WorldWideScience

Sample records for heavy metal-contaminated soils

  1. Remediation of heavy metal contaminated soil | Nanda |

    African Journals Online (AJOL)

    Remediation of heavy metal contaminated soil. ... in intensive research aiming at understanding metal interactions in soil and their removal in an efficient way. ... This paper investigates the plant-microbial interactions in reclaiming the metal ...

  2. Phytoremediation of heavy metal contaminated soil by Jatropha curcas.

    Science.gov (United States)

    Chang, Fang-Chih; Ko, Chun-Han; Tsai, Ming-Jer; Wang, Ya-Nang; Chung, Chin-Yi

    2014-12-01

    This study employed Jatropha curcas (bioenergy crop plant) to assist in the removal of heavy metals from contaminated field soils. Analyses were conducted on the concentrations of the individual metals in the soil and in the plants, and their differences over the growth periods of the plants were determined. The calculation of plant biomass after 2 years yielded the total amount of each metal that was removed from the soil. In terms of the absorption of heavy metal contaminants by the roots and their transfer to aerial plant parts, Cd, Ni, and Zn exhibited the greatest ease of absorption, whereas Cu, Cr, and Pb interacted strongly with the root cells and remained in the roots of the plants. J. curcas showed the best absorption capability for Cd, Cr, Ni, and Zn. This study pioneered the concept of combining both bioremediation and afforestation by J. curcas, demonstrated at a field scale.

  3. Humus-assisted cleaning of heavy metal contaminated soils

    Science.gov (United States)

    Borggaard, Ole K.; Rasmussen, Signe B.

    2016-04-01

    Contamination of soils with non-degradable heavy metals (HMs) because of human acticities is globally a serious problem threatening human health and ecosystem functioning. To avoid negative effects, HMs must be removed either on-site by plant uptake (phytoremediation) or off-site by extraction (soil washing). In both strategies, HM solubility must be augmented by means of a strong ligand (complexant). Often polycarboxylates such as EDTA and NTA are used but these ligands are toxic, synthetic (non-natural) and may promote HM leaching. Instead naturally occurring soluble humic substances (HS) were tested as means for cleaning HM contaminated soils; HS samples from beech and spruce litter, compost percolate and processed cow slurry were tested. Various long-term HM contaminated soils were extracted with solutions of EDTA, NTA or HS at different pH by single-step and multiple-step extraction mode. The results showed that each of the three complexant types increased HM solubility but the pH-dependent HM extraction efficiency decreased in the order: EDTA ≈ NTA > HS. However, the naturally occurring HS seems suitable for cleaning As, Cd, Cu and Zn contaminated soils both in relation to phytoremediation of moderately contaminated soils and washing of strongly contaminated soils. On the other hand, HS was found unsuited as cleaning agent for Pb polluted calcareous soils. If future field experiments confirm these laboratory results, we have a new cheap and environmentally friendly method for solving a great pollution problem, i.e. cleaning of heavy metal contaminated soils. In addition, humic substances possess additional benefits such as improving soil structure and stimulating microbial activity.

  4. Review: Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils

    Institute of Scientific and Technical Information of China (English)

    JING Yan-de; HE Zhen-li; YANG Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.

  5. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*

    Science.gov (United States)

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. PMID:17323432

  6. Bioethanol Production from Sugarcane Grown in Heavy Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Jun Xie

    2014-03-01

    Full Text Available Field and laboratory experiments were conducted to evaluate the feasibility of bioethanol production using the juice of sugarcane grown in heavy metal-contaminated soils. The results suggest that the sugar concentration was not adversely affected when the sugarcane was grown in the heavy metal-contaminated soil. Although the juice of sugarcane grown in contaminated soil contained elevated levels of heavy metals, sugar fermentation and ethanol production were not adversely affected when five selected yeast species were used to mediate the processes. The preliminary research findings obtained from this study have implications for developing cost-effective technologies for simultaneous bioethanol production and soil clean-up using heavy metal-contaminated soils for energy sugarcane farming.

  7. Heavy Metal Contamination of Soils and Vegetation around Solid ...

    African Journals Online (AJOL)

    MICHAEL

    The mean concentrations of zinc in soil and vegetations along the transect ... wastes contributed to the levels of heavy metals in soils and vegetation. ...... Current Topics in Toxicology. Vol. ... seminar on collaborative Agricultural Research.

  8. Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil.

    Science.gov (United States)

    Patel, P R; Shaikh, S S; Sayyed, R Z

    2016-04-01

    Heavy metal contamination, particularly of cultivable lands, is a matter of concern. Bioremediation helps in reversing such contamination to certain extent. Here, we report isolation, polyphasic identification and the role of siderophore producing rhizobacteria Alcaligenes feacalis RZS2 and Pseudomonas aeruginosa RZS3 in bioremediation of heavy metal contaminated soil and plant growth promotion activity in such contaminated soil. Siderophore produced by A. feacalis RZS2 and P. aeruginosa RZS3 strains chelated various heavy metal ions like MnCl₂.4H₂O, NiCl₂.6H₂O, ZnCl₂, CuCl₂ and CoCl₂ other than FeCl₃.6H2O at batch scale. Their bioremediation potential was superior over the chemical ion chelators like EDTA and citric acid. These isolates also promoted growth of wheat and peanut seeds sown in heavy metal contaminated soil. Effective root colonizing ability of these isolates was observed in wheat and peanut plants.

  9. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  10. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  11. Estimation of heavy metal-contaminated soils' mechanical characteristics using electrical resistivity.

    Science.gov (United States)

    Chu, Ya; Liu, Songyu; Wang, Fei; Cai, Guojun; Bian, Hanliang

    2017-05-01

    Under the process of urbanization in China, more and more attention has been paid to the reuse of heavy metal-contaminated sites. The shear characteristics of heavy metal-contaminated soils are investigated by electrical detection in this paper. Three metal ions (Zn(2+), Cd(2+), and Pb(2+)) were used, the metal concentrations of which are 50, 166.67, 500, 1666.67, and 5000 mg/kg, respectively. Direct shear tests were used to investigate the influence of heavy metal ions on the shear characters of soil samples. It is found that with the addition of heavy metal ions, the shear strength, cohesion, and friction angle of contaminated soils are higher than the control samples. The higher concentration of heavy metal ions penetrated in soils, the higher these engineering characteristics of contaminated soils observed. In addition, an electrical resistivity detection machine is used to evaluate the shear characteristics of contaminated soils. The electrical resistivity test results show that there is a decreasing tendency of resistivity with the increase of heavy metal ion concentrations in soils. Compared with the electrical resistivity and the shear characteristics of metal-contaminated soils, it is found that, under fixed compactness and saturation, shear strength of metal-contaminated soils decreased with the increase of resistivity. A basic linear relationship between C/log(N + 10) and resistivity can be observed, and there is a basic linear relationship between φ/log(N + 10) and resistivity. Besides, a comparison of the measured and predicted shear characteristics shows a high accuracy, indicating that the resistivity can be used to evaluate the shear characteristics of heavy metal contaminated soils.

  12. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    treatment. Apart from the fact that cassava effluents contain high cyanide content which has adverse ... cottage industries such as cassava processing in ...... European. Soil Bureau Research Report No. 4. Office of. Official Publication of the ... irrigation using waste water on heavy metal ... Biological Sciences 7(2): 405-408.

  13. Heavy Metal Contamination of Soil Due to Road Traffic

    Directory of Open Access Journals (Sweden)

    A. Athanasopoulou

    2017-01-01

    Full Text Available Particles coming from the pavement’s maintenance or from the traffic on it enter the soil carried by water. More pollutants transferred by air are dispersed in different distances, also polluting the soil. Precautionary and remedial measures are suggested for urban, peri-urban, and rural zones crossed by roadways, as a function of the plants' species and the level of the road. The proposed measures are based on the soil's chemical composition and draining conditions. Iron and the non-volatile heavy metals, copper, zinc, cadmium, lead, chromium, nickel, are often found in roadside topsoil, as well as in roots and leafage of vegetables and trees. Manganese is found in combination with iron in many minerals and not as free element. The reasons and frequency of existence of metals have to be examined so as to take measures against contamination and possible health hazards. Heavy metal concentrations of soils have been seldom studied in Greece and there is a lack of data sources for the environmental impact of these elements in soil and dust from the pavements and the traffic. The impacts of road construction and service on the surrounding soil masses are studied and analyzed in view of their quality as nutrient materials

  14. [Immobilization impact of different fixatives on heavy metals contaminated soil].

    Science.gov (United States)

    Wu, Lie-shan; Zeng, Dong-mei; Mo, Xiao-rong; Lu, Hong-hong; Su, Cui-cui; Kong, De-chao

    2015-01-01

    Four kinds of amendments including humus, ammonium sulfate, lime, superphosphate and their complex combination were added to rapid immobilize the heavy metals in contaminated soils. The best material was chosen according to the heavy metals' immobilization efficiency and the Capacity Values of the fixative in stabilizing soil heavy metals. The redistributions of heavy metals were determined by the European Communities Bureau of Referent(BCR) fraction distribution experiment before and after treatment. The results were as follows: (1) In the single material treatment, lime worked best with the dosage of 2% compared to the control group. In the compound amendment treatments, 2% humus combined with 2% lime worked best, and the immobilization efficiency of Pb, Cu, Cd, Zn reached 98.49%, 99.40%, 95.86%, 99.21%, respectively. (2) The order of Capacity Values was lime > humus + lime > ammonium sulfate + lime > superphosphate > ammonium sulfate + superphosphate > humus + superphosphate > humus > superphosphate. (3) BCR sequential extraction procedure results indicated that 2% humus combined with 2% lime treatment were very effective in immobilizing heavy metals, better than 2% lime treatment alone. Besides, Cd was activated firstly by 2% humus treatment then it could be easily changed into the organic fraction and residual fraction after the subsequent addition of 2% lime.

  15. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    Science.gov (United States)

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  16. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    Directory of Open Access Journals (Sweden)

    Amir Waseem

    2014-01-01

    Full Text Available Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water, soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  17. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    Science.gov (United States)

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  18. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.

    Science.gov (United States)

    Phieler, René; Voit, Annekatrin; Kothe, Erika

    2014-01-01

    Heavy metal contamination of soil as a result of, for example, mining operations, evokes worldwide concern. The use of selected metal-accumulating plants to clean up heavy metal contaminated sites represents a sustainable and inexpensive method for remediation approaches and, at the same time, avoids destruction of soil function. Within this scenario, phytoremediation is the use of plants (directly or indirectly) to reduce the risks of contaminants in soil to the environment and human health. Microbially assisted bioremediation strategies, such as phytoextraction or phytostabilization, may increase the beneficial aspects and can be viewed as potentially useful methods for application in remediation of low and heterogeneously contaminated soil. The plant-microbe interactions in phytoremediation strategies include mutually beneficial symbiotic associations such as mycorrhiza, plant growth promoting bacteria (PGPB), or endophytic bacteria that are discussed with respect to their impact on phytoremediation approaches.

  19. Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter. A greenhouse study.

    Science.gov (United States)

    Kumar, G P; Yadav, S K; Thawale, P R; Singh, S K; Juwarkar, A A

    2008-04-01

    The aims of the study were to evaluate the effect of organic wastes (biosludge and dairy sludge) and biofertilizer (Azotobacter chroococcum) on the planting conditions of Jatropha curcas in metal contaminated soils. Results showed that the plants survival rate in heavy metal contaminated soil increased with addition of amendments. Treatment T6 (heavy metal contaminated soils+dairy sludge+biofertilizer) observed to be the best treatment for growth (height and biomass) as compared with the treatment T5 (heavy metal contaminated soils+biosludge+biofertilizer). In addition, organic amendments provided nutrients such as carbon, N, P and K to support plant growth and reduced the metal toxicity to plant. The present study showed that metal contaminated lands/soils could be suitably remediated by adapting appropriate measures.

  20. The Research of Nanoparticle and Microparticle Hydroxyapatite Amendment in Multiple Heavy Metals Contaminated Soil Remediation

    Directory of Open Access Journals (Sweden)

    Zhangwei Li

    2014-01-01

    Full Text Available It was believed that when hydroxyapatite (HAP was used to remediate heavy metal-contaminated soils, its effectiveness seemed likely to be affected by its particle size. In this study, a pot trial was conducted to evaluate the efficiency of two particle sizes of HAP: nanometer particle size of HAP (nHAP and micrometer particle size of HAP (mHAP induced metal immobilization in soils. Both mHAP and nHAP were assessed for their ability to reduce lead (Pb, zinc (Zn, copper (Cu, and chromium (Cr bioavailability in an artificially metal-contaminated soil. The pakchoi (Brassica chinensis L. uptake and soil sequential extraction method were used to determine the immobilization and bioavailability of Pb, Zn, Cu, and Cr. The results indicated that both mHAP and nHAP had significant effect on reducing the uptake of Pb, Zn, Cu, and Cr by pakchoi. Furthermore, both mHAP and nHAP were efficient in covering Pb, Zn, Cu, and Cr from nonresidual into residual forms. However, mHAP was superior to nHAP in immobilization of Pb, Zn, Cu, and Cr in metal-contaminated soil and reducing the Pb, Zn, Cu, and Cr utilized by pakchoi. The results suggested that mHAP had the better effect on remediation multiple metal-contaminated soils than nHAP and was more suitable for applying in in situ remediation technology.

  1. Quantitative relations between soil heavy metal contamination and landscape pattern in Wuxi, China

    Science.gov (United States)

    Zhu, Ming; Pu, Lijie; Xu, Yan

    2017-04-01

    Land use practices changed landscape pattern and meanwhile, brought forth numerous environmental problems including heavy metal contamination in soil. In this study, we investigated the quantitative relations between soil heavy metal contamination and its surrounding landscape pattern based on topsoil samples and land use map of Wuxi in 2009. The results of vector fitting with Redundancy analysis in R package vegan showed that Percent Coverage of build-up area (PCB) within 2500 m, Perimeter-Area Fractal Dimension (PAFD) within 2500 m, Edge Density (ED) within 2500 m, Patch Density (PD) within 200 m, Percent Coverage of wetland (PCW) within 2000 m and Patch Cohesion (PC) within 200 m significantly affected the contents of heavy metal elements. The results of Stepwise regression suggested that increase of build-up area and fragmentation would increase Cu and Zn, while increase of wetland would decrease the contents of As and Cu. PAFD was negative with Cd, Hg, Pb and Zn.

  2. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.

    Science.gov (United States)

    Rehman, Muhammad Zia Ur; Rizwan, Muhammad; Ali, Shafaqat; Ok, Yong Sik; Ishaque, Wajid; Saifullah; Nawaz, Muhammad Farrakh; Akmal, Fatima; Waqar, Maqsooda

    2017-09-01

    Heavy metals are among the major environmental pollutants and the accumulation of these metals in soils is of great concern in agricultural production due to the toxic effects on crop growth and food quality. Phytoremediation is a promising technique which is being considered as an alternative and low-cost technology for the remediation of metal-contaminated soils. Solanum nigrum is widely studied for the remediation of heavy metal-contaminated soils owing to its ability for metal uptake and tolerance. S. nigrum can tolerate excess amount of certain metals through different mechanism including enhancing the activities of antioxidant enzymes and metal deposition in non-active parts of the plant. An overview of heavy metal uptake and tolerance in S. nigrum is given. Both endophytic and soil microorganisms can play a role in enhancing metal tolerance in S. nigrum. Additionally, optimization of soil management practices and exogenous application of amendments can also be used to enhance metal uptake and tolerance in this plant. The main objective of the present review is to highlight and discuss the recent progresses in using S. nigrum for remediation of metal contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  4. [Application of organic agents in remediation of heavy metals- contaminated soil].

    Science.gov (United States)

    Sun, Xiaofeng; Wu, Longhua; Luo, Yongming

    2006-06-01

    Organic agents play an important role in the remediation of heavy metals - contaminated soil, and their introduction into practice is a promising strategy to develop an efficient solution for this remediation. This paper summarized the research advances in the application of organic agents to the remediation of heavy metals- polluted soil, including their action mechanisms, advantages and disadvantages, and factors affecting their efficiency. The commonly used organic agents, such as aminopolycarboxylic acid, organic acid, humic acid, biosurfactants, etc., were introduced, and the prospects of organic agents' application were discussed.

  5. Effects of Heavy Metal Contamination on Microbial Biomass and Community Structure in Soils

    Institute of Scientific and Technical Information of China (English)

    杨元根; 刘丛强; 徐磊; 吴攀; 张国平

    2004-01-01

    Zinc smelting near Magu Town, Hezhang County, Guizhou Province, resulted in vegetation destruction and the accumulation of heavy metals, to varying extent, in adjacent soils, where up to 162.2-877.9 mg·kg+-1 Zn, 37.24-305.6 mg·kg+-1 Pb, and 0.50-16.43 mg·kg+-1 Cd, were detected. These values greatly exceed the background levels of these elements in soils. The concentrations of heavy metals (particularly Pb, Zn) were positively correlated with the contents of Fe-2O-3 and Al-2O-3 in the soils, showing that Fe and Al oxides play an important role in retaining heavy metals. Chemical fractionation indicates that Pb and Zn were associated mainly with Fe and Mn oxides and minerals, whereas Cd was dominated by exchangeable form. Microbial biomass in the soils was relatively low, in the range of 57.00-388.0μg C·g+-1, and was negatively correlated with heavy metal concentrations in the soils. The correlation coefficient of microbial biomass C to Zn concentrations in the soils was as high as -0.778 (p<0.01), indicating that the heavy metal contamination has toxic effects on microorganisms in soil. The results of Biolog measurements demonstrated that there were no significant changes in microbial community structure in the heavy metal contaminated soils. Gene fragments were similar to one another after the DNA was extracted from soil microbes and experienced PCR (polymerase chain reaction) and DGGE (denaturing gradient gel electrophoresis) reactions. These results indicated that light heavy-metal pollution may not result in any change in soil microbial community structure.

  6. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    Science.gov (United States)

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant.

  7. Assessment of toxicity of heavy metal contaminated soils for Collembola in the field and laboratory

    DEFF Research Database (Denmark)

    Xu, Jie; Krogh, Paul Henning; Luo, Yongming

    2008-01-01

    of Zhejiang province, Fuyang county. We addressed the questions: 1) how do different collembolan life-forms respond to heavy metals in long-time pollution field site. 2) Are laboratory toxicity testing of field collected polluted soil predictable for the population effects observed in aged heavy metal......We present a field and laboratory investigation of effects of increasing levels of heavy metal contamination on the biodiversity and performance of collembolans. A 40 year old pollution with Cu, Zn, Pb and Cd pollution due to Cu smelting over 40 years was investigated in a paddy field area...... pollutions. Effects of the heavy metals in the soil from the paddy fields were assessed for growth, survival and reproduction under laboratory conditions. For the tests we used two soil arthropod species: the parthenogenetic, Folsomia candida Willem 1902, and the sexually reproducing, Sinella curviseta Brook...

  8. Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Del Val, C.; Barea, J.M.; Azcon-Aguilar, C. [CSIC, Granada (Spain)

    1999-02-01

    High concentrations of heavy metals have been shown to adversely affect the size, diversity, and activity of microbial populations in soil. The aim of this work was to determine how the diversity of arbuscular mycorrhizal (AM) fungi is affected by the addition of sewage-amended sludge containing heavy metals in a long-term experiment. Due to the reduced number of indigenous AM fungal (AMF) propagules in the experimental soils, several host plants with different life cycles were used to multiply indigenous fungi. Six AMF ecotypes were found in the experimental soils, showing consistent differences with regard to their tolerance to the presence of heavy metals. AMF ecotypes ranged from very sensitive to the presence of metals to relatively tolerant to high rates of heavy metals in soil. Total AMF spore numbers decreased with increasing amounts of heavy metals in the soil. However, species richness and diversity as measured by the Shannon-Wiener index increased in soils receiving intermediate rates of sludge contamination but decreased in soils receiving the highest rate of heavy-metal-contaminated sludge. Relative densities of most AMF species were also significantly influenced by soil treatments. Host plant species exerted a selective influence on AMF population size and diversity. The authors conclude based on the results of this study that size and diversity of AMF populations were modified in metal-polluted soils, even in those with metal concentrations that were below the upper limits accepted by the European Union for agricultural soils.

  9. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Hong-Bo, Shao; Li-Ye, Chu; Cheng-Jiang, Ruan; Hua, Li; Dong-Gang, Guo; Wei-Xiang, Li

    2010-03-01

    Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal-contaminated soils.

  10. Soil heavy metal contamination and risk assessment around the Fenhe Reservoir, China.

    Science.gov (United States)

    Zhang, Hong; Liu, Guanglei; Shi, Wei; Li, Jinchang

    2014-08-01

    Heavy metal contamination in the soil around a water source is a particularly serious issue, because these heavy metals can be transferred into the water source and can pose significant human health risks through the contamination of drinking water or farmland irrigation water. In this paper, we collected surface soil samples from the area surrounding the Fenhe Reservoir. The concentrations of As, Cd, Cr, Cu, Hg, Ni, and Zn were determined and the potential ecological risks posed by the heavy metals were quantitatively evaluated. The primary inputs for As, Ni, and Zn were natural sources, whereas the other elements were derived from mainly anthropogenic sources. Hg displays more serious environmental impacts than the other heavy metals. The upper reaches of the reservoir, located in the northwest, display a higher potential ecological risk.

  11. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  12. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review.

    Science.gov (United States)

    Mahar, Amanullah; Wang, Ping; Ali, Amjad; Awasthi, Mukesh Kumar; Lahori, Altaf Hussain; Wang, Quan; Li, Ronghua; Zhang, Zengqiang

    2016-04-01

    Mining operations, industrial production and domestic and agricultural use of metal and metal containing compound have resulted in the release of toxic metals into the environment. Metal pollution has serious implications for the human health and the environment. Few heavy metals are toxic and lethal in trace concentrations and can be teratogenic, mutagenic, endocrine disruptors while others can cause behavioral and neurological disorders among infants and children. Therefore, remediation of heavy metals contaminated soil could be the only effective option to reduce the negative effects on ecosystem health. Thus, keeping in view the above facts, an attempt has been made in this article to review the current status, challenges and opportunities in the phytoremediation for remediating heavy metals from contaminated soils. The prime focus is given to phytoextraction and phytostabilization as the most promising and alternative methods for soil reclamation.

  13. Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils.

    Science.gov (United States)

    Juwarkar, Asha Ashok; Yadav, Santosh Kumar; Kumar, Phani; Singh, Sanjeev Kumar

    2008-10-01

    The pot experiments were conducted to evaluate the effect of different concentrations of arsenic, chromium and zinc contaminated soils, amended with biosludge and biofertilizer on the growth of Jatropha curcas which is a biodiesel crop. The results further showed that biosludge alone and in combination with biofertilizer significantly improved the survival rates and enhanced the growth of the plant. With the amendments, the plant was able to grow and survive upto 500, 250 and 4,000 mg kg(-1) of As, Cr and Zn contaminated soils, respectively. The results also showed that zinc enhanced the growth of J. curcas more as compared to other metals contaminated soils. The heavy metal accumulation in plant increased with increasing concentrations of heavy metals in soil, where as a significant reduction in the metal uptake in plant was observed, when amended with biosludge and biofertilizer and biosludge alone. It seems that the organic matter present in the biosludge acted as metal chelator thereby reducing the toxicity of metals to the plant. Findings suggest that plantation of J. curcas may be promoted in metal contaminated soils, degraded soils or wasteland suitably after amending with organic waste.

  14. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    Science.gov (United States)

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  15. HUMAN HEALTH RISK ASSESSMENT: A CASE STUDY OF HEAVY METAL CONTAMINATION OF GARDEN SOILS IN SZEGED

    Directory of Open Access Journals (Sweden)

    ANDREA FARSANG

    2009-06-01

    Full Text Available The soils of the big cities, owing to the various anthropogenic activities, can be contaminated by heavy metals. The surroundings of the roads with heavy traffic as significant metal emitter source can be contaminated by heavy metals. The hobby gardens and the vegetable gardens directly along roads can be potential risky for people since unknown amount of heavy metals can be accumulated into organization of local residents due to consumption of vegetables and fruits grown in their own garden. Most metals are well-known to have toxic characters but we have known little what extent these metals exert influence on people living directly along road with busy traffic. During our research, metal contamination has been investigated in the gardens near the roads with heavy traffic in Szeged by measuring of metal contents in soil and plants samples. Enrichment factor has been calculated with the help of control soil samples far from roads having heavily traffic. Besides determination of the metal content of soil and plant samples, soil properties basically influencing on metal mobility has been examined in order to characterize the buffering capacity of the studied soils. The health risk quotients have also been determined to evaluate human health risk of the contaminated soils.

  16. MANAGEMENT OF HEAVY METAL CONTAMINATED SOIL BY USING ORGANIC AND INORGANIC FERTILIZERS: EFFECT ON PLANT PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Anita Singh and Madhoolika Agrawal

    2011-01-01

    Full Text Available Heavy metal contamination leads to variety of harmful effects on soil and plant characteristics. In order to reduce the toxic effects of such substances, an experiment was conducted by FYM, N, NPK, FYM + NPK and FYM + N amendments in the soil from an area irrigated by waste water for more than 20 years. Soil and plant characteristics were compared between fertilizer (FYM, NPK, N and FYM + N, FYM + NPK amended and non-amended control soil. As compared to the control, plants under FYM and FYM + NPK amendments showed lower accumulation of heavy metals and higher yield. Plants grown in NPK and N amended soil showed higher concentrations of heavy metals and lower yield compared to the control. Higher uptake of heavy metals in plants under NPK and N amendments, led to increase in the antioxidants enzymes, but reductions in photosynthesis rate, growth and yield. The results suggest that the application of FYM alone and in combination with inorganic fertilizers may be recommended as cost effective technique for reducing the availability of heavy metals in waste water irrigated soil.

  17. Phytostabilization of metal contaminated soils.

    Science.gov (United States)

    Alkorta, I; Becerril, J M; Garbisu, C

    2010-01-01

    The contamination of soils with heavy metals represents a worldwide environmental problem of great concern. Traditional methods for the remediation of metal contaminated soils are usually very expensive and frequently induce adverse effects on soil properties and biological activity. Consequently, biological methods of soil remediation like phytoremediation (the use of green plants to clean up contaminated sites) are currently receiving a great deal of attention. In particular, chemophytostabilization of metal contaminated soils (the use of metal tolerant plants together with different amendments like organic materials, liming agents, or phosphorus compounds and such) to reduce metal mobility and bioavailability in soils appears most promising for sites contaminated with high levels of several metals when phytoextraction is not a feasible option. During chemophytostabilization processes, one must at all times be cautious with a possible future reversal of soil metal immobilization, with concomitant adverse environmental consequences.

  18. Heavy Metal Contamination in Soils and Phytoaccumulation in a Manganese Mine Wasteland, South China

    Directory of Open Access Journals (Sweden)

    M.S. Li

    2008-01-01

    Full Text Available Heavy metal contamination of minesoils is a widespread problem in China. In Pingle manganese mineland in Guangxi (south China, heavy metal concentrations in soils and dominant plants were determined, and soil contamination was assessed with pollution index (Pi and index of geoaccumulation (I-geo. Pi showed the minesoil was heavily polluted by Cd and slightly polluted by Cr. I-geo showed a severer pollution for all metals (except for Mn than Pi because I-geo tended to overestimate the real pollution effect of minesoil. Fresh tailings dam had both the highest Pi and I-geo among the four sites indicating a high metal contamination. All the “bio-available” fractions of the studied metals were below 5% of the totals. Dominant plants tended to accumulate higher Cd and Cr, and showed higher Mn translocation to aboveground parts. Besides the agricultural reclamation, more diverse restoration goals with lower environmental risks should be considered for the Mn mine wastelands in South China.

  19. Transfer and loss of naturally-occuring plasmids among isolates of Rhizobium leguminosarum bv. viciae in heavy metal contaminated soils

    NARCIS (Netherlands)

    Lakzian, A.; Murphy, P.J.; Giller, K.E.

    2007-01-01

    Plasmid transfer among isolates of Rhizobium leguminosarum bv. viciae in heavy metal contaminated soils from a long-term experiment in Braunschweig, Germany, was investigated under laboratory conditions. Three replicate samples each of four sterilized soils with total Zn contents of 54, 104, 208 and

  20. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Directory of Open Access Journals (Sweden)

    M. Adama

    2016-01-01

    Full Text Available Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo and pollution load indices (PLI were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69, Pb (143.80, Cr (99.30, and Cd (7.54 in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  1. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    Science.gov (United States)

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  2. Empirical modeling of heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils.

    Science.gov (United States)

    Yip, Theo C M; Tsang, Daniel C W; Ng, Kelvin T W; Lo, Irene M C

    2009-01-01

    The effectiveness of using biodegradable EDDS (S,S-ethylenediaminedisuccinic acid) for metal extraction has drawn increasing attention in recent years. In this study, an empirical model, which utilized the initial metal distribution in soils and a set of parameter values independently determined from sequential extraction, was developed for estimating the time-dependent heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils. The model simulation provided a satisfactory description of the experimental results of the 7-d extraction kinetics of Cu, Zn, and Pb in both artificially contaminated and field-contaminated soils. Thus, independent and prior assessment of extraction efficiency would be available to facilitate the engineering applications of EDDS. Furthermore, a simple empirical equation using the initial metal distribution was also proposed to estimate the extraction efficiency at equilibrium. It was found that, for the same type of soils, higher extraction efficiency was achieved in multi-metal contaminated soils than in single-metal contaminated soils. The differences were 4-9%, 9-16%, and 21-31% for Cu, Zn, and Pb, respectively, probably due to the larger proportion of exchangeable and carbonate fractions of sorbed Zn and Pb in multi-metal contaminated soils. EDDS-promoted mineral dissolution, on the other hand, was more significant in multi-metal contaminated soils as a result of the higher EDDS concentration applied to the soils of higher total metal content.

  3. [Application potential of siderophore-producing rhizobacteria in phytoremediation of heavy metals-contaminated soils: a review].

    Science.gov (United States)

    Wang, Ying-Li; Lin, Qing-Qi; Li, Yu; Yang, Xiu-Hong; Wang, Shi-Zhong; Qiu, Rong-Liang

    2013-07-01

    Siderophore-producing rhizobacteria (SPR) are a group of plant growth-promoting rhizobacteria, being able to play an important role in assisting the phytoremediation of heavy metals-contaminated soils. Based on the comprehensive analysis of related researches at home and abroad, this paper elaborated the functions of SPR in alleviating the heavy metals stress and toxicity to plants and the mechanisms of SPR in improving the heavy metals bioavailability in soil, and indicated that SPR had good application potential in promoting the plant growth in heavy metals-contaminated soils and reinforcing the heavy metals accumulation in plants. The contradictory phenomena of SPR in increasing or decreasing heavy metals accumulation in plants, which existed in current researches, were also analyzed. Aiming at the deficiencies in current researches, it was suggested that in the future researches, the mechanisms of the interactions between SPR and plants, especially hyperaccumulators, should be further studied, the key factors affecting the heavy metals complexation and mobilization in soil by siderophores should also be further clarified, the effects of siderophores on the heavy metals bioavailability and its subsequent influence on the heavy metals uptake by plants should be comprehensively considered, and the measures for improving the colonization of SPR in heavy metals-contaminated soil should be explored.

  4. Comparison of three nonparametric kriging methods for delineating heavy-metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Juang, K.W.; Lee, D.Y

    2000-02-01

    The probability of pollutant concentrations greater than a cutoff value is useful for delineating hazardous areas in contaminated soils. It is essential for risk assessment and reclamation. In this study, three nonparametric kriging methods [indicator kriging, probability kriging, and kriging with the cumulative distribution function (CDF) of order statistics (CDF kriging)] were used to estimate the probability of heavy-metal concentrations lower than a cutoff value. In terms of methodology, the probability kriging estimator and CDF kriging estimator take into account the information of the order relation, which is not considered in indicator kriging. Since probability kriging has been shown to be better than indicator kriging for delineating contaminated soils, the performance of CDF kriging, which the authors propose, was compared with that of probability kriging in this study. A data set of soil Cd and Pb concentrations obtained from a 10-ha heavy-metal contaminated site in Taoyuan, Taiwan, was used. The results demonstrated that the probability kriging and CDF kriging estimations were more accurate than the indicator kriging estimation. On the other hand, because the probability kriging was based on the cokriging estimator, some unreliable estimates occurred in the probability kriging estimation. This indicated that probability kriging was not as robust as CDF kriging. Therefore, CDF kriging is more suitable than probability kriging for estimating the probability of heavy-metal concentrations lower than a cutoff value.

  5. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine

    Institute of Scientific and Technical Information of China (English)

    LI Jing; XIE Zheng-miao; ZHU Yong-guan; Ravi Naidu

    2005-01-01

    Heavy metal contamination of soils through anthropogenic activities is a widespread and serious problem confronting scientists and regulators throughout the world. In this study we investigated the distribution, chemical species and availability of lead, zinc, cadmium and copper in nine surface(0 to 20 cm) soils from near an abandoned lead/zinc mine tailings located in Shaoxing, Zhejiang, China. Total heavy metal contents ranged from 5271 to 16369 mg/kg for Pb, 387 to 1221 mg/kg for Zn, 3.0 to 9.3 mg/kg for Cd and 65 to 206 mg/kg for Cu. In general, all heavy metals exceeded China National Standards for Soil Environmental Quality of Heavy Metals by a factor of 3-65times. Comparison of the heavy metal concentrations( Pb, Zn, Cd and Cu) with clay content revealed a strongly significant relationship while significant relationship( P organically complexed-Fe-Mn oxides occluded >carbonate bound > exchangeable > water soluble. In the organic matter fraction, the ratio of Pb(29.1% ) to its total concentration in the soils was higher than those of Zn(4.70% ), Cd(3.16%) and Cu(9.50% ). The percentages of the water soluble and the exchangeable fractions of Pb(1.80% ) and Cd(2.74% ) were markedly greater than those of Zn(0.10% ) and Cu(0.15 % ), suggesting that Pb and Cd are relatively more mobile and hence more toxic in the contaminated soils. Strongly significant relationships between H2O-Pb, H2O-Zn and H2O-Cu, strong positive correlations between H2 O-Pb, H2O-Zn, H2 O-Cu and organic matter in soil were found. The content of H2 O-Pb,H2O-Zn, H2O-Cu was negatively correlated with pH values. The similar negative relationships between pH values and exchangeable heavy metals were also recorded. It is suggested that increasing soil pH or liming the soil could decrease bioavailability of heavy metals in the soil.

  6. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.

    Science.gov (United States)

    Li, Jing; Xie, Zheng-miao; Zhu, Yong-guan; Naidu, Ravi

    2005-01-01

    Heavy metal contamination of soils through anthropogenic activities is a widespread and serious problem confronting scientists and regulators throughout the world. In this study we investigated the distribution, chemical species and availability of lead, zinc, cadmium and copper in nine surface (0 to 20 cm) soils from near an abandoned lead/zinc mine tailings located in Shaoxing, Zhejiang, China. Total heavy metal contents ranged from 5271 to 16369 mg/kg for Pb, 387 to 1221 mg/kg for Zn, 3.0 to 9.3 mg/kg for Cd and 65 to 206 mg/kg for Cu. In general, all heavy metals exceeded China National Standards for Soil Environmental Quality of Heavy Metals by a factor of 3-65 times. Comparison of the heavy metal concentrations (Pb, Zn, Cd and Cu) with clay content revealed a strongly significant relationship while significant relationship (P organically complexed-Fe-Mn oxides occluded > carbonate bound > exchangeable > water soluble. In the organic matter fraction, the ratio of Pb (29.1%) to its total concentration in the soils was higher than those of Zn (4.70%), Cd (3.16%) and Cu (9.50%). The percentages of the water soluble and the exchangeable fractions of Pb (1.80%) and Cd (2.74%) were markedly greater than those of Zn (0.10%) and Cu (0.15%), suggesting that Pb and Cd are relatively more mobile and hence more toxic in the contaminated soils. Strongly significant relationships between H2O-Pb, H2O-Zn and H2O-Cu, strong positive correlations between H2O-Pb, H2O-Zn, H2O-Cu and organic matter in soil were found. The content of H2O-Pb, H2O-Zn, H2O-Cu was negatively correlated with pH values. The similar negative relationships between pH values and exchangeable heavy metals were also recorded. It is suggested that increasing soil pH or liming the soil could decrease bioavailability of heavy metals in the soil.

  7. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    Science.gov (United States)

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  8. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    Science.gov (United States)

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  9. Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays.

    Science.gov (United States)

    Knasmüller, S; Gottmann, E; Steinkellner, H; Fomin, A; Pickl, C; Paschke, A; Göd, R; Kundi, M

    1998-12-03

    Aim of the present study was the development of a bioassay which enables the detection of genotoxic effects of heavy metal contaminated soils. In the first part of the present study, the data base on metal effects in plant bioassays was extended. Four metal salts, namely Cr(VI)O3, Cr(III)Cl3, Ni(II)Cl2 and Sb(III)Cl3 were tested comparatively in MN tests with pollen tetrad cells of Tradescantia clone #4430 and in meristematic root tip cells of Vicia faba. With Cr6+ and Ni2+, clear-cut dose-effects were observed in a range between 0.75 and 10.0 mM, whereas this was not the case with Cr3+ (range tested 1.25-10 mM) and Sb3+ (range 0.30-5.25 mM). In Vicia, negative results were obtained with the four metal salts under all conditions of test. To compare the mutagenic potencies of the metals, the increases of the regression curves (k-values) were calculated, they indicate the number of MN induced per mM in 100 tetrad cells. The corresponding values for Cr6+ and Ni2+ are 0.87 and 1.05, respectively. It appears that the Tradescantia system is in particular sensitive towards those metal species which cause DNA damage in animals and man such as Cr6+, Cd2+, Ni2+, and Zn2+, whereas no clear positive results were obtained with less harmful metal ions such as Cu2+, Cr3+ or Sb3+. In the second part of the study, the mutagenic effects of four metal contaminated soils and two types of standardized leachates (pH 4.0 and pH 7.0) of these soils were tested in Tradescantia and in Vicia. In addition, chemical analyses were carried out to determine the metal concentrations in the soils and in the extracts. Two of the samples contained highly elevated levels of a number of metals (Zn, Pb, Cu, Cd, Sb, As), one soil came from the Central Austrian Alps and contained high As levels only. Direct exposure of the Tradescantia plants in the soils resulted in a drastic increase of the MN frequencies over the background. The lowest effect was seen with the Slovakian soil which contained in

  10. Assessment of toxicity of heavy metal contaminated soils for Collembola in the field and laboratory

    DEFF Research Database (Denmark)

    Xu, Jie; Krogh, Paul Henning; Luo, Yongming

    2008-01-01

    We present a field and laboratory investigation of effects of increasing levels of heavy metal contamination on the biodiversity and performance of collembolans. A 40 year old pollution with Cu, Zn, Pb and Cd pollution due to Cu smelting over 40 years was investigated in a paddy field area of Zhe...

  11. Heavy Metal Contamination in Urban Soils I Zinc Accumulation Phenomenon in Urban Environments as Clues of Study

    OpenAIRE

    Komai, Yutaka

    1981-01-01

    As an introduction of the continuing study on the heavy metal contamination in urban soils, zinc accumulation phenomenon observed in urban areas in south Osaka was reported. The survey of zinc concentration in soybean leaves taken in urban and suburban arable lands indicated its accumulation in a wide area. And a correlation between easy soluble zinc level in soils and leaf zinc content were shown. Zinc concentrations in suspended particles in air, falling dust and some water samples were che...

  12. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu.

    Science.gov (United States)

    Padmapriya, S; Murugan, N; Ragavendran, C; Thangabalu, R; Natarajan, D

    2016-01-01

    The Pot culture experiment performed for phytoextraction potential of selected agricultural plants [millet (Eleusine coracana), mustard (Brassica juncea), jowar (Sorghum bicolor), black gram (Vigna mungo), pumpkin (Telfairia occidentalis)] grown in metal contaminated soils around the Salem region, Tamilnadu, India. Physiochemical characterization of soils, reported as low to medium level of N, P, K was found in test soils. The Cr content higher in mine soils than control and the values are 0.176 mg/L in Dalmia soil and 0.049 mg/L in Burn & Co soil. The germination rate low in mine soil than control soils (25 to 85%). The content of chlorophyll, carotenoid, carbohydrate and protein decreased in mine soils than control. The morphological parameters and biomass values decreased in experimental plants due to metal accumulation. Proline content increased in test plants and ranged from 0.113 mg g(-1) to 0.858 mg g(-1) which indicate the stress condition due to toxicity of metals. Sorghum and black gram plants reported as metal tolerant capacity. Among the plants, Sorghum produced good results (both biomass and biochemical parameters) which equal to control plant and suggests Sorghum plant is an ideal for remediation of metal contaminated soils.

  13. Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis.

    Science.gov (United States)

    Jinhui Li; Huabo Duan; Pixing Shi

    2011-07-01

    The dismantling and disposal of electronic waste (e-waste) in developing countries is causing increasing concern because of its impacts on the environment and risks to human health. Heavy-metal concentrations in the surface soils of Guiyu (Guangdong Province, China) were monitored to determine the status of heavy-metal contamination on e-waste dismantling area with a more than 20 years history. Two metalloids and nine metals were selected for investigation. This paper also attempts to compare the data among a variety of e-waste dismantling areas, after reviewing a number of heavy-metal contamination-related studies in such areas in China over the past decade. In addition, source apportionment of heavy metal in the surface soil of these areas has been analysed. Both the MSW open-burning sites probably contained invaluable e-waste and abandoned sites formerly involved in informal recycling activities are the new sources of soil-based environmental pollution in Guiyu. Although printed circuit board waste is thought to be the main source of heavy-metal emissions during e-waste processing, requirement is necessary to soundly manage the plastic separated from e-waste, which mostly contains heavy metals and other toxic substances.

  14. [Impacts of landscape patterns on heavy metal contamination of agricultural top soils in the Pearl River Delta, South China].

    Science.gov (United States)

    Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong

    2015-04-01

    Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P soil Pb and Ni levels (P soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal pollution control and remediation, especially for agricultural soils in the PRD.

  15. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Thinh Nguyen Van

    2016-11-01

    Full Text Available Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As, chromium (Cr, cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg−1. Manganese and iron concentrations averaged 811 µg·g−1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  16. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam.

    Science.gov (United States)

    Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi

    2016-11-05

    Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg(-1). Manganese and iron concentrations averaged 811 µg·g(-1) and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  17. Deciphering heavy metal contamination zones in soils of a granitic terrain of southern India using factor analysis and GIS

    Indian Academy of Sciences (India)

    D Purushotham; Mahjoor Ahmad Lone; Mehnaz Rashid; A Narsing Rao; Shakeel Ahmed

    2012-08-01

    Soil contamination by heavy metals has been a major concern for last few decades due to increase in urbanization and industrialization. The main objective of this research was to identify the heavy metal contaminated zones in the study area. Twenty five soil samples collected throughout the agriculture, residential and industrial areas were analysed by X-ray Fluorescence Spectrometer (XRF) for trace metals and major oxides. These metals can affect the quality of soil and infiltrate through the soil, thereby causing groundwater pollution. Based on the chemical analysis of major oxides (SiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, TiO2, and P2O5) and their distribution; it is observed that these soils are predominantly siliceous type with slight enrichment of alumina component in the study area. Correlation matrix (CM) and factor analysis (FA) is employed to the heavy metal variables, viz., Ba, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn and Zr of the soil to determine the dominant factors contributing to the soil contamination in the area. In the analysis, five factors emerged as significant contributors to the soil quality. The total contribution of these five factors is about 90%. The contribution of the first factor is about 45% and has significant positive loadings of Co, Cr, Cu, Ni and Zn. The contribution of second factor is 22% and has significant positive loadings of Rb, Sr and Y. The contribution of third, fourth and fifth factors is 10, 8 and 5% and show positive loadings for lead, molybdenum and barium respectively to the soil contamination. The spatial variation maps deciphering different zones of heavy metal concentration in the soil were generated in a GIS (geographic information system) based environment using ArcGIS 9.3.1. The results reveal that heavy metal contamination in the area is mainly due to anthropogenic activities.

  18. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Fátima M.S. Moreira

    2008-12-01

    Full Text Available This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles and genotypically (16S rDNA sequencing, as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22, some (1R, S34 and S22 were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L-1 NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.Objetivou-se avaliar a densidade de populações de bactérias diazotróficas associativas em amostras de solos e de raízes de gramíneas oriundas de sítios contaminados com metais pesados, e caracterizar isolados destas populações através da análise fenotípica (tolerância aos metais pesados zinco e cádmio e à NaCl in vitro, perfis protéicos, e genotípica (seqüenciamento de 16S rDNA, comparados às estirpes tipo das mesmas espécies. As densidades foram avaliadas nos meios NFb, Fam e LGI, comumente utilizados para culturas de enriquecimento de populações de bactérias diazotróficas associativas. As densidades

  19. Research Progress of Artificial Forest in the Remediation of Heavy Metal Contaminated Soils

    Science.gov (United States)

    Jiafang, MA; Guangtao, MENG; Liping, HE; Guixiang, LI

    2017-01-01

    (1) Remediation of soil contaminated by heavy metals has become a hot topic in the world, and phytoremediation technology is the most widely used. (2) In addition to traditional economic benefits, ecological benefits of artificial forest have been more and more important, which are very helpful to soil polluted with heavy metals in the environment. (3) The characteristics of heavy metal pollution of soil and plantations of repair mechanism have been reviewed, and the current mining areas, wetlands, urban plantations on heavy metal elements have enriched the research results. The purpose is to find a new path for governance of heavy metal soil pollution.

  20. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution.

    Science.gov (United States)

    Mazurek, Ryszard; Kowalska, Joanna; Gąsiorek, Michał; Zadrożny, Paweł; Józefowska, Agnieszka; Zaleski, Tomasz; Kępka, Wojciech; Tymczuk, Maryla; Orłowska, Kalina

    2017-02-01

    In most cases, in soils exposed to heavy metals accumulation, the highest content of heavy metals was noted in the surface layers of the soil profile. Accumulation of heavy metals may occur both as a result of natural processes as well as anthropogenic activities. The quality of the soil exposed to heavy metal contamination can be evaluated by indices of pollution. On the basis of determined heavy metals (Pb, Zn, Cu, Mn, Ni and Cr) in the soils of Roztocze National Park the following indices of pollution were calculated: Enrichment Factor (EF), Geoaccumulation Index (Igeo), Nemerow Pollution Index (PINemerow) and Potential Ecological Risk (RI). Additionally, we introduced and calculated the Biogeochemical Index (BGI), which supports determination of the ability of the organic horizon to accumulate heavy metals. A tens of times higher content of Pb, Zn, Cu and Mn was found in the surface layers compared to their content in the parent material. This distribution of heavy metals in the studied soils was related to the influence of anthropogenic pollution (both local and distant sources of emission), as well as soil properties such as pH, organic carbon and total nitrogen content.

  1. Short-Term Effects of Low-Level Heavy Metal Contamination on Soil Health Analyzed by Nematode Community Structure.

    Science.gov (United States)

    Park, Byeong-Yong; Lee, Jae-Kook; Ro, Hee-Myong; Kim, Young Ho

    2016-08-01

    The short-term effects of low-level contamination by heavy metals (As, Cd, Cu, and Pb) on the soil health were examined by analyzing soil nematode community in soils planted with tomatoes. For this, the soils were irrigated with five metal concentrations ([1, 1/4, 1/4(2), 1/4(3), and 0] × maximum concentrations [MC] detected in irrigation waters near abandoned mine sites) for 18 weeks. Heavy metal concentrations were significantly increased in soils irrigated with MC of heavy metals, among which As and Cu exceeded the maximum heavy metal residue contents of soil approved in Korea. In no heavy metal treatment controls, nematode abundances for all trophic groups (except omnivorous-predatory nematodes [OP]) and colonizer-persister (cp) values (except cp-4-5) were significantly increased, and all maturity indices (except maturity index [MI] of plant-parasitic nematodes) and structure index (SI) were significantly decreased, suggesting the soil environments might have been disturbed during 18 weeks of tomato growth. There were no concentration-dependent significant decreases in richness, abundance, or MI for most heavy metals; however, their significant decreases occurred in abundance and richness of OP and cp-4, MI2-5 (excluding cp-1) and SI, indicating disturbed soil ecosystems, at the higher concentrations (MC and MC/4) of Pb that had the most significant negative correlation coefficients for heavy metal concentrations and nematode community among the heavy metals. Therefore, the short-term effects of low-level heavy metal contamination on soil health can be analyzed by nematode community structures before the appearance of plant damages caused by the abiotic agents, heavy metals.

  2. Assessment of ecological and human health risks of heavy metal contamination in agriculture soils disturbed by pipeline construction.

    Science.gov (United States)

    Shi, Peng; Xiao, Jun; Wang, Yafeng; Chen, Liding

    2014-02-28

    The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) levels were evaluated using Index of Geo-accumulation (Igeo) and Potential Ecological Risk Index (RI) values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management.

  3. Assessment of Ecological and Human Health Risks of Heavy Metal Contamination in Agriculture Soils Disturbed by Pipeline Construction

    Directory of Open Access Journals (Sweden)

    Peng Shi

    2014-02-01

    Full Text Available The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr, cadmium (Cd, copper (Cu, nickel (Ni, lead (Pb and zinc (Zn levels were evaluated using Index of Geo-accumulation (Igeo and Potential Ecological Risk Index (RI values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW, which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management.

  4. Assessment of Ecological and Human Health Risks of Heavy Metal Contamination in Agriculture Soils Disturbed by Pipeline Construction

    Science.gov (United States)

    Shi, Peng; Xiao, Jun; Wang, Yafeng; Chen, Liding

    2014-01-01

    The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) levels were evaluated using Index of Geo-accumulation (Igeo) and Potential Ecological Risk Index (RI) values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management. PMID:24590049

  5. Bioethanol Production from Sugarcane Grown in Heavy Metal-Contaminated Soils

    National Research Council Canada - National Science Library

    Jun Xie; Qiang Weng; Guangying Ye; Sishi Luo; Rui Zhu; Aiping Zhang; Xiaoyang Chen; Chuxia Lin

    2014-01-01

    ... species were used to mediate the processes. The preliminary research findings obtained from this study have implications for developing cost-effective technologies for simultaneous bioethanol production and soil clean-up using heavy metal...

  6. Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives

    National Research Council Canada - National Science Library

    Sun, Yuebing; Liang, Lichen; Huo, Xiaohui; Zhou, Qixing; Li, Song; Liu, Weitao

    2017-01-01

    .... Phytoremediation, defined as the use of plants to remove pollutants from the environment and (or) to render them harmless, is a low cost, environmentally friendly, and effective method for the decontamination of soils polluted by heavy metals...

  7. Adaptive sampling based on the cumulative distribution function of order statistics to delineate heavy-metal contaminated soils using kriging.

    Science.gov (United States)

    Juang, Kai-Wei; Lee, Dar-Yuan; Teng, Yun-Lung

    2005-11-01

    Correctly classifying "contaminated" areas in soils, based on the threshold for a contaminated site, is important for determining effective clean-up actions. Pollutant mapping by means of kriging is increasingly being used for the delineation of contaminated soils. However, those areas where the kriged pollutant concentrations are close to the threshold have a high possibility for being misclassified. In order to reduce the misclassification due to the over- or under-estimation from kriging, an adaptive sampling using the cumulative distribution function of order statistics (CDFOS) was developed to draw additional samples for delineating contaminated soils, while kriging. A heavy-metal contaminated site in Hsinchu, Taiwan was used to illustrate this approach. The results showed that compared with random sampling, adaptive sampling using CDFOS reduced the kriging estimation errors and misclassification rates, and thus would appear to be a better choice than random sampling, as additional sampling is required for delineating the "contaminated" areas.

  8. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    OpenAIRE

    Amir Waseem; Jahanzaib Arshad; Farhat Iqbal; Ashif Sajjad; Zahid Mehmood; Ghulam Murtaza

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food c...

  9. Soil microbial-legume interacts in heavy metal contaminated at Palmerton, PA

    Energy Technology Data Exchange (ETDEWEB)

    Angle, J.S.; Spiro, M.A.; Heggo, A.M.; El-Kherbawy, M.; Chaney, R.L.

    1988-01-01

    The interaction between soil pH, vesicular-arbuscular mycorrhiza (VAM) and heavy metal uptake into soybeans (Glycine max) and alfalfa (Medicago sativa) was studied in the heavy metal stressed soils of Palmerton, PA. The dry weight of soybeans grown in soil with an available Zn concentration of 132 ug/g soil was 2.0 g/plant as compared to 0.13 g/plant for soybeans grown in soil containing 862 ug Zn/g soil. In the same soils, the foliar uptake of Zn was increased from 186 to 1020 ug Zn/g tissue. When VAM were inoculated into the soil with a high Zn content, the foliar Zn content was reduced from 968 to 780 ug/g tissue. Similar observations were noted for Cd and Mn. When, however, the soil metal concentration was low, VAM significantly increased heavy metal uptake. Vesicular-arbuscular mycorrhiza increased Zn uptake from 201 to 251 ug/g. Similar results were observed when the pH of a single soil was altered. Metal uptake, as affected by VAM, was generally decreased from soils with a low pH (6.0). At a soil pH of 6.7 and 7.2, VAM increased foliar heavy metal uptake. Both VAM colonization and plant growth were also increased by increasing soil pH. At a pH of 6.0, VAM colonization and plant growth were 15.5% and 0.37 g/10 alfalfa plants, respectively. At a pH of 7.2, VAM colonization was rated at 32.0% while plant growth of 0.76 g/10 plants was noted.

  10. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction.

    Science.gov (United States)

    Lombi, E; Zhao, F J; Dunham, S J; McGrath, S P

    2001-01-01

    A pot experiment was conducted to compare two strategies of phytoremediation: natural phytoextraction using the Zn and Cd hyperaccumulator Thlaspi caerulescens J. Presl & C. Presl versus chemically enhanced phytoextraction using maize (Zea mays L.) treated with ethylenediaminetetraacetic acid (EDTA). The study used an industrially contaminated soil and an agricultural soil contaminated with metals from sewage sludge. Three crops of T. caerulescens grown over 391 d removed more than 8 mg kg(-1) Cd and 200 mg kg(-1) Zn from the industrially contaminated soil, representing 43 and 7% of the two metals in the soil. In contrast, the high concentration of Cu in the agricultural soil severely reduced the growth of T. caerulescens, thus limiting its phytoextraction potential. The EDTA treatment greatly increased the solubility of heavy metals in both soils, but this did not result in a large increase in metal concentrations in the maize shoots. Phytoextraction of Cd and Zn by maize + EDTA was much smaller than that by T. caerulescens from the industrially contaminated soil, and was either smaller (Cd) or similar (Zn) from the agricultural soil. After EDTA treatment, soluble heavy metals in soil pore water occurred mainly as metal-EDTA complexes, which were persistent for several weeks. High concentrations of heavy metals in soil pore water after EDTA treatment could pose an environmental risk in the form of ground water contamination.

  11. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China.

    Science.gov (United States)

    Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin

    2015-12-01

    Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources.

  12. Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil.

