sait

    2012-01-01

    The rate of heavy metal pollution in some minor fruit samples growing at roadsides in Turkey were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The mineral contents of samples were found to be different depending on the several parts Citrus fruits. The highest minor and heavy metal levels for Citrus fruits were determined between 17.24 and 45.30 mg/kg boron, 2.08 and 15.05 mg/kg copper, 1.01 and 16.00 mg/kg iron and 2.35 and 9.87 mg/kg zinc. Boron content ranged from 16.54 mg/kg (Deveci pear inner pulp) to 89.89 mg/kg (Arjantin apple outer skin). The level of Fe ranged from 1.49 mg/kg (quince pulp) to 25.05 mg/kg (Ankara pear pulp). Cu content of fruits ranged between 2.52 mg/kg (Fuji apple skin) and 25.93 mg/kg quince skin). Zn content was found between 0.46 mg/kg (Golden apple pulp) and 14.34 mg/kg (quince skin). P contents ranged from 651 mg/kg (Golden apple pulp) to 1269 mg/kg (quince skin). Na was found between 500 mg/kg (Fuji apple skin) and 907 mg/kg (Arjantin apple skin).

  19. Content of heavy metals and chemical composition of the hydraulic cement marketed in Costa Rica

    International Nuclear Information System (INIS)

    Venegas Padilla, Jimmy; Calderon Jimenez, Bryan; Sibaja Brenes, Jose Pablo; Salazar Delgado, Jorge; Rodriguez Castro, Ellen

    2017-01-01

    The concentration of heavy metals, specifically lead (Pb), chromium (Cr), and mercury (Hg), and also the chemical composition (CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 among others) were quantified of the hydraulic cement marketed in Costa Rica. The physical parameters of density and fineness confirmed the homogeneity of the samples to determinate accurately the content of the major components and heavy metals in the cements. The mineralogical constitution was determined by X-ray Fluorescence (XRF). Specifically, the cements showed a mass fraction in the range of (61.22 - 63.12) % of CaO, (18.10 - 26.14) % of SiO 2 , (3.70 - 6.05) % of Al 2 O 3 , (2.57 - 3.36) % Fe 2 O 3 and (0.60 - 4.09) % de MgO. Other components such as MgO, TiO 2 , K 2 O, P 2 O 5 , Na 2 O and Mn 2 O 3 were found on an average mass fraction lower than 1%. Moreover, using the ignition test results and assuming a complete decomposition of the limestone, it was possible to estimate (indirectly) the content of CaCO 3 and CaO given by the raw materials. The metal content of the heavy metals was determined using Flame Atomic Absorption Spectroscopy (FAAS), Electrothermal Atomic Absorption Spectroscopy (ETAAS), and Cold Vapor Atomic Absorption Spectroscopy (CVAAS). The analysis demonstrated that the Pb in cements is present in different concentrations ranging the (2.45 ± 0.72) mg kg -1 to the (8.95 ± 1.34) mg kg -1 . Chromium (Cr) was presented in higher concentrations of (10.69 ± 0.92) mg kg-1. The Hg concentration was below 0.141 ± 0.021 mg kg -1 . In general terms, the hydraulic cements marketed and used in Costa Rica have a suitable chemical composition compared with some cements marketed in Germany. The results of the content of heavy metals presented in this study provide significant information for future studies in the area of toxicology, ecotoxicology, standardization and national regulation. (author) [es

  20. Comparing heavy metal contents in crops receiving mineral fertilisers and animal manure

    DEFF Research Database (Denmark)

    Christensen, Bent Tolstrup; Elsgaard, Lars

    2014-01-01

    Spring barley (grain, straw), grass-clover (two cuts), winter wheat (grain, straw) and silage maize grown in the Askov long-term experiment with different levels (0, ½, 1, 1½, 2) of mineral fertiliser (NPK) and animal manure (AM) had concentrations of As, Pb, Cd and Hg below the EC maximum permis...... of NPK and AM does not pose a threat in terms of feed quality. However, the long-term accumulation of heavy metals added with mineral fertilisers and animal manure is essentially irreversible and may threaten soil quality....... in the analysed metal contents between crops grown with NPK and AM. Crop contents of uranium and thallium were below the analytical detection limits regardless of nutrient source and addition rate. Thus in a farming context similar to that of the Askov experiment, the long-term application of standard rates...

  1. Selected Heavy Metals Content in Soil and Arundina graminifolia from Pelepah Kanan Mine, Kota Tinggi, Johor, Malaysia

    International Nuclear Information System (INIS)

    Sahibin Abdul Rahim; Zulfahmi Ali Rahman; Wan Mohd Razi Idris; Azman Hashim; Tukimat Lihan; Muhd Barzani Gasim; Jumaat Adam; Lim, F.N.

    2009-01-01

    Heavy metals composition of Cd, Co, Cr, Ni, Pb and Zn in Arundina graminifolia collected from mining area at Lombong Pelepah Kanan, Kota Tinggi, Johor were determined. The heavy metal content was also analysed in their soil substrates. The plants were separated into different portions for example root, stem and leaf and extracted for their heavy metal content by digestion method whereas the soils heavy metal content was extracted by sequential extraction. Heavy metal content in soil and plant extract was determined using the Flame Atomic Absorption Spectrophotometer. Heavy metal contents of Cd, Cr, Ni and Pb in plants were compared with their content in the control plant, whereas the Co and Zn contents were three to five folds higher. As for heavy metal content in different plant parts, it was found that Cd concentration was high in roots (2.03 mg/ kg) followed by leaf (1.67 mg/ kg) and stem (1.49 mg/ kg). Co concentration was high in leaf (9.26 mg/ kg) followed by root (9.18 mg/ kg) and stem (6.94 mg/ kg). For Cr, the concentration in decreasing sequence was root (0.46 mg/ kg) > leaf (0.19 mg/ kg) > stem (0.08 mg/ kg). Ni concentration was higher in leaf (2.78 mg/ kg) followed by root (2.71 mg/ kg) and stem (1.66 mg/ kg). Concentration in decreasing order was root (10.34 mg/ kg) > leaf (4.18 mg/ kg) > stem (3.75 mg/ kg). Zn concentration was higher in leaf (44.03 mg/ kg) followed by root (32.30 mg/ kg) and stem (13.21 mg/ kg). Total heavy metal content in soil was 2.07 - 5.59 mg/ kg, 8.72 - 39.93 mg/ kg, 1.81 - 2.14 mg/ kg, 2.66 - 6.87 mg/ kg, 23.02 - 51.56 mg/ kg and 0.64 - 2.61 mg/ kg for Ni, Zn, Cd, Pb, Co and Cr, respectively. The available fraction of heavy metals in soil was 21.9 % for Ni, 15.3 % for Zn, 49.9 % for Cd, 19.3 % for Pb, 45.7 % for Co and nil percent for Cr. Biological adsorption coefficient for the heavy metals studied was very low except for Zn where BAC value slightly higher than 1. This plant was not suitable to be used as a phyto

  2. Content and the forms of heavy metals in bottom sediments in the zone of industrial pollution sources ,

    Directory of Open Access Journals (Sweden)

    Voytyuk Y.Y.

    2014-12-01

    Full Text Available Regularities in the distribution of heavy metals in sediments in the zone of influence of the steel industry in Mariupol are installed. The study results of the forms of occurrence of Zn, Pb, Cu, Cr, Ni are represented. Ecological and geochemical assessment of sediment contamination by heavy metals is performed. The main sources of pollution of bottom sediments are air borne emissions from industrial plants, hydrogenous pollution in industrial sewage entering the water, sewage sludge, ash dumps, slag, ore, sludge, oil spills and salt solutions. Pollution hydrogenous sediments may be significant, contaminated sediments are a source of long-term contamination of water, even after cessation of discharges into rivers untreated wastewater. The environmental condition of bottom sediments in gross content of heavy metals is little information because they do not reflect the transformation and further migration to adjacent environment. The study forms of giving objective information for ecological and geochemical evaluation. The study forms of heavy metals in the sediments carried by successive extracts. Concentrations of heavy metals in the extracts determined by atomic absorption spectrometer analysis CAS-115. It was established that a number of elements typical of exceeding their content in bottom sediments of the background values, due likely to their technogenic origin. Man-made pollution of bottom sediments. Mariupol has disrupted the natural form of the ratio of heavy metals. In the studied sediments form ion exchange increased content of heavy metals, which contributes to their migration in the aquatic environment.

  3. Influence of growing conditions on heavy metals content in cultivated mushrooms

    International Nuclear Information System (INIS)

    Kmitene, L.

    1997-01-01

    The aim of the research was to investigate the influence of growing terms, microclimate conditions and growing medium on the mushroom harvest and quality. Champignons were grown according to the Polish technology. Pleurotus ostreatus was grown in perforate sacks using chopped wheat straw. Mycelium was sowed in different terms. It was established that the harvest of mushrooms, especially their quality, depends not only on growing conditions, but also on the kind of mushrooms, composte quality, mushroom size (diameter of cap), picking of mushrooms, storage time and other conditions. The technology of mushroom growing will be developed after studying all the factors determining the content of heavy metals and radiation in mushrooms

  4. ASSESSMENT OF HEAVY METALS CONTENTS IN BOTTOM SEDIMENTS OF BUG RIVER

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorbiłowicz

    2014-07-01

    Full Text Available The development of industry, agriculture, and transport contributes to an increased environmental pollution by heavy metals. The aim of the study was preliminary assessment of the contents of selected metals (lead, cobalt, copper, chromium, cadmium and nickel in the sediments of Bug river. The study comprised part of the river flowing through Poland. It was found that the Bug river sediments are not contaminated in respect to the content of tested metals. Based on the analysis of the study results, these metals can be lined up in the following order: Cr > Pb > Cu > Ni > Co > Cd. Statistical analysis showed that copper and chromium occur in Bug river sediments in forms bindings with organic matter in majority of cases. The granulometric analysis of sediments from Bug river revealed the largest percentage of two fractions: 1.0–0.2 mm with average of 47.7 ± 19.77% and 0.2–0.1 mm with average of 20.6 ± 7.7%. These are the dominant fractions with the accumulation of metals in river sediments, which has been confirmed by statistical analysis.

  5. Heavy metal contents and other physical quality indices of sewerage, canal and drinking water

    International Nuclear Information System (INIS)

    Mahmood, S.; Sattar, A.; Ihsanullash; Atta, S.; Arif, S. University of Engineering and Technology, Peshawar

    2001-01-01

    Analysis of Cd, Pb and Cu in canal, sewerage and drinking water by potentiometric stripping analysis (PSA) is described. Other quality indices of water such as temperature, pH, EC and total solid were also determined. The levels of heavy metal contents of sewerage, canal and drinking water revealed marked differences and wide coefficient of variability (CV). Generally Cd and Pb contents were higher in sewerage than canal and drinking water. However, Cu content of drinking waters was higher than other water tested. The total solids were found to be generally higher in sewerage and canal water than drinking water tested. The total solids were found to be generally higher in sewerage and canal water than drinking water The variations in temperature, pH and EC were marginal to marked depending upon the source and the location. (author)

  6. Heavy Metal Contents in Spices from Markets in Sarajevo, Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Huremović, J.

    2014-05-01

    Full Text Available Spices are some of the most common foods in the human diet around the world. Spices are dried parts of plants used often as diet components to improve aroma and acceptability of food. The aim of this work was to determine the contents of seven heavy metals (Cr, Cu, Fe, Mn, Ni, Pb and Zn in spices available at local markets in Sarajevo. Metal concentrations in six spice samples (black pepper (Piper nigrum, basil (Ocimum basilicum, oregano (Oreganum vulgaris, paprika (Capsicum annuum, parsley (Petroselinum crispum and rosemary (Rosmarinus officinalis were determined by flame atomic absorption spectrometry. The content of chromium and nickel in all samples was below 5 mg kg-1 . Copper levels were in the range of 2.36-19.47 mg kg-1 , iron 6.80-785.56 mg kg-1 , manganese 6.14-59.36 mg kg-1 , lead 0.74-20.35 and zinc 6.93-85.44 mg kg-1 . These results were in agreement with other published data except in the case of Pb which content was slightly higher. Daily intake of different metals was calculated and compared with the MRL values given by ATSDR (2013. The content of lead in most of the samples was above the maximum permitted concentrations recommended by WHO and national regulations of Bosnia and Herzegovina.  

  7. A city scale study on the effects of intensive groundwater heat pump systems on heavy metal contents in groundwater.

    Science.gov (United States)

    García-Gil, Alejandro; Epting, Jannis; Garrido, Eduardo; Vázquez-Suñé, Enric; Lázaro, Jesús Mateo; Sánchez Navarro, José Ángel; Huggenberger, P; Calvo, Miguel Ángel Marazuela

    2016-12-01

    As a result of the increasing use of shallow geothermal resources, hydraulic, thermal and chemical impacts affecting groundwater quality can be observed with ever increasing frequency (Possemiers et al., 2014). To overcome the uncertainty associated with chemical impacts, a city scale study on the effects of intensive geothermal resource use by groundwater heat pump systems on groundwater quality, with special emphasis on heavy metal contents was performed. Statistical analysis of geochemical data obtained from several field campaigns has allowed studying the spatiotemporal relationship between temperature anomalies in the aquifer and trace element composition of groundwater. The relationship between temperature and the concentrations of trace elements resulted in weak correlations, indicating that temperature changes are not the driving factor in enhancing heavy metal contaminations. Regression models established for these correlations showed a very low reactivity or response of heavy metal contents to temperature changes. The change rates of heavy metal contents with respect to temperature changes obtained indicate a low risk of exceeding quality threshold values by means of the exploitation regimes used, neither producing nor enhancing contamination significantly. However, modification of pH, redox potential, electrical conductivity, dissolved oxygen and alkalinity correlated with the concentrations of heavy metals. In this case, the change rates of heavy metal contents are higher, with a greater risk of exceeding threshold values. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. RESEARCH ON THE QUAIL EGGS ALBUMEN CONTENT IN SOME HEAVY METALS

    Directory of Open Access Journals (Sweden)

    I. VIZITIU

    2015-12-01

    Full Text Available Out of a sample batch of 20 Japanese quails, Pharaoh race, with an age of 100 days and weighing 245 g, approximately 200 eggs were collected at the peak phase of the laying period. The eggs were measured, weighed and broken, separating the albumen from the other components. The data obtained served to calculate the physical and morphological indices. Primary chemical composition, caloricity, heavy metals content were first determined, the following data being obtained: quail eggs albumen has an average weight of 7.1025±0.061g, an average volume of 7.158±0.09cm3, an average density of 1.0168±0.0139 g/cm3 and an index (of freshness of 0.0797±0.0015. The albumen contains: 86.76% water, 13.24% dry matter, 0.835% mineral matter, 11.37% protein, 1.03% non-nitrogenous extractive substances and a caloricity of 289.498 kJ for 100 g product. The average content of heavy metals in albumen was: 1.33*10-3 ppm, for cadmium; 8.83*10-2 ppm, for zinc; 1.005 ppm, for cooper and 0.0 ppm, respectively, for lead.

  9. Studies of Radioactive Contaminations and heavy metal contents in vegetables and fruit from Lublin, Poland

    International Nuclear Information System (INIS)

    Chibowski, S.

    2000-01-01

    This paper presents studies of the level of some gamma radioactive elements and heavy metals in fruits, vegetables and plants from Lublin. Potassium 40 K isotope was most prevalent element in the examined samples. It concentrated mainly in aboveground parts of some vegetables, for example in parsley and carrots haulm and in leaves of red beet and leek (from 1135 to 1940 Bq/kg). considerably lower concentrations of this element were noticed in the roots of the vegetables, running from 210 to 448 Bq/kg of dry matter. In examined fruit, the 40 K contents ranged from 490 to 510 Bq/kg. Transfer factors of 40 K, from the soil to the vegetables and fruit, ranged from 0.3 to 2.9. The natural isotopes of uranium series account for 17% of total activity, whereas thorium series was 19-20% of its activity. In fact, in examined fruit (raspberry, red and black currants) and roots of vegetables caesium 137 Cs was not detected, whereas some amounts of it were noticed in green parts of vegetables, from 4.0 to 8.4 Bq/kg of dry matter. The transfer factor of 137 Cs from the soil to examined samples ranged from 0.03 to 0.4. in all studied samples examined on heavy metal contents no valid safety standards for these elements were exceeded. (author)

  10. Selected Heavy Metal Content in Ultra basic Soil and Mengkudu (Morinda citrifolia) from Kuala Pilah, Negeri Sembilan, Malaysia

    International Nuclear Information System (INIS)

    Sahibin Abdul Rahim; Wan Mohd Razi Idris; Zulfahmi Ali Rahman; Kadderi Mohd Desa; Tukimat Lihan; Azman Hashim; Sharilnizam Yusof; Kuan, L.H.

    2009-01-01

    This study was carried out at an ultra basic area, Selaru (S1 and S2) dan Felda Rokan Barat (S3), Kuala Pilah, Negeri Sembilan. Eighteen samples of plant and their substrates were collected from study area. The purpose of this study was to determine heavy metal such as Ni, Cr, Mn, Co, Fe and Zn contents in soils and different parts of the plant, such as leaf, stem, root and fruit. Biologal Absorption Coefficient (BAC) of the plant was obtained by calculation. Heavy metals content in the plant were extracted by digestion method whereas in soil the heavy metals were extracted by sequential extraction. Heavy metals content in soil and plant extract was determined using Flame Atomic Absorption Spectrophotometer. It was found that heavy metal concentrations in soil substrate for mengkudu (Morinda citrifolia) were high for Fe followed by Cr, Ni, Mn, Zn and Co with average concentration of 1208.5, 583.4, 352.4, 352.4, 70.7 and 53.6 mg.kg -1 , respectively. Available Mn and Zn concentrations were higher than the other heavy metals in term of percentage. Fe and Mn were dominant in all parts of plants however in terms of BAC average, Co showed the highest enrichment value in all parts of the plants. (author)

  11. Heavy metals content in acid mine drainage at abandoned and active mining area

    Science.gov (United States)

    Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim

    2013-11-01

    This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD

  12. Investigation of heavy metals content in medicinal plant, eclipta alba L

    International Nuclear Information System (INIS)

    Hussain, I.; Khan, H.

    2010-01-01

    Heavy metal such as Cr, Fe, Zn, Mn, Ni, Pb, Cu and Cd were investigated in a= medicinally important plant, Eclipta alba L. as well as in the soil it was grown using atomic absorption spectrophotometer. The plant samples were collected from their natural habitat at three different locations of Peshawar Pakistan. The whole plant materials (roots, stems and leaves) were found to contain all heavy metals except Cd, which corresponds to their concentration in the soil it was grown. Among all the heavy metals, Fe was found to be at the highest level (8.95 to 27.7 mg/kg) followed by Mn (0.44 to 14.0 mg/kg) and Zn (1.04 to 4.50 mg/kg), while the rest of metals were at low concentration. The present study showed that E. alba L. is suitable for the control of environmental pollutants such as heavy metals, however, for medicinal purposes; it should be collected from those areas which are not contaminated with heavy metals. The purpose of the current study was to standardize various indigenous medicinal plants for heavy metals contamination and to make awareness among the public regarding its safer use and collection areas, containing high level of heavy metals and their adverse health affects. (author)

  13. Lead-210 and heavy metal contents in dated ombrotrophic peat hummocks from Finland

    International Nuclear Information System (INIS)

    El-Daoushy, F.; Tolonen, K.

    1984-01-01

    Two Sphagnum fuscum hummock cores, core 1, Kaerpaensuo bog and core F9, Kunonniemensuo bog. from Finland were used in this study. The peats are ombrotrophic and were dated using the moss-increment method. The mosses in both cores were carefully examined for their botanical composition, degree of humification, ash percentage and bulk density. The total accumulated dry peat-matter in the Kunonniemensuo core was almost double that in the Kaerpaensuo core. The total 210 Pb and the supported 210 Pb were measured by isotope dilution and the radon emanation technique. Materials in the same peat samples were analysed for their 210 Pb content at the Institute of Physics, Uppsala, Sweden and the Technical Research Centre of Finland, Espoo, Finland. The annual content of unsupported 210 Pb in the dated peat-layers shows that peat materials are effective traps which could yield information on atmospheric-fluxes both chronologically and regionally. Lead, copper, zinc, iron and manganese were also measured by flame atomic absorption spectrometry (AAS). The total accumulated amounts over the past 150 y of the heavy metals investigated are almost identical for both cores apart from manganese which is considerably higher in the Kunonniemensuo core. However, the metal profiles studied exhibit discontinuity zones more pronounced in the Kunonniemensuo core. The 210 Pb data indicate that growth rate and bulk density variations in ombrotrophic peat bogs affects the accumulation of 210 Pb and similar trace metals. (orig.)

  14. Effect Of Heavy Metals Stress On Enzyme Activities And Chlorophyll Content Of Pea (Pisum Sativum) And Tomato Plants

    International Nuclear Information System (INIS)

    Ahmed, B.M.; El Maghrabi, G.; Hashem, M.F.

    2013-01-01

    The effects of heavy metal stress on the chlorophyll in addition to catalase and peroxidase activities were studied in the leaves and roots of tomato and pea plants. Four groups were studied; the control group and other three groups treated with heavy metals. Group 1HM was treated with 1.0 mg CuSO 4 /l + 0.2 mg CdSO 4 /l + 0.1 mg ZnNO 3 /l every 10 days while in group 5 HM and group 10 HM, the doses were 5 and 10 folds the 1 HM, respectively. Leaves and roots of control and heavy metal-stressed plants were harvested after 10 weeks for chlorophyll determination. The chlorophyll content, especially chlo. b, was significantly decreased with the increase in heavy metals stress in both plants. In leaves of heavy metal-stressed plants, the peroxidase level in different stress levels was increased with increasing stress levels in tomato and pea while catalase was unchanged in leaves of tomato in comparison with the control. The activities of catalase and peroxidase in roots of heavy metal-stressed plants were increased in group 5 HM then decreased in case of group 10 HM. The increase in enzyme activities demonstrated that tomato is more tolerant to heavy metals than pea

  15. Heavy metal contamination, microbiological spoilage and biogenic amine content in sushi available on the Polish market.

    Science.gov (United States)

    Kulawik, Piotr; Dordevic, Dani; Gambuś, Florian; Szczurowska, Katarzyna; Zając, Marzena

    2018-05-01

    The present study determined the heavy metal contamination (mercury, cadmium, lead, arsenic and nickel) of nori, restaurant-served sushi and ready-to-eat sushi meals available via retail chains. Moreover, both microbiological load and biogenic amine content in ready-to-eat sushi meals were analysed. All of the nori samples contained high levels of Cd (2.122 mg kg -1 ), Ni (0.715 mg kg -1 ), As (34.56 mg kg -1 ) and Pb (0.659 mg kg -1 ). The studied sushi samples contained high levels of Ni and Pb, reaching 0.194 and 0.142 mg kg -1 wet weight, respectively, being potentially hazardous to women during pregnancy and lactation and small children. None of the studied samples contained high levels of Hg. Overall, 37% of ready-to-eat sushi meals exceeded a microbiological load of 10 6  cfu g -1 . However, biogenic amine content in all of the samples was low, with a highest histamine content of 2.05 mg kg -1 . Sushi is not the source of high levels of biogenic amines even with high microbiological loads. Nevertheless, the high microbiological loads at the end of the shelf-life indicate that some processors might have problems with the distribution chain or implement a poor hygienic regime. Moreover as a result of possible risk associated with heavy metal contamination, the present study highlights the need to establish new regulations regarding the contamination of nori and sushi. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy

    Science.gov (United States)

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-01

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500 nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region.

  17. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy.

    Science.gov (United States)

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-15

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Investigation of possibilities for high heavy metal content sludges utilization by incorporating them in concrete products

    Directory of Open Access Journals (Sweden)

    Simeonova A.

    2006-01-01

    Full Text Available The safe removal of sludge, obtained during the surface treatment of different metal products, is a serious environmental problem. These sludges are usually characterized by a high content of heavy metals (Pb, Cu, Ni, Zn, Cr, Cd, Mn, low quality and are obtained in many small industrial units in the whole country, which makes their centralized treatment difficult. In world practice, different methods are used for component fixation of such sludge, in the aim to prevent leaching of the metals causing pollution of the soil and underground water. The aim of the recent work is to prepare the sludge in a form of light (keramzit fillers by preliminary treatment with binding substances and to introduce them in non supporting concrete products - curbs, stakes and similar products. The investigation was made with two types of sludge - from a production line for thermal treatment and hardening of different parts used in machine building and from a production line for surface decoration treatment (nickel-plating and chromium-plating of consumer products. The sludge were dried and ground and then granulated with a solution of water glass. After their solidifying the air dried granules with a size of 5 to 15 mm were treated with cement milk and air dried again. With the obtained granules, standard percolation test for leaching metals like Pb, Cu, Zn, Ni and Cr was carried out. After a preliminary calculation of concrete mixtures, these granules were mixed with Portland cement and concrete sample products were made. These molded concrete samples were characterized by their density, water absorption, and mechanical strength for defined standard periods of time. The samples were subjected to a modified percolation test for leaching metals. The metal concentration in eluates was determined by Atomic Spectral Analysis.

  19. Species variation of Aegilops genus and heavy metal content in plant habitat soil at southern Adriatic localities

    Directory of Open Access Journals (Sweden)

    Dimitrijević Miodrag

    2014-01-01

    Full Text Available The Aegilops genus is a wild relative to the bread wheat, having chromosomes homologous to wheat chromosomes. That genus could be the source of many usefull abiotic stress tolerance genes. Facing a global climate changes, as well as, environmental erosion, it is important to create a desirable genetic variability that could correspond to environmental challenges. Heavy metals in soil could cause soil pollution, could lead to different phenotypic changes in plants, and could enter food chain. Assessment of Aegilops sp. population variation, as well as, heavy metal content in their habitat was the main goal in this research. Aegilops population composition was examined and samples were taken from 55 localities of South Adriatic coastal and littoral areas. Topsoil samples from all the localities were taken and heavy metal content, namely Cr, Pb, Zn, Ni, Cd and Cu, was analyzed,. Manganese content was measured, as well. Value of pH was established.

  20. The Investigation of Heavy Metal Content (Cu, Cd, Pb in Sapu-Sapu Fish (Hypostomus plecostomus in Bengawan Solo River

    Directory of Open Access Journals (Sweden)

    Ristiyana Eko Setyarini

    2016-12-01

    Full Text Available A study had been carried out to investigate heavy metal (Cu, Cd, Pb content in sapu-sapu fish (hypostomus plecostomus in Bengawan Solo river. The type of this research was observational research, with sapu-sapu fish inhabit Bengawan Solo River as the population. The samples were taken with purposive random sampling. Nine sapu-sapu fishes taken from 3 places, i.e.: Nguter Sukoharjo area, Premulung river outlet and Anyar river, 3 fishes from each palce, and then take examined the content of heavy metal. The result of study showed that the average content of Cu: 0.027 mg/100gr, Cd: 0.005 mg/100gr and Pb: 0.042 mg/100gr. Hence, sapu-sapu fish in Be3ngawan Solo had been contaminated with heavy metal (Cu, Cd, and Pb and should not be consumed.

  1. effects of nitrogen enrichment on heavy metals content of cattle dung ...

    African Journals Online (AJOL)

    Admin

    dung/poultry manure supplemented with 25 kg of urea (CDPMU) and (iii) cattle dung (CD) as ... Key words: Nitrogen Enrichment, Heavy Metals, Cattle Dung, Poultry Manure, Compost. .... available phosphorus, exchangeable bases and base.

  2. Determination of heavy metal content and physico-chemical properties of soils in the vicinity of Tasik Chini, Pahang

    International Nuclear Information System (INIS)

    Sahibin Abdul Rahim; Muhd Barzani Gasim; Mohd Nizam Mohd Said; Wan Mohd Razi Idris; Azman Hashim; Sharilnizam Yusof; Masniyana Jamil

    2008-01-01

    This study was carried out to determine heavy metal content and physico-chemical properties of soils influencing heavy metal accumulation in some series surrounding the Chini Lakes. A total of 15 topsoil sample were collected randomly from 6 stations. The physical properties that were analyzed include particle size distribution and soil organic matter. Meanwhile, the chemical characteristics determined were pH, electrical conductivity and cation exchange capacity. It was found that heavy metal content of Cd, Cr, Cu, Co, Pb, Zn and Mn were low whereas Fe content was high. The textures of soil studied were clay, loamy sand, sandy loam, clay loam and silty clay loam. The mean of organic matter ranged from 2.68 to 11.46 %. The soil pH showed that the soil studied was acidic with values ranged between 3.36 to 3.72. The range of electrical conductivity mean was between 2150 μScm -1 to 2403 μScm -1 . Cation exchange capacity mean ranged from 2.85 until 8.59 cmol/ kg. Correlation analysis showed that there were positive and negative significant correlations between soils parameters heavy metal concentration. Analysis of variance (ANOVA) showed that there were significant differences in organic matter percentage, pH, cation exchange capacity and heavy metals except cadmium between sampling station. (author)

  3. THE STUDY OF HEAVY METALS CONTENT IN THE CATCHMENT AREA OF THE BIEBRZA RIVER AND THREE TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    Zuzanna Kazimierowicz

    2014-11-01

    Full Text Available Sediment samples were taken in 11 measuring points of the Biebrza River and determined the contents of six metals (Cu, Cr, Co, Ni, Cd and Zn. Arithmetic mean, median and standard deviation were calculated. The sources of heavy metals in bottom sediments are: pollutants of fieldsand meadows (admixtures of plant protection products and fertilizers, discharges of domestic sewage and municipal from local wastewater treatment plants, wastewater di-scharges from rural buildings and pollutions of anthropogenic origin. Research of pollution of bottom sediments with heavy metals are needed tool for monitoring the aquatic environ-ment. Continuous monitoring metal content of the sediments will counteract the effects of the threat of biological life in the water reservoir, which may occur in the case of notorious exceeded permissible content of harmful substances.

  4. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  5. Heavy metal jako subkultura

    OpenAIRE

    KOUTNÁ, Daniela

    2016-01-01

    This bachelor thesis deals with heavy metal subculture. Its aim is to introduce the most important branches and to show broadness of heavy metal. This bachelor thesis describes development and history, briefly shows Czech heavy metal history alongside with the biggest and most popular Czech heavy metal festivals. It shows the most dressing concerns of society against this style.

  6. Heavy Metal Content in Selected Flavouring Plants and in Ultra-Basic Soil of Felda Rokan Barat, Negeri Sembilan, Malaysia

    International Nuclear Information System (INIS)

    Sahibin Abdul Rahim; Wan Mohd Razi Idris; Zulfahmi Ali Rahman; Tukimat Lihan; Ramlan Omar; Yan, L.K.

    2012-01-01

    A study was carried out at an ultra basic soil area in Felda Rokan Barat (FRB), Negeri Sembilan. Twenty plants of samples namely chili, turmeric, pandan and lemon grass were collected randomly for the determination of heavy metal contents such as Fe, Cd, Co, Cu, Mn, Ni, Pb, Cr and Zn. Heavy metals in plants were extracted by wet digestion method, whereas available and resistant heavy metals in soil were extracted by sequential extraction. Total heavy metals content in the soil were obtained by summation of resistant and available heavy metals. Heavy metals content in soil and plant extract were determined by using the Flame Atomic Absorption Spectrophotometer (FAAS). Results showed that Fe was the dominant composition in soil in the study area while Cd concentration was very low with values of < 10 mg/ kg. The range of heavy metals concentration in soils were Fe (2618.4 to 4248 mg/ kg), Mn (240.9 to 741.9 mg/ kg), Zn (81.9 to 324.8 mg/ kg), Cr (46.8 to 438.7 mg/ kg), Cu (15.7 to 81.7 mg/ kg), Pb (14.9 to 116.8 mg/ kg), Ni (10.1 to 545.6 mg/ kg), Cd (5.6 to 10.6 mg/ kg) dan Co (0.8 to 126.1 mg/ kg). Available Fe recorded the highest value in all of the plant substrates followed by Mn, Zn, Pb, Ni, Cr, Cu, Co and Cd. Based on percentage of availability Mn, Pb and Zn are considered most available by plant with availability percentage of 8 to 10 %. Concentration of Fe, Mn, Ni and Zn were high in all parts of plants compared to the other metals. The value of biological absorption coefficient (BAC) in chili, turmeric, pandan and lemon grass were in the range of 0.02-0.36, 0.03-0.41, 0.03-0.63 and 0.03-1.15, respectively. It can be concluded that the uptake of heavy metals by plants were normal even though the heavy metals concentration in the ultra basic soil was high. (author)

  7. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass.

    Science.gov (United States)

    Chen, Bo-Ching; Lai, Hung-Yu; Juang, Kai-Wei

    2012-06-01

    To better understand the ability of switchgrass (Panicum virgatum L.), a perennial grass often relegated to marginal agricultural areas with minimal inputs, to remove cadmium, chromium, and zinc by phytoextraction from contaminated sites, the relationship between plant metal content and biomass yield is expressed in different models to predict the amount of metals switchgrass can extract. These models are reliable in assessing the use of switchgrass for phytoremediation of heavy-metal-contaminated sites. In the present study, linear and exponential decay models are more suitable for presenting the relationship between plant cadmium and dry weight. The maximum extractions of cadmium using switchgrass, as predicted by the linear and exponential decay models, approached 40 and 34 μg pot(-1), respectively. The log normal model was superior in predicting the relationship between plant chromium and dry weight. The predicted maximum extraction of chromium by switchgrass was about 56 μg pot(-1). In addition, the exponential decay and log normal models were better than the linear model in predicting the relationship between plant zinc and dry weight. The maximum extractions of zinc by switchgrass, as predicted by the exponential decay and log normal models, were about 358 and 254 μg pot(-1), respectively. To meet the maximum removal of Cd, Cr, and Zn, one can adopt the optimal timing of harvest as plant Cd, Cr, and Zn approach 450 and 526 mg kg(-1), 266 mg kg(-1), and 3022 and 5000 mg kg(-1), respectively. Due to the well-known agronomic characteristics of cultivation and the high biomass production of switchgrass, it is practicable to use switchgrass for the phytoextraction of heavy metals in situ. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Heavy metals content in the indicatory biosubstrates of fertile and infertile men of urbanized territories

    Directory of Open Access Journals (Sweden)

    Biletska E.M.

    2015-03-01

    Full Text Available The article presents the results of studying features of heavy metals content - lead, cadmium, copper and zinc in the whole blood and ejaculate of fertile and infertile men. The concentration of metals in biosubstrates was determined by inverse voltamperometry method with the usage of АVА- 2. It is revealed, that maintenance of lead and cadmium practically in all biosubstrates of fertile men is 1,3-2,2 times higher as compared to the indices of infertile patients and in all investigated groups it exceeds normative levels by 1,2-6,4 times. Thus, sterile men have the expressed disbalance of copper in the organism, maintenance of which in the blood is 1,7-2,3 times higher against the analogous indices of fertile group and physiological level. Concentration of zinc in ejaculate of men with normal fertility is 9,3 times higher as compared to analogous indices of sterile men and by 30,9 times exceeds its level in blood of fertile group, this testifies to the exceptionally important role of zinc for the generative sphere of men. In biosubstrates of fertile men, living in conditions of technogenically polluted territories, concentration of zinc is by 1,2-1,5 times lower than physiological levels, this may testify to probability of forming zinc-deficient states in this contingent of population.

  9. Evaluation of mineral content and heavy metals of dromedary camel milk in Iran

    Directory of Open Access Journals (Sweden)

    Mahdieh MOSTAFIDI

    Full Text Available Abstract The aim of this study was to determine the amount of major mineral compounds and heavy metals of camel milk in Iran. For this purpose camel milk samples were collected from seven regions of Iran include Qazvin, Golestan, Semnan, Sistan-Baluchestan, Khuzestan, Bushehr and Tehran. The samples were analyzed using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES method. The results showed that among the mineral contents, iron and zinc of camel milk were greater than bovine milk. Based on the codex standard 193-2007 standards, the maximum acceptable limit for lead and cadmium is 20 µg/kg and 10 µg/kg, respectively. The results of this study showed that the measured amounts of lead, cadmium and nickel in all samples were less than the acceptable limit for bovine milk. Bovine milk and dairy products are a poor source of iron, while the obtained data revealed that camel milk is a major source of minerals, especially iron. The camel milk’s iron was 10 times more than bovine milk. However, variations in mineral content in camel milk could be due to feed, stage of lactation, milk collection time, drought conditions, environmental conditions and associated analytical methods. Camel milk recommended as a valuable source of food for the human.

  10. Dynamics of the content of lipoproteins in blood serum of carp under the influence of ions of heavy metals

    International Nuclear Information System (INIS)

    Kurant, V.Z.; Sinyuk, Yu.V.; Arsan, V.O.; Grubyinko, V.V.

    2005-01-01

    A change of the content of lipoproteins in the blood serum of carp under the influence of ions of manganese, zinc, copper, and lead is studied. The important role of lipoproteins in the blood serum of fish in the processes of detoxication of ions of heavy metals that come to their organism from the water environment is shown

  11. EVALUATION OF THE CONTENT OF HEAVY METALS IN FLUVISOLS OF FLOODPLAIN AREA DEPENDING ON THE TYPE OF LAND USE

    Directory of Open Access Journals (Sweden)

    Mirosław Kobierski

    2014-12-01

    Full Text Available The aim of the research was the evaluation of the potential contamination with heavy metals in Fluvisols, used as grasslands and arable soils of Vistula River floodplain in the area of the Chełmiński and Nadwiślański Complex of Landscape Parks. The indicators proposed by Håkanson allow to evaluate the potential ecological risk of the contamination with heavy metals associated with the accumulation of one metal or a combination of multiple metals. The mean total content of Cd, Pb, Ni Cu, Zn, Mn, as well as Fe in Fluvisols at the depth of 120–150 cm was assumed as the content of the local geochemical background and it was: 1.0 mg·kg-1, 22.8 mg·kg-1, 26.9 mg·kg-1, 1.4 mg·kg-1, 60.8 mg·kg-1, 591 mg·kg-1, and 17.6 g·kg-1, respectively. The values of the indicators such as contamination factor (CF, enrichment factor (EF revealed higher levels of the accumulation of heavy metals in the soils of grasslands, which shows that the method of their use has a significant effect on the total metal content. Contamination with heavy metals in the surface layer of the investigated Fluvisols was found, and in terms of the content with cadmium there a moderate and considerable potential ecological risk was reported. Due to the fact that no unfavourable effect of trace elements on the riverside environment was proved and that the floodplain areas are under agricultural use, to evaluate the contamination with metals, the limit values for the soils of agricultural land were assumed as stipulated in the Regulation of Minister of the Environment of September 9, 2002. According to that criterion, the soils studied do not qualify as contaminated with metals. Only in one of the soil sampling points the total content of zinc was higher than the one determined as the maximum for agricultural land soils, namely 350 mg·kg-1. A significantly positive correlation was noted between the content of C org and the total content of metals as well as very numerous

  12. Monitoring Heavy Metal Contents with Sphagnum Junghuhnianum Moss Bags in Relation to Traffic Volume in Wuxi, China

    Directory of Open Access Journals (Sweden)

    Rong Hu

    2018-02-01

    Full Text Available Despite its small size, a moss bag can reveal the different temporal and spatial deposition patterns of pollutants at a particular site; therefore, researchers can use moss bags to determine pollution sources and to put forward strategies for pollution control. Although the use of moss bags to monitor atmospheric pollution has been widely reported in Europe, there are few such empirical studies in China. Thus, in this study, bags containing the moss Sphagnum junghuhnianum were used to assess the concentrations of heavy metals (chromium (Cr, copper (Cu, lead (Pb, vanadium (V, and zinc (Zn at five sampling sites (four roads and a forest park during the summer and winter of 2012. According to the relative accumulation factor (RAF and contamination factor (CF results, pollution in winter was heavier than that in summer, and Cr was found to be the most contaminating, having the highest mean CF. There was a significant positive correlation (p < 0.05 between traffic volume and concentration for three heavy metals (Cr, Cu, and V in winter, whereas a significant positive correlation (p < 0.05 was observed between traffic volume and concentrations for four heavy metal elements (Cr, Pb, V, and Zn in summer, indicating a close relationship between heavy metal contents and traffic volume. Although there was substantial variation in the concentrations of the five heavy metals in the moss bags, significant correlations between heavy metals suggested that the contaminants originated from a common source, namely vehicle emissions. The results demonstrated that the four roads were subject to different degrees of pollution depending on the volume of traffic using each road. Therefore, the results of this study suggest that traffic volume is a major reason for heavy metal pollution.

  13. Monitoring Heavy Metal Contents with Sphagnum Junghuhnianum Moss Bags in Relation to Traffic Volume in Wuxi, China.

    Science.gov (United States)

    Hu, Rong; Yan, Yun; Zhou, Xiaoli; Wang, Yanan; Fang, Yanming

    2018-02-22

    Despite its small size, a moss bag can reveal the different temporal and spatial deposition patterns of pollutants at a particular site; therefore, researchers can use moss bags to determine pollution sources and to put forward strategies for pollution control. Although the use of moss bags to monitor atmospheric pollution has been widely reported in Europe, there are few such empirical studies in China. Thus, in this study, bags containing the moss Sphagnum junghuhnianum were used to assess the concentrations of heavy metals (chromium (Cr), copper (Cu), lead (Pb), vanadium (V), and zinc (Zn)) at five sampling sites (four roads and a forest park) during the summer and winter of 2012. According to the relative accumulation factor (RAF) and contamination factor (CF) results, pollution in winter was heavier than that in summer, and Cr was found to be the most contaminating, having the highest mean CF. There was a significant positive correlation ( p heavy metals (Cr, Cu, and V) in winter, whereas a significant positive correlation ( p heavy metal elements (Cr, Pb, V, and Zn) in summer, indicating a close relationship between heavy metal contents and traffic volume. Although there was substantial variation in the concentrations of the five heavy metals in the moss bags, significant correlations between heavy metals suggested that the contaminants originated from a common source, namely vehicle emissions. The results demonstrated that the four roads were subject to different degrees of pollution depending on the volume of traffic using each road. Therefore, the results of this study suggest that traffic volume is a major reason for heavy metal pollution.

  14. Heavy metal contents in the sediments of astatic ponds: Influence of geomorphology, hydroperiod, water chemistry and vegetation.

    Science.gov (United States)

    Gołdyn, Bartłomiej; Chudzińska, Maria; Barałkiewicz, Danuta; Celewicz-Gołdyn, Sofia

    2015-08-01

    The contents of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) were analysed in the bottom sediments of 30 small, astatic ponds located in the agricultural landscape of Western Poland. The samples were collected from 118 stations located in patches of four vegetation types. Relationships between the contents of particular elements and four groups of factors (geomorphology, hydroperiod, water quality and vegetation) were tested using Redundancy Analysis (RDA). The most important factors influencing the heavy metal contents were the maximum depth and area of the pond, its hydroperiod, water pH and conductivity values. In general, low quantities of heavy metals were recorded in the sediments of kettle-like ponds (small but located in deep depressions) and high in water bodies of the shore-bursting type (large but shallow). Moreover, quantities of particular elements were influenced by the structure of the vegetation covering the pond. Based on the results, we show which types of astatic ponds are most exposed to contamination and suggest some conservation practices that may reduce the influx of heavy metals. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content.

    Science.gov (United States)

    Dewil, Raf; Baeyens, Jan; Appels, Lise

    2007-06-18

    Power plant or cement kiln co-incineration are important disposal routes for the large amounts of waste activated sludge (WAS) which are generated annually. The presence of significant amounts of heavy metals in the sludge however poses serious problems since they are partly emitted with the flue gases (and collected in the flue gas dedusting) and partly incorporated in the ashes of the incinerator: in both cases, the disposal or reuse of the fly ash and bottom ashes can be jeopardized since subsequent leaching in landfill disposal can occur, or their "pozzolanic" incorporation in cement cannot be applied. The present paper studies some physicochemical methods for reducing the heavy metal content of WAS. The used techniques include acid and alkaline thermal hydrolysis and Fenton's peroxidation. By degrading the extracellular polymeric substances, binding sites for a large amount of heavy metals, the latter are released into the sludge water. The behaviour of several heavy metals (Cd, Cr, Cu, Hg, Pb, Ni, Zn) was assessed in laboratory tests. Results of these show a significant reduction of most heavy metals.

  16. Heavy metals content in reproductive organs of small mammals inhabiting in condition of chronic chemical exposure

    International Nuclear Information System (INIS)

    Mukhacheva, S.V.; Davydova, Yu.A.

    2008-01-01

    In this research by example of bank vole the heavy metals concentrations (cadmium, copper and zinc) in reproductive organs of small mammals inhabiting in condition of environmental pollution with wastes from copper-smelting industry have been considered. The levels of radionuclides accumulation in testes, seminal vesicle and ovaries of voles with radionuclide concentration in others organs and tissues of animals have been compared.

  17. Contents and risk assessment of heavy metals in marine invertebrates from Korean coastal fish markets.

    Science.gov (United States)

    Mok, Jong Soo; Kwon, Ji Young; Son, Kwang Tae; Choi, Woo Seok; Kang, Sung Rim; Ha, Na Young; Jo, Mi Ra; Kim, Ji Hoe

    2014-06-01

    The concentrations of the heavy metals cadmium (Cd), mercury (Hg), lead (Pb), chromium, silver, nickel, copper, and zinc in the edible portions of 105 marine invertebrates representing 16 mollusk and crustacean species were accurately determined to evaluate their hazard for human consumption. The samples were collected in 2011 from major fish markets on the coast of Korea and analyzed for Hg using a direct Hg analyzer and for other metals using inductively coupled plasma mass spectrometry. Estimated dietary exposure (EDE) was determined, and a risk assessment was made of the heavy metals to provide information concerning consumer safety. The Cd concentrations, which were the highest for the three hazardous metals (Cd, Hg, and Pb), were significantly higher (P Food Additives or the U.S. Environmental Protection Agency. The EDE of Cd, Hg, and Pb for each class of marine invertebrate were 0.07 to 2.64, 0.01 to 0.43, and 0.001 to 0.16% of the PTDI, respectively. The total EDE of Cd, Hg, and Pb for marine invertebrates accounted for 4.03, 0.96, and 0.21%, respectively, of the PTDI. The EDE of other metals in each class of marine invertebrate was less than 2% of the PTDI. The hazard index is a reasonable parameter for assessing the risk of heavy metal consumption associated with contaminated food. In the present study, the hazard index for all of the species was less than 1.0, which indicates that the intake of heavy metals from consumption of these marine invertebrates does not represent an appreciable hazard to humans.

  18. Effect of vermicomposting on calcium, sulphur and some heavy metal content of different biodegradable organic wastes under liming and microbial inoculation.

    Science.gov (United States)

    Das, Debabrata; Bhattacharyya, Pradip; Ghosh, B C; Banik, Pabitra

    2012-01-01

    A study was conducted to evaluate the changes in total calcium and sulphur and some heavy metal (Zn, Cu, and Pb) concentration of different organic wastes affected by liming and microorganism inoculation. Vermicomposting was an effective technology for disposal of organic substrates like municipal solid wastes (MSW), possessing comparatively higher concentration of heavy metals. The addition of lime in initial organic substrates significantly (P ≤ 0.05) increased total calcium and total sulphur content of vermicomposts. Inoculation of microorganisms significantly (P ≤ 0.05) reduced the heavy metal content of final products as compared to control. Fungal strains were comparatively more effective in detoxification of heavy metals than B. polymyxa.