    Science.gov (United States)

    Fernandes, V C; Albergaria, J T; Oliva-Teles, T; Delerue-Matos, C; De Marco, P

    2009-06-01

    In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd(2+) or Hg(2+) or Pb(2+)) or degrading the common soil and groundwater pollutants MTBE (methyl-tert-butyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metal-resistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49-182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.

  13. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    Science.gov (United States)

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.

  14. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China.

    Science.gov (United States)

    Xiao, Ran; Wang, Shuang; Li, Ronghua; Wang, Jim J; Zhang, Zengqiang

    2017-07-01

    Soil contamination with heavy metals due to mining activities poses risks to ecological safety and human well-being. Limited studies have investigated heavy metal pollution due to artisanal mining. The present study focused on soil contamination and the health risk in villages in China with historical artisanal mining activities. Heavy metal levels in soils, tailings, cereal and vegetable crops were analyzed and health risk assessed. Additionally, a botany investigation was conducted to identify potential plants for further phytoremediation. The results showed that soils were highly contaminated by residual tailings and previous mining activities. Hg and Cd were the main pollutants in soils. The Hg and Pb concentrations in grains and some vegetables exceeded tolerance limits. Moreover, heavy metal contents in wheat grains were higher than those in maize grains, and leafy vegetables had high concentrations of metals. Ingestion of local grain-based food was the main sources of Hg, Cd, and Pb intake. Local residents had high chronic risks due to the intake of Hg and Pb, while their carcinogenic risk associated with Cd through inhalation was low. Three plants (Erigeron canadensis L., Digitaria ciliaris (Retz.) Koel., and Solanum nigrum L.) were identified as suitable species for phytoremediation. Copyright © 2017. Published by Elsevier Inc.

  15. Heavy metals contamination characteristics in soil of different mining activity zones

    Institute of Scientific and Technical Information of China (English)

    LIAO Guo-li; LIAO Da-xue; LI Quan-ming

    2008-01-01

    Depending upon the polluted features of various mining activities in a typical nonferrous metal mine, the contaminated soil area was divided into four zones which were polluted by tailings, mine drainage, dust deposition in wind and spreading minerals during vehicle transportation, respectively. In each zone, soil samples were collected. Total 28 soil samples were dug and analyzed by ICP-AES and other relevant methods. The results indicate that the average contents of Zn, Pb, Cd, Cu and As in soils are 508.6, 384.8, 7.53, 356 and 44.6 mg/kg, respectively. But the contents of heavy metals in different zone have distinct differences. The proportion of oxidizing association with organic substance is small. Difference of the association of heavy metals is small in different polluted zones.

  16. White clover nodulation index in heavy metal contaminated soils- a potential bioindicator.

    Science.gov (United States)

    Manier, Nicolas; Deram, Annabelle; Broos, Kris; Denayer, Franck-Olivier; Van Haluwyn, Chantal

    2009-01-01

    The morphological effects of heavy metal stress on the nodulation ability of Rhizobium spp. and growth of white clover (Trifolium repens L.) were studied in the laboratory under controlled conditions. Fourteen topsoils were collected from an area with elevated metal concentrations (Cd, Zn, and Pb). White clover was cultivated using a specialized "rhizotron" method to observe the development of root and nodule characteristics. Results show effects of increasing heavy metal concentrations on nodulation development, especially the nodulation index (i.e., the number of nodules per gram of the total fresh biomass). A significant decrease in nodulation index was observed at about 2.64 mg Cd kg(-1), 300 mg Zn kg(-1), and 130 mg Pb kg(-1) in these soils. The sensitivity of the nodulation index in relation to other morphological characteristics is discussed further. It is proposed that the nodulation index of white clover is a suitable bioindicator of increased heavy metal concentrations in soil.

  17. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster.

  18. Ultrasonic and mechanical soil washing processes for the remediation of heavy-metal-contaminated soil

    Science.gov (United States)

    Kim, Seulgi; Lee, Wontae; Son, Younggyu

    2016-07-01

    Ultrasonic/mechanical soil washing process was investigated and compared with ultrasonic process and mechanical process using a relatively large lab-scale sonoreactor. It was found that higher removal efficiencies were observed in the combined processes for 0.1 and 0.3 M HCl washing liquids. It was due to the combination effects of macroscale removal for the overall range of slurry by mechanical mixing and microscale removal for the limited zone of slurry by cavitational actions.

  19. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.

    Science.gov (United States)

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.

  20. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian;

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  1. [Heavy Metal Contamination in Farmland Soils at an E-waste Disassembling Site in Qingyuan, Guangdong, South China].

    Science.gov (United States)

    Zhang, Jin-lian; Ding, Jiang-feng; Lu, Gui-ning; Dang, Zhi; Yi, Xiao-yun

    2015-07-01

    Crude e-waste dismantling activities have caused a series of environmental pollution problems, and the pollutants released from the dismantling activities would finally pose high risks to human health by means of the accumulation through food chains. To explore the contamination status of heavy metals to the surrounding farmland soils in Longtang and Shijiao Town, Qingyuan, Guangdong, China, 22 farmland soil samples were collected and analyzed for the contents, spatial distributions and chemical forms of 6 heavy metals (Pb, Cu, Cd, Zn, Cr and Ni). The results showed that the 6 heavy metals exhibited obvious accumulations when compared to the corresponding background values in Guangdong Province. According to farmland environmental quality evaluation standard for edible agricultural products HJ 332-2006, the pollution severity of heavy metals was evaluated by monomial pollution index and Nemerow synthetic pollution index methods, the results indicated that 72. 7% of the soil samples contained one or more kinds of heavy metals with higher concentrations than the corresponding standard values, Cd, Cu, Pb and Zn were the main metals in the polluted soils, and for the proportion of contaminated soil samples in all the 22 samples, Cd was the highest, followed by Cu, and finally Pb and Zn. Nemerow synthetic pollution index further revealed that 68. 2% of soil samples were contaminated, and among them 53. 3% of samples were heavily contaminated. Most of the heavy metals were well correlated with each other at the 0. 05 or 0. 01 level, which indicated that primitive e-waste recycling activities were an important source of the heavy metal contamination in Longtang and Shijiao Town. The contents of Cd, Pb, Cu and Zn in surface soils were higher than those of other soil layers, and the contents of these 4 metals in deep soils (20- 100 cm) did not show significant decreases with the increasing depths. The contents of Cr and Ni maintained constant, and exhibited no statistical

  2. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Dermatas, D.; Meng, X. [Stevens Inst. of Technology, Hoboken, NJ (United States)

    1995-12-01

    Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic technological alternative to immobilize heavy metals in contaminated soils and sludges. Fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive x-ray (SEM-EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. Results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of fly ash to the contaminated soils effectively reduced heavy metal leachability well below the non-hazardous regulatory limits. However, quicklime addition was necessary in order to attain satisfactory immobilization levels. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime/fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation.

  3. Heavy Metal Contamination in Rice-Producing Soils of Hunan Province, China and Potential Health Risks.

    Science.gov (United States)

    Zeng, Fanfu; Wei, Wei; Li, Mansha; Huang, Ruixue; Yang, Fei; Duan, Yanying

    2015-12-08

    We studied Cd, Cr, As, Ni, Mn, Pb, and Hg in three agricultural areas of Hunan province and determined the potential non-carcinogenic and carcinogenic risks for residents. Soil and brown rice samples from Shimen, Fenghuang, and Xiangtan counties were analyzed by atomic absorption spectroscopy. Soil levels of Cd and Hg were greatest, followed by As and Ni. The mean concentrations of heavy metals in brown rice were Cd 0.325, Cr 0.109, As 0.344, Ni 0.610, Mn 9.03, Pb 0.023, and Hg 0.071 mg/kg, respectively. Cd and Hg had greater transfer ability from soil to rice than the other elements. Daily intake of heavy metals through brown rice consumption were estimated to be Cd 2.30, Cr 0.775, As 2.45, Ni 4.32, Pb 0.162, Mn 64.6 and Hg 0.503 µg/(kg·day), respectively. Cd, Hg and As Hazard Quotient values were greater than 1 and Cd, Cr, As and Ni Cancer Risk values were all greater than 10(-4). The total non-carcinogenic risk factor was 14.6 and the total carcinogenic risk factor was 0.0423. Long-term exposure to heavy metals through brown rice consumption poses both potential non-carcinogenic and carcinogenic health risks to the local residents.

  4. Assessment of heavy metal contamination in roadside surface soil and vegetation from the West Bank.

    Science.gov (United States)

    Swaileh, K M; Hussein, R M; Abu-Elhaj, S

    2004-07-01

    Concentrations of heavy metals (Pb, Cd, Cu, Zn, Fe, Mn, Ni, and Cr) were investigated in roadside surface soil and the common perennial herb inula (Inula viscosa L., Compositae). Samples were collected at different distances (0-200 m) perpendicular to a main road that connects two main cities in the West Bank. Average concentrations of metals in soil samples were: Pb, 87.4; Cd, 0.27; Cu, 60.4; Zn, 82.2; Fe, 15,700; Mn, 224; Ni, 18.9; and Cr, 42.4 microg x g(-1). In plant leaves, concentrations were: Pb, 7.25; Cd, 0.10; Cu, 10.6; Zn, 47.6; Fe, 730; Mn, 140; Ni, 4.87; and Cr, 7.03 microg x g(-1). Roadside contamination was obvious by the significant negative correlations between concentrations of metals in soil and plant samples and distance from road edge. Only cadmium concentrations in soil and plant samples were not associated with roadside pollution. Roadside contamination in plants and soil did not extend much beyond a 20 m distance from road. I. viscosa reflected roadside contamination better than soil and their metal concentrations showed much less fluctuations than those in soil samples. Washing plant leaves decreased Pb and Fe concentrations significantly, indicating a significant aerial deposition of both. I. viscosa can be considered as a good biomonitor for roadside metal pollution.

  5. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2017-01-01

    Full Text Available Background. Metal mining and waste discharge lead to regional heavy metal contamination and attract major concern because of the potential risk to local residents. Methods. This research was conducted to determine lead (Pb, cadmium (Cd, arsenic (As, manganese (Mn, and antimony (Sb concentrations in soil and brown rice samples from three heavy metal mining areas in Hunan Province, central China, and to assess the potential health risks to local inhabitants. Results. Local soil contamination was observed, with mean concentrations of Cd, Pb, Sb, and As of 0.472, 193.133, 36.793, and 89.029 mg/kg, respectively. Mean concentrations of Cd, Pb, Sb, Mn, and As in brown rice were 0.103, 0.131, 5.175, 6.007, and 0.524 mg/kg, respectively. Daily intakes of Cd, As, Sb, Pb, and Mn through brown rice consumption were estimated to be 0.011, 0.0002, 0.004, 0.0001, and 0.0003 mg/(kg/day, respectively. The combined hazard index for the five heavy metals was 22.5917, and the total cancer risk was 0.1773. Cd contributed most significantly to cancer risk, accounting for approximately 99.77% of this risk. Conclusions. The results show that potential noncarcinogenic and carcinogenic health risks exist for local inhabitants and that regular monitoring of pollution to protect human health is urgently required.

  6. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaoming; Lei, Mei, E-mail: leim@igsnrr.ac.cn; Chen, Tongbin

    2016-09-01

    Heavy-metal pollution of soil is a serious issue worldwide, particularly in China. Soil remediation is one of the most difficult management issues for municipal and state agencies because of its high cost. A two-year phytoremediation project for soil contaminated with arsenic, cadmium, and lead was implemented to determine the essential parameters for soil remediation. Results showed highly efficient heavy metal removal. Costs and benefits of this project were calculated. The total cost of phytoremediation was US$75,375.2/hm{sup 2} or US$37.7/m{sup 3}, with initial capital and operational costs accounting for 46.02% and 53.98%, respectively. The costs of infrastructures (i.e., roads, bridges, and culverts) and fertilizer were the highest, mainly because of slow economic development and serious contamination. The cost of phytoremediation was lower than the reported values of other remediation technologies. Improving the mechanization level of phytoremediation and accurately predicting or preventing unforeseen situations were suggested for further cost reduction. Considering the loss caused by environmental pollution, the benefits of phytoremediation will offset the project costs in less than seven years. - Highlights: • A two-year phytoremediation project was introduced. • Costs and benefits of a phytoremediation project were calculated. • Costs of phytoremediation project can be offset by benefits in 7 years.

  7. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    Directory of Open Access Journals (Sweden)

    Zueng-Sang Chen

    2010-10-01

    Full Text Available Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1 food safety risk assessment for brown rice growing in a HMs-contaminated site; (2 a tiered approach to health risk assessment for a contaminated site; (3 risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4 soil remediation cost analysis for contaminated sites in Taiwan.

  8. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    Science.gov (United States)

    Lai, Hung-Yu; Hseu, Zeng-Yei; Chen, Ting-Chien; Chen, Bo-Ching; Guo, Horng-Yuh; Chen, Zueng-Sang

    2010-01-01

    Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act) uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs) have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1) food safety risk assessment for brown rice growing in a HMs-contaminated site; (2) a tiered approach to health risk assessment for a contaminated site; (3) risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4) soil remediation cost analysis for contaminated sites in Taiwan. PMID:21139851

  9. [Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid].

    Science.gov (United States)

    Zhou, Jian-min; Dang, Zhi; Chen, Neng-chang; Xu, Sheng-guang; Xie, Zhi-yi

    2007-09-01

    The environmental risk of chelating agents such as EDTA application to the heavy metals polluted soils and the stress on plant roots due to the abrupt increase metals concentration limit the wide commercial use of chelate-induced phytoextraction. Chelating agent ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) and auxin indole-3-acetic acid (IAA) were used for enhancing heavy metals uptake from soils by Zea mays L. (corn) in pot experiments. The metals content in plant tissues was quantified using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the combination of IAA and EDTA increased the biomass by about 40.0% and the contents of Cu, Zn, Cd and Pb in corn shoots by 27.0%, 26.8%, 27.5% and 32.8% respectively, as compared to those in EDTA treatment. While NTA&IAA treatment increased the biomass by about 29.9% and the contents of Cu, Zn, Cd and Pb in corn shoots by 31.8%, 27.6%, 17.0% and 26.9% respectively, as compared to those in NTA treatment. These results indicated that corn growth was promoted, and the biomass and the accumulation of heavy metals in plant shoots were increased significantly with the addition of IAA, which probably helps to change the cell membrane properties and the biomass distribution, resulting in the alleviation of the phytotoxicity of metals and the chelating agents.

  10. Environmental hazards related to Miscanthus x giganteus cultivation on heavy metal contaminated soil

    Directory of Open Access Journals (Sweden)

    Pogrzeba M.

    2013-04-01

    Full Text Available According to recent estimates reaching the target of a 20% share of renewable energy sources (RES in the final energy balance in Poland by 2020 will result in the demand for more than 8 million tons of biomass, which, in turn, will entail the necessity of creating large-scale energy crop plantations. According to EU assumptions the most effective way to produce biomass for energy purposes is cultivation of energy crops in agricultural areas. It is particularly vital for Poland, because these areas constitute a relatively large part of the country (59%, 76% of them being used as farmlands. In Silesia, the most industrialized region of the country, 5-10% of agricultural soils are contaminated with cadmium, lead and zinc. The main objective of the presented study was to estimate the accumulation of heavy metals in the tissues of Miscanthus x giganteus grown on contaminated soils and calculate concentrations of Pb, Cd and Zn in crops. It was shown that the large intake of heavy metals by that species could cause high emissions of pollutants into the atmosphere during its improper combustion. As a side effect, winter harvesting led to the loss of even 30% of biomass. Plant residues (leaves can be the source of pollution after decomposing and releasing metals back into the soil. Moreover, miscanthus leaves can be transferred by wind to the surrounding areas. It is very likely that ash coming from the combustion of contaminated biomass cannot be used as a fertilizer.

  11. [Evaluation of compounding EDTA and citric acid on remediation of heavy metals contaminated soil].

    Science.gov (United States)

    Yin, Xue; Chen, Jia-Jun; Cai, Wen-Min

    2014-08-01

    As commonly used eluents, Na2EDTA (EDTA) and citric acid (CA) have been widely applied in remediation of soil contaminated by heavy metals. In order to evaluate the removal of arsenic, cadmium, copper, and lead in the contaminated soil collected in a chemical plant by compounding EDTA and CA, a series of stirring experiments were conducted. Furthermore, the changes in speciation distribution of heavy metals before and after washing were studied. The results showed that, adopting the optimal molar ratio of EDTA/CA (1:1), when the pH of the solution was 3, the stirring time was 30 min, the stirring rate was 150 r x min(-1) and the L/S was 5:1, the removal rates of arsenic, cadmium, copper and lead could reach 11.72%, 43.39%, 24.36% and 27.17%, respectively. And it was found that after washing, for arsenic and copper, the content of acid dissolved fraction rose which increased the percentage of available contents. Fe-Mn oxide fraction mainly contributed to the removal of copper. As for cadmium, the percentages of acid dissolved fraction, Fe-Mn oxide fraction and organic fraction also decreased. In practical projects, speciation changes would pose certain environmental risk after soil washing, which should be taken into consideration.

  12. Remediation of heavy-metal-contaminated soil using chelant extraction: Feasibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Miller, G.; Taylor, J.D.; Schneider, J.F.; Zellmer, S.; Edgar, D.E.; Johnson, D.O.

    1993-08-01

    Results are presented of a laboratory investigation conducted to determine the efficacy of using chelating agents to extract heavy metals (Pb, Cd, Cr, Ba, Cu, and Zn) from soil, the primary focus being on the extraction of lead from the soil. Results from the batch-shaker studies and emphasizes the columnar extraction studies are described. The chelating agents studied included ethylenediaminetetraacetic acid (EDTA) and citric acid, in addition to water. Concentrations of the chelants ranged from 0.01 to 0.05 M; the suspension pH was varied between 3 and 8. Results showed that the removal of lead using citric acid and water was somewhat pH-dependent. For the batch-shaker studies, the results indicated that EDTA was more effective at removing Cd, Cu, Pb, and Zn than was citric acid (both present at 0.01 M). EDTA and citric acid were equally effective in mobilizing Cr and Ba from the soil. Heavy metals removal was slightly more effective in the more acidic region (pH {le} 5).

  13. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Mehdi [Department of Soil Science, College of Agriculture, University of Shiraz, Shiraz (Iran, Islamic Republic of); Hempel, Stefan, E-mail: hempel.stefan@googlemail.co [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Freie Universitaet Berlin, Institut fuer Biologie, Okologie der Pflanzen, Altensteinstrasse 6, 14195 Berlin (Germany); Wubet, Tesfaye; Schaefer, Tina [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Savaghebi, Gholamreza [Department of Soil Science Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of); Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam [Agricultural Biotechnology Research Institute of Iran (ABRII), P.O. Box 31535-1897, Karaj (Iran, Islamic Republic of); Buscot, Francois [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany)

    2010-08-15

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. - The molecular diversity of AMF was found to be influenced by a combination of soil heavy metal and other soil chemical parameters.

  14. [Promotion effects of microorganisms on phytoremediation of heavy metals-contaminated soil].

    Science.gov (United States)

    Yang, Zhuo; Wang, Zhan-Li; Li, Bo-Wen; Zhang, Rui-Fang

    2009-08-01

    Taking Brassica juncea as a hyperaccumulator, a pot experiment was conducted to study the effects of Bacillusme gaterium - Bacillus mucilaginosus mixed agent and Aspergillus niger 30177 fermentation liquor on the phytoremediation of Cd, Pb, and Zn-contaminated soil. The B. gaterium - B. mucilaginosus mixed agent not only promoted the growth of B. juncea, but also increased the soil Cd, Pb, and Zn uptake by the hyperaccumulator, with the phytoremediation efficiency enhanced greatly. The enrichment amount of Cd, Pb and Zn in B. juncea on the soil added with soluble Cd, Pb and Zn increased by 1.18, 1.54 and 0.85 folds, while that on the soil added with Cd, Pb and Zn-contaminated sediment increased by 4.00, 0. 64 and 0. 65 folds, respectively, compared with the control. A. niger 30177 fermentation liquor increased the soil Cd, Pb, and Zn uptake by B. juncea. Comparing with the control, the enrichment amount of Cd, Pb and Zn in aboveground part of B. juncea on the soil added with soluble Cd, Pb and Zn increased by 88.82%, 129.04% and 16.80%, while that on the soil added with Cd, Pb and Zn-contaminated sediment increased by 78.95%, 113.63% and 33.85%, respectively. However, A. niger 30177 fermentation liquor decreased the B. juncea biomass greatly, having less effect in the enhancement of phytoremediation efficiency. The analysis of reversed-phase high performance liquid chromatography showed that the fermentation liquor of B. gaterium and B. mucilaginosus contained some organic acids such as oxalic acid and citric acid. These acids could dissolve the heavy metals to some degree, and accordingly, enhance the bioavailability of the metals.

  15. Heavy Metal Contamination of Soil, Irrigation Water and Vegetables in Peri-Urban Agricultural Areas and Markets of Delhi.

    Science.gov (United States)

    Bhatia, Arti; Singh, ShivDhar; Kumar, Amit

    2015-11-01

    Dietary exposure to heavy metals, namely cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu), has been identified as a risk to human health through consumption of vegetable crops. The present study investigates heavy metal contamination in irrigation water, soil, and vegetables at four peri-urban and one wholesale site in Delhi, India, and estimates the health risk index. Most of the samples collected from peri-urban areas exceeded the safe limits of lead and cadmium, whereas only lead concentration was found to be higher in vegetable samples collected from the wholesale market. Average uptake of metals by vegetables from soil decreased in the order Cd>Zn>Cu>Pb. The order of metal uptake based on transfer factor was highest in okra, cauliflower, and spinach, from greatest to least. Among the vegetables from peri-urban sites, only okra crossed the safe limit for cadmium; whereas vegetables from the wholesale site exceeded the limit for lead (potato, coriander, chilies, pea, and carrot, in order from greatest to least) with respect to health risk index.

  16. GROWTH PERFORMANCE, BIOMASS AND PHYTOEXTRACTION EFFICIENCY OF ACACIA MANGIUM AND MELALEUCA CAJUPUTI IN REMEDIATING HEAVY METAL CONTAMINATED SOIL

    Directory of Open Access Journals (Sweden)

    Shibli Nik Mohd

    2013-01-01

    Full Text Available Heavy metals are very toxic and soil contaminated with sewage sludge urgently need remediation in order to avoid related health hazards. Phytoremediation is a low cost and reliable technique to remediate heavy metal contamination. However phytoremediation using timber species was rarely reported and its efficiency was questionable. A field study was conducted to examine the efficiency of two timber species namely Acacia mangium and Melaleuca cajuputi in phytoextraction of Zn, Cu and Cd from contaminated soil. Two hundred of A. mangium and M. cajuputi were planted on sewage sludge disposal site and the growth was recorded for 12 months before at the end total biomass of each species was determined. Results show in 12 months, about 72 and 4 t ha-1 of aboveground biomass can be produced by A. mangium and M. cajuputi, respectively. Both species show potential for phytoremediation, however A. mangium is more efficient compared to M. cajuputi where efficiency of A. mangium to remove Zn was 24.4, 6.2 for Cu and 9.5% for Cd. As for M. cajuputi the efficiency was 1.3, 0.3 and 0.14% for Zn, Cu and Cd, respectively. It is projected that A. mangium require 5, 17 and 20 years to remove 79.82 kg ha-1 of Zn, 46.94 kg ha-1 of Cu and 2.33 kg ha-1 of Cd, respectively.

  17. Heavy metal contamination in arable soils and vegetables around a sulfuric acid factory, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Department of Earth Sciences, National Taiwan University, Taipei (China); Wang, Jin; Li, Xiangping; Chen, Yongheng; Wu, Yingjuan [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Qi, Jianying [South China Institute of Environmental Science, Ministry of Environmental Protection (SCIES-MEP), Guangzhou (China); Wang, Chunlin [Research Center for Environmental Science, Guangdong Provincial Academy of Environmental Science, Guangzhou (China)

    2012-07-15

    This study was designed to investigate heavy metal (Tl, Pb, Cu, Zn, and Ni) contamination levels of arable soils and vegetables grown in the vicinity of a sulfuric acid factory in the Western Guangdong Province, China. Health risks associated with these metals by consumption of vegetables were assessed based on the hazard quotient (HQ). The soils show a most significant contamination of Tl, followed by Pb, Cu, Zn, and Ni. The heavy metal contents ({mu}g/g, dry weight basis) in the edible parts of vegetables range from 5.60 to 105 for Tl, below detection limit to 227 for Pb, 5.0-30.0 for Cu, 10.0-82.9 for Zn, and 0.50-26.0 for Ni, mostly exceeding the proposed maximum permissible level in Germany or China. For the studied vegetables, the subterranean part generally bears higher contents of Tl and Zn than the aerial part, while the former has lower contents of Cu and Ni than the latter. In addition, the results reveal that Tl is the major risk contributor for the local people since its HQ values are mostly much higher than 1.0. The potential health risk of Tl pollution in the food chain and the issue of food safety should be highly concerned and kept under continued surveillance and control. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Adaptive sampling based on the cumulative distribution function of order statistics to delineate heavy-metal contaminated soils using kriging

    Energy Technology Data Exchange (ETDEWEB)

    Juang, K.-W. [Department of Post-Modern Agriculture, MingDao University, Pitou, Changhua, Taiwan (China); Lee, D.-Y. [Graduate Institute of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan (China)]. E-mail: dylee@ccms.ntu.edu.tw; Teng, Y.-L. [Graduate Institute of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan (China)

    2005-11-15

    Correctly classifying 'contaminated' areas in soils, based on the threshold for a contaminated site, is important for determining effective clean-up actions. Pollutant mapping by means of kriging is increasingly being used for the delineation of contaminated soils. However, those areas where the kriged pollutant concentrations are close to the threshold have a high possibility for being misclassified. In order to reduce the misclassification due to the over- or under-estimation from kriging, an adaptive sampling using the cumulative distribution function of order statistics (CDFOS) was developed to draw additional samples for delineating contaminated soils, while kriging. A heavy-metal contaminated site in Hsinchu, Taiwan was used to illustrate this approach. The results showed that compared with random sampling, adaptive sampling using CDFOS reduced the kriging estimation errors and misclassification rates, and thus would appear to be a better choice than random sampling, as additional sampling is required for delineating the 'contaminated' areas. - A sampling approach was derived for drawing additional samples while kriging.

  19. Perspectives of humic substances application in remediation of highly heavy metals contaminated soils in Kola Subarctic

    Science.gov (United States)

    Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina

    2016-04-01

    Northwestern part of Russia, the Kola Peninsula, is one of the most heavy metals (HM) contaminated areas in the northern hemisphere. The main polluters, mining-and-metallurgical integrated works "Pechenganikel" and "Severonikel", are surrounded by heavily damaged barren lands that require remediation. The main contaminating metals are Ni and Cu. Using of exogenous humic substances could be possible effective and cost-efficient solution of HM contamination problem. Rational application of humates (Na-K salts of humic acids) can result in improvement of soil properties, localization of contamination and decreasing bioavailability through binding HM in relatively immobile organic complexes. Our research aim was to evaluate the influence of increasing doses of different origin humates on i) basic properties of contaminated soils; ii) mobility and bioavailability of HMs; iii) vegetation state and chemistry. In summer 2013 a model field experiment was provided in natural conditions of the Kola Peninsula. We investigated the Al-Fe-humus abrazem, soil type that dominates in technogenic barren lands around the "Severonikel" work. These soils are strongly acid: pHH2O was 3.7-4.1; pHKCl was 3.4-4.0. The exchangeable acidity is low (0.8-1.6 cmol(+)/kg) due to the depletion of fine particles and organic matter, being the carriers of exchange positions. The abrazems of barrens had lost organic horizon. 12 sites were created in 1 km from the work. In those sites, except 2 controls, various amendments were added: i) two different by it's origin types of humates: peat-humates and coal-humates, the last were in concentrations 0.5% and 1%; ii) lime; iii) NPK-fertilizer; iv) biomates (organic degradable cover for saving warm and erosion protection). As a test-culture a grass mixture with predominance of Festuca rubra and Festuca ovina was sowed. As a result we concluded that humates of different origin have unequal influence on soil properties and cause decreasing as well as

  20. Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance

    NARCIS (Netherlands)

    Lakzian, A.; Murphy, P.; Turner, A.; Beynon, J.L.; Giller, K.E.

    2002-01-01

    Populations of Rhizobium leguminosarum bv. viciae were investigated from plots of a long-term sewage sludge experiment in Braunschweig, Germany, which represented a gradient of increasing metal contamination. The number of R. leguminosarum bv. viciae decreased from 105 cells g¿1 soil in uncontaminat

  1. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.

    Science.gov (United States)

    Sharma, Sunita; Singh, Bikram; Manchanda, V K

    2015-01-01

    Nuclear power reactors are operating in 31 countries around the world. Along with reactor operations, activities like mining, fuel fabrication, fuel reprocessing and military operations are the major contributors to the nuclear waste. The presence of a large number of fission products along with multiple oxidation state long-lived radionuclides such as neptunium ((237)Np), plutonium ((239)Pu), americium ((241/243)Am) and curium ((245)Cm) make the waste streams a potential radiological threat to the environment. Commonly high concentrations of cesium ((137)Cs) and strontium ((90)Sr) are found in a nuclear waste. These radionuclides are capable enough to produce potential health threat due to their long half-lives and effortless translocation into the human body. Besides the radionuclides, heavy metal contamination is also a serious issue. Heavy metals occur naturally in the earth crust and in low concentration, are also essential for the metabolism of living beings. Bioaccumulation of these heavy metals causes hazardous effects. These pollutants enter the human body directly via contaminated drinking water or through the food chain. This issue has drawn the attention of scientists throughout the world to device eco-friendly treatments to remediate the soil and water resources. Various physical and chemical treatments are being applied to clean the waste, but these techniques are quite expensive, complicated and comprise various side effects. One of the promising techniques, which has been pursued vigorously to overcome these demerits, is phytoremediation. The process is very effective, eco-friendly, easy and affordable. This technique utilizes the plants and its associated microbes to decontaminate the low and moderately contaminated sites efficiently. Many plant species are successfully used for remediation of contaminated soil and water systems. Remediation of these systems turns into a serious problem due to various anthropogenic activities that have

  2. 植物修复重金属污染土壤的研究进展%The latest development about phytoremediation of heavy metal contaminated soil

    Institute of Scientific and Technical Information of China (English)

    刘秀梅; 聂俊华; 王庆仁

    2001-01-01

    介绍了重金属污染土壤植物修复的概念,回顾了国内外植物修复金属污染土壤的发展状况,初步探讨了植物对重金属污染土壤的修复机理、并提出了植物修复未来的发展趋势。%The concept of phytoremdiation of heavy metal-contaminated soil is introduced in this paper, development status of phytoremediation of heavy metal-contaminated soil inside and outside are reviewed, and the mechamisms of phytoremediation are discussed. Bsides, the developmental trend of phytoremediation is put for forward..

  3. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils.

    Science.gov (United States)

    Yang, Zong-Han; Dong, Cheng-Di; Chen, Chiu-Wen; Sheu, Yih-Terng; Kao, Chih-Ming

    2017-05-20

    The extraction efficiency of heavy metals from soils using three forms of gamma poly-glutamic acid (γ-PGA) as the washing agents was investigated. Controlling factors including agent concentrations, extraction time, pH, and liquid to soil ratio were evaluated to determine the optimum operational conditions. The distribution of heavy metal species in soils before and after extraction processes was analyzed. Up to 46 and 74% of heavy metal removal efficiencies were achieved with one round and a sequential extraction process using H-bonding form of γ-PGA (200 mM) with washing time of 40 min, liquid to solid ratio of 10 to 1, and pH of 6. Major heavy metal removal mechanisms were (1) γ-PGA-promoted dissolution and (2) complexation of heavy metal with free carboxyl groups in γ-PGA, which resulted in heavy metal desorption from soils. Metal species on soils were redistributed after washing, and soils were remediated without destruction of soil structures and productivity.

  4. Heavy metal contamination and source in arid agricultural soil in central Gansu Province, China

    Institute of Scientific and Technical Information of China (English)

    LI Yu; GOU Xin; WANG Gang; ZHANG Qiang; SU Qiong; XIAO Guoju

    2008-01-01

    Concentrations of copper (Cu), lead (Pb), chromium (Cr), mercury (Hg), and arsenic (As) were measured in arid agricultural and irrigated agricultural soils collected in Daba Village, Shajiawuan Village, Gangou Village and Sifangwu Village, located in central Gansu Province, China. Concentrations except Hg and Pb were lower than the background values in grey calcareous soil in the selected arid agricultural soils. Pb concentration exceeded the threshold of arid agricultural soils in China by 72. 46%. These results showed that there was indeed serious pollution with Pb, a slight pollution problem for other selected metals in the irrigated agricultural soils in Daba Village. Principal component analysis (PCA) was used to assess the soil data, applying varimax rotation with Kaiser Normalization. The result showed that the irrigated factor, agricultural factor and anthropogenic factor all contributed to the relations between selected chemical properties. The main factor of accumulation of Cu, Pb, Cr, Hg and As was lithological factor in arid agricultural areas. There is a striking dissimilarity of origin of Cu, Pb, Cr, Hg and As in agricultural soil between the irrigate agriculture and arid agriculture.

  5. Effects of Different Soil Amendments on Mixed Heavy Metals Contamination in Vetiver Grass.

    Science.gov (United States)

    Ng, Chuck Chuan; Boyce, Amru Nasrulhaq; Rahman, Md Motior; Abas, Mhd Radzi

    2016-11-01

    Three different types of low cost soil amendments, namely, EDTA, elemental S and N-fertilizer, were investigated with Vetiver grass, Vetiveria zizanioides (Linn.) Nash growing under highly mixed Cd-Pb contamination conditions. A significant increase (p < 0.05) in Cd and Pb accumulation were recorded in the shoots of all EDTA and N-fertilizer assisted treatments. The accumulation of Cd in 25 mmol EDTA/kg soil and 300 mmol N/kg soil showed relatively higher translocation factor (1.72 and 2.15) and percentage metal efficacy (63.25 % and 68.22 %), respectively, compared to other treatments. However, it was observed that the increased application of elemental S may inhibit the availability of Pb translocation from soil-to-root and root-to-shoot. The study suggests that viable application of 25 mmol EDTA/kg, 300 mmol N/kg and 20 mmol S/kg soil have the potential to be used for soil amendment with Vetiver grass growing under contaminated mixed Cd-Pb soil conditions.

  6. Heavy metal contamination in agricultural soils and water in Dar es ...

    African Journals Online (AJOL)

    USER

    water indicates the potential for pollution transfer from these media to the food chain, especially since this valley is popular ... goodness of urban agriculture as a source of income and ..... (1997). Variations in plant and soil Lead and Cadmium.

  7. Application of Microbial Products to Promote Electrodialytic Remediation of Heavy Metal Contaminated Soil

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland

    2006-01-01

    influences the remediation-time negatively. EDR remediation of fine grained, inorganic soils was documented to be feasible when the Pb is not associated with extremely stable compounds. The potential of treating other fine-grained materials in a suspended version of EDR had at this time been demonstrated...... of the lack of relevance to treatment of Pb-contaminated soil. Autotrophic leaching, which is leaching by acidophilic, autotrophic microorganisms obtaining energy by oxidation of elemental sulfur, was shown to induce acidification of soil-fines in suspension, but removal of Pb from the treated soil...... is optimal with distilled water as solvent. Consequently addition of nitric acid is recommended in cases where the removal rate is considered important, while suspension in pure water is recommended in situations where the energy expenditure and the chemical costs are limiting factors. Considering...

  8. Heavy Metal Contamination of Soil and Surface Water in the Arufu ...

    African Journals Online (AJOL)

    Dr. Annku

    soils developed over mine waste are enriched in Zn (181 + 83 mg/kg); Pb (40 + 28 mg/kg) and Cd (3 + 2 ... Lead-Zinc Mining District, Middle Benue trough, Nigeria”, Ghana Mining Journal, Vol. ..... Hernandez, G. (2007), “Solid-phase control on.

  9. A Comparative Analysis of Environmental Quality Assessment Methods for Heavy Metal-Contaminated Soils

    Institute of Scientific and Technical Information of China (English)

    LI Wei-Xin; ZHANG Xu-Xiang; WU Bing; SUN Shi-Lei; CHEN Yan-Song; PAN Wen-Yang; ZHAO Da-Yong; CHENG Shu-Pei

    2008-01-01

    Four assessment methods (two pollution indexes and two fuzzy mathematical models) were employed to investigate the environmental quality of four soils around a ferroalloy plant in Nanjing City.Environmental quality was assessed as class Ⅳ (moderately polluted) for each soil with single-factor index method,and was identified to be classes Ⅳ,Ⅲ(slightly polluted),Ⅲ,and Ⅲ for soils A,B,C,and D,respectively,with the comprehensive index model.In comparison with the single-factor index method,the comprehensive index model concerned both dominant parameter and average contribution of all factors to the integrated environmental quality.Using the two fuzzy mathematical methods (single-factor deciding and weighted average models),the environmental risks were determined to be classes Ⅳ,Ⅲ,Ⅱ(clean),and Ⅱ for soils A,B,C,and D,respectively.However,divergence of the membership degree to each pollution class still occurred between the two methods.In fuzzy mathematical methods,membership functions were used to describe the limits between different pollution degrees,and different weights were allocated for the factors according to pollution contribution.Introduction of membership degree and weight of each factor to fuzzy mathematical models made the methods more reasonable in the field of environmental risk assessment.

  10. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    Science.gov (United States)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  11. Heavy-metal-contaminated industrial soil: Uptake assessment in native plant species from Brazilian Cerrado.

    Science.gov (United States)

    Meyer, Sylvia Therese; Castro, Samuel Rodrigues; Fernandes, Marcus Manoel; Soares, Aylton Carlos; de Souza Freitas, Guilherme Augusto; Ribeiro, Edvan

    2016-08-02

    Plants of the Cerrado have shown some potential for restoration and/or phytoremediation projects due to their ability to grow in and tolerate acidic soils rich in metals. The aim of this study is to evaluate the tolerance and accumulation of metals (Cd, Cu, Pb, and Zn) in five native tree species of the Brazilian Cerrado (Copaifera langsdorffii, Eugenia dysenterica, Inga laurina, Cedrela fissilis, Handroanthus impetiginosus) subjected to three experiments with contaminated soils obtained from a zinc processing industry (S1, S2, S3) and control soil (S0). The experimental design was completely randomized (factorial 5 × 4 × 3) and conducted in a greenhouse environment during a 90-day experimentation time. The plant species behavior was assessed by visual symptoms of toxicity, tolerance index (TI), translocation factor (TF), and bioaccumulation factor (BF). C. fissilis has performed as a Zn accumulator by the higher BFs obtained in the experiments, equal to 3.72, 0.88, and 0.41 for S1, S2, and S3 respectively. This species had some ability of uptake control as a defense mechanism in high stress conditions with the best behavior for phytoremediation and high tolerance to contamination. With economical and technical benefits, this study may support a preliminary analysis necessary for using native tree species in environmental projects.

  12. Kriging with cumulative distribution function of order statistics for delineation of heavy-metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Juang, K.W.; Lee, D.Y.; Hsiao, C.K. [National Taiwan Univ., Tapei (Taiwan, Province of China)

    1998-10-01

    Accurate delineation of contaminated soils is essential for risk assessment and remediation. The probability of pollutant concentrations lower than a cutoff value is more important than the best estimate of pollutant concentrations for unsampled locations in delineating contaminated soils. In this study, a new method, kriging with the cumulative distribution function (CDF) of order statistics (CDF kriging), is introduced and compared with indicator kriging. It is used to predict the probability that extractable concentrations of Zn will be less than a cut-off value for soils to be declared hazardous. The 0.1 M HCl-extractable Zn concentrations of topsoil of a paddy field having an area of about 2000 ha located in Taiwan are used. A comparison of the CDF of order statistics and indicator function transformation shows that the variance and the coefficient of variation (CV) of the CDF of order statistics transformed data are smaller than those of the indicator function transformed data. This suggests that the CDF of order statistics transformation possesses less variability than does the indicator function transformation. In addition, based on cross-validation, CDF kriging is found to reduce the mean squared errors of estimations by about 30% and to reduce the mean kriging variances by about 26% compared with indicator kriging.

  13. Effects of selected soil properties on phytoremediation applicability for heavy-metal-contaminated soils in the Apulia region, Southern Italy.

    Science.gov (United States)

    Farrag, K; Senesi, N; Rovira, P Soler; Brunetti, G

    2012-11-01

    Phytoremediation is a well-known promising alternative to conventional approaches used for the remediation of diffused and moderated contaminated soils. The evaluation of the accumulation, availability, and interactions of heavy metals in soil is a priority objective for the possible use of phytoremediation techniques such as phytoextraction and phytostabilization. The soils used in this work were collected from a number of sites inside a protected area in the Apulia region (Southern Italy), which were contaminated by various heavy metals originated from the disposal of wastes of different sources of origin. Soils examined contained Cd, Cr, Cu, Ni, Pb, and Zn in amounts exceeding the critical limits imposed by EU and Italian laws. However, the alkaline conditions, high organic matter content, and silty to silty loamy texture of soils examined would suggest a reduced availability of heavy metals to plants. Due to the high total content but the low available fraction of heavy metals analyzed, especially Cr, phytoextraction appears not to be a promising remediation approach in the sites examined, whereas phytostabilization appears to be the best technique for metal decontamination in the studied areas.

  14. Effect of heavy metal-solubilizing microorganisms on zinc and cadmium extractions from heavy metal contaminated soil with Tricholoma lobynsis.

    Science.gov (United States)

    Ji, Ling-yun; Zhang, Wei-wei; Yu, Dong; Cao, Yan-ru; Xu, Heng

    2012-01-01

    The macrofungus, Tricholoma lobynsis, was chosen to remedy Zn-Cd-Pb contaminated soil. To enhance its metal-extracting efficiency, two heavy metal resistant microbes M6 and K1 were applied owing to their excellent abilities to solubilize heavy metal salts. The two isolated microbial strains could also produce indole acetic acid (IAA), siderophore and solubilize inorganic phosphate, but neither of them showed 1-aminocyclopropane-1-carboxylate deaminase activity. The strains M6 and K1 were identified as Serratia marcescens and Rhodotorula mucilaginosa based on 16S rDNA and ITS sequence analysis respectively. Pot experiment showed that spraying to T. lobynsis-inoculated soil with M6 and K1 respectively could increase total Cd accumulations of this mushroom by 216 and 61%, and Zn by 153 and 49% compared to the uninoculated control. Pb accumulation however, was too low (metal-accumulating abilities of macrofungi and IAA-siderophore production, phosphate solubilization abilities of the assisted-microbes. This kind of macrofungi-microbe interaction can be developed into a novel bioremediation strategy.

  15. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  16. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization.

    Science.gov (United States)

    Hu, Yahu; Nan, Zhongren; Su, Jieqiong; Wang, Ning

    2013-10-01

    The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg(-1)), Cu (8.21 mg kg(-1)), Pb (41.62 mg kg(-1)), and Zn (696 mg kg(-1)) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg(-1), respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.

  17. Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil.

    Science.gov (United States)

    Lambrechts, Thomas; Gustot, Quentin; Couder, Eléonore; Houben, David; Iserentant, Anne; Lutts, Stanley

    2011-11-01

    Phytoremediation is a promising and cost-effective strategy to manage heavy metal polluted sites. In this experiment, we compared simultaneously phytoextraction and phytostabilisation techniques on a Cd and Zn contaminated soil, through monitoring of plant accumulation and leaching. Lolium perenne plants were cultivated for 2 months under controlled environmental conditions in a 27.6 dm(3)-pot experiment allowing the collect of leachates. The heavy metal phytoextraction was promoted by adding Na-EDTA (0.5 g kg(-1) of soil) in watering solution. Phytostabilisation was assessed by mixing soil with steel shots (1%) before L. perenne sowing. Presence of plants exacerbated heavy metal leaching, by improving soil hydraulic conductivity. Use of EDTA for phytoextraction led to higher concentration of heavy metal in shoots. However, this higher heavy metal extraction was insufficient to satisfactory reduce the heavy metal content in soil, and led to important heavy metal leaching induced by EDTA. On the other hand, addition of steel shots efficiently decreased both Cd and Zn mobility, according to 0.01 M CaCl(2) extraction, and leaching. However, improvement of growth conditions by steel shots led to higher heavy metal mass in shoot tissues. Therefore, soil heavy metal mobility and plant metal uptake are not systematically positively correlated.

  18. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site.

    Science.gov (United States)

    Lorestani, B; Yousefi, N; Cheraghi, M; Farmany, A

    2013-12-01

    With the development of urbanization and industrialization, soils have become increasingly polluted by heavy metals. Phytoremediation, an emerging cost-effective, nonintrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements, can be potentially used to remediate metal-contaminated sites. In this research, two processes of phytoremediation (phytoextraction and phytostabilization) were surveyed in some plant species around an industrial town in the Hamedan Province in the central-western part of Iran. To this purpose, shoots and roots of the seven plant species and the associated soil samples were collected and analyzed by measuring Pb, Fe, Mn, Cu, and Zn concentrations using ICP-AES and then calculating the biological absorption coefficient, bioconcentration factor, and translocation factor parameters for each element. The obtained results showed that among the collected plants, Salsola soda is the most effective species for phytoextraction and phytostabilization and Cirsium arvense has the potential for phytostabilization of the measured heavy metals.

  19. Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials.

    Science.gov (United States)

    Al-Hwaiti, Mohammad; Al-Khashman, Omar

    2015-04-01

    Phosphogypsum (PG) is a waste produced by the phosphate fertilizer industry that has relatively high concentrations of some heavy metals (e.g., Cd, Cr, Cu, Pb, V, and Zn). The present study was conducted to investigate heavy metal contamination in soils and vegetables (tomatoes and green peppers) and to evaluate the possible health risks associated with the consumption of vegetables grown in PG-amended soils. The enrichment factor values indicated that Pb, Cr, Cu, Ni, Zn, and V were depleted to minimally enriched, and Cd was moderately enriched. The pollution load index values indicated that the PG-amended soils were strongly polluted with Cd, moderately polluted with Cr and Ni, and slightly polluted with Pb, Cu, Zn and V. The geo-accumulation index values indicated that the PG-amended soils were uncontaminated with Pb, Cr, Cu, Ni, Zn, V, and moderately contaminated with Cd. The trace metal transfer for Cd, Cr, Pb, and Zn concentrations was below what are considered as acceptable limits ( Pb > Cd > Cr. The biological absorption coefficients in plants are, in order of highest to lowest, Pb > Zn > Cd > Cr, which suggests that Pb is more bioavailable to plants than Cd, Cr, and Zn. Furthermore, this study highlights that both adults and children consuming vegetables (e.g., tomatoes and green peppers) grown in PG-amended soils ingest significant amounts of the metals studied. However, the daily intake of metals (DIM) and the health risk index (HRI) values are <1, indicating a relative absence of health risks associated with the consumption of vegetables/fruits grown in PG-amended soils. However, while DIM and HRI values suggest that the consumption of plants grown in PG-amended soils is nearly free of risks, there are other sources of metal exposures such as dust inhalation, dermal contact, and ingestion (for children) of metal-contaminated soils, which were not included in this study.

  20. 桑树修复土壤重金属污染的研究进展%Research Progress of Remedying the Heavy Metal Contaminated Soils with Mulberry

    Institute of Scientific and Technical Information of China (English)

    徐宁; 俞燕芳; 毛平生; 杜贤明; 彭晓虹; 石旭平

    2015-01-01

    Remediation of heavy metals has become a hot topic of international environmental science, and remedying the heavy metal contaminated soils with mulberry was an effective phytoremediation technology. This paper briefly introduced the concept of heavy metals in soil and phytoremediation technology, described the growth characteristics of mulberry, and mulberry growing relationship with Cd, Pb, Zn, As and other heavy metals pollution. Combined with the heavy metals pollution situation in Jiangxi Province, and discussed the potential of repair tree in soil heavy metal pollution with mulberry.%重金属污染修复已成为当前国际环境科学研究的热点问题,利用桑树修复土壤重金属污染也是一种有效的植物修复技术。笔者简单介绍了土壤重金属与植物修复技术的概念,并阐述了桑树的生长特性,桑树生长与土壤中镉、铅、锌、砷等重金属元素的关系,并结合江西省土壤重金属污染的形势,探讨了桑树作为江西省土壤重金属污染修复树种的潜力。

  1. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  2. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  3. Activity and functional diversity of microbial communities in long-term hydrocarbon and heavy metal contaminated soils

    Directory of Open Access Journals (Sweden)

    Markowicz Anna

    2016-12-01

    Full Text Available The impacts of long-term polycyclic aromatic hydrocarbons (PAHs and heavy metal pollution on soil microbial communities functioning were studied in soils taken from an old coke plant. The concentrations of PAHs in the tested soils ranged from 171 to 2137 mg kg-1. From the group of tested heavy metals, concentrations of lead were found to be the highest, ranging from 57 to 3478 mg kg-1, while zinc concentrations varied from 247 to 704 mg kg-1 and nickel from 10 to 666 mg kg-1. High dehydrogenase, acid and alkaline phosphatase activities were observed in the most contaminated soil. This may indicate bacterial adaptation to long-term heavy metal and hydrocarbon contamination. However, the Community Level Physiological Profiles (CLPPs analysis showed that the microbial functional diversity was reduced and influenced to a higher extent by some metals (Pb, Ni, moisture and conductivity than by PAHs.

  4. Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils.

    Science.gov (United States)

    Boteva, Silvena; Radeva, Galina; Traykov, Ivan; Kenarova, Anelia

    2016-03-01

    Ore mining and processing have greatly altered ecosystems, often limiting their capacity to provide ecosystem services critical to our survival. The soil environments of two abandoned uranium mines were chosen to analyze the effects of long-term uranium and heavy metal contamination on soil microbial communities using dehydrogenase and phosphatase activities as indicators of metal stress. The levels of soil contamination were low, ranging from 'precaution' to 'moderate', calculated as Nemerow index. Multivariate analyses of enzyme activities revealed the following: (i) spatial pattern of microbial endpoints where the more contaminated soils had higher dehydrogenase and phosphatase activities, (ii) biological grouping of soils depended on both the level of soil contamination and management practice, (iii) significant correlations between both dehydrogenase and alkaline phosphatase activities and soil organic matter and metals (Cd, Co, Cr, and Zn, but not U), and (iv) multiple relationships between the alkaline than the acid phosphatase and the environmental factors. The results showed an evidence of microbial tolerance and adaptation to the soil contamination established during the long-term metal exposure and the key role of soil organic matter in maintaining high microbial enzyme activities and mitigating the metal toxicity. Additionally, the results suggested that the soil microbial communities are able to reduce the metal stress by intensive phosphatase synthesis, benefiting a passive environmental remediation and provision of vital ecosystem services.

  5. Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Venegas, A; Rigol, A; Vidal, M

    2015-01-01

    Composts derived from municipal (MOW and MSW) and domestic wastes (DOM), wastes from the olive oil industry (OWH and OP), green waste (GW), and biochars (BF and BS) were investigated to test their viability for remediating metal-contaminated soils. In addition to common analyses, the characterisation included structural analyses (FTIR and (13)C NMR), determination of the acid neutralisation capacity (ANC) and the construction of sorption isotherms for target metals (Pb, Zn, Cd, Ni and Cu). MOW and GW had the highest ANC values (4280 and 7100 meq kg(-1), respectively), and MOW, GW, DOM, BF and BS exhibited the highest solid-liquid distribution coefficients (Kd) with maximum values in the 10(4) L kg(-1) range. Sorption isotherms were fitted using linear and Freundlich models for better comparison of the sorption capacities of the materials. Based on their basic pH, high ANC and high sorption capacity, MOW, GW and biochars are the most promising materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments.

    Science.gov (United States)

    Kim, Min-Suk; Min, Hyun-Gi; Koo, Namin; Park, Jeongsik; Lee, Sang-Hwan; Bak, Gwan-In; Kim, Jeong-Gyu

    2014-12-15

    Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology.

  7. Heavy metal contamination in soils around the Tunçbilek Thermal Power Plant (Kütahya, Turkey).

    Science.gov (United States)

    Özkul, Cafer

    2016-05-01

    Tunçbilek, one of the major thermal power plants (TTPP) in Turkey running on coal, has capacity to generate 365 MW (per year) electricity. Fifty top soil samples were collected from a depth about 0-20 cm in the close vicinity of the TTPP from random points and at different distances. The samples were analyzed using ICP-MS for heavy metals. Heavy metal contents in soils around TTPP varied from 4.4 to 317.5 mg/kg for As, 0.03 to 0.26 mg/kg for Cd, 20.3 to 1028 mg/kg for Cr, 4.8 to 76.8 mg/kg for Cu, 0.09 to 9.3 mg/kg for Hg, 16.6 to 2385 mg/kg for Ni, 4.8 to 58.6 mg/kg for Pb, and 14.5 to 249.5 mg/kg for Zn. Geoaccumulation index (I geo) and enrichment factor (EF) have been calculated in order to evaluate heavy metal pollution in the soils. According to the I geo calculations, the surface soils around TTPP are contaminated by As, Hg, and Ni from uncontaminated to extremely contaminated. I geo values for Cr show practically uncontaminated to be heavily contaminated. The contamination of soil samples changes from practically uncontaminated to moderately contaminated degree for Pb and Zn. The soil samples were uncontaminated for Cd and Cu metals. The enrichment factors of As, Cr, Hg, and Ni in most of the sampling locations indicate significant to extremely high enrichment. The EF for Pb is also high and indicates moderate to very high enrichment of chromium in the soils. The average EF values for Cd, Cu, and Zn are showing moderate enrichment.

  8. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.

    Science.gov (United States)

    Lum, A Fontem; Ngwa, E S A; Chikoye, D; Suh, C E

    2014-01-01

    Phytoremediation is a promising option for reclaiming soils contaminated with toxic metals, using plants with high potentials for extraction, stabilization and hyperaccumulation. This study was conducted in Cameroon, at the Bassa Industrial Zone of Douala in 2011, to assess the total content of 19 heavy metals and 5 other elements in soils and phytoremediation potential of 12 weeds. Partial extraction was carried out in soil, plant root and shoot samples. Phytoremediation potential was evaluated in terms of the Biological Concentration Factor, Translocation Factor and Biological Accumulation Coefficient. The detectable content of the heavy metals in soils was Cu:70-179, Pb:8-130, Zn:200-971, Ni:74-296, Co:31-90, Mn:1983-4139, V:165-383, Cr:42-1054, Ba:26-239, Sc:21-56, Al:6.11-9.84, Th:7-22, Sr:30-190, La:52-115, Zr:111-341, Y:10-49, Nb:90-172 in mg kg(-1), and Ti:2.73-4.09 and Fe:12-16.24 in wt%. The contamination index revealed that the soils were slightly to heavily contaminated while the geoaccumulation index showed that the soils ranged from unpolluted to highly polluted. The concentration of heavy metals was ranked as Zn > Ni > Cu > V > Mn > Sc > Co > Pb and Cr in the roots and Mn > Zn > Ni > Cu > Sc > Co > V > Pb > Cr > Fe in the shoots. Dissotis rotundifolia and Kyllinga erecta had phytoextraction potentials for Pb and Paspalum orbicularefor Fe. Eleusine indica and K. erecta had phytostabilisation potential for soils contaminated with Cu and Pb, respectively.

  9. Environmental Geochemistry of Heavy Metal Contaminants in Soil and Stream Sediment in Panzhihua Mining and Smelting Area,Southwestern China

    Institute of Scientific and Technical Information of China (English)

    滕彦国; 庹先国; 倪师军; 张成江; 徐争启

    2003-01-01

    Mining and smelting activities are the main causes for the increasing pollution ofheavy metals in soil, water body and stream sediment. An environmental geochemical investiga-tion was carried out in and around the Panzhihua mining and smelting area to determine the ex-tent of chemical contamination in soil and sediment. The main objective of this study was to in-vestigate the environmental geochemistry of Ti, V, Cr, Mn, Cu, Pb, Zn and As in soil andsediment and to assess the degree of pollution in the study area. The data of heavy metal con-centrations reveal that soils and sediments in the area have been slightly contaminated. Geo-chemical maps of Igeo of each heavy metal show that the contaminated sites are located in V-Ti-magnetite sloping and smelting, gangues dam. The pollution sources of the selected elementscome mainly from dusts resultant from mining activities and other three-waste-effluents. The areaneeds to be monitored regularly for trace metal, especially heavy metal enrichment.

  10. Assessment of heavy metals contamination in soil profiles of roadside Suaeda salsa wetlands in a Chinese delta

    Science.gov (United States)

    Wen, Xiaojun; Wang, Qinggai; Zhang, Guangliang; Bai, Junhong; Wang, Wei; Zhang, Shuai

    2017-02-01

    Five sampling sites (Sites A, B, C, D and E) were selected along a 250 m sampling zone covered by Suaeda salsa, which is perpendicular to a road, in the Yellow River Delta of China. Soil samples were collected to a depth of 40cm in these five sampling sites to investigate the profile distributions and toxic risks of heavy metals. Concentrations of heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn) were determined using inductively coupled plasma atomic absorption spectrometry (ICP-AAS). The results showed that in each sampling site, Cd, Cu, Pb and Zn have approximately constant concentrations along soil profiles and did not show high contamination compared with the values of probable effect levels (PELs). All soils exhibited As and Ni contamination at all sampling sites compared with other heavy metals. The index of geo-accumulation (Igeo) values for As in the 20-30 cm soil layer at Site B was grouped into Class Ⅳ(2 grouped into Class Ⅳ(2 contribution ratios to the ∑TUs in Suaeda salsa wetlands. Correlation analysis (CA) and principal components analysis (PCA) revealed that Cr, Cu, Ni, Pb and Zn might derive from the common sources, Cd might originate from another, while As might have more complex sources in this study area.

  11. Heavy metal contamination in bats in Britain

    Energy Technology Data Exchange (ETDEWEB)

    Walker, L.A. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Simpson, V.R. [Wildlife Veterinary Investigation Centre, Jollys Bottom Farm, Chacewater, Truro, Cornwall TR4 8PB (United Kingdom); Rockett, L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Wienburg, C.L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Shore, R.F. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom)]. E-mail: rfs@ceh.ac.uk

    2007-07-15

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb.

  12. Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate.

    Science.gov (United States)

    Avelar Ferreira, Paulo Ademar; Lopes, Guilherme; Bomfeti, Cleide Aparecida; de Oliveira Longatti, Silvia Maria; de Sousa Soares, Cláudio Roberto Fonseca; Guimarães Guilherme, Luiz Roberto; de Souza Moreira, Fatima Maria

    2013-11-01

    Increasing concern regarding mining area environmental contamination with heavy metals has resulted in an emphasis of current research on phytoremediation. The aim of the present study was to assess the efficiency of symbiotic Cupriavidus necator strains on different leguminous plants in soil contaminated with heavy metals following the application of inorganic materials. The application of limestone and calcium silicate induced a significant increase in soil pH, with reductions in zinc and cadmium availability of 99 and 94 %, respectively. In addition, improved nodulation of Mimosa caesalpiniaefolia, Leucaena leucocephala and Mimosa pudica in soil with different levels of contamination was observed. Significant increases in the nitrogen content of the aerial parts of the plant were observed upon nodulation of the root system of Leucaena leucocephala and Mimosa pudica by strain UFLA01-659 (36 and 40 g kg(-1)) and by strain UFLA02-71 in Mimosa caesalpiniaefolia (39 g kg(-1)). The alleviating effect of calcium silicate resulted in higher production of dry matter from the aerial part of the plant, an increase in nodule number and an increase in the nitrogen fixation rate. The results of the present study demonstrate that the combination of rhizobia, leguminous plants and calcium silicate may represent a key factor in the remediation of areas contaminated by heavy metals.

  13. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil.

    Science.gov (United States)

    Tzvetkova, Nikolina; Miladinova, Kamelya; Ivanova, Katya; Georgieva, Teodora; Geneva, Marya; Markovska, Yuliana

    2015-01-01

    One-year-old two Paulownia lines (Ptomentosa x fortunei--TF 01 and R elongata x fortunei--EF 02) were grown, as pot experiment, in soil collected from the field of waste depository of Kremikovtzi ferrous metallurgical industry near Sofia. The soil was heavily polluted with Cd. Metals content (Ca, Mg, K, Na, Cd, Cu, Pb, Zn and Fe) in soil and its distribution in roots, stems and leaves of both lines was studied. The results showed that Ca and K accumulated more in stem, Mg, Na, Fe and Cd in root, while Pb, Cu and Zn in the leaves of both lines. The bloaccumulation factor (BF) and translocation factor (TF) were evaluated in order to determine the potential of plants in removing metals from contaminated soil. The BF for Fe, Pb, Cu and Zn in TF 01 line exceeded that of EF 02 line--5.6; 1.03; 1.20; 1.14 times, respectively. TF was higher in TF 01 line for Fe, Pb and Cd (6.0; 1.92 and 1.03, respectively), but not for Cu and Zn. The success of phytoremediation depends on plant growth and restricted distribution of heavy metals in shoots. Our results showed that stem length and total leaf area of Paulownia elongata x fortunei were higher than Paulownia tomentosa x fortuneibut BF for Cu and Zn and TF for Pb was less. BF for Cd was 1.7 times higher and TF for Zn was 1.03 times higher in Paulownia elongata x fortunei. Selected two lines (P. tomentosa x fortunei--TF 01 and P elongataxfortunei--EF02) were accumulators of Cu, Zn and Cd. Paulownia tomentosax fortunei accumulated more Pb and Zn in aboveground parts, while Paulownia elongata x fortunei--accumulated Zn only. These lines proved to be a promising species for phytoremediation of heavy metal polluted soils due to high biomass productivity.

  14. Simulation of changes in heavy metal contamination in farmland soils of a typical manufacturing center through logistic-based cellular automata modeling.

    Science.gov (United States)

    Qiu, Menglong; Wang, Qi; Li, Fangbai; Chen, Junjian; Yang, Guoyi; Liu, Liming

    2016-01-01

    A customized logistic-based cellular automata (CA) model was developed to simulate changes in heavy metal contamination (HMC) in farmland soils of Dongguan, a manufacturing center in Southern China, and to discover the relationship between HMC and related explanatory variables (continuous and categorical). The model was calibrated through the simulation and validation of HMC in 2012. Thereafter, the model was implemented for the scenario simulation of development alternatives for HMC in 2022. The HMC in 2002 and 2012 was determined through soil tests and cokriging. Continuous variables were divided into two groups by odds ratios. Positive variables (odds ratios >1) included the Nemerow synthetic pollution index in 2002, linear drainage density, distance from the city center, distance from the railway, slope, and secondary industrial output per unit of land. Negative variables (odds ratios soil pH, and distance from bodies of water. Categorical variables, including soil type, parent material type, organic content grade, and land use type, also significantly influenced HMC according to Wald statistics. The relative operating characteristic and kappa coefficients were 0.91 and 0.64, respectively, which proved the validity and accuracy of the model. The scenario simulation shows that the government should not only implement stricter environmental regulation but also strengthen the remediation of the current polluted area to effectively mitigate HMC.

  15. Short communication Assessment of heavy metal contamination in ...

    African Journals Online (AJOL)

    2016-05-27

    May 27, 2016 ... Assessment of heavy metal contamination in raw milk for human consumption ... 3 University of Veterinary and Animal Sciences, Lahore, Pakistan ..... vegetables irrigated with mixtures of wastewater and sewage sludge in ...

  16. Simulation of heavy metal contamination of fresh water bodies: Toxic ...

    African Journals Online (AJOL)

    Simulation of heavy metal contamination of fresh water bodies: Toxic effects in the catfish and its amelioration with co-contamination with glyphosate. ... Journal of Applied Sciences and Environmental Management. Journal Home · ABOUT ...

  17. Risk Assessment of Heavy Metals Contamination in Soils and Selected Crops in Zanjan Urban and Industrial Regions

    Directory of Open Access Journals (Sweden)

    A. Afshari

    2016-02-01

    Full Text Available Introduction: Heavy metals are types of elements naturally present in soil or enter into soil as a result of human activities. The most important route of exposure to heavy metals is daily intake of food. Crops grown in contaminated soil (due to mining activities, industrial operations and agriculture may contain high concentrations of heavy metals. Also closeness to cities and industrial centers can have a great influence on the accumulation of heavy metals to agricultural products grown in the region. The study aimed to determine the concentration of heavy metals in soil and agricultural products around urban and industrial areas of Zanjan province (North West of Iran and consumption hazard probability. Materials and Methods: Soil (75 samples of soil from a depth of 0 to 10 cm and plant (101 samples samples, in the summer 2011, were randomly taken from industrial areas as follow: tomatoes (Lycopersicum esculentum M, wheat seed (Triticum vulgare, barley seeds (Hordeum vulgare, alfalfa shoots (Medicago sativa L., potato tubers (Solanumtuberosum L., apple fruit, vegetables and fruits such as Dill (Aniethum graveolens L., leek (Allium porrum L., Gardencress (Barbara verna L. and basil (Ocimum basilicum L.. Plant samples were then washed with distilled water, oven dried for48 hours at a temperature of 70 ´C until constant weight was attained and then they digested using 2 M hydrochloric acid (HCl and nitric acid digestion in 5 M. Concentrations of heavy metals in the soil and crops were determined by atomic absorption spectrometry. DTPA extraction of metals by Lindsay and Norvell (1978 method and sequential extraction method by Tessier et al. (1979 were performed. Statistical analysis was accomplished using the software SPSS 16.0 and the comparison of mean values was done using the Duncan test at the 5% level of significance. Results and Discussion: The magnitude of variations for total copper was from 11.5 to 352.5 (average 52.4, zinc was from 96

  18. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil.

    Science.gov (United States)

    Sayyed, R Z; Patel, P R; Shaikh, S S

    2015-02-01

    The heavy metal resistant bacterium isolated from field soil and identified as Enterobacter sp. RZS5 tolerates a high concentration (100-2000 μM) of various heavy metal ions such as Mn2+, Ni2+, Zn2+, Cu2+, CO2+ and Fe2+ when grown in such environment and produces exopolysaccharides (EPS). Here, we have demonstrated EPS production by Enterobacter sp. RZS5 during 60 h of growth in yeast extract mannitol broth (YEMB). The yield increased by two fold after the addition of 60 μM of Ca2+; 50 μM of Fe2+ and 60 μM of Mg2+ ions in YEMB, and the optimization of physico-chemical parameters. EPS was extracted with 30% (v/v) of isopropanol as against the commonly used 50% (v/v) isopropanol method. EPS-rich broth promoted seed germination, shoot height, root length, number of leaves and chlorophyll content of wheat (Triticum aestivum) seed and peanut (Arachis hypogaea) seed. The higher colony-forming unit of Enterobacter sp. in soil inoculated with EPS rich broth of Enterobacter sp. indicated the root colonizing potential and rhizosphere competence of the isolate. The FTIR spectra of the EPS extract confirmed the presence of the functional group characteristics of EPS known to exhibit a high binding affinity towards certain metal ions. This overall growth and vigour in plants along with the effective root colonization, reflected the potential of the isolate as an efficient bio-inoculant in bioremediation.

  19. Heavy-metal contamination of soils in Saxony/Germany by foundry fumes and low-cost rapid analyses of contaminated soils by XRF

    Science.gov (United States)

    Mucke, D.

    2012-04-01

    Heavy-metal contamination of soils in Saxony/Germany by foundry fumes and low-cost rapid analysis of contaminated soils by XRF Dieter Mucke, Rolf Kumann, Sebastian Baldauf GEOMONTAN Gesellschaft für Geologie und Bergbau mbH&Co.KG, Muldentalstrasse 56, 09603 Rothenfurth, Saxony/Germany For hundreds of years in the Ore Mountains between Bohemia and Saxony silver and other ores are produced and smelted. Sulphide- and sulpharsenide-ores needed to be roasted first. In doing so the sulphide sulphur was oxidised under formation of sulphur dioxide SO2 and arsenide conversed into elemental arsenic and arsenide trioxide As2O3 respectively. Also the metals lead, cadmium and zinc are components of hut smokes, in the field of nickel foundries also nickel. The contents of soils basically reflect the geogenic conditions, which are caused by decomposition- and relocation-effects of the mineralisations, in the area of foundries also with influences by with the hut smokes anthropogenic mobilised elements. The Saxonian Agency for Environment and Geology drafted in 1992 a Soil Investigation Program with the aim of investigation of the contamination of Saxonian soils with arsenic and toxic heavy metals. In order of this Agency GEOMONTAN investigated 1164 measuring points in the grid 4 * 4 km.soil profiles and extracted soil samples for analysis. In the result of the laboratory examinations the Agency edited the "Soil atlas of the Free State of Saxony". 27 elements, pH and PAK are shown in detailed maps and allow in whole Saxony the first assessment of the contamination of soils with arsenic and toxic heavy metals. Each of the investigated soil profiles represent an area of 16 km2. Already by the different use of the districts (agricultural, industrial, urban) restricts representative values. GEOMONTAN in the meantime used at the exploration of a copper deposit in Brandenburg/Germany with approx. 50,000 single tests at drill cores a very fast low-cost method: the X Ray fluorescence

  20. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil.

    Science.gov (United States)

    Yang, Yang; Zhou, Xihong; Tie, Boqing; Peng, Liang; Li, Hongliang; Wang, Kelin; Zeng, Qingru

    2017-08-29

    Selecting suitable plants tolerant to heavy metals and producing products of economic value may be a key factor in promoting the practical application of phytoremediation polluted soils. The aim of this study is to further understand the utilization and remediation of seriously contaminated agricultural soil. In a one-year field experiment, we grew oilseed rape over the winter and then subsequently sunflowers, peanuts and sesame after the first harvest. This three rotation system produced high yields of dry biomass; the oilseed rape-sunflower, oilseed rape-peanut and oilseed rape-sesame rotation allowed us to extract 458.6, 285.7, and 134.5 g ha(-1) of cadmium, and 1264.7, 1006.1, and 831.1 g ha(-1) of lead from soil, respectively. The oilseed rape-sunflower rotation showed the highest phytoextraction efficiency (1.98%) for cadmium. Lead and cadmium in oils are consistent with standards after extraction with n-hexane. Following successive extractions with potassium tartrate, concentrations of lead and cadmium in oilseed rape and peanut seed meals were lower than levels currently permissible for feeds. Thus, this rotation system could be useful for local farmers as it would enable the generation of income during otherwise sparse phytoremediation periods. Copyright © 2017. Published by Elsevier Ltd.

  1. Variance analysis on different trees species depending on soil type – uncontaminated and heavy metals contaminated ones

    Directory of Open Access Journals (Sweden)

    Monica MARIAN

    2008-05-01

    Full Text Available This paper summarizes our research work regarding the dynamics of vegetation growth of miscellaneous species of trees planted and monitored in the particular environment of the tailing pond in Bozanta Mare (Maramures County. The structure of soil bearing high content of heavy metals and cyanides considerably impacts the ecologic conditions of tailing ponds. Aspects related to soil characteristics (such as structure, size of particles, porosity, texture, chemical composition are included. Vegetal species that have accommodated within the tail pond are included as well. In the framework of our experiment we have planted seedlings belonging to four species of trees: Quercus petraea, Populus tremula, Betula verrucosa, Salix caprea. We have planted the seedlings in different location contexts in the tailing pond (“in situ”, as we have also planted “ex situ” witness trees. Our aim was to monitor the dynamics of growth of the stem and of cuttings. Our contribution, based on the outcomes of our research, consists in the formulation of functional correlations spotted between cormophites and micro biota, between the species of trees and their environmental underlying conditions, with the overarching goal to optimize the activities undertaken in order to alleviate the tailing ponds inherent to mining activities.

  2. Study on a Modifier for Heavy Metal Contaminated Soil%一种重金属污染土壤改良剂的研究

    Institute of Scientific and Technical Information of China (English)

    熊亚红; 冯梦龙; 傅麒臻; 冯宇翔; 陈祖强; 周建平; 吴浩源

    2013-01-01

    In order to decrease the toxicity of the heavy metal contaminated soil on plant in the growing fields around Dabao mountain mine area of northern Guangdong Province,the exchangeable heavy metal concentrations of copper,manganese and zinc in soils were used as evaluation indicators of modification effect.The effective materials in the modifier were selected by one factor at one time and the formula of the soil modifier was studied by L16 (45) orthogonal experiment.The crop experiments were carried out with corn and rape.The results showed that the optimum formula of the soil modifier was 0.30% white lime powder,0.20% peanut shell powder,0.20% plant ash and 0.02% Na2EDTA and the multiple parameters for these two crops growth were enhanced over 30% in the improved soil than those in the original soil.So this modifier could reduce the toxicity of heavy metals on crops effectively and the improved soil was suitable for crop and rape growth.%为了降低粤北大宝山矿区周边种植区重金属污染土壤的植物毒害作用,以不同条件下土壤中有效态铜、锌、锰含量作为评价指标,依次采用单次-单因子法筛选出有效的改良剂原料,采用L16(45)正交试验研究了改良剂的最佳配方,并进行了作物种植试验,得到最适改良剂配方为0.30%熟石灰粉、0.20%花生壳粉、0.20%草木灰、0.02% Na2EDTA,玉米和油菜在改良土壤中的多项生长指标均较原土壤中的提高30%以上,表明该改良剂能有效地降低土壤中重金属对农作物的毒害作用,并且改良土壤以适于玉米和油菜生长.

  3. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil

    Science.gov (United States)

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and...

  4. Progress in Remediation of Heavy Metal Contaminated Soil by Addition of Organic Materials%有机物料修复重金属污染土壤研究进展

    Institute of Scientific and Technical Information of China (English)

    卢倩倩; 谷海红; 李富平; 袁雪涛; 艾艳君

    2015-01-01

    The problem of heavy metal contamination of soil is increasingly serious, and it has become a severe threat to ecological environment and human health. It is necessary to summarize the development of remediation of heavy metal contaminated soils. The popular and widely used techniques to remediate heavy metal contaminated soil and the applications were introduced in this article. It focused on the effects of organic materials added into soil on heavy metal phytoavailability, which achieved through changing the concentrations and forms of nitrogen, phosphorus and organic matter, pH, oxidation reduction potential in soil, and the aim is to provide theoretical reference for remediating heavy metal contaminated soils.%土壤重金属污染问题日益严重,对生态环境及人体健康构成了严重威胁。因此,对重金属污染土壤修复方法的原理进行归纳、总结具有重要意义。本文介绍了重金属污染土壤的主要修复技术及有机物料在修复重金属土壤方面的应用,并针对有机物料修复重金属土壤作用机制的研究进展进行了综述,分析了有机物料中的氮、磷、有机质、土壤pH、氧化还原电位对土壤重金属生物有效性的影响,以期为重金属污染土壤修复提供理论参考。

  5. Heavy metal contamination in a school vegetable garden in Johannesburg.

    Science.gov (United States)

    Kootbodien, T; Mathee, A; Naicker, N; Moodley, N

    2012-03-07

    Feeding schemes based on school garden produce have been proposed as an effective solution to food insecurity and hunger among learners in South Africa. However, few studies have looked at the potential contamination of school food gardens when situated near mine tailing dams. The aim of the study was to evaluate the potential heavy metal contamination in a school vegetable garden in Johannesburg. Twenty soil samples were collected from the study school and a comparison school. Surface and deep (±10 cm beneath the surface) soil samples were analysed using X-ray fluorescence for levels of arsenic, chromium, copper, lead and zinc. Thirteen vegetables samples were collected from the school garden, and compared with six samples from a national retailer and four obtained from a private organic garden. The heavy metal concentrations of the vegetable samples were analysed in the laboratories of the South African Agricultural Research Council. High levels of arsenic were found in the school soil samples, and elevated concentrations of lead and mercury in the school vegetables. Calculation of the estimated daily intake for a child of 30 kg however, indicated that levels of lead, mercury and arsenic in vegetables were within acceptable limits. However, the levels of lead in the vegetable samples were high across all three sites. Further investigation and research should be undertaken to assess the source/s and extent of public exposure to heavy metals in vegetables in South Africa.

  6. Combined and Relative Effect Levels of Perceived Risk, Knowledge, Optimism, Pessimism, and Social Trust on Anxiety among Inhabitants Concerning Living on Heavy Metal Contaminated Soil.

    Science.gov (United States)

    Tang, Zhongjun; Guo, Zengli; Zhou, Li; Xue, Shengguo; Zhu, Qinfeng; Zhu, Huike

    2016-11-02

    This research aims at combined and relative effect levels on anxiety of: (1) perceived risk, knowledge, optimism, pessimism, and social trust; and (2) four sub-variables of social trust among inhabitants concerning living on heavy metal contaminated soil. On the basis of survey data from 499 Chinese respondents, results suggest that perceived risk, pessimism, optimism, and social trust have individual, significant, and direct effects on anxiety, while knowledge does not. Knowledge has significant, combined, and interactive effects on anxiety together with social trust and pessimism, respectively, but does not with perceived risk and optimism. Social trust, perceived risk, pessimism, knowledge, and optimism have significantly combined effects on anxiety; the five variables as a whole have stronger predictive values than each one individually. Anxiety is influenced firstly by social trust and secondly by perceived risk, pessimism, knowledge, and optimism. Each of four sub-variables of social trust has an individual, significant, and negative effect on anxiety. When introducing four sub-variables into one model, trust in social organizations and in the government have significantly combined effects on anxiety, while trust in experts and in friends and relatives do not; anxiety is influenced firstly by trust in social organization, and secondly by trust in the government.

  7. Mechanism Analysis and Propagation Model of Heavy Metals Contamination in Urban Topsoil

    OpenAIRE

    Zhao-wei Wang; Yuan-biao Zhang; Zi-yue Chen; Ke-jia Li; Jia-lin Hu; Yu-jie Liu

    2013-01-01

    In order to further research on the polluting condition and spreading features of heavy metals in urban surface soil, this study makes statistical analysis on indexes of 8 heavy metal concentrations. Then Are GIS geo-statistical analyst was used for Kriging interpolation of each kind of heavy metal concentration before figuring out the spatial distribution. Firstly, heavy metal contamination was analyzed by single-element pollution evaluation and multi-element pollution evaluation, before rat...

  8. Natural attenuation of residual heavy metal contamination in soils affected by the Aznalcóllar mine spill, SW Spain.

    Science.gov (United States)

    Vázquez, Saúl; Hevia, América; Moreno, Eduardo; Esteban, Elvira; Peñalosa, Jesús M; Carpena, Ramón O

    2011-08-01

    Non-amended soils affected by pyritic sludge residues were monitored for 7 years to assess the long-term natural attenuation ability of these soils. The decrease in both the total concentration of elements (particularly As) and (NH(4))(2)SO(4)-extractable fractions of Mn, and Zn, below the maximum permissible levels indicate a successful natural ability to attenuate soil pollution. Soil acidification by pyrite oxidation and rainfall-enhanced leaching were the largest contributors to the reduction of metals of high (Mn, Cu, Zn and Cd) and low (Fe, Al, and As) availability. Periodic use of correlation and spatial distribution analysis was useful in monitoring elemental dispersion and soil property/element relationships. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Evaluation methods for soil heavy metals contamination: A review%土壤重金属污染评价方法

    Institute of Scientific and Technical Information of China (English)

    郭笑笑; 刘丛强; 朱兆洲; 王中良; 李军

    2011-01-01

    Due to the long-term residence and accumulation in environment, soil heavy metals had many realistic and potential risks to the ecological environment and human health, being come under more and more attentions. To evaluate the soil heavy metals contamination degree is of significance to the environmental and human health issues, which needs a kind of or several kinds of correct evaluation methods. This paper summarized several related evaluation methods commonly adopted at home and abroad , including index method , model index method, speciation analysis- based method , quantitative analysis of available and total heavy metals contents, human health risk assessment method, and GIS and geostatistics-based method. The index method mainly includes Nemerow index method, enrichment factor method, geo-accumulation index method, and potential ecological hazard index method; and the model index method mainly includes fuzzy mathematics model, grey clustering model, and analytic hierarchy process, etc. The advantages, disadvantages, and limitations of the related methods were also discussed.%土壤中的重金属长期停留和积累在环境中,对生态环境和人体健康存在诸多现实和潜在风险,受到越来越多的关注.因此,评价土壤中的重金属污染程度对于环境和健康问题有着重要意义.评价土壤中重金属的污染程度需选用一种或几种正确的评价方式.本文综述了目前国内外常用于土壤中重金属评价的指数法、模型指数法和基于重金属形态分析、有效态含量和总量、人体健康风险以及GIS和地统计学的评价方法.其中,指数法主要包括内梅罗指数法、富集因子法、地累积指数法、潜在生态危害指数法;模型指数法则主要包括模糊数学模型、灰色聚类模型及层次分析法等.文章对各种评价方法进行了综述,并指出使用各种方法的优越性、局限性.

  10. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils.

    Science.gov (United States)

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2015-01-01

    The ability of hyperaccumulator oilcake manure as compared to chelates was investigated by growing Calendula officinalis L for phytoremediation of cadmium and lead contaminated alluvial soil. The combinatorial treatment T6 [2.5 g kg(-1) oilcake manure+5 mmol kg(-1) EDDS] caused maximum cadmium accumulation in root, shoot and flower up to 5.46, 4.74 and 1.37 mg kg(-1) and lead accumulation up to 16.11, 13.44 and 3.17 mg kg(-1), respectively at Naini dump site, Allahabad (S3). The treatment showed maximum remediation efficiency for Cd (RR=0.676%) and Pb (RR=0.202%) at Mumfordganj contaminated site (S2). However, the above parameters were also observed at par with the treatment T5 [2.5 g kg(-1) oilcake manure +2 g kg(-1) humic acid]. Applied EDDS altered chlorophyll-a, chlorophyll-b, and carotene contents of plants while application of oilcake manure enhanced their contents in plant by 3.73-8.65%, 5.81-17.65%, and 7.04-17.19%, respectively. The authors conclude that Calendula officinalis L has potential to be safely grown in moderately Cd and Pb-contaminated soils and application of hyperaccumulator oilcake manure boosts the photosynthetic pigments of the plant, leading to enhanced clean-up of the cadmium and lead-contaminated soils. Hence, the hyperaccumulator oilcake manure should be preferred over chelates for sustainable phytoremediation through soil-plant rhizospheric process.

  11. Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil.

    Science.gov (United States)

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2011-07-01

    Recent studies of transgenic poplars over-expressing the genes gsh1 and gsh2 encoding γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO(2) diffusion, chlorophyll and carbohydrate content in wild-type poplar and transgenic plants over-expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal-contaminated soil in the field. Over-expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6-fold leaf area per leaf compared to wild-type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over-expression of γ-ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3-fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild-type plants but not in transformants. Biomass accumulation of wild-type poplars decreased in contaminated soil by more than 30-fold, whereas transformants showed a twofold decrease

  12. The Remediation Technology and Remediation Practice of Heavy Metals-Contaminated Soil%重金属污染土壤修复技术及其修复实践

    Institute of Scientific and Technical Information of China (English)

    黄益宗; 郝晓伟; 雷鸣; 铁柏清

    2013-01-01

    近年来我国重金属污染事件频发,严重影响广大群众的身体健康,土壤重金属污染与防治成为人们关注的环境问题之一.作者结合多年的工作经验,综述了近年来国内外有关重金属污染土壤修复技术的研究进展,包括物理/化学修复技术、生物修复技术和农业生态修复技术等,对每种技术的基本修复原理、技术特点和应用范围进行了讨论.同时,对国内外典型的重金属污染土壤修复工程实践进行了介绍,以期为重金属污染土壤的修复提供借鉴和参考.%In recent years heavy metal pollution incidents happened frequently in our country, and they had serious impact on human health. How to control heavy metals-contaminated soil becomes one of the noted environmental problems. The present paper aims to provide a critical review on the remediation technology of soils contaminated by heavy metals, including physical / chemical remediation, bioremediation and agricultural ecological restoration technologies, and each kind of technology's remedial principle, technical characteristics and application range are discussed. At the same time, the domestic and foreign typical remediation practices of heavy metals-contaminated soil are introduced, in order to provide the reference for the remediation of heavy metals-contaminated soil in China.

  13. Heavy metal contaminations in a soil-rice system: Identification of spatial dependence in relation to soil properties of paddy fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Keli [Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310029 (China); School of Plant, Environmental and Soil Sciences, Louisiana State University AgCenter, Baton Rouge 70803 (United States); Liu Xingmei, E-mail: xmliu@zju.edu.cn [Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310029 (China); Xu Jianming, E-mail: jmxu@zju.edu.cn [Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310029 (China); Selim, H.M. [School of Plant, Environmental and Soil Sciences, Louisiana State University AgCenter, Baton Rouge 70803 (United States)

    2010-09-15

    In order to identify spatial relationship of heavy metals in soil-rice system at a regional scale, 96 pairs of rice and soil samples were collected from Wenling in Zhejiang province, China, which is one of the well-known electronic and electric waste recycling centers. The results indicated some studied areas had potential contaminations by heavy metals, especially by Cd. The spatial distribution of Cd, Cu, Pb and Zn illustrated that the highest concentrations were located in the northwest areas and the accumulation of these metals may be due to the industrialization, agricultural chemicals and other human activities. In contrast, the concentration of Ni decreased from east to west and the mean concentration was below the background value, indicating the distribution of Ni may be naturally controlled. Enrichment index (EI) was used to describe the availability of soil heavy metals to rice. The spatial distribution of EIs for Cd, Ni and Zn exhibited a west-east structure, which was similar with the spatial structures of pH, OM, sand and clay. Cross-correlograms further quantitatively illustrated the EIs were significantly correlated with most soil properties, among which; soil pH and OM had the strongest correlations with EIs. However, EI of Cu showed relative weak correlations with soil properties, especially soil pH and OM had no correlations with EI of Cu, indicating the availability of Cu may be influenced by other factors.

  14. Heavy metal contamination in TIMS Branch sediments

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, J.B.

    1990-06-25

    The objective of this memorandum is to summarize results of previous sediment studies on Tims Branch and Steed's Pond conducted by Health Protection (HP) and by the Savannah River Laboratory (SRL) in conjunction with Reactor Materials Engineering Technology (RMET). The results for other heavy metals, such as lead, nickel, copper, mercury, chromium, cadmium, zinc, and thorium are also summarized.

  15. Heavy metal contamination in TIMS Branch sediments

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, J.B.

    1990-06-25

    The objective of this memorandum is to summarize results of previous sediment studies on Tims Branch and Steed`s Pond conducted by Health Protection (HP) and by the Savannah River Laboratory (SRL) in conjunction with Reactor Materials Engineering & Technology (RMET). The results for other heavy metals, such as lead, nickel, copper, mercury, chromium, cadmium, zinc, and thorium are also summarized.

  16. HEAVY METALS CONTAMINATION OF TOPSOIL AND ...

    African Journals Online (AJOL)

    a

    Average topsoil metal concentrations (0-10 cm) in auto-repair workshop areas ...... States Environmental Protection Agency (USEPA) with a carcinogenicity classification A ... Mellor, A.; Bevan, J.R. Water, Air, and Soil Pollution 1999, 112, 327.

  17. Biosurfactant-facilitated remediation of metal-contaminated soils.

    OpenAIRE

    R. M. Miller

    1995-01-01

    Bioremediation of metal-contaminated wastestreams has been successfully demonstrated. Normally, whole cells or microbial exopolymers are used to concentrate and/or precipitate metals in the wastestream to aid in metal removal. Analogous remediation of metal-contaminated soils is more complex because microbial cells or large exopolymers do not move freely through the soil. The use of microbially produced surfactants (biosurfactants) is an alternative with potential for remediation of metal-con...

  18. Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L.) at the East Coast of India

    OpenAIRE

    Deepmala Satpathy; M. Vikram Reddy; Soumya Prakash Dhal

    2014-01-01

    Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L.) including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb) and the micronutrients (Cu, Mn, and Zn) were measured in the paddy field soil...

  19. Agro-ecological Remediation Technologies on Heavy Metal Contamination in Cropland Soils%农田土壤重金属污染的农业生态修复技术

    Institute of Scientific and Technical Information of China (English)

    马铁铮; 马友华; 徐露露; 付欢欢; 聂静茹

    2013-01-01

    This article summarized the common agro-ecological remediation technology of heavy metal contamination in cropland soils, in-cluding the rational application of fertilizer, bio-organic fertilizer use, straw application, adjusting the crop planting structure, screening lowly-enriched heavy metal crop varieties and tolerant varieties, super-deep plow, soil moisture control, lime application and so on. The out-look of the remediation technology of heavy metal contamination in cropland soils was prospected.%总结了常见的农田土壤重金属污染的农业生态修复技术,包括合理施用化肥、施用生物有机肥、秸秆还田、调整作物种植结构、筛选重金属低积累作物品种和耐性作物品种、深耕深翻、控制土壤水分以及施用石灰等修复措施,并对农田土壤重金属污染修复技术的前景进行了展望。

  20. Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L. at the East Coast of India

    Directory of Open Access Journals (Sweden)

    Deepmala Satpathy

    2014-01-01

    Full Text Available Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L. including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb and the micronutrients (Cu, Mn, and Zn were measured in the paddy field soil and plant parts. Mn and Cd are found to be accumulated more in shoot than in root. The metal transfer factors from soil to rice plant were significant for Pb, Cd, Cu, Cr, Mn, and Zn. The ranking order of bioaccumulation factor (BAF for heavy metals was Zn > Mn > Cd > Cu > Cr > Pb indicating that the accumulation of micronutrients was more than that of nonessential toxic heavy metals. The concentrations of heavy metals were found to be higher in paddy field soils than that of the nearby control soil but below permissible limits. The higher Health Index (HI values of rice consuming adults (1.561 and children (1.360 suggest their adverse health effects in the near future.

  1. 乙二胺四乙酸在重金属污染土壤修复过程的降解及残留%Degradation and residue of EDTA used for soil repair in heavy metal-contaminated soil

    Institute of Scientific and Technical Information of China (English)

    郭晓方; 卫泽斌; 吴启堂

    2015-01-01

    为分析乙二胺四乙酸(ethylenediaminetetraacetic acid,EDTA)在修复重金属污染土壤中的环境风险,通过田间调查和培养试验研究 EDTA 在不同重金属污染土壤中的降解及其残留。田间调查结果表明,乐昌试验田 EDTA 施用6 a后,表层土壤及深层土壤中均没有检出EDTA残留。佛冈试验田在施用EDTA 4个月后,表层土壤EDTA残留量为0.039~0.056 mmol/kg,仅为施入量的2%~5%,施用1 a后土壤中未检测到EDTA。翁源试验田在EDTA施用45 d后,表层土壤中EDTA残留量约为施用量的一半,1 a后残留量为施入量的2.6%,深层土壤监测到EDTA残留,但地下水中并没有检测到 EDTA,另外地下水中重金属含量并没有升高。因此,深层土壤对离子态和螯合态重金属具有较强的固定能力,可保护地下水免遭重金属的污染。培养试验结果表明,EDTA在土壤中降解遵循一级动力学方程,EDTA在赤红壤、褐土和重金属污染土壤中的降解速率常数分别为4.6×10-3、1.4×10-2和5.8×10-3,其降解的半衰期分别为71、25和53 d。EDTA在土壤中降解半衰期与土壤有机质含量和土壤阳离子交换量(cation exchange capacity)之间表现较好的相关性。微生物对 EDTA 在土壤中的降解具有显著的影响。总之,EDTA 可在土壤中降解,建议在中国重金属污染土壤修复过程中可采用EDTA强化修复技术,EDTA的环境风险是可控的。%According to the bulletin of the national soil pollution reported by Ministry of Environmental Protection and Ministry of Land and Resources of the Peoples Republic of China, the total above standard rate is 16.1%in national soil, and above standard soils of Cd, Zn, Pb and Cu are 7.0%, 0.9%, 1.5%and 2.1%, respectively. Soil washing with chelating agents and phytoextraction by chelator-enhanced is potentially useful technique for remediating the heavy metal-contaminated soils. EDTA is the most

  2. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand.

    Science.gov (United States)

    Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita

    2016-09-01

    Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased.

  3. The effects of Pantoea sp. strain Y4-4 on alfalfa in the remediation of heavy-metal-contaminated soil, and auxiliary impacts of plant residues on the remediation of saline-alkali soils.

    Science.gov (United States)

    Li, Shuhuan; Wang, Jie; Gao, Nanxiong; Liu, Lizhu; Chen, Yahua

    2017-04-01

    The plant-growth-promoting rhizobacterium (PGPR) Y4-4 was isolated from plant rhizosphere soil and identified as Pantoea sp. by 16S rRNA sequence analysis. The effects of strain Y4-4 on alfalfa grown in heavy-metals-contaminated soil was investigated using a pot experiment. In a Cu-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 22.6% and 21%, and Cu accumulation increased by 15%. In a Pb-Zn-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 23.4% and 22%, and Zn accumulation increased by 30.3%. In addition, the salt tolerance and biomass of wheat seedlings could be improved by applying strain Y4-4 mixed with plant residue as a result of the Cu-rich plant residues providing copper nutrition to wheat. This study offers an efficient PGPR with strong salt tolerance and a safe strategy for the post-treatment of plant residue.

  4. [Risk Assessment of Heavy Metal Contamination in Farmland Soil in Du'an Autonomous County of Guangxi Zhuang Autonomous Region, China].

    Science.gov (United States)

    Wu, Yang; Yang, Jun; Zhou, Xiao-yong; Lei, Mei; Gao, Ding; Qiao, Peng-wei; Du, Guo-dong

    2015-08-01

    For a comprehensive understanding of the pollution characteristics and ecological risk of heavy metals of farmland soil in Du'an Autonomous County of Guangxi Zhuang Autonomous Region, China, this study evaluated the cadmium (Cd), arsenic (As), nickel (Ni), zinc (Zn), chromium (Cr), antimony (Sb), copper (Cu) and lead ( Pb) pollution situation using the single factor index, the Nemerow pollution index and the Hakanson ecological risk index. The results showed that heavy-metal pollution of farmland soil in Du'an County was serious. 74.6% of the soil samples had heavy metals concentrations higher than the Grade II of National Soil Environmental Quality Standard (GB 15618-1995). The over standard rates of Cd, As, Ni, Zn, Cr, Sb, Cu, Pb were 70.6%, 42.9%, 34.9%, 19.8%, 19.6%, 2.94%, 1.59%, 0.79%, respectively. Cd and As were the main contaminants in Du'an County, the pollution was far more serious than those of the national and Guangxi Zhuang Autonomous Region. In terms of the ecological risk, heavy metals of farmland soil in Du'an County showed a "middle" ecological risk, with Cd accounting for 88% of the total ecological risk. The north-west of Jiudu Town and the zone between Bao'an Town and Dongmiao Town were two areas with high ecological risk in Du'an County. The contamination of farmland soils in Du'an County was caused by two main sources, whereas the pollution of As and Sb of farmland soils near Diaojiang River was mainly caused by the upstream mining industry.

  5. Effects of metal-contaminated soils on the accumulation of heavy metals in gotu kola (Centella asiatica) and the potential health risks: a study in Peninsular Malaysia.

    Science.gov (United States)

    Ong, Ghim Hock; Wong, Ling Shing; Tan, Ai Li; Yap, Chee Kong

    2016-01-01

    Centella asiatica is a commonly used medicinal plant in Malaysia. As heavy metal accumulation in medicinal plants which are highly consumed by human is a serious issue, thus the assessment of heavy metals in C. asiatica is important for the safety of consumers. In this study, the heavy metal accumulation in C. asiatica and the potential health risks were investigated. Samples of C. asiatica and surface soils were collected from nine different sites around Peninsular Malaysia. The concentration of six heavy metals namely Cd, Cu, Ni, Fe, Pb and Zn were determined by air-acetylene flame atomic absorption spectrophotometer (AAS). The degree of anthropogenic influence was assessed by calculating the enrichment factor (EF) and index of geoaccumulation (Igeo). The heavy metal uptake into the plant was estimated through the calculation of translocation factor (TF), bioconcentration factor (BCF) and correlation study. Estimated daily intakes (EDI) and target hazard quotients (THQ) were used to determine the potential health risk of consuming C. asiatica. The results showed that the overall surface soil was polluted by Cd, Cu and Pb, while the uptake of Zn and Ni by the plants was high. The value of EDI and THQ showed that the potential of Pb toxicity in C. asiatica was high as well. As heavy metal accumulation was confirmed in C. asiatica, daily consumption of the plant derived from polluted sites in Malaysia was not recommended.

  6. Heavy metal contamination in the Western Indian Ocean (a review)

    Science.gov (United States)

    Mamboya, F. A.; Pratap, H. B.; Björk, M.

    2003-05-01

    Western Indian Ocean Coast has many potential marine ecosystems such as mangrove, seagrass meadows, macroalgae, and coral reefs. It is largely unspoiled environment however, tourism and population growth in coastal urban centres, industrialization, are presenting a risk of pollutants input to the marine environment of the Western Indian Ocean. Mining, shipping and agricultural activities also input contaminants into the marine environment via runoff, vessel operations and accidental spillage. Heavy metals are among the pollutants that are expected to increase in the marine environment of the Western Indian Ocean. The increase in heavy metal pollution can pose a serious health problem to marine organism and human through food chain. This paper reviews studies on heavy metal contamination in the Western Indian Ocean. It covers heavy metal studies in the sediments, biota, particulates and seawater collected in different sites. In comparison to other regions, only few studies have been conducted in the Western Indian Ocean and are localized in some certain areas. Most of these studies were conducted in Kenyan and Tanzanian coasts while few of them were conducted in Mauritius, Somalia and Reunion. No standard or common method has been reported for the analysis or monitoring of heavy metals in the Western Indian Ocean.

  7. Study on Phyto-Microbial Remediation of Petroleum-Heavy Metals Contaminated Soil%植物-微生物联合修复石油-重金属复合污染土壤的研究

    Institute of Scientific and Technical Information of China (English)

    陈雪兰; 成杰民

    2012-01-01

      It is proved that plant-microorganism combined bioremediation is a potential way to re-mediate contaminated soils with multiple pollutants of oil and heavy metals. However, the various existing forms of the heavy metals are vital to remediation efficiency and whether it is needed to in-crease the auxiliary project or not. Thus, the change of availability and forms of heavy metals dur-ing microbial remediation in petroleum-heavy metals contaminated soil should be investigated.%  植物及微生物联合修复石油-重金属复合污染土壤具有很大的潜力。但重金属以不同形态存在关系到石油-重金属复合污染土壤生物修复过程中,植物、微生物的修复效率以及是否需要增加辅助工程解决重金属污染等问题,因此石油-重金属复合污染土壤修复过程中就必须考虑重金属有效态及形态的变化特征。

  8. HEAVY METALS CONTAMINATION IN FISH OF THE LIGURIAN SEA

    Directory of Open Access Journals (Sweden)

    M. Prearo

    2013-02-01

    Full Text Available Aim of this investigation was to evaluate heavy metals contamination (mercury, cadmium and lead in fish and shellfish from Ligurian Sea. 58 muscle samples (45 fish and 13 shellfish were collected and analyzed. 20 samples exceeded the maximum residue limits (MRLs set by regulation for mercury (16 fish and 4 shellfish samples, while only one fish sample was not consistent with the MRL for lead. Therefore, 35,8% of Ligurian fishing turned out to be not adequate and potentially harmful for consumers. In order to estimate the real risk for human health it is necessary to enforce this study, correlating the results with fish species and with the effective fish consumption.

  9. Application of Phytoremediation in the Treatment of Heavy Metal Contaminated Soil%植物修复在治理重金属污染土壤中的应用

    Institute of Scientific and Technical Information of China (English)

    张桂君; 李景慧

    2012-01-01

    The soil overweight and currently used soil heavy metal pollution prevention measures were introduced,the basic principles of the plant repair for heavy-metal contamination of soil were explored,the comparison of common phytoremediation and chemical improvers for plantrepair was focused on and the phytoremediation research directions were discussed.The result showed that the phytoremediation technology had advantages of low cost,and less chance of secondary pollution and destruction of soil ecological environment,etc.%首先介绍土壤超重的原因及当前常用的土壤重金属污染的防治措施等,其次探究了植物对受重金属污染后的土壤进行修复的基本原理,着重对常见的植物修复与化学改良剂结合的植物修复进行比较,并对植物修复研究方向进行了探讨,最后得出植物修复技术具有成本低、破坏土壤生态环境、造成二次污染的机会较少等优点。

  10. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana.

    Science.gov (United States)

    Bempah, Crentsil Kofi; Ewusi, Anthony

    2016-05-01

    Gold mining has increased the prevalence and occurrence of heavy metals contamination at the Earth's surface and is causing major concern due to the potential risk involved. This study investigated the impact of gold mine on heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Fe, Mn, and Zn) pollution and evaluated the potential health risks to local residents via consumption of polluted groundwater, agricultural soils, and vegetable crops grown at three community farms surrounding the mine at Obuasi municipality of Ghana. The results showed levels of As, Cd, Cr, Hg, Fe, and Mn higher than the allowable drinking water standards. The vegetable samples analyzed showed high accumulation of As and Ni above the normal value. Bioaccumulation factors of heavy metals were significantly higher for vegetables grown in the Sanso soils. Estimated average daily intake and hazard quotient for As in drinking water as well as As, Pb, and Hg in vegetable samples exceeded permissible limit. Unacceptable non-cancer health risk levels were found in vegetable samples analyzed for As, Pb, and Hg. An unacceptable cancer risk was found via drinking of groundwater, in consumption of vegetables, and in soil. The hazard index for vegetables was higher than 1, indicating very high health risk to heavy metals contamination through consumption of vegetables grown around the sampling sites. The results recommend the need for regular monitoring of groundwater and food crops to protect consumers' health.

  11. 我国土壤重金属污染植物吸取修复研究进展%Research Progress on the Phytoextraction of Heavy Metal Contaminated Soils in China

    Institute of Scientific and Technical Information of China (English)

    胡鹏杰; 李柱; 钟道旭; 郑蕾娜; 居述云; 吴龙华; 骆永明

    2014-01-01

    From the late of 1990s, researches on phytoextraction for heavy metal (and metalloid element such as arsenic) contaminated soils were begun in China, and a number of plant species or varieties with high re-search value and application prospect that can accumulate/hyperaccumulate copper, arsenic, cadmium, manga-nese or other heavy metals were reported. Many researches have been conducted on physiological mechanisms of heavy metal tolerance and hyperaccumulation, rhizospheric processes and mechanisms of phytoextraction, enhancing measures of phytoextraction efifciency, post-harvest processing and resourceful use of metals, and so on. Moreover, a number of applied researches and demonstration were carried out, and there were some suc-cessful phytoremediation engineering application cases. These also enable the remediation technology of heavy metal contaminated soil, especially phytoextraction technology, to produce a strong inlfuence in the world. In this paper, recent research progress on phytoextraction of heavy metal contaminated soils in China were re-viewed, and future trends were also discussed.%我国从上世纪90年代中后期开始土壤重金属(含类金属砷)污染的植物吸取修复研究及技术探索,先后发现了一批具有较高研究价值和应用前景的铜、砷、镉、锰等重金属的积累或超积累植物,并从重金属耐性和超积累生理机制、植物吸取修复的根际过程与机制、吸取修复强化措施和修复植物处置与资源化利用等方面进行了研究,同时开展了植物吸取修复技术的示范与应用,已有一些较成功的植物修复工程应用案例,使我国重金属污染土壤植物修复技术,尤其是植物吸取修复技术在国际上产生了较强的影响力。本文就近年来我国土壤重金属污染植物吸取修复研究进展进行了综述,并对今后的发展趋势进行了展望。

  12. Short-term usage of sewage sludge as organic fertilizer to sugarcane in a tropical soil bears little threat of heavy metal contamination.

    Science.gov (United States)

    Nogueira, Thiago Assis Rodrigues; Franco, Ademir; He, Zhenli; Braga, Vivian Santoro; Firme, Lucia Pittol; Abreu, Cassio Hamilton

    2013-01-15

    A field experiment was carried out to study the effect of application rates of sewage sludge and mineral nitrogen and phosphate fertilizers on As, Ba, Cd, Cr, Cu, Ni, Pb, Se, and Zn concentration in soil, cane plant, and first ratoon (residual effect) in a Typic Hapludult soil. To allow an analysis by means of response surface modeling, four rates of sewage sludge (0, 3.6, 7.2 and 10.8 t ha(-1), dry base), of N (0, 30, 60 and 90 kg ha(-1)) and of P(2)O(5) (0, 60, 120 and 180 kg ha(-1)) were applied in randomized block design, in a 4 × 4 × 4 factorial scheme, with confounded degrees of freedom for triple interaction, with two replications. To evaluate the residual effect of the sludge applied to cane plant on the cane ratoon growth, mineral NK fertilizers were applied at the rates of 120 kg ha(-1) N and 140 kg ha(-1) of K(2)O, on all treatments. The application rates of mineral nitrogen and phosphate fertilizers did not affect statistically the heavy metal concentration in the soil and in the sugarcane plants. Sewage sludge application increased As, Cd, Cu, Ni, Pb, and Zn concentrations in soil, but values did not exceed the quality standard established by legislation for agricultural soils. Although the concentrations of metals in the plants were very low, the uptake of heavy metal by sugarcane plants was generally increased by sewage sludge doses. The use of sewage sludge based on N criteria introduces a small amount of heavy metal into the agricultural system, however it poses no hazard to the environment.

  13. Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Schneider, J.F.

    1993-05-01

    Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm and soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.

  14. Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China.

    Science.gov (United States)

    Wang, Xiangqin; Zeng, Xiaoduo; Chuanping, Liu; Li, Fangbai; Xu, Xianghua; Lv, Yahui

    2016-08-01

    Heavy metal contents (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in 99 pairs of soil-rice plant samples were evaluated from the downwind directions of a large thermal power plant in Shaoguan City, Guangdong Province, China. Results indicate that there is a substantial buildup of As, Cd, Cu, Pb, and Zn in the predominant wind direction of the power plant. The significant correlations between S and heavy metals in paddy soil suggest that the power plant represents a source of topsoil heavy metals in Shaoguan City due to sulfur-rich coal burning emissions. Elevated Cd concentrations were also found in rice plant tissues. Average Cd (0.69 mg kg(-1)) and Pb (0.39 mg kg(-1)) contents in rice grain had exceeded their maximum permissible limits (both were 0.2 mg kg(-1)) in foods of China (GB2762-2005). The enrichment of Cd and Pb in rice grain might pose a potential health risk to the local residents.

  15. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  16. In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer.

    Science.gov (United States)

    Ning, Dongfeng; Liang, Yongchao; Song, Alin; Duan, Aiwang; Liu, Zhandong

    2016-12-01

    Steel slag has been widely used as amendment and silicon fertilizer to alleviate the mobility and bioavailability of heavy metals in soil. The objective of this study was to evaluate the influence of particle size, composition, and application rate of slag on metal immobilization in acidic soil, metals uptake by rice and rice growth. The results indicated that application of slag increased soil pH, plant-available silicon concentrations in soil, and decreased the bioavailability of metals compared with control treatment, whereas pulverous slag (S1) was more effective than granular slag (S2 and S3). The acid-extractable fraction of Cd in the spiked soil was significantly decreased with application of S1 at rates of 1 and 3 %, acid-extractable fractions of Cu and Zn were decreased when treated at 3 %. Use of S1 at both rates resulted in significantly lower Cd, Cu, and Zn concentrations in rice tissues than in controls by 82.6-92.9, 88.4-95.6, and 67.4-81.4 %, respectively. However, use of pulverous slag at 1 % significantly promotes rice growth, restricted rice growth when treated at 3 %. Thus, the results explained that reduced particle size and suitable application rate of slag could be beneficial to rice growth and metals stabilization.

  17. Remediation of Heavy Metals Contaminated Soil by Sepiolite and Mycorrhiza%海泡石和菌根修复重金属污染土壤研究

    Institute of Scientific and Technical Information of China (English)

    杨秀敏; 杨春霞; 闫爱博

    2012-01-01

    通过盆栽试验,研究了向重金属Pb、Zn、Cd复合污染的土壤中单一或联合添加海泡石和菌根Glomus mosseae、Glomus intraradices对玉米生长及玉米体内重金属浓度的影响.结果表明:联合使用海泡石和菌根Glomusintraradices可显著增加玉米地上部和根部的生物量;与单一处理相比,联合使用海泡石和两种菌根可使菌根对玉米的侵染率提高44.53%~ 58.80%.海泡石可有效阻隔土壤中的重金属向植株迁移,从而显著降低玉米体内Pb、Cd、Zn的浓度;而另一方面,两种菌根会促进植株体内Pb、Cd、Zn的富集,因此,可利用这两种菌根和一些非经济性作物来去除土壤中的Pb、Cd,Zn.%Pot experiments were carried out to study the effects of single treatment or combination treatment of adding sepiolite and mycorrhizal Glomus mosseae,Glomus intraradices in Pb、Zn and Cd contaminated soil on corn growth and concentrations of heavy metals in com. The results show that the co-lreatment of sepiolite and mycorrhizal Giomus intraradice can significantly increase dry weights of terraneous part and subterraneous part of corn. Compared with the single treatment with sepiolite or mycorrhiza,the mycorrhizal infection rates increased by 44. 53% to 58. 80% for co-treatment( sepiolite + Glomus mosseae and sepiolile + Glomus intraradice). Sepiolite can effectively block the transference of heavy metal in soil-plant system,and decrease concentrations of heavy metals in com. On the other hand,mycorrhizal Glomus mosseae and Ciomus intraradices can promote the enrichment of heavy metals in com. Therefore,the heavy metals Pb、Cd、Zn can be removed form contaminated soil using two kinds of mycorrhiza and non-economic Crops.

  18. Identification Method for Soil Heavy Metals Contaminants Source%一种确定土壤重金属污染源位置的辨识方法

    Institute of Scientific and Technical Information of China (English)

    王明刚; 许华

    2012-01-01

    确定土壤重金属污染源位置的问题是国内外研究的热门问题.考虑到当前城市土壤由于人类活动导致的环境剧烈变化,驱使自然生态系统下的自然成土过程向人工生态系统下的受人为因素干扰严重的特殊成土过程转变.提出利用因子分模型和灰色关联分析模型相结合的方法,确定污染源的位置.具体建模思路为:利用园子分析模型,筛选出受人为因素影响严重的重金属污染元素,然后利用灰色关联分析模型对筛选出的元素进行综合分析,进而确定污染源位置.%Determine the location of soil heavy metal pollution has attracted wide attention. Taking into account the current urban soil environment due to human activities lead to dramatic changes in natural ecosystems driven into the soil under the natural process of the artificial ecosystem under serious interference by the special human factors into the process of changing the soil, the use of factor scores and gray correlation model analysis model to determine the method of combining the location of pollution sources are proposed. Specific modeling ideas are: the use of factor analysis model selected by the serious human factors elements of heavy metal pollution, and the use of gray correlation analysis model for screening out a comprehensive analysis of the elements, and to determine the location of pollution sources.