  19. Evaluation of site-specific factors influencing heavy metal contents in the topsoil of vegetated infiltration swales

    International Nuclear Information System (INIS)

    Horstmeyer, Nils; Huber, Maximilian; Drewes, Jörg E.; Helmreich, Brigitte

    2016-01-01

    Stormwater runoff of traffic areas is usually polluted by organic and inorganic substances and must be treated prior to discharge into groundwater. One widely used treatment method is infiltrating the runoff over the topsoil of vegetated swales. The aim of this study was to evaluate the factors influencing the heavy metal contents in such topsoil layers of vegetated infiltration swales near highways, roads, and parking lots. In total, 262 topsoil samples were taken from 35 sampling sites, which varied in age, traffic volume, road design, driving style, and site-specific conditions. In the evaluation of all soil samples, the median heavy metal values of cadmium, chromium, copper, lead, and zinc were yielding 0.36 (mean: 1.21) mg/kg DM, 37.0 (mean: 44.5) mg/kg DM, 28.0 (mean: 61.5) mg/kg DM, 27.0 (mean: 71.9) mg/kg DM, and 120 (mean: 257) mg/kg DM, respectively. The main purpose was to evaluate the site-specific data (i.e., surrounding land use characteristics, traffic area site data, and operational characteristics). In general, heavy metal contents increased with increasing traffic volumes. However, other factors also had a notable impact. Factors such as road design (e.g., curves, crossings, and roundabouts) and grade of congestion significantly influenced the heavy metal contents. High heavy metal contents were detected for stop-and-go areas, roundabouts, crossings, and sites with traffic lights, signs, and guardrails. Findings of this study can be used to identify highly polluted traffic areas and to verify or improve standards regarding the treatment of runoff from traffic areas. - Highlights: • Correlation of contents with traffic volume, road design, and stop-and-go traffic • Increased heavy metal contents at stop-and-go sites, roundabouts, and crossings • Different soil contents and behavior of cadmium, chromium, copper, lead, and zinc • Identification of factors influencing the variability of zinc in topsoil samples

  20. Evaluation of site-specific factors influencing heavy metal contents in the topsoil of vegetated infiltration swales

    Energy Technology Data Exchange (ETDEWEB)

    Horstmeyer, Nils; Huber, Maximilian; Drewes, Jörg E.; Helmreich, Brigitte, E-mail: b.helmreich@tum.de

    2016-08-01

    Stormwater runoff of traffic areas is usually polluted by organic and inorganic substances and must be treated prior to discharge into groundwater. One widely used treatment method is infiltrating the runoff over the topsoil of vegetated swales. The aim of this study was to evaluate the factors influencing the heavy metal contents in such topsoil layers of vegetated infiltration swales near highways, roads, and parking lots. In total, 262 topsoil samples were taken from 35 sampling sites, which varied in age, traffic volume, road design, driving style, and site-specific conditions. In the evaluation of all soil samples, the median heavy metal values of cadmium, chromium, copper, lead, and zinc were yielding 0.36 (mean: 1.21) mg/kg DM, 37.0 (mean: 44.5) mg/kg DM, 28.0 (mean: 61.5) mg/kg DM, 27.0 (mean: 71.9) mg/kg DM, and 120 (mean: 257) mg/kg DM, respectively. The main purpose was to evaluate the site-specific data (i.e., surrounding land use characteristics, traffic area site data, and operational characteristics). In general, heavy metal contents increased with increasing traffic volumes. However, other factors also had a notable impact. Factors such as road design (e.g., curves, crossings, and roundabouts) and grade of congestion significantly influenced the heavy metal contents. High heavy metal contents were detected for stop-and-go areas, roundabouts, crossings, and sites with traffic lights, signs, and guardrails. Findings of this study can be used to identify highly polluted traffic areas and to verify or improve standards regarding the treatment of runoff from traffic areas. - Highlights: • Correlation of contents with traffic volume, road design, and stop-and-go traffic • Increased heavy metal contents at stop-and-go sites, roundabouts, and crossings • Different soil contents and behavior of cadmium, chromium, copper, lead, and zinc • Identification of factors influencing the variability of zinc in topsoil samples.

  1. Heavy metal and pesticide content in commonly prescribed individual raw Chinese Herbal Medicines

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Eric S.J., E-mail: eric.sj.harris@gmail.com [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 (United States); Osher Research Center, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 (United States); Cao, Shugeng [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 (United States); Littlefield, Bruce A. [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 (United States); Osher Research Center, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 (United States); Craycroft, Jane A.; Scholten, Robert [Osher Research Center, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 (United States); Kaptchuk, Ted [Osher Research Center, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 (United States); Department of Medicine, Division of General Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 (United States); Fu, Yanling [International Cooperation Center, Beijing University of Chinese Medicine, 11 Bai San Huan Dong Lu, Chao Yang District, Beijing 100029 (China); Wang, Wenquan; Liu, Yong [School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6 Wangjing Zhong Huan Nan Lu, Chaoyang District, Beijing 100102 (China); Chen, Hubiao; Zhao, Zhongzhen [School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong Special Administrative Region (China); Clardy, Jon [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 (United States); Woolf, Alan D. [Children' s Hospital Boston, 300 Longwood Avenue and Department of Pediatrics, Harvard Medical School, Boston, MA 02118 (United States); and others

    2011-09-15

    Heavy metal and pesticide contamination has previously been reported in Chinese Herbal Medicines (CHMs), in some cases at potentially toxic levels. This study was conducted to determine general patterns and toxicological significance of heavy metal and pesticide contamination in a broad sample of raw CHMs. Three-hundred-thirty-four samples representing 126 species of CHMs were collected throughout China and examined for arsenic, cadmium, chromium, lead, and mercury. Of the total, 294 samples representing 112 species were also tested for 162 pesticides. At least 1 metal was detected in all 334 samples (100%) and 115 samples (34%) had detectable levels of all metals. Forty-two different pesticides were detected in 108 samples (36.7%), with 1 to 9 pesticides per sample. Contaminant levels were compared to toxicological reference values in the context of different exposure scenarios. According to a likely scenario of CHM consumption, only 3 samples (1%) with heavy metals and 14 samples (5%) with pesticides were found with concentrations that could contribute to elevated background levels of contaminant exposure. According to the most conservative scenario of CHM consumption, 231 samples (69%) with heavy metals and 81 samples (28%) with pesticides had contaminants that could contribute to elevated levels of exposure. Wild collected plants had higher contaminant levels than cultivated samples. Cadmium, chromium, lead, and chlorpyrifos contamination showed weak correlations with geographic location. Based on our assumptions of the likely mode of consumption of raw CHMs, the vast majority (95%) of the 334 samples in this study contained levels of heavy metals or pesticides that would be of negligible concern. However, given the number of samples with detectable contaminants and the range between the more likely and more conservative scenarios of contaminant exposure, more research and monitoring of heavy metals (especially cadmium and chromium) and pesticide residues

  2. Heavy metal and pesticide content in commonly prescribed individual raw Chinese Herbal Medicines

    International Nuclear Information System (INIS)

    Harris, Eric S.J.; Cao, Shugeng; Littlefield, Bruce A.; Craycroft, Jane A.; Scholten, Robert; Kaptchuk, Ted; Fu, Yanling; Wang, Wenquan; Liu, Yong; Chen, Hubiao; Zhao, Zhongzhen; Clardy, Jon; Woolf, Alan D.

    2011-01-01

    Heavy metal and pesticide contamination has previously been reported in Chinese Herbal Medicines (CHMs), in some cases at potentially toxic levels. This study was conducted to determine general patterns and toxicological significance of heavy metal and pesticide contamination in a broad sample of raw CHMs. Three-hundred-thirty-four samples representing 126 species of CHMs were collected throughout China and examined for arsenic, cadmium, chromium, lead, and mercury. Of the total, 294 samples representing 112 species were also tested for 162 pesticides. At least 1 metal was detected in all 334 samples (100%) and 115 samples (34%) had detectable levels of all metals. Forty-two different pesticides were detected in 108 samples (36.7%), with 1 to 9 pesticides per sample. Contaminant levels were compared to toxicological reference values in the context of different exposure scenarios. According to a likely scenario of CHM consumption, only 3 samples (1%) with heavy metals and 14 samples (5%) with pesticides were found with concentrations that could contribute to elevated background levels of contaminant exposure. According to the most conservative scenario of CHM consumption, 231 samples (69%) with heavy metals and 81 samples (28%) with pesticides had contaminants that could contribute to elevated levels of exposure. Wild collected plants had higher contaminant levels than cultivated samples. Cadmium, chromium, lead, and chlorpyrifos contamination showed weak correlations with geographic location. Based on our assumptions of the likely mode of consumption of raw CHMs, the vast majority (95%) of the 334 samples in this study contained levels of heavy metals or pesticides that would be of negligible concern. However, given the number of samples with detectable contaminants and the range between the more likely and more conservative scenarios of contaminant exposure, more research and monitoring of heavy metals (especially cadmium and chromium) and pesticide residues

  3. The relationship of heavy metals contents in soils to their content in legume seeds used in famous traditional food in kurdistan region-iraq

    Directory of Open Access Journals (Sweden)

    Dalaram Sullaiman Ismael

    2016-11-01

    Full Text Available In this work the level of risk heavy metals contents in Cowpea seeds comparison with heavy metal content in soil was studied. For the experiment three cowpea cultivars (brown, red, white were used. Cowpeas were harvested at full ripeness in Kalak location in Erbil city. The flame AAS (AAS Varian AA Spectr. DUO 240 FS/240Z/UltrAA was used for the determination of heavy metal contents in soil and plant materials. The soil which cultivated Cowpea, characterized neutral to slit alkali, with a typical content of cations K, Mg and P. Beans and the seeds of faba bean, cowpea and chickpeas boiled with salt eaten in the form of Lablabe, traditionly used heavy sweets such as knafa. Ful, which is fava beans cooked with chickpeas (garbanzo beans or make soup from fresh cowpea, fresh faba bean, fresh fasoulia, as well as lentil soup (shorbat adas and different kinds of salad after boiled. Cowpea grain legumes occupy an important place in human nutrition, especially in the dietary pattern of low income groups of people in developing countries. The level risk heavy metal contents in the soil determined was only Cd content was on the level of limit value given for the soil extract by aqua regia as well as Co content was higher than the limit value given for the relationship between soil and plant. All of determined values were lower than critical value extracted by NH4NO3 only the maximal available soil content of mobile Pb forms was exceeded but cowpea accumulated seeds in amounts the risky elements contents, with the exception of Ni, did not exceed limit for the maximum levels of chosen risk elements in studied legume. The content of the metals studied with the exception of cadmium, not exceed the maximum permissible value in legumes, as defined in the Codex Alimentarius. The aim of this research, to study or determine the content of risky heavy metals (Cu, Ni, Cr, Pb, and Cd in the soil and their relationship in selected varieties cowpea seeds cultivar. Faba

  4. Effect of leaf and soil contaminations on heavy metals content in spring wheat crops

    International Nuclear Information System (INIS)

    Weber, R.; Hrynczuk, B.

    2000-01-01

    Glass house experiments were carried out in Wagner pots containing 6 kg of soil. The amounts were compared of Zn, Pb and Cd taken up by the crop of spring wheat from contamination introduced into the soil or upon leaves. The heavy metals were labelled with the radioactive isotopes 65 Zn, 210 Pb and 115 Cd. The experiment was performed as a series of independent analyses in four replications. The dynamics of the labelled heavy metals translocation from contaminations sprayed on the upper or bottom side of the flag leaf was also tested. The highest concentration of 65 Zn was found in the straw and gain of wheat. much higher amounts of the metals appeared to have been taken up by the plants from leaf contamination than from soil. The highest dynamics of translocation from leaves to other vegetative and generative organs of plants was that of zinc. (author)

  5. heavy metals

    African Journals Online (AJOL)

    NICO

    aDepartment of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, South Africa. bSchool of Health Systems and Public Health, Faculty of Health Sciences, ... ing the levels of toxic metals in food.15,19 Compared to ET-AAS or .... mum pressure 350 psi and maximum temperature 210 °C. The.

  6. [Heavy metals and hydrocarbons content in soils of settlements of the Yamal-Nenets autonomous region].

    Science.gov (United States)

    Alekseev, I I; Abakumov, E V; Shamilishvili, G A; Lodygin, E D

    In August 2015 there were executed investigations on the study of the soils diversity of the Yamal-Nenets Autonomous Okrug. One of the directions of this work got be the study of urban soils of settlements of the Yamal-Nenents Autonomous Okrug. The sectors for the observation were settlement of Harsaim, village Aksarka, city of Salekhard, settlement Harp and city of Labytnangi. About 20 soil samples were collected during the field work. Samples were collected from a depth of 0-5 cm and 5-20 cm. Heavy metals (HM) were detected with the use of X-ray fluorescent analyzer “Spectroscan-MAX”. The HM content values were compared with the corresponding Approxible Permissible Concentrations and Maximum Allowable Concentrations (MAC) adopted in Russia. Hydrocarbons content was determined by gravimetric method. Values of the hydrocarbons content in studied soils were compared with the existing regulations of the Russian Federation. The levels of soil contamination by hydrocarbons were determined. The study of soil samples from different settlements allowed to reveal characteristic features of soil contamination of separate settlements by HM and hydrocarbons and to compare them against each other. The vast majority of samples are characterized by arsenic exceedance of MAC, which should indicate to a high regional background of this element. For a more adequate assessment of the Zc meaning as the value of the total pollution index of soils there were used not only arithmetical average values of the coefficients of the chemical composition concentration (Kc), but also their average geometric values. According to levels of total soil contamination most of soil samples are characterized as non-hazardous (Zc<16). Calculation of soil pollution index showed that the most of soil samples have values less than 1. It characterizes soils as unpolluted. Statistical processing of obtained data in the media of the analytical software interface STATISTICA 10 showed a statistically

  7. Contents of radionuclides and heavy metals in fish roe of commercial fish of the Zaporizhya reservoir

    International Nuclear Information System (INIS)

    Belokon', A.S.; Marenkov, O.N.; Dvoretskij, A.I.

    2013-01-01

    Comprehensive radiation-toxicological studies of fish roe of some commercial fish of the Zaporizhya Reservoir were conducted. It was found that the greatest number of 137 Cs (4,5 Bq/kg) and 90 Sr (3,2 Bq/kg) was accumulated by fish roe of perch. Heavy metals (cadmium, copper, zinc and lead), and natural radionuclides 226 Ra and 232 Th were accumulated to a greater amount of bream fish roe

  8. Assessment and genetic analysis of heavy metal content in rice grain using an Oryza sativa × O. rufipogon backcross inbred line population.

    Science.gov (United States)

    Huang, De-Run; Fan, Ye-Yang; Hu, Biao-Lin; Xiao, Ye-Qing; Chen, Da-Zhou; Zhuang, Jie-Yun

    2018-03-01

    Heavy metal accumulation in rice is a growing concern for public health. Backcross inbred lines derived from an interspecific cross of Oryza sativa × O. rufipogon were grown in two distinct ecological locations (Hangzhou and Lingshui, China). The objective of this study was to characterise the contents of heavy metal in rice grains, and to identify quantitative trait loci (QTLs) for heavy metal contents. The contents of Ni, As, Pb, Cr and Hg in milled rice showed a significant decline as compared with those in brown rice, whereas the content of Cd showed little change. The concentration of heavy metal in rice grain varied greatly between the two environments. A total of 24 QTLs responsible for heavy metal contents were detected, including two for both the brown and milled rice, 13 for brown rice only, and nine for milled rice only. All the QTLs except two had the enhancing alleles derived from O. rufipogon. Sixteen QTLs were clustered in six chromosomal regions. Environmental variation plays an important role in the heavy metal contents in rice grain. QTLs detected in this study might be useful for breeding rice varieties with low heavy metal content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Heavy metals and arsenic content in water along the southern Caspian coasts in Iran.

    Science.gov (United States)

    Abadi, Mohammad; Zamani, Abbasali; Parizanganeh, Abdolhossein; Khosravi, Younes; Badiee, Hamid

    2018-06-06

    Due to the importance of pollution monitoring in marine ecosystems and lack of a coherent and systematic investigation of heavy metal ions along the southern shores of the Caspian Sea, in the present study, the amount of these metals and As ions in coastal waters along its 780-km-long coast in Iran have been studied. Heavy metals (cobalt, nickel, copper, zinc, cadmium, mercury, lead) and a poisonous metalloid (arsenic) were selected in 59 sampling stations and determined using differential pulse polarography method. The multivariate statistical tools were applied to describe and interpret the experimental data. The overall mean concentrations of studied metals (in microgram per liter; μg L -1 ) in the samples were found in the order Zn (10.9) > Ni (7.4) > Cu (5.5) > Pb (1.9) > Hg (1.4) > As (1.3) > Co (1.1) > Cd (0.2). The results when compared with reported international standards confirmed that the sampled waters do contain some of these elements above the suggested maximum permissible limits. Hg and Cu were detected in 54.2 and 72.9% of the samples, almost all above the permissible limits. Ni, Zn, Pb, and Co were detected in 100, 96.6, 93.2, and 88.1%, respectively, while 8.5, 22.0, 3.4, and 1.7% were above the permissible limits. Cd and As were present in 61 and 93% of the samples, and their concentrations were higher than the rate presented by Russian System of Management Chemicals (RSMC). In addition, spatial distribution of heavy metal concentrations showed that Gorgan Bay is an ecosystem serving as a filter, trapping natural and anthropogenic materials that are brought from industrial, commercial, and urbanized areas. The multivariate data analysis reveals that Caspian Sea is contaminated by both anthropogenic as well as pedo-geochemical sources.

  10. Heavy Metal Contents and Physical Parameters of Aegiceras corniculatum, Brassica juncea, and Litchi chinensis Honeys from Bangladesh

    Directory of Open Access Journals (Sweden)

    Nandita Sarker

    2015-01-01

    Full Text Available The present study was undertaken to determine the heavy metal levels and the physicochemical parameters (pH, electrical conductivity (EC, and ash, moisture, and total sugar content of honeys from Bangladesh. Three different floral honeys were investigated, namely, khalsi (Aegiceras corniculatum, mustard (Brassica juncea, and litchi (Litchi chinensis honeys. The heavy metals in the honeys were determined by using a High Temperature Dry Oxidation method followed by Atomic Absorption Spectroscopy. The mean pH, EC, and ash, moisture, and total sugar contents of the investigated honeys were 3.6, 0.51 mS/cm, 0.18%, 18.83%, and 68.30%, respectively. Iron was the most abundant among all the investigated heavy metals, ranging from 13.51 to 15.44 mg/kg. The mean concentrations of Mn and Zn in the investigated honeys were 0.28 mg/kg and 2.99 mg/kg, respectively. Cd was below the detection limit, and lead was found in some honey samples, but their contents were below the recommended Maximum Acceptable Level. Cr was also found in all of the samples, but its concentration was within the limit. The physicochemical analysis of the honey samples yielded levels within the limits set by the international honey legislation, indicating that the honey samples were of good quality and had acceptable values for maturity, purity, and freshness.

  11. Heavy metal contents and transfer capacities of Phragmites australis and Suaeda salsa in the Yellow River Delta, China

    Science.gov (United States)

    Zhang, Shuai; Bai, Junhong; Wang, Wei; Huang, Laibing; Zhang, Guangliang; Wang, Dawei

    2018-04-01

    Plant samples including roots, stems and leaves of Phragmites australis and Suaeda salsa were collected in the short-term flooding and tidal flooding wetlands of the Yellow River Delta of China. Six heavy metals (e.g., As, Cd, Cr, Cu, Pb, and Zn) were measured in roots, stems and leaves of each plant species using inductively coupled plasma atomic absorption spectrometry (ICP-AAS) to investigate the levels, and transfer capabilities of heavy metals in these two plant species. Our results showed that in the tidal flooding wetlands, the contents of As, Cr and Cd in roots of Phragmites australis and Suaeda salsa were higher than those in their stems and leaves. Suaeda salsa showed higher contents of Pb and Zn in leaves than those in roots and stems, whereas lower levels of Pb and Zn were observed in Phragmites australis. In the short-term flooding wetlands, heavy metal contents exhibited a big difference between different tissues of Phragmites australis and Suaeda salsa, and both plant species showed higher levels of Pb and Zn in leaves. Suaeda salsa roots enriched more As and Cd, whereas higher enrichment levels were observed in Phragmites australis leaves, which indicated different transfer capacities of these two wetland plants. The transfer factors for stems and leaves of Phragmites australis in the tidal flooding wetlands significantly differed from those in the short-term flooding wetlands, however, no significant differences in transfer factors for stems and leaves of Suaeda salsa were observed between these two types of wetlands.

  12. INFLUENCE OF ILLEGAL WASTE DUMPING SITES OF NORTH-WEST PART OF BARLINEK COMMUNITY ON HEAVY METALS CONTENT IN SOILS

    Directory of Open Access Journals (Sweden)

    Kamil Szydłowski

    2017-02-01

    Full Text Available The in-depth analysis of the soil samples study included 6 from 17 catalogued illegal waste dumps localized in the Barlinek Commune (Gmina Barlinek area. The samples were taken from the middle part of each waste dump and at 5 meter distance toward north and south directions. In the collected material the pH values and concentration of lead, zinc, cadmium, cobalt, manganese, nickel, chromium, iron, copper and mercury were determined. The results of laboratory analysis were compared with current standards (Regulation of the Minister of Environment from 9th September 2002 on soil quality standards and quality standards of soil - Journal of Laws 2002 No 165, item 1359 and with the soils classification by the content of trace elements, according to Kabata-Pendias et al. The reason of diversified content of heavy metals in the collected soils samples from different waste dumps is various morphological composition of deposited waste. Nonetheless, waste landfilled on illegal dumps were not significantly influencing the levels of soil contamination with heavy metals. The concentration of Hg, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, Fe qualifies those soils to geochemical natural levels of heavy metals content. Nevertheless, cadmium was the element, which concentration were most often (21 times exceeded.

  13. A study of heavy metal content and NORM in soil sample outside Lynas Malaysia Sdn. Bhd. Gebeng, Kuantan

    International Nuclear Information System (INIS)

    Nur Azera Izzati Mohammad

    2012-01-01

    Lynas Malaysia Sdn. Bhd. is established to build a processing plant of the rare earth lanthanides elements used to produce the starting material for manufacturing high-tech products analysed as cell phones, magnets, computer memory and many more. Analysis of soil samples was carried out outside the Lynas Malaysia Sdn. Bhd. The purpose of this study was to determine the contents of radionuclide activity concentration of natural elements in soil samples of 40 K, 232 Th and 238 U. A total of five heavy metals As, Cd, Cr, Cu and Pb were analysed for concentrations of heavy metals in soil samples. The analysis was performed and analysed using X-ray Fluorescence Spectrometer for the composition and concentration of heavy metals and Gamma Ray Spectrometer is to determine the radionuclide activity concentration of natural elements. Results showed that the concentrations of radionuclides activities for 40 K, 232 Th and 238 U are different at all stations. 40 K radionuclide has the highest radioactivity in the Station 3, which is 385 ± 4 Bq/ kg. For 232 Th and 238 U radionuclides have a high concentration of activity at Station 2 which are 102 ± 3 Bq/ kg and 105 ± 4 Bq/ kg, respectively. According to UNSCEAR 2000 average value, the value obtained exceeds the prescribed level. For heavy metal analysis showed there were only three heavy metals which could be found, namely As, Cr and Cu. For the highest concentration of As element has found at Station 5, which is 25.5 ± 2.1 ppm. For Cr and Cu element, high concentrations has found at Station 5 and Station 1, which are 225 ± 35 ppm and 95 ± ppm, respectively. (author)

  14. NUTRITIONAL VALUE AND HEAVY METALS CONTENTS OF THE DRIED SEA CUCUMBER Stichopus vastus FROM SALEMO ISLAND, INDONESIA

    Directory of Open Access Journals (Sweden)

    Abdullah Rasyid

    2018-01-01

    Full Text Available The dried sea cucumber Stichopus vastus is one of the commercially species harvested in Indonesian waters. This study aims to highlight the nutritional value and heavy metals content of dried sea cucumber S. vastus. Proximate (moisture, ash, protein, fat and carbohydrate, mineral (sodium, calcium, potassium and iron and heavy metal (mercury, cadmium, arsenic and lead were determined by standard method of AOAC, while phosphorous was determined by spectrophotometric method. Chondroitin sulphate was determined by UPLC method, glucosamine sulphate and vitamin (A, B1, B2 and E by HPLC method. Results show that protein was the major component in proximate analysis of dried sea cucumber S. vastus in the present study. The protein content was 38.70%. Moisture, ash, fat and carbohydrate content were 19.46%, 34.04%, 0.38% and 7.42% respectively. All vitamins and heavy metals examined in this study were not detected. The sodium content was 8054.36 mg/100 g higher than other minerals. Calcium, potassium, phosphorus and iron content were 2449.9 mg/100 g, 159.77 mg/100 g, 5085.2 mg/100 g and 520.8 mg/100 g respectively. Glucosamine sulphate content was found to be 2.429 g/100 g, whereas chondroitin sulphate was found to be 1.115 g/100 g. It can therefore, be concluded that the dried sea cucumber S. vastus from Salemo Island is safe for human consumption and hence can be used as a source of food supplement in the future. Keywords: food supplement, Salemo island, Stichopus vastus

  15. Standards for the contents of heavy metals in soils of some states

    Directory of Open Access Journals (Sweden)

    Yu.N. Vodyanitskii

    2016-09-01

    Full Text Available In line with the present-day ecological and toxicological data obtained by Dutch ecologists, heavy metals/metalloids form the following succession according to their hazard degree in soils: Se > Tl > Sb > Cd > V > Hg > Ni > Cu > Cr > As > Ba. This sequence substantially differs from the succession of heavy elements presented in the general toxicological Russian GOST (State Norms and Standards, which considers As, Cd, Hg, Se, Pb, and Zn to be strongly hazardous elements, whereas Co, Ni, Mo, Sb, and Cr to be moderately hazardous. As compared to the Dutch general toxicological approach, the hazard of lead, zinc, and cobalt is lower in soils, and that of vanadium, antimony, and barium is higher in Russia. MPC must been adopted for strongly hazardous thallium, selenium, and vanadium in Russia.

  16. Analysis of Heavy Metal Content (Pb on Waters and Fish at The Floating Cages BPPP Ambon

    Directory of Open Access Journals (Sweden)

    Wattimena Rachel L.

    2018-01-01

    Full Text Available Coastal waters play important roles due to highly in natural resources and developing of environmental services. However, there are highly intensity of natural resources utilization, environment and settlement. Consequently, environment and natural resources would be degraded such as in the Ambon Bay. One of the potency at the Ambon Bay is mariculture area namely the floating cages (KJA which belongs to Fisheries education and training (BPPP Ambon. The research aimed to analyze physical-chemical of waters (temperature, pH, salinity and current speed, to analyze heavy metal concentration (Pb on water and fish from floating cages (KJA and to analyze waters pollution status at KJA BPPP Ambon. The average salinity of each floating cage ranged from 30.09 - 30.34°C, pH ranged from 8.03 − 8.44, salinity ranged from 31.36 − 33.34 PSU, and current speed at spring tide ranged from 0.5 – 55.8 Cm/sec while neap tide ranged from 0.1 – 9.8 Cm/sec. Heavy metal concentration (Pb on waters was below the standard for waters quality and the average concentration was 0.002 mg/l. Whilst, the heavy metal concentration (Pb on fishes was below standard for floating cages (floating cages 2-6 which was 0.05 and 0.17mg/l. Otherwise, floating cage 1 had been above maximum standard for fish food and its processing following SNI 7387:2009 (0.3mg/l which was 0.31 mg/l. The status of waters pollution at KJA BPPP Ambon belonged to C class and could be categorized as moderate based on standard for waters quality issued by State Ministerial Decree for the Environment No. 51 Year 2004.

  17. Analysis of Heavy Metal Content (Pb) on Waters and Fish at The Floating Cages BPPP Ambon

    Science.gov (United States)

    Wattimena, Rachel L.; Selanno, Debby A. J.; Tuhumury, Semuel F.; Tuahatu, Juliana W.

    2018-02-01

    Coastal waters play important roles due to highly in natural resources and developing of environmental services. However, there are highly intensity of natural resources utilization, environment and settlement. Consequently, environment and natural resources would be degraded such as in the Ambon Bay. One of the potency at the Ambon Bay is mariculture area namely the floating cages (KJA) which belongs to Fisheries education and training (BPPP) Ambon. The research aimed to analyze physical-chemical of waters (temperature, pH, salinity and current speed), to analyze heavy metal concentration (Pb) on water and fish from floating cages (KJA) and to analyze waters pollution status at KJA BPPP Ambon. The average salinity of each floating cage ranged from 30.09 - 30.34°C, pH ranged from 8.03 - 8.44, salinity ranged from 31.36 - 33.34 PSU, and current speed at spring tide ranged from 0.5 - 55.8 Cm/sec while neap tide ranged from 0.1 - 9.8 Cm/sec. Heavy metal concentration (Pb) on waters was below the standard for waters quality and the average concentration was 0.002 mg/l. Whilst, the heavy metal concentration (Pb) on fishes was below standard for floating cages (floating cages 2-6) which was 0.05 and 0.17mg/l. Otherwise, floating cage 1 had been above maximum standard for fish food and its processing following SNI 7387:2009 (0.3mg/l) which was 0.31 mg/l. The status of waters pollution at KJA BPPP Ambon belonged to C class and could be categorized as moderate based on standard for waters quality issued by State Ministerial Decree for the Environment No. 51 Year 2004.

  18. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Fanrong; Ali Shafaqat; Zhang Haitao [Department of Agronomy, College of Agriculture and Biotechnology, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China); Ouyang Younan [China National Rice Research Institute, Fuyang 310041 (China); Qiu Boyin; Wu Feibo [Department of Agronomy, College of Agriculture and Biotechnology, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China); Zhang Guoping, E-mail: zhanggp@zju.edu.c [China National Rice Research Institute, Fuyang 310041 (China)

    2011-01-15

    The experiments were done to investigate the effect of soil pH and organic matter content on EDTA-extractable heavy metal contents in soils and heavy metal concentrations in rice straw and grains. EDTA-extractable Cr contents in soils and concentrations in rice tissues were negatively correlated with soil pH, but positively correlated with organic matter content. The combination of soil pH and organic matter content would produce the more precise regression models for estimation of EDTA-Cu, Pb and Zn contents in soils, demonstrating the distinct effect of the two factors on the availability of these heavy metals in soils. Soil pH greatly affected heavy metal concentrations in rice plants. Furthermore, inclusion of other soil properties in the stepwise regression analysis improved the regression models for predicting straw Fe and grain Zn concentrations, indicating that other soil properties should be taken into consideration for precise predicting of heavy metal concentrations in rice plants. - Soil pH and organic matter content significantly affect heavy metal availability and accumulation in rice plants.

  19. Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays

    International Nuclear Information System (INIS)

    Lim, Seong-Rin; Schoenung, Julie M.

    2010-01-01

    Display devices such as cathode-ray tube (CRT) televisions and computer monitors are known to contain toxic substances and have consequently been banned from disposal in landfills in the State of California and elsewhere. New types of flat panel display (FPD) devices, millions of which are now purchased each year, also contain toxic substances, but have not previously been systematically studied and compared to assess the potential impact that could result from their ultimate disposal. In the current work, the focus is on the evaluation of end-of-life toxicity potential from the heavy metal content in select FPD devices with the intent to inform material selection and design-for-environment (DfE) decisions. Specifically, the metals antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, vanadium, and zinc in plasma TVs, LCD (liquid crystal display) TVs, LCD computer monitors and laptop computers are considered. The human health and ecotoxicity potentials are evaluated through a life cycle assessment perspective by combining data on the respective heavy metal contents, the characterization factors in the U.S. EPA Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI), and a pathway and impact model. Principal contributors to the toxicity potentials are lead, arsenic, copper, and mercury. Although the heavy metal content in newer flat panel display devices creates less human health toxicity potential than that in CRTs, for ecological toxicity, the new devices are worse, especially because of the mercury in LCD TVs and the copper in plasma TVs.

  20. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  1. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    International Nuclear Information System (INIS)

    Mora, Miguel A.

    2003-01-01

    High concentrations of Sr in eggshells may be associated with lower hatching success of some passerine birds. - Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2-35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell

  2. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    Science.gov (United States)

    Mora, Miguel A.

    2003-01-01

    Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2–35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell should not be ignored.

  3. Radionuclides and heavy metal contents in phosphogypsum samples in comparison to cerrado soils

    Energy Technology Data Exchange (ETDEWEB)

    Jacomino, Vanusa Maria Feliciano; Oliveira, Kerley Alberto Pereira de, E-mail: vmfj@cdtn.b, E-mail: kapo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Taddei, Maria Helena Tirollo; Nascimento, Marcos Roberto Lopes, E-mail: mhtaddei@cnen.gov.b, E-mail: pmarcos@cnen.gov.b [Laboratorio de Pocos de Caldas (LAPOC/CNEN-MG), MG (Brazil); Siqueira, Maria Celia, E-mail: mc.ufscar@gmail.co [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Quimica; Carneiro, Maria Eleonora Deschamps Pires, E-mail: eleonora.deschamps@meioambiente.mg.gov.b [Fundacao Estadual do Meio Ambiente (FEAM), Belo Horizonte, MG (Brazil). Gestao de Residuos Solidos; Silva, David Faria da; Mello, Jaime Wilson Vargas de, E-mail: davidf.agro@hotmail.co, E-mail: jwvmello@ufv.b [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Solos

    2009-09-15

    Phosphogypsum (PG) or agricultural gypsum, a solid waste from the phosphate fertilizer industry, is used as soil amendment, especially on soils in the Cerrado region, in Brazil. This material may however contain natural radionuclides and metals which can be transferred to soils, plants and water sources. This paper presents and discusses the results of physical and chemical analyses that characterized samples of PG and compares them to the results found in two typical soils of the Cerrado, a clayey and sandy one. These analyses included: solid waste classification, evaluation of organic matter content and of P, K, Ca, Mg, and Al concentrations and of the mineralogical composition. Natural radionuclides and metal concentrations in PG and soil samples were also measured. Phosphogypsum was classified as Class II A - not dangerous, not inert, not corrosive and not reactive. The organic matter content in the soil samples was low and potential acidity high. In the mean, the specific {sup 226}Ra activity in the phosphogypsum samples (252 Bq kg{sup -1}) was below the maximum level recommended by USEPA, which is 370 Bq kg{sup -1} for agricultural use. In addition, this study verified that natural radionuclides and metals concentrations in PG were lower than in the clayey Oxisol of Sete Lagoas, Minas Gerais, Brazil. These results indicated that the application of phosphogypsum as soil amendment in agriculture would not cause a significant impact on the environment. (author)

  4. Radionuclides and heavy metal contents in phosphogypsum samples in comparison to cerrado soils

    International Nuclear Information System (INIS)

    Jacomino, Vanusa Maria Feliciano; Oliveira, Kerley Alberto Pereira de; Taddei, Maria Helena Tirollo; Nascimento, Marcos Roberto Lopes; Siqueira, Maria Celia; Carneiro, Maria Eleonora Deschamps Pires; Silva, David Faria da; Mello, Jaime Wilson Vargas de

    2009-01-01

    Phosphogypsum (PG) or agricultural gypsum, a solid waste from the phosphate fertilizer industry, is used as soil amendment, especially on soils in the Cerrado region, in Brazil. This material may however contain natural radionuclides and metals which can be transferred to soils, plants and water sources. This paper presents and discusses the results of physical and chemical analyses that characterized samples of PG and compares them to the results found in two typical soils of the Cerrado, a clayey and sandy one. These analyses included: solid waste classification, evaluation of organic matter content and of P, K, Ca, Mg, and Al concentrations and of the mineralogical composition. Natural radionuclides and metal concentrations in PG and soil samples were also measured. Phosphogypsum was classified as Class II A - not dangerous, not inert, not corrosive and not reactive. The organic matter content in the soil samples was low and potential acidity high. In the mean, the specific 226 Ra activity in the phosphogypsum samples (252 Bq kg -1 ) was below the maximum level recommended by USEPA, which is 370 Bq kg -1 for agricultural use. In addition, this study verified that natural radionuclides and metals concentrations in PG were lower than in the clayey Oxisol of Sete Lagoas, Minas Gerais, Brazil. These results indicated that the application of phosphogypsum as soil amendment in agriculture would not cause a significant impact on the environment. (author)

  5. CONTENT OF SELECTED HEAVY METALS IN NI-CONTAMINATED SOIL FOLLOWING THE APPLICATION OF HALLOYSITE AND ZEOLITE

    Directory of Open Access Journals (Sweden)

    Maja Radziemska

    2016-07-01

    Full Text Available Nickel has been listed as a priory control pollutant by the United States Environmental Protection Agency (US EPA. Compared with other methods, the combination of vegetation and the addition of mineral sorbents to heavy metal-contaminated soils can be readily applied on a large scale because of the simplicity of technology and low cost. Halloysite and zeolite, among others, can be used for this purpose. A greenhouse study was performed to evaluate the feasibility of using natural zeolite, as well as raw and modified halloysite for the remediation of simulated Ni-contaminated soil. The soil was spiked with five doses of nickel, i.e. 0 (control, 80, 160, 240 and 320 mg Ni kg-1 soil. The average accumulation of heavy metals in nickel-contaminated soil was found to follow the decreasing order of Ni>Zn>Cr>Cu>Pb. The highest reduction of Pb content was observed in soil samples taken from pots containing 80 and 160 mg.kg-1 of Ni along with the addition of modified halloysite. The strongest effects were caused by natural zeolite, which significantly reduced the average content of chromium. Contamination at 320 mg Ni.kg-1 of soil led to the highest increases in the Ni, Pb and Cr contents of soil.

  6. Radioactivity concentration and heavy metal content in fuel oil and oil-ashes in Venezuela

    International Nuclear Information System (INIS)

    Barros, H.; Sajo-Bohus, L.; Abril, J.M.; Greaves, E.D.

    2004-01-01

    as well as Fuel Oil No6. Gamma spectrometry was used for measuring 226 Ra, 214 Pb, 214 Bi, 228 Ac, 212 Pb, 212 Bi, 208 Tl and 40 K, and heavy metallic cations were determined by ICP-MS which allow also the direct determination of 238 U. In this material (oil ashes) the total activity concentration is above 300 Bq.kg-1. In fact the combustion concentrate also heavy metal cations leading to an increasing in its concentrations, as is the case of Pb, Ni, Fe, Mn, V and Zn. Finally some recommendations are included for use of oil ashes as an additive for building materials. (author)

  7. The Content of Heavy Metals (Cu, Zn, Cr, Ni, Pb in The Soil Near The Arterial Roads in Wroclaw (Poland

    Directory of Open Access Journals (Sweden)

    Sobczyk Karolina

    2017-01-01

    Full Text Available The concentrations of heavy metals in soils along the motorway bypass of Wroclaw (AOW and the Eastern Ring Road of Wroclaw (WOW, Poland, have been determined. The soil samples were collected from the levels of 0-25 cm within 2 m from the edge of the road. The mineralizates were prepared in HNO3, 60%, using the Microwave Digestion System. The content of Cu, Zn, Cr, Ni and Pb in soils were determined using FAAS method. The physicochemical parameters, the conductivity and pH of the soil solutions were measured to evaluate the salinity of the soils and their active and exchangeable acidity. The pollution indexes (WN showing the enrichment of soils in metals have been determined. Excess of metal concentrations in soils compared to the geochemical background in uncontaminated soils of Poland has been observed. Permissible concentrations of heavy metals relative to the standard for soils, according to the Polish Ministry of Environment Regulation from September 1st, 2016, have not been exceeded.

  8. HEAVY METAL CONTENT OF FLOOD SEDIMENTS AND PLANTS NEAR THE RIVER TISZA

    Directory of Open Access Journals (Sweden)

    SZILÁRD SZABÓ

    2008-12-01

    Full Text Available The River Tisza is Hungary’s especially important river. It is significant not only because of the source of energy and the value insured by water (hydraulical power, shipping route, stock of fish,aquatic environment etc. but the active floodplain between levees as well. Ploughlands, orchards, pastures, forests and oxbow lakes can be found here. They play a significant role in the life of the people living near the river and depend considerably on the quality of the sediments settled by the river. Several sources of pollution can be found in the catchment area of the River Tisza and some of them significantly contribute to the pollution of the river and its active floodplain. In this paper we study the concentration of zinc, copper, nickel and cobalt in sediments settled in the active floodplain and the ratio of these metals taken up by plants. Furthermore, our aim was to study the vertical distribution of these elements by the examination of soil profiles. The metal content of the studiedarea does not exceed the critical contamination level, except in the case of nickel, and the ratio of metals taken up by plants does not endanger the living organisms. The vertical distribution of metals in the soil is heterogeneous, depending on the ratio of pollution coming from abroad and the quality of flood.

  9. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.

    Science.gov (United States)

    Lederer, Jakob; Trinkel, Verena; Fellner, Johann

    2017-02-01

    A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22

  10. Content of Heavy Metal in the Dust of Leisure Squares and Its Health Risk Assessment—A Case Study of Yanta District in Xi’an

    Directory of Open Access Journals (Sweden)

    Tianjie Shao

    2018-02-01

    Full Text Available Taking Yanta District in Xi’an as the research object, the present study measures the contents of Cadmium (Cd, Lead (Pb, Copper (Cu, Nickel (Ni, and Chromium (Cr in dust samples and further assesses the health risk of heavy metals intake through dust based on the assessment method of human exposure risk proposed by U.S. EPA, with an aim to investigate the content of heavy metal in the dust of leisure squares and its exposure risk. As the results indicate, the average contents of five heavy metals are obviously higher than the soil background value in Shaanxi Province. Therefore, Cd, Ni, Cu, Pb, and Cr are obviously enriched in urban surface dust in Shaanxi Province, due to the influence of human activities. In addition, it can also be found that the non-carcinogen exposure risk in children is significantly higher than that in adults with the risk values of these five heavy metals all one order of magnitude higher than those of adults. Irrespective of whether addressing the results for children or adults, the non-carcinogen exposure doses of five heavy metals are sorted as Cr > Pb > Cu > Ni > Cd. According to the present situation, for a child, the total non-carcinogenic risk values of five heavy metals have exceeded the safety limit in 11 of the 20 leisure squares in Yanta District of Xi’an. That means the leisure squares are no longer suitable for physical and recreational activities. For the five heavy metals, the average non-carcinogenic risk value of Cr is largest, and causes the largest threat to health in Yanta District, Xi’an. The carcinogenic exposure doses of the heavy metals Cr, Cd, and Ni are very low in respiratory pathways and there is no carcinogenic health risk. In general, the Cr content in dust in domestic cities is higher than that of foreign cities; however, the Pb content is much lower.

  11. Content of Heavy Metal in the Dust of Leisure Squares and Its Health Risk Assessment—A Case Study of Yanta District in Xi’an

    Science.gov (United States)

    Shao, Tianjie; Pan, Lihuan; Chen, Zhiqing; Wang, Ruiyuan; Li, Wenjing; Qin, Qing; He, Yuran

    2018-01-01

    Taking Yanta District in Xi’an as the research object, the present study measures the contents of Cadmium (Cd), Lead (Pb), Copper (Cu), Nickel (Ni), and Chromium (Cr) in dust samples and further assesses the health risk of heavy metals intake through dust based on the assessment method of human exposure risk proposed by U.S. EPA, with an aim to investigate the content of heavy metal in the dust of leisure squares and its exposure risk. As the results indicate, the average contents of five heavy metals are obviously higher than the soil background value in Shaanxi Province. Therefore, Cd, Ni, Cu, Pb, and Cr are obviously enriched in urban surface dust in Shaanxi Province, due to the influence of human activities. In addition, it can also be found that the non-carcinogen exposure risk in children is significantly higher than that in adults with the risk values of these five heavy metals all one order of magnitude higher than those of adults. Irrespective of whether addressing the results for children or adults, the non-carcinogen exposure doses of five heavy metals are sorted as Cr > Pb > Cu > Ni > Cd. According to the present situation, for a child, the total non-carcinogenic risk values of five heavy metals have exceeded the safety limit in 11 of the 20 leisure squares in Yanta District of Xi’an. That means the leisure squares are no longer suitable for physical and recreational activities. For the five heavy metals, the average non-carcinogenic risk value of Cr is largest, and causes the largest threat to health in Yanta District, Xi’an. The carcinogenic exposure doses of the heavy metals Cr, Cd, and Ni are very low in respiratory pathways and there is no carcinogenic health risk. In general, the Cr content in dust in domestic cities is higher than that of foreign cities; however, the Pb content is much lower. PMID:29495319

  12. Content of Heavy Metal in the Dust of Leisure Squares and Its Health Risk Assessment-A Case Study of Yanta District in Xi'an.

    Science.gov (United States)

    Shao, Tianjie; Pan, Lihuan; Chen, Zhiqing; Wang, Ruiyuan; Li, Wenjing; Qin, Qing; He, Yuran

    2018-02-25

    Taking Yanta District in Xi'an as the research object, the present study measures the contents of Cadmium (Cd), Lead (Pb), Copper (Cu), Nickel (Ni), and Chromium (Cr) in dust samples and further assesses the health risk of heavy metals intake through dust based on the assessment method of human exposure risk proposed by U.S. EPA, with an aim to investigate the content of heavy metal in the dust of leisure squares and its exposure risk. As the results indicate, the average contents of five heavy metals are obviously higher than the soil background value in Shaanxi Province. Therefore, Cd, Ni, Cu, Pb, and Cr are obviously enriched in urban surface dust in Shaanxi Province, due to the influence of human activities. In addition, it can also be found that the non-carcinogen exposure risk in children is significantly higher than that in adults with the risk values of these five heavy metals all one order of magnitude higher than those of adults. Irrespective of whether addressing the results for children or adults, the non-carcinogen exposure doses of five heavy metals are sorted as Cr > Pb > Cu > Ni > Cd. According to the present situation, for a child, the total non-carcinogenic risk values of five heavy metals have exceeded the safety limit in 11 of the 20 leisure squares in Yanta District of Xi'an. That means the leisure squares are no longer suitable for physical and recreational activities. For the five heavy metals, the average non-carcinogenic risk value of Cr is largest, and causes the largest threat to health in Yanta District, Xi'an. The carcinogenic exposure doses of the heavy metals Cr, Cd, and Ni are very low in respiratory pathways and there is no carcinogenic health risk. In general, the Cr content in dust in domestic cities is higher than that of foreign cities; however, the Pb content is much lower.

  13. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress.

    Science.gov (United States)

    Park, Won; Feng, Yufeng; Kim, Hyojin; Suh, Mi Chung; Ahn, Sung-Ju

    2015-09-01

    Under heavy-metal stress, CsHMA3 overexpressing transgenic Camelina plants displayed not only a better quality, but also a higher quantity of unsaturated fatty acids in their seeds compared with wild type. Camelina sativa L. belongs to the Brassicaceae family and is frequently used as a natural vegetable oil source, as its seeds contain a high content of fatty acids. In this study, we observed that, when subjected to heavy metals (Cd, Co, Zn and Pb), the seeds of CsHMA3 (Heavy-Metal P1B-ATPase 3) transgenic lines retained their original golden yellow color and smooth outline, unlike wild-type seeds. Furthermore, we investigated the fatty acids content and composition of wild type and CsHMA3 transgenic lines after heavy metal treatments compared to the control. The results showed higher total fatty acid amounts in seeds of CsHMA3 transgenic lines compared with those in wild-type seeds under heavy-metal stresses. In addition, the compositions of unsaturated fatty acids-especially 18:1 (oleic acid), 18:2 (linoleic acid; only in case of Co treatment), 18:3 (linolenic acid) and 20:1 (eicosenoic acid)-in CsHMA3 overexpressing transgenic lines treated with heavy metals were higher than those of wild-type seeds under the same conditions. Furthermore, reactive oxygen species (ROS) contents in wild-type leaves and roots when treated with heavy metal were higher than in CsHMA3 overexpressing transgenic lines. These results indicate that overexpression of CsHMA3 affects fatty acid composition and content-factors that are responsible for the fuel properties of biodiesel-and can alleviate ROS accumulation caused by heavy-metal stresses in Camelina. Due to these factors, we propose that CsHMA3 transgenic Camelina can be used for phytoremediation of metal-contaminated soil as well as for oil production.

  14. Heavy metal content and molecular species identification in canned tuna: Insights into human food safety.

    Science.gov (United States)

    Pappalardo, Anna Maria; Copat, Chiara; Ferrito, Venera; Grasso, Alfina; Ferrante, Margherita

    2017-05-01

    Canned tuna in olive oil and in brine of the most popular brands sold in Italian markets were analyzed to verify the authentication of transformed products, with the aim to unveil commercial frauds due to the substitutions of high value species with species of low commercial value, and to assess the health risk of consumers related to cadmium (Cd), lead (Pb) and mercury (Hg) contents. Species authentication was evaluated with amplification of COI DNA barcode and confirmed the declared species. Among tested metals, Hg had the highest concentrations, followed by Cd and Pb. None of the tested samples surpassed the European regulatory limits no. 1881/2006 fixed for Hg and Pb, whereas one batch of canned tuna in olive oil exceeded standard for Cd. Risk for human health was evaluated by the metals daily intake and target hazard quotient (THQ). As a result, Cd and Pb did not exceed the toxicological reference values established by World Health Organization (WHO) and the Environmental Protection Agency (EPA). Conversely, Hg content suggests a consumption no more than once a week and a continuous surveillance of this fishery products for consumer protection.

  15. Evaluation of natural radioactivity and heavy metals content in Sudanese phosphate rocks used as low cost fertilizer

    International Nuclear Information System (INIS)

    Elkhangi, F.A.; Aamhed, M.M.O.; Abdalla, I.A.

    1997-01-01

    This study was carried out to determine the level of natural radioactivity and heavy metals content of Sudanese rock phosphate used as low cost fertilizer. Thirty samples collected from two types of local phosphate rocks from the Nuba mountains (Uro and Kurun) were used in this study and the activity concentrations of natural radioactivity determined using gamma spectroscopy were compared to those found in samples of imported phosphorous fertilizers Single Super phosphate (SSP) and Triple Super phosphate (TSP). The results showed that the ' Ra activity concentration was 0.6 - 0.8 Bq/g for Uro and 0.3 - 0.5 Bq/g for Kurun. As for the most commonly used imported fertilizer TSP, the result was found to be greater than that of Uro (around 1.0 Bq/g). The heavy metals content of Uro and Kurun rocks measured using X-ray Fluorescence Technique showed their levels were below the toxic levels reported by Christina (1991). It is evident that the environmental hazard is comparable in the local and imported fertilizers and is acceptable in both cases by international standards. The determine factor therefore in optioning for the use of a local or an imported brand should then be the fertilizing efficiency of the brand used against other economic consideration rather than the fertilizers environmental impact

  16. Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system.

    Science.gov (United States)

    Chenia, Hafizah Y; Jacobs, Anelet

    2017-11-21

    Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.

  17. Correlation between heavy metal contents and antioxidant activities in medicinal plants grown in copper mining areas

    International Nuclear Information System (INIS)

    Maharia, R.S.; Dutta, R.K.; Acharya, R.; Reddy, A.V.R.

    2012-01-01

    Three commonly used medicinal plants, e.g., Adhatoda vasica, Cassia fistula, and Withania somnifera grown in two contrasting environmental conditions, namely from copper mining site and from control site corresponding to soil not contaminated with Cu, to understand correlations between high Cu bioaccumulation in medicinal plants on their antioxidant activities. Concentrations of some essential metals, e.g., Cr, Mn, Fe, Cu, Zn, and Se in the leaves of these plants were measured by instrumental neutron activation analysis. The Cu levels in the samples from mining site were in the range of 32.6 to 57.2 mg/kg, which were 5-7 folds higher than the control samples, while Cr levels were about 2-folds higher in the mining site. Speciation studies of Cr revealed negligible content of toxic hexavalent Cr. Antioxidant assay of these plants from both the sampling sites, measured as total phenolic content, total flavonoid content, 2,2'-diphenyl-1-picrylhydrazyl, free radical scavenging ability, and chelating ability with ferrous ions exhibited maximum activity for A. vasica, while that of W. somnifera was minimum. However, the variations in the antioxidant activities for each medicinal plant species from mining site and control site did not reveal significant differences. (author)

  18. HEAVY METAL CONTENTS IN MARINE SEDIMENTS AND SEAWATER AT TOTOK BAY AREA, NORTH SULAWESI

    Directory of Open Access Journals (Sweden)

    Delyuzar Ilahude

    2017-07-01

    Full Text Available The study area is located in north-eastern part of Tomini Bay, approximately 80 km south of Manado city, North Sulawesi. This area is closed to submarine tailing disposal system in Buyat Bay. Five marine sediment samples and four water samples from seawater and dig wells have been used for heavy metals (Hg, As, CN analyses by using Atomic Absorption Spectrometry (AAS. This study is a part of research conducted by Marine Geological Institute of Indonesia on morphological changes of seabed in the Totok Bay. The result shows that concentration of mercury (Hg in water samples taken from Ratatotok estuary is higher than standards stipulated Government Regulation (Peraturan Pemerintah/PP No. 82/2001. Meanwhile, concentration of arsenic (As is almost reaching its standard threshold, and conversely cyanide (CN concentration is low. This value of mercury (Hg concentration taken from Ratatotok estuary is much higher than water samples from of Buyat Bay estuary. Significant concentration of mercury (Hg analysed from those particular sampling sites indicated high mercury contamination. Therefore, further examination on ground water of dig wells is necessary, especially for mercury analysis (Hg. Furthermore, comparing the formerly obtained data of mercury concentration in the sediment, this particular study concludes that the sediments in the Totok Bay had contaminated by mercury from gold-processing of illegal mining.

  19. Further investigation of the heavy metal content of the teeth of the bank vole as an exposure indicator of Environmental Pollution (1987)(1987)in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gdula-Argasinska, Joanna; Appleton, John; Sawicka-Kapusta, Katarzyna; Spence, Bill

    2004-09-01

    The content of heavy metals in mineralised dental tissues is an indicator of the exposure of their mineral phase to heavy metals during the time of tooth development and dental tissue formation. Therefore, teeth have been used as bio-indicators which accurately reflect the environmental or dietary exposure of animals and humans to heavy metals. This study follows from the earlier work in which it was demonstrated that the teeth from bank voles inhabiting various environmentally polluted and non-polluted forests in Southern Poland were reliable indicators of exposure to heavy metals. Using analytical techniques employed in the earlier study heavy metal concentrations were obtained in the teeth of bank voles trapped in 1998-2000 to determine if efforts to clean up the environment could be detected in changes in heavy metal concentrations in the teeth. The results show that these efforts are reflected in lower concentrations of heavy metals in the teeth but that cross border contamination remains a problem.

  20. The distribution of heavy metals content in the bottom deposits of the trans-border Uzh river system

    Directory of Open Access Journals (Sweden)

    M. V. Bilkey

    2017-05-01

    Full Text Available The dynamics and peculiarities of the heavy metals (Cu, Pb, Zn, As, V, Cr, Ni migration were established in the system of the river Uzh bottom deposits. An excess in maximum permissible concentration among such elements as Zn, V, As, and Cu was detected in surface waters. We may connect the elevated level of Cu and Zn with natural (metals appearing in ground water run-off, ablation from iron ore, the reaction of interstitial water, anthropogenic (sewage disposals from communal households and manufacturing plants, agricultural run-offs, and hydrochemical (pH of water medium, methylation of non-organic metal compounds, metals release from the organic compounds composition, ingress from bottom deposits factors. The high concentrations of vanadium in water as well as in bottom deposits are most probably induced by the leaching of elements from the regional volcanic rocks. The plumbum content did not exceed the higher-than-normal rates; however, significant element accumulation was detected in bottom deposits outside the city of Uzhgorod which may be the result of ecotoxicant ingress along with land runoff from the riverside highways laid parallel to the water course. In comparison with background measures, the highest chromium and nickel concentrations were detected near the streamlet Domoradzh and, therefore, it is assumed that the industrial wastewaters serve here as a source of heavy metals. The reservoir in the lowland is above all enriched by arsenic. Areas under agricultural use are significantly concentrated in lowlands. Runoffs from these areas are the main source of the ore supply. However, the impact of municipal domestic waste water which contains arsenic-containing detergents should not be excluded. Moreover, we found a relationship between the relief heterogeneity of the study area and distribution of heavy metals in the hydro-ecosystem. The accomplished comparative analysis of the territories under study indicates the significant

  1. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  2. Comparative study of heavy metals content in cosmetic products of different countries marketed in Khyber Pakhtunkhwa, Pakistan

    Directory of Open Access Journals (Sweden)

    Hussain Ullah

    2017-01-01

    Full Text Available The study was undertaken in order to determine heavy metal content in fifteen (n = 15 cosmetics products both imported and locally manufactured by unauthorized company marketed at district Kohat, Khyber Pakhtunkhwa, Pakistan. An analytical test was performed for eight metals in cosmetics products using flame atomic absorption spectrophotometer. The overall mean (n = 15 concentration for each heavy metal was analyzed i.e. Pb, Cd, Cu, Co, Fe, Cr, Ni, Zn were 141.6 ± 0.016, 0.238 ± 0.001, 26.62 ± 0.012, 0.527 ± 0.002, 860.8 ± 0.061, 0.074 ± 0.002, 0.674 ± 0.002 and 268.6 ± 0.086 μg/g, respectively. The results of our study revealed that the concentrations of Fe, Zn, Pb and Cu in the samples within each class under investigation were higher. It also emphasize that the spurious nature of these products cannot be ignored because most of the developing and under developed countries are facing the problems to manufacture good cosmetics products. Hence, are selling these products under the brand name of well reputed national and international companies. Since no safe limit relating to cosmetic products is available in Pakistan, it is therefore difficult to ascertain if the values of metals obtained in this study are too high or low. Prolonged use of such products containing these elements may pose threat to human health and could curb the beauty of the environment.

  3. ASSESSMENT OF HEAVY METALS AND CRUDE PROTEIN ...

    African Journals Online (AJOL)

    UNICORN

    to quantify heavy metals (Cu, Zn, Pb and Cd) and crude protein content of these species that are sold in ... in protein, omega 3 and low fat content. Furthermore ... high levels of cadmium can cause kidney and liver damage in man [6]. Motivation .... analysis. Determination of heavy metals in the edible tissues of the organisms.

  4. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  5. Characteristics of tree bark as an indicator in high-immission areas : II. Contents of heavy metals.

    Science.gov (United States)

    Lötschert, W; Köhm, H -J

    1978-01-01

    1. Studies on indicator characteristics of bark of deciduous trees have been continued by measuring accumulation of Pb, Cd, Ni and Mn in the bark of Fraxinus excelsior at 34 sampling sites over an area of 150 km 2 in the immission area of Frankfurt am Main. 2. Iso-lines of equal Pb-contamination have been found. They include zones of graduated immissions. The pattern of these zones shows an eccentrical orientation and is the result of the distribution of the main traffic roads. A significant correlation of Pb in the bark and traffic congestion has been found. 3. The zones of Cd-contamination stretch from SW to NE. The orientation of these zones is determined by the distribution of the big emittenrs and the centers of heating power in the area and the predominating direction of wind. 4. A correlation between the accumulation of Pb and Cd has been detected. It is less significant than that between pH-value and sulfur content in the bark of trees in former investigations. 5. The distribution of Pb and Mn is antagonistic in the bark of Fraxinus excelsior and parallel in the needles of Taxus baccata. The content of Mn in the bark of Fraxinus is low. It must be accepted that this is partly an effect of elution by sulfur acid-aerosol formation. 6. The strongest accumulation of heavy metal immissions is found in mosses on the ground, mainly in Bryum argenteum. Nevertheless the bark of Fraxinus excelsior has shown consequently its accumulation characteristics as a good immission indicator for heavy metal contaminations by traffic and big emittents.

  6. Heavy metal (Pb, Cu, Zn and Cd content in wine produced from grape cultivar Mavrud, grown in an industrially polluted region

    Directory of Open Access Journals (Sweden)

    Violina Angelova

    1999-09-01

    Full Text Available The investigation was carried out in the period 1991-1993 with cv. Mavrud, grown in the region with a major industrial pollutant the Non-Ferrous-Metal Works (NFMW and a region with no industrial pollutants (as a control. The heavy metal content in soil, grapes and wine was determined. Most of the heavy metals in the grapes precipitate during fermentation into the sediments, which is the reason for their significantly lower content in the wine. Water washing of grape before processing leads to about 2 time decrease in the Pb, Cu, Zn and Cd contents of wine. The pre-washing of grapes does not lead to any quality deterioration in the wine produced. The amounts of Cu, Zn and Cd in the wine from cv. Mavrud, grown in the region of the NFMW-Plovdiv, are lower than the maximum admissible levels, while the Pb content exceeds them about two times.

  7. All rights reserved Assessment of Heavy Metal Contents of End-Of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-18

    Mar 18, 2018 ... that regulate the use of hazardous substances in EEE, such as the European ..... result in human exposure to high levels of these metals and toxins. .... waste: Synthesize zeolites from waste cathode- ray-tube funnel glass.

  8. Mid term monitoring of heavy metals content in soils of Mediterranean coastal wetlands. La Albufera de Valencia Natural Park, Spain

    Science.gov (United States)

    Pascual-Aguilar, Juan Antonio; Andreu, Vicente; Gimeno-García, Eugenia

    2014-05-01

    Coastal wetlands, in general, and Mediterranean ones, in particular, suffer from differente anthropogenic pressures that may affect their intrinsic environmental and ecological functions. Most, if not all, Mediterranean wetlands are not natural spaces were preservation of habitat and wildlife is the only management policy achieved, bur rather their terriroty is a combination of land units with different activities and influences, such as farming, environmental protection and connectivities with urban and industrial areas. Therefore, the need of periodical monitoring is required whenever pressures and environmental health of wetlands is assessed, particularly of those processes that affect the interconnection of environmental compartiments involving water, soils and biota. In agro-ecological protected wetlands soils play and important role because they are potential sources of pollutants due to farming practices. In this case, presence of heavy metals in soils is and indicator of both environmental health and anthtopogenic direct (farming activities) and indirect (neighbour urban areas) pressures. In this work a mid term (17 year) monitoring of seven heavy metals (Cd, Co, Cr, Cu, Pb, Ni and Zn) in soils of coastal Mediterranean wetlands (La Albufera Natural Park, Spain) are analyzed. Two monitoring campaings were achieved in 1991 and 2008. In both cases the same 20 points were visited which were distributed in the natural park according two four different sectors of potential anthropogenic pressure and land use. At each point two soil samples were collected at differente depths (0 to 20 cm and 20 to 40 cm). The selected metals were analyzed to determine its total and extractable fractions by treatment with EDTA. Atomic Absorption Spectrometry, using graphite furnace when necessary, was used for the determination of metals. In general, there is a reduction of metal contents in the study area in both dates. The trend of metals according to average concentration (mg

  9. Heavy Metal Content in Chilean Fish Related to Habitat Use, Tissue Type and River of Origin.

    Science.gov (United States)

    Copaja, S V; Pérez, C A; Vega-Retter, C; Véliz, D

    2017-12-01

    In this study, we analyze the concentration of ten metals in two freshwater fish-the benthic catfish Trichomycterus areolatus and the limnetic silverside Basilichthys microlepidotus-in order to detect possible accumulation differences related to fish habitat (benthic or pelagic), tissue type (gill, liver and muscle), and the river of origin (four different rivers) in central Chile. The MANOVA performed with all variables and metals, revealed independent effects of fish, tissue and river. In the case of the fish factor, Cu, Cr, Mo and Zn showed statistically higher concentrations in catfish compared with silverside for all tissues and in all rivers (p food sources and respiration.

  10. Heavy metals (Cd, Cu, Ni and Pb) content in two fish species of ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... Water pollution and fish physiology. CRC press. Florida, USA, p. 245. Kalay M, Canli M (2000). Elimination of essential (Cu, Zn) and nonessential (Cd, Pb) metals from tissue of a freshwater fish Tilapia zillii following and uptake protocol. Turk. J. Zool. 24: 429-436. Karadede H, Ünlü E (2000). Concentrations ...

  11. Behaviour of heavy metals in soils

    NARCIS (Netherlands)

    Harmsen, K.

    1977-01-01

    Fractions of Zn, Cd, Cu, Pb, Fe and Mn extractable with water, a salt solution and dilute acid, and residual fractions were determined in soils with raised contents of heavy metals, near zinc smelters, along a river formerly discharging heavy metals, and in a sewage farm. Special attention

  12. Bioaccumulation of Heavy Metals

    African Journals Online (AJOL)

    komla

    acute toxicity and sublethal chronic action the devastating effects that the accumulation - including ... the laboratory and kept in holding glass (a) Copper as CuSO,.5H,0 ... from 2 psu to 21 psu) depending on time of The choice of heavy metals for this s year. ... serving as substrate and food source for Salinity of test media.

  13. Heavy metals and metalloid content in vegetables and soil collected from the gardens of Zagreb, Croatia.

    Science.gov (United States)

    Puntarić, Dinko; Vidosavljević, Domagoj; Gvozdić, Vlatka; Puntarić, Eda; Puntarić, Ida; Mayer, Dijana; Bosnir, Jasna; Lasić, Dario; Jergović, Matijana; Klarić, Ivana; Vidosavljević, Marina; Krivdić, Ivancica

    2013-09-01

    Aim of this study was to determine concentration of Pb, Cd, As and Hg in green leafy vegetables and soil in the urban area of Zagreb, Croatia and to determine if there is a connection between the contamination of soil and vegetables. Green leafy vegetables and soil samples were taken from the gardens located in the outskirts of the city. Concentrations of Pb, Cd, As and Hg were determined by atomic absorption spectrometry; showing that average concentrations of metals and metalloids in vegetables and in soil, regardless of the location of sampling were below the maximum allowed concentration (MAC). The analysis determined that metal concentrations in only nine vegetable samples (9%) were above maximum allowed values prescribed by national and European legislation (three with higher concentrations of Pb, one with a higher concentration of Cd and five with higher concentrations of Hg). Concentrations of contaminants present in the analysed samples, in general, are lower than the ones published in similar studies. The final distribution and concentration of contaminants in vegetables of Zagreb, besides industry and traffic, is affected by the dominant wind direction.

  14. THE EFFECT OF COMPOST MADE WITH SEWAGE SLUDGE ON HEAVY METAL CONTENT IN SOIL AND IN LOLIUM MULTIFLORUM LAM.

    Directory of Open Access Journals (Sweden)

    Elżbieta Malinowska

    2016-07-01

    Full Text Available The aim of this paper is to assess the effects of different doses of sewage sludge compost mixed with wheat straw on heavy metal content in Italian ryegrass and in soil. A two year experiment with the Italian ryegrass was set up in autumn 2012. The experimental design consisted of a control plot, a plot with NPK fertiliser and three plots with three different doses of municipal sewage sludge compost (5, 10 and 15 Mg of fresh matter·ha-1. Those different compost doses contained the amounts of Nitrogen equivalent to 60, 120 and 180 kg N·ha-1. The two lower doses of compost were supplemented with nitrogen fertiliser so that the amount of this chemical element introduced to the soil of all plots with compost stood at 180 kg·ha-1. During 2013 and 2014 seasons the grass was cut three times a year after about a 30-day growing period. After dry mineralisation the content of Zn, Cu, Ni, Pb and Cd in the plant samples was measured with the ICP-AES method. The fertilisers applied significantly diversified the content of chemical elements in the grass and in the soil. The highest dose of compost resulted in the highest concentration of Zn, Cu and Cd in the grass while the highest concentration of Ni and Pb was in the soil and the grass from the plot where the mid dose of compost had been applied. Cadmium concentration in the soil was the highest in the plot where the mid dose was applied. The experiment proved that compost made with sewage sludge and wheat straw is beneficial for plants.

  15. Phytotoxicity of thallium (Tl) in culture solution. Pt. 1. Effects of Tl(I) on the growth and heavy metal contents of pea and field bean plants

    Energy Technology Data Exchange (ETDEWEB)

    Poetsch, U; Austenfeld, F A

    1985-01-01

    The effects of TlNO/sub 3/ and Tl(I)EDTA on growth and heavy metal contents of pea plants and field bean plants were compared in hydroponic culture experiments. In the presence of TlNO/sub 3/, the essential heavy metals were available to the plants in their ionic forms. When Tl(I)EDTA was present the essential heavy metals were available as chelated complexes. With increasing concentration of TlNO/sub 3/ dry matter production of pea plants was lowered and the Tl content of each organ was increased. The highest Tl content was found within the stems. The increased Tl contents were accompanied by depressed Mn, Zn, and Cu contents of the roots and depressed Mn contents of the stems, but increased Fe contents of the stems. Substitution of TlNO/sub 3/ by Tl(I)EDTA resulted in a stronger growth inhibition of the pea plants, and higher Tl contents of each organ. The highest Tl content was found within the stems. Tl(I)EDTA depressed Mn in the roots, but increased Fe and Mn in the stems, and Fe, Zn and Cu in the leaves. The increases may due to concentration by growth inhibition. The growth of the field bean was not effected by TlNO/sub 3/ nor by Tl(I)EDTA. The field bean contained most of the Tl within the roots and translocated only relatively small amounts to the shoots. This pattern was independent of the Tl compound. Increasing concentrations of TlNO/sub 3/ resulted in depressed Mn and Zn contents of the roots, and Mn contents of the stems. Chelation of Tl(I) resulted in a decrease of the Tl content of each organ. Tl(I)EDTA depressed only the Mn content of the roots.

  16. Micromycetes sensitiveness to heavy metals

    Directory of Open Access Journals (Sweden)

    O. N. Korinovskaya

    2011-07-01

    Full Text Available The sensitivity of 33 micromycete species to nitric compounds of copper, lead, zinc, nickel and cadmium has been determined. Absidia butleri Lendn, Mortierella vanesae Dixon-Stewart, Cunninghamella echinulata Thaxte, Curvularia tuberculata Jain, Cladosporium cladosporiodes (Fresen G. A. de Vries and Fusarium solani (C. Mart. Appel et Wollenw are sensitive to minimal content of the heavy metals (0.75 of maximum permissible concentration (MPC in the growth medium. At the same time Trixoderma longibrachiatiim Rifai, Alternaria alternatа (Fr. Keissl and Penicillium sp. 4 demonstrated moderate growth under maximal concentration (50 MPC. It is determined that minimal content of the heavy metals in the initial stage of influence (up to 48 h promotes growth of only Fusarium oxysporum E. F. Sm. et Swingle, while retards growth of the other species.

  17. Plant and animal species composition and heavy metal content in fly ash ecosystems

    International Nuclear Information System (INIS)

    Brieger, G.; Wells, J.R.; Hunter, R.D.

    1992-01-01

    Plant and animal species present on a coal fly ash slurry pond site and a dry deposit site were surveyed and sampled during a two-day period in October. Elemental analyses were determined for most of the species encountered. A total of 48 plant species were observed on the two sites, with 35 species on the wet site, and 20 on the dry site. Eighteen terrestrial and 7 aquatic animal species were found on the wet site, exclusive of vertebrates which were not studied with the exception of a carp (Cyprinus carpio). Eleven terrestrial invertebrate and one aquatic species were observed on the dry site. Neutron activation analysis was carried out for: Se, Hg, Cr, Ni, Zn, Co, Sb, Cd, and As. Using literature values for phytotoxicity, it is concluded that, in general, plants did not accumulate toxic levels of metals. Only one plant (Impatiens biflora Willd.) showed a significant level of Cd. Of 20 plants analyzed on the wet site, 10 had excessive Se concentrations (>5 ppm); on the dry site 6 out of 18 had high Se values. In animals (Gryllus sp.; Melanoplus sp.; Trachelipus sp; Lumbricus terrestris; Physa integra; Cyprinus carpio) the trace metal concentration was generally in between that of control animals and that of the fly ash itself. One exception included Zn, which, although the most variable element examined, was concentrated in all the terrestrial animals to levels higher than in fly ash. Crickets are the most consistent bioconcentrators with Cr, Se, and Zn at higher levels than for control animals. All animals species studied accumulated Se compared to controls. 48 refs., 6 tabs

  18. (17) ACCUMULATION OF HEAVY METAL

    African Journals Online (AJOL)

    Adeyinka Odunsi

    Spectrophotometer (AAS) 2ID using their respective lamp and wavelengths. Calculation ... (Table 2). Concentration of heavy metals in the cassava. Lead and chromium were not significantly ..... Market basket survey for some heavy metals in ...

  19. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products.

    Science.gov (United States)

    Almela, C; Algora, S; Benito, V; Clemente, M J; Devesa, V; Súñer, M A; Vélez, D; Montoro, R

    2002-02-13

    The total arsenic, inorganic arsenic, lead, cadmium, and mercury contents of 18 algae food products currently on sale in Spain were determined. The suitability of the analytical methodologies for this type of matrix was confirmed by evaluating their analytical characteristics. The concentration ranges found for each contaminant, expressed in milligrams per kilogram of dry weight, were as follows: total arsenic, 2.3-141; inorganic arsenic, 0.15-88; lead, mercury, 0.004-0.04. There is currently no legislation in Spain regarding contaminants in algae food products, but some of the samples analyzed revealed Cd and inorganic As levels higher than those permitted by legislation in other countries. Given the high concentrations of inorganic As found in Hizikia fusiforme, a daily consumption of 1.7 g of the product would reach the Provisional Tolerable Weekly Intake recommended by the WHO for an average body weight of 68 kg. A more comprehensive study of the contents and toxicological implications of the inorganic As present in the algae food products currently sold in Spain may be necessary, which might then be the basis for the introduction of specific sales restrictions.

  20. Micromycetes sensitiveness to heavy metals

    OpenAIRE

    O. N. Korinovskaya; V. N. Gryshko

    2011-01-01

    The sensitivity of 33 micromycete species to nitric compounds of copper, lead, zinc, nickel and cadmium has been determined. Absidia butleri Lendn, Mortierella vanesae Dixon-Stewart, Cunninghamella echinulata Thaxte, Curvularia tuberculata Jain, Cladosporium cladosporiodes (Fresen) G. A. de Vries and Fusarium solani (C. Mart.) Appel et Wollenw are sensitive to minimal content of the heavy metals (0.75 of maximum permissible concentration (MPC)) in the growth medium. At the same time Trixoderm...

  1. Rfa method application for determination of heavy metals content in foods and industrial raw products

    International Nuclear Information System (INIS)

    Matveeva, I.M.

    1999-01-01

    The issue of improvement of the people's lives quality is considered to be of the highest priority according to the U N classification. It is known that its solution lies with the quality of drinking water and foods, which is defined, to a great extent, by the ecological situation of a concrete living region. As a rule, the existing methods of food analysis are mostly meant for determination of one chemical substance in a certain food. The analysis methods developed by authors are versatile and allow determining the quantitative content of Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Zr, Mo, Pb, Bi in the widely used basic foods and industrial raw products according to the common analytical scheme. The methods sensitivity allows determining the MCL of the toxic substances in foods and industrial raw products, specified in 'Medical and biological requirements and health-related quality standards in regards to the industrial raw products and foods

  2. Kinetic comparison of microbial assemblages for the anaerobic treatment of wastewater with high sulfate and heavy metal contents.

    Science.gov (United States)

    Sinbuathong, Nusara; Sirirote, Pramote; Liengcharernsit, Winai; Khaodhiar, Sutha; Watts, Daniel J

    2009-01-01

    Mixed-microbial assemblages enriched from a septic tank, coastal sediment samples, the digester sludge of a brewery wastewater treatment plant and acidic sulfate soil samples were compared on the basis of growth rate, waste and sulfate reduction rate under sulfate reducing conditions at 30 degrees C. The specific growth rate of various cultures was in the range 0.0013-0.0022 hr(-1). Estimates of waste and sulfate reduction rate were obtained by fitting substrate depletion and sulfate reduction data with the Michaelis-Menten equation. The waste reduction rates were in the range 4x10(-8)-1x10(-7) I mg(-1) hr(-1) and generally increased in the presence of copper, likely by copper sulfide precipitation that reduced sulfide and copper toxicity and thus protected the anaerobic microbes. Anaerobic microorganisms from a brewery digester sludge were found to be the most appropriate culture for the treatment of wastewater with high sulfate and heavy metal content due to their growth rate, and waste and sulfate reduction rate.

  3. Diverse genomic location and sequence content of a Listeria monocytogenes chromosomal island harboring heavy metal resistance and other genes

    Science.gov (United States)

    Listeria monocytogenes remains a major foodborne pathogen with three serotype 4b clonal groups (ECI, ECII, ECIa) repeatedly implicated in human listeriosis. For reasons that are unknown, many of these strains are also resistant to heavy metals, i.e. cadmium and arsenic. The acquisition and fitness i...

  4. The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe

    NARCIS (Netherlands)

    Mapanda, F.; Mangwayana, E.N.; Nyamangara, J.; Giller, K.E.

    2005-01-01

    The magnitude of contamination, regulatory compliance and annual loadings of soils with copper (Cu), zinc (Zn), cadmium (Cd), nickel (Ni), chromium (Cr) and lead (Pb) were determined at three sites in Harare where wastewater was used to irrigate vegetable gardens for at least 10 years. Heavy metal

  5. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.

    Science.gov (United States)

    Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin

    2009-10-01

    Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.

  6. Heavy metal content and potential health risk of geophagic white clay from the Kumasi Metropolis in Ghana

    Directory of Open Access Journals (Sweden)

    Marian Asantewah Nkansah

    Full Text Available Geophagia is the craving for non-food substances and commonly practiced among pregnant women and children. Consumption of geophagic clay samples can have serious implications on the health of the consumers as a result of the presence of toxic metals such as Pb, As, Hg and Cd. This study sought to determine the levels of heavy metals in the studied geophagic clay samples and to determine the potential risks of heavy metals as cumulative carcinogenic and non-carcinogenic risks to the health of the consumers via oral (ingestion and dermal exposure routes. A total of thirty (30 white clay samples were analysed using Niton Thermo scientific XRF Analyser (Mobile Test S, NDTr-XL3t-86956, com 24. The clay samples were found to contain essential elements such as Ca, Fe, K and Zn as well as toxic metals such as As and Pb. There were isolated cases of the presence of Hg and all samples had Cd levels below detection. Health risk indices such as hazard quotient and cancer risk were calculated and the results indicated that consumers are likely to suffer from cancer through ingestion of geophagic clay. Bioaccessibility studies were done on zinc and it did not indicate any potential toxicity due to zincs essential nature. The levels of heavy metals in some of the geophagic clay consumed by some residents in the Kumasi were high compared to the Permitted Maximum Tolerable Daily Intake (PMTDI by (WHO/FAO and may pose potential health threat over time. Keywords: Geophagia, White clay, Heavy metals, Health risk assessment, Permitted maximum tolerable daily intake

  7. Heavy metals in our foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The special group ''chemistry of food and forensic chemistry'' of the Association of German Analytical Chemists in Munich in 1983 issued a statement on that subject. The publication points out how heavy metals (examples: lead, cadmium and mercury) make their way into the foodstuffs, how many heavy metals are contained in our foodstuffs, which heavy metals are indispensable minerals and which aren't, and which heavy metals are ingested with food. It concludes by discussing how heavy metal contamination of our food can be prevented.

  8. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    literature favours the idea that hyperaccumulation of heavy metals serves plants as deterrent against attack by feeding animals (termed elemental defense hypothesis). The capability to hyperaccumulate heavy metals in A. halleri and N. caerulescens is achieved by duplications and alterations of the cis-regulatory properties of genes coding for heavy metal transporting/excreting proteins. Several metallophytes have developed ecotypes with a varying content of such heavy metal transporters as an adaption to the specific toxicity of a heavy metal site. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Heavy metal content of selected personal care products (PCPs available in Ibadan, Nigeria and their toxic effects

    Directory of Open Access Journals (Sweden)

    Sunday Samuel Omenka

    Full Text Available There is a growing concern on heavy metals in consumer products due to their potential human health risks and environmental effects. In this study, the levels of zinc, cadmium, lead and nickel were assessed in 3 different classes of personal care products commonly used in Ibadan, Nigeria. Samples were analysed for heavy metals using Atomic Absorption Spectrophotometer (AAS after acid digestion. Estimated daily intake (EDI of the metals and Health Risk Index (HRI were calculated to assess the human health risks associated with the use of these PCPs. The concentrations (mg/kg of zinc ranged from 3.75 to 19.3, 1.88 to 112,000 and 19.8 to 217 respectively in creams, powders and eyeliners. Cadmium ranged from ND—0.50, ND—36.3 and ND—0.50 mg/kg while lead ranged from ND—6.25, ND—468 and 3.73–27.5 mg/kg and nickel ranged from ND—6.25, 0.13–107 and 2.75–22.7 mg/kg respectively. There were high concentrations of Cd, Pb and Ni in some of the samples when compared with the available permissible limits in cosmetics (Cd: 0.3 ppm, Pb: 10 ppm and Ni: 0.6 ppm while there is no permissible limit for Zn in cosmetics currently available. Prolonged use of PCPs may pose human health and environmental risks due to toxic metal loading through dermal contact and accumulation over a period of time. Hence, the need for necessary government agencies to regulate and enforce toxic metals in consumer products including cosmetics produced and imported into Nigeria to safeguard public health and the environment, which is the final sink. Keywords: Heavy metals, Personal care products, Health effects, Dermal contact, Exposure

  10. Assessing the Heavy Metal Content in Forest Dormouse (Dryomys nitedula Pallas, 1778 from an Agricultural Region in Bulgaria

    Directory of Open Access Journals (Sweden)

    Georgi G. Markov

    2016-06-01

    Full Text Available The heavy metals load in the forest dormouse (Dryomys nitedula, inhabiting in forest shelter belts in the agricultural region was assessed. The concentrations of Cd, Co, Cu, Ni, Pb and Zn (expressed in mg/kg of dry tissue were established in the liver, using an atomic-absorption analysis. The fact that the highly toxic metals (Cd and Pb were found in considerable concentrations together with other metals with concentration dependent toxic effect (Cu, Ni, Zn and Co in the liver of forest dormice, suggests that it is necessary to carry out regular assessment and forecasting of accumulation of these metals in species, which are not direct targets of cultivation and control activities in agricultural ecosystems. The obtained values were used to create a baseline for estimation of heavy metal accumulation in the internal organs of the forest dormouse, both in anthropogenically transformed habitats and natural biotopes, as well as for using this species as a monitor of environmental status.

  11. Blackberry wines mineral and heavy metal content determination after dry ashing: multivariate data analysis as a tool for fruit wine quality control.

    Science.gov (United States)

    Amidžić Klarić, Daniela; Klarić, Ilija; Mornar, Ana; Velić, Darko; Velić, Natalija

    2015-08-01

    This study brings out the data on the content of 21 mineral and heavy metal in 15 blackberry wines made of conventionally and organically grown blackberries. The objective of this study was to classify the blackberry wine samples based on their mineral composition and the applied cultivation method of the starting raw material by using chemometric analysis. The metal content of Croatian blackberry wine samples was determined by AAS after dry ashing. The comparison between an organic and conventional group of investigated blackberry wines showed statistically significant difference in concentrations of Si and Li, where the organic group contained higher concentrations of these compounds. According to multivariate data analysis, the model based on the original metal content data set finally included seven original variables (K, Fe, Mn, Cu, Ba, Cd and Cr) and gave a satisfactory separation of two applied cultivation methods of the starting raw material.

  12. Heavy Metals, Paths contents and eco physiological changes in leaves of Holm-Oak in Urban areas of Caserta (Italy)

    International Nuclear Information System (INIS)

    Papa, S.; Nacca, F.; D'Abrosca, B.; Bartoli, G.; Pellegrino, A.; Fuggi, A.; Fioretto, A.

    2009-01-01

    Human health as well as that of animals and plants is severely affected by air pollution. In urban areas the vehicular traffic, in particular, contributes to the release of contaminants like heavy metals and polycyclic aromatic hydrocarbons (PAHs). Plants are effective bio monitors because, through their large leaf surface area, intercept and also absorb air pollutants, that can cause morphological, physiological and biochemical responses. (Author)

  13. Heavy metal and trace element contents in edible muscle of three commercial fish species, and assessment of possible risks associated with their human consumption in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Sabry Mohamed El-Bahr

    2015-09-01

    Full Text Available Three different highly consumed fish species from Al-Ahsa market, Saudi Arabia namely Spangled emporer (Lethriuns nebulosus, Red striped seabream (Pagrus major and Black seabream (Spondyliosoma cantharus were evaluated for their muscle contents of heavy metals (e.g., Cd and Pb and trace elements (e.g., Cu, Zn, Fe and Mn. The possible risks associated with their human consumption were also studied. A total of 60 fresh fish samples comprising of 20 samples from each above mentioned fish were collected, and were subjected for determination of heavy metal and trace element contents by Atomic Absorption Spectrophotometry after Microwave Wet Digestion. The results showed that, accumulation patterns of the heavy metals and trace elements followed the order: Fe > Zn > Cu > Mn > Pb > Cd. There were variations among metal contents in the muscles of the three fish species; S. cantharus accumulated the highest levels of Cu, Zn and Mn, while the highest level of Fe could be detected in the muscles of P. major. The concentration of Cd and Pb remained comparable in the muscles of all three fish species. The calculated maximum daily intake (MDI values were found as 0.0003, 0.0009, 0.0035, 0.0001, 0.0000, 0.0000 mg/day/person for Cu, Zn, Fe, Mn, Cd and Pb, respectively. Conclusively, the present study indicated that, fish muscles contain relatively less burden of heavy metals and trace elements, and no health problem can be raised from human consumption of the examined commercial fishes at Al-Ahsa market, Saudi Arabia. [J Adv Vet Anim Res 2015; 2(3.000: 271-278

  14. Risks and benefits of gardening in urban soil; heavy metals and nutrient content in Los Angeles Community Gardens

    Science.gov (United States)

    Clarke, L. W.; Jenerette, D.; Bain, D. J.

    2012-12-01

    The availability of soil nutrients and heavy metals in urban community gardens can influence health of crops and participants. Interactions between garden history, management, and soils are understudied in cities. In July 2011, we collected soil samples from 45 plots at 6 Los Angeles community gardens. For comparison, 3 samples were collected from uncultivated garden soils and 3 more from outside soils. Samples were then tested for major nutrients- Nitrogen(N), Potassium (K), and Phosphorous (P)- and organic matter (SOM). We also measured concentrations of 29 metals in 3 gardens using Inductively Coupled Plasma- Atomic Emission Spectroscopy. Potassium and phosphorus exceeded optimum levels in all plots, with some over twice the maximum recommended levels. Over-fertilized soils may contribute to local watershed pollution and crop micronutrient deficiencies. Low soil SOM was observed in gardens in impoverished neighborhoods, possibly due to low quality amendments. Our metals analysis showed dangerous levels of lead (Pb)-- up to 1700 ppm in outside soils and 150 ppm in garden soils-- near older gardens, indicating lead deposition legacies. California lead safety standards indicate that children should not play near soils with Pb above 200 ppm, indicating need for long term monitoring of lead contaminated gardens. Arsenic (As) levels exceeded federal risk levels (0.3 ppm) and average CA background levels (2 ppm) in all areas, with some gardens exceeding 10 ppm. Heavy metal legacies in gardens may pose risks to participants with prolonged exposure and remediation of soils may be necessary.

  15. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  16. Heavy metals in fish tissues/stomach contents in four marine wild commercially valuable fish species from the western continental shelf of South China Sea.

    Science.gov (United States)

    Gu, Yang-Guang; Lin, Qin; Huang, Hong-Hui; Wang, Liang-Gen; Ning, Jia-Jia; Du, Fei-Yan

    2017-01-30

    The concentrations of heavy metals (Cd, Pb, Cr, Ni, Cu and Zn) were determined in four commercially valuable fish species (Thunnus obesus, Decapterus lajang, Cubiceps squamiceps and Priacanthus macracanthus), collected in the western continental shelf of the South China Sea. Concentrations of Cd, Pb, Cr, Ni, Cu, and Zn in fish muscles were 0.006-0.050, 0.13-0.68, 0.18-0.85, 0.11-0.25, 0.12-0.77, and 2.41-4.73μg/g, wet weight, respectively. Concentrations of heavy metals in all species were below their acceptable daily upper limit, suggesting human consumption of these wild fish species may be safe, with health risk assessment based on the target hazard quotients (THQ) and total THQ, indicating no significant adverse health effects with consumption. The average concentrations of Zn were higher in gills than in stomach contents, backbones or muscle, while conversely, the other heavy metals had higher concentrations in stomach contents than in other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [MONITORING OF THE CONTENT OF HEAVY METALS AND ELEMENTS IN THE SNOW COVER IN AGRICULTURAL SOILS AT THE TERRITORY OF THE MOSCOW REGION].

    Science.gov (United States)

    Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N

    2015-01-01

    The monitoring of snow cover pollution by heavy metals and elements (zinc, copper, lead, cadmium, arsenic, nickel, chromium, strontium, manganese, fluorine, lithium) was performed in 20 districts of the Moscow region in 2009, 2012 and 2013. The assessment of the levels of contamination by heavy metals and elements was given by means of comparison of them with the average values in the snow cover near Moscow in the end of the last century and in some areas of the world, that no exposed to technological environmental impact. 7 districts of Moscow region were characterized by a high content of lead and cadmium in the snow water. It requires the control of water, soil and agricultural products pollution.

  18. Phytotoxicity of thallium (Tl) in culture solution. Pt. 2. Effects of Tl(III) on the growth and heavy metal contents of pea and field bean plants

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, B; Austenfeld, F A

    1985-01-01

    The effects of Tl(NO/sub 3/)/sub 3/ and Tl(III)EDTA on growth and heavy metal contents of pea plants and field bean plants were compared in hydroponic culture experiments. In the presence of Tl(NO/sub 3/)/sub 3/, the essential heavy metals were available to the plants in their ionic forms. When Tl(III)EDTA was present the essential heavy metals were available as chelated complexes. Dry matter production of the pea plants was inhibited to a greater extent by Tl(III)EDTA than by Tl(NO/sub 3/)/sub 3/. The distribution of Tl within the plant was unaffected by the accompanying anion, however an increase of the Tl content of the stems and the leaves was observed in the presence of Tl(III)EDTA. The micronutrients exhibited different interactions with Tl(III). In the presence of increasing concentrations of Tl(NO/sub 3/)/sub 3/ the Mn content of each organ and the Zn content of the roots were lowered, but the Zn content of the stems was increased. Increasing concentrations of Tl(III)EDTA resulted only in a decrease of the Mn content of the roots, but in an increase of the contents of Fe and Mn within the stems, and Fe, Mn, Zn, and Cu within the leaves. The increases may be due to concentration by growth inhibition. In contrast to pea plants, growth of field bean plants was inhibited only by Tl(NO/sub 3/)/sub 3/. The field bean plants retained most of the Tl within the roots independent of the Tl compound in the solution. Chelation of Tl(III) resulted in higher Tl contents of both the roots and the stems, but equal or reduced Tl contents of the leaves. Whereas increasing concentrations of Tl(NO/sub 3/)/sub 3/ reduced the Mn content of each organ as well as the Zn content of the roots and the leaves, Tl(III)EDTA only reduced the Mn content of the roots.

  19. Compacted sewage sludge as a barrier for tailings: the heavy metal speciation and total organic carbon content in the compacted sludge specimen.

    Directory of Open Access Journals (Sweden)

    Huyuan Zhang

    Full Text Available Acid mine drainage (AMD was the main environmental problem facing the mining industry. For AMD had high heavy metals content and low pH, the compacted sewage sludge might be a barrier for tailings whose oxidation and weathering produced AMD, with its own carbon source, microorganism reduction ability and impermeability. To study the heavy metals environmental risk, under the simulate AMD, the deionized water (DW, and the pH 2.1 sulfuric acid water (SA seepage conditions, respectively, the changes of the chemical speciation of heavy metals Cd, Cu, Fe, Ni, Zn and total organic carbon (TOC content in the compacted sewage sludge were assessed in the different periods. The results indicated according to the distribution of heavy metals, the potential mobility was for Cd: 6.08 under AMD, 7.48 under SA, ∞ under DW; for Cu: 0.08 under AMD, 0.17 under SA, 0.59 under DW; for Fe: 0.15 under AMD, 0.22 under SA, 0.22 under DW; for Ni: 2.60 under AMD, 1.69 under SA, 1.67 under DW; and for Zn: 0.15 under AMD, 0.23 under SA and 0.21 under DW at the second checking time. TOC content firstly decreased from 67.62±0% to 66.29±0.35%, then increased to 67.74±0.65% under the AMD seepage while TOC decreased to 63.30±0.53%, then to 61.33±0.37% under the DW seepage, decreased to 63.86±0.41%, then to 63.28±0.49% under SA seepage. That indicated under the AMD seepage, the suitable microorganisms communities in the compacted sewage sludge were activated. And the heavy metals environmental risk of compacted sewage sludge was lower with AMD condition than with other two. So the compacted sewage sludge as a barrier for tailings was feasible as the aspect of environmental risk assessment.

  20. Heavy metals and soil microbes

    NARCIS (Netherlands)

    Giller, K.E.; Witter, E.; McGrath, S.

    2009-01-01

    The discovery in the early 1980s that soil microorganisms, and in particular the symbiotic bacteria Rhizobium, were highly sensitive to heavy metals initiated a new line of research. This has given us important insights into a range of topics: ecotoxicology, bioavailability of heavy metals, the role

  1. Heavy metal sorption by microalgae

    International Nuclear Information System (INIS)

    Sandau, E.; Sandau, P.; Pulz, O.

    1996-01-01

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  2. Temporal-spatial trends in heavy metal contents in sediment-derived soils along the Sea Scheldt river (Belgium)

    International Nuclear Information System (INIS)

    Vandecasteele, B.; Vos, B. de; Tack, F.M.G.

    2003-01-01

    The alluvial plain upstream in the Sea Scheldt was more affected by upland disposal of polluted sediments. - The aim of this study was to survey the alluvial plains of the Sea Scheldt river in Belgium for the presence of old sediment-derived soils, and to appraise the heavy metal contamination at these sites. Historically, sediments of periodical dredging operations have been disposed in the alluvial plain without concern for the potential presence of contaminants. Up to 96% of the areas that were affected by sediment disposal (ca. 120 ha) was found to be polluted by at least one of the metals Cd, Cr, Zn or Pb. Concentrations of Cd, Cr and Zn were, in 10% of the cases, higher than 14, 1400 and 2200 mg/kg DM, respectively. Based on the Flemish decree on soil sanitation, Cu and Ni concentrations were of less environmental concern on any site. The pollution in the Sea Scheldt alluvial plain nevertheless is lower than for the Upper Scheldt alluvial plain. The sediment-derived soils in the most upstream part near Ghent were used for disposal of sediments from dredging operations elsewhere. Metal concentrations were explored and both spatial and temporal trend were analysed. The pollution levels encountered warrant caution as most of the soils affected by historical dredged sediment disposal are currently in use for pasture

  3. Possible source and pattern distribution of heavy metals content in urban soil at Kuala Terengganu town center

    International Nuclear Information System (INIS)

    Foo, Toon Fong; Poh, Seng Chee; Asrul Azani Mahmood; Norhayati Mohd Tahir

    2008-01-01

    Total concentration of five trace metals (Cu, Mn, Cd, Pb and Zn) and two major elements (Al and Fe) as well as soil parameters (soil organic matter, pH and cation exchange capacity) were measured in soils of Kuala Terengganu town center. 40 surface soils (0-20 cm) were collected during the month of August, 2005. The soil samples (< 600 μm) were subjected to acid digestion and the concentration of total metal was measured using Atomic Absorption Spectrometer. Results show that the range of metals observed were 4.16-40.90 mg/ kg, 83.70 - 380.80 mg/ kg, 2940.00 - 28600.00 mg/ kg below detection limit (BDL) - 4.88 mg/ kg, 20.00 - 219.00 mg/ kg, 7.47 - 171.00 mg/ kg and 8840.00 - 62500.00 mg/ kg for Cu, Mn, Fe, Cd, Pb, Zn and Al, respectively. Factor and Pearsons correlation analyses suggest that the Fe, Mn and Al originates from the parent materials, whereas the possible sources of Cu, Cd, Pb and Zn are due to anthropogenic input such as vehicular traffic and metal corrosion since there are no major industrial activities in Kuala Terengganu. In addition, calculation of enrichment factors (Efs) for trace metals showed that Pb, Cd and Zn were significantly enriched, providing additional support to the contention that Pb, Cd and Zn level in Kuala Terengganu town center soils are due to human related activities. (author)

  4. Determination of heavy metal content of processed fruit products from Tehran's market using ICP- OES: A risk assessment study.