  19. Assessment on soil heavy metals contamination by matter-element model%基于物元分析法的农田土壤重金属污染评价

    Institute of Scientific and Technical Information of China (English)

    刘维明; 王晓飞; 魏萌萌; 黎铉海

    2015-01-01

    The traditional evaluation model for soil heavy metal pollution consisted diverse indexes and the result ex-hibited uncertainty.Based on the matter element theory and dependency function in the extension theory, an evalua-tion model for soil heavy metal pollution was established.In the present study, the established model was used to as-sess the heavy metal contamination in a sugarcane soil in Guangxi.It was shown that the pollution level of the sugar-cane soil was between clean and good, and the evaluation result was comparable to the result made by the Nemerow index method, which proved the feasibility of this established evaluation method.%传统的土壤重金属污染评级往往存在指标过多和污染程度的不确定性等问题。该研究从物元分析和关联函数出发,建立了土壤重金属污染评价的物元模型,并利用该模型对广西某蔗田土壤的重金属污染状况进行评价。结果表明,研究区农田土壤重金属污染水平处于清洁和尚清洁两级,污染程度低,与土壤内梅罗综合污染指数法的评价结果基本一致,表明该评价模型具有较高的可靠性。

  20. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils.

    Science.gov (United States)

    Navarro-Noya, Yendi E; Jan-Roblero, Janet; González-Chávez, Maria del Carmen; Hernández-Gama, Regina; Hernández-Rodríguez, César

    2010-05-01

    In this study, the bacterial communities associated with the rhizospheres of pioneer plants Bahia xylopoda and Viguiera linearis were explored. These plants grow on silver mine tailings with high concentration of heavy metals in Zacatecas, Mexico. Metagenomic DNAs from rhizosphere and bulk soil were extracted to perform a denaturing gradient gel electrophoresis analysis (DGGE) and to construct 16S rRNA gene libraries. A moderate bacterial diversity and twelve major phylogenetic groups including Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Firmicutes, Verrucomicrobia, Nitrospirae and Actinobacteria phyla, and divisions TM7, OP10 and OD1 were recognized in the rhizospheres. Only 25.5% from the phylotypes were common in the rhizosphere libraries and the most abundant groups were members of the phyla Acidobacteria and Betaproteobacteria (Thiobacillus spp., Nitrosomonadaceae). The most abundant groups in bulk soil library were Acidobacteria and Actinobacteria, and no common phylotypes were shared with the rhizosphere libraries. Many of the clones detected were related with chemolithotrophic and sulfur-oxidizing bacteria, characteristic of an environment with a high concentration of heavy metal-sulfur complexes, and lacking carbon and organic energy sources.

  1. Stabilization and reuse of heavy metal contaminated soils by means of quicklime sulfate salt treatment. Final report, September 1992--February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dermatas, D.

    1995-08-01

    Capillary and hydraulic flows of water in porous media contaminated by heavy metal species often result in severe aquifer contamination. In the present study a chemical admixture stabilization approach is proposed, where heavy metal stabilization/immobilization is achieved by means of quicklime-based treatment. Both in-situ treatment by injection and on-site stabilization by excavation, mixing, and compaction will be investigated. In addition, the potential to reuse the resulting stabilized material as readily available construction material will also be investigated. The heavy metals under study include: arsenic, chromium, lead, and mercury. The proposed technical approach consists of three separate phases. During phase A, both artificial and naturally occurring contaminated soil mixes were treated, and then tested for stress-strain properties, leachability, micromorphology, mineralogical composition, permeability, setting time, and durability. In such a way, the effectiveness of the proposed remediation technology was verified, the treatment approach was optimized, and the underlying mechanisms responsible for stabilization were established. During phase B, the proposed technology will be tested for two DOE-site subscale systems, involving naturally occurring contaminated soil, using the same testing methodology as the one outlined for phase A. Provided that the proposed technology is proven effective for the subscale systems, a field application will be demonstrated. Again process quality monitoring will be performed by testing undisturbed samples collected from the treated sites, in the same fashion as for the previous phases. Following completion of the proposed study, a set of comprehensive guidelines for field applications will be developed. 42 refs., 196 figs., 26 tabs.

  2. Perilous Effects of Heavy Metals Contamination on Human Health

    Directory of Open Access Journals (Sweden)

    Naseem Zahra

    2017-06-01

    Full Text Available Heavy metals form a versatile group of high density elements that vary considerably in their biological roles and chemical properties. Although many heavy metals are essential trace elements yet they have long been recognized as environmental pollutants due their toxic effects. Increased industrialization, urbanization anthropogenic activities like mining, smelting and other agricultural activities have resulted in accumulation of heavy metals in the environment. Heavy metals such as nickel, cadmium, zinc, copper, mercury, arsenic and chromium are not easily degradable and tend to build up in soil. These heavy metals through various routes such as fish and plants make their way into the human body and are known to have serious detrimental effects on human health at elevated levels. The harmful effects of some important heavy metals on human health have been discussed.

  3. In-situ remediation of heavy metal contaminated soil or rock formations by directed and controlled crystallisation of natural occuring minerals

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenbalg, G. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Technische Chemie

    2003-07-01

    The main idea of the technology that will be summarized in the paper is to use crystallisation processes similar to those occurring in nature to seal flow paths or to immobilise contaminants. Solutions supersaturated with gypsum, barite, calcium hydroxide, aluminium hydroxide or iron hydroxide are brought into soil or rock formations and a directed precipitation leads to a reduction of the permeability as well as to safe immobilisation of heavy metals. The preparation of oversaturated solutions is possible, for example, by the use of precipitation inhibitors. These prevent a spontaneous precipitation during the mixing process. Temporarily stable solutions are obtained. For example, in the presence of 250 mg/l precipitation inhibitor it is possible to synthesise solutions containing up to 40 g/l dissolved CaSO{sub 4}. The resulting solutions are completely clear and have a viscosity similar to water. Decomposition and adsorption processes lead to a gradual reduction of the stability of the inhibitors. As a result, gypsum crystallisation occurs. If this process takes place in rock or soil formations, covering of reactive mineral surfaces or sealing of the treated area is achieved. The generation of acid rock drainage is prevented. In a similar way it is possible to generate solutions resulting in the targeted precipitation of BaSO{sub 4} or Calcite. Modified preparation ways offer the synthesis of clear, temporarily stable solutions of Ca(OH){sub 2} Al(OH){sub 3} or Fe(OH){sub 3}. The paper summarises the fundamentals of the technology as well as the results of first large scale applications to immobilise heavy metals in a former uranium mine in Germany. Approximately 100,000 m{sup 3} of a BaSO{sub 4} forming solution were brought into an acidity generating rock formation. An in-situ fixation of heavy metals was achieved. Further applications of directed crystallisation processes for sealing of porous rock formations as well as for the in-situ construction of

  4. Characteristics of Heavy Metals Contamination in Lotus Root in the Dongting Lake Area, China

    Directory of Open Access Journals (Sweden)

    LUO Man

    2016-11-01

    Full Text Available Heavy metal contamination in soils in the Dongting Lake areas has evoked widespread concerns about the excessive heavy metals in aquatic product. Based on the national standards of food contaminant limits and the method of comprehensive pollution index, heavy metals of Cd, Pb, Cu, Zn, Mn in lotus root were clarified through field investigation in the Dongting Lake area. Results showed that lotus root in the Dongting Lake area was contaminated seriously by heavy metals. Cd and Pb were two main pollutants and the single pollution indices were 5.70 and 8.35 respectively. According to the comprehensive pollution index of heavy metals, lotus root in Yueyanglou District and Yuanjiang City were classified into medium pollution and Junshan District, Huarong County, Nan County, and Datong District were classified into heavy pollution. Principal component analysis showed that planting areas of lotus root were clumped and medium and heavy pollution areas were separated significantly. Habitat contamination by heavy metals and decreasing area of lotus ponds were two main factors for excessive heavy metals in lotus root. Thus, some measurements, such as habit restoration, were proposed for local government to decrease heavy metals in planting areas and to promote the healthy development of lotus root industry in the Dongting Lake area.

  5. 遵义东南部地区农业土壤重金属污染预警模型%Early Warning Model for Heavy Metal Contamination of Agricultural Soil in Southeast Zunyi.

    Institute of Scientific and Technical Information of China (English)

    罗艳; 谭红; 何锦林; 陈恺; 文锡梅

    2011-01-01

    Based on analysis of the soil samples collected in Southeast Zunyi from 2003 to 2008, an early warning model and a deterioration speed model for heavy metal contamination of agricultural soil is worked out with the modified analytic hierarchy process and time series technique. The second exponential smoothing method is used to forecast index of soil pollution and speed of soil deterioration. Results show that in 37 years beginning from 2008, heavy metal contents in the soil will be to the grade of slight contamination in the region if no any protective measures taken on purpose. Verification reveals that the predicted values taffy well with the measured, with an average relative error being < 6%. The models are fit for agricultural areas where no serious accidents of heavy metal pollution have ever occurred and the heavy metal contents in the soil are relatively stable.%于2003-2008年对遵义东南部地区耕作区的土壤重金属含量进行检测,选取Cd、Pb、Cr、Hg、As 5种重金属,将改进型层次分析法和时间序列法相结合建立农业土壤重金属污染趋势预警模型和恶化速度预警模型,采用二次指数平滑法预测未来农业土壤重金属综合污染指数及恶化速度.结果表明,如无人为保护措施,自2008年起再过37 a该地区土壤重金属含量将达轻度污染.校验结果表明预测值与实测值较为符合,平均相对误差小于6%.该模型适用于未受过人为大量污染的、重金属含量变化较为稳定的农业地区.

  6. 重金属污染土壤木本-草本联合修复研究进展%The Research Progress of Joint Remediation of Heavy Metal Contaminated Soil by Using Woody-weed Plant

    Institute of Scientific and Technical Information of China (English)

    贺庭; 刘婕; 朱宇恩; 赵烨

    2012-01-01

    Phytoremediation was a novel, solar—driven, in-situ and cost-effective technology for the remediation of heavy metal contaminated environments, and became a hot topic in recent years which attracts scholars. But low heavy metal bioavailability and small biomass of hyper accumulators limits application of phytoremediation technology. Finding natural environment-friendly delator and plant remediation system with high extraction efficiency will help break through the bottlenecks of phytoremediation. On the basis of analyzing and summing up the relative literatures, and combining the theory of ecological niche and phytoremediation, the author discussed remediation ability of woody, weed plant in heavy metal contaminated soil, and analyzed the feasibility of woody-weed plant joint remediation, presented a new development direction of phytoremediation.%植物修复是一种新型的重金属污染土壤修复技术,由于原位修复、费用低、太阳能驱动等优点而成为研究者关注的热点.但是,植物修复技术目前仍存在重金属生物有效态含量低和修复植物生物量小的2个制约因子,寻找新的环境友好活化剂和具有高萃取率的植物修复模式是研究者必须解决的技术瓶颈.在国内外研究文献的基础上,总结了木本、草本植物在重金属土壤污染修复方面的已有研究,并结合生态位理论,分析了木本-草本联合修复在土壤重金属污染治理中的可行性,提出了木本-草本联合修复尚需解决的科学问题.

  7. Development and Application of Phytoremediation on Heavy Metal Contaminated Soils and Sites%重金属污染土壤及场地的植物修复技术发展与应用

    Institute of Scientific and Technical Information of China (English)

    胡鹏杰; 吴龙华; 骆永明

    2011-01-01

    重金属污染土壤及场地的治理工作迫在眉睫,植物修复技术以其成本低、不破坏土壤生态环境、无二次污染、易被公众接受等优点,受到了学术界的广泛关注.近年来,国内外在植物修复技术的植物资源筛选、调控技术、修复植物产后处理等方面进行了广泛的研究.植物修复已经从实验室阶段走向了田间示范和推广应用阶段.现就近年来植物修复技术在重金属污染土壤和场地的发展和应用方面进行了综述.%Heavy metal pollutions in soils and sites are becoming more and more serious, and their remediation is receiving extensive attention nowadays. Due to its low-cost and environment-friendly, phytoremediation is considered to be a potential usable technique for soil remediation. During the past decades, there have been significant improvements in phytoremediation, including plant species scanning, remediation control techniques,post-treatments of plants bio-mass, demonstration in field-scale, and practical applications. This review provides an overview of the development and application of phytoremediation on the remediation of heavy metal contaminated soils and sites.

  8. Mechanism Analysis and Propagation Model of Heavy Metals Contamination in Urban Topsoil

    Directory of Open Access Journals (Sweden)

    Zhao-wei Wang

    2013-02-01

    Full Text Available In order to further research on the polluting condition and spreading features of heavy metals in urban surface soil, this study makes statistical analysis on indexes of 8 heavy metal concentrations. Then Are GIS geo-statistical analyst was used for Kriging interpolation of each kind of heavy metal concentration before figuring out the spatial distribution. Firstly, heavy metal contamination was analyzed by single-element pollution evaluation and multi-element pollution evaluation, before rationality analysis. Then, correlation extents between heavy polluting metals were calculated in each region by rationality analysis, leading to the correlations between the heavy metals. Finally, based on propagating features of different heavy metals, propagation models in water and atmosphere were established. Additionally, according to heavy metal distribution map, distribution point of high concentration was searched. With the assumption of the number of pollution source, theoretical concentration of sample point could be figured out, after the superposition of pollution intensity using propagation model based on data of the distribution points. Thus, the optimization model was established for locating the pollution source by minimizing the difference between theoretical value and actual value.

  9. Advances in Phytore mediation and Utilization of Heavy Metal Contaminated Soils%重金属污染土壤植物修复与利用研究进展

    Institute of Scientific and Technical Information of China (English)

    陈仲英; 徐云; 邓纲; 杜光辉; 刘飞虎

    2015-01-01

    土壤重金属污染使可用耕地面积减少,影响作物的生长发育,甚至导致粮食作物中重金属含量超标,严重威胁人类健康,因此,揭示蛋白质水平、基因水平上植物对重金属的响应,可为重金属污染下农作物的基因工程育种提供分子依据;筛选出重金属低积累农作物,有助于对重金属低污染农田的充分利用;研究各类改良剂对植物修复的影响,既能增加农作物的生物量,又能提高土壤重金属污染的修复效率。从植物耐重金属的分子机理、重金属低积累农作物的筛选、改良剂在降低农作物重金属含量中的使用和植物—微生物、植物—化学联合修复措施的采用等方面对重金属污染土壤植物修复与利用的研究进行了综述,并对今后的研究重点进行了展望。%Soil contamination by heavy metals makes the available arable land decreased,affects plant growth and develop-ment,and even leads to excessive level of heavy metals in crops,which threatens human health.Knowledge on response mech-anisms of plants to heavy metals stress on the level of proteins and genes can provide molecular basis for genetic engineering breeding of crops tolerant to heavy metal contamination.Screening of crops with less accumulation of heavy metals makes it possible for people to use farmland contaminated with low to moderate 1evels of heavy metals.Understanding of the functions of soil amendments helps farmers to improve soil remediation efficiency and increase healthy crop biomass.This paper sum-marized the molecular mechanisms of plants tolerance to heavy metals and screening of crops with less accumulation of heavy metals,discussed the use of soil amendments to decrease the heavy metal content in crops and the effects of joint soil remedi-ation by plants -microorganism and plant -chemicals,and put forward research focuses in the future.

  10. 复合药剂对不同类型重金属污染土壤的固化修复%Immobilization and remediation of the heavy metal contaminated soils via the composite agents

    Institute of Scientific and Technical Information of China (English)

    肖康; 胡杰; 崔岩山

    2017-01-01

    为了考察复合药剂对Pb、Hg、Cr、Cd、Zn、Cu和Ni污染土样的固化修复效果,以重污染企业用地、冶炼厂河道底泥和自配土壤为污染土样进行试验,试验中的普适复合药剂主要为含磷酸盐沉淀剂、黏土和水泥,视情况辅以无机还原助剂和有机络合助剂.在普适药剂(相对原土样的质量分数<15%)、还原剂(<5%)和有机助剂(<2%)的组配下,处理后的重金属浸出质量浓度低于GB 18598-2001标准值.普适药剂对Pb、Cd、Zn、Cu、Ni的固化有效,磷酸盐是促成Pb固化的关键成分,黏土和水泥分别起到吸附固定和物理包封的作用.无机助剂中的还原/络合性成分和硫化物分别对Cr(Ⅵ)和Hg的固化有明显的促进作用.对于Pb、Cd、Zn、Cu复合污染土壤的修复,分析了重金属浸出质量浓度随普适药剂投加量变化的特征曲线,结果表明,Pb比Cu的曲线斜率更大,表明Pb的固化效率更高;Cd和Zn具有相似的曲线形状,推测二者具有类似的固化机理.%The paper is to devote itself to the research on the immobilization and remediation mechanism of the heavy metal contamination in the soils via the composite agents.For the said purpose,we have chosen a series of composite agents to immobilize such heavy metal contaminants ofPb,Hg,Cr,Cd,Zn,Cu,and Ni in the soil samples from the nearby manufacturing spots,the river-course sediments and the synthetic land soils by choosing the normal components of the composite agents including soluble phosphate,calcium montmorillonite clay,and the fly-ash Portland cement.We have also added inorganic reductants including ferrous sulfate and calcium sulfide,and a thiol-based organic complexant,to the composite agents as adjuvants in case they are needed.The remediation process we have adopted included the pretreatment of soil samples,the addition of the composite agents with blending,and the incubation.Effective remediation of the soil samples were obtained

  11. Considering bioavailability in the remediation of heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Leita L.

    2013-04-01

    Full Text Available Many years of research have demonstrated that instead of the total concentration of metals in soil, bioavailability is the key to understand the environmental risk derived by metals, since adverse effects are related only to the biologically available forms of these elements. The knowledge of bioavailability can decrease the uncertainties in evaluating exposure in human and ecological risk assessment. At the same time, the efficiency of remediation treatments could be greatly influenced by availability of the contaminants. Consideration of the bioavailability processes at contaminated sites could be useful in site-specific risk assessment: the fraction of mobile metals, instead of total content should be provided as estimates of metal exposure. Moreover, knowledge of the chemical forms of heavy metals in soils is a critical component in the evaluation of applicability of different remediation technologies such as phytoremdiation or soil washing.

  12. DEVELOPMENT OF A PLANT TEST SYSTEM FOR EVALUATION OF THE TOXICITY OF METAL CONTAMINATED SOILS. I. SENSITIVITY OF PLANT SPECIES TO HEAVY METAL STRESS

    Directory of Open Access Journals (Sweden)

    Andon VASSILEV

    2001-09-01

    Full Text Available The sensitivity of young bean, cucumber and lettuce plants to heavy metals stress was studied at control conditions in a climatic room. The plants were grown in pots with perlite and supplied daily by half-strength Hoagland nutrient solution. The plants were treated for 8 days with different heavy metal doses (full, ½ and ¼ starting at appearance of the fi rst true leaf (cucumber and bean or the full development of the second leaf (lettuce. The full dose consisted 500 μM Zn, 50 μM Cd and 20 μM Cu added to the nutrient solution. Based on the measured morphological (fresh weight, leaf area, root length and physiological parameters (photosynthetic pigments content and activity of guaiacol peroxidase in roots, the cucumber plants presented the highest sensitivity to heavy metal stress.

  13. A Rapid, Accurate, and Efficient Method to Map Heavy Metal-Contaminated Soils of Abandoned Mine Sites Using Converted Portable XRF Data and GIS.

    Science.gov (United States)

    Suh, Jangwon; Lee, Hyeongyu; Choi, Yosoon

    2016-12-01

    The use of portable X-ray fluorescence (PXRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) increases the rapidity and accuracy of soil contamination mapping, respectively. In practice, it is often necessary to repeat the soil contamination assessment and mapping procedure several times during soil management within a limited budget. In this study, we have developed a rapid, inexpensive, and accurate soil contamination mapping method using a PXRF data and geostatistical spatial interpolation. To obtain a large quantity of high quality data for interpolation, in situ PXRF data analyzed at 40 points were transformed to converted PXRF data using the correlation between PXRF and ICP-AES data. The method was applied to an abandoned mine site in Korea to generate a soil contamination map for copper and was validated for investigation speed and prediction accuracy. As a result, regions that required soil remediation were identified. Our method significantly shortened the time required for mapping compared to the conventional mapping method and provided copper concentration estimates with high accuracy similar to those measured by ICP-AES. Therefore, our method is an effective way of mapping soil contamination if we consistently construct a database based on the correlation between PXRF and ICP-AES data.

  14. Crescimento e teor de metais de mudas de espécies arbóreas cultivadas em solo contaminado com metais pesados Growth and metal concentration of seedlings of woody species in a heavy metal contaminated soil

    Directory of Open Access Journals (Sweden)

    Teresa Cristina Lara Lanza de Sá e Melo Marques

    2000-01-01

    Full Text Available O objetivo do trabalho foi avaliar o teor de metais pesados e o crescimento de mudas de 20 espécies arbóreas tropicais em solo com elevado grau de contaminação com metais pesados. Em casa de vegetação, as mudas foram transplantadas para vasos contendo 3,3 kg de misturas com diferentes proporções (0, 20, 40 e 60% v/v de solo contaminado. Verificou-se comportamento diferenciado das espécies quanto à inibição de crescimento e aos teores de metais na raiz e na parte aérea em decorrência da contaminação. Com base na produção de matéria seca da parte aérea, concluiu-se que apenas Myrsine umbellata, Cedrella fissilis, Tabebuia impetiginosa e Copaifera langsdorffii não foram afetadas pela contaminação, enquanto Hymenaea courbaril, Mimosa caesalpiniaefolia, Acacia mangium e Platypodium gonoacantha sofreram pequeno impacto. As demais espécies foram muito inibidas pela contaminação do solo, o que é causado pela absorção, na maioria dos casos, de Zn e Cd. Várias espécies apresentaram elevada capacidade de reter esses metais nas raízes, evitando sua translocação para a parte aérea.The objective of the paper was to evaluate metal content and ability to grow in soil with excess of heavy metals of seedlings of 20 woody species. In the greenhouse, seedlings were transplanted to pots with 3.3 kg of soil-mixes with different proportions (0, 20, 40, 60% v/v of a heavy metal contaminated soil. It was found that plant species behaved differently in terms of growth inhibition and metal content in the shoots and roots. Based upon the dry matter yield, only Myrsine umbellata, Cedrella fissilis, Tabebuia impetiginosa and Copaifera langsdorffii were not affected by increasing contamination, whereas Hymenaea courbaril, Mimosa caesalpiniaefolia, Acacia mangium and Platypodium gonoacantha were only slightly affected by it. All the other species were highly inhibited by the excess of metals in the soil, being such effects related, in most

  15. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  16. Effect of Sludge Amendment on Remediation of Metal Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Andrés Navarro

    2012-11-01

    Full Text Available Column-leaching and pilot-scale experiments were conducted to evaluate the use of biosolids (sewage sludges to control the mobilization of metals from contaminated soils with smelting slags. The pilot-scale experiments using amended soils showed that Cu, Pb and Sb were retained, decreasing their concentrations from 250 mg/L, 80 mg/L and 6 mg/L, respectively in the leachates of contaminated soils, to <20 mg/L, 40 mg/L and 4 mg/L, respectively, in the amended material. Hydrogeochemical modeling of the leachates using Minteq revealed that the degree of complexation of Cu rose 56.3% and 57.6% in leachates of amended soils. Moreover, Cu may be immobilized by biosolids, possibly via adsorption by oxyhydroxides of Fe or sorption by organic matter. The partial retention of Pb coincides with the possible precipitation of chloropyromorphite, which is the most stable mineral phase in the pH-Eh conditions of the leachates from the amended material. The retention of Sb may be associated with the precipitation of Sb2O3, which is the most stable mineral phase in the experimental conditions. The organic amendments used in this study increased some metal and metalloid concentrations in the leachates (Fe, Mn, Ni, As and Se, which suggests that the organic amendments could be used with caution to remediate metal contaminated areas.

  17. Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area.

    Science.gov (United States)

    de Santiago-Martín, Ana; Cheviron, Natalie; Quintana, Jose R; González, Concepción; Lafuente, Antonio L; Mougin, Christian

    2013-04-01

    Mediterranean climate characteristics and carbonate are key factors governing soil heavy-metal accumulation, and low organic matter (OM) content could limit the ability of microbial populations to cope with resulting stress. We studied the effects of metal contamination on a combination of biological parameters in soils having these characteristics. With this aim, soils were spiked with a mixture of cadmium, copper, lead, and zinc, at the two limit values proposed by current European legislation, and incubated for ≤12 months. Then we measured biochemical (phosphatase, urease, β-galactosidase, arylsulfatase, and dehydrogenase activities) and microbial (fungal and bacterial DNA concentration by quantitative polymerase chain reaction) parameters. All of the enzyme activities were strongly affected by metal contamination and showed the following inhibition sequence: phosphatase (30-64 %) soils was attributed to the different proportion of fine mineral fraction, OM, crystalline iron oxides, and divalent cations in soil solution. The decrease of fungal DNA concentration in metal-spiked soils was negligible, whereas the decrease of bacterial DNA was ~1-54 % at the lowest level and 2-69 % at the highest level of contamination. The lowest bacterial DNA decrease occurred in soils with the highest OM, clay, and carbonate contents. Finally, regarding the strong inhibition of the biological parameters measured and the alteration of the fungal/bacterial DNA ratio, we provide strong evidence that disturbance on the system, even within the limiting values of contamination proposed by the current European Directive, could alter key soil processes. These limiting values should be established according to soil characteristics and/or revised when contamination is produced by a mixture of heavy metals.

  18. Solidification/Stabilization of Heavy Metal Contaminated Soil with Magnesium Potassium Phosphate Cements%磷酸钾镁胶结材料固化/稳定化重金属污染土壤的研究

    Institute of Scientific and Technical Information of China (English)

    甄树聪; 杨建明; 董晓慧; 朱坚豪

    2011-01-01

    [目的]为了保证食品安全和人类健康,改善土壤质量.[方法]应用磷酸钾镁胶结材料,对受Pb、Cr、Cd、Zn等重金属污染的土壤进行固化/稳定化.[结果]掺加10% ~40%含量的磷酸钾镁固化体强度均大于1 MPa,可以满足贮存和填埋强度的要求;掺加40%磷酸钾镁28 d养护的固化体Pb、Cr、Cd浸出浓度无检出,掺加10%磷酸钾镁固化体浸出浓度也远小于相关标准限值;不同重金属溶出规律不同,重金属累积释放量由大到小依次为Zn >Cd >Cr >Pb.[结论]磷酸钾镁胶结材料是一种效果较好的重金属污染土壤固化剂.%[Objective] The research aimed to ensure food safety and human health,improve soil quality. [Method] Magnesium potassium phosphate cements material was adopted to solidified/stabilized soil contaminated by Pb,Cr,Cd,Zn,et al. [Result]Solidified strength mixed with 10% -40% magnesium potassium phosphate cements were more than 1 Mpa,which showed that solidified had a high compressive strength and met the requirements of storage and landfill. Leaching concentrations of Pb,Cr,Cd weren' t detected after solidified mixed with 40% magnesium potassium phosphate cements was conserved 28 d and leaching concentrations of solidified mixed with 10% magnesium potassium phosphate cements far less than standard limit values. Different metals had different leaching law and cumulative leaching of metal in descending order was Zn > Cd > Cr > Pb. [Conclusion] Magnesium potassium phosphate cements material was a better heavy metal contaminated soil stabilizer.

  19. Optimization of Technological Conditions for Remediation of Heavy Metal Contaminated Soil by Rhamnolipid Washing%鼠李糖脂淋洗修复重金属污染土壤的工艺条件优化研究

    Institute of Scientific and Technical Information of China (English)

    李尤; 廖晓勇; 阎秀兰; 龚雪刚

    2015-01-01

    could provide a technical guidance for re-mediation of heavy metal contaminated soils by rhamnolipid washing.

  20. 外源菌根对重金属胁迫下的香根草营养品质的影响%Effect of Exogenous Mycorrhiza on Nutrient Quality of Vetiveria Zizanioides in Heavy Metal Contaminated Soils

    Institute of Scientific and Technical Information of China (English)

    李文一; 徐卫红

    2012-01-01

    By soil incubation experiment, as heavy metals stress, the nutrient qualities variation of Vetiveria zizanioides with the addition of exogenous mycorrhiza were studied. The levels of heavy metal pollution were that Zn was 800mg/kg, Cd was 10mg/kg,the exogenous mycorrhizas were G.mosseae, G.etunieatum and gloms aggregatum.The experiment results showed that,exogenous mycorrhizas had not big influence on ash content of Vetiveria zizanioidcs in heavy metal contaminated soils;Compared to contrast, the crude protein content of the other treatments were increased except for the G.moosseae treatment; Compared to the simple heavy metal stress,the crude protein content with addition of G.mosseae treatment decreased,and the crude protein content with addition of G.etunicatum and gloms aggregatum had ascend trend;The P content of contrast treatment was higher than the other treatments,and was higer significant than without the treatments mycorrhiza;With the same heavy metal stress, all of the P contents with the addition of exogenous mycorrhiza had ascend trend;The Ca of contrast treatment content was minimum among all the treatments.%通过盆栽试验,探讨在添加外援菌根的情况下,重金属胁迫下的香根草作为牧草营养品质的变化。试验设计重金属污染水平为锌800mg/kg、镉10mg/kg,外源菌根为为摩西球囊霉、幼套球囊霉和聚丛球囊霉。试验结果表明,外源菌根对重金属污染土壤香根草灰分含量影响不大;与对照相比,除摩西球囊霉处理香根草植株内粗蛋白含量下降外,其他处理均有所升高;与单纯重金属锌镉胁迫相比,摩西球囊霉处理粗蛋白表现出了下降而幼套球囊霉和聚丛球囊霉处理出现上升的趋势;对照处理香根草中磷的含量高于其他处理,且显著高于未添加菌根处理;同等重金属胁迫下,三组添加外源菌根处理植株内磷含量均有增加趋势;在所有处理中,对照处理内的钙含量最低。

  1. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    Science.gov (United States)

    1987-02-01

    on their experience, in the mining and extractive metallurgy industry. Subsequently, MTARRI was contacted to obtain details of their process," The...and wastewater treatment requirements, but the equipment and control systems are commonly used in the extractive metallurgy and wastewater treatment...reliability and are currently used in the road building, extractive metallurgy and wastewater treatment industries. (k), Safety. There are minimal hazards

  2. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Directory of Open Access Journals (Sweden)

    Yang Guan

    2014-07-01

    Full Text Available Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1 Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2 The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3 The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4 The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies.

  3. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Science.gov (United States)

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-01-01

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies. PMID:25032743

  4. 洗涤剂组合两步洗涤修复重金属污染土壤研究%Remediation of heavy metal contaminated soil by using two-step sequential washing with different reagents

    Institute of Scientific and Technical Information of China (English)

    尹雪; 陈家军; 吕策

    2014-01-01

    Washing performance of soil polluted by As, Cd, Cu, and Pb was studied to reveal the optimal parameters for remediation of heavy metal contaminated soil. Three reagents, namely citric acid, rhamnolipid, and oxalic acid, were selected and combined with EDTA, respectively. Compared with one-step washing, the two-step sequential washing with different reagents increased the removal efficiencies of As, Cd, Cu, and Pb by 8.45%~36.81%. The removal of As and Cu could reach 24.85% and 29.25%, respectively, when applying the two-step sequential washing with the combination of EDTA and oxalic acid, 47.83%of Cd and 30.59%of Pb in the soil could be eluted by washing with the combination of EDTA and rhamnolipid. After washing with the combination of EDTA and citric acid, the available contents of As, Cd, Cu and Pb in the soil decreased by 8.61%, 9.37%, 14.12%, and 25.16%, respectively. From practical perspective, the application of combining different reagents and adopting multi-step sequential washing require further process optimization, with special attention to the removal of both total metal amount and the available contents. The stability of heavy metal residues after remediation can thus be ensured, and subsequent impacts to the environment can be mitigated.%本文以某化工厂受As、Cd、Cu和Pb污染场地土壤为研究对象,将EDTA分别与柠檬酸、鼠李糖脂和草酸组合进行2轮搅拌洗涤修复,考察实验室条件下不同洗涤剂组合对重金属提取能力差异和形态分布的影响,研究多金属污染土壤的最佳洗涤方式.结果表明,与单轮洗涤相比,两轮洗涤处理明显提高了As、Cd、Cu和Pb的去除率,增幅范围在8.45%~36.81%.经过EDTA+草酸组合的洗涤,As和Cu的去除率分别可达24.04%和29.25%;EDTA+鼠李糖脂和鼠李糖脂+EDTA组合对Cd和Pb的去除效果显著,洗脱率分别为47.83%和30.59%.柠檬酸和EDTA组合能有效削减4种重金属有效态比例,使As、Cd、Cu

  5. Laboratory and field magnetic evaluation of the heavy metal contamination on Shilaoren Beach, China.

    Science.gov (United States)

    Wang, Yonghong; Huang, Qinghui; Lemckert, Charles; Ma, Ying

    2017-02-09

    This study uses magnetic measurements to evaluate the heavy metal contamination of the surface sediments on Shilaoren Beach. The values of the laboratory magnetic measurements have a positive relationship with the concentrations of Fe, Mn, Cr, Ni, As and Pb. The field magnetic parameter provides an effective and rapid method for evaluating the distribution and dispersal of heavy metal. Sediments with higher heavy metal contents generally accumulate near higher and lower tide lines on the beach, reflecting the control of waves and tides. The sewage and stormwater outlets are the primary sources of the heavy metal contamination. Variations in seasonal waves and winds affect the sediment transport and the heavy metal distribution patterns. Based on the Australian ISQG-Low sediment quality criteria, Fe, Mn and Cr generally exhibit intermediate accumulation levels, whereas Pb and Zn exhibit higher accumulation levels because of the socioeconomic status of the area surrounding the beach.

  6. Remediation of metal-contaminated urban soil using flotation technique.

    Science.gov (United States)

    Dermont, G; Bergeron, M; Richer-Laflèche, M; Mercier, G

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions >250microm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor>2.5), and volume reduction (>80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (flotation selectivity drop, especially with a long flotation time (>5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 microm) showed the best flotation selectivity. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Influence of VA-mycorrhiza on heavy metal uptake of oat (Avena sativa L.) from soils differing in heavy metal contamination; Einfluss der VA-Mykorrhiza auf die Schwermetallaufnahme von Hafer (Avena sativa L.) in Abhaengigkeit vom Kontaminationsgrad der Boeden

    Energy Technology Data Exchange (ETDEWEB)

    Loth, F.G. [Giessen Univ. (Germany). Inst. fuer Pflanzenernaehrung; Hoefner, W. [Giessen Univ. (Germany). Inst. fuer Pflanzenernaehrung

    1995-12-31

    The heavy metal uptake of mycorrhizal oat-plants (Avena sativa L.) was evaluated in pot experiments with two soils differing in heavy meatl accumulation. The effect of the fungal isolates on the uptake of the immobile metals Zn and Cu differed between the two soils: In the soil `Kleinlinden` mycorrhizal colonization increased heavy metal uptake by up to 37%. In the highly contaminated soil `Muenchen`, mycorrhizal infection lead to a higher uptake (max. 59%) in roots but to a reduced translocation to the aerial plant fractions. The higher uptake of Zn and Cu into the roots was related to the higher heavy metal concentrations in this soil. The Cd uptake showed no difference between the two soils, but was increased in the roots by VAM together with a lower translocation into the shoots. VAM-formation changed the root architecture by increacing the specific root length (m g{sup -1} root dry matter) and the total root length (km per pot). This increased absorbing surface of the roots was a major, but not the only cause for the differences in heavy metal uptake. (orig.) [Deutsch] Die Schwermetallaufnahme mykorrhizierter Hafer-Pflanzen (Avena sativa L.) wurde im Gefaessversuch mit zwei Boeden unterschiedlicher Belastung evaluiert. Der Einfluss der VAM-Pilzisolate auf die Aufnahme der relativ immobilen Metalle Zn und Cu war stark abhaengig vom eingesetzten Boden: Im Versuch mit dem gering belasteten Kleinlindener Boden wurde die Schwermetallaufnahme in den Spross bis zu 37% gesteigert. Die Beimpfung der Pflanzen auf dem hochkontaminierten Boden aus Muenchen fuehrte dagegen zu hoeheren Aufnahmeraten (bis zu 59%) in der Wurzel bei verringerter Translokation in die oberirdischen Pflanzenteile. Das mobile Schwermetall Cd wurde aus beiden Substraten verstaerkt in die infizierten Wurzeln aufgenommen und in vermindertem Mass in den Spross geleitet. Die mykorrhizainduzierte Vergroesserung der speziellen (m g{sup -1} Wurzel-TM) und der absoluten (km pro Gefaess) Wurzellaenge war in

  8. "Co-culture Engineering" for Enhanced Phytoremediation of Metal Contaminated Soils

    Institute of Scientific and Technical Information of China (English)

    NI Cai-Ying; SHI Ji-Yan; LUO Yong-Ming; CHEN Ying-Xu

    2004-01-01

    A co-culture of two plant materials, Astragalus sinicus L., a leguminous plant with concomitant nodules, and Elsholtzia splendens Naki-a Cu accumulator, along with treatments of a chelating agent (EDTA), root excretions (citric acid), and a control with E. splendens only were used to compare the mobility of heavy metals in chelating agents with a co-culture and to determine the potential for co-culture phytoremediation in heavy metal contaminated soils. The root uptake for Cu, Zn, and Pb in all treatments was significantly greater (P < 0.05) than that of the control treatment. However with translocation in the shoots, only Cu, Zn, and Pb in plants grown with the EDTA treatment and Zn in plants cocropped with the A. sinicus treatment increased significantly (P < 0.05). In addition, when a co-culture in soils with heavy and moderate contamination was compared, for roots in moderately contaminated soils only Zn concentration was significantly less (P < 0.05) than that of heavily contaminated soils, however, Cu, Zn, and Pb concentrations of shoots were all significantly lower (P < 0.05). Overall, this "co-culture engineering" could be as effective as or even more effective than chelating agents, thereby preventing plant metal toxicity and metal leaching in soils as was usually observed in chelate-enhanced phytoremediation.

  9. Chelant soil-washing technology for metal-contaminated soil.

    Science.gov (United States)

    Voglar, David; Lestan, Domen

    2014-01-01

    We demonstrate here, in a pilot-scale experiment, the feasibility of ethylenediaminetetraacetate (EDTA)based washing technology for soils contaminated with potentially toxic metals. Acid precipitation coupled to initial alkaline toxic metal removal and an electrochemical advanced oxidation process were used for average recovery of 76 +/- 2% of EDTA per batch and total recycle of water in a closed process loop. No waste water was generated; solid wastes were efficiently bitumen-stabilized before disposal. The technology embodiment, using conventional process equipment, such as a mixer for soil extraction, screen for soil/gravel separation, filter chamber presses for soil/liquid and recycled EDTA separation and soil rinsing, continuous centrifuge separator for removal of precipitated metals and electrolytic cells for process water cleansing, removed up to 72%, 25% and 66% of Pb, Zn and Cd from garden soil contaminated with up to 6960, 3797 and 32.6 mg kg(-1) of Pb, Zn and Cd, respectively, in nine 60kg soil batches. Concentrations of Pb and Zn remaining in the remediated soil and bioaccessible from the simulated human intestinal phase soil were reduced by 97% and 96% and were brought under the level of determination for Cd. In the most cost-effective operation mode, the material and energy costs of remediation amounted to 50.5 Euros ton(-1) soil and the total cost to 299 Euros ton(-1).

  10. Draft Genome Sequence of Bacillus cereus LCR12, a Plant Growth-Promoting Rhizobacterium Isolated from a Heavy Metal-Contaminated Environment.

    Science.gov (United States)

    Egidi, Eleonora; Wood, Jennifer L; Mathews, Elizabeth; Fox, Edward; Liu, Wuxing; Franks, Ashley E

    2016-09-29

    Bacillus cereus LCR12 is a plant growth-promoting rhizobacterium, isolated from a heavy metal-contaminated environment. The 6.01-Mb annotated genome sequence provides the genetic basis for revealing its potential application to remediate contaminated soils in association with plants. Copyright © 2016 Egidi et al.

  11. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India

    Science.gov (United States)

    Singh, Gurdeep; Kamal, Rakesh Kant

    2017-06-01

    The objective of the study is to reveal the seasonal variations in the groundwater quality with respect to heavy metal contamination. To get the extent of the heavy metals contamination, groundwater samples were collected from 45 different locations in and around Goa mining area during the monsoon and post-monsoon seasons. The concentration of heavy metals, such as lead, copper, manganese, zinc, cadmium, iron, and chromium, were determined using atomic absorption spectrophotometer. Most of the samples were found within limit except for Fe content during the monsoon season at two sampling locations which is above desirable limit, i.e., 300 µg/L as per Indian drinking water standard. The data generated were used to calculate the heavy metal pollution index (HPI) for groundwater. The mean values of HPI were 1.5 in the monsoon season and 2.1 in the post-monsoon season, and these values are well below the critical index limit of 100.

  12. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India

    Science.gov (United States)

    Singh, Gurdeep; Kamal, Rakesh Kant

    2016-06-01

    The objective of the study is to reveal the seasonal variations in the groundwater quality with respect to heavy metal contamination. To get the extent of the heavy metals contamination, groundwater samples were collected from 45 different locations in and around Goa mining area during the monsoon and post-monsoon seasons. The concentration of heavy metals, such as lead, copper, manganese, zinc, cadmium, iron, and chromium, were determined using atomic absorption spectrophotometer. Most of the samples were found within limit except for Fe content during the monsoon season at two sampling locations which is above desirable limit, i.e., 300 µg/L as per Indian drinking water standard. The data generated were used to calculate the heavy metal pollution index (HPI) for groundwater. The mean values of HPI were 1.5 in the monsoon season and 2.1 in the post-monsoon season, and these values are well below the critical index limit of 100.

  13. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan.

    Science.gov (United States)

    Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra

    2015-01-01

    To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring.

  14. Integrated risk analysis of a heavy-metal-contaminated site in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Ching-Tsan Tsai [China Medical College, Taichung (Taiwan, Province of China); Wang, J.H.C. [National Science Council, Taipei (Taiwan, Province of China)

    1996-12-31

    The Love Canal episode began the long battle on hazardous wastes in the United States. Obviously, the potential danger of hazardous wastes is one of the hottest issues among environmental professionals as well as the public. The problems of hazardous wastes in economically booming Taiwan are also alarming. Several farmlands in northern Taiwan were contaminated heavily by industrial effluents containing heavy metals (cadmium and lead) in the early 1980s. Regardless of the many studies that have been conducted about these polluted farmlands, there has not been any remediation - just a passive abandonment of farming activities with minimal compensation. This paper addresses a heavy-metal-contaminated fanning area. A pollution profile across time is delineated using information from the abundance of reports, and the contamination is modeled mathematically. The past, the present, and future exposures are also modeled. The results are presented in terms of societal impacts and health effects. Reasonable soil guidelines for cleanup are estimated, and recommendations for rational mitigation solutions are presented. The current strategies for cleanup actions are also described. 23 refs., 4 figs., 5 tabs.

  15. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan

    Science.gov (United States)

    Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra

    2015-01-01

    To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring. PMID:26167507

  16. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan

    Directory of Open Access Journals (Sweden)

    Iqra Azam

    2015-01-01

    Full Text Available To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia, an acridid grasshopper (Oxya hyla hyla, and a nymphalid butterfly (Danaus chrysippus near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p<0.05. Hierarchical cluster analysis (HACA was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala, S9 (End of HalsiNala, and S1 (Start of HalsiNala, whereas lowest value was detected at site S6 (Kalra Khasa located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring.

  17. Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India.

    Science.gov (United States)

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2014-01-01

    Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.

  18. Heavy metal contaminants in Malapterurus electricus (Gmeli, 1789 ...

    African Journals Online (AJOL)

    The study was carried out to evaluate the potential health risk associated with the ... The concentrations of some heavy metals, Manganese (Mn), ... unity for the fish species confirming that these fish species were safe for human consumption.

  19. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    Key words: Pineapple, juices, jams, microbial contamination, heavy metal, Rwanda. ..... material used. This was obvious ... sterilise the product employing boiling pots and package .... that post-harvest, processing and preservation techniques.

  20. Biosorption of heavy metals contaminating the Wonderfonteinspruit Catchment Area using Desmodesmus sp.

    OpenAIRE

    2011-01-01

    A vast array of biological materials, especially algae have received increasing attention for heavy metal removal. Algae have been proven to be cheaper, more effective for the removal of metallic elements in aqueous solutions. A fresh water algal strain was isolated from Zoo Lake, Johannesburg, South Africa and identified as Desmodesmus sp. This paper investigates the efficacy of Desmodesmus sp.in removing heavy metals contaminating the Wonderfonteinspruit Catchment Area (WCA) water bodies. T...

  1. Heavy Metal Contamination of Popular Nail Polishes in Iran

    OpenAIRE

    Golnaz Karimi; Parisa Ziarati

    2015-01-01

    Background: Toxic and hazardous heavy metals like arsenic, lead, mercury, zinc, chromium and iron are found in a variety of personal care products, e.g. lipstick, whitening toothpaste, eyeliner and nail color. The nails absorb the pigments of nail polishes and vaporized or soluble metals can easily pass it. The goal of this survey was to assess whether the different colors of nail polishes comply with maximum concentrations of heavy metals in the EPA’s guidelines. Methods: 150 samples of d...

  2. 重金属污染土壤稳定/固化修复技术研究进展%Recent advance in solidification/stabilization technology for the remediation of heavy metals contaminated soil

    Institute of Scientific and Technical Information of China (English)

    郝汉舟; 陈同斌; 靳孟贵; 雷梅; 刘成武; 祖文普; 黄莉敏

    2011-01-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present. the technologies commonly adopted for the remediation of contaminated sites mainly include excavation. solidification/stabilization ( S/S) . soil washing, soil vapor extraction ( SVE) . thermal treatment. and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency ( EPA) and United Kingdom Environment Agency ( EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media' s physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste. chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization. vitrification. and regent-based stabilization. Stabilization ( or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil. and thus. reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods. highlighted the need to enhance S/S technology in the molecular bonding, soil polymers. and formulation of China ' s S/S technical

  3. Heavy metal contamination in the vicinity of an industrial area near Bucharest.

    Science.gov (United States)

    Velea, Teodor; Gherghe, Liliana; Predica, Vasile; Krebs, Rolf

    2009-08-01

    Heavy metals such as lead are well known to cause harmful health effects. Especially children are particularly susceptible to increased levels of lead in their blood. It is also a fact that lead concentration is increasing in the environment due to increased anthropogenic activity. The risk of heavy metal contamination is pronounced in the environment adjacent to large industrial complexes. In a combined case study, the environmental pollution by heavy metals was related to children's health in the vicinity of an industrial area located 4 km south-east from Bucharest about 2 km east from the nearest town-Pantelimon. This site includes companies processing different, nonferrous solid wastes for recovery of heavy metals and producing different nonferrous alloys and lead batteries. In this paper, mainly the results of environmental sampling and analyses are summarized. Water, soil, and atmospheric deposition samples were collected from different locations within 3 km from the industrial area. For comparison, samples were also taken from Bucharest. Water samples were filtered (pollution. Highest heavy metal concentrations were found in 10-20 cm soil depths. There were also decreasing heavy metal concentrations for atmospheric deposition with increasing distance to the industrial site. In surface and groundwater samples, traces of zinc, copper and lead were detected. The heavy metal concentrations in soil were increased in the study area, mostly under legal action limits in low-concern areas (e.g., 1,000 mg Pb/kg dry soil), but often above action limits for high-concern areas (100 mg Pb/kg dry soil) such as populated areas. The soluble lead concentrations in water samples indicate a need for monitoring and assessing water quality in more detail. The results for atmospheric deposition showed increased dust precipitation and heavy metal loads in the study area compared to Bucharest. However, based on mass flow balance calculations, the actual atmospheric deposition of

  4. heavy metal contamination of amaranthus grown along major ...

    African Journals Online (AJOL)

    Administrator

    Key Words: Amaranthus viridis, cadmium, lead, pollution load index. RÉSUMÉ ... contamination of air and soils on which these vegetables are planted ... industrial discharges and galvanised pipe breakdown. ... After cooling, 20 ml of distilled ...

  5. Assessing microbial activities in metal contaminated agricultural volcanic soils--An integrative approach.

    Science.gov (United States)

    Parelho, C; Rodrigues, A S; Barreto, M C; Ferreira, N G C; Garcia, P

    2016-07-01

    Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals. Trace metal contaminated soils have significant effects on soil microbial activities and hence on soil quality. The aim of this study is to determine the soil microbial responses to metal contamination in volcanic soils under different agricultural land use practices (conventional, traditional and organic), based on a three-tier approach: Tier 1 - assess soil microbial activities, Tier 2 - link the microbial activity to soil trace metal contamination and, Tier 3 - integrate the microbial activity in an effect-based soil index (Integrative Biological Response) to score soil health status in metal contaminated agricultural soils. Our results showed that microbial biomass C levels and soil enzymes activities were decreased in all agricultural soils. Dehydrogenase and β-glucosidase activities, soil basal respiration and microbial biomass C were the most sensitive responses to trace metal soil contamination. The Integrative Biological Response value indicated that soil health was ranked as: organic>traditional>conventional, highlighting the importance of integrative biomarker-based strategies for the development of the trace metal "footprint" in Andosols.

  6. Microbial ecological response of the intestinal flora of Peromyscus maniculatus and P. leucopus to heavy metal contamination.

    Science.gov (United States)

    Coolon, Joseph D; Jones, Kenneth L; Narayanan, Sanjeev; Wisely, Samantha M

    2010-03-01

    Heavy metal contamination negatively affects natural systems including plants, birds, fish and bacteria by reducing biodiversity at contaminated sites. At the Tri-State Mining District, efforts have been made to remediate sites to mitigate the detrimental effects that contamination has caused on human health. While the remediation effort has returned the site to within federal safety standards, it is unclear if this effort is sufficient to restore floral and faunal communities. Intrinsic to ecosystem and organism health is the biodiversity and composition of microbial communities. We have taken advantage of recent advances in sequencing technology and surveyed the bacterial community of remediated and reference soils as well as the intestinal microbial community of two ubiquitous rodent species to provide insight on the impacts of residual heavy metal contamination on the ecosystem. Rodents found on the remediated site had reduced body mass, smaller body size and lower body fat than animals on reference sites. Using bar-coded, massively parallel sequencing, we found that bacterial communities in both the soil and Peromyscus spp. gastrointestinal tracts had no difference in diversity between reference and remediated sites but assemblages differed in response to contamination. These results suggest that niche voids left by microbial taxa that were unable to deal with the remnant levels of heavy metals on remediated sites were replaced by taxa that could persist in this environment. Whether this replacement provided similar ecosystem services as ancestral bacterial communities is unknown.

  7. Heavy Metal Contamination of Popular Nail Polishes in Iran

    Directory of Open Access Journals (Sweden)

    Golnaz Karimi

    2015-06-01

    Full Text Available Background: Toxic and hazardous heavy metals like arsenic, lead, mercury, zinc, chromium and iron are found in a variety of personal care products, e.g. lipstick, whitening toothpaste, eyeliner and nail color. The nails absorb the pigments of nail polishes and vaporized or soluble metals can easily pass it. The goal of this survey was to assess whether the different colors of nail polishes comply with maximum concentrations of heavy metals in the EPA’s guidelines. Methods: 150 samples of different popular brands of nail polishes in 13 colors (yellow, beige, silver, pink, white, violet, brown, golden, green, black, colorless, red and blue were randomly purchased from beauty shops in Tehran City, Iran, in 2014. Microwave digestion EPA method 3051 was used by a microwave oven to determine the amount of 5 heavy metals; Nickel, Chromium, Lead, Arsenic and Cadmium. One-way ANOVA, Two-way ANOVA, hierarchical cluster, and principal component analyses were applied by Statistica 7.0 software. Results: The concentrations of chrome, lead, nickel and arsenic showed significant differences between the colors (p<0.05. In all studied samples, the level of cadmium was beyond the safe maximum permissible limit (MPS, but no significance difference in the cadmium content was identified. Conclusion: Due to the high concentrations of toxic metals in many brands of nail polishes, meticulous quality control is recommended for these beauty products.

  8. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bidar, G. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France); Garcon, G. [LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France); Pruvot, C. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); Dewaele, D. [Centre Commun de Mesures, MREI 1, Universite du Littoral-Cote d' Opale, 145, Avenue Maurice Schumann, 59140 Dunkerque (France); Cazier, F. [Centre Commun de Mesures, MREI 1, Universite du Littoral-Cote d' Opale, 145, Avenue Maurice Schumann, 59140 Dunkerque (France); Douay, F. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); Shirali, P. [LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France)]. E-mail: pirouz.shirali@univ-littoral.fr

    2007-06-15

    The use of a vegetation cover for the management of heavy metal contaminated soils needs prior investigations on the plant species the best sustainable. In this work, behaviors of Trifolium repens and Lolium perenne, growing in a metal-polluted field located near a closed lead smelter, were investigated through Cd, Pb and Zn-plant metal concentrations and their phytotoxicity. In these plant species, metals were preferentially accumulated in roots than in shoots, as follow: Cd > Zn > Pb. Plant exposure to such metals induced oxidative stress in the considered organs as revealed by the variations in malondialdehyde levels and superoxide dismutase activities. These oxidative changes were closely related to metal levels, plant species and organs. Accordingly, L. perenne seemed to be more affected by metal-induced oxidative stress than T. repens. Taken together, these findings allow us to conclude that both the plant species could be suitable for the phytomanagement of metal-polluted soils. - Usefulness of Trifolium repens and Lolium perenne for the phytomanagement of heavy metal-contaminated soils.

  9. Heavy Metals Contamination of Road-Deposited Sediments

    Directory of Open Access Journals (Sweden)

    Jonathan Yisa

    2010-01-01

    Full Text Available Problem statement: Impact of anthropogenic activities on man and his environment as a result of the growing rate of urbanization in Bida, Nigeria is of a great concern. Street sediments that accumulate along pavements in urban environments have the potential to provide considerable loadings of heavy metals to receiving waters and water bodies, particularly with changing environmental conditions. The objective of this research was to evaluate the streets sediment contamination in Bida, Nigeria. Approach: Fifty five sediment samples were collected from four roads that experience intense traffic conditions and analyzed in the laboratory for some heavy metals by atomic absorption Spectrophotometric method and multivariate statistical techniques. Results: The overall decreasing metal concentration order was: Pb > Mn > Fe > Zn > Cu > Cr > Ni > Cd. Significantly positive correlation was only found between Cd and organic matter (r = 0.580. Factor analysis shows that road deposited sediment quality data consists of four major components accounting for 77.11% of cumulative variance of the contamination: Ni, pH and silt + clay; Cr, Fe and organic matter; Mn and Zn and finally Cu and Pb. Discriminant analysis revealed that the first two Discriminate Functions (DF1 and DF2 contain 90.61% information for Cu, Pb and Ni accumulation. Conclusion: This study concluded that the concentrations of all metals measured in Bida can be considered to present a low level of contamination and that multivariate statistical analysis is a useful tool in understanding contaminants relationships.