    Science.gov (United States)

    Fathabad, Ayub Ebadi; Shariatifar, Nabi; Moazzen, Mojtaba; Nazmara, Shahrokh; Fakhri, Yadolah; Alimohammadi, Mahmood; Azari, Ali; Mousavi Khaneghah, Amin

    2018-05-01

    In this study, the levels of Cd, Hg, Sn, Al, Pb and As of 72 samples (36 samples for fruits juices and 36 samples for fruits canned) of three different brands including of Peach, Orange, Cherry, and Pineapple (18 samples of each fruits) marketed in Tehran, Iran (2015) were evaluated using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) technique. Also, Probabilistic risk assessment (non-carcinogenic and carcinogenic risks) was estimated by models include target hazard quotient (THQ) and cancer risk (CR) in the Monte Carlo Simulation (MCS) model. However, all samples were contaminated with the heavy metals investigated, most of them not surpassed established standards. The range of concentration for Al, Sn, As, Cd, Hg, and Pb as average in fruit juices were reported as 340.62 (65.17-1039.2), 72.33 (49.76-119.4), 3.76 (1.137-18.36), 2.12 (0.89-3.44), 0.351 and 40.86 (27.87-66.1) μg/kg, respectively. The level of heavy metals measured in different kinds of fruit juices was ranked as Al > Sn > Pb > As > Cd > Hg, and for fruits canned this rank was Pb > Al > Sn > As > Cd > Hg. The range of concentration for Al, Sn, As, Cd, Hg, and Pb in fruits canned were reported as 361.23 (43.15-1121.2), 101.42 (71.45-141.61), 3.92 (1.279-19.50), 2.78 (1.09-5.56), 0.35 and 690.54 (470.56-910.14) μg/kg, respectively. The lead (Pb) concentration in 97.22% (35 out of 36 samples) of fruit juices samples surpassed Codex limit (0.05 mg/kg) and in all samples of FC was lower than the legal limit of Codex limit (1 mg/kg). All of the samples had Tin (Sn) lower than the legal limit of Codex (fruit juices 100 mg/kg and FC 250 mg/kg). The MCS indicated that the rank order of heavy metals in both adults and children based on THQ was Al > Sn > As > Pb > Cd > Hg. The THQ of Al and Sn in the FJ and FC, for both adults, and children, was considerably higher than 1 value. Also, CR of As in both adults and children

  5. Analysis of heavy metal contents in gray and white MTA and 2 kinds of Portland cement: a preliminary study.

    Science.gov (United States)

    Chang, Seok Woo; Shon, Won Jun; Lee, WooCheol; Kum, Kee Yeon; Baek, Seung Ho; Bae, Kwang Shik

    2010-04-01

    The levels of 10 heavy metals (arsenic, bismuth, cadmium, chromium, copper, iron, lead, manganese, nickel, and zinc) in gray Portland cement (GPC), white Portland cement (WPC), gray MTA (GMTA), and white MTA (WMTA) were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). One gram of each material was digested with 80 degrees C "aqua-regia" (7 mL of 60% HNO3 and 21 mL of 35% HCl), filtered, and analyzed by ICP-AES. The analysis was performed 6 times and the data were analyzed statistically. Arsenic and lead concentrations were the highest in GPC (P cements (P Portland cement versus MTA, the differences in purity may be considered. Copyright 2010 Mosby, Inc. All rights reserved.

  6. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations

    International Nuclear Information System (INIS)

    Rodriguez Martin, Jose Antonio; Arias, Manuel Lopez; Grau Corbi, Jose Manuel

    2006-01-01

    In this work the content of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) and other parameters (the pH, organic matter, carbonates and granulometric fraction) in agricultural topsoil in the Ebro basin are quantified, based on 624 samples collected according to an 8 by 8 km square mesh. The average concentrations (mg/kg) obtained were: Cd 0.415 ± 0.163, Cr 20.27 ± 13.21, Cu 17.33 ± 14.97, Ni 20.50 ± 22.71, Pb 17.54 ± 10.41, Zn 17.53 ± 24.19 and Hg 35.6 ± 42.05 μg/kg. The concentration levels are relatively low in areas of high pH and low organic matter content concentration. The results of factor analysis group Cd, Cu, Hg, Pb and Zn in F1 and Cr y Ni in F2. The spatial heavy metals component maps based on geostatistical analysis, show definite association of these factors with the soil parent material. The local anomalies (found in Cu, Zn and Pb) are attributed to anthropogenic influence. - Geostatistical analyses showed definite association of metals with soil parent materials

  7. The effects of irradiated chicken manure as feed supplement on the growth and heavy metals content of common carp (cyprinus carpio L.)

    International Nuclear Information System (INIS)

    Haryoso; L S Andini; S Suwirma; Sinaga, R

    1998-01-01

    An experiment was conducted to study the use of irradiated chicken manure as feed supplement for common for carp raised in ponds. The three composition A consisted chicken manure, B consisted of shrimp waste mixed with the other materials, composition C was commercial pellet as a control. the feeding with the amount of 3% from total body weight was given to the fishes three time per day. The quality of food measured with the conversion value (amount of feed needed for 1 kg body weight gain) and the quality of water i.e. pH, temperature, and oxygen concentration were also measured. Determination of heavy metal content in fish meat and water were carried out using the atomic absorption spectrometer (AAS). Results of the experiment showed that fed of composition A (irradiated chicken manure) at 10th and 14th weeks had lowest conversion value than the fed composition B (mixed with shrimp waste) and feed of composition C (commercial pellet). The content of heavy metals in all fish meat and water were under permissible limit, except for Fe content in water before and experiment were found 5,92 and 1.92 and 1.01 ppm which higher than permissible limit for fish raised. there were no Salmonella found in the chicken manure. This means that irradiated chicken manure can be used safely as feed supplement for fish and has almost the same effect compared to the commercial feed. the water quality was found suitable for the growth of fish. (author)

  8. Effect of distance from the roadway on heavy metal content and egg quality of village laying hen's egg along roadsides of tokat-turhal, turkey

    International Nuclear Information System (INIS)

    Sekeroglu, A.; Sari, H.; Sarica, M.; Duman, M.

    2013-01-01

    In this study, the heavy metal contents and egg quality characteristics of chicken eggs was studied. The eggs have been collected at distances of 0-100 (Distance A), 100-200 (Distance B) and 200-300 m (Distance C) away from the edge of Tokat-Turhal road.The distance from roadway had no significant effect on egg Cu and Mn contents (P>0.05), although a significant effect on egg Cd and Pb content (P 0.05). Eggs obtained from distance A and B had significantly higher weight than obtained from distance C (P<0.05). Egg obtained from distance B had significantly lower egg shell colour scales than those of the other distances (P<0.01). And, egg yolk colour was showed a significant variation among the distances away from the roadway, and the highest yolk colour value was detected in distance B (P<0.05). Depending on obtained results, it can be concluded that the egg heavy metal concentrations exceeded background levels for hen eggs. Therefore, consumers should be aware of the possible health risks related by the use of these eggs which has obtained from side of road.

  9. Heavy metal content in the meat of common carp (Cyprinuscarpio L.and rainbow trout (Oncorhynchus mykiss W., cultivated under different technologies

    Directory of Open Access Journals (Sweden)

    St. Stoyanova

    2016-03-01

    Full Text Available Abstract. Water pollution from industrial production and developing agriculture is a serious problem in aquaculture. The aim of this study was to determine the content of heavy metals Zn (zink, Pb(lead, Ni (nickel and Cd (cadmium in the muscles of common carp (Cyprinus carpio L. and rainbow trout (Oncorhynchus mykiss W., grown under different technologies. In the current study were investigated common carp (Cyprinus carpio and rainbow trout (Oncorhynchus mykiss, cultivated in net cages, earthen ponds and raceways. The concentration of heavy metals in the muscles of fish was determined by the methods of AAS in the Scientific laboratory of the Faculty of Agriculture. The influence of different production technologies on the bioaccumulation of Zn, Pb, Ni and Cd (in the flesh of common carp and rainbow trout was found. The Ni content in muscles was 31.25% higher in common carp, cultured at earthen ponds, compared with its content in the flesh of the fish raised in net cages. The concentration of Pd and Ni in rainbow trout, raised in raceways was higher than that determinated for rainbow trout cultivated in net cages, by 25.0% and 7.14%, respectively. The concentration of Cd and Zn of these species, grown in raceways were lower by 33.33% and 2.14%, respectively, compared with their concentration in rainbow trout, cultivated in net cages.

  10. Field reconnaissance and estimation of petroleum hydrocarbon and heavy metal contents of soils affected by the Ebocha-8 oil spillage in Niger Delta, Nigeria.

    Science.gov (United States)

    Osuji, Leo C; Onojake, Chukunedum M

    2006-04-01

    Field reconnaissance of the Ebocha-8 oil spill-affected site at Obiobi/Obrikom in the Niger Delta region of Nigeria was carried out to assess the extent of damage to the terrestrial ecosystem and delimit the epicenter of oil spillage. Following three successive reconnaissance surveys, the area to be sampled was delimited (200 x 200 m2), and soil samples were collected using the grid method from three replicate quadrats at two depths, surface (0-15 cm) and subsurface (15-30 cm). A geographically similar area located 50 m adjacent to the oil-polluted area was used as a reference (control) site. Total hydrocarbon content (THC) and heavy metal concentrations were later determined in the laboratory by extraction and spetrophotemetric techniques. Generally, the THC of soils at surface and subsurface depths of the oil-polluted plots was 2.06 x 10(4) +/- 4.97 x 10(3) mg/kg and 1.67 x 10(3) +/- 3.61 x 10(2) mg/kg soil, respectively, (no overlap in standard errors at 95% confidence limit) while concentrations of heavy metals(Pb, Cd, V, Cu and Ni) were enhanced, especially at the surface. The high levels of THC and heavy metals may predispose the site, which hitherto served as arable agricultural land, to impaired fertility and possible conflagration. When concentrations of heavy metals reach the levels obtained in this study, they may become toxic to plants or possibly bio-accumulate, thus leading to toxic reactions along the food chain. While the spilled-oil may have contributed to the enhanced levels of the metals in the affected soils, physico-chemical properties of the soils, mobility of metals, and the intense rainfall and flooding that preceded the period of study may have also contributed in part to their enhanced concentrations. The presence of high hydrocarbon content may cause oxygen deprivation, which may result in the death of soil fauna by asphyxiation. There is, therefore, an urgent need to clear the affected site of these excess hydrocarbon deposits so as to

  11. Heavy metal removal and recovery using microorganisms

    International Nuclear Information System (INIS)

    Wilde, E.W.; Benemann, J.R.

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  12. Heavy metal removal and recovery using microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  13. Toxicity of heavy metals in the environment

    National Research Council Canada - National Science Library

    Oehme, F.W

    1978-01-01

    ... as the fundamental mechanisms of toxicity resulting from heavy metal chemicals. The more common toxic heavy metals, along with their biochemistry and associated clinical syndromes, are then described...

  14. Heavy metal hazards of Nigerian herbal remedies

    Energy Technology Data Exchange (ETDEWEB)

    Obi, E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria); Akunyili, Dora N. [National Agency of Food and Drug Administration and Control (NAFDAC), Lagos (Nigeria); Ekpo, B. [Department of Biochemistry, College of Medical Sciences, Abia State University, Uturu (Nigeria); Orisakwe, Orish E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria)]. E-mail: eorish@yahoo.com

    2006-10-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO{sub 3}.The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies.

  15. Heavy metal hazards of Nigerian herbal remedies

    International Nuclear Information System (INIS)

    Obi, E.; Akunyili, Dora N.; Ekpo, B.; Orisakwe, Orish E.

    2006-01-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO 3 .The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies

  16. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    OpenAIRE

    Marek Slávik,Tomáš Tóth; Július Árvay; Miriama Kopernická; Luboš Harangozo; Radovan Stanovič; Pavol Trebichalský; Petra Kavalcová

    2014-01-01

    In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86...

  17. Heavy metal contents in growth bands of Porites corals: Record of anthropogenic and human developments from the Jordanian Gulf of Aqaba

    International Nuclear Information System (INIS)

    Al-Rousan, Saber A.; Al-Shloul, Rashid N.; Al-Horani, Fuad A.; Abu-Hilal, Ahmad H.

    2007-01-01

    In order to assess pollutants and impact of environmental changes in the coastal region of the Jordanian Gulf of Aqaba, concentrations of six metals were traced through variations in 5 years growth bands sections of recent Porties coral skeleton. X-radiography showed annual growth band patterns extending back to the year 1925. Baseline metal concentrations in Porites corals were established using 35 years-long metal record from late Holocene coral (deposited in pristine environment) and coral from reef that is least exposed to pollution in the marine reserve in the Gulf of Aqaba. The skeleton samples of the collected corals were acid digested and analyzed for their Cd, Cu, Fe, Mn, Pb and Zn content using Flame Atomic Absorption Spectrophotometer (FAAS). All metal profiles (except Fe and Zn) recorded the same metal signature from recent coral (1925-2005) in which low steady baseline levels were displayed in growth bands older than 1965, similar to those obtained from fossil and unpolluted corals. Most metals showed dramatic increase (ranging from 17% to 300%) in growth band sections younger than 1965 suggesting an extensive contamination of the coastal area since the mid sixties. This date represents the beginning of a period that witnessed increasing coastal activities, constructions and urbanization. This has produced a significant reduction in coral skeletal extension rates. Results from this study strongly suggest that Porites corals have a high tendency to accumulate heavy metals in their skeletons and therefore can serve as proxy tools to monitor and record environmental pollution (bioindicators) in the Gulf of Aqaba

  18. Heavy metal contents in growth bands of Porites corals: Record of anthropogenic and human developments from the Jordanian Gulf of Aqaba

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rousan, Saber A. [Marine Science Station, University of Jordan and Yarmouk University, P.O. Box 195, Aqaba 77110 (Jordan)], E-mail: s.rousan@ju.edu.jo; Al-Shloul, Rashid N. [Department of Earth and Environmental Science, Faculty of Science, Yarmouk University, Irbid 21163 (Jordan); Al-Horani, Fuad A. [Marine Science Station, University of Jordan and Yarmouk University, P.O. Box 195, Aqaba 77110 (Jordan); Abu-Hilal, Ahmad H. [Department of Earth and Environmental Science, Faculty of Science, Yarmouk University, Irbid 21163 (Jordan)

    2007-12-15

    In order to assess pollutants and impact of environmental changes in the coastal region of the Jordanian Gulf of Aqaba, concentrations of six metals were traced through variations in 5 years growth bands sections of recent Porties coral skeleton. X-radiography showed annual growth band patterns extending back to the year 1925. Baseline metal concentrations in Porites corals were established using 35 years-long metal record from late Holocene coral (deposited in pristine environment) and coral from reef that is least exposed to pollution in the marine reserve in the Gulf of Aqaba. The skeleton samples of the collected corals were acid digested and analyzed for their Cd, Cu, Fe, Mn, Pb and Zn content using Flame Atomic Absorption Spectrophotometer (FAAS). All metal profiles (except Fe and Zn) recorded the same metal signature from recent coral (1925-2005) in which low steady baseline levels were displayed in growth bands older than 1965, similar to those obtained from fossil and unpolluted corals. Most metals showed dramatic increase (ranging from 17% to 300%) in growth band sections younger than 1965 suggesting an extensive contamination of the coastal area since the mid sixties. This date represents the beginning of a period that witnessed increasing coastal activities, constructions and urbanization. This has produced a significant reduction in coral skeletal extension rates. Results from this study strongly suggest that Porites corals have a high tendency to accumulate heavy metals in their skeletons and therefore can serve as proxy tools to monitor and record environmental pollution (bioindicators) in the Gulf of Aqaba.

  19. Development of a preliminary database of digestate chemistry, heavy metal and pathogen content to assist in Alberta regulation compliance : final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckford, R.; Gao, T.T.J. [Alberta Research Council, Edmonton, AB (Canada)

    2009-11-15

    An ongoing investigation is underway in Alberta to study the feasibility of designing biogas facilities that use various biowaste feedstocks or substrates. Digestate from biowaste substrates other than manure is currently designated as sewage sludge, thus presenting economical challenges to an emerging anaerobic digestion industry. Previous studies at the Alberta Research Council (ARC) have shown that elevated heavy metal content is found primarily in manure and slaughterhouse waste and not in general biowaste. The limited data from ARC does not give Alberta Environment enough information to set guidelines for handling the digestate generated from biogas plants using various biowastes. The first part of this document provided information on digestate chemistry. In order to set guidelines for the biogas industry, it discussed the levels of heavy metals, salts, as well as nitrogen, phosphorous and potassium in feedstock biowastes used for anaerobic digestion and the post-digestion digestates, separated liquids and solids. It also discussed levels and destruction of pathogens in biowaste during anaerobic digestion. The second part of this document included an evaluation of pathogens in biowaste and digestate. A small-scale study was conducted on undigested biowaste and effluent after anaerobic digestion of biowaste using the USEPA microbiology testing methods for fecal coliform and Salmonella for biosolids. 22 refs., 95 tabs.

  20. Contents of the heavy metals nickel and lead in leaves of Paulownia elongata S.Y. Hu and Paulownia fortunei Hems. in Serbia

    Directory of Open Access Journals (Sweden)

    Stanković Dragica

    2009-01-01

    Full Text Available A comparative study was carried out on the capabilities of the two species Paulownia elongata S. Y. Hu and Paulownia fortunei Hems. as biomonitors of atmospheric (and soil heavy-metal pollution. Research on content of the heavy metals nickel (Ni and lead (Pb in leaves of the species Paulownia elongata growing under urban and suburban conditions with the comparison to the concentration of these elements in leaves of the species Paulownia elongata and Paulownia fortunei on an experimental plot in Bela Crkva showed average nickel concentrations of 2.7 μg/g on the experimental plot in Bela Crkva, Serbia, twice as low as the concentrations measured under extreme urban conditions (6.62 μg/g, or 4.54 μg/g in the immediate vicinity of suburban traffic lines. Inasmuch as Paulownia elongata endures urban conditions well, it can be recommended for cultivation in parks, tree alleys, and wind-protection zones along urban and regional traffic lines.

  1. THE CONTENT OF HEAVY METALS IN BOTTOM SEDIMENTS OF THE WATERCOURSE IN AGRICULTURAL CATCHMENT ON THE EXAMPLE OF THE RIVER GOWIENICA

    Directory of Open Access Journals (Sweden)

    Kamil Szydłowski

    2017-08-01

    Full Text Available Bottom sediments samples for chemical analysis were derived from Gowienica river and its tributaries. Samples were taken at 2014 and 2015 years from established sampling points on differently managed and utilized adjacent areas. Total content of heavy metals, i.e.: Cd, Co, Cr, Ni, Pb and Hg were measured in collected material. The results indicate that concentrations of lead, nickel, chromium and mercury exceeded level below which no harmful impact of pollution (TEL is noted, but none of the analyzed heavy metals exceeded the limit (PEL above which harmful effects of pollution on organisms can be observed. However, according to other classification (LAW analyzed sediments were located between two classes (deposits unpolluted - Class I, and deposits unpolluted / moderately polluted (class I-II. However, chemical analysis showed the various points exceeded the natural cobalt concentration (geochemical background; 2.0 mg⋅kg-1 for aquatic sediments in Poland. The reasons of cobalt concentration exceedance in natural sediments, among others, were surface runoff from fields and meadows in the form of fertilizers, plant protection products and the domestic waste water.

  2. Assessment of heavy metal removal technologies for biowaste by physico-chemical fractionation

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    2003-01-01

    In the Netherlands, the heavy metal content of biowaste-compost frequently exceeds the legal standards for heavy metals. In order to assess heavy metal removal technologies, a physico-chemical fractionation scheme was developed to gain insight into the distribution of heavy metals (Cd, Cu, Pb and

  3. Heavy metals in soils of cocoa plantation (Theobroma cacao L.)

    Science.gov (United States)

    Cocoa has experienced significant growth in recent years in Peru and the presence of heavy metals in the soils of these plantations is a potential problem for the export of this product. Contents of heavy metals (Cd, Ni, Pb, Fe, Cu, Zn, Mn) in soils from 19 plantations that have been in production f...

  4. Uptake and elimination kinetics of heavy metals by earthworm ...

    African Journals Online (AJOL)

    Earthworm inoculation of petroleum hydrocarbon contaminated soil is thought to catalyze the bioremediation. Most bioremediation studies focus on the petroleum hydrocarbon content and not on the heavy metals. Here, the uptake kinetics of heavy metals by earthworm in used engine oil contaminated soil was investigated.

  5. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    Directory of Open Access Journals (Sweden)

    Marek Slávik,Tomáš Tóth

    2014-02-01

    Full Text Available In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86 times. For relatively safety is growing of Pisum sativum L., where there was no exceed any limits values. The root vegetables are dangerous, where the sample of Raphanus sativus L. exceed 6.71978 times the limit values for Pb although the content of lead in the soil was under hygienic limits. Transfer of heavy metals into consume parts of vegetables was no limited by high content of humus into soil. Transfer of heavy metals into consume parts of vegetables was no limited by weakly alkaline soil reaction. These factors are considered for factors limited mobility and input heavy metals into plants. We determined heavy metals by AAS method on a Varian 240 FS and method AMA 254.

  6. X-ray fluorescence spectroscopic determination of heavy metals and ...

    African Journals Online (AJOL)

    Purpose: To determine the heavy metal and trace element composition of the powdered aerial parts of Origanum sipyleum L. and its water extract. Methods: The heavy metal and trace elements content of the powdered plant material and 2 % aqueous extract were evaluated by x-ray fluorescence spectroscopy with silicon ...

  7. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Wenzhen Yuan

    2016-01-01

    Full Text Available With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1 Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS damage. (2 Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3 Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4 Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8 and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  8. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  9. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Soriano, Maria C., E-mail: maria.HernandezSoriano@ees.kuleuven.be [Department of Soil Science, College of Agriculture and Life Sciences, North Carolina State University, Campus Box 7619, 101 Derieux Street, 2232 Williams Hall, Raleigh, NC 27695 (United States); Jimenez-Lopez, Jose C. [Department of Biological Sciences, College of Science, Purdue University, 201 S. University Street, West Lafayette, IN 47907 (United States)

    2012-04-15

    The mobility and bioavailability of cadmium, copper, lead and zinc were evaluated in three soils amended with different organic materials for two moisture regimes. Agricultural and reclamation activities impose fresh inputs of organic matter on soil while intensive irrigation and rainstorm increase soil waterlogging incidence. Moreover, scarcity of irrigation water has prompted the use of greywater, which contain variable concentrations of organic compounds such as anionic surfactants. Soils added with hay, maize straw or peat at 1% w/w were irrigated, at field capacity (FC) or saturated (S), with an aqueous solution of the anionic surfactant Aerosol 22 (A22), corresponding to an addition of 200 mg C/kg soil/day. Soil solution was extracted after one month and analysed for total soluble metals, dissolved soil organic matter and UV absorbance at 254 nm. Speciation analyses were performed with WHAM VI for Cd, Cu, Pb, and Zn. For selected scenarios, metal uptake by barley was determined. Metal mobility increased for all treatments and soils (Pb > Cu > Cd {>=} Zn) compared to control assays. The increase was significantly correlated (p < 0.05) with soil organic matter solubilisation for Cd (R = 0.68), Cu (R = 0.73) and Zn (R = 0.86). Otherwise, Pb release was related to aluminium solubilisation (R = 0.75), which suggests that Pb was originally co-precipitated with Al-DOC complexes in the solid phase. The effect of A22 in metal bioavailability, determined as free ion activities (FIA), was mainly controlled by soil moisture regime. For soil 3, metal bioavailability was up to 20 times lower for soil amended with hay, peat or maize compared to soil treated only with A22. When soil was treated with A22 at FC barley yield significantly decreased (p < 0.05) for the increase of Pb (R = 0.71) and Zn (R = 0.79) concentrations in shoot, while for saturated conditions such uptake was up to 3 times lower. Overall, metal bioavailability was controlled by solubilisation of soil

  10. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals

    International Nuclear Information System (INIS)

    Hernandez-Soriano, Maria C.; Jimenez-Lopez, Jose C.

    2012-01-01

    The mobility and bioavailability of cadmium, copper, lead and zinc were evaluated in three soils amended with different organic materials for two moisture regimes. Agricultural and reclamation activities impose fresh inputs of organic matter on soil while intensive irrigation and rainstorm increase soil waterlogging incidence. Moreover, scarcity of irrigation water has prompted the use of greywater, which contain variable concentrations of organic compounds such as anionic surfactants. Soils added with hay, maize straw or peat at 1% w/w were irrigated, at field capacity (FC) or saturated (S), with an aqueous solution of the anionic surfactant Aerosol 22 (A22), corresponding to an addition of 200 mg C/kg soil/day. Soil solution was extracted after one month and analysed for total soluble metals, dissolved soil organic matter and UV absorbance at 254 nm. Speciation analyses were performed with WHAM VI for Cd, Cu, Pb, and Zn. For selected scenarios, metal uptake by barley was determined. Metal mobility increased for all treatments and soils (Pb > Cu > Cd ≥ Zn) compared to control assays. The increase was significantly correlated (p < 0.05) with soil organic matter solubilisation for Cd (R = 0.68), Cu (R = 0.73) and Zn (R = 0.86). Otherwise, Pb release was related to aluminium solubilisation (R = 0.75), which suggests that Pb was originally co-precipitated with Al–DOC complexes in the solid phase. The effect of A22 in metal bioavailability, determined as free ion activities (FIA), was mainly controlled by soil moisture regime. For soil 3, metal bioavailability was up to 20 times lower for soil amended with hay, peat or maize compared to soil treated only with A22. When soil was treated with A22 at FC barley yield significantly decreased (p < 0.05) for the increase of Pb (R = 0.71) and Zn (R = 0.79) concentrations in shoot, while for saturated conditions such uptake was up to 3 times lower. Overall, metal bioavailability was controlled by solubilisation of soil

  11. Heavy metals in Mindhola river estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Rokade, M.A; Mandalia, A

    The heavy metal concentrations are studied along the Mindhola river estuary. Surface and bottom water samples were collected using Niskin Sampler. The sediment samples were collected using a Van Veen grab. The heavy metal concentration is estimated...

  12. [Evaluation of the content and migration of heavy metals in components of river ecosystems’ of mining territories of the Republic of Bashkortostan].

    Science.gov (United States)

    Baktybaeva, Z B; Suleymanov, R A; Yamalov, S M; Kulagin, A A; Valeev, T K; Rakhmatullin, N R

    Exploration and development of mineral deposits in the Transurals of the Republic of Bashkortostan are accompanied by a comprehensive environmental impact. Ones of the most vulnerable elements of the landscape are the surface water bodies used for fishery purposes, recreation and household needs of the population. Extraction and processing of ores lead to the contamination of aquatic ecosystems by heavy metals (HM), which by passing into a pond, can actively be involved in the cycling of matter and migrate via food chains to the human under the consumption of fish products. Possessing by cumulative properties, HM can express mutagenic, teratogenic and carcinogenic properties. The aim of research was the study of the impact of mining facilities on the content of the priority HM in the components of river ecosystems in the Transurals of the Republic of Bashkortostan and the development of a complex of preventive measures on the improvement of the human environment. There was studied the content of Zn, Cu and Cd in the water, bottom sediments and phytomass of Elodea canadensis Michx. The measurements of mass concentrations of metals were performed by stripping voltammetry with the use of the STA device. The results showed that for the cross-sections there is typical the following descending series of elements in the river components: Zn > Cu > Cd. In water samples there is observed the exceedance of standards for water bodies of potable, cultural and community water use and fishery basins. The concentration of zinc varies in the range of 0.016-5.24 mg/dm; copper - 0.0024-0.095 mg/dm; cadmium - 0.0001-0.019 mg/dm. In bottom sediments, in general, the content of metals in comparison with control plots is increased to the tenfold value. The meaning of mobile forms of zinc in the ground varies in the range of 0.81-9.62 mg/kg; copper - 0.12-18.69 mg/kg; cadmium - 0.00013-0.092 mg/kg. The zinc concentration in above-ground phytomass of Elodea canadensis compared to control

  13. Heavy metals in carabids (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Ruslan Butovsky

    2011-05-01

    Full Text Available Carabid beetles (Coleoptera, Carabidae are one of the most studied soil groups in relation to heavy metal (HM accumulation and use for bioindication of environmental pollution. Accumulation of Zn and Cu in carabid beetles was species-, sex- and trophic group-specific. No differences were found in HM contents between omnivorous and carnivorous species. The use of carabid beetles as indicators of HM accumulation appears to be rather limited.

  14. Large-scale geographical variation in eggshell heavy metal and calcium content in a passerine bird (Ficedula hypoleuca)

    NARCIS (Netherlands)

    Ruuskanen, S.; Morales, J.; Laaksonen, T.; Moreno, J.; Mateo, R.; Belskii, E.; Bushuev, A.; Jarvinen, A.; Kerimov, A.; Krams, I.; Morosinotto, C.; Mand, R.; Orell, M.; Qvarnstrom, A.; Slater, F.M.; Siitari, H.; Tilgar, V.; Visser, M.E.; Winkel, W.; Zang, H.; Eeva, T.

    2014-01-01

    Birds have been used as bioindicators of pollution, such as toxic metals. Levels of pollutants in eggs are especially interesting, as developing birds are more sensitive to detrimental effects of pollutants than adults. Only very few studies have monitored intraspecific, large-scale variation in

  15. [FEATURES OF THE CONTENT OF MOVABLE FORMS OF HEAVY METALS AND SELENIUM IN SOILS OF THE YAROSLAVL REGION].

    Science.gov (United States)

    Bakaeva, E A; Eremeyshvili, A V

    2016-01-01

    With the use of the method of inversion voltammetry there was analyzed the content of movableforms of trace elements: (selenium, zinc, copper lead, cadmium) in soils in the Yaroslavl district of the Yaroslavl region, and also content of zinc, copper lead, cadmium in soils and snow cover in the city of Yaroslavl. According to values of concentrations of movable compounds in soils determined trace elements can be ranked into the following row: zinc > lead > copper > selenium > cadmium. There was revealed insufficient if compared with literature data concentrations, content of movable compounds of selenium, copper and zinc in examined explored soils. The maximal concentrations of lead are revealed in the close proximity to both the city of Yaroslavl and large highways of the city. It indicates to the anthropogenic pollution of soils by this element.

  16. The effects of heavy metals concentration on some commercial fish ...

    African Journals Online (AJOL)

    Badmus B S

    heavy metals (lead, cadmium, copper and zinc) were analyzed and only copper and zinc were found to be present in the ... contents of essential minerals, vitamins and unsaturated fatty acids .... that the interaction effect is significant. This effect ...

  17. Heavy metal accumulation in a flow restricted, tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Laluraj, C.M.; Nair, M.; Joseph, T.; Sheeba, P.; Venugopal, P.

    Levels of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), organic carbon content and textural characteristics in the surficial sediments of Cochin estuary (SW coast of India) and adjacent coast are presented. Anthropogenic inputs from...

  18. Determination of heavy metals in chinese prickly ash from different ...

    African Journals Online (AJOL)

    digestion, and the contents of copper (Cu), nickel (Ni), chromium (Cr), lead (Pb), cadmium ... concentrations of heavy metals in these CPA samples mean they are safe for human consumption. ... poisoning, including Pb, Cd, As, Hg, Sn, and Sb.

  19. THE INFLUENCE OF FERTILIZATION WITH SEWAGE SLUDGE AND BIOSOLIDS ON HEAVY METAL CONTENT IN WHITE MUSTARD SEEDS

    Directory of Open Access Journals (Sweden)

    Elżbieta Wołejko

    2017-06-01

    The statistical analysis indicated that the concentrations of Cd in mustard seed was significantly correlated with the concentrations of Ni and Zn (respectively, r=-0.89 and r=-0.54. There were significant positive correlations between soil pH and metal concentrations in the seeds of mustard. The pH was significantly correlated with Ni (r = 0.60 and Zn (r = 0.55 at a p≤ 0.05.

  20. Migration of heavy metals in soils in a uranium mining area

    International Nuclear Information System (INIS)

    Hu Ruixia; Gao Bai; Hu Baoqun; Feng Jiguang

    2009-01-01

    Contents of several heavy metals (Zn,Ni,Cu,Cd,Pb) in soil samples collected from different depths of the soil sections in a uranium mining area were analyzed, and vertical migration dis-ciplines of heavy metals were obtained. The results show that the concents of heavy metals in vertical direction decrease as the soil increases in thickness and there is a trend of facies-cumulation for the heavy metals. The accumulation status of each heavy metal in soils differs, which is dependent on the content and migration velocity of the heavy metal itself, the local natural environment about the soil, etc. (authors)

  1. Tracing heavy metals in 'swine manure - maggot - chicken' production chain.

    Science.gov (United States)

    Wang, Wanqiang; Zhang, Wenjuan; Wang, Xiaoping; Lei, Chaoliang; Tang, Rui; Zhang, Feng; Yang, Qizhi; Zhu, Fen

    2017-08-21

    With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.

  2. Heavy metals in sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, S.A. (Millersville State College, PA); Frazier, J.G.

    1982-07-01

    Bone and barnacle samples from sea turtles (Hepidochelys olivacea) in Ecuador were analyzed for manganese, iron, copper, zinc and lead. Analysis was performed by flame atomic absorption spectroscopy. Results show that zinc and iron levels in bone and barnacles were greater than copper, manganese and lead levels. The significance of the findings is difficult to interpret because so little is known about baseline levels and physiological effects of heavy metals in the animals. (JMT)

  3. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  4. Heavy metal movement in metal-contaminated soil profiles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenbin; Shuman, L.M. [Univ. of Georgia, Griffin, GA (United States)

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  5. Heavy metals in vegetables and potential risk for human health

    Directory of Open Access Journals (Sweden)

    Fernando Guerra

    2012-02-01

    Full Text Available Ingestion of vegetables containing heavy metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals. Slowly released into the body, heavy metals can cause an array of diseases. This study aimed to investigate the concentrations of cadmium, nickel, lead, cobalt and chromium in the most frequently consumed foodstuff in the São Paulo State, Brazil and to compare the heavy metal contents with the permissible limits established by the Brazilian legislation. A value of intake of heavy metals in human diets was also calculated to estimate the risk to human health. Vegetable samples were collected at the São Paulo General Warehousing and Centers Company, and the heavy metal content was determined by atomic absorption spectrophotometry. All sampled vegetables presented average concentrations of Cd and Ni lower than the permissible limits established by the Brazilian legislation. Pb and Cr exceeded the limits in 44 % of the analyzed samples. The Brazilian legislation does not establish a permissible limit for Co contents. Regarding the consumption habit of the population in the São Paulo State, the daily ingestion of heavy metals was below the oral dose of reference, therefore, consumption of these vegetables can be considered safe and without risk to human health.

  6. Sewage sludge pyrolysis - the distribution of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, R.; Widmer, F.; Brunner, P.

    1986-01-01

    The paper informs about the heavy metal contents of sewage sludges and discusses the origin of household, industry and surface sewerage of the respective heavy metals. The study aimed at assessing whether and in how far heavy metal volatility may be checked by reducing the temperature during sewage sludge pyrolysis. The testing equipment used was made of glass/silica glass. Instead of in particles heavy metals were precipitated in the gaseous state. Except from mercury heavy metals are retained by the ashes up to temperatures from 450 to 555/sup 0/C. Due to the persistence of mercury care should be taken to keep the sewerage clear of it from the very beginning. Emissions caused by reactor materials can be avoided by choosing appropriate pyrolysis reactors.

  7. Irradiated Sewage Sludge for Production of Fennel (Foeniculum vulgare L.) Plants in Sandy Soil 2- Seed production, oil content, oil constituents and heavy metals in seeds

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo-El-Seoud, M. A.

    2007-01-01

    Field experiment was conducted to study the impact of irradiated and non-irradiated sewage sludge applied to sandy soil on fennel plants (Foeniculum vulgare L.) productivity. In this regards, four rates of sewage sludge application were used (20, 40, 60 and 80 ton/ha) in addition to the mineral fertilizer treatment (control). Sandy soil amended with sewage sludge showed a promising effect on fennel seed yield. A linear gradual increase in seeds yield was observed as the sludge application rate increases. Seeds production increased by 41% to 308% over the control at 80 t /ha application rate, for non-irradiated and irradiated sewage sludge treatments, respectively. Irradiated sewage sludge treatments showed higher fennel seed yield than non-irradiated sewage sludge treatments.Volatile oil percent exhibited no observable variation due to the use of sewage sludge. A few and limited fluctuations could be observed. However, total oil content (cc/plot) increased due to the increase in seeds yield. The magnitude of increase in volatile oil production in response to the sewage sludge application was parallel to the increase in seeds yield. The GLC measurements of the fennel volatile oil reveal that, the t-anethole is the predominant fraction. However, fenchone was detected in relatively moderate concentration. The applied sewage sludge treatment induced some variations in fennel volatile oil constituents. The t.anethole is relatively higher in volatile oil obtained from plants grown on sandy soil fertilized with non-irradiated sewage sludge than the one fertilized with irradiated sewage sludge or chemical fertilizer. In the meantime, the obtained increase in t.anethole was accompanied by a decline in fenchone content. Seeds heavy metals (Zn, Fe, Pb, Cd) were determined. Under all sludge application rates iron and zinc concentrations were in the normal plant concentration range whereas, Cd concentrations were traces.

  8. Oil Spill Related Heavy Metal: A Review

    International Nuclear Information System (INIS)

    Ahmad Dasuki Mustafa; Hafizan Juahir; Kamaruzzaman Yunus; Mohammad Azizi Amran; Che Noraini Che Hasnam; Fazureen Azaman; Ismail Zainal Abidin; Syahril Hirman Azmee; Nur Hishaam Sulaiman

    2015-01-01

    Oil spill occurs every day worldwide and oil contamination is a significant contributor for the higher levels of heavy metals in the environment. This study is purposely to summarize the heavy metals which significant to major oil spill incidents around the world and effects of toxic metals to human health. The study performed a comprehensive review of relevant scientific journal articles and government documents concerning heavy metals contamination and oil spills. Overall, the heavy metals most frequently been detected in oil spill related study where Pb>Ni>V>Zn>Cd and caused many effects to human health especially cancer. In conclusion, the comparison of heavy metal level between the post - spill and baseline levels must be done, and implementation of continuous monitoring of heavy metal. In addition, the result based on the strategies must be transparent to public in order to maintaining human health. (author)

  9. Poisoning of domestic animals with heavy metals

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2009-01-01

    Full Text Available The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc are essential in very low concentrations for the survival of all forms of life. These are described as essential trace elements. However, when they are present in greater quantities, like the heavy metals lead, cadmium and mercury which are already toxic in very low concentrations, they can cause metabolic anomalies or poisoning. Heavy metal poisoning of domestic animals could result, for instance, from drinking-water contamination, high ambient air concentrations near emission sources, or intake via the food chain. Heavy metals are dangerous because they tend to bioaccumulate in a biological organism over time. Manifestation of toxicity of individual heavy metals varies considerably, depending on dose and time of exposure, species, gender and environmental and nutritional factors. Large differences exist between the effects of a single exposure to a high concentration, and chronic exposures to lower doses. The aim of this work is to present the source of poisoning and toxicity of some heavy metals (lead, mercury, cadmium, thallium, arsenic, as well as new data about effects of those heavy metals on the health of domestic animals. .

  10. Using Heavy Metal Content and Lipid Peroxidation Indicators in the Tissues of the Mussel Crenomytilus grayanus for Pollution Assessment After Marine Environmental Remediation.

    Science.gov (United States)

    Belcheva, Nina; Istomina, Alexandra; Dovzhenko, Nadezhda; Lishavskaya, Tatiana; Chelomin, Victor

    2015-10-01

    We examined the effects of environmental remediation on the heavy metal concentration and lipid peroxidation activity in the digestive gland and gills of the marine mussel Crenomytilus grayanus. Changes in heavy metal concentrations and lipid peroxidation biomarkers in the tissues of mussels collected at a contaminated site were compared with those obtained from a reference site. Prior to remediation the concentration of Pb, Cu, Cd, Fe and Zn and the levels of malondialdehyde, conjugated dienes and lipofuscin in mussels collected from the contaminated site were significantly increased compared with those obtained from the reference site. Three years after remediation, these parameters did not significantly exceed the reference site parameters, except Pb, whose concentration, though markedly decreased, yet was much higher than in tissues of mussels from the reference site.

  11. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    OpenAIRE

    Chao Su; LiQin Jiang; WenJun Zhang

    2014-01-01

    Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr), and arsenic (As), etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/count...

  12. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China

    OpenAIRE

    Yang, Pingguo; Yang, Miao; Mao, Renzhao; Shao, Hongbo

    2014-01-01

    The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and C...

  13. Removal Of Heavy Metals From Industrial Wastewaters Using Local ...

    African Journals Online (AJOL)

    Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents from the wastewaters. The percentage removal of the metals from the ...

  14. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  15. Bioremoval of heavy metals by bacterial biomass.

    Science.gov (United States)

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.

  16. Heavy metal uptake of Geosiphon pyriforme

    Energy Technology Data Exchange (ETDEWEB)

    Scheloske, Stefan E-mail: stefan.scheloske@mpi-hd.mpg.de; Maetz, Mischa; Schuessler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  17. Feasibility analysis of EDXRF method to detect heavy metal pollution in ecological environment

    Science.gov (United States)

    Hao, Zhixu; Qin, Xulei

    2018-02-01

    The change of heavy metal content in water environment, soil and plant can reflect the change of heavy metal pollution in ecological environment, and it is important to monitor the trend of heavy metal pollution in eco-environment by using water environment, soil and heavy metal content in plant. However, the content of heavy metals in nature is very low, the background elements of water environment, soil and plant samples are complex, and there are many interfering factors in the EDXRF system that will affect the spectral analysis results and reduce the detection accuracy. Through the contrastive analysis of several heavy metal elements detection methods, it is concluded that the EDXRF method is superior to other chemical methods in testing accuracy and method feasibility when the heavy metal pollution in soil is tested in ecological environment.

  18. Heavy metal and proximate composition associated with the ...

    African Journals Online (AJOL)

    Changes in the heavy metal content and proximate composition during the 28 day composting of cassava peels used in the cultivation of the oyster mushrooms Pleurotus ostreatus strain EM-1 was studied. Significant dry weight variations of cellulose, hemicellulose and fat contents were observed from day 0 to 12.

  19. Heavy metals in packaging : a literature survey

    NARCIS (Netherlands)

    van Putten EM; IMG

    2011-01-01

    The use of the heavy metals cadmium, mercury, chromium and lead in packaging is forbidden internationally for some years because these substances are harmful to the environment. In 2002 the Dutch national Inspectorate for the Environment determined the presence of heavy metals in packaging for

  20. Microbial treatment of heavy metal leachates

    International Nuclear Information System (INIS)

    Alvarez Aliaga, M. T.

    2009-01-01

    Ore-mining metallurgy and other industrial activities represent the source of heavy metal and radionuclide contamination in terrestrial and aquatic environments. Physico-chemical processes are employed for heavy metal removal from industrial wastewaters. However, limitations due to the cost-effectiveness and use of contaminating reagents make these processes not environmentally friendly. (Author)

  1. [Research on the Content Characteristics and Pollution Evaluation of Heavy Metals in Filtered Water and Suspended Particles from Gansu, Ningxia and Inner Mongolia Sections of the Yellow River in Wet Season Using HR-ICP-MS].

    Science.gov (United States)

    Ma, Xiao-ling; Liu, Jing-jun; Deng, Feng-yu; Zuo, Hang; Huang, Fang; Zhang, Li-yang; Liu, Ying

    2015-10-01

    The content characteristics, pollution evaluation and source identification of 6 heavy Metals (Cd, Pb, Cr, As, Cu and Zn) in filtered water and 9 heavy Metals (Cd, Pb, Cr, Ni, Cu, V, Co, Zn and Mn) in suspended particles from 10 sampling sites such as Zhaojunfuqiao (S1) and Baotoufuqiao (S2), etc. from Gansu, Ningxia and Inner Mongolia sections of the Yellow River in 2012 Wet Season were studied to understand the condition of the heavy metal pollution in Gansu, Ningxia and Inner Mongolia Sections of the Yellow River by using high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Multivariate geochemical approaches and statistical analysis were also exploited for assessing the level of heavy metals in filtered water and suspended particles from studied area. The results showed that in filtering water, only the concentrations of Cr exceeded the standard value of Environmental Quality Standard for Surface Water (GB3838-2002) and were the highest (74.8-94.7 μg x L(-1)) among all elements in 10 sampling sites; Single factor pollution index (I(i)) results suggested that the water quality in all sampling sites were contaminated by both Cr and total nitrogen (TN), with the exception of TN in Baotoufuqiao (S2); Integrated Nemerow pollution index (I) indicated that the I values in all sampling sites were between 1-2 (light pollution), which implied that the water quality in Gansu, Ningxia and Inner Mongolia sections, especially downstream sections (S1-S6) of the Yellow River wasn't an ideal source for drinking and using in aquaculture any more. In suspended particles, concentrations of heavy metals were relatively higher than their soil background values in 10 sampling sites, except Ni in S10 (34.7 μg x L(-1)). Index of geo-accumulation (I(geo)) indicated that the I(geo) values of Pb, Cr, Ni, Cu, V, Co, Zn and Mn in all sampling sites were less than 1 (unpolluted or unpolluted-moderately polluted), respectively, while I(geo)Cd were the highest in 10

  2. Content of heavy metals in the sediments of the rivers and adjacent gullies to Relleno de Rio Azul, Rio Azul, San Jose, Costa Rica

    International Nuclear Information System (INIS)

    Mora Amador, R.A.

    2003-01-01

    In Costa Rica it is not had studies that have documented heavy the fluvial sediment metal concentrations, caused by point sources of polluting agents, as they are the sites of I deposit of been accustomed to remainders. The potential source of heavy metal concentrations in the study area, it is an active sanitary filling, known like Sanitary Landing Azul River, which is located to the Southeastern of the city of San Jose, in the District of Azul River, Corner of the Union. The site where this made up of a sequence of materials of volcanic origin is located to the filling of Azul River, which could be affected by local fault, this fact would mean a serious threat of contamination of underground waters of the region, then the geological faults constitute very permeable means, able to put in contact the polluting agents of the water-bearing filling with some. The mass of metals deposited in the site, from 1978 to date, metric ton has calculated between 70000 to 100000, which turns it an environmental preoccupation of first order. The results of x-rays fluorescence show the presence of elements like vanadium, chromium, manganese, it receives, zinc rubidium, strontium, potassium, calcium, iron, titanium and yttrium, which show a tendency to present/display high concentrations but in the fine fraction (d [es

  3. Heavy metal contents in sediments of rivers and adjacent streams to the filling of Rio Azul, Rio Azul, San Jose, Costa Rica

    International Nuclear Information System (INIS)

    Mora Amador, Raul Alberto

    2003-01-01

    In Costa Rica there are no studies that have documented the concentrations of heavy metals in river sediments, caused by point sources of pollutants, such as the deposits sites of solid waste. The potential source of heavy metals concentrations in the study area, is an active landfill, known as Relleno Sanitario de Rio Azul, which is located southeast of the city of San Jose, in Distrito de Rio Azul de La Union. The site where the landfill Rio Azul is located is composed by a sequence of volcanic materials, which could have been affected by local faulting. This fact would mean a serious threat of contamination of groundwater in the region, geological faults are therefore a highly permeable, able to get in touch the fill pollutants with some aquifer. The mass of metal deposited on the site, from 1978 to date, has been estimated between 70000-100000 tm, which it becomes environmental concern in a first order. The results of X-ray fluorescence show the presence of elements such as vanadium, chromium, magnesium, copper, zinc, rubidium, strontium, potassium, calcium, iron, titanium and yttrium, which show a trend towards more high Concentrates in the fine fraction (d [es

  4. Preliminary report on arsenic and heavy metals contents in soils and stream bed sediments of Cornia, Bruna and Alma coastal plains (Southern Tuscany

    Directory of Open Access Journals (Sweden)

    Dughetti F.