  10. Assessing the bioavailability and risk from metal contaminated soils and dusts#

    Science.gov (United States)

    Exposure to contaminated soil and dust is an important pathway in human and ecological risk assessment and often is the "risk-driver" for metal contaminated soil. Site-specific soil physical and chemical characteristics, as well as biological factors, determine the bioavailabilit...

  11. Heavy metal contamination in a vulnerable mangrove swamp in South China.

    Science.gov (United States)

    Wang, Yutao; Qiu, Qiu; Xin, Guorong; Yang, Zhongyi; Zheng, Jing; Ye, Zhihong; Li, Shaoshan

    2013-07-01

    Concentrations of six heavy metals (Cu, Ni, Zn, Cd, Cr, and Pb) in sediments and fine roots, thick roots, branches, and leaves of six mangrove plant species collected from the Futian mangrove forest, South China were measured. The results show that both the sediments and plants in Futian mangrove ecosystem are moderately contaminated by heavy metals, with the main contaminants being Zn and Cu. All investigated metals showed very similar distribution patterns in the sediments, implying that they had the same anthropogenic source(s). High accumulations of the heavy metals were observed in the root tissues, especially the fine roots, and much lower concentrations in the other organs. This indicates that the roots strongly immobilize the heavy metals and (hence) that mangrove plants possess mechanisms that limit the upward transport of heavy metals and exclude them from sensitive tissues. The growth performance of propagules and 6-month-old seedlings of Bruguiera gymnorhiza in the presence of contaminating Cu and Cd was also examined. The results show that this plant is not sufficiently sensitive to heavy metals after its propagule stage for its regeneration and growth to be significantly affected by heavy metal contamination in the Futian mangrove ecosystem. However, older mangrove seedlings appeared to be more metal-tolerant than the younger seedlings due to their more efficient exclusion mechanism. Thus, the effects of metal contamination on young seedlings should be assessed when evaluating the risks posed by heavy metals in an ecosystem.

  12. Electrochemical Analysis of Heavy Metal Contaminants in Plant Matter

    Science.gov (United States)

    Burghard, C. J.; Atkinson, D. B.; Zhu, X.

    2016-12-01

    Cadmium and Lead are toxic heavy metals found in the aerosol phase that can cause cancer (Cd) or neurological and developmental problems (Pb). In October 2015 the Oregon DEQ and USFS performed a follow-up investigation after a 2013 USFS moss study in Portland, Oregon showed high levels of Cadmium and Lead in a neighborhood in the Southeast part of the city. Findings from the ODEQ study implicated emissions from the Bullseye Glass Factory, and to a lesser extent, the Uroboros Glass Studio in producing the elevated Cadmium and Lead. These facilities were ordered to stop production until particulate filtering systems could be installed. Once production had ceased, ambient Cadmium concentrations dropped from 29.4 ng/m3 (49 times higher than the 0.6 ng/m3 Oregon Benchmark) to 1.1 ng/m3 near one factory and 0.67 ng/m3 near the other. The emissions of these metals were highly concentrated in an approximate 0.5 kilometer radius around the Bullseye facility and contamination of edible produce from gardens in the area is of concern. A simple extraction method, paired with Anodic Stripping Voltammetry was used to determine the levels of the two metals in produce and other plants from the area. Preliminary findings indicate that low levels of lead and cadmium are detectable in the vegetation samples from the area.

  13. Studies on heavy metal contamination in Godavari river basin

    Science.gov (United States)

    Hussain, Jakir; Husain, Ikbal; Arif, Mohammed; Gupta, Nidhi

    2017-09-01

    Surface water samples from Godavari river basin was analyzed quantitatively for the concentration of eight heavy metals such as arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc using atomic absorption spectrophotometer. The analyzed data revealed that iron and zinc metals were found to be the most abundant metals in the river Godavari and its tributaries. Iron (Fe) recorded the highest, while cadmium (Cd) had the least concentration. Arsenic, cadmium, chromium, iron and zinc metals are within the acceptable limit of BIS (Bureau of Indian Standards (BIS) 1050 (2012) Specification for drinking water, pp 1-5). The analysis of Godavari river and its tributary's water samples reveals that the water is contaminated at selected points which are not suitable for drinking. Nickel and Copper concentration is above acceptable limit and other metal concentration is within the acceptable limit. Comprehensive study of the results reveals that out of 18 water quality stations monitored, water samples collected at 7 water quality stations are found to be within the permissible limit for all purposes. While Rajegaon, Tekra, Nandgaon, P. G. Bridge, Bhatpalli, Kumhari, Pauni, Hivra, Ashti, Bamini, and Jagda stations were beyond the desirable limit due to presence of copper and nickel metals. The contents of copper metal ions were higher at some water quality stations on Wunna river (Nandgaon); Wardha river (Hivra) and Wainganga river (Kumhari, Pauni, Ashti) during Feb. 2012, while nickel concentration during Feb. 2012, June 2012, March 2013 and Aug. 2013 at some water quality stations on rivers Bagh, Indravati, Pranhita, Wunna, Penganga, Peddavagu, Wainganga and Wardha. It can be concluded that rapid population growth and industrialization have brought about resource degradation and a decline in environmental quality.

  14. Changes in soil properties and plant uptake of heavy metals on ...

    African Journals Online (AJOL)

    Administrator

    Full Length Research Paper. Changes in soil ... In a study to evaluate the contributions of open municipal waste dump to soil heavy metals ... Key words: Heavy metal contamination, seasonal changes, soil pH, soil texture, specific adsorption.

  15. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    Science.gov (United States)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  16. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    Indian Academy of Sciences (India)

    Soma Giri; Abhay Kumar Singh; Mukesh Kumar Mahato

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (Igeo), contamination factors (CF), pollution load index (PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and Igeo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  17. Assessment of heavy metal pollution in soils along major roadside ...

    African Journals Online (AJOL)

    EJIRO

    Key words: Heavy metal contamination, roadside soils, enrichment factors, contamination factor, pollution load index ... The objectives of the present work were to: (1) Assess heavy metal ..... the basis of Varimax orthogonal rotation with Kaiser.

  18. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  19. Modeling Adsorption Kinetics (Bio-remediation of Heavy Metal Contaminated Water)

    Science.gov (United States)

    McCarthy, Chris

    My talk will focus on modeling the kinetics of the adsorption and filtering process using differential equations, stochastic methods, and recursive functions. The models have been developed in support of our interdisciplinary lab group which is conducting research into bio-remediation of heavy metal contaminated water via filtration through biomass such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). Funding: CUNY Collaborative Incentive Research Grant.

  20. Assessment of Water Quality Index and Heavy Metal Contamination in Active and Abandoned Iron Ore Mining Sites in Pahang, Malaysia

    Directory of Open Access Journals (Sweden)

    Madzin Zafira

    2017-01-01

    Full Text Available The composition of heavy metals in water and surface soils of iron ore mining sites were investigated to evaluate on the potential occurrence of heavy metal contamination. Physico-chemical characteristics of the waters were also investigated to determine the current status of water quality index (WQI of the sites. Samples of water and surface soils of active mine (Kuala Lipis and abandoned mine (Bukit Ibam in Pahang were collected at four locations, respectively. The physico-chemical parameters measured for WQI were pH, dissolved oxygen, biological oxygen demand (BOD, chemical oxygen demand (COD, suspended solids (SS, and ammoniacal nitrogen (AN. The water quality parameters were classified according to the Department of Environment (DOE water quality classification. The study revealed that most of the sites in Bukit Ibam and Kuala Lipis were categorized as clean to slightly polluted. On the other hand, heavy metal analysis in water showed that aluminium and manganese level in both sites have exceeded the allowable limits for raw and treated water standards by the Ministry of Health. For heavy metal compositions in soils showed most of the heavy metal concentrations were below the recommended guideline values except for lead, arsenic, zinc and copper.

  1. Microbial and heavy metal contamination in commonly consumed traditional Chinese herbal medicines.

    Science.gov (United States)

    Ting, Adelinesuyien; Chow, Yiingyng; Tan, Weishang

    2013-02-01

    The increasing popularity and widespread use of traditional Chinese herbs as alternative medicine have sparked an interest in understanding their biosafety, especially in decoctions that are consumed. This study aimed to assess the level of microbial and heavy metal contamination in commonly consumed herbal medicine in Malaysia and the effects of boiling on these contamination levels. Four commonly consumed Chinese herbal medicine in Malaysia-"Eight Treasure Herbal Tea", "Herbal Tea", Xiyangshen (Radix Panacis Quinquefolii) and Dangshen (Radix Codonopsis) were evaluated in this study. Herbal medicines were prepared as boiled and non-boiled decoctions, and their microbial enumeration and heavy metal detection were conducted with plate assay and atomic absorption spectroscopy, respectively. Findings revealed that herbal medicines generally had 6 log10cfu/mL microbial cells and that boiling had significantly reduced microbial contaminants, where no Bacillus spp., Staphylococcus spp. and Clostridium spp. were recovered. Heavy metals such as Mn, Cu, Cd, Pb, Fe and Zn were also detected from all the samples, generally in low concentrations (medicines generally have microbial and heavy metal contaminants. However, the boiling process to generate decoctions was able to successfully reduce the number of microbes and Cu, ensuring safety of herbal medicines for consumption.

  2. Tungsten- and cobalt-dominated heavy metal contamination of mangrove sediments in Shenzhen, China.

    Science.gov (United States)

    Xu, Songjun; Lin, Chuxia; Qiu, Penghua; Song, Yan; Yang, Wenhuai; Xu, Guanchang; Feng, Xiaodan; Yang, Qian; Yang, Xiu; Niu, Anyi

    2015-11-15

    A baseline investigation into heavy metal status in the mangrove sediments was conducted in Shenzhen, China where rapid urban development has caused severe environmental contamination. It is found that heavy metal contamination in this mangrove wetland is characterized by the dominant presence of tungsten and cobalt, which is markedly different from the neighboring Hong Kong and other parts of the world. The vertical variation pattern of these two metals along the sediment profile differed from other heavy metals, suggesting an increasing influx of tungsten and cobalt into the investigated mangrove habitat, as a result of uncontrolled discharge of industrial wastewater from factories that produce or use chemical compounds or alloys containing these two heavy metals. Laboratory simulation experiment indicated that seawater had a stronger capacity to mobilize sediment-borne tungsten and cobalt, as compared to deionized water, diluted acetic, sulfuric and nitric acids.

  3. The occurrence and sources of heavy metal contamination in peri-urban and smelting contaminated sites in Baoji, China.

    Science.gov (United States)

    Deng, Wenbo; Li, Xuxiang; An, Zhisheng; Yang, Liu

    2016-04-01

    Atmospheric deposition, soil, plant, ore, and coal cinder samples were collected and analyzed to determine heavy metal concentrations in a typical peri-urban industrial area of Baoji. The lead isotope ratio method was employed to trace the source and dispersion of atmospheric heavy metal contamination. Results showed that concentrations of lead, zinc, cadmium, and copper in atmospheric deposition significantly exceed soil background levels and Chinese soil environmental quality standards. The most polluted sites were located in the downwind direction of the smelter, which confirmed this site to be the major pollution source for this area. The other source of heavy metals in this area is a power plant. The investigation into lead isotopes revealed compositions in atmospheric deposition samples were similar to those in ores and coal cinders identifying smelting as the predominant pollution source of lead with the power plant having a minimal effect. Similar isotopic compositions were also found in plants, indicating that the major source of lead in plants was derived from atmospheric deposition, although some evidence was found to suggest uptake from the soil to the roots as an additional contaminant pathway.

  4. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Junhui, E-mail: liuzhe2000_2005@163.com [College of Life Sciences, Zhejiang University, Hangzhou 310058 (China) and College of Life Sciences, Taizhou University, Linhai 317000 (China); Hang Min, E-mail: minhang@zju.edu.cn [College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2009-06-15

    Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg{sup -1}), and weakly contaminated with Cu (256.36 mg kg{sup -1}) and Zn (209.85 mg kg{sup -1}). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.

  5. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  6. Responses and Remediating Effects of Pennisetum hydridum to Application of Heavy-Metals-Contaminated Chicken Manures and Sewage Sludges

    Directory of Open Access Journals (Sweden)

    WANG Xi-na

    2015-10-01

    Full Text Available Pennisetum hydridum is a rapid growth, large biomass and multi-stress resistant plant. A pot experiment was carried out to investigate the bioremediation effects of P. hydridum by 2 kg heavy metal (Cd, Cu, Pb, and Zn contaminated chicken manure or sewage sludge mixing with 18 kg of lateritic red soil. The growth and heavy metal uptake of P. hydridum were measured in order to assess the phytoremediation potential. Results showed that P. hydridum growed well in all treatments and the best appeared in chicken manure. The biomass of plant in treatments with chicken manure, sewage sludge, and the control was 736.56±29.21, 499.99±32.01 g·pot-1, and 466.89±37.08 g·pot-1, respectively. The heavy metals in the soils were reduced significantly at the 200 d after planting P. hydridum in fall. The removing percentage of total Zn, Cu, Pb, and Cd in soil was 1.90%~4.52%, 3.96%~5.72%, 0.53%~1.24% and 10.34%~17.14% respectively. The best effect of removing Zn, Cd and Pb appeared in chicken manure treatment was 89.74, 0.68 mg and 19.18 mg. The best effect of removing Cu appeared in sludge treatment was 16.84 mg. The results indicated that P. hydridum could be used for removement of the heavy metals from the heavy metal contaminated soils which could be considered as an potential plant for bioremediation of heavy metals.

  7. Sensitized ZnO nanorod assemblies to detect heavy metal contaminated phytomedicines: spectroscopic and simulation studies.

    Science.gov (United States)

    Bagchi, Damayanti; Maji, Tuhin Kumar; Sardar, Samim; Lemmens, Peter; Bhattacharya, Chinmoy; Karmakar, Debjani; Pal, Samir Kumar

    2017-01-18

    The immense pharmacological relevance of the herbal medicine curcumin including anti-cancer and anti-Alzheimer effects, suggests it to be a superior alternative to synthesised drugs. The diverse functionalities with minimal side effects intensify the use of curcumin not only as a dietary supplement but also as a therapeutic agent. Besides all this effectiveness, some recent literature reported the presence of deleterious heavy metal contaminants from various sources in curcumin leading to potential health hazards. In this regard, we attempt to fabricate ZnO based nanoprobes to detect metal conjugated curcumin. We have synthesized and structurally characterized the ZnO nanorods (NR). Three samples namely curcumin (pure), Zn-curcumin (non-toxic metal attached to curcumin) and Hg-curcumin (toxic heavy metal attached to curcumin) were prepared for consideration. The samples were electrochemically deposited onto ZnO surfaces and the attachment was confirmed by cyclic voltammetry experiments. Moreover, to confirm a molecular level interaction picosecond-resolved PL-quenching of ZnO NR due to Förster Resonance Energy Transfer (FRET) from donor ZnO NR to the acceptor curcumin moieties was employed. The attachment proximity of ZnO NR and curcumin moieties depends on the size of metals. First principles analysis suggests a variance of attachment sites and heavy metal Hg conjugated curcumin binds through a peripheral hydroxy group to NR. We fabricated a facile photovoltaic device consisting of ZnO NR as the working electrode with Pt counter electrode and iodide-triiodide as the electrolyte. The trend in photocurrent under visible light illumination suggests an enhancement in the case of heavy metal ions due to long range interaction and greater accumulation of charge at the active electrode. Our results provide a detailed physical insight into interfacial processes that are crucial for detecting heavy-metal attached phytomedicines and are thus expected to find vast

  8. Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China.

    Science.gov (United States)

    He, Bei; Li, Ruili; Chai, Minwei; Qiu, Guoyu

    2014-06-01

    Mangrove plants play an important role in heavy metal maintenance in a mangrove ecosystem. To evaluate the characteristics of heavy metal contamination in the Futian mangrove forest, Shenzhen, China, eight heavy metals in mangrove sediments and plants were monitored, including essential elements such as Cu and Zn, and non-essential elements such as Cr, Ni, As, Cd, Pb and Hg. The results showed that the heavy metals exhibited the following scheme: Zn > As > Cu ≈ Cr > Pb > Ni > Cd ≈ Hg in sediment cores, among which Cd, As, Pb and Hg contents were nearly ten times higher than the background values. There was no significant difference in metal maintenance capability between native and exotic species. In mangrove plants' leaves and stems, concentrations of Cu, Zn and As were higher than other heavy metals. The low bioconcentration factors for most heavy metals, except for Cr, implied the limited ability of heavy metal accumulation by the plants. Mangrove plants seem to develop some degree of tolerance to Cr. The factor analysis implies that anthropogenic influences have altered metal mobility and bioavailability.

  9. 常见重金属土壤污染及植物修复研究进展%Research Progress of Common Heavy Metals Contaminated Soil and Phytoremediation

    Institute of Scientific and Technical Information of China (English)

    李开军

    2011-01-01

    Removing heavy metals in soil by using hyperaecumulator has drawn extensive attention from all over the world. This paper briefly reviews the famous events of metal pollution in soil at home and abroad, discusses the soureeof heavy metals pollution in soil from four aspects,and elaborates the phytoremediation and application from aspects of the migration,transport of heavy metals ion, selection of hyperaccumulator and telltale effects of the plants. Finally,it discusses the key problems existing in this field.%指出了利用超富集植物去除土壤中的重金属已经引起国内外的广泛关注。回顾了国内外土壤重金属污染的事件,从4个方面论述了土壤重金属的污染来源,从重金属离子的迁移转运、超富集重金属植物的选择和植物的预警作用等方面探讨了超富集植物修复和应用,并对该领域中存在的问题进行了讨论。

  10. 土壤-植物体系中农药和重金属污染研究现状及展望%Proceedings and Prospects of Pesticides and Heavy Metals Contamination in Soil-Plant System

    Institute of Scientific and Technical Information of China (English)

    潘攀; 杨俊诚; 邓仕槐; 姜慧敏; 张建峰; 李玲玲; 沈飞

    2011-01-01

    农药、重金属已成为当今农业生态系统中重要的污染物质,国内外科学家对其进行了大量卓有建树的研究,特别是在土壤-植物系统中的研究受到较多关注.通过就农药和重金属对土壤微生物、土壤动物、土壤酶活性和植物的生理生化指标的影响进行的综合分析和阐述,系统剖析了其产生毒害机理和影响的因素,在此基础上提出今后相关研究中有待加强的重点,包括农药对非靶标生物毒害机理、农药降解中间产物的环境风险以及农药和重金属的迁移转化机理等.%Pesticides and heavy metals beeing considered as serious pollutants in agro-ecosystem, it had been studied massively over the world, especially in soil-plant system. The impact of pesticides and heavy metals on soil microbes, soil animals, soil enzymatic activity, and physiological and biochemical characters of plant were analyzed and discussed in this review, as well as their toxicological mechanism and influencing factors. Based on above, toxicological mechanism of pesticides on non-target, environmental risk of pesticides degradation products, and transformation mechanism of pesticides and heavy metals in soil-plant system were proposed as key areas in further study.

  11. Effect of Fertilization Measures on Heavy Metals Contamination of Soils and Plant System%施肥措施对重金属污染土壤-植物系统影响的研究进展

    Institute of Scientific and Technical Information of China (English)

    俞花美; 焦鹏; 葛成军; 陈淼; 陈秋波; 宋启道

    2012-01-01

    植物修复作为一种原位修复方法,因其投入成本低、拥有良好的经济效益和生态协调性等优点而成为国内外研究热点,在重金属污染农田实地得到广泛应用。本文综述施肥农艺措施强化重金属污染土壤植物修复以及对土壤-植物系统影响的研究进展,如土壤重金属含量和生物有效性的影响等,以便进一步提高植物修复效率,为今后规模化修复重金属污染农田土壤提供参考。%Phytoremediation,as a method of in situ repair,has been a research hot spot at home and abroad,not only for the low investment cost,but also the good economic efficiency and ecological coordination and other advantages,which has been widely used to control the heavy metal pollution in agricultural fields.This article focuses on an overview research of phytoremediation in soil contaminated by heavy metals,and effects of fertilizer on soil bioavailability of heavy metals,while agricultural fertilizers measures were adopted to strengthen the remediation effect,then to further improve the efficiency of phytoremediation,and provide a reference for large-scale restoration of soil which contaminated by heavy metals in the future.

  12. Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community.

    Science.gov (United States)

    Hemme, Christopher L; Green, Stefan J; Rishishwar, Lavanya; Prakash, Om; Pettenato, Angelica; Chakraborty, Romy; Deutschbauer, Adam M; Van Nostrand, Joy D; Wu, Liyou; He, Zhili; Jordan, I King; Hazen, Terry C; Arkin, Adam P; Kostka, Joel E; Zhou, Jizhong

    2016-04-05

    Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe(2+)/Pb(2+) permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co(2+)/Zn(2+)/Cd(2+) efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome. Lateral gene transfer (LGT), along with positive selection and gene duplication, are the three main

  13. Modelling suspended-sediment propagation and related heavy metal contamination in floodplains: a parameter sensitivity analysis

    Science.gov (United States)

    Hostache, R.; Hissler, C.; Matgen, P.; Guignard, C.; Bates, P.

    2014-09-01

    Fine sediments represent an important vector of pollutant diffusion in rivers. When deposited in floodplains and riverbeds, they can be responsible for soil pollution. In this context, this paper proposes a modelling exercise aimed at predicting transport and diffusion of fine sediments and dissolved pollutants. The model is based upon the Telemac hydro-informatic system (dynamical coupling Telemac-2D-Sysiphe). As empirical and semiempirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. An innovative point in this study is the assessment of the usefulness of dissolved trace metal contamination information for model calibration. Moreover, for supporting the modelling exercise, an extensive database was set up during two flood events. It includes water surface elevation records, discharge measurements and geochemistry data such as time series of dissolved/particulate contaminants and suspended-sediment concentrations. The most sensitive parameters were found to be the hydraulic friction coefficients and the sediment particle settling velocity in water. It was also found that model calibration did not benefit from dissolved trace metal contamination information. Using the two monitored hydrological events as calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolve pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment deposition in the floodplain and a soil contamination map shows that the preferential zones for deposition identified by the model are realistic.

  14. A sensitive rapid on-site immunoassay for heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Blake, R.; Blake, D.; Flowers, G.

    1996-05-02

    This project concerns the development of immunoassays for heavy metals that will permit the rapid on-site analysis of specific heavy metals, including lead and chromium in water and soil samples. 2 refs.

  15. Oxytetracycline Toxicity and its Effect on Phytoremediation by Sedum Plumbizincicola and Medicago Sativa in Metal Contaminated Soil.

    Science.gov (United States)

    Ma, Tingting; Zhou, Liqiang; Chen, Li 'ke; Li, Zhu; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-10-05

    Excessive use of antibiotics potentially threatens human health, agricultural production and soil phytoremediation. This arouses concern over the potential adverse effects of a commonly used antibiotic, oxytetracycline (OTC), on plants used for soil remediation and possible stimulation of antibiotic resistance genes in soils. A greenhouse experiment was conducted to investigate different rates (0, 1, 5, and 25 mg kg-1) and frequencies (one single high and daily low application) of OTC addition to soil on phytoremediation of a heavy metal contaminated soil by Sedum plumbizincicola and/or Medicago sativa (alfalfa). After 90 days both Cd and Zn were substantially removed by phytoextraction into S. plumbizincicola shoots especially at the high OTC (25 mg kg-1) treatment which also led to inhibition of anti-oxidative enzyme activities in both plant species. Soil microbial activity decreased significantly with the addition of OTC and this was ameliorated by planting alfalfa and S. plumbizincicola together. OTC at Alfalfa exhibited greater detoxification ability and effectiveness in soil microbial activity promotion than S. plumbizincicola with intercropping. Phytoremediation by alfalfa and S. plumbizincicola in association can both promote the removal of heavy metals and also alleviate the toxic effects of pollutants to plants and soil microbes even at relatively high soil OTC concentrations.

  16. Optimal selection of biochars for remediating metals contaminated mine soils

    Science.gov (United States)

    Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment due to possible exposure to the residuals of heavy metal extraction. Historically, a variety of chemical and biological methods have been used to reduce ...

  17. Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community

    Directory of Open Access Journals (Sweden)

    Christopher L. Hemme

    2016-04-01

    Full Text Available Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe2+/Pb2+ permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co2+/Zn2+/Cd2+ efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome.

  18. Heavy metal contamination in sandy beach macrofauna communities from the Rio de Janeiro coast, Southeastern Brazil.

    Science.gov (United States)

    Cabrini, Tatiana M B; Barboza, Carlos A M; Skinner, Viviane B; Hauser-Davis, Rachel A; Rocha, Rafael C; Saint'Pierre, Tatiana D; Valentin, Jean L; Cardoso, Ricardo S

    2017-02-01

    We evaluated concentrations of eight heavy metals Cr, Zn, Pb, Ni, Cu, Cd, Co and V, in tissues of representative macrofauna species from 68 sandy beaches from the coast of Rio de Janeiro state. The links between contamination levels and community descriptors such as diversity, evenness, density and biomass, were also investigated. Metal concentrations from macrofaunal tissues were compared to maximum permissible limits for human ingestion stipulated by the Brazilian regulatory agency (ANVISA). Generalized linear models (GLM's) were used to investigate the variability in macrofauna density, richness, eveness and biomass in the seven different regions. A non-metric multidimensional scaling analysis (n-MDS) was used to investigate the spatial pattern of heavy metal concentrations along the seven regions of Rio de Janeiro coast. Variation partitioning was applied to evaluate the variance in the community assemblage explained by the environmental variables and the heavy metal concentrations. Our data suggested high spatial variation in the concentration of heavy metals in macrofauna species from the beaches of Rio de Janeiro. This result highlighted a diffuse source of contamination along the coast. Most of the metals concentrations were under the limits established by ANVISA. The variability in community descriptors was related to morphodynamic variables, but not with metal contamination values, indicating the lack of direct relationships at the community level. Concentration levels of eight heavy metals in macrofauna species from 68 sandy beaches on Rio de Janeiro coast (Brazil) were spatially correlated with anthropogenic activities such as industrialization and urbanization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Proximal spectral sensing to monitor phytoremediation of metal - contaminated soils

    NARCIS (Netherlands)

    Rathod, P.H.; Rossiter, D.; Noomen, M.; van der Meer, F.D.

    2013-01-01

    Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal

  20. Plant-microorganism combined remediation of heavy metals-contaminated soils: Its research progress%重金属污染土壤的植物-微生物联合修复研究进展

    Institute of Scientific and Technical Information of China (English)

    牛之欣; 孙丽娜; 孙铁珩

    2009-01-01

    Bioremediation is one of the important means in controlling soil heavy metals pollu-tion, which has the advantages of environmentally friendly and cost-effective, and attracted much attention around the world. This paper discussed the principles and forms of plant-microorganism combined remediation, and introduced the research progress on the behaviors of heavy metals in soils, the physiological and biochemical characteristics of plants, and the changes in rhizosphere environment under the remediation. Some perspectives for future research were proposed.%重金属污染土壤的生物修复技术是土壤污染整治的重要手段之一,是近几年来国内外研究的热点,同时也是现今土壤污染治理中环境友好、成本低廉的技术.本文主要论述了重金属污染土壤的植物-微生物联合修复的原理与形式,介绍了此技术中土壤重金属污染物特性、植物本身生理生化特性及植物根际环境等影响因素的研究进展,并讨论了植物-微生物联合修复今后的研究重点.

  1. CHLOROPLAST STRUCTURAL AND FUNCTIONAL CHANGES AS BIOMARKERS OF HEAVY METAL CONTAMINATION

    Directory of Open Access Journals (Sweden)

    M. V.

    2016-02-01

    Full Text Available The aim was to confirm the hypothesis of possibility to use the chloroplast structural and functional changes in higher plants as biomarkers to assess heavy metal contamination. Chloroplast ultra-structural changes of Pisum sativum L were detected using the transmission electron microscopy. This work deals with studies of chloroplast structure responses to a high content of copper (250 μmМ and zinc (400 μmМ. Data on changes in the structure of chloroplasts in particular, heterogeneity in the grain thylakoid packing, increase of interthylakoid gaps and thickness of chloroplast grain thylakoids in comparison with controls were obtained. The results of studies on structural and functional chloroplasts changes offer challenges for their use as markers for an early diagnostics of abiotic stress effects and in biotechnological studies to produce novel advanced varieties of crops resistant to stress.

  2. EFFECT OF CONSUMPTION OF HEAVY METALS CONTAMINATED FISH (TILAPIA OREOCHROMIS ON METABOLIC PARAMETERS IN RABBITS.

    Directory of Open Access Journals (Sweden)

    Bolawa O.E

    2013-08-01

    Full Text Available This research paper presents the biochemical effect of the consumption of heavy metals contaminated fish on metabolic parameters in rabbit. Total glucose, cholesterol, protein and levels of alkaline phosphate, alkaline aminotransferase (ALT together with aspartate aminotransferase (AST in the serum were measured. Compared with the control a significant decrease of total protein and total cholesterol (p was ascertained in the serum of the experimental groups. Total glucose level was level was significantly increased in the serum of the experimental (p . The values of alkaline phosphate, ALT and AST significantly increased in the serum of the groups. The above results on the biochemical consumption profile indicate the toxic effect of the consumption of these contaminated fishes in rabbits.

  3. Spatial Variability and Evaluation of Soil Heavy Metal Contamination in the Urban-transect of Shanghai%上海城市样带土壤重金属空间变异特征及污染评价

    Institute of Scientific and Technical Information of China (English)

    柳云龙; 章立佳; 韩晓非; 庄腾飞; 施振香; 卢小遮

    2012-01-01

    为揭示城市化、工业化等人为活动对土壤环境质量的影响,选择能反映上海城郊乡梯度差异的城市样带,采用地统计学方法对表层土壤样品Cu、Zn、Pb、Cr、Mn共5种重金属的空间变异结构和分布格局进行了分析,并利用单因子指数法和内梅罗综合指数法评价了土壤重金属的污染程度.结果表明:土壤样品Cu、Pb、Zn、Cr、Mn这5种重金属平均含量分别为27.80、28.86、99.36、87.72、556.97 mg.kg-1.表层土壤Cu、Cr、Mn、Pb、Zn均属中等变异,Mn、Cr呈正态分布,Cu、Pb、Zn呈对数正态分布;半方差函数模型拟合结果显示Cu、Pb、Zn、Cr符合线状模型,Mn符合指数模型.通过泛克里格插值得到城市样带表层土壤重金属含量空间分布图,发现Cu呈条带状,Cr、Mn呈岛状,Pb、Zn呈条带和岛状分布相结合的特点.土壤污染评价结果说明土壤Cr、Zn、Pb污染相对严重.土壤Cr、Zn、Pb、Mn和Cu之间呈显著相关,土壤重金属之间表现为复合污染.土壤重金属污染城郊乡梯度差异明显,工业化、城市化与城市土壤重金属空间分布密切相关.%Soil heavy metal concentrations along the typical urban-transect in Shanghai were analyzed to indicate the effect of urbanization and industrialization on soil environment quality.Spatial variation structure and distribution of 5 heavy metals(Cu,Cr,Mn,Pb and Zn) in the top soil of urban-transect were analyzed.The single pollution index and the composite pollution index were used to evaluate the soil heavy metal pollution.The results showed that the average concentrations of the Cu,Pb,Zn,Cr,Mn were 27.80,28.86,99.36,87.72,556.97 mg·kg-1,respectively.Cu,Cr,Mn,Pb and Zn were medium in variability,Mn was distributed lognormally,while Cu,Cr,Pb and Zn were distributed normally.The results of semivariance analysis showed that Mn was fit for the exponential model,Cr,Pb,Cu and Zn were fit for the linear model.The spatial distribution

  4. Heavy metal contamination of vegetables irrigated by urban stormwater: a matter of time?

    Directory of Open Access Journals (Sweden)

    Minna Tom

    Full Text Available Urban stormwater is a crucial resource at a time when climate change and population growth threaten freshwater supplies; but there are health risks from contaminants, such as toxic metals. It is vitally important to understand how to use this resource safely and responsibly. Our study investigated the extent of metal contamination in vegetable crops irrigated with stormwater under short- and long-term conditions. We created artificially aged gardens by adding metal-contaminated sediment to soil, simulating accumulation of metals in the soil from irrigation with raw stormwater over zero, five and ten years. Our crops--French bean (Phaseolus vulgaris, kale (Brassica oleracea var. acephala, and beetroot (Beta vulgaris--were irrigated twice a week for 11 weeks, with either synthetic stormwater or potable water. They were then tested for concentrations of Cd, Cr, Pb, Cu and Zn. An accumulation of Pb was the most marked sign of contamination, with six of nine French bean and seven of nine beetroot leaf samples breaching Australia's existing guidelines. Metal concentration in a crop tended to increase with the effective age of the garden; but importantly, its rate of increase did not match the rate of increase in the soil. Our study also highlighted differences in sensitivity between different crop types. French bean demonstrated the highest levels of uptake, while kale displayed restrictive behaviour. Our study makes it clear: irrigation with stormwater is indeed feasible, as long as appropriate crops are selected and media are frequently turned over. We have also shown that an understanding of such risks yields meaningful information on appropriate safeguards. A holistic approach is needed--to account for all routes to toxic metal exposure, including especially Pb. A major outcome of our study is critical information for minimising health risks from stormwater irrigation of crops.

  5. Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Guiwei Qu

    2009-01-01

    Full Text Available To develop cost-effective techniques that contribute to phytostabilization of severely metal-contaminated soils is a necessary task in environmental research. Hydrophilic insoluble polymers have been used for some time in diapers and other hygienic products and to increase the water-holding capacity of coarse-textured soils. These polymers contain groups, such as carboxyl groups, that are capable of forming bonds with metallic cations, thereby decreasing their bioavailability in soils. The use of polyacrylate polymers as soil amendments to restore metal-contaminated soils has been investigated in the Technical University of Lisbon since the late nineties. Plant growth and plant nutrients concentrations, extractable levels of metals in soil, and soil enzyme activities were used to monitor the improvement in soil quality following the application of these polymers. In contaminated soils, hydrophilic insoluble polymers can create microcosms that are rich in water and nutrients (counterions but only contain small concentrations of toxic elements; the conditions of these microenvironments are favorable to roots and microorganisms. In this paper we described the most relevant information available about this topic.

  6. Risk Assessment of Heavy Metal Contamination on Vegetables Grown in Long-term Wastewater Irrigated Urban Farming Sites in Accra, Ghana

    DEFF Research Database (Denmark)

    Lente, I.; Keraita, Bernard; Drechsel, P.

    2012-01-01

    Assessment was done of heavy-metal contamination and its related health risks in urban vegetable farming in Accra. Samples of irrigation water (n = 120), soil (n = 144) and five different kinds of vegetable (n = 240) were collected and analyzed for copper, zinc, lead, cadmium, chromium, nickel...... and cobalt. All water, soil and vegetable samples contained detectable concentrations of each of the seven heavy metals except for irrigation water which had no detectable chromium, cadmium and cobalt. All heavy-metal levels were below permissible limits except lead on vegetables which was 1.8–3.5 times...... with previous studies on the same sites, the data show that the risk from heavy metals is less significance than that from pathogen contamination which has positive implications for risk mitigation....

  7. EFFECTS OF ENDOPHYTIC BACTERIA ENHANCING PHYTOREMEDIATION OF HEAVY METAL CONTAMINATED SOILS%内生细菌强化重金属污染土壤植物修复研究进展

    Institute of Scientific and Technical Information of China (English)

    马莹; 骆永明; 滕应; 李秀华

    2013-01-01

    In recent years,phytoremediation has been highly recommended in remedying heavy metals polluted soils,because of its unique advantages; especially when the application of endophytic bacteria to the phytoremediation provides an effective new approach.During the phytoremediation process,endophytic bacteria alleviate heavy metal toxicity to the plant through its own metal resistance system by making use of their symbiotic relationships with the plant,and promote transport and accumulation of these metals in and growth of the plant under heavy metal stress by solubilizing phosphate,fixing nitrogen and producing phytohormones,siderophores,specific enzymes and antibiotics.This article reviews progresses of the recent researches on mechanisms of endophytic bacteria promoting growth of plants and resistance/ phytoaccumulation/translocation of heavy metals by plants,systematically analyzes mechanisms of the bacteria promoting phytoremediation of heavy metals polluted soils and further discusses prospects of the use of endophytic bacteria in phytoremedying heavy metals polluted soil and orientation of the research in future.%近年来,植物修复因其独特的优势备受推崇,尤其是当前植物内生细菌的应用为植物修复重金属污染土壤提供了有效的新方案.在植物修复过程中,耐重金属的内生细菌利用与植物的共生互惠关系,通过自身的抗性系统缓解重金属的毒性,促进植物对其迁移,并通过溶磷、固氮等途径改善植物营养以及分泌植物激素、铁载体、特异性酶、抗生素等作用,促进植物在逆境条件下的生长和对重金属的富集.本文综述了近年来国内外关于重金属抗性植物内生细菌促进植物生长、增强植物对重金属的抗性以及影响重金属在植物体内吸收、转运和积累的作用机制,系统分析了内生细菌促进植物修复重金属污染土壤的机理,并进一步讨论了植物内生细菌在重金属污染土壤植物

  8. 大冶矿区周边农田土壤和油菜重金属污染特征研究%Investigation on the Heavy Metal Contamination of Farmland Soil and Brassica Campestris Nearby Mining Areas in Dave City, China

    Institute of Scientific and Technical Information of China (English)

    孙清斌; 尹春芹; 邓金锋; 熊巧

    2012-01-01

    Many mining enterprises are distributed in Daye City because of the abundant mineral resources. With the development of industrialization, the environments nearby these enterprises were destroyed severely. Investigation was conducted to evaluate the heavy metal contamination of farmland soil and Brassica campestris plant around typical copper mining areas in Daye City. The results showed that the soils were contaminated with different heavy metals compared with soil natural background values of Hubei Province, and among them cadmium (Cd) was mostly contaminated, followed by copper(Cu) as second severely contaminated element. While using China National Standard (CNS) as an evaluation standard, the soils were contaminated with heavy metals except for Zn, Cr and Pb. Nemorow integrative index method was further employed to evaluate the heavy metal contamination level, and the result showed that all the tested soils were severely contaminated based on both soil natural background values and CNS as evaluation standard, with soil sample No. 2 as an exception, which was subjected to the moderate pollution level. The heavy metal concentrations varied in different parts of Brassica campestris, with a character of leaf>grain ≈ root for Cu, Pb, Zn, Cd, and Co, and seed>leaf>root for Mn. The concentrations of Cd, Pb, Cu and Zn in Brassica campestris were all exceeded the national food sanitation standard, and the exceed level for Cd and Pb were higher than Cu and Zn. The order of the enrichment coefficients was Mn>Zn>Cd>Ni>Cu>Pb>Co.%以大冶典型铜矿区为中心,辐射周边农田,探索农田土壤重金属污染特征及重金属在油菜中的积累变化规律.结果表明,以湖北省土壤背景值进行评价,土壤受到重金属不同程度的污染,其中Cd严重超标,Cu次之;采用国家二级标准进行评价,Zn、Cr和Pb未对土壤造成污染.进行内梅罗综合污染指数法评价发现,以土壤背景值为评价标准,各采样点均达到重金

  9. On-site analysis of heavy metal contaminated areas by means of total reflection X-ray fluorescence analysis (TXRF)

    Science.gov (United States)

    Stosnach, Hagen

    2006-11-01

    In this paper the possibilities and restriction for applying the low power TXRF spectrometer PicoTAX for the one-site analysis of heavy metal contaminated soils and sediments are evaluated. Basis for this evaluation is the Superfund Innovative Technology Evaluation (SITE) program, conducted by the U.S. Environmental Protection Protection Agency (US EPA). During a measurement campaign, performed under realistic conditions, 320 soil and sediment samples were analyzed. The task was the fast analysis of the main target elements antimony, arsenic, cadmium, chromium, copper, iron, lead, mercury, nickel, selenium, silver, vanadium, and zinc. These elements were present in wide ranging concentrations. Out of a set of seven primary and five secondary objectives the method detection limits, accuracy and precision of the TXRF measurements are discussed. In addition to the on-site measurements, the application of TXRF analysis for the analysis of soil- and sediment samples after complete microwave assisted acid digestion is reported. Recent instrument improvements have distinctly increased the quality of measurement results. A detailed description of these new developments and new measurement results are discussed

  10. Heavy Metal Contamination and Assessment of Roadside and Foliar Dust along the Outer-Ring Highway of Shanghai, China.

    Science.gov (United States)

    Yin, Ruijuan; Wang, Dongqi; Deng, Huanguang; Shi, Runhe; Chen, Zhenlou

    2013-11-01

    Foliar and roadside dust samples were collected from five sites along the outer-ring highway of Shanghai, one of the biggest metropolitan areas of China, to assess heavy/toxic metal contamination. Concentrations of Zn, Cu, Ni, As, and Hg in foliar dust were higher than in roadside dust, whereas concentrations of Pb and Cd were higher in roadside dust. In the roadside dust, average concentrations of all metals except As in foliar and roadside dust samples were significantly above the background values of soil in Shanghai: the ratios between the average of samples and background values of Shanghai were in the order: Cd (25.1) > Zn (12.2) > Cu (6.16) > Pb (5.74) > Ni (5.50) > Hg (5.18) > As (1.05). By using the geo-accumulation index, the pollution grades of seven heavy metals at five sampling sites were calculated. Roadside dust was heavily to extremely contaminated with Cd; moderately to heavily contaminated with Zn; and moderately contaminated with Cu, Hg, Pb, and Ni. Foliar dust was heavily contaminated with Cd; moderately to heavily contaminated with Zn and Cu; and moderately contaminated with Hg, Pb, and Ni. The contamination level of heavy metals in the Puxi area was greater than that in the Pudong area, which might be related to the industrial distribution and land use. Combined with correlation analysis, hierarchical cluster analysis indicated that atmospheric deposition is the main source of Cd, Hg, As, and Pb in dust and that Cu and Zn in dust are mainly from heavy traffic on the highway. A portion of Ni in dust also comes from the parent soil.

  11. Study on evaluation methods of heavy metal contamination in soil of Jinkeng Suichuan county, Jiangxi province%江西遂川金坑土壤重金属元素污染评价方法研究

    Institute of Scientific and Technical Information of China (English)

    曾敏; 彭红霞; 刘凤梅

    2011-01-01

    以江西遂川金坑土壤化探采样为研究对象,对研究区内土壤中微量重金属元素As、Cu、Pb、Zn的含量数据,运用MAPGIS软件空间信息分析功能进行了分析,最终生成三角剖分网格,并对其进行平面等值线成图;运用单因子和多因子污染指数评价法进行评价,对比评价了土壤样品中重金属的污染因子和污染程度.其结果表明,研究区内存在不同程度的重金属污染,轻度污染、中度污染和重度污染均有,但多为轻度污染;污染范围主要分布柯树垇东西两侧区域以及上金坑以南区域,下金坑南西也有分布.%In this paper, soil samples of Jinkeng region in Suichuan were taken as research objects, and the geo-chemical data of heavy metal elements which mainly referred to As, Cu, Pb, Zn were analyzed. The spacial information analysis function in MAPGIS software was used to generate triangulation grid and plot plane isogram. With both single factor and multiple factor contamination index assessment method, the pollution factors and pollution level of heavy metals in mine soil were compared and analyzed. The results showed that there existed several degree of heavy metal pollution, including mild, moderate and severe pollution, and the mild pollution was the most degree. The pollution range distributed from east and west sides of Keshuao to the south of Shangjinkeng and the southwest of Xia-jinkeng.

  12. Assessment of heavy metals contamination in roadside topsoil along Qinghai-Tibetan highway, China

    Science.gov (United States)

    Zeng, C.; Zhang, F.; Yan, X.; Gao, D.

    2012-12-01

    With the rapid development of road construction and increase of vehicles on the Qinghai-Tibetan Plateau over last few decades, traffic source heavy metals have been continuously emitted into roadside soils and caused a growing concern on potential pollution of soils. In this study, a soil survey was conducted along the Qinghai-Tibet highway (Xining-Maduo-Budongquan-Naqu-Lhasa), China, to investigate the status and influence factors of heavy metals (Cu, Cd, Pb and Zn) in roadside topsoil. A total of 32 sampling sites, 144 topsoil (0~2 cm) samples were collected at different distances to the highway edge (0 m, 10 m, 30 m, 50 m and 100m). Vehicle volume, soil types and road types have significantly impacts on concentrations of the four heavy metals. On the whole, heavy metal concentrations were higher in Budongquan-Naqu-Lhasa (BNL) segment with higher traffic volume than Xining-Maduo-Budongquan (XMB) segment with lower traffic volume. The heavy metals concentrations also show higher levels for asphalt roads than gravel roads, and a sequence of severely degraded meadow soil (MS) > slightly degraded MS > desert soil > non-degraded MS. Besides, concentrations of all the four heavy metals show exponentially decreasing relationships with roadside distances. Compared to the background values of heavy metals in the soils of Qinghai-Tibet Plateau, traffic source heavy metals pollution only exists within 10 m to the road edge in most segments. However, the maximum polluted distance can reach 30 m along the TMP segment. It should be noted that heavy metals pollution was more harmful to this high-altitude segment with fragile ecology. Keywords: Heavy Metal (Cu, Cd, Pb, Zn); Roadside soil; Qinghai-Tibet highway; Qinghai-Tibetan Plateau.

  13. Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil.

    Science.gov (United States)

    Boechat, Cácio Luiz; Pistóia, Vítor Caçula; Gianelo, Clésio; Camargo, Flávio Anastácio de Oliveira

    2016-02-01

    In recent years, the number of cases of heavy metal contamination has increased worldwide, leading to reports on environmental pollution and human health problems. Phytoremediation can be potentially used to remove heavy metal from contaminated sites. This study determined heavy metal concentrations in the biomass of plant species growing on a multi-metal-contaminated site. Seven plant species and associated rhizospheric soil were collected and analyzed for heavy metal concentrations. While plant Cu, Zn, Cd, Ni, Pb, As, and Ba concentrations ranged from 8.8 to 21.1, 56.4 to 514.3, 0.24 to 2.14, 1.56 to 2.76, 67.8 to 188.2, 0.06 to 1.21, and 0.05 to 0.62 mg kg(-1), respectively, none of the plants was identified as hyperaccumulators. Those in the rhizospheric soil ranged from 10.5 to 49.1, 86.2 to 590.9, 0.32 to 2.0, 3.6 to 8.2, 19.1 to 232.5, 2.0 to 35.6, and 85.8 to 170.3 mg kg(-1), respectively. However, Zn, Cd, Pb, and As concentrations in the soil outside the rhizosphere zone were 499.0, 2.0, 631.0, and 48.0 mg kg(-1), respectively. Senecio brasiliensis was most effective in translocating Cu, Cd, and Ba. The most effective plant for translocating Zn and Pb was Baccharis trimera and, for element As, Dicranopteris nervosa and Hyptis brevipes. Heavy metal and metalloid levels in spontaneous plants greatly exceeded the upper limits for terrestrial plants growing in uncontaminated soil, demonstrating the higher uptake of heavy metal from soil by these plants. It is concluded that naturally occurring species have a potential for phytoremediation programs.

  14. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    OpenAIRE

    Jennifer L. Wood; Caixian Tang; Franks, Ashley E.; Wuxing Liu

    2016-01-01

    The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediat...

  15. Seasonal Dynamics of Shallow-Hyporheic-Zone Microbial Community Structure along a Heavy-Metal Contamination Gradient

    OpenAIRE

    Feris, Kevin P.; Ramsey, Philip W.; Frazar, Chris; Rillig, Matthias; Moore, Johnnie N.; Gannon, James E.; William E Holben

    2004-01-01

    Heavy metals contaminate numerous freshwater streams and rivers worldwide. Previous work by this group demonstrated a relationship between the structure of hyporheic microbial communities and the fluvial deposition of heavy metals along a contamination gradient during the fall season. Seasonal variation has been documented in microbial communities in numerous terrestrial and aquatic environments, including the hyporheic zone. The current study was designed to assess whether relationships betw...

  16. Treatment of an automobile effluent from heavy metals contamination by an eco-friendly montmorillonite

    Directory of Open Access Journals (Sweden)

    Kovo G. Akpomie

    2015-11-01

    Full Text Available Unmodified montmorillonite clay was utilized as a low cost adsorbent for the removal of heavy metals from a contaminated automobile effluent. Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy were used to characterize the adsorbent. Batch sorption experiments were performed at an optimum effluent pH of 6.5, adsorbent dose of 0.1 g, particle size of 100 μm and equilibrium contact time of 180 min. Thermodynamic analysis was also conducted. Equilibrium data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models. A heterogeneous surface of the adsorbent was indicated by the Freundlich model. The Langmuir maximum adsorption capacity of the montmorillonite for metals was found in the following order: Zn (5.7 mg/g > Cu (1.58 mg/g > Mn (0.59 mg/g > Cd (0.33 mg/g > Pb (0.10 mg/g ≡ Ni (0.10 mg/g. This was directly related to the concentration of the metal ions in solution. The pseudo-first order, pseudo-second order, intraparticle diffusion and liquid film diffusion models were applied for kinetic analysis. The mechanism of sorption was found to be dominated by the film diffusion mechanism. The results of this study revealed the potential of the montmorillonite for treatment of heavy metal contaminated effluents.

  17. Human impact on fluvial sediments: how to distinguish regional and local sources of heavy metals contamination

    Directory of Open Access Journals (Sweden)

    Novakova T.

    2013-04-01

    Full Text Available Regional contamination of southern Moravia (SE part of the Czech Republic by heavy metals and magnetic particles during the 20th century was quantified in fluvial sediments of the Morava River. The influence of local sources to the regional contamination of the river sediments and impact of sampling sites heterogeneity were studied in profiles with different sedimentology (facies and lithology. For this purpose, hundreds of samples were obtained from regulated channel banks and naturally inundated floodplains and proxy elementary analyses have been carried out by X-ray fluorescence spectroscopy (ED XRF, further calibrated by ICP MS. Magnetic susceptibility as a proxy of industrial contamination was determined and the age model has been obtained by 210Pb dating method. After establishing the lithological background from floodplain profiles, assessment of heavy metal contamination was done by using enrichment factors (EFs of heavy metals (Pb, Zn, Cu, Cr and magnetic susceptibility. Floodplain sedimentary profiles were found to be realiable for assessment of contamination and reconstruction of large scale, i.e. a really averaged regional contamination, while regulated channel banks are suitable for obtaining of more or less qualitative information of influence of local point sources in the area because sediments from regulated river banks qualitatively reflect the actual local contamination of the river system. It allowed us to distinguish the influence of local sources of contamination by comparing with more spatially averaged contamination signal from more distal floodplain profiles. The study area is rather weakly contaminated (EF ∼ 1-2, while individual sediment strata from regulated channel banks contains several times larger concentrations of heavy metals.

  18. Assessment of heavy metal contamination of road dusts from industrial areas of Hyderabad, India.

    Science.gov (United States)

    Mathur, Ramavati; Balaram, V; Satyanarayanan, M; Sawant, S S

    2016-09-01

    Road dust in industrial areas carries high levels of toxic heavy metals. Exposure to such polluted dust significantly affects the health of people residing in these areas, which is of major concern. The present study was taken up with an aim to highlight the magnitude and potential sources of accumulation of heavy metals in 32 road dust samples collected from six industrial areas of Hyderabad. Acid-digested sample solutions were analyzed by ICP-MS for Cu, Zn, Cr, Co, Pb, Ni, V, Zr, Ce, Y, and Hf. The road dusts exhibit significantly high mean metal levels which are much above their crustal abundances. The relative ordering of mean metal contents is Zr > Zn > Pb > Cr > Ce > Cu > V > Ni > Y > Co > Hf. Elevated pollution indices (I geo, EF, C (i) f, and C deg) reveal that the road dusts are pollution impacted showing varying degree of heavy metal contamination. Strong positive correlations exhibited by metal pairs Cu-Zn, Cr-Ni, Ce-V, Y-Ce, and Hf-Zr imply their origin from common anthropogenic sources. Principal component analysis grouped the metals according to the sources which contributed to their accumulation. The present study confirms to an intensive anthropogenic impact on the accumulation of heavy metals in the studied road dusts attributable mainly to strong influences of vehicular and industrial activity and partly to domestic and natural processes. The results obtained imply the need for further investigations to assess their ecological implications and human health risks.

  19. 螯合剂和表面活性剂辅助金福菇修复重金属污染土壤%Chelator- and Surfactant-assisted Remediation of Heavy Metal Contaminated Soil bv Tricholoma lobavense Heim

    Institute of Scientific and Technical Information of China (English)

    王德胜; 陈兰; 敬小兵; 徐恒

    2012-01-01

    通过温室大棚盆栽试验,研究螯合剂和表面活性剂单独或复合处理辅助金福菇修复重金属污染土壤的效果.结果表明,单独添加EDTA(乙二胺四乙酸)时,高浓度的EDTA( E2,5 mmol kg-1)使金福菇的生物量比对照降低26%,子实体Pb、Cu和Cd的浓度分别比对照提高15~88倍、0.8~3.3倍和0.5~0.6倍.单独添加表面活性剂时,各处理生物量与对照没有显著差异,且重金属浓度变化幅度没有单独添加EDTA的处理大.低浓度的表面活性剂对金福菇吸收各种重金属的影响较小,而高浓度则影响较大,但与表面活性剂及重金属种类有关.共同添加EDTA和表面活性剂时,只有当EDTA和CTAB(溴化十六烷基三甲铵)共同添加时,EC2( EDTA∶CTAB=1∶1)和EC3( EDTA∶CTAB=2∶1)的生物量显著降低,其余处理与对照差异不明显.EC3的子实体Pb和Cu浓度达到所有处理中的最大值,分别为(1 533.61±131.34)、(1 786.11±328.33) mg kg-1.EDTA和SDS(十二烷基磺酸钠)浓度比为2∶1(ES3)时,子实体Cd浓度达到最大值,为(50.56±11.55) mg kg-1.此外,还分析了不同处理的重金属总积累量和富集系数.结果显示,在螯合剂和表面活性剂辅助下,金福菇修复复合重金属污染土壤具有很大的潜能.%The influence of chelators and surfactants on bioaccumulation of heavy metals in mushroom (Tricholoma lobayeme Heim) from multiple-contaminated soil was studied with pot experiments in greenhouse. The results showed that high concentration of EDTA (E2, 5 mmol kg-1) reduced the mushroom biomass by 26%, and the concentrations of Pb, Cu, Cd in the fruiting bodies increased by 15~88,0.8-3.3,0.5-0.6 times respectively when only EDTA was added. There were no significant differences in biomass between the treated pots and the control pots when only surfactants were added, and the variance in heavy metal concentrations was less than those with EDTA additions. Surfactants did not change the bioaccumulation

  20. Heavy metal contamination, sources, and pollution assessment of surface water in the Tianshan Mountains of China.

    Science.gov (United States)

    Zhaoyong, Zhang; Abuduwaili, Jilili; Fengqing, Jiang

    2015-02-01

    In order to gain insight into heavy metal contamination occurring in the surface water of the Tianshan Mountains in northwest China, we collected surface water samples from there, tested heavy metals Pb, Ni, Cd, Co, Hg, As, Cu, Mn, Zn, and Cr, and then we analyzed the data using typical analysis, multivariate statistical, and pollution index methods. Results showed that (1) the order of the average values of the ten kinds of heavy metals in all the water samples was as follows: Zn > Mn > Cu > Co > Ni > Pb > Cr > As > Hg > Cd. The maximum variation coefficients of Zn and Pb were 138.96 and 145.86 %, respectively, indicating that these heavy metal concentrations varied largely between different sampling locations. (2) Research showed the average concentrations of Pb, Cd, As, Cu, Zn, and Cr were all within the national surface water standard of class IV and those of As, Cu, Mn, and Cr were all within the range of the Drinking Water Guidelines from the WHO, indicating the surface water of the Tianshan Mountains is clean. (3) Multivariate statistical analysis showed that Cu, Cd, Mn, Hg, Zn, and Pb have close correlations, and they mainly came from artificial sources; while Ni, As, Co, Cu, and Cr mainly came from natural sources. The results of correlation analysis, principal component analysis, and cluster analysis are consistent. (4) Pollution evaluation showed the values of comprehensive pollution index (WQI) of ten kinds of heavy metals in three sections were all lower than 2, suggesting the low levels of pollution, while the over-limit ratios of Pb and Zn in water samples of the middle Urumqi-Akesu section, As in the western Zhaosu-Tekesi section, and Pb, Hg, and Zn in the eastern Balikun-Yiwu section were all above 10 %. This research shows that recent economic development of the Tianshan Mountains has negatively influenced the heavy metal concentrations in the surface water, although the concentrations of the ten kinds of tested

  1. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    Science.gov (United States)

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  2. Integrated risk assessment of the heavy metal contamination in key regions of mining area in Huainan

    Energy Technology Data Exchange (ETDEWEB)

    Li Hai-xia; Hu Zhen-qi; Li Ning; Fan Chun-yan; Liang Shuang [China University of Mining and Technology (Beijing), Beijing (China). Institute of Land Reclamation and Ecological Restoration

    2008-04-15

    The problems of protecting the ecological environment in coal mining and social development is becoming increasingly conspicuous. Through field investigation and sampling analysis, the heavy metal content status of soil in a typical coal mine district in Huainan, China was studied. Quantitative diagnostic tools, the toxic-response factor (Eit) and the potential ecological risk index (RI) were used to evaluate the contamination by various heavy metals. The results show that the descending order of the composite content contaminating heavy metals in soil is district C > district A > district B > district D. 9 refs., 1 fig., 6 tabs.

  3. 重金属污染土壤-作物系统协同评价模型及在煤矿区农田污染中应用%A model for synergetic assessment of soil - plant system in heavy metal contamination farmland and its application in a coal mining area

    Institute of Scientific and Technical Information of China (English)

    张合兵; 马守臣; 王锐; 马守田; 王新闯; 邵云

    2015-01-01

    To scientifically evaluate risks of heavy metal contamination on farmlands in the coal mining areas ,we introduced a synergetic assessment model for heavy metal contamination in soil-plant system on the basis of farmland eco-logical safety ,crop production safety and quality safety of agricultural products .The results showed that ,according to the ecological risk index of heavy metal pollution ,the soil comprehensive ecological risk index was 239 .60 for F1 sample plot (mine water contaminated farmland) ,and 178 .42 for F2 sample plot (the coal waste rock contaminated farmland) ,both of which reached moderate risk levels .The soil comprehensive ecological risk index of F3 sample plot (farmland close to the highway ) reached subtle risk level .For wheat grains ,the heavy metal comprehensive contamination indexes all reached severe risk levels in F1 ,F2 and F3 sample plots .According to synergetic assessment model of soil - plant sys-tem ,the value of pollution degree in F1 sample plot was for 48 .4 ,reaching a high risk level ;the value in F2 sample plot was for 54 .4 ,as a moderate risk level ;and the value F3 sample plot was for 76 .8 ,at a subtle risk level .%为科学评价农田重金属污染风险,本研究在分别进行土壤和作物污染评价的基础上,提出了可同时反映农田生态安全、生产安全和农产品质量安全的重金属污染风险评价模型———土壤-作物系统协同评价模型,并对焦作矿区农田重金属污染进行了科学评价。结果表明,根据生态风险指数法对土壤污染风险进行评价,矿井水污灌农田(F1样地)和煤矸石污染农田(F2样地)综合生态风险指数分别为239.60和178.42,达到中等水平,在矿区公路侧农田(F3样地)土壤达到轻微生态风险水平。根据综合污染指数法对小麦(Triticum aestivum)籽粒中重金属风险进行评价,F1、F2和 F3三个样地小麦籽粒中重金属污染综合指数均达

  4. Evaluation of heavy metal contamination hazards in nuisance dust particles, in Kurdistan Province, western Iran.

    Science.gov (United States)

    Khuzestani, Reza Bashiri; Souri, Bubak

    2013-07-01

    The effects of natural and geochemical factors depending on heavy metal contamination in nuisance dust particles were evaluated. The nuisance dust particles were sampled using passive deposit gauge method for one year from April 2010 to March 2011 and the obtained samples were measured for the total contents and the contamination levels of Fe, Mn, Cu and As using geo-accumulation index (l(geo)), enrichment factor (EF) and the integrated pollution index (IPI). The results showed that, the contamination levels of Fe and Mn based on I(geo) values, were uncontaminated (I(geo) < 0) (variations of the I(geo) index was from -3.11 to -1.751 for Fe, from -0.630 to -1.925 for Mn), while the values of Cu and As were demonstrated to have moderate contamination based on l(geo) values (variations of I(geo) index was from -1.125 to 0.848 for Cu, and from -2.002 to 1.249 for As). The analysis of EF also revealed minor to moderate enrichment for Mn (1.215-4.214), minor to moderately severe enrichment for Cu (2.791-6.484), and As (1.370-8.462), respectively. The variation of the IPI index also showed low to moderate level of heavy metal pollution in nuisance dust particulates (0.511-1.829). The analysis of the results also approved that the natural processes and geochemical variables (the changing meteorological parameters) can significantly affect the availability of heavy metals in nuisance dust particles in Western Iran.

  5. Alternanthera philoxeroides Might Be Used for Bioremediating Heavy Metal Contaminated Soil%重金属胁迫条件下空心莲子草的生长和营养特征分析

    Institute of Scientific and Technical Information of China (English)

    宋志忠; 王莉; 金曼; 苏彦华

    2011-01-01

    Alternanthera philoxeroides, usually called as Shui-hua-sheng in China and commonly known as Alligator weed in English, is an immersed aquatic plant and is listed an invasive species in China. In this work, we found that Shui-hua-sheng (A. philoxeroides) is able to accumulate six heavy metals with the ability of Zn2+>Mn2+>Pb2+>Cu2+>Cd2+>Cr3+. Under the conditions of the stimulated external high concentration (1 mmol/L) of Cu2+, Mn2+, Zn2+ and Cr3+, the biomass of Shui-hua-sheng (A. philoxeroides) reduced, total length of root and total area of root surface decreased as well, accordingly R/S ratios increased. Moreover, the nutriational characteristics of K+, Ca2+ and Mg2+ were altered significantly, respectively, under the exposure to contaminations of Pb2+, Cd2+, Cu2+ and Zn2+. The findings in this research implied that the Shui-hua-sheng (A. philoxeroides) be able to tolerate mentioned heavy-metals with high level contamination, and also might be as alternative to be used for biomediation of heavy-metal polluted soil or water.%空心莲子草是一种常见的水生植物,并能在重金属污染的水体或附近土壤中生长.本研究发现,空心莲子草能富集6种常见的重金属元素,其富集能力为:Zn2+>Mn2+>Pb2+>Cu2+>Cd2+>Cr3+.高浓度(1 mmol/L) Cu2+、Mn2+、Zn2+和Cr3+ 等重金属胁迫处理条件下,空心莲子草的根冠比增加,生物干重、总根长和总根表面积都相应降低.此外,高浓度(1 mmol/L) Pb2+、Cd2+、Cu2+或Zn2+分别胁迫处理条件下,空心莲子草的K+、Ca+和Mg+等元素的含量变化差异显著(P<0.05).以上研究表明,空心莲子草通过改变体内钾钙镁等重要生长元素营养情况来适应重金属污染的胁迫,有很强的富集重金属元素的能力,进而降低污染、净化水体.空心莲子草对重金属污染的生长响应及体内重要矿物元素营养特性之间的相互关系,可能为重金属污染的水土生物修复提供理论依据.

  6. Alternanthera philoxeroides Might Be Used for Bioremediating Heavy Metal Contaminated Soil%重金属胁迫条件下空心莲子草的生长和营养特征分析

    Institute of Scientific and Technical Information of China (English)

    宋志忠; 王莉; 金曼; 苏彦华

    2011-01-01

    Alternanthera philoxeroides,usually called as Shui-hua-sheng in China and commonly known as Alligator weed in English,is an immersed aquatic plant and is listed an invasive species in China.In this work,we found that Shui-hua-sheng(A.philoxeroides) is able to accumulate six heavy metals with the ability of Zn2+Mn2+Pb2+Cu2+Cd2+Cr3+.Under the conditions of the stimulated external high concentration(1 mmol/L) of Cu2+,Mn2+,Zn2+ and Cr3+,the biomass of Shui-hua-sheng(A.philoxeroides) reduced,total length of root and total area of root surface decreased as well,accordingly R/S ratios increased.Moreover,the nutriational characteristics of K+,Ca2+ and Mg2+ were altered significantly,respectively,under the exposure to contaminations of Pb2+,Cd2+,Cu2+ and Zn2+.The findings in this research implied that the Shui-hua-sheng(A.philoxeroides) be able to tolerate mentioned heavy-metals with high level contamination,and also might be as alternative to be used for biomediation of heavy-metal polluted soil or water.%空心莲子草是一种常见的水生植物,并能在重金属污染的水体或附近土壤中生长。本研究发现,空心莲子草能富集6种常见的重金属元素,其富集能力为:Zn2+〉Mn2+〉Pb2+〉Cu2+〉Cd2+〉Cr3+。高浓度(1mmol/L)Cu2+、Mn2+、Zn2+和Cr3+等重金属胁迫处理条件下,空心莲子草的根冠比增加,生物干重、总根长和总根表面积都相应降低。此外,高浓度(1mmol/L)Pb2+、Cd2+、Cu2+或Zn2+分别胁迫处理条件下,空心莲子草的K+、Ca+和Mg+等元素的含量变化差异显著(P〈0.05)。以上研究表明,空心莲子草通过改变体内钾钙镁等重要生长元素营养情况来适应重金属污染的胁迫,有很强的富集重金属元素的能力,进而降低污染、净化水体。空心莲子草对重金属污染的生长响应及体内重要矿物元素营养特性之间的相互关系,可

  7. Heavy Metal Contamination of Foods by Refuse Dump Sites in Awka, Southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    J. K. C. Nduka

    2008-01-01

    Full Text Available The impact of heavy metals from refuse dumps on soil, food, and water qualities in Awka, Nigeria was studied. Soil samples (top and 1.35 m deep were collected from five refuse dumps digested with conc. HNO3 and HClO4. The heavy metals (lead, manganese, arsenic, chromium, cadmium, and nickel in vegetables (spinach, fluted pumpkin, root crop (cocoyam, and surface and ground water were determined using an atomic absorption spectrophotometer (AAS. Chemical properties of the soil and bacteria were determined. Heavy metals were found to be more concentrated at a depth of 1.35 m. Manganese was high in shallow wells and borehole water samples with the highest levels as 0.538 and 0.325 mg/l, respectively. Nickel levels in the borehole sample ranged from 0.001 to 0.227 mg/l, whereas the highest level of lead was 0.01 mg/l. The Obibia stream had the highest levels of manganese and lead. Linear regression analyses showed that the relationship between soil heavy metals and farm produce heavy metals was strong. Taken together, we may conclude that the consumption of leafy vegetables and crops produced on contaminated soils may pose a health risk to those that reside around the refuse dumps.

  8. Heavy metal contamination of coastal lagoon sediments by anthropogenic activities: the case of Nador (East Morocco)

    Science.gov (United States)

    Bloundi, M. K.; Duplay, J.; Quaranta, G.

    2009-01-01

    Nador lagoon sediments (East Morocco) are contaminated by industrial iron mine tailings, urban dumps and untreated wastewaters from surrounding cities. The lagoon is an ecosystem of biological, scientific and socio-economic interests but its balance is threatened by pollution already marked by biodiversity changes and a modification of foraminifera and ostracods shell structures. The aim of the study is to assess the heavy metal contamination level and mobility by identifying the trapping phases. The study includes analyses by ICP-AES and ICP-MS, of, respectively, major (Si, Al, Mg, Ca, Fe, Mn, Ti, Na, K, P) and trace elements (Sr, Ba, V, Ni, Co, Cr, Zn, Cu, As, Pb, Cd) in sediments and suspended matter, heavy metals enrichment factors calculations and sequential extractions. Results show that sediments contain Zn, Cu, Pb, V, Cr, Co, As, Ni with minimum and maximum concentrations, respectively, of 4-1190 μg/g, 4-466 μg/g, 11-297 μg/g, 11-194 μg/g, 9-139 μg/g, 1-120 μg/g, 4-76 μg/g, 2-62 μg/g. High concentrations in Zn are also present in suspended matter. The enrichment factors show contamination in Zn, Pb and As firstly induced by the mining industry and secondly by unauthorized dumps and untreated wastewaters. Cr and Ni are bound to clays, whereas V, Co, Cu and Zn are related to oxides. Thus, the risk in metal mobility is for the latter elements and lies in the oxidation-reduction-changing conditions of sediments.

  9. Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil.

    Science.gov (United States)

    Burges, Aritz; Epelde, Lur; Blanco, Fernando; Becerril, José M; Garbisu, Carlos

    2017-04-15

    Mining sites shelter a characteristic biodiversity with large potential for the phytoremediation of metal contaminated soils. Endophytic plant growth-promoting bacteria were isolated from two metal-(hyper)accumulator plant species growing in a metal contaminated mine soil. After characterizing their plant growth-promoting traits, consortia of putative endophytes were used to carry out an endophyte-assisted phytoextraction experiment using Noccaea caerulescens and Rumex acetosa (singly and in combination) under controlled conditions. We evaluated the influence of endophyte-inoculated plants on soil physicochemical and microbial properties, as well as plant physiological parameters and metal concentrations. Data interpretation through the grouping of soil properties within a set of ecosystem services was also carried out. When grown together, we observed a 41 and 16% increase in the growth of N. caerulescens and R. acetosa plants, respectively, as well as higher values of Zn phytoextraction and soil microbial biomass and functional diversity. Inoculation of the consortia of putative endophytes did not lead to higher values of plant metal uptake, but it improved the plants' physiological status, by increasing the content of chlorophylls and carotenoids by up to 28 and 36%, respectively, indicating a reduction in the stress level of plants. Endophyte-inoculation also stimulated soil microbial communities: higher values of acid phosphatase activity (related to the phosphate solubilising traits of the endophytes), bacterial and fungal abundance, and structural diversity. The positive effects of plant growth and endophyte inoculation on soil properties were reflected in an enhancement of some ecosystem services (biodiversity, nutrient cycling, water flow regulation, water purification and contamination control).

  10. Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro

    Directory of Open Access Journals (Sweden)

    Boban Mugoša

    2016-03-01

    Full Text Available Assessment of heavy metal concentrations in the soil samples of urban parks and playgrounds is very important for the evaluation of potential risks for residents, especially children. Until recently, there has been very little data about urban parks pollution in Montenegro. To evaluate the sources of potential contamination and concentration of heavy metals, soil samples from coastal urban parks and kindergartens of Montenegro were collected. Based on the heavy metal concentrations, multivariate analysis combined with geochemical approaches showed that soil samples in coastal areas of Montenegro had mean Pb and Cd concentrations that were over two times higher than the background values, respectively. Based on principal component analysis (PCA, soil pollution with Pb, Cd, Cu, and Zn is contributed by anthropogenic sources. Results for Cr in the surface soils were primarily derived from natural sources. Calculation of different ecological contamination factors showed that Cd is the primary contribution to ecological risk index (RI origins from anthropogenic, industry, and urbanization sources. This data provides evidence about soil pollution in coastal municipalities of Montenegro. Special attention should be paid to this problem in order to continue further research and to consider possible ways of remediation of the sites where contamination has been observed.

  11. Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro

    Science.gov (United States)

    Mugoša, Boban; Đurović, Dijana; Nedović-Vuković, Mirjana; Barjaktarović-Labović, Snežana; Vrvić, Miroslav

    2016-01-01

    Assessment of heavy metal concentrations in the soil samples of urban parks and playgrounds is very important for the evaluation of potential risks for residents, especially children. Until recently, there has been very little data about urban parks pollution in Montenegro. To evaluate the sources of potential contamination and concentration of heavy metals, soil samples from coastal urban parks and kindergartens of Montenegro were collected. Based on the heavy metal concentrations, multivariate analysis combined with geochemical approaches showed that soil samples in coastal areas of Montenegro had mean Pb and Cd concentrations that were over two times higher than the background values, respectively. Based on principal component analysis (PCA), soil pollution with Pb, Cd, Cu, and Zn is contributed by anthropogenic sources. Results for Cr in the surface soils were primarily derived from natural sources. Calculation of different ecological contamination factors showed that Cd is the primary contribution to ecological risk index (RI) origins from anthropogenic, industry, and urbanization sources. This data provides evidence about soil pollution in coastal municipalities of Montenegro. Special attention should be paid to this problem in order to continue further research and to consider possible ways of remediation of the sites where contamination has been observed. PMID:27043601

  12. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    Science.gov (United States)

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation.

  13. Draft Genome Sequences of 10 Microbacterium spp., with Emphasis on Heavy Metal-Contaminated Environments.

    Science.gov (United States)

    Corretto, Erika; Antonielli, Livio; Sessitsch, Angela; Kidd, Petra; Weyens, Nele; Brader, Günter

    2015-05-14

    Microbacterium spp. isolated from heavy metal (HM)-contaminated environments (soil and plants) can play a role in mobilization processes and in the phytoextraction of HM. Here, we report the whole-genome sequences and annotation of 10 Microbacterium spp. isolated from both HM-contaminated and -noncontaminated compartments. Copyright © 2015 Corretto et al.

  14. Long-term effects of aided phytostabilisation on microbial communities of metal-contaminated mine soil.

    Science.gov (United States)

    Garaiyurrebaso, Olatz; Garbisu, Carlos; Blanco, Fernando; Lanzén, Anders; Martín, Iker; Epelde, Lur; Becerril, José M; Jechalke, Sven; Smalla, Kornelia; Grohmann, Elisabeth; Alkorta, Itziar

    2017-03-01

    Aided phytostabilisation uses metal-tolerant plants, together with organic or inorganic amendments, to reduce metal bioavailability in soil while improving soil quality. The long-term effects of the following organic amendments were examined as part of an aided phytostabilisation field study in an abandoned Pb/Zn mining area: cow slurry, sheep manure and paper mill sludge mixed with poultry manure. In the mining area, two heavily contaminated vegetated sites, showing different levels of soil metal contamination (LESS and MORE contaminated site), were selected for this study. Five years after amendment application, metal bioavailability (CaCl2 extractability) along with a variety of indicators of soil microbial activity, biomass and diversity were analysed. Paper mill sludge mixed with poultry manure treatment resulted in the highest reduction of Cd, Pb and Zn bioavailability, as well as in stimulation of soil microbial activity and diversity, especially at the LESS contaminated site. In contrast, cow slurry was the least successful treatment. Our results emphasise the importance of the (i) long-term monitoring of soil quality at sites subjected to aided phytostabilisation and (ii) selection of the most efficient amendments and plants in terms of both reduction of metal bioavailability and improvement of soil quality.

  15. Earthworm populations of highly metal-contaminated soils restored by fly ash-aided phytostabilisation.

    Science.gov (United States)

    Grumiaux, Fabien; Demuynck, Sylvain; Pernin, Céline; Leprêtre, Alain

    2015-03-01

    Highly metal contaminated soils found in the North of France are the result of intense industrial past. These soils are now unfit for the cultivation of agricultural products for human consumption. Solutions have to be found to improve the quality of these soils, and especially to reduce the availability of trace elements (TEs). Phytostabilisation and ash-aided phytostabilisation applied since 2000 to an experimental site located near a former metallurgical site (Metaleurop-Nord) was shown previously as efficacious in reducing TEs mobility in soils. The aim of the study was to check whether this ten years trial had influenced earthworm communities. This experimental site was compared to plots located in the surroundings and differing by the use of soils. Main results are that: (1) whatever the use of soils, earthworm communities are composed of few species with moderate abundance in comparison with communities found in similar habitats outside the TEs-contaminated area, (2) the highest abundance and specific richness (4-5 species) were observed in afforested plots with various tree species, (3) ash amendments in afforested plots did not increase the species richness and modified the communities favoring anecic worms but disfavoring epigeic ones. These findings raised the questions of when and how to perform the addition of ashes firstly, to avoid negative effects on soil fauna and secondly, to keep positive effects on metal immobilization.

  16. Arsenic and heavy metal contamination and their seasonal variation in the paddy field around the Daduk Au-Pb-Zn mine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Churl-Gyu [Korea Petroleum Association, Seoul(Korea); Chon, Hyo-Taek [Seoul National University, Seoul(Korea); Jung, Myung Chae [Semyung University, Jecheon(Korea)

    2000-02-28

    Arsenic and heavy metal contamination, seasonal variation of the metal contents in soils and plants and their migration characteristics from soils into plants in the vicinity of the abandoned Daduk Au-Pb-Zn mine were studied. Soils collected downstream from the mine show high contents of As and heavy metals due to surface erosion and wind blowing in the tailings. However, their contamination was limited around the old dressing plant and paddy field nearby the polluted stream. Enriched concentrations of Cd and Zn were found in various agricultural crops grown in the paddy fields nearby the mine site, and Zn was accumulated specially in soybean leaves. Elevated level of As was also found in rice stalks and leaves. Biological absorption coefficients of the crop plants for heavy metals decreased in the order of soybean leaves, red peppers, rice stalks and leaves, and rice grain, and were higher for Cd and Cu than Pb and Zn. Seasonal variation of As and heavy metals in paddy fields showed that relatively higher concentrations and biological absorption coefficients were found in rice stalks and leaves grown under oxidizing conditions in September rather than under reducing conditions in August, especially for As, Cd, Pb and Zn. It is suggested that the amount of As and heavy metals absorbed by rice crops might be changed under the different condition of paddy fields throughout the period of growing. (author). 26 refs., 6 tabs., 8 figs.

  17. Assessment and modelling of heavy metal contamination from Madneuli open-pit mine, Georgia

    Science.gov (United States)

    Tchelidze, T.; Melikadze, G.; Leveinen, J.; Kaija, J.; Kumpalainen, S.

    2003-04-01

    Acid mine drainage from banked waste rocks (150 million m^3) and sulfide ore tailings of the Madneuli Cu-Au open-pit mine have created major environmental pollution problem in Bolnisi district, Georgia. Intensive leaching of exposed rocks and direct discharge of mine waters to nearby watercourses have lead to strong heavy metal pollution of groundwater and Rivers Kazretula, Poladauri and Mashavera. Increased concentrations of Cu, Zn, Pb, Ni, Mn, Cr, Cd and Hg exceeding maximum permissible values by 3-2000 times, are registered almost everywhere. Polluted surface waters are used intensively for irrigation. Besides, contaminated groundwater is pumped for irrigation and drinking water supply in alluvial deposits along the rivers. Because the spread of contamination is a slow process, the adverse health effects may not yet have emerged in the investigation area. The transport modelling was used in the framework of risk assessment to estimate the direction, rate and extent of chemical migration in the contaminated site in order to support environmental management and decisionmaking involving identification of high-risk areas, protection from pollutants, and planning of remediation work. Geochemical and contamination transport modelling conducted in this study suggest that the present contamination levels will eventually reach the total investigation area causing serious health risks to the local population in long terms. Mineral lifetime estimates suggest that the contamination might continue for centuries with current pollution loads. Furthermore, geochemical modelling showed that there is no reason to expect the natural attenuation of the contamination. The potential impacts of preventive actions were studied by preparing a model scenario where the present heavy metal contamination level was lowered to 0.1 mg/l in two streams entering the model area. The model results suggest that within 5 years, already significant reduction of concentrations can be reached. The

  18. Phytoremediation of heavy metal-contaminated water and sediment by eleocharis acicularis

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Masayuki; Ha, Nguyen Thi Hoang [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Ohmori, Yuko [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Taisei Kiso Sekkei Co., Ltd., Tokyo (Japan); Sano, Sakae [Faculty of Education, Ehime University, Matsuyama (Japan); Sera, Koichiro [Cyclotron Center, Iwate Medical University, Takizawa-mura (Japan)

    2011-08-15

    Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log-linear fashion. The bioconcentration factor for these elements decreases log-linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Chemical fractionations and bioavailability of cadmium and zinc to cole (Brassica campestris L.) grown in the multi-metals contaminated oasis soil, northwest of China

    Institute of Scientific and Technical Information of China (English)

    Yiming Yang; Zhongren Nan; Zhuanjun Zhao; Shengli Wang; Zhaowei Wang; Xia Wang

    2011-01-01

    A pot experiment was conducted to study the relationship between distribution of cadmium (Cd) and zinc (Zn) and their availability.to cole (Brassica canpestris L.) grown in the multi-metal contaminated oasis soil in northwest of China. The results showed that Cd and Zn in the unpolluted oasis soil was mainly found in the residual fractionation, however, with increasing contents of Cd and Zn in the oasis soil, the distribution of Cd and Zn changed significantly. The growth of cole could be promoted by low Cd and Zn concentration,but significantly restrained by high concentrations. There was antagonistic effect among Cd and Zn in the multi-metals contaminated oasis soil. Stepwise regression analysis between fractionations distribution coefficients of the two meals in the soil and their contents in cole showed that both Cd and Zn in the exchangeable fractionation in the oasis soil made the most contribution on the uptake of Cd and Zn in cole. The bio-concentration factor (BCF) of Cd was greater than Zn in cole, and BCFs of the two metals in leaves were greater than those in roots. The translocation factors of the two metals in cole were greater than 1, and the two metals mainly accumulated in the edible parts in cole. Therefore, cole is not a suitable vegetable for the oasis soil because of the plants notable contamination by heavy metals.

  20. 钢渣施用对多金属复合污染土壤的改良效果及水稻吸收重金属的影响%Ameliorative Effects of Steel Slag Application on Multi-metal Contaminated Soil and Heavy Metal Uptake of Rice

    Institute of Scientific and Technical Information of China (English)

    邓腾灏博; 谷海红; 仇荣亮

    2011-01-01

    Heavy metal pollution of farmland soil is getting more and more serious in China nowadays due to mining activity, discharge of indnstrial effluents and long-time application of pesticide and chemical fertilizers.Since heavy metals are toxic to crops, the continuous cultivation in contaminated soil would decrease crop production capacity.Heavy metals can be also accumulated in human bodies through food chains.Application of soil amendments is an effective way to solve these kinds of problems, especially in slightly and moderately-polluted soil.Steel slag is one kind of by-products of steel smelting.In this paper, pot experiment and field experiment were conducted to investigate the effects of steel slag application on pH value, available silicon and available heavy metal content(Cd, Pb, Cu, Zn) in multi-metal contaminated soil and heavy metal uptake by rice plant.Five treatments were designed in the pot experiment consisting of CK( No slag), SS3 and SS6 (3 g· kg-1 and 6 g· kg-1 of 100 mesh slag respectively ), FSS3 and FSS6( 3 g· kg-1 and 6 g· kg-1 of 180 mesh slag respectively ).And the field experiment contained 2 treatment: CK( No slag)and SS( 3g·kg-1 of 100 mesh slag respectirely ).The results of the pot experiment showed that soil pH and available silicon content increased with the increase of the amount of slag application and along with the decrease of the slag particle size.And soil available heavy metal content decreased significantly in the slag application treatments.Heavy metal concentration in shoot of rice plant decreased significantly with the slag application and was far lower than that in root.Heavy metal concentration in the root with the slag application sharply decreased in compared to CK.And the field experiment showed that steel slag application could dramatically increase rice production and decrease the heavy metal concentration in polished rice.In conclusion, steel slag application could effectively improve the quality of contaminated

  1. Helichrysum italicum growing on metalliferous areas as a potential tool in phytostabilization of metal-contaminated soils.

    Science.gov (United States)

    Bini, Claudio; Maleci, Laura; Giuliani, Claudia

    2015-04-01

    Plants that colonize metalliferous soils have developed physiological mechanisms that allow to tolerate high metal concentrations. Generally, metal uptake by these plants is not suppressed, but a detoxification process occurs, as a response to different strategies: some plants (accumulators) concentrate metals in the aerial parts, while others (excluders) present low metal concentrations in the aerial parts, since metals are arrested in their roots. In several regions of Italy (e.g. Veneto, Sardinia, Tuscany), numerous abandoned mine sites are present; On these metal-contaminated soils grow both metalliferous (e.g. Silene paradoxa) and non-metalliferous plants (e.g. Taraxacum officinale). Among them, Helichrysum italicum deserved attention since it is known as essential oil producer and is also used as a medicinal plant for its anti-inflammatory properties; for this reason, it must undergo the Drug Master File certifying the absence of chemical impurities and heavy metals. Samples of the whole plant (roots, leaves and flowers) of H. italicum have been collected at various sites, both mined and not mined, in order to ascertain its ability to uptake and translocate metals from roots to the aerial parts. Fresh and embedded material was examined by Light microscopy and Electron Microscopy (Scanning and Transmission) to ascertain possible damages in plant morphology. Dried samples were crushed, digested with HNO3 and analysed by ICP-OE technique for heavy metal (Cu, Fe, Mn, Zn) concentrations. Preliminary observations on the morphology of the different samples do not show significant differences in the leaf structure. The inorganic chemical composition of H. italicum was characterized by high metal content. Preliminary results of our analyses show that H. italicum accumulate metals (Mn, Zn) in roots, but do not translocate metals to the aerial parts; therefore, it may be considered an excluder plant. On the basis of our results, the aerial parts (leaves, flowers) of

  2. F-RISA fungal clones as potential bioindicators of organic and metal contamination in soil.

    Science.gov (United States)

    Hong, J W; Fomina, M; Gadd, G M

    2010-08-01

    This work has examined the effects of a polycyclic aromatic hydrocarbon and selected toxic metals on fungal populations in a soil microcosm. By using fungal ribosomal intergenic spacer analysis (F-RISA) in combination with real-time PCR quantification, four fungi (D63P2-1, D63C2-1, D21Cu1-1 and D63Pb2-2) with specific primer pairs to each were successfully evaluated for their potential as bioindicators in response to pyrene, copper (Cu) and lead (Pb), supplied singly and in combination. F-RISA coupled with real-time PCR is a useful approach for the identification of microorganisms with potential as bioindicators of organic and toxic metal contamination. These bioindicators could be monitored for their population changes that may indicate pollutant-induced perturbations in a given system.

  3. Chemical forms of heavy metal contaminants in sediments of Miyun reservoir

    Institute of Scientific and Technical Information of China (English)

    LIU; Xiaoduan; XU; Qing; GE; Xiaoli; LIU; Liu; WU; Dianwei

    2005-01-01

    The chemical forms, spatial distribution and sources of As, Hg, Cd, Pb and Zn in sediments of the Miyun reservoir were studied. The results of sequential extraction demonstrate that most of As, Pb and Zn were bound to the residual fraction, Hg was associated with the sulfide fraction while Cd was associated with the carbonate fraction and the residual fraction. On the vertical profiles the concentrations of the heavy metals in total and each fractions mostly decreased with increasing depths in sediments, suggesting that the heavy metals input from the upstream watershed increases yearly. Summation of the residual fraction, the sulfide fraction and the carbonate fraction accounts for 60.03%―85.60% of the total heavy metal contents in the sediments, which represent the geochemical background values of the elements and relate closely to soil erosion. Results of the main factor analysis show that most sediments of the reservoir come from the upstream soil erosion, the point source pollution and domestic waste. Moreover, the microbial activities taking place on the sediment-water interface are also one of the major factors to cause the increasing content of the organic matter fraction and the iron-manganese oxide fraction. Environmental change of the reservoir water could make the removability of the heavy metals increase, leading to the increase of their concentrations in pore water in sediments, and imperiling water quality of the reservoir.

  4. Human health risk assessment: heavy metals contamination of vegetables in Bahawalpur, Pakistan

    Directory of Open Access Journals (Sweden)

    Hafiza Hira Iqbal

    2016-01-01

    Full Text Available Dietary exposure of toxic metals is of vital concern for human health through vegetable consumption, especially in developing countries. Aim of the current study was to determine the health risk associated with vegetables contamination by heavy metals being irrigated with sewage and turbine water. The water sources, soils and vegetables were analyzed for selected metals viz: Pb, Cd, Cr and Ni. Heavy metals in water samples are found to be lower than the international norms except Cd in sewage water. By contrast, concentration of heavy metals in soil and vegetables irrigated with turbine water were lower than the safe limits. In case of vegetables irrigated with sewage water, Cd was higher in soil while Pb, Cd and Cr were higher in most of the vegetables. Furthermore, health risk index values for Cd, Pb and Ni were exceeded the permissible limits (European Union, 2002. Bio-concentration factor (BCF was found to be maximum (16.4 mg/kg in Coriandrum sativum, cultivated with sewage water. Raphanus caudatus, Coriandrum sativum, Daucus carota, Allium sativum and Solanum tuberosum showed Health Risk Index of Cd > 1 in adults and children. Allium sativum also showed HRI of Pb > 1 in children. We conclude that the quality of vegetables irrigated with sewage water is poor and not fit for human health, evident from the high concentration of Pb, Cd and Cr. Urgent measures are required to prevent consumption and production vegetables irrigated with of sewage water in the study area.

  5. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils.

    Science.gov (United States)

    Ruttens, Ann; Boulet, Jana; Weyens, Nele; Smeets, Karen; Adriaensen, Kristin; Meers, Erik; Van Slycken, Stijn; Tack, Filip; Meiresonne, Linda; Thewys, Theo; Witters, Nele; Carleer, Robert; Dupae, Joke; Vangronsveld, Jaco

    2011-01-01

    Phytoremediation, more precisely phytoextraction, has been placed forward as an environmental friendly remediation technique, that can gradually reduce increased soil metal concentrations, in particular the bioavailable fractions. The aim of this study was to investigate the possibilities of growing willows and poplars under short rotation coppice (SRC) on an acid, poor, sandy metal contaminated soil, to combine in this way soil remediation by phytoextraction on one hand, and production of biomass for energy purposes on the other. Above ground biomass productivities were low for poplars to moderate for willows, which was not surprising, taking into account the soil conditions that are not very favorable for growth of these trees. Calculated phytoextraction efficiency was much longer for poplars than these for willows. We calculated that for phytoextraction in this particular case it would take at least 36 years to reach the legal threshold values for cadmium, but in combination with production of feedstock for bioenergy processes, this type of land use can offer an alternative income for local farmers. Based on the data of the first growing cycle, for this particular case, SRC of willows should be recommended.

  6. [Research on the effect and technique of remediation for multi-metal contaminated tailing soils].

    Science.gov (United States)

    Zhu, Guang-xu; Guo, Qing-jun; Yang, Jun-xing; Zhang, Han-zhi; Wei, Rong-fei; Wang, Chun-yu; Marc, Peters

    2013-09-01

    Soil samples were collected from compound polluted tailings to analyze the contents of total heavy metals and their speciation in the soil. Laboratory batch tests were conducted to examine the effects of distilled water and different concentrations of oxalic acid, citric acid, acetic acid, HNO3 and EDTA on the removal of heavy metals from the polluted soils. The suitable eluent and its optimal conditions including liquid to soil ratio, reaction time and washing number were also optimized, and the total toxicity reduction index was proposed to evaluate the effect of the eluent on the remediation of polluted soil. The results showed that Cd and Pb were the most abundant heavy metals in the soil, reaching 52.2 mg x kg(-1) and 4836.5 m x kg(-1), respectively. There was significant difference in the removal efficiency for different heavy metals. Cr had a maximum removal efficiency of 2.7%, while the maximum Cd and Pb removal efficiency was both about 60%. Distilled water had little removal efficiency for heavy metals, with less than 0.1% removal rate; the heavy metal removal efficiency of oxalic acid and acetic acid was also quite low; EDTA in 0.1 mol x L(-1) was selected as the suitable eluent for the polluted soil. Evaluation of the total toxicity reduction index and the cost suggested that EDTA should be used with a liquid to soil ratio of 6:1, a reaction time of 3 h and 2 washings.

  7. Research on the Phytoremediation Potential of Sugarcane for Metal-contaminated Soils%甘蔗修复重金属污染土壤的研究

    Institute of Scientific and Technical Information of China (English)

    王灿宇; 杨志新; 李作森

    2011-01-01

    植物修复土壤重金属污染作为一种低成本和环境友好技术得到了广泛的关注,应用大生物量植物修复污染土壤前景广阔.甘蔗拥有良好的环境适应性、发达的根系、较高的生物量,对重金属有较强的耐受性和积累性,还可循环综合利用.因此,综合考虑资源、环境与经济的可持续发展,将甘蔗应用于植物修复土壤重金属污染是可行的.%Being cost-effective and environmentally-friendly, the phytoremediation of heavy metal contaminated soil has caught much attention recently. Using those plants with high biomass for phytoremediation of soil is proved to have a promising future. Sugarcane embraces fine environmental suitability, advanced root system, high biomass, strong duration and accumulation of heavy metal and could be recycled. Therefore, considering the sustainable development of resources, environments and economy, it is feasible to apply sugarcane into phytoremediation of metal contaminated soils.

  8. Heavy metal contamination of vegetables from green markets in Novi Sad

    Directory of Open Access Journals (Sweden)

    Arsenov Danijela D.

    2016-01-01

    Full Text Available are valuable source of vitamins, minerals and fibers important for healthy human nutrition. However, an increased level of heavy metals in vegetables has been noticed in recent years. This study was conducted with an aim to analyze content of heavy metals, cadmium (Cd, lead (Pb, and chromium (Cr in 11 vegetable species which are the most common in human diet. Vegetables were collected from three green markets (Limanska, Futoška and Riblja pijaca in Novi Sad, during September and October, from 2009 to 2011. Heavy metal contents were analyzed in edible parts of tomato, potato, spinach, onion, beetroot, parsley, parsnip, carrot, cauliflower, pepper and broccoli using atomic absorption spectrophotometer (Varian, AAS 240FS. The results showed statistically significant differences in element concentrations among analyzed vegetables. In general, the highest metal pollution was observed in the year of 2011. Spinach was found to contain the highest metals content - 0.89 μg/g for Cd, 5.81 μg/g for Pb, and 3.67 μg/g for Cr. According to Serbian official regulations, 18.18% of all analyzed species exceeded maximum permissible level for Cd, 9.09% for Pb, while for Cr these limits are not defined. Elevated content of heavy metals in vegetables might be related to soil contamination, atmospheric depositions during transportation and marketing. Thus, a continuous monitoring of vegetables on markets should be performed in order to prevent potential health risks to consumers.

  9. Contrasting Effects of Farmyard Manure (FYM) and Compost for Remediation of Metal Contaminated Soil.

    Science.gov (United States)

    Sabir, Muhammad; Ali, Amanat; Zia-Ur-rehman, Muhammad; Hakeem, Khalid Rehman

    2015-01-01

    We investigated effect of farm yard manure (FYM) and compost applied to metal contaminated soil at rate of 1% (FYM-1, compost-1), 2% (FYM-2, compost-2), and 3% (FYM-3, compost-3). FYM significantly (P compost increased root dry weight compared to control. Amendments significantly increased nickel (Ni) in shoots and roots of maize except compost applied at 1%. FYM-3 and -1 caused maximum Ni in shoots (11.42 mg kg(-1)) and roots (80.92 mg kg(-1)), respectively while compost-2 caused maximum Ni (14.08 mg kg(-1)) and (163.87 mg kg(-1)) in shoots and roots, respectively. Plants grown in pots amended with FYM-2 and compost-1 contained minimum Cu (30.12 and 30.11 mg kg(-1)) in shoots, respectively. FYM-2 and compost-2 caused minimum zinc (Zn) (59.08 and 66.0 mg kg(-1)) in maize shoots, respectively. FYM-2 caused minimum Mn in maize shoots while compost increased Mn in shoots and roots compared to control. FYM and compost increased the ammonium bicarbonate diethylene triamine penta acetic acid (AB-DTPA) extractable Ni and Mn in the soil and decreased Cu and Zn. Lower remediation factors for all metals with compost indicated that compost was effective to stabilize the metals in soil compared to FYM.

  10. A comparative study of metal contamination in soil using the borehole method.

    Science.gov (United States)

    Teh, T L; Rahman, Nik Norulaini Nik Ab; Shahadat, Mohammad; Wong, Y S; Syakir, Muhammad I; Omar, A K Mohd

    2016-07-01

    The present study deals with possible contamination of the soil by metal ions which have been affecting the environment. The concentrations of metal ions in 14 borehole samples were studied using the ICP-OES standard method. The degree of contamination was determined on the basis of single element pollution index (SEPI), combined pollution index (CPI), soil enrichment factor (SEF), and geo-accumulation index (Igeo). Geo-accumulation indices and contamination factors indicated moderate to strong contaminations for eight boreholes (BL-1, BL-2, BL-6, BL-8, BL-9, BL-10, BL-12, and BL-13) while the rest were extremely contaminated. Among all the boreholes, BL-3 and BL-11 demonstrated the highest level of Cd(II) and Pb(II) which were found the most polluted sites. The level of metal contamination was also compared with other countries. The development, variation, and limitations regarding the regulations of soil and groundwater contamination can be provided as a helpful guidance for the risk assessment of metal ions in developing countries.

  11. Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil.

    Science.gov (United States)

    Adams, P; De-Leij, F A A M; Lynch, J M

    2007-08-01

    We investigated if the plant growth promoting fungus Trichoderma harzianum Rifai 1295-22 (also known as "T22") could be used to enhance the establishment and growth of crack willow (Salix fragilis) in a soil containing no organic or metal pollutants and in a metal-contaminated soil by comparing this fungus with noninoculated controls and an ectomycorrhizal formulation commercially used to enhance the establishment of tree saplings. Crack willow saplings were grown in a temperature-controlled growth room over a period of 5 weeks' in a garden center topsoil and over 12 weeks in a soil which had been used for disposal of building materials and sewage sludge containing elevated levels of heavy metals including cadmium (30 mg kg(-1)), lead (350 mg kg(-1)), manganese (210 mg kg(-1)), nickel (210 mg kg(-1)), and zinc (1,100 mg kg(-1)). After 5 weeks' growth in clean soil, saplings grown with T. harzianum T22 produced shoots and roots that were 40% longer than those of the controls and shoots that were 20% longer than those of saplings grown with ectomycorrhiza (ECM). T. harzianum T22 saplings produced more than double the dry biomass of controls and more than 50% extra biomass than the ECM-treated saplings. After 12 weeks' growth, saplings grown with T. harzianum T22 in the metal-contaminated soil produced 39% more dry weight biomass and were 16% taller than the noninoculated controls. This is the first report of tree growth stimulation by application of Trichoderma to roots, and is especially important as willow is a major source of wood fuel in the quest for renewable energy. These results also suggest willow trees inoculated with T. harzianum T22 could be used to increase the rate of revegetation and phytostabilization of metal-contaminated sites, a property of the fungus never previously demonstrated.

  12. Human health risk assessment: heavy metal contamination of vegetables in Bahawalpur, Pakistan

    Directory of Open Access Journals (Sweden)

    Hafiza Hira Iqbal

    2016-01-01

    Full Text Available Dietary exposure of toxic metals is a vital concern for human health through vegetable consumption, especially in developing countries. Aim of the current study was to determine the health risk related to vegetables contamination of heavy metals by irrigated with sewage and turbine water. Irrigation water sources, soils and vegetables were analyzed for selected metals viz: Pb, Cd, Cr and Ni. Heavy metals in water samples were within the permissible limits except Cd in sewage water. The concentration of heavy metals in soil and vegetables irrigated with turbine water were lower than the safe limits. In case of vegetables irrigated with sewage water, Cd was higher in soil while Pb, Cd and Cr were higher in most of the vegetables. Daily intake of metals, health risk index and Bio-concentration factor was also determined. Health risk index values for Cd, Pb and Ni were exceeded the permissible limits (European Union, 2002. Bio-concentration factor (BCF found to be maximum (16.4 mg/kg in Coriandrum sativum cultivated with sewage water. Raphanus caudatus, Coriandrum sativum, Daucus carota, Allium sativum and Solanum tuberosum showed Health Risk Index of Cd > 1 in adults and children. Allium sativum also showed HRI of Pb > 1 in children. We conclude that the quality of vegetables irrigated with sewage water is poor and not fit for human health, evident from the high concentration of Pb, Cd and Cr. Urgent measures are required to prevent consumption and production vegetables irrigated with of sewage water in the study area.

  13. Heavy metal contamination of vegetables cultivated in home gardens in the Eastern Cape

    Directory of Open Access Journals (Sweden)

    Callistus Bvenura

    2012-09-01

    Full Text Available The accumulation of some essential (copper, manganese and zinc and toxic metals (lead and cadmium in cultivated vegetables – Brassica oleracea (cabbage, Daucus carota (carrot, Allium cepa (onion, Spinacia oleracea(spinach and Solanum lycopersicum (tomato – was examined. The vegetables were locally cultivated in home gardens in Alice, a small town in the Eastern Cape Province of South Africa. Samples of these vegetables were randomly collected from residential areas, dried, digested and analysed for the heavy metals using inductively coupled plasma optical emission spectrometry. The concentrations of heavy metals in the vegetables were in the range of 0.01 mg/kg – 1.12 mg/kg dry weight for cadmium, 0.92 mg/kg – 9.29 mg/kg for copper, 0.04 mg/kg – 373.38 mg/kg for manganese and 4.27 mg/kg – 89.88 mg/kg for zinc. Lead was undetectable in all the samples. Results of analysis of soils from the area revealed that cadmium in soil was in the range of 0.01 mg/kg – 0.08 mg/kg, copper levels were 4.95 mg/kg – 7.66 mg/kg, lead levels were 5.15 mg/kg – 14.01 mg/kg and zinc levels were 15.58 mg/kg – 53.01 mg/kg. The concentration of manganese was the highest of all the metals, ranging between 377.61 mg/kg and 499.68 mg/kg, at all three residential sites. Although the concentrations in soils and vegetables of the critical heavy metals, such as lead and cadmium, may not pose a threat (according to FAO/WHO standards, the concentration of manganese was very high in spinach and soils, whilst that of zinc exceeded safe levels in spinach, onions and tomatoes. However, neither the soils nor the vegetables were consistently found to pose a risk to human health.

  14. Heavy metal contamination of soil and sediment in Zambia

    African Journals Online (AJOL)

    USER

    Pb and Zn were highly correlated with the populations of each town. Our findings indicate that ..... Culture, Sports, Science, and Technology of Japan (M. Ishizuka, No. 19671001 and ... Copper toxicity, oxidative stress, and antioxidant nutrients.

  15. Nature and extent of metal-contaminated soils in urban environments (keynote talk).

    Science.gov (United States)

    Mielke, Howard W

    2016-08-01

    Research on the nature and extent of metal-contaminated soil began with an urban garden study in Baltimore, MD (USA). Largest quantities of soil metals were clustered in the inner city with lesser amounts scattered throughout metropolitan Baltimore. The probability values of metal clustering varied from P value 10(-15)-10(-23) depending on element. The inner-city clustering of lead (Pb) could not be explained by Pb-based paint alone. A major Pb source was tetraethyl lead (TEL), developed as an anti-knock agent for use in vehicle fuel, thereby making highway traffic flow a toxic substance delivery system in cities. Further study in Minneapolis and St. Paul confirmed the clustering of inner-city soil metals, especially Pb. Based on the evidence, the Minnesota State Legislature petitioned Congress to curtail Pb additives resulting in the rapid phasedown of TEL on January 1, 1986, 10 years ahead of the EPA scheduled ban. Further research in New Orleans, Louisiana (NOLA), verified the link between soil Pb, blood Pb, morbidity, and societal health. Although Pb is a known cause of clinical impairment, there is no known effective medical intervention for reducing children's blood Pb exposure. Ingestion and inhalation are routes of exposure requiring prevention, and soil is a reservoir of Pb. Children's blood Pb exposure observed in pre-Hurricane Katrina (August 29, 2005) NOLA underwent substantial decreases 10 years post-Katrina due to many factors including input of low Pb sediment residues by the storm surge and the introduction of low Pb landscaping materials from outside of the city. Investigation on the topic is ongoing.

  16. Emerging Technology Summary. ACID EXTRACTION TREATMENT SYSTEM FOR TREATMENT OF METAL CONTAMINATED SOILS

    Science.gov (United States)

    The Acid Extraction Treatment System (AETS) is intended to reduce the concentrations and/or teachability of heavy metals in contaminated soils so the soil can be returned to the site from which it originated. The objective of the project was to determine the effectiveness and com...

  17. Speciation and leaching of trace metal contaminants from e-waste contaminated soils.

    Science.gov (United States)

    Cui, Jin-Li; Luo, Chun-Ling; Tang, Chloe Wing-Yee; Chan, Ting-Shan; Li, Xiang-Dong

    2017-05-05

    Primitive electrical and electronic waste (e-waste) recycling activities have caused serious environmental problems. However, little is known about the speciation and leaching behaviors of metal contaminants at e-waste contaminated sites. This study investigated trace metal speciation/mobilization from e-waste polluted soil through column leaching experiments involving irrigation with rainwater for almost 2.5 years. Over the experimental period, Cu and Zn levels in the porewater were 0.14±0.08mg/L, and 0.16±0.08mg/L, respectively, increasing to 0.33±0.16mg/L, and 0.69±0.28mg/L with plant growth. The amounts of Cu, Zn, and Pb released in surface soil (0-2cm) contributed 43.8%, 22.5%, and 13.8%, respectively, to the original levels. The released Cu and Zn were primarily caused by the mobilization of the carbonate species of metals, including Cu(OH)2, CuCO3, and Zn5(CO3)2(OH)6, and amorphous Fe/Mn oxides associated fractions characterized by sequential extraction coupling with X-ray absorption spectroscopy. During the experiments, trace metals were not detected in the effluent, and the re-sequestration of trace metals was mainly attributed to the adsorption on the abundant Fe/Mn oxides in the sub-layer soil. This study quantitatively elucidated the molecular speciation of Cu and Zn in e-waste contaminated soil during the column leaching process.

  18. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils.

    Science.gov (United States)

    Liang, Chang-Cong; Li, Tao; Xiao, Yan-ping; Liu, Mao-Jun; Zhang, Han-Bo; Zhao, Zhi-Wei

    2009-01-01

    Pot culture experiments were established to determine the effects of colonization by arbuscular mycorrhizal fungi (AMF) (Glomus mosseae and G. sp) on maize (Zea mays L.) grown in Pb, Zn, and Cd complex contaminated soils. AMF and non-AMF inoculated maize were grown in sterilized substrates and subjected to different soil heavy metal (Pb, Zn, Cd) concentrations. The root and shoot biomasses of inoculated maize were significantly higher than those of non-inoculated maize. Pb, Zn, and Cd concentrations in roots were significantly higher than those in shoots in both the inoculated and non-inoculated maize, indicating the heavy metals mostly accumulated in the roots of maize. The translocation rates of Pb, Zn, and Cd from roots to shoots were not significantly difference between inoculated and non-inoculated maize. However, at high soil heavy metal concentrations, Pb, Zn, and Cd in the shoots and Pb in the roots of inoculated maize were significantly reduced by about 50% compared to the non-inoculated maize. These results indicated that AMF could promote maize growth and decrease the uptake of these heavy metals at higher soil concentrations, thus protecting their hosts from the toxicity of heavy metals in Pb, Zn, and Cd complex contaminated soils.

  19. Heavy metal contaminations in the groundwater of Brahmaputra flood plain: an assessment of water quality in Barpeta District, Assam (India).

    Science.gov (United States)

    Haloi, Nabanita; Sarma, H P

    2012-10-01

    A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).

  20. Remediation of heavy metal contaminated sites in the Venice lagoon and conterminous areas (Northern Italy)

    Science.gov (United States)

    Bini, Claudio; Wahsha, Mohammad; Fontana, Silvia; Maleci, Laura

    2013-04-01

    The lagoon of Venice and the conterminous land are affected by heavy contamination of anthropogenic origin, and for this reason the whole area has been classified as site of national interest, and must be restored. Heavy metals (As, Cd, Cr, Cu, Hg, Mn, Pb, Sb, Se, Zn) and organic compounds (IPA, PCB, Dioxine) have been identified as the main contaminants at various sites, owing to agriculture and industrial wastes discharged on soils and convoyed to the lagoon. Five case studies of soil remediation are here reported. S. Giuliano is a former palustrine area reclaimed since the 60's with various human transported materials (HTM). In this area, hot spots overpassing the reference limits for residential and green areas have been recorded for Cd, Cu, Pb, Zn and IPA. Campalto is a site bordering the Venice lagoon and subjected to oscillating water level, that enhances metal mobility; diffuse contamination by heavy metals, particularly Pb, has been recorded at this site, utilized since 30 years for military and sport (skate) activities. Marghera is dramatically famous for its numerous factories and for oil refineries that affected the lagoon sediments since the 50's. Sediments proved heavily contaminated by As (up to 137 mgkg-1), Cd (57 mgkg-1), Hg (30mgkg-1), Ni, Pb (700 mgkg-1), Zn (5818 mgkg-1). Murano is a small island where many glass factories (the most famous all over the world) are running since XIII century. Glass is stained with several metals and, moreover, some substances are used to regulate fusion temperature, purity, etc., and therefore the surrounding environment is heavily contaminated by these substances. Mean concentrations of As (429 mgkg-1), Cd (1452 mgkg-1), Pb (749 mgkg-1), Zn (1624 mgkg-1), Se (341 mgkg-1), Sb (74 mgkg-1) widely overpass the reference values for both residential and industrial areas in national guidelines. Molo Serbatoi is a former oil container currently under restoration in the port of Venice. Soil contamination by As, Hg, Zn and

  1. Climate change impacts on the leaching of a heavy metal contamination in a small lowland catchment

    Science.gov (United States)

    Visser, Ate; Kroes, Joop; van Vliet, Michelle T. H.; Blenkinsop, Stephen; Fowler, Hayley J.; Broers, Hans Peter

    2012-01-01

    The Keersop catchment (43 km 2) in the south of The Netherlands has been contaminated by the emissions of four zinc ore smelters. The objective of this study was to assess the effects of future projected climate change on the hydrology and the leaching of heavy metals (i.e. Cd and Zn) in the catchment. The numerical, quasi-2D, unsaturated zone Soil Water Atmosphere Plant model was used with 100-year simulated daily time series of precipitation and potential evapotranspiration. The time series are representative of stationary climates for the periods 1961-1990 ("baseline") and 2071-2100 ("future"). The time series of future climate were obtained by downscaling the results of eight regional climate model (RCM) experiments, driven by the SRES A2 emissions scenario, using change factors for a series of climate statistics and applying them to stochastic weather generator models. The time series are characterized by increased precipitation in winter, less precipitation in summer, and higher air temperatures (between 2 °C and 5 °C) throughout the year. Future climate scenarios project higher evapotranspiration rates, more irrigation, less drainage, lower discharge rates and lower groundwater levels, due to increased evapotranspiration and a slowing down of the groundwater system. As a result, lower concentrations of Cd and Zn in surface water are projected. The reduced leaching of heavy metals, due to drying of the catchment, showed a positive impact on a limited aspect of surface water quality.