    2013-04-01

    Full Text Available The Department of Earth Sciences of University of Florence has conducted over the past ten years, numerous studies about the distribution of arsenic and heavy metals in mineralized areas of Tuscany, particularly in the Pecora basin. The area hosts several polymetallic ore bodies and a pyrite ore deposit. The studies have identified several geochemical anomalies (As, Cu, Pb, Zn… both in the areas which host the ore bodies and in the coastal plain (Scarlino Plain. To increase the knowledge concerning the distribution of As and heavy metals in other Tuscan coastal plains, research is under way in the alluvial plains of the Bruna, Cornia and Alma rivers. The preliminary analysis have focused on soils and stream sediments, to better understand the correlations between the downstream transport of rivers and the soils. We have made physic-chemical analysis, particle size analysis, mineralogical analysis for X-ray powder diffraction, chemical analysis for the determination of major element (X-ray Fluorescence and for the determination of 35 minor elements and traces (AAS and ICP.Preliminary data show high concentrations of several elements (As, Zn, Co…. The concentrations of these elements in soils and stream bed sediments are not always consistent; in particular we have found higher concentrations in soils than in stream bed sediments in Cornia Plain, while the opposite happens in the Bruna basin. Therefore the natural processes of rocks weathering does not seem to have affected uniformly. The distribution of As and heavy metals in soils and stream bed sediments of the all three basins of interest are still under investigation.

  5. Heavy metals hazard in agriculture in NWFP

    International Nuclear Information System (INIS)

    Bhatti, A.; Perveen, S.

    2005-01-01

    Metals contamination is a persistent problem at many contaminated sites. In the U.S., the most commonly occurring metals at Superfund sites are lead, chromium, arsenic, zinc, cadmium, copper and mercury. The presence of metals in surface and ground waters, and soils can pose a significant threat to human health and ecological systems. Surface water and groundwater many be contaminated with metals from wastewater discharges or by direct contact with metals contaminated soils, sludges, mining wastes and debris. Due to use of sewage water and industrial effluents for agriculture in NWFP, there is a great threat to the human and animal health. In a survey of sewage water from three channels, it was found that 10 out of 18 samples ha lead content above the safe limits, while two in cadmium and 8 in chromium. While in soils irrigated with these channels, all the 18 samples were high in Cu and Pb, and 6 in Mn. As regards plants growing on these soils, samples of garlic, 4 of wheat and 3 of berseem were high in Pb. Cd content was high in 5 garlic samples, 5 wheat and 3 berseem. Effluents from two industries were high in Pb and four in Ni. In another study, all the nine water samples were high in Cu, 3 in Cd, and 6 in Pb. A survey of 20 Industries in Industrial Estate Hattar showed that all the effluent samples collected from these Industries were above the safe limits in Ni, Pb, Cd and Cr. From these studies, it seems that use of sewage water and industrial effluents for longer period can create heavy metals hazard in agriculture in NWFP. (author)

  6. Heavy Metal Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/heavymetalbloodtest.html Heavy Metal Blood Test To use the sharing features ... this page, please enable JavaScript. What is a Heavy Metal Blood Test? A heavy metal blood test ...

  7. Accumulation of Heavy Metals by Wild Mushrooms in Ibadan, Nigeria

    OpenAIRE

    Chinatu Charity Ndimele; Prince Emeka Ndimele; Kanayo Stephen Chukwuka

    2017-01-01

    Background. Many companies in Nigeria generate industrial effluents, including heavy metals. These metals can be accumulated by biota such as mushrooms, which are then eaten by the populace. Objectives. The present study investigates the metal content of wild mushrooms in order to educate the local population on the safety of their consumption. Methods. Seven different species of wild mushrooms (Cortinarius melliolens, Chlorophyllum brunneum, Pleurotus florida, Volvariella speciosa, Can...

  8. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    Science.gov (United States)

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  9. Nutrients and heavy metal distribution in thermally treated pig manure

    DEFF Research Database (Denmark)

    Kuligowski, Ksawery; Poulsen, Tjalfe G.; Stoholm, Peder

    2008-01-01

    Ash from pig manure treated by combustion and thermal gasification was characterized and compared in terms of nutrient, i.e., potassium (K), phosphorus (P) and heavy metal, i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) contents. Total nutrient and metal concentrations...... that ash from gasified manure contained more water-extractable K in comparison with combusted manure whereas the opposite was the case with respect to P. Heavy metals Ni, Cr and Cd were present in higher concentrations in the fine particle size fractions (

  10. Mosses accumulate heavy metals from the substrata of coal ash

    Directory of Open Access Journals (Sweden)

    Vukojević Vanja

    2005-01-01

    Full Text Available Plants that are able to accumulate and tolerate extraordinarily high concentrations of heavy metals (hyperaccumulators can be used for phytoremediation (removal of contaminants from soils or phytomining (growing a crop of plants to harvest the metals. Two moss species, Bryum capillare Hedw. and Ceratodon purpureus Hedw., were tested as potential phytoremedies under in vivo conditions on a coal ash disposal site in the surroundings of Obrenovac (NW Serbia. The content of various heavy metals (iron, manganese zinc, lead, nickel, cadmium, and copper in the mosses and substrata were investigated over a period of three years. Iron and zinc were found to have the highest concentration in the mosses.

  11. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  13. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    Directory of Open Access Journals (Sweden)

    Chao Su

    2014-06-01

    Full Text Available Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg, cadmium (Cd, lead (Pb, chromium (Cr, and arsenic (As, etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/countries, and reviewed background, impact and remediation methods of soil heavy metal contamination worldwide.

  14. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  15. Indicators of Lake Temsah Potential by some heavy metals Heavy Metals in Sediment

    International Nuclear Information System (INIS)

    Abdel Sabour, M.F.; Aly, R.O.; Khalil, M.T.; Attwa, A.H.A.

    1999-01-01

    The Environmental impact of industrial, agricultural and domestic waster on heavy metals sediment content in lake Temsah has been investigated. Seven sites were chosen, differ in nature of activity and quantity of wastes, namely from south to north-west; Arab contractors shipyard workshop(A), The junction between the western logon and the lake(B), El-Temsah workshop (C), El-Temsah shipyard (private workshop) (D), El-Karakat workshop for SCA (E), El-Forsan drain out fall to the lake (F) and SCA Press outlet (G). Eight of heavy metal concentrations of concern (Fe, Mn, Zn, Cu, Co, Ni, Cd and Pb) were estimated in sediment samples collected from different chosen sites during the seasons; summer , autumn 1995 and winter , spring 1996. Results of this study reveal that pollution is directly related to the type of the activity in each site. Sediment samples results showed that the most suffering sites were found to be in the order of B> D> C> G> F, and the least polluted ones were E> A. And the highest polluted season was summer, whereas the least one was winter. It is obvious that the general mean values of Cu, Ni and Cd are exceeding the allowed concentrations documented for diverse trace components in coastal sediments. Strict regulations that must be followed in order to minimize this pollution specially, by heavy metals from marine workshop

  16. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  17. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  18. Effect of fly ash from a fuel oil power station on heavy metal content of wild plants at Tenerife island, the Canarian archipelago, Spain

    International Nuclear Information System (INIS)

    Alvarez, C.E.; Fernandez, M.; Iglesias, E.; Perez, N.; Snelling, R.

    1993-01-01

    Heavy metal analysis have been carried out in wild plants around a Power Station located at the southeastern area of Tenerife Island (Canary Islands, Spain). The concentrations of Fe, Ni, and V in the leaves and terminal stems of three wild plants (Euphorbia obtusifolia, Kleinia neriifolia, and Plocama pendula) which were collected during the spring of 1988 are reported from four different allotments. These sampling sites were located at distances of 0.4, 1, 1, 25, and 34 km from the Electric Generating Facility, and at elevations of 60, 120, 180 and 60 m, respectively. Results show a potential contamination of vanadium in E. obtusifolia and P. pendula plants located close to the Power Station, probably due to dry deposition on fly ash in the surrounding area. The levels of iron and nickel concentrations in the same type of plants did not show any geographical relationship with respect to the location of the Power Station. 19 refs., 4 figs

  19. Heavy Metal Contents of Municipal and Rural Dumpsite Soils and Rate of Accumulation by Carica papaya and Talinum triangulare in Uyo, Nigeria

    Directory of Open Access Journals (Sweden)

    G. A. Ebong

    2008-01-01

    Full Text Available Dumpsites in Uyo and most cities in Nigeria are used nutrients rich soils for cultivating fruits and vegetables without regards to the risk of toxic metal pollution by the wastes. This development necessitated the research on the assessment of the impact of municipal and rural dumpsites on the metal levels of the underlying soils, the relationship between the dumpsite- soil metal content and the rate of bio-accumulation by plants, the effect of plant specie and plant part on the rate of metal uptake. Atomic absorption spectrophotometer was employed for the analysis of the samples and results obtained from municipal dumpsite soil indicated the following mean concentrations: Fe, 1711.20 μg/g; Pb, 43.28 ug/g; Zn, 88.34 ug/g; Ni, 12.18 ug/g; Cd, 14.10 ug/g and Cu, 56.33 ug/g. These concentrations were relatively higher than the following concentrations: Fe, 1016.98 ug/g; Pb, 18.57 ug/g; Zn, 57.90 ug/g; Ni, 7.98 ug/g; Cd, 9.25 ug/g and Cu, 33.70 ug/g recorded for the rural dumpsite soil. Consequently, plants grown on municipal dumpsites soil accumulated higher concentrations of the metals than those on rural dumpsites. Results obtained from this study also revealed that plants grown on dumpsite soils bio-accumulated higher metal concentrations than their counterparts obtained from normal agricultural soils. The ability of plants to bioaccumulate these metals were also observed as being different from one plant to the other and from one plant parts to the other. And apart from Fe and Zn which recorded higher concentrations in the leaves of the plants studied, other metals recorded higher concentrations in the roots. The general results obtained revealed that the levels of Cd in dumpsite-soil were above the standard while the levels of Cd and Pb in plants were also above the recommended levels in plants. The implications of these high concentrations of these metals in soil and plants have been discussed. Some useful recommendations on the proper

  20. A geological interpretation of heavy metal concentrations in soils and sediments in the southern Netherlands

    NARCIS (Netherlands)

    Huisman, D.J.; Vermeulen, F.J.H.; Baker, J.; Veldkamp, A.; Kroonenberg, S.B.; Klaver, G.Th.

    1997-01-01

    The natural variation in heavy metal contents of subsurface sediments in the southern Netherlands is described, based on a series of 820 bulk geochemical analyses. The detrital heavy metal contents of these sediments show linear correlations with Al as a result of their joint occurrence in

  1. Phytoremediation of heavy metals: Recent techniques | Jadia ...

    African Journals Online (AJOL)

    microorganisms/biomass or live plants to clean polluted areas. Phytoremediation is an emerging technology for cleaning up contaminated sites, which is ... A brief review on phytoremediation of heavy metals and its effect on plants have been ...

  2. Atmospheric Heavy Metal Pollution - Development of Chronological ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  3. Spectrophotometric Determination Of Heavy Metals In Cosmetics

    African Journals Online (AJOL)

    ISSN 1597-6343. Spectrophotometric Determination Of Heavy Metals In Cosmetics ... analysed using atomic absorption spectrophotometer – coupled with a hydride ... presence of arsenic (As), mercury (Hg), cadmium (Cd) and lead. (Pb) in ...

  4. HEAVY METALS IN VINEYARDS AND ORCHARD SOILS

    Directory of Open Access Journals (Sweden)

    GUSTAVO BRUNETTO

    Full Text Available ABSTRACT The application of foliar fungicides in vineyards and orchards can increase soil concentration of heavy metals such as copper (Cu and zinc (Zn, up to the toxicity threshold for fruit trees and cover crops. However, some agronomic practices, such as liming, addition of organic fertilizers, cultivation of soil cover crops and inoculation of young plants with arbuscular mycorrhizal fungi can decrease the availability and the potential of heavy metal toxicity to fruit trees. This review aims to compile and present information about the effects of increasing concentrations of heavy metals, especially Cu and Zn, on soils cultivated with fruit trees and provides some agronomic practices of remediation. Information about the sources of heavy metals found in soils cultivated with fruit trees are presented; mechanisms of absorption, transport, accumulation and potential toxicity to plants are described.

  5. Characterization of landfill leachates and studies on heavy metal removal.

    Science.gov (United States)

    Ceçen, F; Gürsoy, G

    2000-10-01

    This study covers a thorough characterisation of landfill leachates emerging from a sanitary landfill area. The landfill leachates were obtained in the acidic stage of landfill stabilisation. Their organic content was high as reflected by the high BOD5 (5 day biological oxygen demand) and COD (chemical oxygen demand) values. They were also highly polluted in terms of the parameters TKN (total Kjeldahl nitrogen), NH4-N, alkalinity, hardness and heavy metals. Nickel was present in these wastewaters at a significant concentration. With regard to the high heavy metal content of these wastewaters, several physicochemical removal alternatives for the heavy metals Cu, Pb, Zn, Ni, Cd, Cr, Mn and Fe were tested using coagulation, flocculation, precipitation, base addition and aeration. Additionally, COD removal and ammonia stripping were examined. Co-precipitation with either alum or iron salts did not usually lead to significantly higher heavy metal removal than lime alone. The major methods leading to an effective heavy metal removal were aeration and lime addition. Nickel and cadmium seemed to be strongly complexed and were not removed by any method. Also lead removal proved to be difficult. The results are also discussed in terms of compliance with standards.

  6. Heavy metals anthropogenic pollutants in Austria

    International Nuclear Information System (INIS)

    Anderl, M.; Gager, M.; Gugele, B.; Huttunen, K.; Kurzweil, A.; Poupa, S.; Ritter, M.; Wappel, D.; Wieser, M.

    2004-01-01

    Several heavy metals from anthropogenic sources are emitted in the atmosphere damaging the air quality and the human health, besides they accumulate on the soil and lately are transmitted into the human food chain. Therefore at international level there is a concern to reduce them. Austrian heavy metals emissions (cadmium, mercury and lead) during 1990-2002 are given including an analysis of causes and sources. Lead is the main pollutant and the main sector responsible is the industry. 5 figs. (nevyjel)

  7. Mobile heavy metal fractions in soils

    International Nuclear Information System (INIS)

    Horak, O.; Kamel, A.A.; Ecker, S.; Benetka, E.; Rebler, R.; Lummerstorfer, E.; Kandeler, E.

    1994-01-01

    A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

  8. Characterization of Heavy Metals in Vegetables Using Inductive ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... Cauliflower and Onion showed high amount of Pb. On the other hand, Cucumber and Cauliflower registered maximum content of Zn. The heavy metal concentration in vegetables was within the prescribed safety limits except Fe owing to iron-rich soil of the ...

  9. Heavy Metals in Soils of auto- mechanic shops and refuse ...

    African Journals Online (AJOL)

    Dumpsites soil samples in Apir and North Bank Auto- mechanic workshop locations in Makurdi, the Benue State capital located on latitude 70 44'N and longitude 80 32'E of the Equator situated in a valley in north central Nigeria, 100m above sea level, were collected and analyzed for content of selected heavy metals.

  10. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  11. Heavy metals burden of Keenjhar Lake, District Thatta, Sindh, Pakistan

    African Journals Online (AJOL)

    Detection of heavy metals (HMs) content from Keenjhar Lake water was carried out monthly from January to December, 2003. Zinc, chromium, copper, iron, manganese, nickel and cadmium were analyzed by dual mode of analytical methods flame atomic absorption spectrometry and electrothermal atomic absorption ...

  12. Transformation of heavy metals in lignite during supercritical water gasification

    International Nuclear Information System (INIS)

    Chen, Guifang; Yang, Xinfei; Chen, Shouyan; Dong, Yong; Cui, Lin; Zhang, Yong; Wang, Peng; Zhao, Xiqiang; Ma, Chunyuan

    2017-01-01

    Highlights: • The transformations of heavy metals during lignite SCWG were investigated. • The risks of heavy metals in lignite and residues after SCWG were evaluated. • The effects of experimental conditions on corrosion during SCWG were studied. - Abstract: Transformation characteristics of heavy metals during lignite supercritical water gasification (SCWG) were studied. A sequential extraction procedure (modified Tessier method) was used to selectively extract different fractions of Pb, Cd, Cr, Mn, Cu, Ni, and Zn. Heavy metals transformed into more stable fractions after SCWG. For Pb, Cd, Mn, Cu, and Zn, SCWG reduced the bioavailability and the risks posed by heavy metals in lignite. Under the experimental conditions, the conversion rates for Pb and Cd were 16.0%–25.2% and 16.3%–23.4%, respectively, whereas those for Mn, Cu, and Zn were much lower. Solid products enriched with Pb, Cd, Mn, Cu, and Zn were obtained after SCWG; the contents of these metals varied slightly in the liquid products under different experimental conditions. Excess Cr and Ni that did not originate from lignite were found in the residues, owing to reactor corrosion during lignite SCWG. Higher temperatures alleviated corrosion, whereas higher pressures and equivalence ratios (ER) had the opposite effect. None of the heavy metals were detected in the gas phase under the experimental conditions used in the present study. The correlation between the distributions of heavy metals and the experimental conditions were also studied. The transformation pathways of Pb, Cd, Mn, Cu, and Zn during SCWG were deduced according to the experimental results.

  13. Gender identity and the electric guitar in heavy metal music

    OpenAIRE

    Kelly, Philip

    2009-01-01

    In this chapter I will attempt to outline the gendered characteristics of heavy metal and the electric guitar and address the question: has society’s impression of heavy metal as a primarily masculine pursuit been so imbedded in Western culture that we will never see a female heavy metal band achieve the same level of success as a male heavy metal band?

  14. Using microbiological leaching method to remove heavy metals from sludge

    Directory of Open Access Journals (Sweden)

    Zhuyu Gu

    2017-01-01

    Full Text Available Microbial leaching is one of the most effective methods to remove heavy metals from sludge. In the conducted researches, the sludge samples were processed with Thiobacillus ferrooxidans and Thiobacillus thiooxidans obtained via cultivation, extraction and purification processes. Heavy metals such as Pb, Cd, Cu and Ni were leached from sludge by Thiobacillus ferrooxidans and Thiobacillus thiooxidans within different substrate concentration and pH value conditions. It is defined that from the point of view of economy and efficiency the optimal concentration of FeSO4.7H2O and sulfur for bio-leaching process was 0.2 g. The leaching rates of heavy metals such as Pb, Cd, Cu and Ni of the same concentration were 74.72%, 81.54%, 70.46% and 77.35% respectively. However, no significant differences depending on the pH value among the leaching rates were defined, even for the pH value of 1.5. Along with the removal of heavy metals from sludge, the organic matter, N, P, K were also leached to some extent. The losing rate of phosphorus was the highest and reached 38.44%. However, the content of organic matter, N, P, K in the processed sludge were higher in comparison with level I of the National Soil Quality Standards of China. Ecological risk of heavy metals in sludge before and after leaching was assessed by Index of Geo-accumulation (Igeo and comprehensive potential risk (RI. The results of research defined that the content of heavy metals in sludge meets the level of low ecological risk after leaching and their contents is lower in comparison with the National Agricultural Sludge Standard of China. Sludge leached by biological methods is possible to use for treatment for increasing soil fertility.

  15. Analysis of heavy metals in road-deposited sediments.

    Science.gov (United States)

    Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A

    2006-07-07

    Road-deposited sediments were analysed for heavy metal concentrations at three different landuses (residential, industrial, commercial) in Queensland State, Australia. The sediments were collected using a domestic vacuum cleaner which was proven to be highly efficient in collecting sub-micron particles. Five particle sizes were analysed separately for eight heavy metal elements (Zn, Fe, Pb, Cd, Cu, Cr, Al and Mn). At all sites, the maximum concentration of the heavy metals occurred in the 0.45-75 microm particle size range, which conventional street cleaning services do not remove efficiently. Multicriteria decision making methods (MCDM), PROMETHEE and GAIA, were employed in the data analysis. PROMETHEE, a non-parametric ranking analysis procedure, was used to rank the metal contents of the sediments sampled at each site. The most polluted site and particle size range were the industrial site and the 0.45-75 microm range, respectively. Although the industrial site displayed the highest metal concentrations, the highest heavy metal loading coincided with the highest sediment load, which occurred at the commercial site. GAIA, a special form of principal component analysis, was applied to determine correlations between the heavy metals and particle size ranges and also to assess possible correlation with total organic carbon (TOC). The GAIA-planes revealed that irrespective of the site, most of the heavy metals are adsorbed to sediments below 150 microm. A weak correlation was found between Zn, Mn and TOC at the commercial site. This could lead to higher bioavailability of these metals through complexation reactions with the organic species in the sediments.

  16. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    Science.gov (United States)

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  17. Heavy metals distribution in the Dead Sea black mud, Jordan

    International Nuclear Information System (INIS)

    Momani, K.; El-Hasan, T.; Auaydeh, S.

    2009-01-01

    The concentrations of trace metals (Fe, Mn, Ni, Zn, Co, Cr, Cu and Pb) were investigated in the Dead Sea black mud and river sediments in the northern basin of the Dead Sea region, Jordan. The pH of the mud was slightly above 8 while it was around 6 for the seawater. All analyzed heavy metal content in the black mud, except Pb, was less than their contents in other types of mud. Tlis might be due to the effect of the mildly acideic pH of seawater, which would enhance the metal solubility or incorporation within salt mineral structure, rather than precipitation. The sequential extraction results showed that Ni and Co transferred into the carbonate fraction, Mn is found mostly as manganese-iron oxide, and the residual phase contained Cr, Cu, Fe,and Pb. This study illustrated that the black mud had low heavy metal contents, thus indicating low toxicity. additionally, it shows insignificance effect of the mixing of freshwater with seawater on the heavy metal contents in the black mud. (authors).

  18. Heavy metals: teeth as environmental biomarkers

    OpenAIRE

    Lumbau, Aurea Maria Immacolata; Lugliè, Pietrina Francesca; Carboni, Donatella; Ginesu, Sergio; Falchi, Simonetta; Schinocca, Laura

    2012-01-01

    Aim of this study was to measure the concentration of heavy metals in tooth matrix and to determine the factors that affect their presence. During tooth development and mineralization several metals can be absorbed in the tooth matrix, thus allowing us to use them as biological markers.

  19. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza; Siam, Rania; Mohamed, Yasmine M.

    2014-01-01

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II

  20. Identification and Quantification of Heavy Metals Concentrations in Pistacia

    Directory of Open Access Journals (Sweden)

    Gholamhossein DAVARYNEJAD

    2013-12-01

    Full Text Available The levels of heavy metals are very important in pistachio nuts, because the edible nuts have an important and increasing role in human nutrition. Pistachio is one of the native nuts of Iran which contains high genetic resources, but there is insufficient information regarding nutritional properties and other elements like heavy metals. The objective of the present study was to investigate and compare heavy metals contents in the kernels of various pistachio samples including; ‘Daneshmandi’, ‘Sephid’, ‘Garmeh’, ‘Momtaz’, ‘Ahmad Aghaei’, ‘Badami Zarand’, Pistacia atlantica Desf. (‘Baneh’, Pistacia vera ‘Sarakhs’ and chance seedling as ‘Non-grafted 1’, ‘Non-grafted 2’ and ‘Non-grafted 3’. Inductively coupled plasma emission spectrophotometer (ICP was used for the determination of aluminium, chromium, nickel, copper, strontium, arsenic, cadmium and cobalt concentrations in pistachio kernels. This study showed that there were significant differences among the samples in all measured heavy metals except the arsenic, cadmium and cobalt. The content of aluminium varied from 3.22 to 9.59 (mg kg-1 of dry matter and chromium concentration from 0.60 to 1.86 (mg kg-1 of dry matter. The nickel content of examined pistachio samples was found between 0.43 and 3.63 (mg kg-1 of dry matter and copper ranged from 3.20 to 12.33 (mg kg-1 of dry matter. The strontium content was observed between 4.96 and 24.93 (mg kg-1 of dry matter. The contents of arsenic, cadmium and cobalt not reported, because their amounts were lower than the detection limit of the applied measuring method (ICP. These data demonstrated that the concentrations of heavy metals in pistachios varied by cultivar.

  1. Ecological risk assessment of a coastal zone in Southern Vietnam: Spatial distribution and content of heavy metals in water and surface sediments of the Thi Vai Estuary and Can Gio Mangrove Forest.

    Science.gov (United States)

    Costa-Böddeker, Sandra; Hoelzmann, Philipp; Thuyên, Lê Xuân; Huy, Hoang Duc; Nguyen, Hoang Anh; Richter, Otto; Schwalb, Antje

    2017-01-30

    Enrichment of heavy metals was assessed in the Thi Vai Estuary and in the Can Gio Mangrove Forest (SE, Vietnam). Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn contents in water and in sediments were measured. Total organic carbon, nitrogen, phosphorus and C/N ratios were determined. Cu and Cr values were higher than threshold effect level of toxicity, while Ni exceeded probable effect level, indicating the risk of probable toxicity effects. Enrichment factors (EF), contamination factor (CF) and Geo-accumulation index (I-geo) were determined. CF reveals moderate to considerable pollution with Cr and Ni. EF suggests anthropogenic sources of Cr, Cu and Ni. I-geo indicates low contamination with Co, Cu and Zn and moderate contamination with Cr and Ni. Overall metal contents were lower than expected for this highly industrialized region, probably due to dilution, suggesting that erosion rates and hydrodynamics may also play a role in metal contents distribution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Bioavailability and bioaccumulation characterization of essential and heavy metals contents in R. acetosa, S. oleracea and U. dioica from copper polluted and referent areas.

    Science.gov (United States)

    Balabanova, Biljana; Stafilov, Trajče; Bačeva, Katerina

    2015-01-01

    Bioavailability of metals occurring in soil is the basic source of its accumulation in vegetables and herbs. The impact of soil pollution (due to urban and mining areas) on the food chain presents a challenge for many investigations. Availability of metals in a potentially polluted soil and their possible transfer and bioaccumulation in sorrel (Rumex acetosa), spinach (Spinacia oleracea) and common nettle (Urtica dioica), were examined. Microwave digestion was applied for total digestion of the plant tissues, while on the soil samples open wet digestion with a mixture of acids was applied. Three extraction methods were implemented for the bioavailable metals in the soil. Atomic emission spectrometry with inductively coupled plasma was used for determination of the total contents of 21 elements. Significant enrichments in agricultural soil for As, Pb and Zn (in urban area), Cd, Cu and Ni (in a copper mine area), compared with the respective values from European standards were detected. On the basis of three different extraction methods, higher availability was assumed for both lithogenic and anthropogenic elements. Translocation values >1 were obtained for As, Cd, Cu, Ni, Pb and Zn. Higher bioconcentrating value was obtained only for Cd, while the bioaccumulation values vary from 0.17 for Cd to 0.82 for Zn. The potential availability of hazardous metals in urban and mining soils is examined using DTPA-TEA-CaCl2 (urban) and HCl (Cu-mines areas). Our results suggested that S. oleracea and R. acetosa have a phytostabilization potential for Cd, Cu, Ni and Pb, while U. dioica only for Cu. R. acetosa has a potential for phytoextraction of Cd in urban and copper polluted areas.

  3. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: Potential applications in agriculture and forestry?

    International Nuclear Information System (INIS)

    Bonanno, Giuseppe; Cirelli, Giuseppe Luigi; Toscano, Attilio; Giudice, Rosa Lo; Pavone, Pietro

    2013-01-01

    One of the greatest current challenges is to find cost-effective and eco-friendly solutions to the ever increasing needs of modern society. Some plant species are suitable for a multitude of biotechnological applications such as bioenergy production and phytoremediation. A sustainable practice is to use energy crops to clean up polluted lands or to treat wastewater in constructed wetlands without claiming further arable land for biofuel production. However, the disposal of combustion by-products may add significant costs to the whole process, especially when it deals with toxic waste. This study aimed to investigate the possibility of recycling ash from energy biomass as a fertilizer for agriculture and forestry. In particular, the concentrations of Cd, Cr, Cu, Mn, Pb and Zn were analyzed in the plant tissues and corresponding ash of the grasses Phragmites australis and Arundo donax, collected in an urban stream affected by domestic sewage. Results showed that the metal concentration in ash is 1.5–3 times as high as the values in plant tissues. However, metal enriched ash showed much lower element concentrations than the legal limits for ash reutilization in agriculture and forestry. This study found that biomass ash from constructed wetlands may be considered as a potential fertilizer rather than hazardous waste. Energy from biomass can be a really sustainable and clean option not only through the reduction of greenhouse gas emissions, but also through ash recycling for beneficial purposes, thus minimizing the negative impacts of disposal. - Highlights: • Metal content in ash reflects the element concentrations in Phragmites australis and Arundo donax. • Metal enriched ash of both species may be recycled as fertilizers in agriculture and forestry. • Constructed wetlands may produce a large amount of plant ash-based fertilizers from P. australis and A. donax

  4. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: Potential applications in agriculture and forestry?

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, Giuseppe, E-mail: bonanno.giuseppe@unict.it [Department of Biological, Geological and Environmental Sciences, University of Catania, Via Longo 19, 95125, Catania (Italy); Cirelli, Giuseppe Luigi; Toscano, Attilio [Department of Agri-Food and Environmental Systems Management, University of Catania, Via Santa Sofia 100, 95123, Catania (Italy); Giudice, Rosa Lo; Pavone, Pietro [Department of Biological, Geological and Environmental Sciences, University of Catania, Via Longo 19, 95125, Catania (Italy)

    2013-05-01

    One of the greatest current challenges is to find cost-effective and eco-friendly solutions to the ever increasing needs of modern society. Some plant species are suitable for a multitude of biotechnological applications such as bioenergy production and phytoremediation. A sustainable practice is to use energy crops to clean up polluted lands or to treat wastewater in constructed wetlands without claiming further arable land for biofuel production. However, the disposal of combustion by-products may add significant costs to the whole process, especially when it deals with toxic waste. This study aimed to investigate the possibility of recycling ash from energy biomass as a fertilizer for agriculture and forestry. In particular, the concentrations of Cd, Cr, Cu, Mn, Pb and Zn were analyzed in the plant tissues and corresponding ash of the grasses Phragmites australis and Arundo donax, collected in an urban stream affected by domestic sewage. Results showed that the metal concentration in ash is 1.5–3 times as high as the values in plant tissues. However, metal enriched ash showed much lower element concentrations than the legal limits for ash reutilization in agriculture and forestry. This study found that biomass ash from constructed wetlands may be considered as a potential fertilizer rather than hazardous waste. Energy from biomass can be a really sustainable and clean option not only through the reduction of greenhouse gas emissions, but also through ash recycling for beneficial purposes, thus minimizing the negative impacts of disposal. - Highlights: • Metal content in ash reflects the element concentrations in Phragmites australis and Arundo donax. • Metal enriched ash of both species may be recycled as fertilizers in agriculture and forestry. • Constructed wetlands may produce a large amount of plant ash-based fertilizers from P. australis and A. donax.

  5. [Investigation and analysis of heavy metal pollution related to soil-Panax notoginseng system].

    Science.gov (United States)

    Chen, Lu; Mi, Yan-Hua; Lin, Xin; Liu, Da-Hui; Zeng, Min; Chen, Xiao-Yan

    2014-07-01

    In this study, five heavy metals contamination of soil and different parts of Panax notoginseng in the plantation area was investigated. Analysis of heavy metals correlation between the planting soil and P. notoginseng; and the absorption and accumulation characteristics and translocation of soil heavy metals by P. notoginseng plants was revealed. Through field investigation and laboratory analytical methods, analysis of China's 30 different soil P. notoginseng origin and content of heavy metals in five different parts of the P. notoginseng plant content of heavy metals. The results revealed that the soil heavy metals should not be neglected in the plantation area Referring to the national soil quality standards (GB15608-1995), the excessive degree of soil heavy metals pollution showed Hg > As > Cd > Cr in the plantation area, and Pb content of soil was in the scope of the standard. Refer to 'Green Industry Standards for Import and Export of Medical Plants and Preparations', the excessive degree of heavy metals content of P. notoginseng plants showed As > Pb > Cr > Cd, and Hg content of plants was in the scope of the standard. Concentrations of five heavy metals of underground parts of P. notoginseng plants are higher than aboveground, and heavy metals elements are more concentrated in the root, followed by the rhizome of P. notoginseng plants. Heavy metal accumulation characteristics of the different parts of the P. notoginseng of the overall performance is the root > the rhizome > the root tuber > leaves > stems. From the point of view BCF value analysis of various parts of the P. notoginseng plants to absorb heavy metals in soil, BCF values of all samples were less than 1, description P. notoginseng not belong Hyperaccumulator. From the view of transportation and related analysis of the soil-P. notoginseng systems, the rhizome of P. notoginseng and the content of As and Cr in soil was significantly correlated, the root of P. notoginseng and the content of Cd in

  6. Heavy metal contents of road-deposited sediment along the urban-rural gradient around Beijing and its potential contribution to runoff pollution.

    Science.gov (United States)

    Zhao, Hongtao; Li, Xuyong; Wang, Xiaomei

    2011-09-01

    Understanding the contribution of road-deposited sediment (RDS) and its washoff process is essential for controlling urban runoff pollution. Ninety-seven RDS samples were collected along the urban-suburban-rural gradient from areas of five administrative units in the Beijing metropolitan region, including central urban (UCA), urban village (UVA), central suburban county (CSA), rural town (RTA), and rural village (RVA) areas. RDS washoff was evaluated with different particle sizes using a rainfall simulator. Heavy metal elements (i.e., Cr, Cu, Ni, Pb, and Zn) were estimated in both RDS and runoff samples. The RDS mass per unit area increased in the order UCA (21 ± 24 g/m(2)) ≈ CSA (20 ± 16 g/m(2)) runoff pollution contributions per unit area. Our findings imply that controlling the first flush in the UCA and CSA, and improving existing street cleaning methods and road surface conditions in the TRA, UVA, and RVA will be appropriate strategies for controlling runoff pollution from RDS.

  7. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  8. Environmental impact of heavy metals on the blood cells in professionally exposed workers

    OpenAIRE

    Velickova, Nevenka

    2017-01-01

    Aims of the study is to explain and research the effects of the heavy metals (lead, zinc and cadmium) on erythrocytes and leukocytes in miners with different work experience or exposure. The results and conclusions are made based on a three-year period of continuous testing on 120 miners, as professionally exposed workers. We confirmed that the miners long been professionally exposed to heavy metals, in the blood have an increased content of heavy metals (lead, zinc and cadmium) and they ha...

  9. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  10. [Resistance to heavy metals in ruminal staphylococci].

    Science.gov (United States)

    Lauková, A

    1994-01-01

    Ruminal, coagulase-negative, urease and bacteriocin-like substances producing staphylococci were screened for their heavy metal ions and antibiotics resistance. All strains tested were resistant to disodium arsenate at a minimal inhibition concentration (MIC > 5 g/l) and cadmium sulphate (MIC > 4 g/l). MIC = 50-60 mg/l was determined in eight staphylococci screened in mercury chloride resistance test (Tab. I). Silver nitrate resistance was detected in seven of the bacteria used (MIC = 40-50 mg/l). All strains were novobiocin resistant. Staphylococcus cohnii subsp. urealyticum SCU 40 was found as a strain with resistance to all heavy metal ions and 5 antibiotics (Tab. II). In addition, this strain produced bacteriocin-like substance which inhibited growth of six indicators of different origin (Tab. II). The most of staphylococci were detected as heavy metal ion polyresistant strains and antibiotic polyresistant strains producing antimicrobial substances with inhibition effects against at least one indicator of different origin. These results represent the first information on heavy metal ion resistance in ruminal bacteria. They also show relation or coresistance between heavy metal ions and antibiotics. Resulting from this study, staphylococci can be used as a bioindicator model for animal environmental studies. In addition, it can be used for specific interactions studies within the framework of ruminal bacterial ecosystem and also mainly with regard to molecular genetic studies.

  11. Accumulation of Heavy Metals in Soil and Kiwifruit of Planting Base in Western Hunan Province, China

    Directory of Open Access Journals (Sweden)

    WANG Ren-cai

    2017-05-01

    Full Text Available The heavy metals accumulation in soil and kiwi fruit plant in Western Hunan Province main kiwifruit planting base were analyzed, such as As, Pb, Hg, Cd, Cr. The results showed that the accumulation of heavy metals in soil of 6 kiwifruit planting areas were not obvious. The contents of heavy metals in most of areas of Western Hunan Province were below the national standard, except one area where the soil contents of cadmium (4.900 mg·kg-1, mercury (0.634 mg·kg-1were exceeded. At the same time, the comprehensive pollution index of heavy metals was less than 0.7 in these areas. There were 5 bases with no pollution of heavy metal, all which the kiwifruit could be safely produced in line with the requirements of the green kiwifruit planting base soil standards. At these areas, the contents of various heavy metals(except cadmium and mercurywere small in the branches and leaves of kiwifruit; kiwifruit had a very well capacity to absorb the cadmium when the cadmium content of its branches reached 12.73%. The heavy metal contents of the kiwifruit in the 6 regions, which belonging to the pollutionfree green fruits, were below or far lower than the national standard. According to the comprehensive analysis, the soil condition of the main cultivated land in Western Hunan Province was good, and the fruit had no heavy metal residues.

  12. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  13. Heavy metal pollution of agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.C.

    1975-01-01

    Inputs of heavy metals to soils have increased recently and there is much concern that they may be toxic at various stages along the food chain and ultimately to man. Cobalt, copper, iron, manganese, molybdenum, zinc, chromium, nickel, cadmium and lead move from geochemical sources to plants and then to animals and man; they then are returned in various forms to soil to complete the cycle. The ways in which heavy metals may be added to soils are reviewed. They include: aerial inputs by air pollution, fertilizers, pesticides, farm slurries and sewage sludge. Possibly the source of contamination which is to have the most impact on soils used for the production of crops is sewage sludge. The fate of heavy metal added to soils is discussed in relation to form, mobility, uptake by plants, effect of soil conditions on availability to plants, and toxicity to animals. 56 references.

  14. Heavy Metal Pollution Around International Hatay Airport

    Directory of Open Access Journals (Sweden)

    Abdullah Özkan

    2017-02-01

    Full Text Available In this study, it was aimed to determine the heavy metal pollution in the agricultural lands around Hatay airport and travel possible alteration in the amount of heavy metal on the land in accordance with the distance to the airport. For this purpose, the airport was chosen as the center and 27 soil samples were obtained around the airport at 2 km intervals in depth ranging from 0 to 30 cm. Lead (Pb, cadmium (Cd, nickel (Ni, chrome (Cr, cobalt (Co, aluminium (Al, iron (Fe, copper (Cu, manganese (Mn and zinc (Zn elements in soil samples were analysed using MP-AES instrument by DTPA method. (3 repetition for each sample. As a result of the analysis, heavy metal concentrations were found as Pb 0-1.45 mg/kg, Cd 0-0.220 mg/kg, Ni 0-3.95 mg/kg, Cr 0-0.780 mg/kg, Co 0-0.270 mg/kg, Al 0-0.700 mg/kg, Fe 1.47- 16.2 mg/kg, Cu 0.400-5.35 mg/kg, Mn 0-19 mg/kg and Zn 0.050-3.14 mg/kg. When comparing the obtained data through this study with allowable concentrations of heavy metals in soil of Environment and Forest Directorates Guidance, it was determined that the heavy metal concentration of the soil does not pose any problems in terms of heavy metal pollution. Besides, iron concentration was decreased when the distance to the airport is increased.

  15. Mushrooms pollution by radioactivity and heavy metals

    International Nuclear Information System (INIS)

    Delatouche, L.

    2001-01-01

    Some basic notions of radioactivity are recalled first (definition, origin, measurement units, long- and short-term effects..). Then, the pedology of soils and the properties and toxicity of 3 heavy metals (lead, cadmium, mercury) are presented to better understand the influence of some factors (genre, age, ecological type, pollution, conservation..) on the contamination of macro-mycetes by radioactivity and heavy metals. The role of chemists is to inform the consumers about these chemical and radioactive pollutions and to give some advices about the picking up (quantities, species and places to avoid) and the cooking of mushrooms. (J.S.)

  16. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  17. Transfer of heavy metals through terrestrial food webs: a review.

    Science.gov (United States)

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  18. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid

  19. Bioaccumulation of heavy metals in fauna from wet detention ponds for stormwater runoff

    DEFF Research Database (Denmark)

    Stephansen, Diana; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2012-01-01

    Stormwater detention ponds remove pollutants e.g. heavy metals and nutrients from stormwater runoff. These pollutants accumulate in the pond sediment and thereby become available for bioaccumulation in fauna living in the ponds. In this study the bioaccumulation was investigated by fauna samples...... from 5 wet detention ponds for analyses of heavy metal contents. Five rural shallow lakes were included in the study to survey the natural occurrence of heavy metals in water-dwelling fauna. Heavy metal concentrations in water-dwelling fauna were generally found higher in wet detention ponds compared...

  20. Approaches for enhanced phytoextraction of heavy metals.

    Science.gov (United States)

    Bhargava, Atul; Carmona, Francisco F; Bhargava, Meenakshi; Srivastava, Shilpi

    2012-08-30

    The contamination of the environment with toxic metals has become a worldwide problem. Metal toxicity affects crop yields, soil biomass and fertility. Soils polluted with heavy metals pose a serious health hazard to humans as well as plants and animals, and often requires soil remediation practices. Phytoextraction refers to the uptake of contaminants from soil or water by plant roots and their translocation to any harvestable plant part. Phytoextraction has the potential to remove contaminants and promote long-term cleanup of soil or wastewater. The success of phytoextraction as a potential environmental cleanup technology depends on factors like metal availability for uptake, as well as plants ability to absorb and accumulate metals in aerial parts. Efforts are ongoing to understand the genetics and biochemistry of metal uptake, transport and storage in hyperaccumulator plants so as to be able to develop transgenic plants with improved phytoremediation capability. Many plant species are being investigated to determine their usefulness for phytoextraction, especially high biomass crops. The present review aims to give an updated version of information available with respect to metal tolerance and accumulation mechanisms in plants, as well as on the environmental and genetic factors affecting heavy metal uptake. The genetic tools of classical breeding and genetic engineering have opened the door to creation of 'remediation' cultivars. An overview is presented on the possible strategies for developing novel genotypes with increased metal accumulation and tolerance to toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Heavy metal pollutant tolerance of Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.; Jana, S.

    1986-01-01

    The effects of Hg, As, Pb, Cu, Cd, and Cr (1,2 and 5 mg L/sup -1/ each) on Azolla pinnata R. Br. were analyzed. The treatments (2 and 5 mg L/sup -1/) of the heavy metal pollutants decreased Hill activity, chlorophyll, protein and dry wt, and increased tissue permeability over control values. The effects were most pronounced with the treatment of 5 mg L/sup -1/. The harmful effects of the metals were, in general, found by the treatments in the order: Cd > Hg > Cu > As > Pb > Cr. There was no significant change in these parameters at 1 mg L/sup -1/ of the metals over control. Thus Azolla pinnata shows tolerance to the heavy metals tested up to 1 mg L/sup -1/ each.

  2. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  3. Observation on Heavy Metals in Sediment of Jakarta Bay Waters

    Directory of Open Access Journals (Sweden)

    Abdul Rozak

    2007-04-01

    Full Text Available Observation on heavy metals in Jakarta Bay, from June and September 2003. Heavy metals Pb in sediment at the West have been conductet of Jakarta Bay Waters varied between Pb = 8,49-31,22 ppm, Cd = <0,001-0,47 ppm, Cu = 13,81-193,75 ppm, Zn = 82,18-533,59 ppm and Ni = 0,99-35,38 ppm,while those at the Center of Jakarta Bay, varied between Pb = 2,21-69,22 ppm, Cd = <0,001-0,28 ppm, Cu = 3,36-50,65 ppm, Zn = 71,13-230,54 ppm and Ni = 0,42-15,58 ppm and at the East of Jakarta Bay, Pb content varied between 0,25-77,42 ppm, Cd = <0,001-0,42 ppm, Cu = 0,79-44,94 ppm, Zn = 93,21-289,00 ppm and Ni = 0,42-128,47 ppm. Hevy metals content in sediment the West of Jakarta Bay was high of equivalent the Center and East of Jakarta Bay. At than those composition sediment at the west was black, that indicated high heavy metals content.

  4. Effects of different cleaning treatments on heavy metal removal of Panax notoginseng (Burk) F. H. Chen.

    Science.gov (United States)

    Dahui, Liu; Na, Xu; Li, Wang; Xiuming, Cui; Lanping, Guo; Zhihui, Zhang; Jiajin, Wang; Ye, Yang

    2014-01-01

    The quality and safety of Panax notoginseng products has become a focus of concern in recent years. Contamination with heavy metals is one of the important factors as to P. notoginseng safety. Cleaning treatments can remove dust, soil, impurities or even heavy metals and pesticide residues on agricultural products. But effects of cleaning treatments on the heavy metal content of P. notoginseng roots have still not been studied. In order to elucidate this issue, the effects of five different cleaning treatments (CK, no treatment; T1, warm water (50°C) washing; T2, tap water (10°C) washing; T3, drying followed by polishing; and T4, drying followed by tap water (10°C) washing) on P. notoginseng roots' heavy metal (Cu, Pb, Cd, As and Hg) contents were studied. The results showed that heavy metal (all five) content in the three parts all followed the order of hair root > rhizome > root tuber under the same treatment. Heavy metal removals were in the order of Hg > As > Pb > Cu > Cd. Removal efficiencies of the four treatments were in the order of T2 > T1 > T3 > T4. Treatments (T1-T4) could decrease the contents of heavy metal in P. notoginseng root significantly. Compared with the requirements of WM/T2-2004, P. notoginseng roots' heavy metal contents of Cu, Pb, As and Hg were safe under treatments T1 and T2. In conclusion, the cleaning process after production was necessary and could reduce the content of heavy metals significantly. Fresh P. notoginseng root washed with warm water (T2) was the most efficient treatment to remove heavy metal and should be applied in production.

  5. One-century sedimentary record of heavy metal pollution in western Taihu Lake, China.

    Science.gov (United States)

    Li, Yan; Zhou, Shenglu; Zhu, Qing; Li, Baojie; Wang, Junxiao; Wang, Chunhui; Chen, Lian; Wu, Shaohua

    2018-05-16

    Long-term trends of sediment compositions are important for assessing the impact of human activities on the sediment and protecting the sediment environment. In this study, based on the contents of heavy metals and the Pb isotope ratios in lake sediments, atmospheric dustfall and soil in Yixing, China, the representative heavy metals (Zn, Pb, Cr and Cd) in lake sediments from western Taihu Lake were studied. The evolution history of heavy metals in the local environment was constructed for the past 100 years. From 1892 to the 1990s, the anthropogenic fluxes of the representative heavy metals were negligible, indicating minimal anthropogenic emissions of heavy metals. Since the 1990s, anthropogenic fluxes of the representative heavy metals began to increase, concurrent with the economic growth and development in the western Taihu Lake Basin after the Chinese economic reform. The maximum flux percentage of the heavy metals in the sediments, caused by human activities, is 23.0% for Zn, 31.6% for Pb, 39.5% for Cr and 85.3% for Cd, indicating that most of the Cd comes from human activities. The Cd content in the western Taihu Lake Basin was significantly higher than that in the other areas, and the rapid development of the industry in the western Taihu Lake Basin and ceramics in Yixing led to the enrichment of heavy metals in local sediments. Since the 21st century, measures have been taken to control the pollution of heavy metals, including the increase in local government attention and the deployment of environmental monitoring technology. However, heavy metal content remains high, and the Pb content is still increasing. The ratios of Pb isotopes show that the main sources of heavy metals in the western Taihu Lake sediments, the local soil of Yixing and the atmospheric dustfall are coal combustion, leaded gasoline combustion, industrial wastewater and domestic sewage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Pyrolized biochar for heavy metal adsorption

    Science.gov (United States)

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  7. Determination of Heavy Metals in Alpinia oxyphylla Miq. Collected from Different Cultivation Regions

    OpenAIRE

    Zhou, Dan; Fu, Yurong; Lai, Weiyong; Zhang, Junqing

    2016-01-01

    20 batches of Alpinia oxyphylla Miq. were collected from Yunnan, Guangdong, Guangxi, and Hainan province in China. The contents of heavy metals of As, Hg, Pb, Cd, and Cu were determined and compared. The results indicated that geographical source might be a major factor to influence the contents of heavy metals of arsenic (As), mercury (Hg), lead (Pb), cadmium (Cd), and copper (Cu) in Alpinia oxyphylla Miq. Compared to the criteria of heavy metals, the contents of As, Hg, Pb, and Cd in almost...

  8. Heavy metals and related trace elements

    International Nuclear Information System (INIS)

    Leland, H.V.; Luoma, S.N.; Wilkes, D.J.

    1977-01-01

    A review is given of heavy metals and related trace elements in the aquatic environment. Other reviews and bibliographies are cited, dealing with the metabolism and transport of metal ions and with the toxic effects of stable and radioactive trace metals on aquatic organisms. The sources of trace elements in natural waters are discussed. It is suggested that atmospheric inputs of several trace metals comprise sizable fractions of total inputs to the Great Lakes and continental shelf waters. Information on stack emissions of trace elements from a coal-fired steam plant was used to estimate the likely range of air concentrations and inputs to a forested watershed in Tennessee. Some basic concepts of cycling of elements through aquatic communities were examined, such as the Pb, Mn and Zn concentrations in sediment and estuarine plants and animals colonizing dredge-spoil disposal areas. The use of plants as biological indicators of trace element contamination was outlined, as well as bioaccumulation in aquatic fauna. The effects of environmental factors on the kinetics of element exchange were noted, for example the influx rates of Cs 137 in tubificid worms, and Co 60 and Zn 65 in shrimp were shown to be temperature dependent. The toxicity of heavy metals on aquatic fauna was discussed, such as the histopathological lesions in the kidney and liver of fishes caused by heavy metals, and the effects of Hg and Cu on the olfactory response of rainbow trout

  9. Heavy Metal Concentration in Black Tea in Iran

    Directory of Open Access Journals (Sweden)

    Nafiseh Yousefi

    2017-03-01

    Full Text Available Background & Aims of the Study: Tea is one of the most important beverages that consumes in several parts of the world including Iran. Tea plant can be contaminated during manufacturing processes and growth period by pollutants such as heavy metals. In this study, the concentration of some heavy metals in different brands of both Iranian and imported black tea to Iran was investigated to survey the human exposure to such pollutants. Materials & Methods: The study was carried out on different brands of black tea that most widely consume in Iran. The samples were collected from available supermarkets in Tehran city and concentrations of Mn, Cd and Cu were determined in black tea, using ICP-OES. Finally obtained results, by one way ANOVA analysis, compared to maximum contaminant concentration which is determined by WHO. Results: Results showed that concentrations of measured heavy metals in sampled black tea were different according to the brand of tea. The mean of Mn, Cu and Cd elements in all tea samples were 664.78, 26.15 and 0.194 µg/g, respectively. Generally, Cu content in studied samples was not significantly above WHO but Cd content, in some cases, was significantly higher than WHO. The guideline value is not given by WHO for Mn content of tea. Conclusions: According to the obtained results, Cd content is exceeding than WHO standards, therefore, control of Cd, as a toxic element that can accumulate in living systems, is necessary.

  10. Chemometric approach to evaluate heavy metals’ content in Daucus Carota from different localities in Serbia

    Directory of Open Access Journals (Sweden)

    Mitic Violeta D.

    2015-01-01

    Full Text Available The aim of this study was to evaluate heavy metal content in carrots (Daucus carota from the different localities in Serbia and assess by the cluster analysis (CA and principal components analysis (PCA the heavy metal contamination of carrots from these areas. Carrot was collected at 13 locations in five districts. Chemometric methods (CA and PCA were applied to classify localities according to heavy metal content in carrots. CA separated localities into two statistical significant clusters. PCA permitted the reduction of 12 variables to four principal components explaining 79.94% of the total variance. The first most important principal component was strongly associated with the value of Cu, Sb, Pb and Tl. This study revealed that CA and PCA appear useful tools for differentiation of localities in different districts using the profile of heavy metal in carrot samples. [Projekat Ministarstva nauke Republike Srbije, br. 172051

  11. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  12. Evaluation of Physicochemical Properties and Heavy Metals ...

    African Journals Online (AJOL)

    Physicochemical properties of municipal dumpsite compost in Kano metropolis and concentration of heavy metals were investigated. Analysis was carried out by atomic absorption spectrometry (Buck Scientific VPG 210). The results shows that the compost pH (6.63-8.19), electric conductivity of compost (638-933μs/cm), ...

  13. Heavy metal contamination in TIMS Branch sediments

    International Nuclear Information System (INIS)

    Pickett, J.B.

    1990-01-01

    The objective of this memorandum is to summarize results of previous sediment studies on Tims Branch and Steed's Pond conducted by Health Protection (HP) and by the Savannah River Laboratory (SRL) in conjunction with Reactor Materials Engineering ampersand Technology (RMET). The results for other heavy metals, such as lead, nickel, copper, mercury, chromium, cadmium, zinc, and thorium are also summarized

  14. Heavy metal bioaccumulation in Callinectes amnicola and ...

    African Journals Online (AJOL)

    The bioaccumulation of heavy metals in organisms is as a result of pollutants discharge generated by anthropogenic and natural activities which has become a tremendous concern in developing nations. The levels of cadmium, copper, chromium, lead, zinc and nickel in the tissue of Callinectes amnicola and ...

  15. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    This study investigates the presence of heavy metal contamination of Chrysichthys nigrodigitatus and Lates niloticus. Adult C. nigrodigitatus and L. niloticus were obtained from fishermen in Ikere Gorge, Oyo state, Nigeria. Water samples were also collected during the wet and dry seasons of the year in the same locality.

  16. Heavy metal levels, physicochemical properties and microbial ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... out to assess the microbial, physicochemical and heavy metal characteristics of soil samples from five different waste collection sites within the University of Benin, Benin City and evaluated using standard analytical and classical microbiological methods.

  17. On chemical activity of heavy metal oxides

    International Nuclear Information System (INIS)

    Mechev, V.V.

    1994-01-01

    Interaction of solid oxides of heavy nonferrous metals with sulfur and carbon is investigated. The results are discussed. Direct dependence of chemical activity of oxides on disordering of their crystal lattice at heating is established. Beginning of interaction in the systems studied is accompanied by change of oxide conductivity type

  18. Photoelectrochemical detection of toxic heavy metals

    CSIR Research Space (South Africa)

    Chamier, J

    2010-09-01

    Full Text Available on various substrates introduced the possibility for portable and on-site instant verification of heavy metal pollutants. In this work, the favorable properties of the mercury-sensitive fluorescent molecule, Rhodamine 6G hydrozone derivative (RS), were...

  19. Electrodialytic decontamination of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted soil is a newly developed method, which combines the electrokinetic mevement of ions in soil with the principle of electrodialytis. The method has been proven to work in laboratory scale and at present two types of pilot plant tests are made....

  20. HEAVY METALS CONTAMINATION OF TOPSOIL AND ...

    African Journals Online (AJOL)

    a

    emissions from automobile exhaust, waste incineration, land disposal of wastes, use of .... of total organic carbon increased from 2.0 ± 1.5 % in the top soil to 3.42 ± 0.83 ..... Thus, accumulation of heavy metals in the soil has potential to restrict.

  1. Heavy metals in garden soils along roads in Szeged, Hungary

    Science.gov (United States)

    Szolnoki, Zsuzsanna; Farsang, Andrea

    2010-05-01

    The soils of the urban environment, owing to the various anthropogenic activities, can be contaminated by heavy metals. The traffic is well-known for more decades to be main source of heavy metals mostly in cities. The accumulation of these elements can have different effects, either directly endangering the natural soil functions, or indirectly endangering the biosphere by bio-accumulation and inclusion in the food chain. The hobby gardens and the vegetable gardens directly along roads can be potential risky for people since unknown amount of heavy metals can be accumulated into organization of local residents due to consumption of vegetables and fruits grown in their own garden. The aim of this study was to determine the heavy metal content of garden soils directly along roads with heavy traffic in order to assess possible risk for human health. The total content and the mobile content of Cd, Co, Cr, Cu, Ni, Pb and Zn have been determined in samples from garden soils along 5 busy roads of Szeged, South Hungary. Enrichment factor has been calculated with the help of control soil samples far from roads. The soil properties basically influencing on metal mobility have also been examined. Finally, the human health risk of these garden soils has been modelled by determination of health risk quotient (HRQ). As a result of our investigations, it can be claimed that mostly Cu, Zn and to a lesser degree the Ni, Cr and Pb accumulated in garden soils along roads depending on the traffic density. In general, the topsoils (0-10 cm) had higher amount of these metals rather than the subsoils (40-50 cm). Ni of these metals has approached; Cu has exceeded limit value while Pb is under it. Cd is very high in both soils along roads and control ones far from roads. Garden soils along the roads have such basic soil parameters (pH, mechanical soil type, humus content) that prove fairly high metal-binding capacity for these soils. Total risk of usage of these gardens (ingestion of soil

  2. Factors affecting heavy metal uptake in plant selection for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Anton, A.; Mathe-Gaspar, G. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The heavy metal uptake of ten plant species was studied under different soil and climatic conditions. Effects of soil pH, temperature, plant species and phenophase on the heavy metal content of stems and leaves were determined in pot experiments. Plants and soil samples were collected from a lead/zinc mine ore (Gyoengyoesoroszi, Hungary) and characterised by high contents of Pb, Zn, As, Cd, Cu. The possibility of an adapted phytoremediation technology was indicated by different bioconcentration factors (BCF). The BCF depended markedly (10- to 100-fold) on plant species and environmental conditions. Based on our results a ''season-adapted'' phytoextraction technology with different plant species (utilising their different temperature requirements and/or harvest time) is suggested. (orig.)

  3. Metabolic Demands of Heavy Metal Drumming

    Directory of Open Access Journals (Sweden)

    Bryan Romero

    2016-07-01

    Full Text Available Background: The drum set involves dynamic movement of all four limbs. Motor control studies have been done on drum set playing, yet not much is known about the physiological responses to this activity. Even less is known about heavy metal drumming. Aims: The purpose of this study was to determine metabolic responses and demands of heavy metal drumming. Methods: Five semi-professional male drummers (mean ± SD age = 27.4 ± 2.6 y, height = 177.2 ± 3.8 cm, body mass = 85.1 ± 17.8 kg performed four prescribed and four self-selected heavy metal songs. Oxygen consumption (VO2, minute ventilation (VE and respiratory exchange ratio (RER were measured using a metabolic cart.  Heart rate (HR was measured using a heart rate monitor. VO2max was determined using a graded cycle ergometer test. Results: The results indicated a metabolic cost of 6.3 ± 1.4 METs and heart rate of 145.1 ± 15.7 beats·min-1 (75.4 ± 8.3% of age-predicted HRmax. VO2 peak values reached approximately 90% of the drummer’s VO2max when performing at the fastest speeds. According to these results, heavy metal drumming may be considered vigorous intensity activity (≥ 6.0 METs. The relative VO2max of 40.2 ± 9.5 mL·kg·min-1 leads to an aerobic fitness classification of “average” for adult males. Conclusions: The metabolic demands required during heavy metal drumming meet the American College of Sports Medicine guidelines for the development of health related fitness.  Keywords: Drum set, Exercise physiology, VO2, Music

  4. Prospects for separating heavy metal from contaminated soil

    International Nuclear Information System (INIS)

    Langen, M.; Hoberg, H.; Hamacher, B.

    1994-01-01

    For decades, large quantities of organic and inorganic pollutants have been brought into the soil as a result of the industrial operations of smelting and coking plants. This paper reports on the prospects of separating heavy metals from soil contaminated by smelting and coking plants by means of a physical/chemical washing procedure. Besides the description of virgin soil characteristics, cleaning results and process parameters of calssification, density separation and flotation processes are presented. It is shown that heavy metal pollution of virgin soil can be reduced by the classical process stages of soil washing. The metal content of virgin soil are critically assessed whereby the limits of the physical-chimical washing process will also be entered into. Emphasis is placed on the significance of the determination of limiting values for inorganic contamination, especially for soil contaminated with both organic and inorganic pollution. (orig.) [de

  5. Trends and sources for heavy metals in urban atmosphere

    International Nuclear Information System (INIS)

    Kemp, Kaare

    2002-01-01

    The concentrations of a number of heavy metals in the air in three Danish cities have been measured by means of PIXE for more than two decades. The well-known capability of PIXE for fast and efficient analysis of aerosol samples has been employed for analysis of daily samples from several sites during the whole period. The main sources are traffic, domestic heating and long-range transport. Source apportionment and trends for single metals are assessed by means of simple statistical methods. The most striking change has occurred for the Pb concentration, which is reduced by almost a factor of 100 following the reduction of the Pb content in petrol. The main source of Cu, Cr and Zn is the traffic. The concentrations of these elements have been slightly increasing. The concentrations for most of the other heavy metals, which originate mainly from sources outside the cities, have been decreasing

  6. Trends and sources for heavy metals in urban atmosphere

    Science.gov (United States)

    Kemp, Kåre

    2002-04-01

    The concentrations of a number of heavy metals in the air in three Danish cities have been measured by means of PIXE for more than two decades. The well-known capability of PIXE for fast and efficient analysis of aerosol samples has been employed for analysis of daily samples from several sites during the whole period. The main sources are traffic, domestic heating and long-range transport. Source apportionment and trends for single metals are assessed by means of simple statistical methods. The most striking change has occurred for the Pb concentration, which is reduced by almost a factor of 100 following the reduction of the Pb content in petrol. The main source of Cu, Cr and Zn is the traffic. The concentrations of these elements have been slightly increasing. The concentrations for most of the other heavy metals, which originate mainly from sources outside the cities, have been decreasing.

  7. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, J.-E.; Andrews, D. J.

    2017-09-01

    We propose an ESA/M5 spacecraft mission to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×1019 kg of (16) Psyche make it one of the largest and densest of asteroids, 4.5 g cm-3, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. (16) Psyche orbits the Sun with semi-major axis 2.9 AU, 3º inclination, and is as yet unexplored in-situ.

  8. Evaluation of some heavy metal contaminants in biscuits, fruit drinks ...

    African Journals Online (AJOL)

    Evaluation of some heavy metal contaminants in biscuits, fruit drinks, concentrates, ... effect in human due to continual consumption of food contaminated with heavy metals gotten from raw materials, manufacturing and packaging processes.

  9. Determination of selected heavy metals in inland fresh water of ...

    African Journals Online (AJOL)

    Agadaga

    Key words: Heavy metals, freshwater, concentrations, quality, variation, distribution. ... prevalence of heavy metals in inland water of lower River. Niger drain are scarce ..... Niger waters at Ajaokuta were found to be low and within guideline.

  10. Concentration and Health Implication of Heavy Metals in Drinking ...

    African Journals Online (AJOL)

    Concentration and Health Implication of Heavy Metals in Drinking Water from Urban ... water is not mentioned by WHO, but all the samples analyzed were found to ... Key words: Drinking water quality, Heavy metals, Maximum admissible limit, ...

  11. Phytoremediation of heavy metals with several efficiency enhancer ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Key words: phytoremediation, heavy metal, plant growth promoting rhizobacteria, multi-functional method. ... population in the twentieth century, heavy metal ... This natural and environmental friendly technology is.

  12. heavy metals and cyanide distribution in the villages surrounding ...

    African Journals Online (AJOL)

    detection limit) were higher in the wells closest to the Tailing Storage Facility ... Key Words: Heavy metals pollution, Total cyanide, ground water pollution and ..... cyanide, heavy metals and probably other hazardous substances, leakage of.

  13. Leaching of heavy metals from steelmaking slags

    International Nuclear Information System (INIS)

    Gomez, J. F. P.; Pino, C. G.

    2006-01-01

    Leaching tests with EAF and Ladle slags were performed, using a flow through tests and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. the chemical analysis of the leachates during this period shows, in general, for both types of slag, and increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slang samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-though test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5% (Ca) and 1% (other elements). (Author) 12 refs

  14. Solubility of heavy metals added to MSW

    International Nuclear Information System (INIS)

    Lo, H.M.; Lin, K.C.; Liu, M.H.; Pai, T.Z.; Lin, C.Y.; Liu, W.F.; Fang, G.C.; Lu, C.; Chiang, C.F.; Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C.

    2009-01-01

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO 3 and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K d (l g -1 ) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K d (l g -1 ) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions

  15. Solubility of heavy metals added to MSW

    Energy Technology Data Exchange (ETDEWEB)

    Lo, H.M. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)], E-mail: hmlo@cyut.edu.tw; Lin, K.C. [Department of Occupational Safety and Health, Chung Shan Medical University, 110, Sec. 1, Jiangguo N. Rd., Taichung 402, Taiwan (China); Liu, M.H.; Pai, T.Z. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China); Lin, C.Y. [Department of Soil and Water Conservation, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Liu, W.F. [Department of Electronical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 407, Taiwan (China); Fang, G.C. [Department of Environmental Engineering, Hungkuang University, 34 Chung-Chie Road, Sha Lu, Taichung 433, Taiwan (China); Lu, C. [Department of Environmental Engineering, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Chiang, C.F. [Department of Health Risk Management, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)

    2009-01-15

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO{sub 3} and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K{sub d} (l g{sup -1}) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K{sub d} (l g{sup -1}) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions.

  16. THE STUDY OF HEAVY METAL FROM ENVIRONMENTAL SAMPLES BY ATOMIC TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Ion V. POPESCU

    2011-05-01

    Full Text Available Using the Atomic Absorption Spectrometry (AAS and Energy Dispersive X-ray spectrometry (EDXRF techniques we analyzed the contents of heavy metals ( Cd, Cr, Ni, Pb, Ti, Sr, Co, Bi from eight wild mushrooms and soil substrate samples (48 samples of eight fungal species and 32 underlying soil samples, collected from ten forest sites of Dambovița County Romania. It was determined that the elements, especially heavy metals, in soil were characteristic of the acidic soils of the Romanian forest lands and are influenced by industrial pollution. Analytical possibilities of AAS and EDXRF analytical techniques have been compared and the heavy metal transfer from substrate to mushrooms has been studied. The coefficient of accumulation of essential and heavy metals has been calculated as well. Heavy metal contents of all analyzed mushrooms were generally higher than previously reported in literature.

  17. Considering bioavailability in the remediation of heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Leita L.

    2013-04-01

    Full Text Available Many years of research have demonstrated that instead of the total concentration of metals in soil, bioavailability is the key to understand the environmental risk derived by metals, since adverse effects are related only to the biologically available forms of these elements. The knowledge of bioavailability can decrease the uncertainties in evaluating exposure in human and ecological risk assessment. At the same time, the efficiency of remediation treatments could be greatly influenced by availability of the contaminants. Consideration of the bioavailability processes at contaminated sites could be useful in site-specific risk assessment: the fraction of mobile metals, instead of total content should be provided as estimates of metal exposure. Moreover, knowledge of the chemical forms of heavy metals in soils is a critical component in the evaluation of applicability of different remediation technologies such as phytoremdiation or soil washing.

  18. [Heavy Metals Pollution in Topsoil from Dagang Industry Area and Its Ecological Risk Assessment].

    Science.gov (United States)

    Zhang, Qian; Chen, Zong-juan; Peng, Chang-sheng; Li, Fa-sheng; Gu, Qing-bao

    2015-11-01

    Based on previous studies and field investigation of Dagang industry area in Tianjin, a total of 128 topsoil samples were collected, and contents of 10 heavy metals (As, Cd, Cr, Co, Cu, Pb, Ni, V, Zn and Hg) were determined. The geoaccumulation index and geostatistics were applied to examine the degree of contamination and spatial distribution of heavy metals in topsoil. The assessment on ecological risk of heavy metals was carried out using Hakanson's method, and the main resources of the heavy metals were analyzed as well. It was found that As, Cd and Co had the highest proportions exceeding Tianjin background value, which were 100%, 97.66% and 96.88%, respectively; the heavy-metal content increased to some extent comparing with that in 2004, and the pollutions of As and Cd were the worst, and other metals were at moderate pollution level or below. The ecological risks of heavy metals were different in topsoil with different land use types, the farmland soil in the southwest as well as soils adjacent to the industrial land were at relatively high potential ecological risk level, and the integrated ecological risk index reached up to 1 437.37. Analysis of correlation and principal component showed that traffic and transportation as well as agricultural activities might be the main resources of heavy metals in the area, besides, the industrial activities in the region might also affect the accumulation of heavy metals.

  19. Phytoremediation of water bodies contaminated with radioactive heavy metal

    International Nuclear Information System (INIS)

    Yan Zhen; Yuan Shichao; Ling Hui; Xie Shuibo

    2012-01-01

    The sources of the radioactive heavy metal in the water bodies were analyzed. The factors that affect phyto remediation of water contaminated with radioactive heavy metal were discussed. The plant species, mechanism and major technology of phyto remediation of water contaminated with radioactive heavy metal were particularly introduced. The prospective study was remarked. (authors)

  20. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    Science.gov (United States)

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  1. Bioaccumulation and toxic effects of some heavy metals in ...

    African Journals Online (AJOL)

    The contamination of the aquatic systems with heavy metals from natural anthropogenic sources has become a global problem which poses threats to ecosystems and natural communities. Hence this study reviews the effects of heavy metals in freshwater fishes. Fishes bioaccumulate heavy metals (including cadmium, zinc ...

  2. Bioremediation of Heavy Metal by Algae

    Directory of Open Access Journals (Sweden)

    Seema Dwivedi

    2012-07-01

    Full Text Available Instead of using mainly bacteria, it is also possible to use mainly algae to clean wastewater because many of the pollutant sources in wastewater are also food sources for algae. Nitrates and phosphates are common components of plant fertilizers for plants. Like plants, algae need large quantities of nitrates and phosphates to support their fast cell cycles. Certain heavy metals are also important for the normal functioning of algae. These include iron (for photosynthesis, and chromium (for metabolism. Because marine environments are normally scarce in these metals, some marine algae especially have developed efficient mechanisms to gather these heavy metals from the environment and take them up. These natural processes can also be used to remove certain heavy metals from the environment. The use of algae has several advantages over normal bacteria-based bioremediation processes. One major advantage in the removal of pollutants is that this is a process that under light conditions does not need oxygen. Instead, as pollutants are taken up and digested, oxygen is added while carbon dioxide is removed. Hence, phytoremediation could potentially be coupled with carbon sequestration. Additionally, because phytoremediation does not rely on fouling processes, odors are much less a problem. Microalgae, in particular, have been recognized as suitable vectors for detoxification and have emerged as a potential low-cost alternative to physicochemical treatments. Uptake of metals by living microalgae occurs in two steps: one takes place rapidly and is essentially independent of cell metabolism – “adsorption” onto the cell surface. The other one is lengthy and relies on cell metabolism – “absorption” or “intracellular uptake.” Nonviable cells have also been successfully used in metal removal from contaminated sites. Some of the technologies in heavy metal removals, such as High Rate Algal Ponds and Algal Turf Scrubber, have been justified for

  3. Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction

    International Nuclear Information System (INIS)

    Kim, In Sung; Kang, Kyung Hong; Johnson-Green, Perry; Lee, Eun Ju

    2003-01-01

    Polygonum thunbergii is useful to remove heavy metal from soil and water. - In this study, cadmium (II), lead (II), copper (II) and zinc (II) were determined in Polygonum thunbergii and soil from the Mankyung River watershed, Korea. Soil samples contained detectable lead ( -1 ), copper ( -1 ) and zinc ( -1 ), whereas cadmium was undetectable. Whole plants of P. thunbergii contained detectable lead ( -1 ), copper ( -1 ) and zinc ( -1 ), whereas cadmium was detectable only in the stem ( -1 ) and root ( -1 ). Whole plant concentrations were very different for each metal, particularly in the case of zinc. The mean content of heavy metal in the whole plants increased in the order of cadmium (8.5 μg g -1 ) -1 ) -1 ) -1 ). Soil lead, copper and zinc were correlated with each metal's accumulation in the plants (lead, r=0.841, P<0.005; copper, r=0.874, P<0.001; zinc, r=0.770, P<0.005). Lead content in roots and leaves was highly correlated (r=0.5529, P<0.001), as was lead content in roots and stems (r=0.5425, P<0.001). Mean bioconcentration factors for the aboveground tissues were 4.2 (lead), 14.8 (copper) and 27.7 (zinc), and for the underground tissues, were 22.2 (lead), 92.9 (copper) and 62.7 (zinc). After hydroponic growth, bioaccumulation coefficients were 2.0 (cadmium), 3.2 (lead), 17.2 (copper) and 13.1 (zinc) for whole plants. We considered these results as indicative of the ability of P. thunbergii plants to take up metal ions from a soil matrix contaminated with heavy metals

  4. Customizable Biopolymers for Heavy Metal Remediation

    International Nuclear Information System (INIS)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred

    2005-01-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted

  5. Heavy metals hazards from Nigerian spices.

    Science.gov (United States)

    Asomugha, Rose Ngozi; Udowelle, Nnaemeka Arinze; Offor, Samuel James; Njoku, Chinonso Judith; Ofoma, Ifeoma Victoria; Chukwuogor, Chiaku Chinwe; Orisakwe, Orish Ebere

    Natural spices are commonly used by the people in Nigeria. They may be easily contaminated with heavy metals when they are dried and then pose a health risk for the consumers. The aim of this study was to determine the levels of heavy metals in some commonly consumed natural spices namely Prosopis Africana, Xylopia aethiopica, Piper gineense, Monodora myristica, Monodora tenuifolia and Capsicum frutescens sold in the local markets of Awka, Anambra state, South East Nigeria to estimate the potential health risk. The range of heavy metal concentration was in the order: Zn (14.09 - 161.04) > Fe (28.15 - 134.59) > Pb (2.61 - 8.97) > Cr (0.001 - 3.81) > Co (0.28 - 3.07) > Ni (0.34 - 2.89). Pb, Fe and Zn exceeded the maximum allowable concentrations for spices. The Target Hazard Quotient (THQ) of the spices varied from 0.06-0.5. Estimated daily intakes (EDI) were all below the tolerable daily intake (TDI). The lead levels in Prosopis africana, Xylopia aethiopica, Piper gineense, Monodora myristica and Capsicum frutescens which are 8-30 times higher than the WHO/FAO permissible limit of 0.3 mg/kg. Lead contamination of spices sold in Awka (south east Nigeria) may add to the body burden of lead. A good quality control for herbal food is important in order to protect consumers from contamination. food products, spices, potential toxic metals, risk assessment, public health.

  6. Heavy Metal Contamination of Popular Nail Polishes in Iran

    Directory of Open Access Journals (Sweden)

    Golnaz Karimi

    2015-06-01

    Full Text Available Background: Toxic and hazardous heavy metals like arsenic, lead, mercury, zinc, chromium and iron are found in a variety of personal care products, e.g. lipstick, whitening toothpaste, eyeliner and nail color. The nails absorb the pigments of nail polishes and vaporized or soluble metals can easily pass it. The goal of this survey was to assess whether the different colors of nail polishes comply with maximum concentrations of heavy metals in the EPA’s guidelines. Methods: 150 samples of different popular brands of nail polishes in 13 colors (yellow, beige, silver, pink, white, violet, brown, golden, green, black, colorless, red and blue were randomly purchased from beauty shops in Tehran City, Iran, in 2014. Microwave digestion EPA method 3051 was used by a microwave oven to determine the amount of 5 heavy metals; Nickel, Chromium, Lead, Arsenic and Cadmium. One-way ANOVA, Two-way ANOVA, hierarchical cluster, and principal component analyses were applied by Statistica 7.0 software. Results: The concentrations of chrome, lead, nickel and arsenic showed significant differences between the colors (p<0.05. In all studied samples, the level of cadmium was beyond the safe maximum permissible limit (MPS, but no significance difference in the cadmium content was identified. Conclusion: Due to the high concentrations of toxic metals in many brands of nail polishes, meticulous quality control is recommended for these beauty products.

  7. Sublethal effects of heavy metals on biochemical composition and their recovery in Indian major carps

    International Nuclear Information System (INIS)

    Garg, Smita; Gupta, R.K.; Jain, K.L.

    2009-01-01

    Studies were conducted to assess the effects of sublethal exposure of heavy metals cadmium, arsenic and zinc for 45 days on Indian major carps, Labeo rohita, Cirrhinus mrigala and Catla catla. Heavy metal treatments in general showed significant reduction in carbohydrate and lipid contents content in muscles as well as in gills in all the three fish species. The order of reduction of muscle and gill carbohydrate and lipid content due to different treatments was Cd + As + Zn > Cd + As > As + Zn > Cd + Zn > Cd > As > Zn. When fish were transferred to metal free water for 30 days, the level of carbohydrate and lipid contents improved considerably in all the three fish species

  8. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    Science.gov (United States)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2018-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  9. Evaluation of Trichoptera as an indicator organism for environmental pollution by heavy metals

    International Nuclear Information System (INIS)

    Aizawa, Shoichi; Tsunoda, Kin-ichi; Akatsuka, Masayoshi; Inoue, Sadao; Akaiwa, Hideo

    1994-01-01

    A method of analysis for heavy metals in trichopteran larvae by AAS was established to evaluate this aquatic insect as an indicator organism for environmental pollution by heavy metals. A wet digestion method with nitric acid and hydrogen peroxide was found to be suitable for the decomposition of trichopteran larva samples. No serious variation in heavy metal contents was found in individual samples collected from one sampling point. A weak negative correlation was observed between the body length and the heavy metal contents of trichopteran larvae. In addition, the heavy metal content of trichopteran larvae seems to show a seasonal fluctuation. Trichopteran larvae in the Watarase River, which has abandoned copper and manganese mines along its upper stream, show an enriched heavy metal content as compared with those in other non-polluted rivers. Moreover, this aquatic insect in the Kiryu River also shows enrichment of manganese due to abandoned manganese mines situated upstream. These facts suggest that the trichopteran larva in a useful indicator organism for environmental pollution by heavy metals. (author)

  10. Decontamination of soils polluted with heavy metals using plants as determined by nuclear technique

    International Nuclear Information System (INIS)

    Lotfy, S.M

    2010-01-01

    The objectives of this work were three folds. First, to study the mobility and fate of heavy metals in two polluted sites (Mostorud soil, irrigated with contaminated water for more than 30 years and El-Gabal EL-Asfar soil, subjected to sewage effluent irrigation for more than 50 years) utilizing a modified tessier's sequential extraction procedure to evaluate the effect of total metal concentrations on metal partitioning into different fractions. Second, to evaluate the efficiency of some plant species (sunflower, cotton, penakium, Napier grass, and Squash) to extract heavy metals out of polluted soils. Third, to enhance the phyto-extraction of heavy metals by sunflower plant using some chemical chelators (citric acids, EDTA, and Ammonium nitrate) in order to improve the remediation of pollutants as well as to protect soil quality.It was observed that the distribution of heavy metals in various chemical fractions depends on the total heavy metals content. The distribution of heavy metals forms in the studied soils was in the following decreasing order: residual > Fe-Mn oxides > carbonates > organic > exchangeable > water soluble.Either higher metal accumulation in shoots or enhanced metal accumulation in roots was mainly due to improved phyto-extraction or rhizo-filtration efficiency, respectively. Heavy metals accumulation in shoots and roots of the investigated plant species was as follow: sunflower > cotton > penakium > Napier grass > Squash with a lower order of magnitude. Sunflower showed superiority for heavy metals extraction.Application of chemical chelators (soil amendments) enhanced the phyto-extraction efficiency of heavy metals by sunflower in both Mostorud and El-Gabal El-Asfar soils. Citric acid enhanced metals accumulation in shoots and roots more than EDTA and ammonium nitrate. Citric acid with rate of 20 m mole/kg soil was the best chelators to enhance phyto- extraction of heavy metals by sunflower.

  11. Characterization of Heavy metals from banana farming soils

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dian; Huang, Cheng He; Huang, Dong Yi [College of Agronomy, Hainan University, Haikou City, Hainan Province (China); Ouyang, Ying [Department of Water Resources, St. Johns River Water Management District, Palatka, FL (United States)

    2010-06-15

    There is a growing public concern about the contamination of heavy metals in agricultural soils in China due to the increasingly applications of chemical fertilizers and pesticides during the last two decades. This study characterized the variability of heavy metals, including copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), and nickel (Ni), from the banana farming soils in western Hainan Island, China. Five banana farms from different locations in the island were selected to collect 69 mixed-soil samples in this study. Experimental data showed that concentrations of Cu ranged from 3.38 to 54.52, Zn from 24.0 to 189.8, Pb from 15.98 to 58.42, Cd from 0.43 to 3.21, and Ni from 3.47 to 121.86 mg kg{sup -1} dry wt. In general, concentrations of the heavy metals varied with metal species and changed from location to location, which occurred presumably due to the variations of soil parent materials and to a certain extent due to the use of different types of agrochemicals. Our study further revealed that concentrations of Cu and Zn were higher in the banana farming soils than in the natural (control) soils among all of the five locations, whereas mixed results were observed for Pb, Cd, and Ni in both the banana farming and control soils, depending on the locations. Comparisons of the heavy metal concentrations with the Chinese Soil Quality Standards (CSQSs) showed that Cu, Zn, and Pb contents were lower but Cd and Ni contents were higher in the banana farming soils than the Class II standard of the CSQSs. Results suggested that accumulation of Cu, Zn, and Pb in the soils is safe for banana fruit production, whereas accumulation of Cd and Ni in the same soils could potentially pose threats to banana fruit safety. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses....... The first as in-situ or on-site treatment when there is no requirement for fast remediation, as the removal rate of the heavy metals are dependent on the distance between the electrodes (everything else equal) and in such application the electrode spacing must have a certain distance (often meters......). In the stirred setup it is possible to shorten the transport route to few mm and to have a faster and continuous process. The present paper for the first time reports a direct comparison of the two options. The remediation of the stirred suspension showed faster than remediation of the water saturated soil even...

  13. Bioethanol production from recovered napier grass with heavy metals.

    Science.gov (United States)

    Ko, Chun-Han; Yu, Fan-Chun; Chang, Fang-Chih; Yang, Bing-Yuan; Chen, Wen-Hua; Hwang, Wen-Song; Tu, Ta-Chih

    2017-12-01

    Using plants to absorb and accumulate heavy metals from polluted soil, followed by the recycling of explants containing heavy metals, can help achieve the goal of reverting contaminated soil to low heavy-metal content soil. However, the re-use of recovered explants can also be problematic. Meanwhile, bioethanol has become a popular energy source. In this study, napier grass was used for the remediation of soil contaminated with heavy metals (artificially contaminated soil). The influence of bioethanol production from napier grass after phytoremediation was also investigated. The concentration of Zn, Cd, and Cr in the contaminated soil was 1000, 100, and 250 mg/kg, respectively. After napier grass phytoremediation, the concentration (dry biomass) of Zn, Cd, and Cr in the explants was 2701.97 ± 173.49, 6.1 ± 2.3, and 74.24 ± 1.42 mg/kg, respectively. Biomass production in the unpolluted soil was 861.13 ± 4.23 g. The biomass production ratio in high Zn-polluted soil was only 3.89%, while it was 4.68% for Cd and 21.4% for Cr. The biomass obtained after napier grass phytoremediation was pretreated using the steam explosion conditions of 180 °C, for 10 min, with 1.5% H 2 SO 2 , followed by enzymatic hydrolysis. The efficiency of enzymatic hydrolysis for Zn-polluted biomass was 90% of the unpolluted biomass, while it was 77% for Cd, and approximately the same for Cr. The fermentation efficiency of the heavy-metal-containing biomass was higher than the control biomass. The fermentation ethanol concentration obtained was 8.69-12.68, 13.03-15.50, and 18.48-19.31 g/L in Zn, Cd, and Cr environments, respectively. Results show that the heavy metals had a positive effect on bacteria fermentation. However, the fermentation efficiency was lower for biomass with severe heavy metal pollution. Thus, the utilization of napier grass phytoremediation for bioethanol production has a positive effect on the sustainability of environmental resources. Copyright © 2017

  14. Contents of some heavy metals in plants from Saginaw Bay (Lake Huron) and some small lakes in wilderness areas of Michigan's Upper Peninsula as analyzed by neutron activation analysis

    International Nuclear Information System (INIS)

    Wells, J.R.; Kaufman, P.B.; Jones, J.D.; Estabrook, G.F.; Ghosheh, N.S.; Michigan Univ., Ann Arbor; Eastern Michigan University, Ypsilanti

    1982-01-01

    The highest concentrations of heavy metals occured in plants collected near the mouth of the Saginaw River. The alga, Cladophora sp., and the flowering plant, Typha augustifolia (cat-tail), are notable for the high concentration of heavy metals. In addition, several other species that were sampled from small lakes in Michigan's Upper Peninsula contained higher concentrations of certain metals (Ba, Cr, Rb) than from any samples obtained from Saginaw Bay. Different organs of the same species, or of the same plant, such as cut-tail, vary widely in concentrations of the same element. A computer-derived analysis of our data is presented, and the implications of our results as they relate to pollution by heavy metals in fresh-water lakes is discussed. (author)

  15. Contents of some heavy metals in plants from Saginaw Bay (Lake Huron) and some small lakes in wilderness areas of Michigan's Upper Peninsula as analyzed by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wells, J.R. (Cranbrook Institute of Science, Bloomfield Hill (USA)); Kaufman, P.B.; Jones, J.D.; Estabrook, G.F.; Ghosheh, N.S. (Michigan Univ., Ann Arbor (USA); Michigan Univ., Ann Arbor (USA). Michigan Memorial Phoenix Project; Eastern Michigan University, Ypsilanti (USA). Department of Biology)

    1982-01-01

    The highest concentrations of heavy metals occured in plants collected near the mouth of the Saginaw River. The alga, Cladophora sp., and the flowering plant, Typha augustifolia (cat-tail), are notable for the high concentration of heavy metals. In addition, several other species that were sampled from small lakes in Michigan's Upper Peninsula contained higher concentrations of certain metals (Ba, Cr, Rb) than from any samples obtained from Saginaw Bay. Different organs of the same species, or of the same plant, such as cut-tail, vary widely in concentrations of the same element. A computer-derived analysis of our data is presented, and the implications of our results as they relate to pollution by heavy metals in fresh-water lakes is discussed.

  16. Heavy metal burden of the Pinnau river

    International Nuclear Information System (INIS)

    1993-01-01

    The water phase and sediment of the Pinnau river were investigated for their heavy-metal pollution. Tests for the elements chromium, mercury, nickel, arsenic, lead, copper, cadmium, zinc and iron were carried through with sediment samples in 1984 and 1989 and with water samples in 1987 and 1989. Whereas no significant changes in the levels of these metals were found in the water phase during the two-year period of invetigation, slightly reduced levels of zinc, cadmium and mercury were established in the sediment in 1989 as compared to 1984. (orig.) [de

  17. Heavy Metals Pollution in Lake Mariut

    International Nuclear Information System (INIS)

    Saad, M.A.H.; Ezzat, A.A.E.; El-Rayis, O.A.; Hafez, H.

    1981-01-01

    The occurrence and distribution of heavy metals in the water of the heavily polluted Lake Mariut (Egypt) during August 1978 to September 1979 as well as the accumulation of these metals in the different parts of the common fish, Tilapia species, were studied. The study represents a second part of a pilot project on pollution of Lake Mariut supported by IAEA. The mean concentrations of the measured Zn, Gu, Fe, Mn and Cd in the lake water were 10.9, 4.2, 19.1, 26.2 and 0.62 μg/l, respectively

  18. Health concerns of heavy metals and metalloids.

    Science.gov (United States)

    Cooksey, Chris

    2012-01-01

    There is a long history and an overwhelming amount of data on the toxicity of heavy metal compounds. Here a brief look is taken of some aspects of the toxicity of lead, cadmium, mercury and arsenic, chosen for their historical importance and environmental significance, highlighting especially the contrast between the acute and chronic toxicity of purely inorganic species and their organic derivatives. For further details of other toxic metal compounds, the reader might like to consult "Elements of murder: a history of poison" by John Emsley (2005, Oxford University Press).

  19. Heavy metals in the hydrological cycle

    International Nuclear Information System (INIS)

    Astruc, M.; Lester, J.N.

    1988-01-01

    An integrated approach to the problems associated with heavy metals in the hydrological cycle is presented. Research and practical experience from a broad spectrum of disciplines are drawn together concentrating on the following themes: water quality, domestic and industrial wastes, sludge and dredge materials, soil interactions, effects on aquatic ecosystems, organometallics (with particular reference to tin compounds), speciation, the marine environment and health effects. One paper is within INIS scope and is processed separately. (U.K.)

  20. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, Ashraf E.M.; King Saud University, Riyadh

    2008-01-01

    Full text: Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples were collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration were measured. The annual addition of these elements in soil due to soil fertilization were calculated and discussed. (author)

  1. Polution of the environment by heavy metals

    International Nuclear Information System (INIS)

    Houtman, J.P.W.

    1980-01-01

    An overview is given of the problems caused by pollution of the environment by heavy metals and the important role played by nuclear examination methods such as activation analysis and particle induced X-ray emission. A number of examples taken from work initiated by the interuniversitair Reactor Instituut, demonstrate that this research should be continued and extended, particularly in relation to the expected increase in the use of coal for energy generation in electricity centres. (C.F.)

  2. Inversion voltammeter definition of heavy metals in tooth pastes

    International Nuclear Information System (INIS)

    Kurbatov, D.I.; Buldakova, L.Yu.; Pichugina, A.S.

    2004-01-01

    Electrochemical behaviour of some heavy metals at their combined presence is studied by voltammetric method with use of graphite content sensor. The method of determination of Hg, Pb, Cd, Cu, and Zn in the tooth pastes, based on transfer of hallmark in a solution and voltammeter diagram registration is developed. Duration of the analysis (3 collateral hallmarks) makes no more than 1.5 h. An error - 10-15 % at the contents of determined elements of the (1-5) x 10 -4 % [ru

  3. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    Science.gov (United States)

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  4. Heavy metal emissions for Danish road transport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.; Slentoe, E.

    2010-04-15

    This report presents new heavy metal emission factors for cars, vans, trucks, buses, mopeds and motorcycles for each of the emission sources fuel consumption, engine oil, tyre wear, brake wear and road abrasion. The emission components covered are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn), all of them relevant for emission reporting to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long Range Transboundary Pollutants) convention. The report also presents a new Danish inventory for the year 2007. The following emissions in total TSP (in brackets) are calculated for the year 2007: As (8 kg), Cd (48 kg), Cr (197 kg), Cu (51 779 kg), Hg (28 kg), Ni (158 kg), Pb (6 989 kg), Se (33 kg) and Zn (28 556 kg). Per vehicle type cars are the most important source of emission for all heavy metal species, followed by vans, trucks, buses and 2-wheelers. By using the detailed emission factors and inventory calculation methods established in the present project, estimates of heavy metal emissions can be made for other years than 2007. (author)

  5. [Research advances in heavy metals pollution ecology of diatom].

    Science.gov (United States)

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  6. Safety of Potato Consumption in Slovak Region Contaminated by Heavy Metals due to Previous Mining Activity

    Directory of Open Access Journals (Sweden)

    Janette Musilova

    2017-01-01

    Full Text Available Heavy metals are among the most serious environmental contaminants in mining districts. Soil, as one of the main components of the environment, is the place of heavy metal entry into plants and consequently into the food chain, too. Potatoes grown in the region of Middle Spis (Slovakia may be a source of increased content of heavy metals and pose a health risk to the consumer. The contents of heavy metals (Cd, Pb, and Ni in potato and soil samples were determined using the AAS method and compared with limit values set by the Slovak Republic and the European Union. The content of heavy metals was determined in 12 potato cultivars with different length of vegetation period (mid-early, very early, and early, resp., which were grown in three localities with a highly disturbed environment. Total contents and mobile forms of heavy metals as well as physical and chemical properties were determined in soil samples which were collected from the same sampling sites. Only Pb content in potato tubers was higher than the hygienic limit value (0.1 mg kg−1 FM in 15 sampling sites (interval was n.d. –0.2298 mg kg−1 FM. The contents of exchangeable forms (total content of heavy metals in soil were ranged between the intervals: Cd 0.004–0.055 (0.94–1 56, Pb 0.023–0.295 (17.00–26.80, and Ni 0.019–0.475 (30.80–71.00 mg kg−1. At current average consumption levels of potatoes, tolerable weekly intake (TWI or tolerable daily intake (TDI for observed heavy metals was not exceeded.

  7. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  8. Occurrence of tributyltin compounds and characteristics of heavy metals

    International Nuclear Information System (INIS)

    Sheikh, M. A.; Oomori, T.; Noah, N. M.; Tsuha, K.

    2007-01-01

    Surface sediment samples were collected from Tanzanian major commercial ports and studied for the distribution and behavior of tributyltin compounds and heavy metals. The content of tributyltin in sediments ranged from ND-3670 ng (Sn) g 1 dry wt (1 780 ± 1720) (Mean ± SD) at Zanzibar and from ND-16700 ng (Sn)g 1 dry wt (4080 ± 7540) at Dar Es Salaam ports, respectively. Maximum tributyltin levels were detected inside the both ports. Metabolic degradation of butyltin compounds showed that MBT + DBT > TBT %, this may be attributed by the warm ambient water and intense sunlight in the tropical regions. A sequential extraction procedure was undertaken to provide detailed chemical characteristics of heavy metals in the sediments. The procedure revealed that about 50 % of Fe in the both ports is in immobile fraction (residual fraction) while other metals; Cd, Cu, Ni, Co, Zn, Pb. and Mn were mostly found in exchangeable or carbonate fractions and thus can be easily remobilized and enter the aquatic food chain. This paper provides basic information of tributyltin compounds contamination and chemical characteristics of heavy metals in the marine ecosystem in Tanzania. To our knowledge, this is the first documentation of Organotin compounds in marine environments in East Africa and suggests the importance of further detailed Organotin compounds studies in other sub-Saharan Africa regions

  9. Use of quality indicators for long-term evaluation of heavy metals content in soils of an agro-ecological protected wetland: L'Albufera de Valencia Natural Park, Valencia, Spain

    Science.gov (United States)

    Pascual-Aguilar, Juan Antonio; Andreu, Vicente; Palop, Carla

    2015-04-01

    Due to the social, economical and environmental importance of agro-ecological wetlands, strategies for periodical evaluation of their environmental quality should be developed, particularly in those areas were a mixture of land uses are supporting the survival of wildlife and migrant species as is the case of most Mediterranean coastal wetlands. The aim of this work is to develop a strategy for a long-term assessment of the environmental quality of soils in a rice-wetland: L'Albufera Natural Park, Spain, in the surroundings of the metropolitan area of Valencia. The area was officially declared as Natural Park in 1986, integrating both the traditional irrigation system and the ecological importance derived from being a Mediterranean Wetland that is now transformed to a large extent in a rice-wetland allowing the presence of a large variety of migrant spices. The methodology consisted in the monitoring of 20 sites distributed in 5 sectors in and around the natural park of potentially contrasting anthropogenic pressure and land use. Soil samples collection were instrumented in two campaigns. The first one was in 1989 (three years after the official declaration as Natural Park of the wetland), and the second 19 years later in 2008. Seven heavy metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) were analyzed to determine its total and extractable fractions by treatment with EDTA. Atomic Absorption Spectrometry, using graphite furnace when necessary, was used for the determination of metals. To evaluate the quality of soils at each sampling date four indicators were obtained, namely, Contamination Factor (CF), Geoaccumulation Index (Igeo), Pollution Load Index (PLI) and Potential Ecological Risk Index (PERI). Results obtained with quality indicators were further compared to obtain temporal and spatial trends using Geographical Information systems procedures. In general, there is a reduction of metal contents in the study area in both dates. The trend of metals according to average

  10. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-10-01

    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  11. Heavy Metallic Element Distribution in Cisadane River Estuary's Water and Sediment

    Directory of Open Access Journals (Sweden)

    M. Taufik Kaisupy

    2006-04-01

    Full Text Available Observation of heavy metallic elements in Cisadane River Estuary has been done in July and November 2005. The results show that heavy metallic elements content in seawater is lower and still below the treshold value stated by government for fisheries. There was an indication of heavy metallic elements on sediment. Distribution of Pb on July and of Cu on November 2005 were found higher near the coast and decrease towards the sea, and commonly were found in front of estuary such as Cisadane, Muara Saban and Tanjung Pasir. High Pb and Zn distributions on November 2005 were found only in front of Cisadane estuary. Cd distribution of Cisadane estuary was constant at all station but did not show any correlation with the distance of station and estuary. The Cd content on July and November 2005 is lower than 0,001 ppm. Generally, heavy metallic elements content have a uniform distribution at all stations inspite of its distance to estuary.