  2. Evaluation of Environmental Risk of Metal Contaminated Soils and Sediments Near Mining Sites in Aguascalientes, Mexico.

    Science.gov (United States)

    Mitchell, Kerry Nigel; Ramos Gómez, Magdalena Samanta; Guerrero Barrera, Alma Lilian; Yamamoto Flores, Laura; Flores de la Torre, Juan Armando; Avelar González, Francisco Javier

    2016-08-01

    A total of sixteen composite soil and sediment samples were collected during the rainy and dry season in Asientos, Aguascalientes, Mexico, an area recently affected by increased mining operations. Physicochemical characterization showed that substrates were moderately to strongly calcareous with predominantly neutral to slightly alkaline pH, moderate to high cation-exchange capacity and high organic matter content. Due to these conditions, Cd, Pb, Cu and Zn were not water leachable despite high concentrations; up to 105.3, 7052.8, 414.7 and 12,263.2 mg kg(-1) respectively. However, Cd and Pb were considered to be easily mobilizable as they were found predominantly associated with exchangeable and carbonate fractions, whereas Cu and Zn were found associated with Fe/Mn oxide and organic matter fractions. The results highlighted the influence of physicochemical substrate properties on the mobility of metals and its importance during the evaluation of the potential current and future risk metal contamination presents in affected areas.

  3. Sustainability likelihood of remediation options for metal-contaminated soil/sediment.

    Science.gov (United States)

    Chen, Season S; Taylor, Jessica S; Baek, Kitae; Khan, Eakalak; Tsang, Daniel C W; Ok, Yong Sik

    2017-05-01

    Multi-criteria analysis and detailed impact analysis were carried out to assess the sustainability of four remedial alternatives for metal-contaminated soil/sediment at former timber treatment sites and harbour sediment with different scales. The sustainability was evaluated in the aspects of human health and safety, environment, stakeholder concern, and land use, under four different scenarios with varying weighting factors. The Monte Carlo simulation was performed to reveal the likelihood of accomplishing sustainable remediation with different treatment options at different sites. The results showed that in-situ remedial technologies were more sustainable than ex-situ ones, where in-situ containment demonstrated both the most sustainable result and the highest probability to achieve sustainability amongst the four remedial alternatives in this study, reflecting the lesser extent of off-site and on-site impacts. Concerns associated with ex-situ options were adverse impacts tied to all four aspects and caused by excavation, extraction, and off-site disposal. The results of this study suggested the importance of considering the uncertainties resulting from the remedial options (i.e., stochastic analysis) in addition to the overall sustainability scores (i.e., deterministic analysis). The developed framework and model simulation could serve as an assessment for the sustainability likelihood of remedial options to ensure sustainable remediation of contaminated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Metal contamination status of the soil-plant system and effects on the soil microbial community near a rare metal recycling smelter.

    Science.gov (United States)

    Li, Zhu; Ma, Tingting; Yuan, Cheng; Hou, Jinyu; Wang, Qingling; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-09-01

    Four heavy metals (Cd, Cu, Pb and Zn), two metalloids (As and Sb) and two rare metals (In and Tl) were selected as target elements to ascertain their concentrations and accumulation in the soil-plant system and their effects on the structure of the soil microbial community in a typical area of rare metal smelting in south China. Twenty-seven soil samples 100, 500, 1000, 1500 and 3000 m from the smelter and 42 vegetable samples were collected to determine the concentrations of the target elements. Changes in soil micro-organisms were investigated using the Biolog test and 454 pyrosequencing. The concentrations of the eight target elements (especially As and Cd) were especially high in the topsoil 100 m from the smelter and decreased markedly with increasing distance from the smelter and with increasing soil depth. Cadmium bio-concentration factors in the vegetables were the highest followed by Tl, Cu, Zn, In, Sb, Pb, and then As. The concentrations of As, Cd and Pb in vegetables were 86.7, 100 and 80.0 %, respectively, over the permissible limits and possible contamination by Tl may also be of concern. Changes in soil microbial counts and average well colour development were also significantly different at different sampling distances from the smelter. The degree of tolerance to heavy metals appears to be fungi > bacteria > actinomycetes. The 454 pyrosequencing indicates that long-term metal contamination from the smelting activities has resulted in shifts in the composition of the soil bacterial community.

  5. Assessment of metals contamination and ecological risk in ait Ammar abandoned iron mine soil, Morocco

    OpenAIRE

    2016-01-01

    The present study is an attempt to assess the pollution intensity and corresponding ecological risk of phosphorus and metals including Cd, Cr, Cu, Zn, Pb and Fe using various indices like geo-accumulation index, enrichment factor, pollution and ecological risk index. In all, 20 surface soil samples were collected from the Ait Ammar iron mine of Oued Zem city, province of Khouribga, in central Morocco. The concentrations of heavy metals in soil samples were used to assess their potential ecolo...

  6. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    Science.gov (United States)

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  7. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.

    Science.gov (United States)

    Lee, Jin-Yong; Choi, Jung-Chan; Lee, Kang-Kun

    2005-09-01

    This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead-zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002-2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 microg L(-1), copper (Cu) 616 microg L(-1), cadmium (Cd) 223 microg L(-1) and lead (Pb) 10,590 microg L(-1), which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6-174 microg L(-1)), Cd (1-46 microg L(-1)) and Pb (2-26 microg L(-1)). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO(4)), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO(4) increased while those of bicarbonate (HCO(3)) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758

  8. Measuring Spatial Distribution Characteristics of Heavy Metal Contaminations in a Network-Constrained Environment: A Case Study in River Network of Daye, China

    Directory of Open Access Journals (Sweden)

    Zhensheng Wang

    2017-06-01

    Full Text Available Measuring the spatial distribution of heavy metal contaminants is the basis of pollution evaluation and risk control. Considering the cost of soil sampling and analysis, spatial interpolation methods have been widely applied to estimate the heavy metal concentrations at unsampled locations. However, traditional spatial interpolation methods assume the sample sites can be located stochastically on a plane and the spatial association between sample locations is analyzed using Euclidean distances, which may lead to biased conclusions in some circumstances. This study aims to analyze the spatial distribution characteristics of copper and lead contamination in river sediments of Daye using network spatial analysis methods. The results demonstrate that network inverse distance weighted interpolation methods are more accurate than planar interpolation methods. Furthermore, the method named local indicators of network-constrained clusters based on local Moran’ I statistic (ILINCS is applied to explore the local spatial patterns of copper and lead pollution in river sediments, which is helpful for identifying the contaminated areas and assessing heavy metal pollution of Daye.

  9. Assessment of metals contamination and ecological risk in ait Ammar abandoned iron mine soil, Morocco

    Directory of Open Access Journals (Sweden)

    Nouri Mohamed

    2016-03-01

    Full Text Available The present study is an attempt to assess the pollution intensity and corresponding ecological risk of phosphorus and metals including Cd, Cr, Cu, Zn, Pb and Fe using various indices like geo-accumulation index, enrichment factor, pollution and ecological risk index. In all, 20 surface soil samples were collected from the Ait Ammar iron mine of Oued Zem city, province of Khouribga, in central Morocco. The concentrations of heavy metals in soil samples were used to assess their potential ecological risks. According to the results of potential ecological risk index (RI, pollution index (PI, geo-accumulation index (Igeo, enrichment factor (EF, potential contamination index (Cp, contaminant factor (Cf and degree of contamination (Cd, based on the averages, considerable pollution of metals in soils of study area was observed. The consequence of the correlation matrix and principal component analysis (PCA indicated that Fe, Cu, Zn, Cr and P mainly originated from natural sources and Cd and Pb are mostly derived from anthropogenic sources. The results showed that these metals in soil were ranked by severity of ecological risk as Pb > Cd > Cu > Cr > Zn, based on their single-element indexes. In view of the potential ecological risk (RI, soils from all soil samples showed a potential ecological risk. These results will provide basic information for the improvement of soil environment management and heavy metal pollution prevention in Ait Ammar.

  10. Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia

    Science.gov (United States)

    Shamsoddini, A.; Raval, S.; Taplin, R.

    2014-09-01

    Abandoned mine sites pose the potential threat of the heavy metal pollution spread through streams and via runoff leading to contamination of soil and water in their surrounding areas. Regular monitoring of these areas is critical to minimise impacts on water resources, flora and fauna. Conventional ground based monitoring is expensive and sometimes impractical; spectroscopic methods have been emerged as a reliable alternative for this purpose. In this study, the capabilities of the spectroscopy method were examined for modelling soil contamination from around the abandoned silver-zinc mine located at Yerranderie, NSW Australia. The diagnostic characteristics of the original reflectance data were compared with models derived from first and second derivatives of the reflectance data. The results indicate that the models derived from the first derivative of the reflectance data estimate heavy metals significantly more accurately than model derived from the original reflectance. It was also found in this study that there is no need to use second derivative for modelling heavy metal soil contamination. Finally, the results indicate that estimates were of greater accuracy for arsenic and lead compared to other heavy metals, while the estimation for silver was found to be the most erroneous.

  11. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary.

    Science.gov (United States)

    Luo, Lianzhong; Ke, Caihuan; Guo, Xiaoyu; Shi, Bo; Huang, Miaoqin

    2014-06-01

    Bio-accumulation and bio-transmission of toxic metals and the toxicological responses of organisms exposed to toxic metals have been focused, due to heavy metal contaminations have critically threatened the ecosystem and food security. However, still few investigations focused on the responses of certain organisms exposed to the long term and severe heavy metal contamination in specific environments. In present investigation, the Hong Kong oyster, Crassostrea hongkongensis were obtained from 3 sites which were contaminated by different concentrations of heavy metals (such as zinc, copper, manganese and lead etc.), respectively. Heavy metal concentrations in the sea water samples collected from the 3 sites and the dissected tissues of the oysters with blue visceral mass were determinated to estimate the metal contamination levels in environments and the bio-accumulation ratios of the heavy metals in the different tissues of oysters. Moreover, Proteomic methods were employed to analyze the differentially expressed proteins in the gills of oysters exposed to long-term heavy metal contaminations. Results indicated that the Jiulong River estuary has been severely contaminated by Cu, Zn and slightly with Cr, Ni, Mn, etc, moreover, Zn and Cu were the major metals accumulated by oysters to phenomenally high concentrations (more than 3.0% of Zn and about 2.0% of Cu against what the dry weight of tissues were accumulated), and Cr, Ni, Mn, etc were also significantly accumulated. The differentially expressed proteins in the gills of oysters exposed to heavy metals participate in several cell processes, such as metal binding, transporting and saving, oxidative-reduction balance maintaining, stress response, signal transduction, etc. Significantly up-regulated expression (about 10 folds) of an important metal binding protein, metallothionein (MT) and granular cells was observed in the gills of oysters exposed to long-term and severely heavy-metal-contaminated estuary, it

  12. Heavy metal contamination along the China coastline: A comprehensive study using Artificial Mussels and native mussels.

    Science.gov (United States)

    Degger, Natalie; Chiu, Jill M Y; Po, Beverly H K; Tse, Anna C K; Zheng, Gene J; Zhao, Dong-Mei; Xu, Di; Cheng, Yu-Shan; Wang, Xin-Hong; Liu, Wen-Hua; Lau, T C; Wu, Rudolf S S

    2016-09-15

    A comprehensive study was carried out to assess metal contamination in five cities spanning from temperate to tropical environment along the coastal line of China with different hydrographical conditions. At each of the five cities, Artificial Mussels (AM) were deployed together with a native species of mussel at a control site and a polluted site. High levels of Cr, Cu and Hg were found in Qingdao, high level of Cd, Hg and Pb was found in Shanghai, and high level of Zn was found in Dalian. Furthermore, level of Cu contamination in all the five cities was consistently much higher than those reported in similar studies in other countries (e.g., Australia, Portugal, Scotland, Iceland, Korea, South Africa and Bangladesh). Levels of individual metal species in the AM showed a highly significant correlation with that in the native mussels (except for Zn in Mytilus edulis and Cd in Perna viridis), while no significant difference can be found between the regression relationships of metal in the AM and each of the two native mussel species. The results demonstrated that AM can provide a reliable time-integrated estimate of metal concentration in contrasting environments over large biogeographic areas and different hydrographic conditions, and overcome the shortcomings of monitoring metals in water, sediment and the use of biomonitors.

  13. Heavy metal contamination in the environs of the Zn-pB Mine in North-West of Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Ben Guirat, S.; Ben Aissa, N.; Mhiri, A.

    2009-07-01

    The impact of industrial heavy metals (HM) pollution on soil quality and plant growth has become a public concern. To evaluate heavy metals concentration a Zn-Pb mine site was selected, as source of pollution, localized in BouGrine (BG) region at 120 km North-west of Tunis characterized by calcareous soils. Soils of the imine site are occupied by forest pine. (Author)

  14. Trace metal contaminants in sediments and soils: comparison between ICP and XRF quantitative determination

    Directory of Open Access Journals (Sweden)

    Congiu A.

    2013-04-01

    Full Text Available A mineralization method HCl-free for heavy metals analysis in sediments and soils by DRC-ICP-MS was developed. The procedure, which uses concentrated nitric, hydrofluoric acid and hydrogen peroxide, was applied for the analysis of arsenic, cadmium, chromium, nickel and vanadium. The same samples were then analyzed, as pressed pellets, by wavelength dispersive X ray fluorescence (WD-XRF using the dedicated PANalytical Pro Trace solution for the determination of trace elements. Comparison of ICP and XRF data showed good agreement for the elements under investigation, unless for chromium in soils, which recovery was not complete.

  15. Remediation techniques for heavy-metals contamination in lakes: A Mini-Review

    Digital Repository Service at National Institute of Oceanography (India)

    Giripunje, M.D.; Fulke, A.B.; Meshram, P.U.

    , and biological methods As a result of the non-uniform and complex nature of lakes, the selection of the most suitable the heavy-metals removal technique is a difficult task Among these processes, biological processes are efficient to remove heavy metals...

  16. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Catherine; Hammer, Daniel

    2004-09-01

    Metal phytoextraction with hyperaccumulating plants could be a useful method to decontaminate soils, but it is not fully validated yet. In order to quantify the efficiency of Cd and Zn extraction from a calcareous soil with and without Fe amendment and an acidic soil, we performed a pot experiment with three successive croppings of Thlaspi caerulescens followed by 3 months without plant and 7 weeks with lettuce. We used a combined approach to assess total extraction efficiency (2 M HNO{sub 3}-extractable metals), changes in metal bio/availability (0.1 M NaNO{sub 3}-extractable metals and lettuce uptake) and toxicity (lettuce biomass and the BIOMETreg] biosensor). The soil solution was monitored over the whole experiment. In the calcareous soil large Cu concentrations were probably responsible for chlorosis symptoms observed on T. caerulescens. When this soil was treated with Fe, the amount of extracted metal by T. caerulescens increased and metal availability and soil toxicity decreased when compared to the untreated soil. In the acidic soil, T. caerulescens was most efficient: Cd and Zn concentrations in plants were in the range of hyperaccumulation and HNO{sub 3}-extractable Cd and Zn, metal bio/availability, soil toxicity, and Cd and Zn concentrations in the soil solution decreased significantly. However, a reduced Cd concentration measured in the third T. caerulescens cropping indicated a decrease in metal availability below a critical threshold, whereas the increase of dissolved Cd and Zn concentrations after the third cropping may be the early sign of soil re-equilibration. This indicates that phytoextraction efficiency must be assessed by different approaches in order not to overlook any potential hazard and that an efficient phytoextraction scheme will have to take into account the different dynamics of the soil-plant system.

  17. Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China

    National Research Council Canada - National Science Library

    Yu, Xiumei; Li, Yanmei; Zhang, Chu; Liu, Huiying; Liu, Jin; Zheng, Wenwen; Kang, Xia; Leng, Xuejun; Zhao, Ke; Gu, Yunfu; Zhang, Xiaoping; Xiang, Quanju; Chen, Qiang

    2014-01-01

    To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite...

  18. Direct and indirect effects of metal contamination on soil biota in a Zn-Pb post-mining and smelting area (S Poland)

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, Pawel, E-mail: p.kapusta@botany.pl [Department of Ecology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow (Poland); Szarek-Lukaszewska, Grazyna; Stefanowicz, Anna M. [Department of Ecology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow (Poland)

    2011-06-15

    Effects of metal contamination on soil biota activity were investigated at 43 sites in 5 different habitats (defined by substratum and vegetation type) in a post-mining area. Sites were characterised in terms of soil pH and texture, nutrient status, total and exchangeable metal concentrations, as well as plant species richness and cover, abundances of enchytraeids, nematodes and tardigrades, and microbial respiration and biomass. The concentrations of total trace metals were highest in soils developed on mining waste (metal-rich dolomite), but these habitats were more attractive than sandy sites for plants and soil biota because of their higher content of organic matter, clay and nutrients. Soil mesofauna and microbes were strongly dependent on natural habitat properties. Pollution (exchangeable Zn and Cd) negatively affected only enchytraeid density; due to a positive relationship between enchytraeids and microbes it indirectly reduced microbial activity. - Highlights: > Bioavailable zinc and cadmium reduce enchytraeid density. > Enchytraeids positively influence microbial respiration and biomass. > Total contents of heavy metals in soil are poor predictors of the distribution of plants and soil biota. - Elevated concentrations of exchangeable Zn and Cd reduce enchytraeid density and indirectly affect microbial activity adversely.

  19. 铜矿重金属污染对土壤微生物群落多样性和酶活力的影响%The Impact of Heavy Metal Contamination on Soil Microbial Diversity and Enzyme Activities in A Copper Mine

    Institute of Scientific and Technical Information of China (English)

    张雪晴; 张琴; 程园园; 荚荣

    2016-01-01

    decreased with the increase of the comprehensive pollution index of four samples; the activity of phosphatase and dehydrogenase was negatively correlated to the concentration of cadmium, zinc and lead, while the urease activity showed no significant correlation with these metals; (3) the diversity of bacteria and fungi decreased with the increase of the comprehensive pollution index, and the change of fungi abundance was more obvious than that of bacteria. This study will contribute to the bioremediation of heavy metal contamination in mining areas.

  20. Microplastics as vector for heavy metal contamination from the marine environment

    Science.gov (United States)

    Brennecke, Dennis; Duarte, Bernardo; Paiva, Filipa; Caçador, Isabel; Canning-Clode, João

    2016-09-01

    The permanent presence of microplastics in the marine environment is considered a global threat to several marine animals. Heavy metals and microplastics are typically included in two different classes of pollutants but the interaction between these two stressors is poorly understood. During 14 days of experimental manipulation, we examined the adsorption of two heavy metals, copper (Cu) and zinc (Zn), leached from an antifouling paint to virgin polystyrene (PS) beads and aged polyvinyl chloride (PVC) fragments in seawater. We demonstrated that heavy metals were released from the antifouling paint to the water and both microplastic types adsorbed the two heavy metals. This adsorption kinetics was described using partition coefficients and mathematical models. Partition coefficients between pellets and water ranged between 650 and 850 for Cu on PS and PVC, respectively. The adsorption of Cu was significantly greater in PVC fragments than in PS, probably due to higher surface area and polarity of PVC. Concentrations of Cu and Zn increased significantly on PVC and PS over the course of the experiment with the exception of Zn on PS. As a result, we show a significant interaction between these types of microplastics and heavy metals, which can have implications for marine life and the environment. These results strongly support recent findings where plastics can play a key role as vectors for heavy metal ions in the marine system. Finally, our findings highlight the importance of monitoring marine litter and heavy metals, mainly associated with antifouling paints, particularly in the framework of the Marine Strategy Framework Directive (MSFD).

  1. Mountain Lake, Presidio National Park, San Francisco: Paleoenvironment, heavy metal contamination, sedimentary record rescue, remediation, and public outreach

    Science.gov (United States)

    Myrbo, A.; Rodysill, J. R.; Jones, K.; Reidy, L. M.

    2014-12-01

    Sediment cores from Mountain Lake, a small natural lake in Presidio National Park, San Francisco, CA, provide a record of Bay Area environmental change spanning the past 2000 years, and of unusually high heavy metal contamination in the last century (Reidy 2001). In 2013, partial dredging of the lake removed the upper two meters of lake sediment as part of a remediation effort. Prior to dredging, long and short cores spatially covering the lake and representing deep and shallow environments were recovered from the lake to preserve the paleoenvironmental record of one of the only natural lakes on the San Francisco Peninsula. The cores are curated at LacCore and are available for research by the scientific community. Mountain Lake formed in an interdunal depression and was shallow and fluctuating in its first few hundred years. Lake level rise and inundation of a larger area was followed by lowstands under drier conditions around 550-700 and 1300 CE. Nonnative taxa and cultivars appeared at the time of Spanish settlement in the late 18th century, and the lake underwent eutrophication due to livestock pasturing. U.S. Army landscaping introduced trees to the watershed in the late 19th century. The upper ~1m of sediments document unusually high heavy metal contamination, especially for lead and zinc, caused by the construction and heavy use of Highway 1 on the lake shore. Lead levels peak in 1975 and decline towards the surface, reflecting the history of leaded gasoline use in California. Zinc is derived mainly from automobile tires, and follows a pattern similar to that of lead, but continues to increase towards the surface. Ongoing research includes additional radiocarbon dating and detailed lithological analysis to form the basis of lake-level reconstruction and archeological investigations. Because the Presidio archaeological record does not record human habitation in the area until approximately 1300 years before present, the core analysis also has the potential to

  2. ICP-OES and Micronucleus Test to Evaluate Heavy Metal Contamination in Commercially Available Brazilian Herbal Teas.

    Science.gov (United States)

    Schunk, Priscila Francisca Tschaen; Kalil, Ieda Carneiro; Pimentel-Schmitt, Elisangela Flavia; Lenz, Dominik; de Andrade, Tadeu Uggere; Ribeiro, Juliano Souza; Endringer, Denise Coutinho

    2016-07-01

    Increased tea consumption in combination with intensive pesticide use is generating heavy metal contaminations amongst Brazilian tea consumers, causing health concerns. Inductively coupled plasma optical emission spectrometry (ICP-OES) was applied to quantify minerals and heavy metals such as aluminum, barium, cadmium, lead, cobalt, copper, chromium, tin, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium and zinc in Brazilian chamomile, lemongrass, fennel and yerba mate teas. Teas, purchased in local supermarkets, were prepared using infusion and acid digestion. Higher concentrations of Al were present in all samples. In the digested samples, the Al mean concentration was 2.41 μg g(-1) (sd = 0.72) for fennel and 33.42 μg g(-1) (sd = 17.18) for chamomile, whilst the sample C for chamomile tea presented the highest concentration with 51.62 μg g(-1) (sd = 9.17). The safety relation in decreasing order is fennel, lemongrass, chamomile and yerba mate. Chemometric analyses demonstrated a strong correlation between the elements Cd and Pb in the samples. Yerba mate had the highest amount of metal (100 mg kg(-1)), being the subject of a micronucleus test assay for cytotoxicity. The metals found in Yerba mate did not present cytotoxicity/mutagenicity using the micronucleus test. The inorganic contaminants in teas should have their impact carefully monitored.

  3. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wood

    2016-06-01

    Full Text Available The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediation strategy investigated for remediating heavy-metal-contaminated soils. Although the efficiency of phytoextraction remains a limiting feature of the technology, there are numerous reports that soil microorganisms can improve rates of heavy metal extraction.This review highlights the unique challenges faced when remediating heavy-metal-contaminated soils as compared to static aquatic systems and suggests new strategies for using microorganisms to improve phytoextraction. We compare how microorganisms are used in soil bioremediation (i.e. phytoextraction and water bioremediation processes, discussing how the engineering of microbial communities, used in water remediation, could be applied to phytoextraction. We briefly outline possible approaches for the engineering of soil communities to improve phytoextraction either by mobilizing metals in the rhizosphere of the plant or by promoting plant growth to increase the root-surface area available for uptake of heavy metals. We highlight the technological advances that make this research direction possible and how these technologies could be employed in future research.

  4. Determination of heavy metals contamination using a silicon sensor with extended responsive to the UV

    Science.gov (United States)

    Aceves-Mijares, M.; Ramírez, J. M.; Pedraza, J.; Román-López, S.; Chávez, C.

    2013-03-01

    Due to its potential risk to human health and ecology, the presence of heavy metals in water demands of techniques to determine them in a simple and economical way. Currently, new developments of light emitters and detectors open a window of opportunities to use optical properties to analyze contaminated water. In this paper, a silicon sensor developed to extend its sensitivity up to the UV range is used to determine heavy metals in water. Cadmium, Zinc, Lead, Copper and Manganese mixed in pure water at different concentrations were used as test samples. The photocurrent obtained by the light that passes through the samples was used to determine the optical transmittance of pure and contaminated water. Preliminary results show a good separability between samples, which can be used for qualitative and quantitative detection of such heavy metals in water.

  5. Bioremediation of multi-metal contaminated soil using biosurfactant - a novel approach.

    Science.gov (United States)

    Juwarkar, Asha A; Dubey, Kirti V; Nair, Anupa; Singh, Sanjeev Kumar

    2008-03-01

    An unconventional nutrient medium, distillery spent wash (1:3) diluted) was used to produce di-rhamnolipid biosurfactant by Pseudomonas aeruginosa strain BS2. This research further assessed the potential of the biosurfactant as a washing agent for metal removal from multimetal contaminated soil (Cr-940 ppm; Pb-900 ppm; Cd-430 ppm; Ni-880 ppm; Cu-480 ppm). Out of the treatments of contaminated soil with tap water and rhamnolipid biosurfactant, the latter was found to be potent in mobilization of metal and decontamination of contaminated soil. Within 36 hours of leaching study, di-rhamnolipid as compared to tap water facilitated 13 folds higher removal of Cr from the heavy metal spiked soil whereas removal of Pb and Cu was 9-10 and 14 folds higher respectively. Leaching of Cd and Ni was 25 folds higher from the spiked soil. This shows that leaching behavior of biosurfactant was different for different metals. The use of wastewater for production of biosurfactant and its efficient use in metal removal make it a strong applicant for bioremediation.

  6. On New Progress of Research on Coupling Models for Heavy Metal Contaminants Transport%重金属污染物运移耦合模型研究新进展

    Institute of Scientific and Technical Information of China (English)

    马福荣; 庞迎波; 陈日高

    2011-01-01

    In light of analysis of the current state of research on contaminants transport models at home and abroad,coupling models for soil consolidation deformation and heavy metal contaminants transport,the article argues that heterogeneous and nonlinear natures of transmission media should be considered while coupling soil consolidation deformation with heavy metal contaminants transport; comprehensive consideration should be taken into transformation model for stress field,seepage field,concentration field, chemical field and heavy metal contaminants transport in double electric layers gravitational field and coupling models for soil consolidation deformation and heavy metal contaminants transport be developed in the special soil.%针对尾矿库、垃圾填埋场底部土层受荷后的力学变形特性,以及考虑土体固结变形与重金属污染物运移转化模式、途径的不确定性与模糊性,通过分析国内外有关污染物运移模型,以及考虑土体固结变形与重金属污染物运移耦合模型的研究现状,指出现阶段研究中存在的不足,并提出考虑土体固结变形与重金属污染物运移转化相互耦合时应加强考虑传输介质问的非均相、非线性,建立综合考虑应力场、渗流场、浓度场、化学场,以及双电层引力场的重金属污染物运移转化模型,特别是在特殊土(如膨胀土、红黏土等)中建立土体固结变形与重金属污染物运移耦合模型以及计算方法,是今后研究工作的研究重点与发展方向。

  7. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China.

    Science.gov (United States)

    Li, Xiaoyu; Liu, Lijuan; Wang, Yugang; Luo, Geping; Chen, Xi; Yang, Xiaoliang; Gao, Bin; He, Xingyuan

    2012-01-01

    The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world's impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems.

  8. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    Full Text Available The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002. This is one of the most polluted of the world's impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems.

  9. Removal of heavy metal contamination from peanut skin extracts by waste biomass adsorption

    Science.gov (United States)

    Polyphenols are a rapidly increasing portion of the nutraceutical and functional food marketplace. Peanut skins are a waste product which have potential as a low-cost source of polyphenols. Extraction and concentration of peanut skin extracts can cause normally innocuous levels of the heavy metal co...

  10. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    Science.gov (United States)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  11. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine.

    Science.gov (United States)

    Epelde, Lur; Lanzén, Anders; Blanco, Fernando; Urich, Tim; Garbisu, Carlos

    2015-01-01

    Toxicity of metals released from mine tailings may cause severe damage to ecosystems. A diversity of microorganisms, however, have successfully adapted to such sites. In this study, our objective was to advance the understanding of the indigenous microbial communities of mining-impacted soils. To this end, a metatranscriptomic approach was used to study a heavily metal-contaminated site along a metal concentration gradient (up to 3220 000 and 97 000 mg kg(-1) of Cd, Pb and Zn, respectively) resulting from previous mining. Metal concentration, soil pH and amount of clay were the most important factors determining the structure of soil microbial communities. Interestingly, evenness of the microbial communities, but not its richness, increased with contamination level. Taxa with high metabolic plasticity like Ktedonobacteria and Chloroflexi were found with higher relative abundance in more contaminated samples. However, several taxa belonging to the phyla Actinobacteria and Acidobacteria followed opposite trends in relation to metal pollution. Besides, functional transcripts related to transposition or transfer of genetic material and membrane transport, potentially involved in metal resistance mechanisms, had a higher expression in more contaminated samples. Our results provide an insight into microbial communities in long-term metal-contaminated environments and how they contrast to nearby sites with lower contamination.

  12. Application of chemometrics methods for the estimation of heavy metals contamination in river sediments

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-wei; YUAN Chun-gang; JIN Xing-long; JIANG Gui-bin

    2005-01-01

    The concentration and speciation of six heavy metals in sediments of eight sampling sites of Haihe River were investigated. The metals, namely Cd, Cu, Co, Ni, Mn and Pb were considered. By using sequential extraction(SE), the total metals were divided into five fractions: exchangeable, carbonate bound, iron/manganese oxide bound, sulfides and organic matter fraction and residual fraction. A multivariate statistical approach(principal component analysis, PCA) was used to evaluate the contamination of heavy metals by the total levels and chemical forms, respectively. The results showed that the total metals concentration(TMC) could not provide sufficient and accurate information because the mobility, bioavailability and toxicity of metals depend not only on their total concentration but also on the physicochemical form in which they occur.

  13. Heavy metals contamination in lipsticks and their associated health risks to lipstick consumers.

    Science.gov (United States)

    Zakaria, Airin; Ho, Yu Bin

    2015-10-01

    This study aimed to determine the heavy metals (lead, cadmium, and chromium) concentration in lipsticks of different price categories sold in the Malaysian market and evaluate the potential health risks due to daily ingestion of heavy metals in lipsticks. A total of 374 questionnaires were distributed to the female staff in a public university in Malaysia in order to obtain information such as brand and price of the lipsticks, body weight, and frequency and duration of wearing lipstick. This information was important for the calculation of hazard quotient (HQ) in health risk assessment. The samples were extracted using a microwave digester and analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The concentrations of lead, cadmium, and chromium in lipsticks ranged from 0.77 to 15.44 mg kg(-1), 0.06-0.33 mg kg(-1), and 0.48-2.50 mg kg(-1), respectively. There was a significant difference of lead content in the lipsticks of different price categories. There was no significant non-carcinogenic health risk due to the exposure of these heavy metals through lipstick consumption for the prolonged exposure of 35 years (HQ < 1). Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application.

    Science.gov (United States)

    Jones, D L; Quilliam, R S

    2014-07-15

    Pyrolysis or combustion of waste wood can provide a renewable source of energy and produce byproducts which can be recycled back to land. To be sustainable requires that these byproducts pose minimal threat to the environment or human health. Frequently, reclaimed waste wood is contaminated by preservative-treated timber containing high levels of heavy metals. We investigated the effect of feedstock contamination from copper-preservative treated wood on the behaviour of pyrolysis-derived biochar and combustion-derived ash in plant-soil systems. Biochar and wood ash were applied to soil at typical agronomic rates. The presence of preservative treated timber in the feedstock increased available soil Cu; however, critical Cu guidance limits were only exceeded at high rates of feedstock contamination. Negative effects on plant growth and soil quality were only seen at high levels of biochar contamination (>50% derived from preservative-treated wood). Negative effects of wood ash contamination were apparent at lower levels of contamination (>10% derived from preservative treated wood). Complete removal of preservative treated timber from wood recycling facilities is notoriously difficult and low levels of contamination are commonplace. We conclude that low levels of contamination from Cu-treated wood should pose minimal environmental risk to biochar and ash destined for land application.

  15. Aldehyde dehydrogenase expression in Metaphire posthuma as a bioindicator to monitor heavy metal pollution in soil.

    Science.gov (United States)

    Panday, Raju; Bhatt, Padam Shekhar; Bhattarai, Tribikram; Shakya, Kumudini; Sreerama, Lakshmaiah

    2016-11-21

    Soil contamination and associated pollution plays a detrimental role in soil flora and fauna. Soil is processed and remodeled by subterranean earthworms, accordingly are referred to as soil chemical engineers. These worms, besides processing carbon and nitrogen, serve as minors for processing metals. In heavy metal contaminated soils, they accumulate heavy metals, which in turn cause altered gene expression, including aldehyde dehydrogenase (ALDH) enzymes. This study explores the possibility of ALDH expression in earthworms as a novel biomarker for the heavy metal contamination of soil. Earthworms cultured in contaminated soils accumulated significantly higher levels of Pb and Cd. Similarly, significantly higher levels of ALDH enzyme activities were observed in earthworms cultured in soils contaminated with Pb and Cd. The ALDH activity was found to be highest in worms cultured in 5 ppm heavy metal contaminated soils. Although, ALDH activities decreased as the heavy metal concentration in soil increased, they were significantly higher when compared to control worms cultured in uncontaminated soils. The accumulation of heavy metal in earthworms measured after 28 days decreased as the heavy metal concentration in soil increased. Levels of ALDH expression correlated with total Pb and Cd concentration in the earthworm tissue. This study showed that the ALDH activity in earthworms could potentially be used as a biomarker to show heavy metal pollution in soil.

  16. Hydrochemical processes controlling arsenic and heavy metal contamination in the Elqui river system (Chile).

    Science.gov (United States)

    Dittmar, Thorsten

    2004-06-05

    Severe arsenic poisoning from drinking water has been documented in Northern Chile. However, the Elqui River, which provides water for approximately 200,000 people in this region, is poorly studied and no data on contaminants have been published to date. In this study, trace elements and the main aqueous constituents were monitored for approximately 2 years in the entire river system. Aqueous species of trace elements were determined via thermodynamic equilibrium calculations, and two operationally-defined suspended fractions were analyzed. Chalco- and arsenopyrite deposits in the upper Andes, in conjunction with mining and geothermal activity, were identified as exclusive point sources of heavy metals and arsenic. The annual input to the river system was approximately (t year(-1)): Fe 600, Mn 110, Cu 130, Zn 35 and As 2.0. The confluence with pH-buffered waters in the upper river system caused collapse of iron hydroxide colloids and coprecipitation of all heavy metals, e.g. dissolved copper concentrations decreased from approximately 100 to approximately 0.2 micromol l(-1), which is still of ecotoxic concern. The heavy metal enriched suspended solids settled only in the lower Elqui River. Arsenate did not adsorb to suspended solids and behaved strictly conservatively, exceeding the WHO guideline value for drinking water (0.13 micromol l(-1)) in the entire river system. Decontamination may be accomplished with reasonable efforts upstream in direct vicinity to the sources via coprecipitation, settling and appropriate pH adjustment for arsenate adsorption. Copryright 2003 Elsevier B.V.

  17. Avian feathers as bioindicators of the exposure to heavy metal contamination of food.

    Science.gov (United States)

    Markowski, Marcin; Kaliński, Adam; Skwarska, Joanna; Wawrzyniak, Jarosław; Bańbura, Mirosława; Markowski, Janusz; Zieliński, Piotr; Bańbura, Jerzy

    2013-09-01

    The aim of this study was to determine the possibility of using feathers of blue tit nestlings to assess the level of endogenous accumulation of lead. For this purpose we conducted an experiment with lead application to randomly chosen nestlings from eight randomly drawn broods. Five days after the exposure, feathers of lead-treated nestlings had significantly higher lead concentrations than control nestlings. This result suggests that feathers can be used as reliable non-destructive bioindicators to assess the level of heavy metals originating from contaminated food, which is of great significance for comparative studies on ecological consequences of pollution.

  18. HEAVY METAL CONTAMINATION OF WATER IN NEGOMBO LAGOON AND INTERCONNECTED WATER SOURCES

    Directory of Open Access Journals (Sweden)

    C.M. Kanchana.N.K.CHANDRASEKARA

    2014-12-01

    Full Text Available Water quality in natural lagoons that are located within close proximity to human settlements is generally at contamination risk due to increasing anthropogenic activities. The Negombo lagoon situated in the Gampaha District in Sri Lanka is a lagoonal estuary. It receives surface water runoff mainly from Dandugamoya, Ja-ela, Hamilton and Dutch canals. During the recent past, it has been noted by several researches that there is increasing evidence in anthropogenic activities in Negombo lagoon and surrounding areas. The present study was carried out to assess the contamination levels of heavy metals of water in the Negombo lagoon and interconnected water sources. Sampling was carried out in 19 locations; 6 in the Negombo lagoon and 13 from the interconnected sources (5 samples from Hamilton canal, 2 samples each from Dutch canal, Dandugamoya and Ja-Ela and one sample each from Kelani estuary and Ocean-Negombo. The data collection was conducted during relatively wet (May and relatively dry (September months in 2013. Water samples were analysed in the laboratory as per the standards methods of American Public Health Association (APHA manual by using the Atomic Absorption Spectrophotometer. The tests were carried out to detect heavy metals: cadmium (Cd, chromium (Cr, copper (Cu, Lead (Pb, manganese (Mn, and zinc (Zn in water. Data analysis was accomplished using ArcGIS (version 9.3 software package along with Microsoft Excel. Standards for inland water and drinking water of Sri Lanka were used to determine the threshold levels of heavy metals. The results show that concentrations of Cr, Cu, Mn and Zn of all water bodies were below the threshold level of human consumption and quality standards for inland waters in Sri Lanka. The Cd and Pb levels of water in Negombo lagoon and Hamilton canal were comparatively high. Furthermore the Cd and Pb levels of Dandugamoya, Ja-ela and Dutch canals were below the maximum permissible levels in both relatively wet

  19. The hooded crow (Corvus cornix) as an environmental bioindicator species of heavy metal contamination.

    Science.gov (United States)

    Giammarino, Mauro; Quatto, Piero; Squadrone, Stefania; Abete, Maria Cesarina

    2014-10-01

    This study aims to examine the possible presence of lead and cadmium in the liver and kidneys of hooded crows (Corvus cornix). Liver and kidneys of hooded crow carcasses were collected in Province of Cuneo (Piedmont, Italy) in order to detect lead and cadmium content. Significant differences were found in lead and cadmium levels between areas of intensive cultivation versus areas where meadows are prevalent. Moreover, age greatly influenced the burden of heavy metals, while sex did not seem to affect the level of contamination. The source of contamination may be phosphate fertilizers used for intensive cultivation in the study area.

  20. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania

    Directory of Open Access Journals (Sweden)

    Gytautas Ignatavičius

    2017-02-01

    Full Text Available Surface runoff from urbanized territories carries a wide range of pollutants. Sediments in untreated runoff from direct discharge stormwater systems significantly contribute to urban waterway pollution. In this study, heavy metal (Pb, Zn, Cu, Cr, Ba, As and Fe contamination in surface runoff sediments of the urban area of the city of Vilnius was investigated. The surface runoff sediment samples were collected from seven dischargers with the highest volume rate of water flow and concentrations of suspended solids. The geospatial analysis of the distribution of heavy metals shows that there are several active pollution sources supplying the dischargers with contaminated sediments. Most of these areas are located in the central part of the city and in old town with intense traffic. Principal components analysis and t-test results clearly depicted the significantly different chemical compositions of winter and autumn surface sediment samples. The sampling approach and assessment of results provide a useful tool to examine the contamination that is generated in urban areas, distinguish pollution sources and give a better understanding of the importance of permeable surfaces and green areas.

  1. Metagenomic insights into evolution of heavy metal-contaminated groundwater microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, C.L.; Deng, Y.; Gentry, T.J.; Fields, M.W.; Wu, L.; Barua, S.; Barry, K.; Green-Tringe, S.; Watson, D.B.; He, Z.; Hazen, T.C.; Tiedje, J.M.; Rubin, E.M.; Zhou, J.

    2010-07-01

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents ({approx}50 years) has resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying {gamma}- and {beta}-proteobacterial populations. The resulting community is overabundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could have a key function in rapid response and adaptation to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  2. Metagenomic Insights into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, Christopher L.; Deng, Ye; Gentry, Terry J.; Fields, Matthew W.; Wu, Liyou; Barua, Soumitra; Barry, Kerrie; Tringe, Susannah G.; Watson, David B.; He, Zhili; Hazen, Terry C.; Tiedje, James M.; Rubin, Edward M.; Zhou, Jizhong

    2010-02-15

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents (~;;50 years) have resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying ?- and ?-proteobacterial populations. The resulting community is over-abundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could be a key mechanism in rapidly responding and adapting to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  3. Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyra leucosticta.

    Science.gov (United States)

    Ye, Jianjun; Xiao, Henglin; Xiao, Benlin; Xu, Weisheng; Gao, Linxia; Lin, Gan

    2015-01-01

    Bioremediation is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. In this study, red algae Porphyra leucosticta was examined to remove Cd(II) and Pb(II) ions from wastewater through biological enrichment and biological precipitation. The experimental parameters that affect the bioremediation process such as pH, contact time and biomass dosage were studied. The maximum bioremediation capacity of metal ions was 31.45 mg/g for Cd(II) and 36.63 mg/g for Pb(II) at biomass dosage 15 g/L, pH 8.0 and contact time 120 minutes containing initial 10.0 mg/L of Cd(II) and 10.0 mg/L of Pb(II) solution. Red algae Porphyra leucosticta biomass was efficient at removing metal ions of 10.0 mg/L of Cd(II) and 10.0 mg/L of Pb(II) solution with bioremediation efficiency of 70% for Cd(II) and 90% for Pb(II) in optimal conditions. At the same time, the removal capacity for real industrial effluent was gained at 75% for 7.6 mg/L Cd(II) and 95% for 8.9 mg/L Pb(II). In conclusion, it is demonstrated that red algae Porphyra leucosticta is a promising, efficient, cheap and biodegradable sorbent biomaterial for reducing heavy metal pollution in the environment and wastewater.

  4. HEAVY METAL CONTAMINATIONS IN SAGAR LAKE AND DRINKING WATER SOURCES OF SAGAR CITY

    Directory of Open Access Journals (Sweden)

    Nahid Parveen

    2012-08-01

    Full Text Available There are various toxic elements present in our surroundings out of that the toxic heavy metals Pb,Cd, As, Se, Cr and Cu can cause several harms to human these metals enter in humans by water. The all kind ofwaste materials are thrown into natural water bodies in each city, this makes the all ground and natural watersources contaminated. The all six metals have determined by Atomic absorption spectrophotometer(AAS inselected water samples from Sagar Lake and dug wells, hand pumps, tube wells etc. during Jan.2009 to June 2010 inevery month the all most all sample have higher metal concentrations than their prescribed permissible limits byWHO.

  5. Honeybees and honey as monitors for heavy metal contamination near thermal power plants in Mugla, Turkey.

    Science.gov (United States)

    Silici, Sibel; Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Soylak, Mustafa

    2016-03-01

    In the present work, 6 honeydew samples of known geographical and botanical origins and 11 honeybee samples were analyzed to detect possible contamination by the thermoelectric power plants in Mugla, Turkey. The contents of trace elements were determined by atomic absorption spectrometry after application of microwave digestion. The samples from the thermal power plants, which were 10-22 km away from the hives, that did not cause pollution in honeydew honeys were also analyzed. The levels of copper, cadmium (Cd), lead (Pb), zinc, manganese, iron, chromium, nickel, and aluminum were similar to the values found in other recent studies in literature. However, it was found that the contamination levels of the toxic elements such as Pb and Cd in honeybee samples measured relatively higher than that of honey samples. The study concludes that honeybees may be better bioindicators of heavy metal pollution than honey.

  6. Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis.

    Science.gov (United States)

    Cicero-Fernández, Diego; Peña-Fernández, Manuel; Expósito-Camargo, Jose A; Antizar-Ladislao, Blanca

    2016-07-20

    The long-term (i.e., two consecutive annual cycles) ability of Phragmites australis to remediate estuarine sediments contaminated with heavy metals (Co, Ni, Mo, Cd, Pb, Cr, Cu, Fe, Mn, Zn and Hg) and trace elements of concern (As, Se, Ba) was investigated using an experimental approach on a pilot plant scale. The accumulation of these elements on belowground and aboveground tissues was monitored during vegetative and senescence periods for two populations of P. australis, originally from contaminated (MIC) and non-contaminated (GAL) estuaries, respectively. The initial concentration of the elements in the contaminated estuarine sediment decreased in the following order: Fe>Mn>Zn>Pb>Ba>Cr>As>Cu>Ni>Co>Mo>Cd>Se>Hg. A similar trend was recorded in the belowground biomass following remediation, suggesting the potential role of P. australis as an effective biomonitoring tool. Hg was not detected in any plant tissue. An overall annual increase of concentration levels in belowground tissue was observed. Overall, this study suggested that P. australis populations from GAL were substantially more efficient in taking up Ni, Mo and Cr during the second annual cycle in both belowground and aboveground tissue than P. australis populations from MIC. Calculated bio-concentration factors (BCF) suggested a clear metal excluder strategy for Co, Cd, Pb, Cu and Fe, with accumulation and stabilisation belowground, with limited translocation into aerial tissues observed during the length of this study. An excluder behaviour for Zn, Ba and Mn was detected during the second annual cycle, coinciding with a substantial increase of concentration levels belowground. This study demonstrated for the first time the long term efficacy of P. australis for phytoremediation of heavy metal contaminated estuarine sediments.

  7. Heavy metals contamination potential and distribution in sediments of the River Turia, Spain

    Science.gov (United States)

    Pascual-Aguilar, Juan Antonio; Maiquez Moya, Mónica; Gimeno-García, Eugenia; Andreu, Vicente; Picó, Yolanda

    2016-04-01

    Knowledge on the state of waters and sediments of the rivers in the European Union is compulsory. Identification and quantification and monitoring of contaminants is somewhat established in the Water Framework Directive, so it can be acquired a reliable knowledge of the quality for further application of corrective messures can be developed when required. Heavy metals is one of the groups of contaminants that appear in the list of priority substances and in the legislation, so it is essential to attend its study to provide knowledge on the existing loads in different environmental matrices, such as sediments. This work presents a procedure that determines the presence and degree of concentration of a group of seven heavy metals (Co, Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments of the River Turia, a typical Mediterranean River, located in the East of the Iberian Peninsula. The methodology includes their identification in two years (2012, 22 sampling points, and 2013, 27 sampling points). Two pollution index, one individual (Geo-accumulation Igeo, Igeo) that estimated the potential contamination of each metal and a synthetic one (Potential ecorisk index range, PERI) which gets the potential contamination of all 7 grouped applied to each set of data. In addition, to establish possible spatial patterns it has been developed an analysis of the distribution of both indicators and on both dates with Geographic Information Systems, for that purpose it has been divided the River into three segments: upper part (represented by 10 points in 2012 and 13 in 2013), middle part (with 7 points in 2012 and 6 in 2013) and lower section (with 5 points in 2012 and 8 in 2013). Results show that lower concentrations of contaminants were given in 2012 than in 2013. In 2012 the Igeo index, which is distributed in a qualitative range of seven categories ranging from low pollution to very high pollution, are only meaningful for Zn, with "low to moderate" pollution in 13 places (6 points in

  8. METAL TOLERANCE ANALYSIS OF MICROFUNGI ISOLATED FROM METAL CONTAMINATED SOIL AND WASTE WATER

    Directory of Open Access Journals (Sweden)

    Mathan Jayaraman

    2014-08-01

    Full Text Available The influence of Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ on the development of 24 fungi was investigated for Metal Tolerance Index (MTI at 1mg ml-1 Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ concentrations and also for Minimum Inhibitory Concentration (MIC. The MIC ranged from 0.5 to 1.5 mg ml-1 depending on the isolate Aspergillus, Fusarium and Penicillium sp. were tested for their metal tolerance index. Out of these Aspergillus flavus (ED4 shows a better tolerance index of 0.80 Cr6+, 0.72 for Pb2+ , 0.63 for Cu2+, 0.58 for Ni2+, 0.46 for Zn2+ and 0.60 Cd2+ for MIC value for the removal of heavy metals from contaminated soil and wastewaters.

  9. Disposal options for polluted plants grown on heavy metal contaminated brownfield lands - A review.

    Science.gov (United States)

    Kovacs, Helga; Szemmelveisz, Katalin

    2017-01-01

    Reducing or preventing damage caused by environmental pollution is a significant goal nowadays. Phytoextraction, as remediation technique is widely used, but during the process, the heavy metal content of the biomass grown on these sites special treatment and disposal techniques are required, for example liquid extraction, direct disposal, composting, and combustion. These processes are discussed in this review in economical and environmental aspects. The following main properties are analyzed: form and harmful element content of remains, utilization of the main and byproducts, affect to the environment during the treatment and disposal. The thermal treatment (combustion, gasification) of contaminated biomass provides a promising alternative disposal option, because the energy production affects the rate of return, and the harmful elements are riched in a small amount of solid remains depending on the ash content of the plant (1-2%). The biomass combustion technology is a wildely used energy production process in residential and industrial scale, but the ordinary biomass firing systems are not suited to burn this type of fuel without environmental risk.

  10. Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc.

    Science.gov (United States)

    Monteiro, Cristina M; Marques, Ana P G C; Castro, Paula M L; Xavier Malcata, F

    2009-09-01

    Microalgae have been proven efficient biological vectors for heavy metal uptake. In order to further study their biosorption potential, a strain of Desmodesmus pleiomorphus (L) was isolated from a strongly contaminated industrial site in Portugal. Under different initial Zn(2+) concentrations, metal removal by that strain reached a maximum of 360 mg Zn/g biomass after 7 days, at 30 mg Zn/l, after an initial rapid phase of uptake. Comparative studies were carried out using a strain of the same microalgal species that is commercially available (ACOI 561): when exposed to 30 mg Zn/l, it could remove only 81.8 mg Zn/g biomass. Biosorption experiments using inactivated biomass of the isolated strain reached a maximum Zn(2+) uptake of 103.7 mg/g. Metal removal at various initial pH values was studied as well; higher removal was obtained at pH 5.0. The microalga strain L, isolated from the contaminated site, exhibited a much higher removal capacity than the commercial strain, and the living biomass yielded higher levels of metal removal than its inactivated form.

  11. Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu.

    Science.gov (United States)

    Fujita, Masafumi; Ide, Yoichi; Sato, Daisaku; Kench, Paul S; Kuwahara, Yuji; Yokoki, Hiromune; Kayanne, Hajime

    2014-01-01

    To evaluate contamination of coastal sediments along Fongafale Islet, Central Pacific, a field survey was conducted in densely populated, sparsely populated, open dumping and undisturbed natural areas. Current measurements in shallow water of the lagoon indicated that contaminants from the densely populated area would only be transported for a small proportion of a tidal cycle. Acid-volatile sulfides were detected in both the intertidal beach and nearshore zones of the densely populated area, whereas these were no detection in the other areas. This observation lends support to argument that the coastal pollution mechanism that during ebb tide, domestic wastewater leaking from poorly constructed sanitary facilities seeps into the coast. The total concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were relatively high in all of the areas except the undisturbed natural area. The indices of contamination factor, pollution load index and geoaccumulation index were indicative of heavy metal pollution in the three areas. The densely populated area has the most significant contamination; domestic wastewater led to significant contamination of coastal sediments with Cr, Zn, Cu, Pb and Cd. The open dumping area is noteworthy with respect to Mn and Ni, which can be derived from disposed batteries. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Genetic differentiation of Arthrobacter population from heavy metal-contaminated environment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hanbo; REN Weimin; SHAO Qiyong; DUAN Changqun

    2007-01-01

    Six samples containing extremely high concentration of Pb,Zn,and Cd were obtained from the layers of 5-10 cm and 25-30 cm three tailing piles,with ages of about 10,20 and more than 80 years,respectively.Then,48 bacterial strains were obtained from these samples,and subsequently their phylogenetic positions were determined by analysis on the partial sequence of 16S rRNA gene (fragment length ranging from 474 to 708 bp).These isolates were members of the Arthrobacter genus,phylogenetically close to A.keyseri and A.ureafaciens,with sequence ranging from 99.1%to 100%.Furthermore,genetic variation between subpopulations from different samples was revealed by analysis on their randomly amplified polymorphic DNA profile.Nei genetic distance showed that the greatest differentiation occurred between subpopulation A and C.Notably,either genetic distance between subpopulations from the layers of 5-10 cm and 25-30 cm of each tailing pile or between same layers of different tailing pile increased with the history of tailings.Moreover,correlation analysis showed that soluble Pb has a significantly negative relationship with Nei'gene diversity of subpopulation.It was assumed that soluble Pb may be responsible for the reduced genetic diversity of the Arthrobacter population.Our data provided evidence that genetic differentiation of microbial populations was consistent with the changes of environmental factors,particularly heavy metals.

  13. Effects of properties of metal-contaminated soils on bacterial bioluminescence activity, seed germination, and root and shoot growth.

    Science.gov (United States)

    Kang, Il-Mo; Kong, In Chul

    2016-01-01

    This study examined the effects of several factors (metal contents and soil properties) on bacterial bioluminescence activity, seed germination and root/shoot growth of Lactuca in metal-contaminated soils. Each bioassay showed different sensitivities to extractants of soil samples. Average sensitivities of the bioassay were in the following order: root growth > bioluminescence ≥ shoot growth ≥ seed germination. Both total and weak acid-extracted metal contents showed no observable correlations with the activity of any bioassays (r(2) bioluminescence activity and organics (r(2) = 0.7198) as well as between root growth and CEC (r(2) = 0.6676). Effects of soils were difficult to generalize since they were dependent on many factors, such as soil properties, metal contents, and the organism used in each test. Nonetheless, these results indicated that a battery of bioassays is an effective strategy for assessment of contaminated soils. Furthermore, specific soil factors were shown to more influence on soil toxicity, depending on the type of bioassay.