  12. Analysis of physical composition and heavy metals pollution of municipal solid waste (MSW) in Beijing

    Science.gov (United States)

    Zhang, H. B.; Zhang, H. Y.; Wang, G. Q.; Bai, X. J.

    2018-03-01

    By using on-site sampling and physical-chemical analysis, the physical composition and the contents of heavy metals in Beijing MSW were researched. The result showed that the main components of MSW in Beijing are mainly kitchen waste, the average content of kitchen waste are more than 60% and 50% in summer and in winter, respectively. The pollution of Cu, Hg and Cr are all more serious for MSW in Haidian and Dongcheng district. The heavy metal pollution of MSW in summer is higher than that in winter in Beijing. Seasonal impacts should be taken into consideration when dealing with MSW. The content of heavy metals in MSW exceeded the background value of soil in Haidian and Dongcheng districts. In order to reduce heavy metal pollution, the MSW should be separated collection and treated.

  13. Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.

    Science.gov (United States)

    Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao

    2017-01-01

    Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain. Copyright © 2016. Published by Elsevier B.V.

  14. Sediment, water pollution indicators for heavy metals

    International Nuclear Information System (INIS)

    Cabaleiro, S.; Horn, A.

    2010-01-01

    The complexity of an aquatic system requires consideration of its dynamics: spatial and temporal variations of physical, chemical and biological. Heavy metals have peculiar behavior in the aquatic system and may not be available in the waters, but on sediments.The sub-basin of the Sarandi stream is responsible for the contamination of Pampulha Lake. The Instituto Mineiro das Águas – IGAM - uses tool for monitoring the quality of surface water for developing strategies for conservation, restoration and rational use of water resources. So through the indices: IQA ( Indice de qualidade de águas) Index of water quality, and TC- toxic contamination, reduces conflicts, implements the disciplining of the environmental economy.This study determined the monitoring of sediment and water of Sarandi Stream, so in the samples collected during dry and rainy seasons (2007- 2008) were analyzed heavy metals (Cu, Cd, Cr, Co, Ni, Zn, Pb) and physical-chemical factors (conductivity, solids dissolved, temperature, turbidity). This allowed the determination of Hackanson factors of contamination and Muller Index geoaccumulation, indicating very high contamination in sediments regarding the elements Cr, Cu, and Cd, and high contamination for Pb, Zn, and Mn. The comparison with the indices of water quality- IQA (IGAM - 2006, 2007 and 2008), combined with exploratory data analysis and graphs of correlation between the variables indicated favorable conditions for metals contamination on water and sediment for these metals, besides allowing the identification of its source

  15. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  16. On the structure of heavy metals

    International Nuclear Information System (INIS)

    Friedel, J.

    1958-01-01

    The properties of the last series of Mendeleef's table are compared with those of the elements of the preceding series. This comparison suggests an electronic structure of the 'transition metal' type, with narrow bands, at the beginning of this series (up to certain phases at least of plutonium); then of the rare earth metal type, with independent non-saturated internal layers, further on in the series. The 5 f orbits seem to play an important part in these two types of structure, from uranium on. A more detailed study of the very heavy elements (americium and beyond) and alloys would allow these conclusions to be confirmed. Certain general points, concerning the nature of homopolar connections and paramagnetism in the transition metals, are developed in an additional section. (author) [fr

  17. Lauryl Amine as heavy metal collector of boiler ash from pulp and paper mill waste

    Science.gov (United States)

    Sembiring, M. P.; Kaban, J.; Bangun, N.; Saputra, E.

    2018-04-01

    Theincreasing of demand of pulp and paper products, will following with the growing the pulp and paper industryand generate significant mill waste. The total waste reached 1/3 of the amount raw materials used and ash boiler is the waste with the largest percentage of 52%. For that it takes effort to manage the existing waste. The boiler ash contained the chemical elements, it can be utilized such as fertilizer, because it also contains transition metals in form of heavy metal such as Cadmium (Cd), Cobalt (Co), Chrome (Cr), Cupprum (Cu), Ferrum (Fe), Nickel (Ni), and Zinc (Zn), the use of boiler ash must follow the threshold specified by the Government. Several studies have been undertaken to reduce and extract heavy metals from ash and sand of the boiler by using carbon dioxide as its ligand. Eelectrochemical method was used to remove and recovery of heavy metals from the incenerator. This study focused on removal of heavy metals using Lauryl Amine as collector and three solvents namely Dichloromethane, Ethanol and n-Hexane. The treatmentswas able to extract the heavy metal and generally reduce the heavy metal content of ash boiler pulp and paper mill waste. The combination treatment used toreduce the heavy metal content of 5 gram Lauryl Amine collector in Dichloromethane solvent for 4 hours process time.

  18. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    Science.gov (United States)

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  19. Heavy metals binding properties of esterified lemon

    Energy Technology Data Exchange (ETDEWEB)

    Arslanoglu, Hasan; Altundogan, Hamdi Soner [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey); Tumen, Fikret, E-mail: ftumen@firat.edu.tr [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey)

    2009-05-30

    Sorption of Cd{sup 2+}, Cr{sup 3+}, Cu{sup 2+}, Ni{sup 2+}, Pb{sup 2+} and Zn{sup 2+} onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni{sup 2+} > Cd{sup 2+} > Cu{sup 2+} > Pb{sup 2+} > Zn{sup 2+} > Cr{sup 3+}. The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb{sup 2+} > Cu{sup 2+} > Ni{sup 2+} > Cd{sup 2+} > Zn{sup 2+} > Cr{sup 3+}. The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol{sup -1} for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The {Delta}G{sup o} and {Delta}H{sup o} values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low {Delta}H{sup o} values revealed that physical adsorption significantly contributed to the mechanism.

  20. Heavy metal toxicity and iron chlorosis

    Energy Technology Data Exchange (ETDEWEB)

    DeKock, P C

    1956-01-01

    The toxicity of copper, nickel, cobalt, zinc, chromium, and manganese to mustard was studied in water culture, utilizing either the ionic form or the EDTA chelate of the metal in the presence of either ferric chloride or ferric EDTA. In presence of ferric chloride the activity of the metals in producing chlorosis was as given above, i.e. in the order of stability of their chelates. In the presence of ferric versenate, toxicity of the ionic metal was much reduced. The metal chelates gave very little indication of toxicity with either form of iron. It was found that the ratio of total phosphorus to total iron was higher in chlorotic plants than in green plants, irrespective of which metal was causing the toxicity. Copper could be demonstrated in the phloem cells of the root using biscyclohexanone-oxalydihydrazone as histochemical reagent. It is postulated that transport of iron probably takes place in the phloem as an active process. It would appear that as a major part of the iron in plant cells is attached to nucleo- or phospho-proteins, the heavy metals must be similarly attached to phospho-proteins.

  1. A review of phytoremediation technology: heavy metals uptake by plants

    Science.gov (United States)

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  2. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  3. Total content and bioavailability of plant essential nutrients and heavy metals in top-soils of an industrialized area of Northwestern Greece

    Science.gov (United States)

    Barouchas, Pantelis; Avramidis, Pavlos; Salachas, Georgios; Koulopoulos, Athanasios; Christodoulopoulou, Kyriaki; Liopa-Tsakalidi, Aglaia

    2017-04-01

    Thirty surface soil samples from northwestern Greece in the Ptolemais-Kozani basin, were collected and analyzed for their total content in thirteen elements (Al, Ca, Fe, K, Mg, Mn, Na, P, Cd, Cr, Cu, Ni, Pb, Zn) by ICP-AES and bioavailable content from a plant nutrition scope of view for (Ca, Fe, K, Mg, Mn, Na, P, Zn) by AAS and colorimetric techniques. Particle size distribution, Cation Exchange Capacity (CEC) and the magnetic susceptibility, in a low and a high frequency (at 47kHz and 0.47kHz), of soil samples were measured also in order to correlate the results. Total carbonates were tested by the pressure technique (BD Inventions, FOGII digital soil calcimeter). The concentrations of these elements were compared with international standards and guidelines. The results indicated that Cu, Cd, Zn and Pb are found enriched in the top soils of the study area, mainly as a consequence of natural processes from the surrounding rocks. Moreover, the bioavailability of some of these elements with a plant nutrition interest was tested and results indicate that they do not pose an immediate threat to the environment or crops as it all demonstrated values in an adequate range. Magnetic susceptibility in low and high frequency was correlated with clay content.

  4. Concentrations of Heavy Metals in NPK Fertilizers Imported in Serbia

    Directory of Open Access Journals (Sweden)

    Jelena Milinović

    2008-01-01

    Full Text Available Concentrations of Pb, Cd, Cu and Mn in sixteen NPK fertilizers imported and widely used in Serbia were determined by flame atomic absorption spectrometry (AAS. The results show that contents of heavy metals varied significantly in different fertilizers dependingon N:P:K ratio and fertilizer origin. Pb and Cd contents in water solution of fertilizers occurred at low ranges: 2.0-3.1 and 0.03- 1.56 mg/kg, respectively. An NPK (15:15:15 fertilizer from Romania was found to contain the highest concentration of Pb and Cd as impurities. Cu content, ranging from 7.1 to 974.7 mg/kg, was the highest in coloured fertilizers from Hungary, the Netherlands and Greece. Mn value in a Hungarian NPK product (10:10:20 exceeds the average Mn value in soil. The data indicate variable contents of heavy metals in fertilizers, some of which are significantly higher than natural concentrations in soil, which suggests that they need to be continuously monitored.

  5. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil.

    Science.gov (United States)

    Marchiol, L; Assolari, S; Sacco, P; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  6. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil

    International Nuclear Information System (INIS)

    Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G.

    2004-01-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels

  7. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  8. Heavy metals in atmospheric surrogate dry deposition

    Science.gov (United States)

    Morselli; Cecchini; Grandi; Iannuccilli; Barilli; Olivieri

    1999-02-01

    This paper describes a methodological approach for the assessment of the amount of surrogate dry deposition of several toxic heavy metals (Cd, Cr, Cu, Ni, Pb, V, Zn) associated with atmospheric particulate matter at ground level. The objectives of the study were twofold: i) the evaluation of several techniques for the digestion of dry deposition samples for trace metal analysis; ii) the comparison of the results from two samplers with different collecting surfaces. A dry solid surface sampler (DRY sampler, Andersen--USA) and a water layer surface sampler (DAS sampler--MTX Italy) were employed. The samples were collected over a one-year period in an urban site of Bologna (northern Italy). A description is given of the complete procedure, from sampling to data elaboration, including sample storage, digestion and analytical methods. According to the results obtained with three different digestion techniques (Teflon bomb, microwave digester and Teflon flask with vapour cooling system), the highest recovery rate was achieved by the Teflon bomb procedure employing an NBS 1648 Standard Reference Material; 90-95% of the elements considered were recovered by dissolution in a pressurized Teflon bomb with an HNO3-HF mixture. Given these results, the technique was adopted for dry deposition sample digestion. On the basis of the amount of heavy metals measured as monthly deposition fluxes (microg/m2), the collecting efficiency of the DAS sampler for a number of elements was found to be as much as two to three times greater than that of the DRY sampler.

  9. Facultative hyperaccumulation of heavy metals and metalloids.

    Science.gov (United States)

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. HEAVY METALS IN SURFACE MUD SEDIMENT IN EKATERINBURG (RUSSIA

    Directory of Open Access Journals (Sweden)

    A. A. Seleznev

    2018-03-01

    Full Text Available Problem Statement. Now the most part of the world’s population lives in cities, thus, it is relevant the search for universal, low-cost and express methods for environmental geochemical investigations of an urban environment. The objective of the study is the assessment of content and properties of surface mud sediment at the urban territory (on the example of Ekaterinburg, Russia. Methods of the study. The 30 samples of surface mud sediment, soils and ground were collected in the residential area of the city. Particle size composition, measurements of heavy metals content, correlation analysis was conducted for the samples. Results. Surface mud sediment at the residential territories can be classified as surface facie of the recent anthropogenic sediment. Samples of the environmental compartments were collected at the territories of six blocks of houses of various years of construction, located in various parts of the city and at the various geological units. Five samples were collected in each block: 3 samples within the block and 2 samples – outside. The content of Pb, Zn, Cu, Ni, Co, and Mn was measured in particle size fractions of the samples. Particle size composition of the surface mud sediment in Ekaterinburg is similar to the particle size composition of the grounds formed on the sediments of Holocene age in Urals region. The positive statistically significant correlation was found between the couples of metals: Zn and Pb, Zn and Cu, Co and Ni. The distribution of concentrations of Pb, Zn and Cu over particle size fractions of surface mud sediment is heterogeneous. Pollution of the ground and soil in urban areas is due to the transition of heavy metals with particles of dust and fine sand. Typical geochemical association of metals for particle size fraction of surface mud sediment 0.002–0.01 mm – Mn-Zn-Ni-Cu-Pb-Co, that is similar to the association for sediments of surface puddles in local zones of relief, soils and bottom

  11. Stress induced by heavy metals on breeding of magpie (Pica pica) from central Iran.

    Science.gov (United States)

    Zarrintab, Mohammad; Mirzaei, Rouhollah

    2017-09-01

    The aim of this study was to address the impacts of some heavy metals (Cd, Pb, Zn, Ni and Cu) contamination on laying behavior, egg quality and breeding performance of Pica pica in north of Isfahan Province, Iran. During the breeding season of 2013, magpie's egg content and eggshell as well as nestling excrements and feathers were collected and total concentrations of heavy metals were measured by ICP-OES. Except for Zn in nestling feathers, the significantly higher concentrations of heavy metals were observed in nestling excrements than other samples. Also, comparison of heavy metals concentrations in egg content and eggshell showed that egg content had significantly higher concentrations of Zn and Pb, instead eggshell had significantly higher amount of Cu and Cd. Except for Cu, all heavy metals concentrations in eggshell had a negative relationship with morphological characters; and also concentration of Cu in egg content showed a significantly negative correlation with egg weight and volume. The most of heavy metals in nestling feathers and excrements had strongly positive correlations with each other. Also all heavy metals levels in eggshell and egg content had significantly positive correlations (except for Cu). Unhatched eggs had significantly lower weight but also greater levels of Zn, Cd, and Pb, than randomly collected eggs. No significant differences were observed for morphometric measurements of eggs between different sites, however, a decreased gradient was observed in egg volume toward the brick kiln site. Samples collected in brick kiln site accumulated higher concentrations of heavy metals than other sites. Although numbers of clutch size in brick kiln site were significantly higher than other sites, however, other breeding variable were lower than other sites. It can be suggested that ecosystem contamination may be caused to decrease the reproduction rate of Pica pica in brick kiln, probably by laying more poor quality eggs per clutch and nestling

  12. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass.

    Science.gov (United States)

    Li, Jianxin; Chen, Jinbo; Chen, Shan

    2018-08-15

    Hyperaccumulator biomass, as a promising resource for renewable energy that can be converted into valuable fuel productions with high conversion efficiency, must be considered as hazardous materials and be carefully treated before further reuse due to the high contents of heavy metals. In this study, Pteris vittata L., an As-hyperaccumulator biomass was treated by an effective and environmental friendly method-supercritical water gasification (SCWG) using a bench-scale batch reactor. The contents of heavy metals (Cd, Pb and Zn) and arsenic metalloid in solid, liquid and gaseous products during SCWG process were thoroughly investigated. The speciation fractions including exchangeable, reducible, oxidizable and residual fractions of each heavy metal as the proportion of the total contents in solid residue were presented and the transformations trend of these heavy metals during the SCWG process was especially demonstrated. The significant operating parameters, including reaction temperature (395-445 °C), pressure (21-27 MPa) and residence time (0-40 min) were varied to explore their effects on the contents and forms. Moreover, the environmental risks of heavy metals in solid residues were evaluated based on risk assessment code, taking into consideration the speciation fractions and bioavailability. It was highlighted that although heavy metals particularly Pb and Zn tended to accumulate in solid residues with a maximum increment of about 50% in the total content, they were mostly converted to more stable oxidizable and residual fractions, and thus the ecotoxicity and bioavailability were greatly mitigated with no obvious increase in direct toxicity fractions. Each tested heavy metal presented no or low risk to the environments after SCWG treatments, meaning that the environmental pollution levels were markedly reduced with no or low risk to the environment. This study highlights the remarkable ability of SCWG for the heavy metal stabilization. Copyright

  13. Impact of the Prestige oil spill on marsh soils: Relationship between heavy metal, sulfide and total petroleum hydrocarbon contents at the Villarrube and Lires marshes (Galicia, Spain); Impacto de la marea negra del Prestige en suelos de marisma: relacion entre los contenidos de metales pesados, sulfuros e hidrocarburos en las marismas de Villarrube y Lires (Galicia, Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, L.; Marcet, P.; Covelo, E.F.; Vega, F.A. [Department of Vegetable Biology and Soil Science, Vigo (Spain); Fernandez-Feal, L.; Fernandez-Feal, C. [Escuela Politecnica Superior, Universidad de la Coruna, Ferrol (Spain)

    2004-09-15

    The objectives of this study were to determine the effect of the Prestige oil spill on the total petroleum hydrocarbons and heavy metal contents of soils in two marshes (Lires and Villarrube, Galicia, Spain) and the relationship between their oxidation-reduction potential and the solubility of heavy metals with sulfide and sulfate contents. Soil samples were taken from polluted and unpolluted areas and their petroleum hydrocarbon contents, heavy metal contents and other chemical characteristics were measured. The soils affected by the oil spill show remarkable contents of Cr, Cu, Ni, Pb and V. The Lires marsh soils are more affected by fuel oil than Villarrube marsh. The effects of the contaminating agents on the soils reach distances of up to 500 m from the coastline. In the first 400 m, there are important spatial variations because the fuel oil penetrated into the soils through tidal action and not directly. The Cr, Cu, Ni, Pb and V contents of polluted soils were between 50 and 200 times higher than those of their unpolluted counterparts and the background concentrations in Galician coastal sediments. In the case of Cr, Cu, Ni, Pb and V, their origin through the fuel oil was corroborated by the high correlation (r > 0.90) between the concentrations of these metals and the total petroleum hydrocarbon content of the polluted soils, which shows the combined addition of these metals through the fuel oil. [Spanish] Los objetivos de este trabajo fueron determinar el efecto de la marea negra del buque tanque Prestige en el contenido total de hidrocarburos y de metales pesados en suelos de dos marismas (Lires y Villarrube, Galicia, Espana) y la relacion entre el potencial de oxidacion-reduccion y la solubilidad de los metales pesados con los contenidos de sulfuros y de sulfatos. Se tomaron muestras de suelos de las zonas contaminadas y no contaminadas y se determinaron diversas caracteristicas quimicas, el contenido total de hidrocarburos y de metales pesados. Los

  14. Secondhand smoke is associated with heavy metal concentrations in children.

    Science.gov (United States)

    Li, Li; Guo, Li; Chen, Xingjie; Xiang, Mingli; Yang, Fang; Ren, Jing-Chao; Zhang, Guang-Hui

    2018-02-01

    Secondhand smoke (SHS) has adverse effects on health, particularly for children. Our purpose was to analyze the correlation between SHS exposure and heavy metal concentrations in children. The investigation was conducted in Xinxiang County, Henan Province, China, from August 2015 to December 2015. In total, 821 students (433 boys and 388 girls) were recruited, and the contents of heavy metals in their hair-including chromium, manganese, nickel, arsenic, lead, and cadmium-were detected by ICP-MS. The children's parents were informed, and a questionnaire was conducted, which included questions about smoking habits and demographic characteristics. Our results indicate that all parent smokers are fathers, 48.9% of fathers who are smokers, but 25.2% of fathers smoke in front of their children. The levels of chromium (median girls vs boys, μg/g) (2.36 vs 2.06, p secondhand smoking (SHS) exposure was inquired by face-to-face investigation of their parents. We illustrated that children exposed to SHS have increased lead and cadmium accumulations in the body. What is Known: • Secondhand smoke (SHS) has adverse effects on health, particularly for children. • There might be correlation between SHS exposure and heavy metal concentrations in children. What is New: • The levels of chromium, nickel, arsenic, and lead in girls were significantly higher than in boys. • SHS exposure in children was correlated with increasing levels of lead and cadmium in their hair because of exposure to SHS.

  15. Earliest evidence of pollution by heavy metals in archaeological sites.

    Science.gov (United States)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  16. Heavy metal content and element analysis of infant formula and milk powder samples purchased on the Tanzanian market: International branded versus black market products.

    Science.gov (United States)

    Sager, M; McCulloch, C R; Schoder, D

    2018-07-30

    Milk powder is a food for malnourished African children and for healthy infants of women with HIV/AIDS. High demand and low purchasing power has resulted in a huge informal, black market in Sub-Saharan Africa. Forty-three milk powder batches were analyzed for 43 chemical elements using ICP-MS One sample (2.3%) was contaminated at a lead concentration of 240 µg/kg dry weight exceeding the European threshold (130 µg/kg dry weight). Macroelement contents revealed a trend decreasing in concentration through skimmed, full cream products to infant formulae. Concentration ranges by dry weight differed in respect of uncertainty intervals of  ±10%. Median Ca, K and P concentrations declined from 11.14 g/kg to 3.21 g/kg, 14.11 g/kg to 4.95 g/kg and 9.12 g/kg to 2.75 g/kg dry mass, respectively. Milk powder samples obtained from the Tanzanian black market were comparable in respect of nutritional and chemical content to international branded full cream products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Assessment of heavy metals in Averrhoa bilimbi and A. carambola fruit samples at two developmental stages.

    Science.gov (United States)

    Soumya, S L; Nair, Bindu R

    2016-05-01

    Though the fruits of Averrhoa bilimbi and A. carambola are economically and medicinally important, they remain underutilized. The present study reports heavy metal quantitation in the fruit samples of A. bilimbi and A. carambola (Oxalidaceae), collected at two stages of maturity. Heavy metals are known to interfere with the functioning of vital cellular components. Although toxic, some elements are considered essential for human health, in trace quantities. Heavy metals such as Cr, Mn, Co, Cu, Zn, As, Se, Pb, and Cd were analyzed by atomic absorption spectroscopy (AAS). The samples under investigation included, A. bilimbi unripe (BU) and ripe (BR), A. carambola sour unripe (CSU) and ripe (CSR), and A. carambola sweet unripe (CTU) and ripe (CTR). Heavy metal analysis showed that relatively higher level of heavy metals was present in BR samples compared to the rest of the samples. The highest amount of As and Se were recorded in BU samples while Mn content was highest in CSU samples and Co in CSR. Least amounts of Cr, Zn, Se, Cd, and Pb were noted in CTU while, Mn, Cu, and As were least in CTR. Thus, the sweet types of A. carambola (CTU, CTR) had comparatively lower heavy metal content. There appears to be no reason for concern since different fruit samples of Averrhoa studied presently showed the presence of various heavy metals in trace quantities.

  18. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, A.E.M.

    2008-01-01

    Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples where collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration, in ppm, were measured. The annual addition of these elements in soil due to fertilization were calculated and discussed. (author)(tk)

  19. Evaluation of heavy metal complex phytotoxicity

    Directory of Open Access Journals (Sweden)

    Vita Vasilyevna Datsenko

    2016-07-01

    Full Text Available The experimental data dealing with the effect of heavy metals contained in the technogenic contaminated soils on plant objects under controlled conditions was discussed. The aim of this work is to define the quantitative indicators of copper and zinc potential phytotoxicity, namely germination energy, simultaneous germination and duration of the test plants. It was found that the activity of the test plant growth is linked with copper and zinc complex action. Joint effect of copper and zinc is manifested both in inhibition of lettuce growth and determined, above all, by the nature contamination, soil properties and biological specificity of the test plants.

  20. Physico-chemical characteristics and Heavy metal levels in Drinking ...

    African Journals Online (AJOL)

    Physico-chemical characteristics and Heavy metal levels in Drinking Water ... composition was analysed using X-ray Fluorescence spectroscopy. Majority of the water samples had neutral pH (6.80 – 7.20) few were slightly alkaline and one was acidic. ... Heavy metals (copper and lead), rare earth metals (gallium, rubidium, ...

  1. Fractionation, characterization and speciation of heavy metals in ...

    African Journals Online (AJOL)

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation ...

  2. Assessment and bioremediation of heavy metals from crude oil ...

    African Journals Online (AJOL)

    The assessment of the levels of heavy metals present in crude oil contaminated soil and the application of the earthworm - Hyperiodrilus africanus with interest on the bioremediation of metals from the contaminated soil was investigated within a 90-days period under laboratory conditions. Selected heavy metals such as ...

  3. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    The most dominant A. candidus on the isolation plates exhibited the highest activity for biosorption of heavy metals. The results indicate that fungi of contaminated soils have high level of metal biosorption capacities. Keywords: Fungi, industrial wastewater, biosorption, heavy metals. African Journal of Biotechnology Vol.

  4. Applicability of concentration factors for the heavy metals hazard identification

    International Nuclear Information System (INIS)

    Guzzi, Luigi

    2006-01-01

    The bioconcentration factor (BCF) and bioaccumulation factor (BAF) used as criteria for heavy metals hazards identification are inadequate. These considerations is based on the argument that the BCF-BAF model was developed and validated for xenobiotic synthetic organic substances and that does not recognize the complex internal metal dynamic of uptake, the internal sequestration, and the essentially of some heavy metals [it

  5. Predicting toxic heavy metal movements in upper Sanyati catchment ...

    African Journals Online (AJOL)

    Water samples from boreholes located in areas where mining, mineral processing and agricultural activities were dominant, yielded the highest values of toxic heavy metals. Dilution Attenuation Factor (DAF) for each toxic heavy metal was calculated to observe metal behaviour along the contaminant path for each season.

  6. Use of heavy ions to model radiation damage of metals

    International Nuclear Information System (INIS)

    Shirokov, S.V.; Vyshemirskij, M.P.

    2011-01-01

    The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals

  7. Metallothionein as biomarker of mussel exposure to heavy metals

    International Nuclear Information System (INIS)

    Raspor, B.; Erk, M.; Pavicic, J.; Juric, D.; Kwokal, Z.; Odzak, N.

    1999-01-01

    The biological effect of marine pollution with heavy metals is followed in bivalves by means of the induced amount of metallothioneins (MTs), determined in different tissue types. The biological effect of the available toxic metals, cadmium and mercury, are related to the amount of MTs in the whole edible part, gills and the digestive gland of Mytilus galloprovincialis. For that purpose highly sensitive chemical and biochemical methods for metal and metallothionein content determination were developed and applied. The study was conducted in the Kastela Bay, which is the urban and industrial center of Dalmatia, Croatia, with two groups of mussels, indigenous and the transplanted. In accordance with the objective of the Symposium the results on monitoring the marine pollution by means of MTs as a biomarker, isolated from the edible, sessile and filter-feeding bivalves are discussed. (author)

  8. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand

    International Nuclear Information System (INIS)

    Brown, Loren; Seaton, Kenneth; Mohseni, Ray; Vasiliev, Aleksey

    2013-01-01

    Highlights: • Mesoporous organoclay for immobilization of heavy metal cations was obtained. • The material has a porous structure with high contents of surface adsorption sites. • Leaching of heavy metals from soil reduced in the presence of this adsorbent. • The adsorbent demonstrated high effectiveness in neutral and acidic media. -- Abstract: The objective of this work was the development of an efficient adsorbent for irreversible immobilization of heavy metals in contaminated soils. The adsorbent was prepared by pillaring of montmorillonite with silica followed by grafting of a chelate ligand on its surface. Obtained adsorbent was mesoporous with high content of adsorption sites. Its structure was studied by BET adsorption of N 2 , dynamic light scattering, and scanning electron microscopy. The adsorption capacity of the organoclay was measured by its mixing with contaminated kaolin and soil samples and by analysis of heavy metal contents in leachate. Deionized water and 50% acetic acid were used for leaching of metals from the samples. As it was demonstrated by the experiments, the adsorbent was efficient in immobilization of heavy metals not only in neutral aqueous media but also in the presence of weak acid. As a result, the adsorbent can be used for reduction of heavy metal leaching from contaminated sites

  9. Effect of heavy metals on soil enzyme activity at different field conditions in Middle Spis mining area (Slovakia).

    Science.gov (United States)

    Angelovičová, Lenka; Lodenius, Martin; Tulisalo, Esa; Fazekašová, Danica

    2014-12-01

    Heavy metals concentrations were measured in the former mining area located in Hornad river valley (Slovakia). Soil samples were taken in 2012 from 20 sites at two field types (grasslands, heaps of waste material) and two different areas. Total content of heavy metals (Cu, Pb, Zn, Hg), urease (URE), acid phosphatase (ACP), alkaline phosphatase (ALP), soil reaction (pH) were changing depending on the field/area type. The tailing pond and processing plants have been found as the biggest sources of pollution. URE, ACP and ALP activities significantly decreased while the heavy metal contents increased. Significant differences were found among area types in the heavy metal contents and activity of URE. No statistical differences in the content of heavy metals but significant statistical differences for soil pH were found for field types (grassland and heaps). Significant negative correlation was found for URE-Pb, URE-Zn and also between soil reaction and ACP and ALP.

  10. Performance of Raphidocelis subcapitata exposed to heavy metal mixtures.

    Science.gov (United States)

    Expósito, Nora; Kumar, Vikas; Sierra, Jordi; Schuhmacher, Marta; Giménez Papiol, Gemma

    2017-12-01

    Microalgae growth inhibition assays are candidates for referent ecotoxicological assays, and are a fundamental part in the strategy to reduce the use of fish and other animal models in aquatic toxicology. In the present work, the performance of Raphidocelis subcapitata exposed to heavy metals following standardized growth inhibition assays has been assessed in three different scenarios: 1) dilutions of single heavy metals, 2) artificial mixture of heavy metals at similar levels than those found in natural rivers and, 3) natural samples containing known mixtures of contaminants (heavy metals). Chemical speciation of heavy metals has been estimated with Eh-pH diagram and Visual MINTEQ software; heavy metal and free heavy metal ion concentrations were used as input data, together with microalgae growth inhibition, for Dr. Fit software. The final goal was to assess the suitability of the ecotoxicological test based on the growth inhibition of microalgae cultures, and the mathematic models based on these results, for regulatory and decision-making purposes. The toxicity of a given heavy metal is not only determined by its chemical speciation; other chemical and biological interaction play an important role in the final toxicity. Raphidocelis subcapitata 48h-h-EC50 for tested heavy metals (especially Cu and Zn) were in agreement with previous studies, when ion metal bioavailability was assumed to be 100%. Nevertheless, the calculated growth inhibition was not in agreement with the obtained inhibition when exposed to the artificial mixture of heavy metals or the natural sample. Interactions between heavy metal ions and the compounds of the culture media and/or the natural sample determine heavy metal bioavailability, and eventually their toxicity. More research is needed for facing the challenge posed by pollutant mixtures as they are present in natural environments, and make microalgae-based assays suitable for pollution management and regulatory purposes. Copyright

  11. Heavy Metals in the Vegetables Collected from Production Sites

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2013-12-01

    Full Text Available Background: Contamination of vegetable crops (as an important part of people's diet with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20 (Allium ampeloprasumssp. Persicum, onion (n=20 (Allium cepa and tomato (n=18 (Lycopersiconesculentum var. esculentum, were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS after extraction by aqua regia method (drying, grounding and acid digestion. Results: Mean ± SD (mg/kg DW concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respectively. Cr, Cu and Zn were present in all the samples and the highest concentrations were observed in kurrat (leek. Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05 and Zn (P<0.001 among the studied vegetables. Positive correlation was observed between Cd:Cu (R=0.659, P<0.001 Cr:Ni (R=0.326, P<0.05 and Cr:Zn (R=0.308, P<0.05. Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possible health outcomes due to the consumption of contaminated vegetables, it is required to take proper actions for avoiding people's chronic exposure.

  12. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil.

    Science.gov (United States)

    Deng, Linjing; Zeng, Guangming; Fan, Changzheng; Lu, Lunhui; Chen, Xunfeng; Chen, Ming; Wu, Haipeng; He, Xiaoxiao; He, Yan

    2015-10-01

    Due to the emerging environmental issues related to heavy metals, concern about the soil quality of farming lands near manufacturing district is increasing. Investigating the function of soil microorganisms exposed to long-term heavy metal contamination is meaningful and important for agricultural soil utilization. This article studied the potential influence of several heavy metals on microbial biomass, activity, abundance, and community composition in arable soil near industrial estate in Zhuzhou, Hunan province, China. The results showed that soil organic contents (SOC) were significantly positive correlated with heavy metals, whereas dehydrogenase activity (DHA) was greatly depressed by the heavy metal stress. Negative correlation was found between heavy metals and basal soil respiration (BSR), and no correlation was found between heavy metals and microbial biomass content (MBC). The quantitative PCR (QPCR) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis could suggest that heavy metal pollution has significantly decreased abundance of bacteria and fungi and also changed their community structure. The results could contribute to evaluate heavy metal pollution level in soil. By combining different environmental parameters, it would promote the better understanding of heavy metal effect on the size, structure, and activity of microbial community in arable soil.

  13. Heavy Metallic Element Distribution in Cisadane River Estuary's Water and Sediment

    OpenAIRE

    M. Taufik Kaisupy; Abdul Rozak; Endang Rochyatun

    2006-01-01

    Observation of heavy metallic elements in Cisadane River Estuary has been done in July and November 2005. The results show that heavy metallic elements content in seawater is lower and still below the treshold value stated by government for fisheries. There was an indication of heavy metallic elements on sediment. Distribution of Pb on July and of Cu on November 2005 were found higher near the coast and decrease towards the sea, and commonly were found in front of estuary such as Cisadane, Mu...

  14. Antioxidant modulation in response to heavy metal induced oxidative stress in Cladophora glomerata.

    Science.gov (United States)

    Murugan, K; Harish, S R

    2007-11-01

    The present investigation was carried out to study the induction of oxidative stress subjected to heavy metal environment. Lipoperoxides showed positive correlation at heavy metal accumulation sites indicating the tissue damage resulting from the reactive oxygen species and resulted in unbalance to cellular redox status. The high activities of ascorbate peroxidase and superoxide dismutase probably counter balance this oxidative stress. Glutathione and soluble phenols decreased, whereas dehydroascorbate content increased in the algae from polluted sites. The results suggested that alga responded to heavy metals effectively by antioxidant compounds and scavenging enzymes.

  15. Data on heavy metals and selected anions in the Persian popular herbal distillates

    OpenAIRE

    Keshtkar, Mozhgan; Dobaradaran, Sina; Soleimani, Farshid; Karbasdehi, Vahid Noroozi; Mohammadi, Mohammad Javad; Mirahmadi, Roghayeh; Ghasemi, Fatemeh Faraji

    2016-01-01

    In this data article, we determined the concentration levels of heavy metals including Pb, Co, Cd, Mn, Mg, Fe and Cu as well as selected anions including NO3− , NO2−, PO4−3 and SO4−2 in the most used and popular herbal distillates in Iran. It is well known that heavy metals may pose a serious health hazard due to their bioaccumulation throughout the trophic chain (“Heavy metals (Cd, Cu, Ni and Pb) content in two fish species of Persian Gulf in Bushehr Port, Iran” (Dobaradaran et al., 2013) [1...

  16. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Zeng, Guangming; Wang, Rongzhong; Wei, Jingjing; Huang, Chao; Xu, Piao; Wan, Jia; Zhang, Chen

    2018-04-01

    This study aimed to investigate the effect of pyrolysis on the stabilization of heavy metals in plant residues obtained after phytoremediation. Ramie residues, being collected after phytoremediation of metal contaminated sediments, were pyrolyzed at different temperatures (300-700 °C). Results indicated that pyrolysis was effective in the stabilization of Cd, Cr, Zn, Cu, and Pb in ramie residues by converting the acid-soluble fraction of metals into residual form and decreasing the TCLP-leachable metal contents. Meanwhile, the reutilization potential of using the pyrolysis products generated from ramie residues obtained after phytoremediation as sorbents was investigated. Adsorption experiments results revealed that the pyrolysis products presented excellent ability to adsorb methylene blue (MB) with a maximum adsorption capacity of 259.27 mg/g. This study demonstrated that pyrolysis could be used as an efficient alternative method for stabilizing heavy metals in plant residues obtained after phytoremediation, and their pyrolysis products could be reutilized for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Heavy metal removal using reverse osmosis

    Directory of Open Access Journals (Sweden)

    Lucia Gajdošová

    2009-12-01

    Full Text Available The aim of this work was to study reverse osmosis characteristics for copper, nickel and zinc removal from technological aqueoussolutions. Reverse osmosis (RO is a separation process that uses pressure to force a solution through a membrane that retainsthe solute on one side and allows the pure solvent to pass to the other side. A polyamide thin-film composite membrane TW30-1812-50was used. The difference in flux decline is significant. There is a significant difference in flux decline depending on the anions of usedheavy metal salts. The heavy metal concentration also has a significant influence on the membrane separation. There is alsoa significant difference in flux decline depending on the transmembrane pressure.

  18. Perilous Effects of Heavy Metals Contamination on Human Health

    Directory of Open Access Journals (Sweden)

    Naseem Zahra

    2017-06-01

    Full Text Available Heavy metals form a versatile group of high density elements that vary considerably in their biological roles and chemical properties. Although many heavy metals are essential trace elements yet they have long been recognized as environmental pollutants due their toxic effects. Increased industrialization, urbanization anthropogenic activities like mining, smelting and other agricultural activities have resulted in accumulation of heavy metals in the environment. Heavy metals such as nickel, cadmium, zinc, copper, mercury, arsenic and chromium are not easily degradable and tend to build up in soil. These heavy metals through various routes such as fish and plants make their way into the human body and are known to have serious detrimental effects on human health at elevated levels. The harmful effects of some important heavy metals on human health have been discussed.

  19. Heavy metal decontamination of sludges and soils. Pt. 2

    International Nuclear Information System (INIS)

    Niemann, J.

    1993-06-01

    This research project deals with decontamination technology for contaminated soil and sediments. A pilot plant for the decontamination of soil contaminated with heavy metals has been erected and is operated. The process is arranged in two steps: - heavy metal contaminated solid is decontaminted with acidic extraction. - the heavy metals are separated in a recyclable formation from the process solution you gain in the first process step. Heavy metal contaminated soil, heavy metal contaminated sediments (habour sediments) as well as residue from a soil regeneration plant have been successfully decontaminated in the pilot plan. An adaption of the process is necessary for various materials. High rates of mobilisation of heavy metals (e.g. lead, cadmium, chromium, copper, nickel, zinc) were obtained, especially with soil which contains less organic matter. (orig.). 54 figs., 30 tabs., 45 refs [de

  20. Heavy metal ions are potent inhibitors of protein folding

    International Nuclear Information System (INIS)

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-01-01

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd 2+ , Hg 2+ and Pb 2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC 50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far

  1. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa. [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1995-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  2. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1996-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  3. Distribution of heavy metals in Tamshui mangrove forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C Y; Chou, C H

    1990-06-01

    Tamsui estuary area is one of the few places in Taiwan where mangrove is still growing. Heavy metals, carried by the water of the Tamsui river, are accumulated in the estuary soil. Most heavy metals in soil, however, are immobile under reducing conditions and are fixed in the large amount of organic matter present. Heavy metals are distributed at different concentrations in various tissues of Kandelia candel as well as grasses of Phragmites communis, Imperata cylindrica, and Cyperus malaccensis growing in the swamp area. The concentration of heavy metals was significantly higher root than in stems and leaves. The absorption of heavy metals by the plants was less in soil that was frequently submerged. Kandelia candel seems to have no special tolerance to copper and zinc. The soil environment which favors reduced availability of heavy metals may help Kandelia candel adapt to growth in the polluted estuary.

  4. Effect of heavy metal and EDTA application on heavy metal uptake ...

    African Journals Online (AJOL)

    Yomi

    2012-04-12

    Apr 12, 2012 ... Cadmium, lead and ... removal of Cd, Cr, Cu, Ni, Pb, and Zn (Prasad and ... collected for the analysis of heavy metal concentrations of Cd, Cr ... One hundred millgram (100 mg) of leaf tissues ..... Variability for the fatty acid.

  5. Leaching of heavy metals from timah langat amang

    International Nuclear Information System (INIS)

    Shukri bin Othman

    1990-01-01

    Accelerated leaching studies of amang from Timah Langat for heavy metals showed that the material was rather stable. From almost 24 types of heavy metals contained in the material, the metal that leached out most was Al, followed by Pb, U, Cu, Mn, Fe, Mg, Y and La but at smaller quantities. The studies also showed that amang was very porous. The high seepage rate resulted in the solubilities of the metals not reaching equilibrium. In that situation, the leaching of heavy metals from amang was dependent on the seepage rate of water, the height of the material, the volume of water that seeped through and the solubility of the metals

  6. Leaching of heavy metals from steelmaking slags

    Directory of Open Access Journals (Sweden)

    Gomes, J. F. P

    2006-12-01

    Full Text Available Leaching tests with EAF and Ladle slags were performed, using a flow through test and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. The chemical analysis of the leachates during this period shows, in general, for both types of slag, an increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slag samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-through test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5 % (Ca and 1% (other elements.

    Este articulo contiene los resultados obtenidos en ensayos de lixiviación de escorias de acero (horno electrico y cuchara ejecutados siguiendo la metodologia de flujo dinámico así como el ensayo normalizado DIN 38414-S4. El primer ensayo intenta simular el comportamiento de lixiviación de las escorias en vertedero. Para las escorias ensayadas se han complementado los ensayos con el análisis químico de los lixiviados y se ha verificado un aumento de la liberación de metales pesados. El ensayo DIN 38414-S4 se ha utilizado para evaluar la lixiviación por agua de metales pesados, en muestras de escorias originales. Despues de un año de ensayos, se han observado niveles muy bajos de lixiviación. Los elementos mas lixiviados han sido calcio y magnesio. No obstante, en los ensayos de flujo dinámico, el calcio y el magnesio lixiviados de las escorias sólidas era menor de 0,5% y el resto de los otros metales era inferior a 0,1%. Los lixiviados obtenidos con el ensayo DIN 38414-S4 presentan, como era de esperar, valores

  7. Characteristics of heavy metal pollution on roadside soil along highway

    Science.gov (United States)

    Zheng, Chaocheng

    2017-10-01

    Highway traffic is the main source of heavy metal pollution. Due to limited cropland, it is very common to plant crops along the highways. So, in view of agricultural products safety, heavy metal pollution by highway traffic to soils along highway is widely concerned. Therefore, to study distribution traits, accumulative laws and influence factors of heavy metals in agricultural soils could provide scientific evidence and theoretical basis for environmental protection along express way.

  8. Streptomyces communities in soils polluted with heavy metals

    Science.gov (United States)

    Grishko, V. N.; Syshchikova, O. V.

    2009-02-01

    The contents of differently mobile heavy metal compounds and their influence on the formation of microbial cenoses (particularly, streptomyces communities) in technogenically disturbed soils are considered. Elevated concentrations of mobile Cu, Zn, Ni, Cd, and Fe compounds are shown to determine structural-functional changes in microbial cenoses that are displayed in a decreasing number of microorganisms and a narrower spectrum of the streptomyces species. Some specific features of the formation of streptomyces communities in technogenic soils were revealed on the basis of the analysis of their species structure with the use of the Margalef, Berger-Parker, and Sorensen indices of biodiversity.

  9. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].

    Science.gov (United States)

    Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming

    2016-04-15

    The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.

  10. Assessment of heavy metals in loose deposits in drinking water distribution system.

    Science.gov (United States)

    Liu, Quanli; Han, Weiqiang; Han, Bingjun; Shu, Min; Shi, Baoyou

    2018-06-09

    Heavy metal accumulation and potential releases from loose deposits in drinking water distribution system (DWDS) can have critical impacts on drinking water safety, but the associated risks have not been sufficiently evaluated. In this work, the potential biological toxicity of heavy metals in loose deposits was calculated based on consensus-based sediment quality guidelines, and the effects of some of the main water quality parameters, such as the pH and bicarbonate and phosphate content, on the release behaviors of pre-accumulated heavy metals were investigated. The results showed that heavy metals (Cu, As, Cr, Pb, and Cd) significantly accumulated in all the samples, but the contents of the heavy metals were multiple magnitudes lower than the Fe and Mn contents. The potential biotoxicity of As and Cu was relatively high, but the biotoxicity of Cd was negligible. The water quality can significantly influence the release of heavy metals from loose deposits. As the pH increased from 7.0 to 9.0, the release of As and Cr obviously increased. The release of As, Cu, Pb, and Cr also accelerated with the addition of phosphate (from 1 to 5 mg/L). In contrast to the trends for the pH and phosphate, variations in the bicarbonate content did not have a significant influence on the release of As and Cr. The release ratios of heavy metals in the samples were very low, and there was not a correlation between the release rate of the heavy metals in the loose deposits and their potential biotoxicity.

  11. Effects of heavy metal adsorption on silicene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2014-06-02

    Based on first-principles calculations, we study the effects of heavy metal atoms (Au, Hg, Tl, and Pb) adsorbed on silicene. We find that the hollow site is energetically favorable in each case. We particulary address the question how the adsorption modifies the band structure in the vicinity of the Fermi energy. Our results demonstrate that the heavy metal adatoms result in substantial energy gaps and band splittings in the silicene sheet as long as the binding is strong, which, however, is not always the case. (© 2014 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim) Carbon nanotube flexible sponge was manufactured as high performance electromagnetic shielding material. Chemical vapour deposition (CVD) synthesized sponges with extreme light weight show an electromagnetic shielding above 20 dB and a specific electromagnetic shielding as high as 1100 dB cm3g-1 in the whole 1-18 GHz range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  13. Removal of dissolved heavy metals and radionuclides by microbial spores

    International Nuclear Information System (INIS)

    Revis, N.W.; Hadden, C.T.; Edenborn, H.

    1997-01-01

    Microbial systems have been shown to remove specific heavy metals from contaminated aqueous waste to levels acceptable to EPA for environmental release. However, systems capable of removing a variety of heavy metals from aqueous waste to environmentally acceptable levels remain to be reported. The present studies were performed to determine the specificity of spores of the bacterium Bacillus megaterium for the adsorption of dissolved metals and radionuclides from aqueous waste. The spores effectively adsorbed eight heavy metals from a prepared metal mix and from a plating rinse waste to EPA acceptable levels for waste water. These results suggest that spores have multiple binding sites for the adsorption of heavy metals. Spores were also effective in adsorbing the radionuclides 85 strontium and 197 cesium. The presence of multiple sites in spores for the adsorption of heavy metals and radionuclides makes this biosorbent a good candidate for the treatment of aqueous wastes associated with the plating and nuclear industries. 17 refs., 4 tabs

  14. DISTRIBUTION OF HEAVY METALS AMONG THE COMPONENTS OF FRESHWATER ECOSYSTEMS (REVIEW

    Directory of Open Access Journals (Sweden)

    N. Kolesnyk

    2014-09-01

    Full Text Available Purpose. To review scientific sources on the distribution of heavy metals among the components of freshwater ecosystems. Findings. The review of the works of many scientists showed that heavy metals are widespread in the biotic and abiotic components of freshwater ecosystems. The article highlights the distribution of heavy metals in water, bottom sediments, natural food base, fish organs and tissues. It has been shown that as a result of global pollution of the ecosystem, the majority of Ukrainian rivers belong to polluted and very polluted. Of special interest are the studies of the distribution of heavy metals in phytoplankton, zooplankton, and zoobenthos because these components occupy a certain position in fish food chain. The presence of heavy metals in the natural food base showed that, on one hand, it could accumulate heavy metals in large amounts in such a way cleaning the water; and on the other hand, the heavy metals could migrate in the food web and contaminate fish. Ones of objects, which should be given attention when assessing toxicologic pollution, are aquatic plants, in particular phytoplankton. Studies showed that the accumulation of heavy metals in plants occurred first of all by their adsorption on the cellular wall. It explains the maximum adsorption of heavy metals by plants immediately after introduction of heavy metals into their culture. Fish as a rule occupy in the food web of water bodies one of the last places. They actively move in the aquatic environment and accumulating heavy metals at the same time they provide the most integrated and precise estimate of environmental pollution. By analyzing the distribution of heavy metals in fish organs and tissues, depending on their ability to accumulate them, it can be noted that the accumulation is the most intensive in such organs as gills, liver, and kidneys. Usually, their lowest content is observed in muscles that is important for human life because they are the main

  15. Comparison of digestion methods to determine heavy metals in fertilizers

    Directory of Open Access Journals (Sweden)

    Ygor Jacques Agra Bezerra da Silva

    2014-04-01

    Full Text Available The lack of a standard method to regulate heavy metal determination in Brazilian fertilizers and the subsequent use of several digestion methods have produced variations in the results, hampering interpretation. Thus, the aim of this study was to compare the effectiveness of three digestion methods for determination of metals such as Cd, Ni, Pb, and Cr in fertilizers. Samples of 45 fertilizers marketed in northeastern Brazil were used. A fertilizer sample with heavy metal contents certified by the US National Institute of Standards and Technology (NIST was used as control. The following fertilizers were tested: rock phosphate; organo-mineral fertilizer with rock phosphate; single superphosphate; triple superphosphate; mixed N-P-K fertilizer; and fertilizer with micronutrients. The substances were digested according to the method recommended by the Ministry for Agriculture, Livestock and Supply of Brazil (MAPA and by the two methods 3051A and 3052 of the United States Environmental Protection Agency (USEPA. By the USEPA method 3052, higher portions of the less soluble metals such as Ni and Pb were recovered, indicating that the conventional digestion methods for fertilizers underestimate the total amount of these elements. The results of the USEPA method 3051A were very similar to those of the method currently used in Brazil (Brasil, 2006. The latter is preferable, in view of the lower cost requirement for acids, a shorter digestion period and greater reproducibility.

  16. Heavy metal stabilization in contaminated road-derived sediments.

    Science.gov (United States)

    Rijkenberg, Micha J A; Depree, Craig V

    2010-02-01

    There is increasing interest in the stabilization of heavy metals in road-derived sediments (RDS), to enable environmentally responsible reuse applications and circumvent the need for costly landfill disposal. To reduce the mobility of heavy metals (i.e. Cu, Pb and Zn) the effectiveness of amendments using phosphate, compost and fly ash addition were investigated using batch leaching experiments. In general, phosphate amendments of RDS were found to be ineffective at stabilizing heavy metals, despite being used successfully in soils. Phosphate amendment resulted in enhanced concentrations of dissolved organic carbon (DOC), which increased the solubilisation of heavy metals via complexation. Amendment with humified organic matter (compost) successfully stabilized Cu and Pb in high DOC leaching RDS with an optimum loading of 15-20% (w/w). Compost, however, was ineffective at stabilizing Zn. Increasing the pH by amending RDS/compost blends with 2.5-15% (w/w) coal fly ash resulted in the stabilization of Zn, Cu and Pb. However, above a pH of approximately 7.5 and 8 enhanced leaching of organic matter resulted in an increase in leached Cu and Pb, respectively. Accordingly, the optimum level of fly ash amendment for the RDS/compost blends was estimated to be ca. 10%. Boosted regression trees analysis (BRT) of the data revealed that DOC accounted for 56% and 65% of the Cu and Pb leaching, respectively, whereas pH only accounted for ca. 18% of Cu and Pb leaching. RDS sample characteristics (i.e. metal concentrations, size fractionation and organic matter content) were more important at reconciling the leaching concentrations of copper Cu (27%) than Pb (16%). The most important parameter explaining Zn leaching was pH. Overall, the choice of a suitable stabilization agent/s depends on the composition of RDS with respect to the amount of organic matter present, and the sorption chemistry of the heavy metal of interest. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil

    International Nuclear Information System (INIS)

    Brunner, Ivano; Luster, Joerg; Guenthardt-Goerg, Madeleine S.; Frey, Beat

    2008-01-01

    Root systems of Norway spruce (Picea abies) and poplar (Populus tremula) were long-term exposed to metal-contaminated soils in open-top chambers to investigate the accumulation of the heavy metals in the fine roots and to assess the plants suitability for phytostabilisation. The heavy metals from the contaminated soil accumulated in the fine roots about 10-20 times more than in the controls. The capacity to bind heavy metals already reached its maximum after the first vegetation period. Fine roots of spruce tend to accumulate more heavy metals than poplar. Copper and Zinc were mainly detected in the cell walls with larger values in the epidermis than in the cortex. The heavy metals accumulated in the fine roots made up 0.03-0.2% of the total amount in the soils. We conclude that tree fine roots adapt well to conditions with heavy metal contamination, but their phytostabilisation capabilities seem to be very low. - Long-term exposed fine roots of trees are well adapted to soils with high heavy metal contents, but their phytostabilisation capabilities are rather low

  18. Adsorption of heavy metal in freeway by asphalt block

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  19. Heavy metals in the cell nucleus - role in pathogenesis.

    Science.gov (United States)

    Sas-Nowosielska, Hanna; Pawlas, Natalia

    2015-01-01

    People are exposed to heavy metals both in an occupational and natural environment. The most pronounced effects of heavy metals result from their interaction with cellular genetic material packed in form of chromatin. Heavy metals influence chromatin, mimicking and substituting natural microelements in various processes taking place in the cell, or interacting chemically with nuclear components: nucleic acids, proteins and lipids. This paper is a review of current knowledge on the effects of heavy metals on chromatin, exerted at the level of various nuclear components.

  20. Remediation of biochar on heavy metal polluted soils

    Science.gov (United States)

    Wang, Shuguang; Xu, Yan; Norbu, Namkha; Wang, Zhan

    2018-01-01

    Unreasonable mining and smelting of mineral resources, solid waste disposal, sewage irrigation, utilization of pesticides and fertilizers would result in a large number of heavy metal pollutants into the water and soil environment, causing serious damage to public health and ecological safety. In recent years, a majority of scholars tried to use biochar to absorb heavy metal pollutants, which has some advantages of extensive raw material sources, low-cost and high environmental stability. This paper reviewed the definition, properties of biochar, the mechanism of heavy metal sorption by biochar and some related problems and prospects, to provide some technical support for the application of biochar into heavy metal polluted soils.

  1. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    On behalf of the Ministry of the Environment DCE at Aarhus University annually reports heavy metals (HM) emissions to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution). This report presents updated heavy metal emission factors......-2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...

  2. Bioremediation of Toxic Heavy Metals: A Patent Review.

    Science.gov (United States)

    Verma, Neelam; Sharma, Rajni

    2017-01-01

    The global industrialization is fulfilling the demands of modern population at the cost of environmental exposure to various contaminants including heavy metals. These heavy metals affect water and soil quality. Moreover, these enter into the food chain and exhibit their lethal effects on the human health even when present at slightly higher concentration than required for normal metabolism. To the worst of their part, the heavy metals may become carcinogenic. Henceforth, the efficient removal of heavy metals is the demand of sustainable development. Remedy: Bioremediation is the 'green' imperative technique for the heavy metal removal without creating secondary metabolites in the ecosystem. The metabolic potential of several bacterial, algal, fungal as well as plant species has the efficiency to exterminate the heavy metals from the contaminated sites. Different strategies like bioaccumulation, biosorption, biotransformation, rhizofilteration, bioextraction and volatilization are employed for removal of heavy metals by the biological species. Bioremediation approach is presenting a splendid alternate for conventional expensive and inefficient methods for the heavy metal removal. The patents granted on the bioremediation of toxic heavy metals are summarized in the present manuscript which supported the applicability of bioremediation technique at commercial scale. However, the implementation of the present information and advanced research are mandatory to further explore the concealed potential of biological species to resume the originality of the environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. The ecological risk assessment of heavy metals in the Kuihe River basin (Xuzhou section) and the characteristics of plant enrichment

    Science.gov (United States)

    Sun, Ling; Zheng, Lei

    2018-01-01

    In order to investigate Kuihe River basin of heavy metals (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) pollution, the determination of the Kuihe River water body, the bottom of the river silt, riparian soil plants and heavy metal content of 9 kinds of riparian plants, investigate the pollution situation, so as to screen out the plants that has potential of enrichment and rehabilitation of heavy metal pollution. The results showed that Cd and Mn in the water body exceed bid; The pollution of Zn and Cu in the bottom mud is serious, potential ecological risk of heavy metals is Zn>Cu>Pb>Ni>Cd>As>Cr>Mn Riparian soil affected by sewage and overflow of sediment has significant positive correlation with soil heavy metals, among them, the Zn and Cu are heavy pollution; The selective absorption of heavy metals by 9 kinds of dominant plant leads to its bio concentration factor (BCF) of Cr and Pb on the low side, are all less than 1, from the translocation factor (TF), Setcreasea purpurea and Poa annua showed obvious roots type hoarding. Poa annua and Lycium chinense have a resistance on the absorption of heavy metals, Lythrum salicaria, Photinia serrulata and Broussonetia papyrifera have a unique advantage on enrichment of heavy metals, Broussonetia papyri era on a variety of strong ability of enrichment and transfer of heavy metals suggests that the woody plants in the vast application prospect in the field of rehabilitation technology of heavy metals.

  4. Determination of the levels of heavy metals in cocoa products

    International Nuclear Information System (INIS)

    Dankyi Enock

    2009-06-01

    Fermented and dried cocoa beans from all the major cocoa-producing regions in Ghana were analyzed for levels of the following heavy metals: arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel and zinc. The shells of the beans which usually do not form a part of the edible portion of the beans were removed and analyzed separately from the cocoa nibs (de-shelled beans) for all the elements above. To determine the distribution of metals during processing of the beans soxhlet extractions of fat from pulverised cocoa nibs was performed and cocoa powders obtained analyzed for their levels of heavy metals. Three commercial brands of 'natural' cocoa powders on the local market were also analyzed to determine the levels of these metals. The analyses were performed using an inductively coupled plasma - optical emission spectrophotometer (ICP-OES) following a microwave-assisted digestion process. The levels of toxic metals lead, cadmium and arsenic were found to be low (≤ 0.020 μg/g, ≤ 0.087 μg/g, < 0.001 μg/g, respectively) and well within the acceptable limits set by the WHO (0.100 μg/g, 0.100 μg/g, and 0.010 μg/g respectively). However, the levels of zinc copper, iron and manganese were however quite high. With a high fat content of the cocoa beans (approximately 50%) and greater portioning of metals into the non-fat portions of the beans, metals levels were considerably higher (almost double) in processed cocoa than in the cocoa itself. (au)

  5. Heavy metal pollution among autoworkers. II. Cadmium, chromium, copper, manganese, and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J.; Rastogi, S.C.

    1977-08-01

    Garages and auto-repair workshops may be polluted with other heavy metals besides lead. Blood of autoworkers with high lead content was analyzed for cadmium, chromium, copper, manganese, nickel, ALAD activity and carboxyhaemoglobin level. Cadmium and copper levels in blood of autoworkers were comparable with those of the control subjects while chromium and nickel levels were significantly higher (P < 0.01 for both metals), and scattered raised values of manganese were found. There was no significant mutual correlation between levels of various heavy metals determined in whole blood. High copper levels were slightly related to decreasing ALAD activity (P < 0.1). Nineteen percent of autoworkers were found to have an abnormally high blood level of carboxyhemoglobin. The amount of particulate heavy metal in autoworkshop air was not related to biochemical abnormalities found in the autoworkers. Various sources of pollution of these heavy metals in autoworkshops are discussed.

  6. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China.

    Science.gov (United States)

    Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang

    2015-06-01

    There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.

  7. Reveal the response of enzyme activities to heavy metals through in situ zymography.

    Science.gov (United States)

    Duan, Chengjiao; Fang, Linchuan; Yang, Congli; Chen, Weibin; Cui, Yongxing; Li, Shiqing

    2018-07-30

    Enzymes in the soil are vital for assessing heavy metal soil pollution. Although the presence of heavy metals is thought to change the soil enzyme system, the distribution of enzyme activities in heavy metal polluted-soil is still unknown. For the first time, using soil zymography, we analyzed the distribution of enzyme activities of alfalfa rhizosphere and soil surface in the metal-contaminated soil. The results showed that the growth of alfalfa was significantly inhibited, and an impact that was most pronounced in seedling biomass and chlorophyll content. Catalase activity (CAT) in alfalfa decreased with increasing heavy metal concentrations, while malondialdehyde (MDA) content continually increased. The distribution of enzyme activities showed that both phosphatase and β-glucosidase activities were associated with the roots and were rarely distributed throughout the soil. In addition, the total hotspot areas of enzyme activities were the highest in extremely heavy pollution soil. The hotspot areas of phosphatase were 3.4%, 1.5% and 7.1% under none, moderate and extremely heavy pollution treatment, respectively, but increased from 0.1% to 0.9% for β-glucosidase with the increasing pollution levels. Compared with the traditional method of enzyme activities, zymography can directly and accurately reflect the distribution and extent of enzyme activity in heavy metals polluted soil. The results provide an efficient research method for exploring the interaction between enzyme activities and plant rhizosphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Heavy metals behavior during thermal plasma vitrification of incineration residues

    International Nuclear Information System (INIS)

    Cerqueira, N.; Vandensteendam, C.; Baronnet, J.M.

    2005-01-01

    In the developed world, incineration of wastes is widely and increasingly practiced. Worldwide, a total of approximately 100 millions of tons of municipal solid waste (MSW) material is incinerated annually. Incineration of one ton of MSW leads to the formation of 30 to 50 kg of fly ash, depending on the type of incinerator. The waste disposal of these dusts already causes great problems today; they are of low bulk density, they contain high concentrations of hazardous water-soluble heavy metal compounds, organohalogen compounds (dioxines, furanes), sulfur, and chlorinated compounds. Thermal processes, based mainly on electrical arc processes, show great promise: the residues are melted at high temperature and converted in a relatively inert glass. A few tens of plants, essentially in Japan and Taiwan, have been in industrial operation for a few years. To be authorized to be dumped in a common landfill, the glassy product has to satisfy the leaching test procedure to ensure long-term durability. But to satisfy the regulation to be reused, for example as a nonhazardous standard material in road building, the glassy product would probably include contents in some heavy metals lower than critical limits. So today, there are two alternatives: the first one is to improve the heavy toxic metals evaporation to get a 'light' glassy product and to recycle separately the said separated metals; the second is on the contrary to improve the incorporation of a maximum of heavy metals into the vitreous silicate matrix. Whatever, it is highly required to control, in situ and in real time, volatility of these metals during ash melting under electrical arc. The objective of this work was to reach basic data about metals volatility under the plasma column of an electrical arc transferred on the melt: an experiment has been designed to examine the effects of processing conditions, such as melt temperature, melt composition, and furnace atmosphere, upon volatilization and glassy slag

  9. Accumulation of heavy metals in Medicago sativa L. and Trifolium pratense L. at the contaminated fluvisol

    Directory of Open Access Journals (Sweden)

    Jakšić Snežana P.

    2013-01-01

    Full Text Available Recently, heavy metals concentrations increased in some agricultural areas due to the consequences of anthropogenic impacts. The aim of this study was to determine the level of heavy metals (As, Cr, Ni and Pb in Medicago sativa L. and Trifolium pratense L. grown on fluvisol, in order to obtain information on safety of these nutrients. The total content of Pb, As, Cr and Ni in the samples of fluvisol was above the maximum allowable amount. The content of heavy metals in Medicago sativa L. and Trifolium pratense L. was below the critical and toxic concentrations in all samples originating from contaminated soil. It was concluded that the accumulation of heavy metals in plants did not depend only on the total content in soil, but also the affinity of the plant, and individual and interactive effects of various soil properties. No statistically significant differences in the accumulation of heavy metals between Medicago sativa L. and Trifolium pratense L were observed. It is necessary to further control of heavy metals in the investigated area, in order to prevent their entry into the food chain and provide healthy food.

  10. Routine soil testing to monitor heavy metals and boron

    Directory of Open Access Journals (Sweden)

    Abreu Cleide Aparecida de

    2005-01-01

    Full Text Available Microelements are an important issue in agriculture, due to their need as micronutrients for plants and also to the possibility of the build-up of toxic levels for plants and animals. Five micronutrients (B, Cu, Fe, Mn, and Zn are routinely determined in soil analysis for advisory purposes. Other four elements (Cd, Cr, Pb, and Ni are considered environmentally important heavy metals in farmland soils. Thus high contents of these metals in cropland might go eventually unnoticed. In this paper we present an approach that can be used to monitor the contents of the nine elements in farmland soils using advisory soil testing. A total of 13,416 soil samples from 21 Brazilian states, 58% of them from the state of São Paulo, sent by farmers were analyzed. Boron was determined by hot water extraction and the other metals were determined by DTPA (pH 7.3 extraction. The ranges of content, given in mg dm-3 soil, were the following: B, 0.01-10.6; Cu, 0.1-56.2; Fe, 0.5-476; Mn, 1-325; Zn, 1-453; Cd, 0.00-3.43, Cr, 0.00-42.9; Ni, 0.00-65.1; Pb, 0.00-63.9. The respective average values for São Paulo were: B-0.32; Cu-2.5; Fe-36; Mn-16; Zn-4.8; Cd-0.02; Cr-0.03; Ni-0.18; Pb-0.85. For other states the results are in the same ranges. The higher values are indicative of anthropogenic inputs, either due to excess application of fertilizers or to industrial or mining activities. The conclusion is that massive chemical analysis of farmland soil samples could serve as a database for indicating potential micronutrient deficiency and excesses or heavy metal buil-up in croplands, allowing preventive actions to be taken.

  11. Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Sung; Kang, Kyung Hong; Johnson-Green, Perry; Lee, Eun Ju

    2003-11-01

    Polygonum thunbergii is useful to remove heavy metal from soil and water. - In this study, cadmium (II), lead (II), copper (II) and zinc (II) were determined in Polygonum thunbergii and soil from the Mankyung River watershed, Korea. Soil samples contained detectable lead (<17.5 {mu}g g{sup -1}), copper (<8.4 {mu}g g{sup -1}) and zinc (<24.5 {mu}g g{sup -1}), whereas cadmium was undetectable. Whole plants of P. thunbergii contained detectable lead (<320.8 {mu}g g{sup -1}), copper (<863.2 {mu}g g{sup -1}) and zinc (<2427.3 {mu}g g{sup -1}), whereas cadmium was detectable only in the stem (<7.4 {mu}g g{sup -1}) and root (<10.1 {mu}g g{sup -1}). Whole plant concentrations were very different for each metal, particularly in the case of zinc. The mean content of heavy metal in the whole plants increased in the order of cadmium (8.5 {mu}g g{sup -1})metal's accumulation in the plants (lead, r=0.841, P<0.005; copper, r=0.874, P<0.001; zinc, r=0.770, P<0.005). Lead content in roots and leaves was highly correlated (r=0.5529, P<0.001), as was lead content in roots and stems (r=0.5425, P<0.001). Mean bioconcentration factors for the aboveground tissues were 4.2 (lead), 14.8 (copper) and 27.7 (zinc), and for the underground tissues, were 22.2 (lead), 92.9 (copper) and 62.7 (zinc). After hydroponic growth, bioaccumulation coefficients were 2.0 (cadmium), 3.2 (lead), 17.2 (copper) and 13.1 (zinc) for whole plants. We considered these results as indicative of the ability of P. thunbergii plants to take up metal ions from a soil matrix contaminated with heavy metals.

  12. Heavy metal and proximate composition associated with the ...

    African Journals Online (AJOL)

    User

    2014-05-08

    May 8, 2014 ... Levels of Cu, Mn, Pd and Zn in mushroom samples analysed were ... metal concentration in soil and fungal factors such as species ..... Levels of trace elements in the fruiting bodies ... Toxicity of non-radioactive heavy metals.

  13. Assessment of Heavy Metals Level of River Kaduna at Kaduna ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... status and the implications of the heavy metal pollution on human health and the environment. ... metals discharged into the river especially from the industries and municipal ...

  14. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    EJIRO

    Key words: Biosorption, bacteria, heavy metal, dead bacterial cells, immobilization. INTRODUCTION ... Moreover, the metals cannot be degraded to harmless products and ... a sterile plastic container and taken immediately to the laboratory.

  15. Waste printing paper as analogous adsorbents for heavy metals in ...

    African Journals Online (AJOL)

    user

    heavy metals uptake from aqueous solutions but the recovery efficacy as economic and environmental ... system. 1 . Wastes containing metals are directly or indirectly discharge into the environment ... According to World health Organization. 5.

  16. Analysis of Heavy Metals Concentration in Kano Herbal ...

    African Journals Online (AJOL)

    2017-09-23

    Sep 23, 2017 ... toxic metals in the body system of the consumers of these herbal preparations in order to attain to safe and effective ..... heavy metal availability and vegetation recovery at a grown ... World Health Organization (WHO,. 2007).

  17. urban dietary heavy metal intake from protein foods and vegetables

    African Journals Online (AJOL)

    Mgina

    Contamination of food and food products by heavy metals has made dietary intake as one of the ... metals cadmium, copper, lead and zinc from protein-foods (beans, meat, fish, milk) and green ..... on food additives Technical report series. No.

  18. Rhizofiltration of heavy metals from the tannery sludge by the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... The accumulation of toxic metals in the plants was significantly increased, with increasing exposure time ..... in the conversion of organic carbon into carbon dioxide. It ... Once absorbed by the plants, toxic or heavy metals can.

  19. Accumulation of Proline under Salinity and Heavy metal stress in ...

    African Journals Online (AJOL)

    Michael Horsfall

    Seed germination and growth parameters of seedlings of cauliflower were observed after 5, 10 and 15 ... Keywords: Abiotic stress, salinity, proline and heavy metals. The responses of ..... induced accumulation of free proline in a metal-tolerant.

  20. Heavy Metal Analyses and Nutritional Composition of Raw and ...

    African Journals Online (AJOL)

    PROF HORSFALL

    KEYWORDS: Nutritional composition, heavy metals, fresh water fishes, marine water fishes, lagoons. Introduction. Fish is an .... the flame and 90% passed out as waste. The flame ..... metals in surface water, sediments, fish and periwinkles of ...

  1. Trend of Heavy Metal Concentrations in Lagos Lagoon Ecosystem

    African Journals Online (AJOL)

    komla

    The distribution and occurrence of heavy metals in the sediment, water and benthic animals of the Lagos lagoon ... The concentrations of the metals detected in the lagoon sediment and water ..... waste products contaminating water sources.

  2. Heavy metals in trees and energy crops - a literature review

    International Nuclear Information System (INIS)

    Johnsson, Lars

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  3. Data on heavy metals and selected anions in the Persian popular herbal distillates

    Directory of Open Access Journals (Sweden)

    Mozhgan Keshtkar

    2016-09-01

    Full Text Available In this data article, we determined the concentration levels of heavy metals including Pb, Co, Cd, Mn, Mg, Fe and Cu as well as selected anions including NO3− , NO2−, PO4−3 and SO4−2 in the most used and popular herbal distillates in Iran. It is well known that heavy metals may pose a serious health hazard due to their bioaccumulation throughout the trophic chain (“Heavy metals (Cd, Cu, Ni and Pb content in two fish species of Persian Gulf in Bushehr Port, Iran” (Dobaradaran et al., 2013 [1]; “Comparative investigation of heavy metal, trace, and macro element contents in commercially valuable fish species harvested off from the Persian Gulf” (Abadi et al., 2015 [2] as well as some other environmental pollutions, “Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity” (Arfaeinia et al., 2016 [3]. The concentration levels of heavy metals and anions in herbal distillates samples were determined using flame atomic absorption spectrometry (FAAS, Varian AA240, Australia and a spectrophotometer (M501 Single Beam Scanning UV/VIS, UK respectively. Keywords: Daily intake, Herbal distillates, Heavy metals, Selected anions

  4. [Urban air pollution with heavy metals and evaluating risk for public health].

    Science.gov (United States)

    Kazimov, M A; Alieva, R Kh; Alieva, N V

    2014-01-01

    The authors presented hygienic evaluation of ambient air in various districts of Baku city with heavy metals--lead, cadmium, chromium, nickel, copper and zinc. The metals contents of the air were assessed indirectly by their levels in soils of the areas under study. Findings are that soil levels of zinc, chromium and nickel exceeded those of the other metals by a degree. The highest levels were seen in the industrial area that can be assigned to a territory with highest risk for public health. The calculated daily doses of heavy metals inhaled by humans and levels of total daily doses inhaled by adult inhabitants could be risk factors in chronic exposure.

  5. Atmospheric heavy metal deposition in the Copenhagen area

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A; Hovmand, M F; Johnsen, I

    1978-10-01

    Transport of heavy metals from the atmosphere to the soil and vegetation takes place by dust fall, bulk precipitation, and gas/aerosol adsorption processes. Atmospheric dry and wet deposition of the heavy metals lead, zinc, nickel, vanadium, iron, and copper over the Copenhagen area was measured by sampling in plastic funnels from 17 stations throughout the area for 12 months. Epigeic bryophytes, epiphytic lichen, and topsoil samples were analyzed. A linear correlation between bulk precipitation and heavy metal concentration in lichens and bryophytes was found. An exponential correlation between bulk precipitation and heavy metal concentration in soil was noted. Regional variation of the heavy metal levels in the Copenhagen area was described, and three sub-areas with high metal burdens were distinguished. (10 diagrams, 8 graphs, 13 references, 2 tables)

  6. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  7. Heavy metal contamination in bats in Britain

    International Nuclear Information System (INIS)

    Walker, L.A.; Simpson, V.R.; Rockett, L.; Wienburg, C.L.; Shore, R.F.

    2007-01-01

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb

  8. Toxic Heavy Metals: Materials Cycle Optimization

    Science.gov (United States)

    Ayres, Robert U.

    1992-02-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are inherently dissipative. Examples of such uses include fuels, lubricants, solvents, fire retardants, stabilizers, flocculants, pigments, biocides, and preservatives. To close the materials cycle, it will be necessary to accomplish two things. The first is to ban or otherwise discourage (e.g., by means of high severance taxes on virgin materials) dissipative uses of the above type. The second is to increase the efficiency of recycling of those materials that are not replaceable in principle. Here, also, economic instruments (such as returnable deposits) can be effective in some cases. A systems view of the problem is essential to assess the cost and effectiveness of alternative strategies.

  9. Scaling behavior of heavy fermion metals

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.r [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical Technical Institute, RAS, St. Petersburg 194021 (Russian Federation); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a, Chernova str. Syktyvkar, 167982 (Russian Federation)

    2010-07-15

    Strongly correlated Fermi systems are fundamental systems in physics that are best studied experimentally, which until very recently have lacked theoretical explanations. This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as heavy-fermion (HF) metals and two-dimensional (2D) Fermi systems. It is shown that the basic properties and the scaling behavior of HF metals can be described within the framework of a fermion condensation quantum phase transition (FCQPT) and an extended quasiparticle paradigm that allow us to explain the non-Fermi liquid behavior observed in strongly correlated Fermi systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Having analyzed the collected facts on strongly correlated Fermi systems with quite a different microscopic nature, we find these to exhibit the same non-Fermi liquid behavior at FCQPT. We show both analytically and using arguments based entirely on the experimental grounds that the data collected on very different strongly correlated Fermi systems have a universal scaling behavior, and materials with strongly correlated fermions can unexpectedly be uniform in their diversity. Our analysis of strongly correlated systems such as HF metals and 2D Fermi systems is in the context of salient experimental results. Our calculations of the non-Fermi liquid behavior, the scales and thermodynamic, relaxation and transport properties are in good agreement with experimental facts.

  10. Heavy metal contamination in bats in Britain

    Energy Technology Data Exchange (ETDEWEB)

    Walker, L.A. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Simpson, V.R. [Wildlife Veterinary Investigation Centre, Jollys Bottom Farm, Chacewater, Truro, Cornwall TR4 8PB (United Kingdom); Rockett, L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Wienburg, C.L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Shore, R.F. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom)]. E-mail: rfs@ceh.ac.uk

    2007-07-15

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb.

  11. Implication of heavy metals distribution for a municipal solid waste management system - a case study in Shanghai

    International Nuclear Information System (INIS)

    Zhang Hua; He Pinjing; Shao Liming

    2008-01-01

    Heavy metal contamination in municipal solid waste (MSW) is of increasing concern. The occurrence and distribution of heavy metals in MSW and their implications for the integrated MSW management system in mega-cities have been investigated by means of material flow analysis based on a case study of Shanghai in China. A good statistical basis was provided through a one-year monitoring program on the mass and metals composition of the waste from three MSW treatment facilities. The results showed that the main heavy metals in the MSW were Zn, Cr, Cu, and Pb (on average > 100 mg kg -1 ), followed by Ni, Cd, and Hg. The MSW contained higher levels of Cu and Ni in metals, Cr and Pb in plastics, and Pb and Zn in the inorganic fractions. Regardless of the sources, the statistically similar heavy metal contents in the organic fractions indicated that effective blending and diffusion of heavy metals had taken place throughout the MSW collection, transfer, transportation, and storage, leading to cross-contamination of the waste fractions. PU (composed of putrescible waste and miscellaneous indistinguishable particles) contributed the majority of the heavy metals to the MSW, followed by plastics, as a result of the predominance in the overall composition of PU and plastics rather than from differences in their heavy metal contents. Therefore, manual or mechanical separation of some significantly heavy metal-rich fractions alone is not sufficient to reduce the heavy metal contents in the MSW. Source separation of organic waste and the diversion of tailored inorganic waste such as hazardous components, construction and demolition waste, etc., are proposed to control the heavy metal contamination in MSW. For the mixed MSW management system, physicochemical fractionation to exclude particles containing high levels of heavy metals can be conducted

  12. Implication of heavy metals distribution for a municipal solid waste management system - a case study in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hua [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)], E-mail: solidwaste@mail.tongji.edu.cn; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2008-09-01

    Heavy metal contamination in municipal solid waste (MSW) is of increasing concern. The occurrence and distribution of heavy metals in MSW and their implications for the integrated MSW management system in mega-cities have been investigated by means of material flow analysis based on a case study of Shanghai in China. A good statistical basis was provided through a one-year monitoring program on the mass and metals composition of the waste from three MSW treatment facilities. The results showed that the main heavy metals in the MSW were Zn, Cr, Cu, and Pb (on average > 100 mg kg{sup -1}), followed by Ni, Cd, and Hg. The MSW contained higher levels of Cu and Ni in metals, Cr and Pb in plastics, and Pb and Zn in the inorganic fractions. Regardless of the sources, the statistically similar heavy metal contents in the organic fractions indicated that effective blending and diffusion of heavy metals had taken place throughout the MSW collection, transfer, transportation, and storage, leading to cross-contamination of the waste fractions. PU (composed of putrescible waste and miscellaneous indistinguishable particles) contributed the majority of the heavy metals to the MSW, followed by plastics, as a result of the predominance in the overall composition of PU and plastics rather than from differences in their heavy metal contents. Therefore, manual or mechanical separation of some significantly heavy metal-rich fractions alone is not sufficient to reduce the heavy metal contents in the MSW. Source separation of organic waste and the diversion of tailored inorganic waste such as hazardous components, construction and demolition waste, etc., are proposed to control the heavy metal contamination in MSW. For the mixed MSW management system, physicochemical fractionation to exclude particles containing high levels of heavy metals can be conducted.

  13. MRP proteins as potential mediators of heavy metal resistance in zebrafish cells.

    Science.gov (United States)

    Long, Yong; Li, Qing; Wang, Youhui; Cui, Zongbin

    2011-04-01

    Acquired resistance of mammalian cells to heavy metals is closely relevant to enhanced expression of several multidrug resistance-associated proteins (MRP), but it remains unclear whether MRP proteins confer resistance to heavy metals in zebrafish. In this study, we obtained zebrafish (Danio rerio) fibroblast-like ZF4 cells with resistance to toxic heavy metals after chronic cadmium exposure and selection for 6months. These cadmium-resistant cells (ZF4-Cd) were maintained in 5μM cadmium and displayed cross-resistance to cadmium, mercury, arsenite and arsenate. ZF4-Cd cells remained the resistance to heavy metals after protracted culture in cadmium-free medium. In comparison with ZF4-WT cells, ZF4-Cd cells exhibited accelerated rate of cadmium excretion, enhanced activity of MRP-like transport, elevated expression of abcc2, abcc4 and mt2 genes, and increased content of cellular GSH. Inhibition of MRP-like transport activity, GSH biosynthesis and GST activity significantly attenuated the resistance of ZF4-Cd cells to heavy metals. The results indicate that some of MRP transporters are involved in the efflux of heavy metals conjugated with cellular GSH and thus play crucial roles in heavy metal detoxification of zebrafish cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery.

    Science.gov (United States)

    Naderi, Arman; Delavar, Mohammad Amir; Kaboudin, Babak; Askari, Mohammad Sadegh

    2017-05-01

    This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.

  15. Prevalence of exposure of heavy metals and their impact on health consequences.

    Science.gov (United States)

    Rehman, Kanwal; Fatima, Fiza; Waheed, Iqra; Akash, Muhammad Sajid Hamid

    2018-01-01

    Even in the current era of growing technology, the concentration of heavy metals present in drinking water is still not within the recommended limits as set by the regulatory authorities in different countries of the world. Drinking water contaminated with heavy metals namely; arsenic, cadmium, nickel, mercury, chromium, zinc, and lead is becoming a major health concern for public and health care professionals. Occupational exposure to heavy metals is known to occur by the utilization of these metals in various industrial processes and/or contents including color pigments and alloys. However, the predominant source resulting in measurable human exposure to heavy metals is the consumption of contaminated drinking water and the resulting health issues may include cardiovascular disorders, neuronal damage, renal injuries, and risk of cancer and diabetes. The general mechanism involved in heavy metal-induced toxicity is recognized to be the production of reactive oxygen species resulting oxidative damage and health related adverse effects. Thus utilization of heavy metal-contaminated water is resulting in high morbidity and mortality rates all over the world. Thereby, feeling the need to raise the concerns about contribution of different heavy metals in various health related issues, this article has discussed the global contamination of drinking water with heavy metals to assess the health hazards associated with consumption of heavy metal-contaminated water. A relationship between exposure limits and ultimate responses produced as well as the major organs affected have been reviewed. Acute and chronic poisoning symptoms and mechanisms responsible for such toxicities have also been discussed. © 2017 Wiley Periodicals, Inc.

  16. Wastewater treatment from heavy metal ions using nanoactivated complexes of natural zeolite and diatomite

    Directory of Open Access Journals (Sweden)

    Malkin Polad

    2018-04-01

    Full Text Available Despite the wide practical use of sorption methods and complexones in treatment of industrial wastewater, some problems are still to be solved in this field. These are the most significant: insufficient sorption capacity of materials, lack of reliable methods for regenerating sorbents and resource-saving ecology friendly treatment technologies with the use of sorbents as well as methods of utilization of heavy metals from waste by complex formation. An important factor affecting the behavior of heavy metals in the soil is the medium acidity. With a neutral and slightly alkaline reaction of the medium, hardly soluble compounds are formed: hydroxides, sulphides, phosphates, carbonates, and oxalates of heavy metals. When acidity increases the reverse process runs in the soil: hardly soluble compounds become more mobile, while mobility of many heavy metals increases. However, the effect of soil acidity on mobility of heavy metals is ambiguous. Although mobility of many heavy metals decreases with increasing pH of the medium (for example, Fe, Mn, Zn, Co, etc., there are a number of metals whose mobility increases with soil neutralization. These include molybdenum and chromium, which are able to form soluble salts in a weak ly acidic and alkaline medium. In addition, heavy metals such as mercury and cadmium are able to maintain mobility in an alkaline medium through formation of complex compounds with organic matter in soils. Heavy metals interact with a solid phase of the soil by mechanisms of specific and nonspecific adsorption. In this article, a technique of wastewater treatment from heavy metal ions using nanoactivated complexes of natural zeolite and diatomite is proposed. This technique can reduce significant costs in preparation of raw materials and subsequent chemical modification of them. Technological solutions aimed at disposal and recycling of industrial wastewater have been proposed. These solutions make it possible to obtain the water

  17. Study of heavy metal in sewage sludge and in Chinese cabbage ...

    African Journals Online (AJOL)

    The study was performed to investigate the heavy metal content and availability for crops in sewage sludge and its accumulation in Chinese cabbage grown in sewage sludge amended soil. We determined the total and chemical fraction of As, Cr, Cd, Pb, Ni, Cu, Zn, Fe, Mg and Mn in sewage sludge and the total content of ...

  18. Influence of Heavy Metal Stress on Antioxidant Status and DNA Damage in Urtica dioica

    Directory of Open Access Journals (Sweden)

    Darinka Gjorgieva

    2013-01-01

    Full Text Available Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES, for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12 in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity.

  19. Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica.

    Science.gov (United States)

    Gjorgieva, Darinka; Kadifkova Panovska, Tatjana; Ruskovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2013-01-01

    Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP) assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD) technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12) in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity.

  20. The influence of silica functionalized with silanes on migration of heavy metals in soil

    Directory of Open Access Journals (Sweden)

    Grzesiak Piotr

    2016-03-01

    Full Text Available 3-Mercaptopropyl-trimethoxysilane and [3-(2-aminoethylaminopropyl]trimethoxysilane were used to functionalize the surface of silica from Piotrowice in Poland to stabilize heavy metals (HMs and arsenic in soil. The soil for the study was sampled from the impact zone of Głogów Copper Smelter and Refinery. The soil samples were exposed to five-step Tessier sequential extraction. The speciation studies were limited to five sequentially defined fractions in which metal content was determined. The addition of unmodified silica did not affect significantly the concentration of metals in individual fractions. Significant changes were noted upon introduction of functionalized silica in the soil. The hybrid formulations obtained significantly reduce the release of heavy metals and arsenic from soil sorption complex. The results indicate the potential use of functional formulations for reduction of metal migration in soil in the areas of exceeded concentration of heavy metals and arsenic in the soil, caused by industrial activity.

  1. Heavy metals in reindeer and their forage plants

    Directory of Open Access Journals (Sweden)

    O. Eriksson

    1990-09-01

    Full Text Available An attempt was made to assess the level of heavy metal transfer from forage plants to reindeer (Rangifer tarandus L. in an area in northern Lapland affected from dust from an open pit copper mine. Botanical analyses of rumen contents from reindeer provided information about the main plant species in the diet. Representative plant material was collected from sample plots within an 8 km radius from the central part of the mine and from a reference area situated about 200 km upwind of the mining site. The following plant species were analysed: Bryoria jremontii, Br. juscescens, Cladina rangiferina, Equisetum fluviatile, Descbampsiaflexuosa, Eriopborum vaginatum, Salix glauca, Salix pbylicifolia, Betula nana, and Vaccini-um myrtillus. The greatest difference between metal concentrations in the plants collected from dust contaminated area and from the reference area was found in lichens. Copper is the main metallic component of the ore and was found in higher concentrations in lichens coming from the area around the mine than in lichens from the reference area. Smaller differences were found in vascular plants. Dust particles, remaining on outer surfaces after snow smelt contributed to a limited extent to the metal contents. Species—specific accumulation of metals was observed in some plants. The uptake of lead and cadmium in some vascular plants was somewhat higher in the reference area compared with plants growing in the perifery of the mining center, probably due to the metal concentrations in the bedrock. Organ material (liver and kidney was collected from reindeer in both areas. No noticable effect on metal concentrations in the liver of the reindeer were found. Although the lead, cadmium and copper concentrations were higher in the organs collected from animals in the reference area than in those from the mining area, the levels were still below the concentrations regarded as harmful for the animals from toxicological point of view. The

  2. Heavy metal contamination in canned foods

    International Nuclear Information System (INIS)

    Sand, W.A.; Flex, H.; Allan, K.F.; Mahmoud, R.M.; Abdel-Haleem, A.E.

    2001-01-01

    The work carried out in this paper aims to the study of contamination of different foodstuffs, that are consumed frequently in our daily life, such as tomatoes concentrate, jam, tuna, and bean, as a result of canning in glass or tin cans. The effect of the storage time on the contamination of the aforementioned foods with heavy metals was also investigated. The technique used for the simultaneous determination of these elements was the instrumental neutron activation analysis (INAA). This technique was selected due to its high accuracy, sensitivity and selectivity. In the light of the obtained results it was suggested that tin cans is the best choice for canning jam and it is suitable also for preserving tuna. On the other hand, glass utensils were found to be the most suitable for preserving tomatoes concentrate. detailed studies are needed to throw more light on the effect of canning material on the concentration level of both essential and toxic trace elements in bean

  3. Hydroponic phytoremediation of heavy metals and radionuclides

    International Nuclear Information System (INIS)

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-01-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated

  4. Hydroponic phytoremediation of heavy metals and radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, J; Szpak, J; Hamric, T; Cutright, T

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  5. Heavy metals biogeochemistry in abandoned mining areas

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available Plants growing on the abandoned Portuguese mines, highly contaminated with W, Sn, As, Cd, Cu, Zn and Pb, have been studied for their biogeochemical indication/prospecting and mine restoration potential. The results of analysis show that the species best suited for biogeochemical indicating are: aerial tissues of Halimium umbellatum (L. Spach, for As and W; leaves of Erica arborea L. for Bi, Sn, W and mostly Pb; stems of Erica arborea L. for Pb; needles of Pinus pinaster Aiton and aerial tissues of Pteridium aquilinum (L. Kuhn for W; and leaves of Quercus faginea Lam. for Sn. The aquatic plant studied (Ranunculus peltatus Schrank can be used to decrease the heavy metals, and arsenic amounts into the aquatic environment affected by acid mine drainages.

  6. Remediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Boni, M.R.; D' Aprile, L. [Univ. of Rome ' ' La Sapienza' ' , Dept. of Hydraulic Transportation and Roads (Italy)

    2001-07-01

    In December 1999 Italy issued the national regulation (DM 471/99) for the clean-up of contaminated sites. This regulation applies both to derelict and to still operating industrial plants and waste management facilities. Target concentration values for clean-up interventions are issued and the requirements for design and planning of technical operation are defined. The selection of the appropriate clean-up technology are based on the following main criteria: - reduce the concentration in environmental media and the migration of pollutants without removing soil off-site; - in order to reduce contaminated material removal and transportation, remedial actions of soil, subsoil and groundwater should preferably be based on in-situ treatments. In-situ technologies commonly applied in Italy to the remediation of soils contaminated by heavy metals (As, Cd, Cr, Hg, Pb) are: - containment (caps, vertical barriers); - soil flushing; - cement based solidification/stabilization. (orig.)

  7. Heavy metal levels in soil samples from highly industrialized Lagos ...

    African Journals Online (AJOL)

    Anyakora

    2013-09-05

    Sep 5, 2013 ... The effect of heavy metals on the environment is of serious concern and threatens life in all forms. Environmental ... have affected the quality of soil due to contamination of soil with heavy metals and the consequent effects on the ..... tested for remediation of chromium-contaminated soils. (Collen, 2003).

  8. Selected mineral and heavy metal concentrations in blood and ...

    African Journals Online (AJOL)

    Unknown

    Pb in the dead vultures were generally above values characteristic of heavy metal poisoning. ... of the food chain), may accumulate and concentrate heavy metals in their ..... µg/g wet weight) (Honda et al., 1990), which validates the order of ...

  9. Heavy metals concentration in various tissues of two freshwater ...

    African Journals Online (AJOL)

    Heavy metals like cadmium, zinc, copper, chromium, lead and mercury were measured in the various tissues of Labeo rohita and Channa striatus and in the water samples collected from ... The values of heavy metals concentration in the present study are within the maximum permissible levels for drinking water and fish.

  10. A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal ...

    African Journals Online (AJOL)

    A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal Contamination of Fish from Fish Farms. ... Journal of Applied Sciences and Environmental Management ... Polycyclic aromatic hydrocarbons (PAHs) and heavy metals contribute to pollutants in aquaculture facilities and thus need to be further investigated.

  11. Urban water pollution by heavy metals and health implication in ...

    African Journals Online (AJOL)

    Studies of common heavy metals were conducted at Onitsha, Anambra State, the most urbanized city in Southeastern Nigeria. It was discovered that both surface and subsurface water were heavily polluted. Seven (7) heavy metals namely: arsenic (As+2), cadmium (Cd+2), lead (Pb+2), mercury (Hg+2), zinc (Zn+2), copper ...

  12. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  13. Bioaccumulation of Heavy Metals by Moringa Oleifera in Automobile ...

    African Journals Online (AJOL)

    Plants accumulate minerals essential for their growth from the environment alongside with heavy metals from contaminated areas.This study investigated bioaccumulation of heavy metals by Moringa oleifera in automobile workshops in three selected local government areas in Ibadan. This was done with a view to ...

  14. Occurrence and distribution of heavy metals in indoor settled ...

    African Journals Online (AJOL)

    The results showed widespread heavy metals contamination especially Fe and Zn, which were present as the highest concentration while Cd was the lowest in the settled particles (dust). The order of occurrence of heavy metals in settled particles (dust) collected indoor in 2007 and 2008 respectively were as follows, ...

  15. Determination of Some Heavy Metals in Selected Beauty and ...

    African Journals Online (AJOL)

    Several epidemiologic studies have investigated the potential carcinogenicity of human exposure to heavy metals from diverse sources but few or none was on African black and beauty soaps. Hence, this study examines the presence of some heavy metals in selected African black and beauty soaps commonly used in ...

  16. Heavy metal biosorption sites in Penicillium cyclopium | Tsekova ...

    African Journals Online (AJOL)

    The biomass of Penicillium cyclopium was subjected to chemical treatment to study the role of the functional groups in the biosorption of heavy metal ions. The modifications of the functional groups were examined with infrared spectroscopy. Hydroxyl groups were identified as providing the major sites of heavy metal ...

  17. Safety Evaluation of Osun River Water Containing Heavy Metals and ...

    African Journals Online (AJOL)

    Summary: This study evaluated the pH, heavy metals and volatile organic compounds (VOCs) in Osun river water. It also evaluated its safety in rats. Heavy metals were determined by atomic absorption spectrophotometry (AAS) while VOCs were determined by gas chromatography coupled with flame ionization detector ...

  18. Evaluation of heavy metal uptake and translocation by Acacia ...

    African Journals Online (AJOL)

    Many organic and inorganic pollutants, including heavy metals are being transported and mixed with the cultivated soils and water. Heavy metals are the most dangerous pollutants as they are nondegradable and accumulate and become toxic to plants and animals. An experiment was conducted in the glasshouse to ...

  19. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    Microorganisms play a vital role in heavy metal contaminated soil and wastewater by the mechanisms of biosorption. In this study, heavy metal resistant bacteria were isolated from an electroplating industrial effluent samples that uses copper, cadmium and lead for plating. These isolates were characterized to evaluate their ...

  20. assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    userpc

    guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit of WHO. Keywords: Atomic Absorption Spectrophotometers, Heavy Metals, Water, Kauru Local. Government Area.