  14. State of the Science Review: Potential for Beneficial Use of Waste By-Products for In-situ Remediation of Metal-Contaminated Soil and Sediment

    Science.gov (United States)

    Metal and metalloid contamination of soil and sediment is a widespread problem both in urban and rural areas throughout the United States (U.S. EPA, 2014). Beneficial use of waste by-products as amendments to remediate metal-contaminated soils and sediments can provide major eco...

  15. [Evaluation of heavy metal contamination of potatoes from various regions of Poland].

    Science.gov (United States)

    Buliński, R; Kot, A; Błoniarz, J

    1991-01-01

    Mercury, cadmium and lead contents were determined in 210 samples of potatoes of five cultivars, originating from four regions of Poland (Tarnobrzeg Province, Southern Region, Middle-Eastern Region, Poznań Province). Analysis was performed by the ASA method. Cadmium and lead were determined by the extraction technique, after metal complexing with APDC. Methyl isobutyl ketone was the organic phase. "Dry" mineralization of samples for cadmium and lead determinations was performed in a muffle furnace at 400 degrees C. Mercury was assayed by the cold vapour technique after "wet" mineralization with sulphuric and nitric acid in a Bethe apparatus. Mean mercury content was ca. 5.5 micrograms/kg for the samples from the uncontaminated regions; samples from the Southern Region contained on the average 12.9 micrograms/kg, i.e. twice more. Cadmium contents in potatoes from all the investigated regions were increased by an average of 0.029-0.064 mg/kg. Lead content in single samples was between 0.015-0.500 mg/kg; mean Pb contents in samples from the Southern Region, as compared with the Lublin region, were about twice higher. Hg, Cd and Pb contents were determined in the same samples of peeled potatoes and of their peels, this allowing for evaluation of the distribution of the investigated heavy metals in the tuber. It was found that lead occurs in the peels in 60-70%, and in the pulp in only 30-40%. As concerns cadmium and mercury, these metals appear in the tuber in 70-80%, and the peels in only 25-30%.

  16. Phytoextraction and phytostabilisation of metal-contaminated soil in temperate maritime climate of coastal British Columbia, Canada

    Science.gov (United States)

    Padmavathiamma, P. K.; Li, L. Y.

    2009-04-01

    This research addressed the phytoremediation of roadside soils subjected to multi-component metal solutions. A typical right of way for roads in Canada is around 30 m, and at least 33% of that land in the right of way is unpaved and can support animal life. Thus, land associated with 12,000 km of roads in the province of British Columbia and millions of kilometres around the world represent a substantial quantity of wildlife habitat where metal contamination needs to be remediated. Phytostabilisation, requires least maintenance among different phytoremediation techniques, and it could be a feasible and practical method of remediating in roadside soils along highways and for improving highway runoff drainage. The suitability of five plant species was studied for phytoextraction and phytostabilisation in a region with temperate maritime climate of coastal British Columbia, Canada. Pot experiments were conducted using Lolium perenne L (perennial rye grass), Festuca rubra L (creeping red fescue), Helianthus annuus L (sunflower), Poa pratensis L (Kentucky bluegrass) and Brassica napus L (rape) in soils treated with three different metal (Cu, Pb, Mn and Zn) concentrations. The bio-metric characters of plants in soils with multiple-metal contaminations, their metal accumulation characteristics, translocation properties and metal removal were assessed at different stages of plant growth, 90 and 120 DAS (days after sowing). Lolium was found to be suitable for the phytostabilisation of Cu and Pb, Festuca for Mn and Poa for Zn. Metal removal was higher at 120 than at 90 days after sowing, and metals concentrated more in the underground tissues with less translocation to the above-ground parts. Bioconcentration factors indicate that Festuca had the highest accumulation for Cu, Helianthus for Pb and Zn and Poa for Mn.

  17. Prospective modeling with Hydrus-2D of 50 years Zn and Pb movements in low and moderately metal-contaminated agricultural soils

    Science.gov (United States)

    Rheinheimer dos Santos, Danilo; Cambier, Philippe; Mallmann, Fábio Joel Kochem; Labanowski, Jérôme; Lamy, Isabelle; Tessier, Daniel; van Oort, Folkert

    2013-02-01

    Results of detailed modeling of in situ redistribution of heavy metals in pedological horizons of low and moderately metal contaminated soils, considering distinctly different long-term land use, are scarcely reported in literature. We used Hydrus-2D software parameterized with abundant available local soil data to simulate future Zn and Pb movements in soils contaminated by metallurgical fallout in the 20th century. In recent work on comparing different modeling hypotheses, we validated a two-site reactive model set with adjusted chemical kinetic constant values by fitting the 2005 Zn and Pb concentration profiles in soils, with estimated 1901-1963 airborne Zn and Pb loads (Mallmann et al., 2012a). In the present work, we used the same approach to simulate 2005-2055 changes in Zn and Pb depth-distribution and soil-solution concentrations, comparing two hypotheses of chemical equilibrium: i) the validated two-site model (one site at equilibrium and the other involved in kinetic reactions with pore water) set with adjusted kinetic EDTA extraction constants, and ii) a non-linear one-surface site adsorption equilibrium model. Simulated transfers were found generally lower and more realistic when using the two-site model. Simulations showed that consistent Zn redistribution and loss occurred in the moderately contaminated soil until 2055, i.e., more than one century after the main metal deposition, but negligible in low contaminated soils. Transfer of Pb was small in the three soils and under both hypotheses. In 2055, simulated Zn outflow concentrations remained under threshold values for drinking water.

  18. Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Tamtam, Fatima, E-mail: fatima.tamtam@upmc.fr [Laboratoire Hydrologie et Environnement, EPHE, UMR Sisyphe 7619, UPMC-Paris 6, 4 place Jussieu, BC 105, 75252 Paris Cedex (France); Ecole des Hautes Etudes en Sante Publique (EHESP), Laboratoire d' Etude et de Recherche en Environnement et Sante (LERES), Avenue Professeur Leon Bernard, Rennes (France); Oort, Folkert van [Inra, UR 251, Physicochimie et Ecotoxicologie des SolS d' Agrosystemes Contamines (Pessac), RD 10, F-78026 Versailles Cedex (France); Le Bot, Barbara [Ecole des Hautes Etudes en Sante Publique (EHESP), Laboratoire d' Etude et de Recherche en Environnement et Sante (LERES), Avenue Professeur Leon Bernard, Rennes (France); Dinh, Tuc [Laboratoire Hydrologie et Environnement, EPHE, UMR Sisyphe 7619, UPMC-Paris 6, 4 place Jussieu, BC 105, 75252 Paris Cedex (France); Mompelat, Sophie [Ecole des Hautes Etudes en Sante Publique (EHESP), Laboratoire d' Etude et de Recherche en Environnement et Sante (LERES), Avenue Professeur Leon Bernard, Rennes (France); Chevreuil, Marc [Laboratoire Hydrologie et Environnement, EPHE, UMR Sisyphe 7619, UPMC-Paris 6, 4 place Jussieu, BC 105, 75252 Paris Cedex (France); Lamy, Isabelle [Inra, UR 251, Physicochimie et Ecotoxicologie des SolS d' Agrosystemes Contamines (Pessac), RD 10, F-78026 Versailles Cedex (France); Thiry, Medard [MinesParisTech, Centre de Geoscience, ENSMP, UMR Sisyphe 7619, 35 Rue St Honore, 77305 Fontainebleau (France)

    2011-01-01

    Spreading of urban wastewater on agricultural land may lead to concomitant input of organic and inorganic pollutants. Such multiple pollution sites offer unique opportunities to study the fate of both heavy metals and pharmaceuticals. We examined the occurrence and fate of selected antibiotics in sandy-textured soils, sampled four years after cessation of 100 years irrigation with urban wastewater from the Paris agglomeration. Previous studies on heavy metal contamination of these soils guided our sampling strategy. Six antibiotics were studied, including quinolones, with a strong affinity for organic and mineral soil components, and sulfonamides, a group of more mobile molecules. Bulk samples were collected from surface horizons in different irrigation fields, but also in subsurface horizons in two selected profiles. In surface horizons, three quinolones (oxolinic acid, nalidixic acid, and flumequine) were present in eight samples out of nine. Their contents varied spatially, but were well-correlated one to another. Their distributions showed great similarities regarding spatial distribution of total organic carbon and heavy metal contents, consistent with a common origin by wastewater irrigation. Highest concentrations were observed for sampling sites close to irrigation water outlets, reaching 22 {mu}g kg{sup -1} for nalidixic acid. Within soil profiles, the two antibiotic groups demonstrated an opposite behavior: quinolones, found only in surface horizons; sulfamethoxazole, detected in clay-rich subsurface horizons, concomitant with Zn accumulation. Such distribution patterns are consistent with chemical adsorption properties of the two antibiotic groups: immobilization of quinolones in the surface horizons ascribed to strong affinity for organic matter (OM), migration of sulfamethoxazole due to a lower affinity for OM and its interception and retention in electronegative charged clay-rich horizons. Our work suggests that antibiotics may represent a durable

  19. Evaluation of Heavy Metals Contamination from Environment to Food Matrix by TXRF: The Case of Rice and Rice Husk

    Directory of Open Access Journals (Sweden)

    Fabjola Bilo

    2015-01-01

    Full Text Available This paper is devoted to the chemical analysis of contaminated soils of India and the rice grown in the same area. Total reflection X-ray fluorescence spectroscopy is a well-established technique for elemental chemical analysis of environmental samples, and it can be a useful tool to assess food safety. Metals uptake in rice crop grown in soils from different areas was studied. In this work soil, rice husk and rice samples were analyzed after complete solubilization of samples by microwave acid digestion. Heavy metals concentration detected in rice samples decreases in the following order: Mn > Zn > Cu > Ni > Pb > Cr. The metal content in rice husk was higher than in rice. This study suggests, for the first time, a possible role of heavy metals filter played by rice husk. The knowledge of metals sequestration capability of rice husk may promote some new management practices for rice cultivation to preserve it from pollution.

  20. Assessment of metal contamination in groundwater and soils in the Ahangaran mining district, west of Iran.

    Science.gov (United States)

    Mehrabi, Behzad; Mehrabani, Shiva; Rafiei, Behrouz; Yaghoubi, Behrouz

    2015-12-01

    In this study, 28 groundwater and 13 soil samples from Ahangaran mining district in Hamedan Province, west of Iran were collected to evaluate the level of contamination. Average concentrations of As, Cu, Pb, Zn, Mn, Sb, and Ni in groundwater samples were 1.39, 3.73, 2.18, 9.37, 2.35, 4.44, and 5.50 μg/L (wet season), and 11.64, 4.92, 4.32, 14.77, 5.43, 4.12, and 0.98 μg/L (dry season), respectively. Results of groundwater samples analysis showed that the average of analyzed metals in the wet and dry seasons were below the permissible limits, except As in the dry season which displays concentrations that exceed US EPA water quality criteria recommended for drinking water. Also, the heavy metal pollution index (HPI) values in each sampling station were less than the critical index limit and were suitable for drinking. Factor analysis revealed that variables influential to groundwater quality in one season may not be as important in another season. Average concentrations of Ag, As, Cd, Cu, Pb, Sb, and Zn in soil samples were 2.61, 31.44, 0.51, 55.90, 1284.9, 21.26, and 156.04 mg kg(-1), respectively. The results of the geoaccumulation index (I geo) showed the following decreasing order: Pb > Zn > Cu > As > Sb > Cd > Ag. Potential ecological risk index (RI) suggests that the contamination in the investigated area is moderate to very high risk and the ranking of the contaminants in decreasing order is Ag > Sb > Pb > Cd > As > Cu > Zn.

  1. VegeSafe: A community science program measuring soil-metal contamination, evaluating risk and providing advice for safe gardening.

    Science.gov (United States)

    Rouillon, Marek; Harvey, Paul J; Kristensen, Louise J; George, Steven G; Taylor, Mark P

    2017-03-01

    The extent of metal contamination in Sydney residential garden soils was evaluated using data collected during a three-year Macquarie University community science program called VegeSafe. Despite knowledge of industrial and urban contamination amongst scientists, the general public remains under-informed about the potential risks of exposure from legacy contaminants in their home garden environment. The community was offered free soil metal screening, allowing access to soil samples for research purposes. Participants followed specific soil sampling instructions and posted samples to the University for analysis with a field portable X-ray Fluorescence (pXRF) spectrometer. Over the three-year study period, >5200 soil samples, primarily from vegetable gardens, were collected from >1200 Australian homes. As anticipated, the primary soil metal of concern was lead; mean concentrations were 413 mg/kg (front yard), 707 mg/kg (drip line), 226 mg/kg (back yard) and 301 mg/kg (vegetable garden). The Australian soil lead guideline of 300 mg/kg for residential gardens was exceeded at 40% of Sydney homes, while concentrations >1000 mg/kg were identified at 15% of homes. The incidence of highest soil lead contamination was greatest in the inner city area with concentrations declining towards background values of 20-30 mg/kg at 30-40 km distance from the city. Community engagement with VegeSafe participants has resulted in useful outcomes: dissemination of knowledge related to contamination legacies and health risks; owners building raised beds containing uncontaminated soil and in numerous cases, owners replacing all of their contaminated soil.

  2. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible.

  3. 土壤重金属污染环境风险评价方法研究进展%Progress of Environmental Risk Assessment Methods on Heavy Metal Contamination in Soit

    Institute of Scientific and Technical Information of China (English)

    高瑞英

    2012-01-01

    土壤重金属污染的环境风险评价可为环境风险管理提供决策依据.对土壤重金属污染环境风险评价方法的研究现状、前沿及趋势进行了综述.指出不确定性研究、评价模型优化及计算机模拟仍是研究的重点和发展万向.%Environment risk assessment ( ERA) on heavy metal contamination can provide scientific information for envi-ronment risk management. This paper summarized the research methods, tools and trends of ERA on heavy metal pollution in soil, and prospected that the further study would be focused on the uncertainty, the model optimization and the computer-ized simulation in the future.

  4. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    Energy Technology Data Exchange (ETDEWEB)

    Voglar, Grega E. [RDA - Regional Development Agency Celje, Kidriceva ulica 25, 3000 Celje (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.si [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia)

    2011-08-30

    Highlights: {yields} We assess the feasibility of using soil S/S for industrial land reclamation. {yields} Retarders, accelerators, plasticizers were used in S/S cementitious formulation. {yields} We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg{sup -1} of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm{sup -2} achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  5. Endophytic and rhizospheric bacteria associated with Silene paradoxa grown on metal-contaminated soils are selected and transferred to the next generation of plants as seed endophytes

    Science.gov (United States)

    Mocali, Stefano; Fabiani, Arturo; Chiellini, Carolina; Gori, Giulia; Gonnelli, Cristina

    2017-04-01

    It is well known that bacteria are commonly associated to the plants, either on the outer surfaces (epiphytes) that inside the plant tissues (endophytes). These bacteria mainly derived from soil and reach the various organs of the plant throughout the root system. Despite recent works have shown that endophytic bacteria can have an important role in the physiology of the plant, little is known of their possible involvement in the resistance and tolerance mechanisms of plants to heavy metals. Furthermore, until now only limited research has been conducted to unravel the exact role and possible applications of seed endophytes. The aim of this work was to characterize the plant-associated bacterial communities present at both the rhizosphere and inside the seeds, roots and aerial parts of plants of Silene paradoxa, a plant highly well-adapted to extreme environments, such as metal-contaminated soils. Thus, soil samples and plants of S. paradoxa were collected from i) the landfill of a Cu mine at Fenice Capanne (Grosseto, Italy); ii) a serpentine soil (with a high Ni content) at Pieve Santo Stefano (Arezzo, Italy); iii) a limestone uncontaminated soil in Colle Val d'Elsa (Siena, Italy). Bacterial communities associated with the three different plant organs have been then characterized by high-throughput sequencing of the 16S rRNA genes (microbiota). Bacteria were also isolated from seeds and soil and the colony forming units (CFU) was determined on plates containing different concentrations of Ni and Cu (5, 10 and 15 mM). The results showed a greater bacterial diversity among the three soils compared to plants. In particular, even though some phyla occurred in all the three soils (Actinobacteria, Proteobacteria, Chlorflexi and Acidobacteria), in general the bacterial community structure of the three soils was quite different from each other. Interestingly, the endophytic composition within each plant compartment was observed to be strongly affected by the soil of

  6. Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei

    Energy Technology Data Exchange (ETDEWEB)

    Grumiaux, F.; Demuynck, S.; Schikorski, D.; Lemiere, S.; Lepretre, A. [Universite Lille Nord de France, Villeneuve Dascq (France)

    2010-03-15

    Earthworms (Eisenia andrei) were exposed, in controlled conditions, to metal-contaminated soils previously treated in situ with two types of fluidized bed combustion ashes. Effects on this species were determined by life history traits analysis. Metal immobilizing efficiency of ashes was indicated by metal bioaccumulation. Ashes-treated soils reduced worm mortality compared to the untreated soil. However, these ashes reduced both cocoon hatching success and hatchlings numbers compared to the untreated soil. In addition, sulfo-calcical ashes reduced or delayed worm maturity and lowered cocoon production compared to silico-alumineous ones. Metal immobilizing efficiency of ashes was demonstrated for Zn, Cu and to a lesser extent Pb. Only silico-alumineous ashes reduced Cd bioaccumulation, although Cd was still bioconcentrated. Thus, although ash additions to metal-contaminated soils may help in immobilizing metals, their use might result, depending on the chemical nature of ashes, to severe detrimental effects on earthworm reproduction with possible long term consequences to populations.

  7. Heavy Metal Soil Contamination at U.S. Army Installations: Proposed Research and Strategy for Technology Development

    Science.gov (United States)

    1994-03-01

    This document represents a research strategy to develop new and innovative technologies for treatment of heavy metal -contaminated soils on U.S. Army...contaminated by heavy metals are a common problem. Over 50 percent of the installations surveyed have potential heavy metal problems that may prove to be

  8. Patterns of rapd markers and heavy metal concentrations in Perna viridis (L.), collected from metal-contaminated and uncontaminated coastal waters: are they correlated with each other?

    Science.gov (United States)

    Yap, C K; Chua, B H; Teh, C H; Tan, S G; Ismail, A

    2007-05-01

    Genetic variation due to heavy metal contamination has always been an interesting topic of study. Because of the numerous contaminants being found in coastal and intertidal waters, there is always much discussion and argument as to which contaminant(s) caused the variations in the genetic structures of biomonitors. This study used a Single Primer Amplification Reaction (SPAR) technique namely Random Amplified Polymorphic DNA (RAPD) to determine the genetic diversity of the populations of the green-lipped mussel Perna viridis collected from a metal-contaminated site at Kg. Pasir Puteh and those from four relatively' uncontaminated sites (reference sites). Heavy metal levels (Cd, Cu, Pb and Zn) were also measured in the soft tissues and byssus of the mussels from all the sites. Cluster analyses employing UPGMA done based on the RAPD makers grouped the populations into two major clusters; the Bagan Tiang, Pantai Lido, Pontian and Kg. Pasir Puteh populations were in one cluster, while the Sg. Belungkor population clustered by itself. This indicated that the genetic diversity based on bands resulting from the use of all four RAPD primers on P. viridis did not indicate its potential use as a biomarker of heavy metal pollution in coastal waters. However, based on a correlation analysis between a particular metal and a band resulting from a specific RAPD primer revealed some significant (P viridis could be used as biomonitoring tool of heavy metal pollution.

  9. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    Science.gov (United States)

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  10. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    Science.gov (United States)

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and heavy metal pollution index (HPI). Metal concentrations were found higher in the pre-monsoon season as compared to the post-monsoon season. Geographic information system (GIS) tool was attributed to study the metals risk in groundwater of the West Bokaro coalfield. The results show that 94 % of water samples were found as low class and 6 % of water samples were in medium class in the post-monsoon season. However, 79 % of water samples were found in low class, 18 % in medium class and 3 % in high class in the pre-monsoon season. The HPI values were below the critical pollution index value of 100. The concentrations of Al, Fe, Mn, and Ni are exceeding the desirable limits in many groundwater samples in both seasons.

  11. Evolution of levels of physico-chemical and heavy metal contamination in the river Llobregat; Evolucion de los parametros fisicoquimicos y metales pesados en el rio Llobregat

    Energy Technology Data Exchange (ETDEWEB)

    Casas Sabata, J. M.; Font Solers, S. [Universitat Politecnica de Catalunya. Manresa (Spain)

    2000-07-01

    Saline and heavy metal contamination in the River Llobregat was analysed on the basis of three studies conducted in 1987, 1992 and 1997. Over this period of time, the Llobregat basin has undergone major changes in terms of its environmental infrastructure. In 1991, a salt water collection system was established which channels the salt-saturated water from the Balsareny-Sallent mines in the Llobregat zone and the Cardona-Suria mines in the area of the River Cardener a location near the sea. Furthermore, biological water treatment plants have been set up in all the major population centres and the main contaminating industries now treat their waters prior to discharge with physicochemical treatment facilities. In order to gauge the evolution of the water quality the following physico-chemical parameters were determined; flow, temperature, pH, conductivity, dry solid matter, chloride, sulphate, calcium, magnesium, sodium and potassium. With regard to heavy metal contamination, the concentration of some of the heavy metals considered to be most toxic and most likely to be present in the zone due to the kind of industry found in the basin was determined, including cadmium, copper, chromium, nickel, lead and zinc. (Author) 7 refs.

  12. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    Science.gov (United States)

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  13. What is safe and clean water in rural Bolivian communities? A preliminary investigation of heavy metal contamination in rural community water systems in the Bolivian Altiplano

    Science.gov (United States)

    Borella, M.; Guido, Z.; Borella, P.; Ketron, T.

    2009-12-01

    A proliferation of potable water systems utilizing groundwater is currently underway in the Lake Titicaca region of the Bolivian Altiplano. With the aid of national and international organizations, rural communities are developing groundwater sources because the region’s surface water is highly contaminated with waterborne pathogens—the primary factor contributing to high child mortality rates in developing nations. According to UNICEF, 86 percent of Bolivian families have access to “improved” water systems, which predominantly take the form of deep groundwater wells or contained natural springs. While the water systems have worked well to reduce pathogens in drinking water systems that cause illnesses such as dysentery, the water is rarely tested for heavy metal contamination, such as arsenic and lead. While bacteria analysis is essential, it is not the only component of healthy drinking water. Testing for heavy metals is especially important in the Bolivian Altiplano because abundant volcanic deposits and massive sulfide deposits suggest that in some areas it is likely that the water contains elevated concentrations of heavy metals. In this study, Terra Resource Development International, A California-based 502(c)3 nonprofit organization, partnered with Stanford University, the Technical University of Bolivia, and the Bolivian Geologic and Mining Survey to collect water samples in 36 rural community situated in four watersheds feeding into Lake Titicaca. Water was collected from shallow, hand dug wells, deep groundwater wells, springs, and small rivers in the Tiwanku, Laja, Batallas, Achacachi watersheds and were analyzed for inorganic contaminants. Samples were analyzed at Stanford’s Environmental Measurements Facility using the Inductively Coupled Plasma (ICP) Spectrometer for major ions and heavy metals. Results will help determine which, if any, community water systems are at risk of heavy metal contamination, where more comprehensive sampling is

  14. Bioremediation of multi-metal contaminated soil using biosurfactant — a novel approach

    OpenAIRE

    Juwarkar, Asha A.; Dubey, Kirti V.; Nair, Anupa; Singh, Sanjeev Kumar

    2008-01-01

    An unconventional nutrient medium, distillery spent wash (1:3) diluted) was used to produce di-rhamnolipid biosurfactant by Pseudomonas aeruginosa strain BS2. This research further assessed the potential of the biosurfactant as a washing agent for metal removal from multimetal contaminated soil (Cr-940 ppm; Pb-900 ppm; Cd-430 ppm; Ni-880 ppm; Cu-480 ppm). Out of the treatments of contaminated soil with tap water and rhamnolipid biosurfactant, the latter was found to be potent in mobilization ...

  15. Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils.

    Science.gov (United States)

    Kim, Bojeong; Kim, Young Sik; Kim, Bo Min; Hay, Anthony G; McBride, Murray B

    2011-03-01

    A systematic investigation into lowered degradation rates of glyphosate in metal-contaminated soils was performed by measuring mineralization of [(14)C]glyphosate to (14)CO(2) in two mineral soils that had been spiked with Cu and/or Zn at various loadings. Cumulative (14)CO(2) release was estimated to be approximately 6% or less of the amount of [(14)C]glyphosate originally added in both soils over an 80-d incubation. For all but the highest Cu treatments (400 mg kg(-1)) in the coarse-textured Arkport soil, mineralization began without a lag phase and declined over time. No inhibition of mineralization was observed for Zn up to 400 mg kg(-1) in either soil, suggesting differential sensitivity of glyphosate mineralization to the types of metal and soil. Interestingly, Zn appeared to alleviate high-Cu inhibition of mineralization in the Arkport soil. The protective role of Zn against Cu toxicity was also observed in the pure culture study with Pseudomonas aeruginosa, suggesting that increased mineralization rates in high Cu soil with Zn additions might have been due to alleviation of cellular toxicity by Zn rather than a mineralization specific mechanism. Extensive use of glyphosate combined with its reduced degradation in Cu-contaminated, coarse-textured soils may increase glyphosate persistence in soil and consequently facilitate Cu and glyphosate mobilization in the soil environment.

  16. Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil.

    Science.gov (United States)

    Burges, Aritz; Epelde, Lur; Benito, Garazi; Artetxe, Unai; Becerril, José M; Garbisu, Carlos

    2016-08-15

    Endophytic plant growth-promoting bacteria (endophytes) were isolated from a variety of (pseudo)metallophytes growing in an abandoned Zn/Pb mine and then characterized according to their plant growth-promoting traits (i.e. ACC deaminase activity, IAA production, siderophore production, phosphate solubilising capacity, metal and salt tolerance and phenotypic characterization). Initially, under growth chamber conditions, an endophyte-assisted aided phytostabilization study was carried out with Festuca rubra plants (native vs. commercial variety) inoculated with a Pseudomonas sp. isolate and cow slurry as organic amendment. The effect of treatments on soil physicochemical and microbial indicators of soil quality, as well as plant physiological parameters and metal concentrations, was assessed. We performed a complementary interpretation of our data through their grouping within a set of ecosystem services. Although the application of cow slurry had the most pronounced effects on soil quality indicators and ecosystem services, the growth of native F. rubra plants reduced soil bioavailability of Cd and Zn by 19 and 22%, respectively, and enhanced several soil microbial parameters. On the other hand, endophyte (Pseudomonas sp.) inoculation improved the physiological status of F. rubra plants by increasing the content of carotenoids, chlorophylls and Fv/Fm by 69, 65 and 37%, respectively, while also increasing the values of several soil microbial parameters. Finally, a consortium of five endophyte isolates was used for an endophyte-assisted aided phytostabilization field experiment, where lower metal concentrations in native excluder plants were found. Nonetheless, the field inoculation of the endophyte consortium had no effect on the biomass of native plants.

  17. Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils

    NARCIS (Netherlands)

    Rathod, Paresh H.; Rossiter, David G.; Noomen, Marleen F.; Meer, van der Freek D.

    2013-01-01

    Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal mo

  18. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils.

    Science.gov (United States)

    Gaonkar, Teja; Bhosle, Saroj

    2013-11-01

    A bacterial isolate producing siderophore under iron limiting conditions, was isolated from mangroves of Goa. Based on morphological, biochemical, chemotaxonomical and 16S rDNA studies, the isolate was identified as Bacillus amyloliquefaciens NAR38.1. Preliminary characterization of the siderophore indicated it to be catecholate type with dihydroxy benzoate as the core component. Optimum siderophore production was observed at pH 7 in mineral salts medium (MSM) without any added iron with glucose as the carbon source. Addition of NaCl in the growth medium showed considerable decrease in siderophore production above 2% NaCl. Fe(+2) and Fe(+3) below 2 μM and 40 μM concentrations respectively, induced siderophore production, above which the production was repressed. Binding studies of the siderophore with Fe(+2) and Fe(+3) indicated its high affinity towards Fe(+3). The siderophore concentration in the extracellular medium was enhanced when MSM was amended with essential metals Zn, Co, Mo and Mn, however, decreased with Cu, while the concentration was reduced with abiotic metals As, Pb, Al and Cd. Significant increase in extracellular siderophore production was observed with Pb and Al at concentrations of 50 μM and above. The effect of metals on siderophore production was completely mitigated in presence of Fe. The results implicate effect of metals on the efficiency of siderophore production by bacteria for potential application in bioremediation of metal contaminated iron deficient soils especially in the microbial assisted phytoremediation processes.

  19. Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea.

    Science.gov (United States)

    Kim, Ju-Yong; Kim, Kyoung-Woong; Ahn, Joo Sung; Ko, Ilwon; Lee, Cheol-Hyo

    2005-04-01

    Tailings, agricultural soils, vegetables and groundwater samples were collected from abandoned metal mines (Duckum, Dongil, Dongjung, Myoungbong and Songchun mines) in Korea. Total concentrations of arsenic (As) and heavy metals (Cd, Cu, Pb and Zn) were analyzed to investigate the contamination level. Several digestion methods (Toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), 0.1 N/1 N HCl) and sequential extraction analysis for mine tailings were conducted to examine the potential leachability of As and heavy metals from the tailings. The order of urgent remediation for the studied mines based on the risk assessment and remedial goals was suggested. The Songchun mine tailings were most severely contaminated by As and heavy metals. Total concentrations of As and Pb in the tailings were 38,600-58,700 mg/kg (av. 47,400 mg/kg) and 11,800-16,800 mg/kg (av. 14,600 mg/kg), respectively. Agricultural soils having high As concentrations were found at the all mines. Average concentrations of Cd in the vegetables exceeded the normal value at all mines areas, while As only at the Dongjung, Myoungbong, and Songchun mine area. One groundwater sample each from the Dongil and Myoungbong mines, and 4 groundwater samples from the Songchun mine had values above 10 mug/L of As concentration. The TCLP method revealed that only Pb in the Songchun tailings, 6.49 mg/L, exceeded the regulatory level (5 mg/L). Employing the 1-N HCl digestion method, the concentration of As in the Songchun mine tailings, 4,250 mg/kg, was up to 3,000 times higher than its Korean countermeasure standard. Results from the sequential extraction of As in the tailings showed that the easily releasable fraction in the Myoungbong and Songchun mine tailings was more than 30% and the residual fraction was less than 40%. Based on results showing the exposure health risk employing the hazard quotient and cancer risk of As, Cd and Zn, the Dongil mine needs the most

  20. Feasibility of using hyperaccumulating plants to bioremediate metal-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.J. [Dames and Moore, Sydney, New South Wales (Australia); Guerin, T.F. [Minenco Bioremediation Services, Bundoora, Victoria (Australia)

    1995-12-31

    A feasibility study was carried out to determine whether selected plants were capable of hyperaccumulating anthropogenic sources of metals found in soils from three contaminated sites. A trial was conducted using the previously reported hyperaccumulators, Armeria maritima (thrift), Impatiens balsamina (balsam), Alyssum saxatile (gold dust), and the control species, Brassica oleracea (cabbage). Although none of these plants showed any substantial hyperaccumulation of Cu, Zn, Pb, and Cd, it was established that there is an optimum period in the life-cycle of these plants in which the metal concentration reaches a maximum. This period was dependent on the metal, soil, and plant type. The current paper describes the data obtained for Zn and Cu uptake by thrift.

  1. Soil reclamation by municipal sewage compost: Heavy metals migration study.

    Science.gov (United States)

    Kowalkowski, Tomasz; Buszewski, Bogusław

    2009-04-01

    This paper describes sorption and transport phenomena of selected heavy metals (e.g., Pb, Zn, Ni and Cu) in the superficial layer of soil and sewage sludge compost. The main aim of the study was the investigation of possibility of heavy metals contamination in soil profile reclaimed by sewage sludge compost. The column leaching test as well as the sequential Tessier extraction procedure were applied to investigate the mitigation of heavy metals. The results revealed that distribution of metals in specific Tessier fractions was the major factor influencing their transport in the investigated soils profiles. Moreover, sorption capacity of the soil sample studied was substantially greater to prevent transportation of metals into the lower horizons and groundwater.

  2. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil

    DEFF Research Database (Denmark)

    Zheng, Shixue; Su, Jing; Wang, Liang;

    2014-01-01

    impacted cellular growth and subsequent resistance to multiple heavy metal(loid)s. Conclusions: C. testosteroni S44 could be very useful for bioremediation in heavy metal(loid) polluted soils due to the ability to both reduce toxic Se(VI) and Se(IV) to non-toxic Se (0) under aerobic conditions...... that is less toxic. Results: A strictly aerobic bacterium, Comamonas testosteroni S44, previously isolated from metal(loid)-contaminated soil in southern China, reduced Se(IV) to red selenium nanoparticles (SeNPs) with sizes ranging from 100 to 200 nm. Both energy dispersive X-ray Spectroscopy (EDX or EDS...

  3. A holistic approach to phosphate stabilization treatment of metal contaminated soil

    Directory of Open Access Journals (Sweden)

    Zupančič M.

    2013-04-01

    Full Text Available In our study we showed the importance of holistic approach to evaluation of chemical stabilization using phosphate amendments, where all aspects of chemical treatments were observed. An extensive evaluation of metal stabilization in contaminated soil and an evaluation of the leaching of phosphorus induced after treatment were performed. The soil from the former zinc smelter area in the Celje region, used in this study, was heavily polluted with Zn (34 400 ± 1500 mg kg−1, Pb (20 400 ± 1500 mg kg−1, As (950 ± 10 mg kg−1, Cu (549 ± 7 mg kg−1 and Cd (158 ± 4 mg kg−1. The results of Toxicity Characteristic Leaching Procedure showed high mobility of Zn (540 ± 25 mg L−1, Pb (12.7 ± 0.5 mg L−1 and Cd (2.9 ± 0.1 mg L−1. To immobilize metals in the soil, mixtures of soil with phosphate (variable molar ratio of hydroxyapatite and phosphoric acid were prepared with a constant molar Pb:P ratio of 1:10. Hydroxyapatite as the only source of phosphate showed a high stabilization efficiency, above all for Pb with over 97 % of primary acetic acid leachable Pb immobilized. The addition of phosphoric acid as a source of phosphate resulted in an increase in leaching of phosphorus up to 50 mg L−1 in water extracts. Lime that was also added in some stabilization mixtures increased the stabilization efficiency of phosphate and also decreased the treatment-induced phosphate leaching. To evaluate the long-term stability of immobilization, leaching of metals and phosphorus was assessed in a column experiment with synthetic precipitation that in general showed steady decrease in leachability of metals and phosphorus with quite high cumulative Zn and Cd concentrations in leachates of soil sample and extremely high (30% of total added P concentration cumulative P concentrations in leachates of mixture with highest amount of added phosphoric acid and no addition of lime.

  4. 矿粮复合区土壤-作物系统重金属污染风险性评价%Risk assessment of heavy metal contamination in soil-plant system of the overlapped areas of crop and mineral production

    Institute of Scientific and Technical Information of China (English)

    马守臣; 邵云; 杨金芳; 李春喜

    2012-01-01

    为分析矿区污染农田农作物生产的生态安全性,以焦作市中马村矿区的典型农田为例,对矿区农田土壤及植物中Zn、Cr、Cd、Cu和Pb等重金属的质量分数进行了测定,并对重金属污染风险进行了评价.结果表明,根据重金属的单项污染指数,在矿井水污灌农田(F1样地)土壤中Zn和Cd的质量分数达到中度污染水平,Cr的质量分数达到轻微污染水平,Cu和Pb元素质量分数未达到污染水平.在煤矸石污染农田(F2样地)土壤中Zn、Cr和Cd的质量分数达到轻度污染水平,Cu和Pb元素质量分数未达到污染水平.在矿区公路侧农田(F3样地)土壤中各元素质量分数均未达到污染水平.采用潜在生态风险指数法对土壤重金属污染的生态风险进行评价,F1和F2样地综合生态风险指数分别为239.60和178.42,达到中等水平,F3样地土壤达到轻微生态风险水平.采用单项污染指数和综合污染指数法对小麦(Triticum aestivum)籽粒中重金属风险进行评价,在F1和F2样地中,小麦籽粒中Cu质量分数均未达到污染水平,Pb、Cd和Cr质量分数均达到重度污染水平.Zn质量分数在F1样地中达到轻度污染水平,在F2样地中达到中度污染水平.在F3样地中,小麦籽粒中Cd和Cu质量分数未达到污染水平,Zn质量分数达到轻度污染水平,Pb、Cr质量分数达到重度污染水平.从综合污染指数评价来看,F1、F2和F3 3个样地小麦籽粒中重金属污染综合指数均达到重度污染水平.评价结果对科学治理矿区污染土壤,确保矿区农田生态安全、粮食生产安全具有重要意义.%In this study, to study the ecological safety of crops production in the overlapped areas of crop and mineral production, the contents of Zn, Cr, Cd, Cu and Pb in wheat and soil were investigated and pollution risk of heavy metals were evaluated in Zhongmacun mining area of Jiaozuo, China. The results showed that, according to single

  5. Residual effects of metal contamination on the soil quality: a field survey in central Portugal

    Science.gov (United States)

    Kikuchi, Ryunosuke; Gerardo, Romeu

    2017-04-01

    Agriculture is an important source of income and employment. But depletion and degradation of land challenge to producing safe food and other agricultural products to sustain livelihoods and meet the needs of urban populations. When developing or expanding an agricultural area, it becomes essential to access the soil quality. Even if the present source of contamination is not observed, it is a worth subject to evaluate whether or not any negative effects of the post contamination still last. For this purpose, a field survey (2 ha) was carried: a zinc and lead mining site that was abandoned about 50 years ago was researched at Sanguinheiro (40°18'N and 8°21'W) in Central Portugal. The area is characterized by very steep slopes that are confining with a small stream. The obtained results show that (i) the Pb content in the site (165 mg/kg) is higher than that in the background (67.7 mg/kg); (ii) the Zn content of local vegetation (Eucalyptus globulus) in the post-mining site is 2.1 times that in the control site, and (iii) dead bare ground is observed in some parts of the site. There is a possibility that great amounts of Zn and Pb accumulate in tissues of local vegetation. Although mining activity ended 50 years ago, the contents of Pb and Zn in the sampled soil were comparatively high in the site with about a 75% slope. It is concluded that not only the present contamination but also the post-environmental stress should be assessed to properly develop an agricultural area in terms of securing agricultural products.

  6. Estabelecimento de plantas herbáceas em solo com contaminação de metais pesados e inoculação de fungos micorrízicos arbusculares Establishment of herbaceous plants in heavy metal contaminated soils inoculated with arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Carbone Carneiro

    2001-12-01

    Full Text Available Neste trabalho estudou-se o estabelecimento de plantas herbáceas em solo com contaminação de metais pesados (MP e inoculação de fungos micorrízicos arbusculares (FMAs. O experimento foi realizado em bandejas, em esquema fatorial 5 x 2, sendo cinco proporções de solo contaminado com MP na ausência e presença de FMAs. Sementes de oito espécies de gramíneas e uma crucífera (mostarda -- Brassica sp. foram plantadas e cultivadas por 120 dias e avaliadas em dois cortes. No primeiro corte, as gramíneas foram severamente afetadas pela contaminação, e a mostarda foi pouco afetada, mostrando alta tolerância. No segundo corte, o efeito da contaminação foi negligível para as gramíneas, e a inoculação dos FMAs aumentou em 24% a matéria seca destas em relação ao controle sem inoculação. A inoculação teve também efeito positivo na matéria seca das raízes e na colonização micorrízica. Os teores de Cd, Zn e Pb na parte aérea foram maiores na mostarda do que nas gramíneas em ambos os cortes. Apesar de a inoculação não ter efeito no crescimento das gramíneas do primeiro corte, as plantas com inoculação apresentaram maior acúmulo de Zn, Cd e Pb no segundo corte. A maior tolerância da mostarda aos metais pesados permitiu seu crescimento e conseqüente acúmulo de Zn, Cd e Pb do solo contaminado. A extração destes elementos do solo pode ter contribuído para o melhor desenvolvimento subseqüente das gramíneas, favorecendo o estabelecimento das plantas.The establishment of herbaceous plants in soil contaminated by heavy metals (HM and inoculated with arbuscular mycorrhizal fungi (AMF was evaluated in the present study. The experiment was conducted in trays, in a 5 x 2 factorial, being five proportions of contaminated soil with or without inoculation with arbuscular mycorrhizal fungi (AMF. Seeds of eight grass species and a mustard (Brassica sp. were planted and allowed to grow for 120 days under greenhouse conditions

  7. Applying soil amendments to co-cropping system for remediating heavy metal contaminated soil:Field experiment%土壤改良剂联合间套种技术修复重金属污染土壤:田间试验

    Institute of Scientific and Technical Information of China (English)

    孙岩; 吴启堂; 许田芬; 翟晓峰; 林晓燕; 王慧

    2014-01-01

    在田间条件下,验证通过盆栽试验初步筛选出的几种改良剂在玉米和东南景天间套种修复重金属污染土壤的大田实际应用效果。研究结果表明,施用改良剂蘑菇渣肥、云母和沸石能有效降低玉米籽粒和茎叶中的Cd和Pb,玉米籽粒Cd和Pb含量均达到食用标准。蘑菇渣肥显著增加了东南景天对Cd的提取量,腐植酸显著促进了东南景天对Pb的吸收,因此,蘑菇渣和腐植酸可以应用于玉米和东南景天套种系统。施用云母和沸石可以显著提高土壤pH值,降低土壤可交换态Cd/Pb含量,从而降低二种植物对Cd/Pb的吸收;然而,施用蘑菇渣肥和腐植酸却增加土壤可交换/吸附态Cd/Pb含量。植物根系吸收Cd的稳定常数显示该有机吸附态Cd难于被玉米根系吸收。%The field experiment was carried out to verify the feasibility of applying the selected soil amendments in a real case of phytoremediation with the co-crop of Sedum alfredii and Zea mays. Results showed that application of mushroom manure or mica or zeolite significantly decreased Cd and Pb contents in maize straw and grain, and Cd and Pb concentrations in corn grain were below the limit value of the Chinese food standards (GB 2762-2012). The phyto-extraction of Cd by S. alfredii was increased by the treatment of mushroom manure, and humic acids increased significantly the phyto-extraction of Pb. Therefore humic acids and mushroom manure were suitable soil amendments to be applied in the co-cropping system of S. alfredii and maize. The application of mica and zeolite significantly increased the soil pH and decreased the exchangeable Cd and Pb in soil, and accordingly, the uptake of Cd and Pb by the two plants were also reduecd. However, the treatment of mushroom manure or humic acids increased the exchangeable or adsorbed Cd and Pb in soil, the stability constant of Cd absorption by plant roots indiacated that these organic-matter-adsorbed Cd was difficult

  8. Evaluation of a temporal trend heavy metals contamination in Posidonia oceanica (L.) Delile, (1813) along the western coastline of Sicily (Italy).

    Science.gov (United States)

    Copat, Chiara; Maggiore, Riccardo; Arena, Giovanni; Lanzafame, Stanislao; Fallico, Roberto; Sciacca, Salvatore; Ferrante, Margherita

    2012-01-01

    The use of biological species in the monitoring of marine environmental quality allows the evaluation of biologically available levels of contaminants in the ecosystem and the effects of contaminants on living organisms. The seagrass Posidonia oceanica is a useful bioindicator because through the lepidochronology technique it is possible to obtain a historical contamination trend of a given area. This study aims to assess the temporal trend contamination by heavy metal investigations on dead sheaths of 100 samples of P. oceanica collected in the Protected Marine Area of "Plemmirio" (Sicily) and in the Siracusa bay. Important results were obtained because data show a significant negative temporal trend for the metals analysed especially for As, Co, Cr, Hg, Pb, Se, U and V that in the past had higher concentrations, with a stronger contamination in the Plemmirio area, the site much more exposed to the pollution of the nearby petrochemical complex. This study confirms the relevance of the use of P. oceanica as a biological indicator of metal contamination in coastal ecosystems. Thus the usefulness of P. oceanica as a tracer of spatial metal contamination and as a good tool for water quality evaluation is reinforced.

  9. 典型Pb/2n矿区土壤重金属污染特征与Pb同位素源解析%Heavy Metal Contamination and Pb Isotopic Composition in Natural Soils Around a Pb/Zn Mining and Smelting Area

    Institute of Scientific and Technical Information of China (English)

    孙锐; 舒帆; 郝伟; 李丽; 孙卫玲

    2011-01-01

    The heavy metal (Pb, Zn, Cr, Cu, Cd, and Hg) concentrations in the A horizon and C horizon soils, collected around the Pb/Zn mining and smelting area of Shuikoushan in Hunan, China, were investigated, and the Pb isotopic compositions were also determined to identify the potential origin of Pb in the A horizon soil. Compared with C horizon soils, the A horizon soils exhibit elevated heavy metal concentrations, especially in the vicinity of the mining and smelting area. This reveals that the surface soil was contaminated to some degree. The contents of Pb, Zn, Cr, Cu, Cd, and Hg in soils are up to 3 966. 88, 2 086. 25, 135. 31, 185. 63,56. 15, and 16. 434 mg/kg, respectively. The potential risks caused by different metals are in the order of Cd > Hg > Pb > Cu >Zn = Cr. Much higher potential ecological risk was observed for the central area ( Shuikoushan Pb/Zn mining and smelting area) than for the surrounding area. About 34% , 33% , 11% , and 22% of the sampling sites demonstrate low, moderate, considerable, and very high potential ecological risk in the central area, while about 68% , 16% , 10% , and 6% of the sampling sites show low, moderate,considerable, and very high potential ecological risk in the surrounding area, respectively. Compared with the Pb isotopic compositions in the C horizon soils (206Pb/207pb 1. 168-1. 246,208Pb/206Pb 2. 014-2. 130), the Pb in the A horizon soils has lower 206Pb/207Pb ratios (1. 166-1. 226) and higher 208Pb/206 Pb ratios (2. 043-2. 135). The Pb in the A horizon soils predominantly derives from twocomponent mixing resources. One is the parent materials of C horizon, and the other is the atmospheric deposition of the smelting flue gas dust.%以我国典型的铅锌矿区-湖南水口山铅锌矿区及其周围地区为研究对象,分析自然土壤(A层和C层)样品中不同重金属(Pb、Zn、Cr、Cu、Cd、Hg)的污染特征和Pb同位素组成,结果表明,受铅锌选矿和冶炼活动的影响,研究

  10. Research on Remediation of Heavy Metal-contaminated Soil by Solidiifcation/Stabilization and Engineering Practice%重金属污染场地固化/稳定化修复技术研究及工程实践

    Institute of Scientific and Technical Information of China (English)

    余锦涛; 倪晓芳; 张长波

    2016-01-01

    本文在采集上海某化工区污染场地土壤进行污染物分析的基础上,针对其污染物为重金属的特点,提出采用固化/稳定化的工艺进行修复处理。研究固化/稳定化药剂的添加比例对固化体强度和固化体浸出毒性的影响,从而得出较优的工艺条件,修复后固化体浸出毒性满足地表水环境质量IV级标准,固化体强度大于2 MPa,可用于场地路基材料。在实验的基础上,进行工程实践,开展免烧砖的工艺制备,实现污染土壤的资源化利用。%Based on the analysis of contamination in contaminated site soil from a Shanghai chemical industry zone, for which the characteristics of heavy metal pollutants, this article proposes the solidification/stabilization technology to remediation. According to the added ratio of solidification/stabilization agents which has an impact on extraction toxicity of solidification and strength of solidification, the optimum process conditions can be got. After the treatment, the extraction toxicity of solidification meets the environmental quality of surface water Class IV standards, and strength of solidification is greater than 2 MPa, so it can be used in roadbed material. On the basis of experiments, engineering practice and preparation process of unbaked bricks can be carried out to achieve the resource utilization of contaminated soil.

  11. 调控剂对锌镉污染土壤植物修复效率及后茬蔬菜重金属吸收的影响%Effect of Amendments on Phytoextraction Efficiency and Metal Uptake of Following Vegetable in Heavy Metal Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    任婧; 吴龙华; 刘鸿雁; 骆永明

    2013-01-01

    High amount of organic manure made from sewage sludge was applied continuously within 12 years which resulted in soil zinc (Zn) and cadmium (Cd) contamination.This kind of Zn and Cd contaminated soil was collected to conduct the pot experiment for phytoextraction using Zn and Cd hyperaccumulator,Sedum plumbizincicola.Organic chelates,such as iminodisuccinic acid sodium salt (IDS),ethylene diaminedisuccinic acid (EDDS) were applied,elemental sulphur (S) and calcium magnesium phosphate fertilizer (CaMgP) was also added to the soil in this experiment in order to find out a good enhanced remediation model that can enhance the extraction efficiency when growing hyperaccumulator and reduce the heavy metal concentrations in vegetables after phytoextraction.The results showed that compared to control or EDDS treatments,the shoot biomass of S.plumbizincicola was increased significantly by adding 120 mmol/kg sulphur,and the increase rates were 34.7%,47.9%,respectively.Cd concentration in S.plumbizincicola plant shoot decreased significantly in treatment of 3 mmol/kg IDS,the decrease rate was 35.5% compared with the control.4 g/kg of CaMgP fertilizer could reduce heavy metals' bioavailability,then decreased Zn and Cd concentrations in following vegetable Amaranthus spinosus by 57% and 63%,respectively.The soil ammonia acetate extractable Zn and Cd decreased by 66.1% and 72.4% respectively compared to control after application CaMgP fertilizer.Therefore,appropriate application of sulphur fertilizer could promote the growth of Sedum plumbizincicola and the addition of CaMgP fertilizer could reduce the concentration of the active heavy metals in the soil and the pollution risk of the later vegetables.%采用盆栽试验,在连续12年高量施用污泥有机肥引起的Zn、Cd污染土壤上种植伴矿景天,并向土壤中添加亚氨基二琥珀酸(IDS)、乙二胺二琥珀酸三钠(EDDS)、硫磺等化学调控剂及稳定剂钙镁磷肥,研究调控剂对伴

  12. Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well waters.

    Science.gov (United States)

    Ismail, Amir; Riaz, Muhammad; Akhtar, Saeed; Ismail, Tariq; Amir, Mamoona; Zafar-ul-Hye, Muhammad

    2014-01-01

    Heavy metal contamination in the food chain is of serious concern due to the potential risks involved. The results of this study revealed the presence of maximum concentration of heavy metals in the canal followed by sewerage and tube well water. Similarly, the vegetables and respective soils irrigated with canal water were found to have higher heavy metal contamination followed by sewerage- and tube-well-watered samples. However, the heavy metal content of vegetables under study was below the limits as set by FAO/WHO, except for lead in canal-water-irrigated spinach (0.59 mg kg(-1)), radish pods (0.44 mg kg(-1)) and bitter gourd (0.33 mg kg(-1)). Estimated daily intakes of heavy metals by the consumption of selected vegetables were found to be well below the maximum limits. However, a complete estimation of daily intake requires the inclusion of other dietary and non-dietary exposure sources of heavy metals.

  13. GIS-based colour composites and overlays to delineate heavy metal contamination zones in the shallow alluvial aquifers, Ankaleshwar industrial estate, south Gujarat, India

    Science.gov (United States)

    Kumar, Suyash; Shirke, K. D.; Pawar, N. J.

    2008-03-01

    In an attempt to delineate heavy metal contamination precincts and to evaluate the extent and degree of toxic levels, besides their possible sources, 38 water samples from Ankaleshwar Industrial Estate, south Gujarat, India were analyzed. By clutching geochemical analyses and GIS-based colour composites areas depicting anomalously high concentration of heavy metals (Mo, Zn, Pb, Ni, Co, Cd, etc.) in the groundwater were revealed. The multicomponent overlays in grey-scale facilitated in identifying situates of heavy metal ‘hot spots’, and lateral protuberances of the contamination plume around defile stretch of the main stream Amla Khadi flowing through the area. The multiple pollution plumes emerging from other parts of the area further coincide with effluent laden streams and small channels indicating industrial establishments as major sources of groundwater contamination. Influent nature of the streams, accelerated infiltration process, high mass influx and shallow groundwater table are the factors conducive for easy access of heavy metals to the phreatic aquifers affecting over 20 km2 area. On the basis of P/ U ratios (concentration of metals in polluted water to unpolluted water), geogenic and anthropogenic sources have been identified. Very high levels of technogenic elements present in the ground water raise concerns about possible migration into food crops, as the area is an important horticultural locale and is highly cultivated.

  14. Analysis of heavy metal sources in soil using kriging interpolation on principal components.

    Science.gov (United States)

    Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

    2014-05-06

    Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.

  15. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse

    NARCIS (Netherlands)

    Schröder, T.J.; Hiemstra, T.; Vink, J.P.M.

    2005-01-01

    The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected

  16. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse

    NARCIS (Netherlands)

    Schröder, T.J.; Hiemstra, T.; Vink, J.P.M.

    2005-01-01

    The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected

  17. Prediction of Cadmium Content in the Leaves of Navel Orange in Heavy Metal Contaminated Soil Using VIS-NIR Reflectance Spectroscopy%污染土壤对脐橙叶片镉含量影响的光谱预测

    Institute of Scientific and Technical Information of China (English)

    石荣杰; 潘贤章; 王昌昆; 刘娅; 李燕丽; 李志婷

    2015-01-01

    Visual and Near‐infrared (VIS‐NIR) reflectance spectroscopy had been used widely in monitoring agricultural pollution in recent years ,however ,it was rarely applied in monitoring the contamination of heavy metal in orchards .In the present paper , Newhall navel orange (Citrus sinensis [L .] Osbeck cv .Newhall) were cultivated in the potted soil contaminated with cadmium (Cd) at different levels ,and the spectral reflectance and Cd content in the leaves were measured simultaneously at different growing seasons ,which then were used to establish the prediction model by partial least squares regression (PLSR) based on spectral reflectance and by linear regression based on spectral index .The results showed that Cd was more easily transferred to and cumulated in the new leaves ,and this phenomenon was more obvious in heavily contaminated soils with Cd .Blue shift in red edge was found in the band of 700~730 nm in the new leaves ,however ,no such phenomenon was found in the old leaves .The coefficient of determination (R2 ) of linear regression model based on spectral index was nearly 0.8 ,while the PLSR model had a better result in predicting Cd content in the new leaves than the linear regression with R2CV of approximately 0.9 .Furthermore , the standard normal variate transformation(SNV)in spectral preprocessing can improve the precision significantly in PLSR mod‐el .These results suggest that the VIS‐NIR method has a great potential in monitoring heavy metal pollution in the navel orange .%近年来可见‐近红外光谱技术在农业污染监测中应用越来越广泛,但在果树的重金属污染研究中应用较少。本文以纽荷尔脐橙(Citrus sinensis[L.]Osbeck cv. Newhall)为研究对象,采用盆栽方法,通过添加镉(Cd)形成不同污染程度的土壤,然后定期监测叶片中Cd含量及其光谱,分别建立了基于光谱指数的线性回归预测模型,以及基于偏最小二乘回归(PLSR)的Cd含量

  18. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    C. Lievens; J. Yperman; J. Vangronsveld; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-08-15

    Presently, little or no information of implementing fast pyrolysis for looking into the potential valorisation of heavy metal contaminated biomass is available. Fast pyrolysis of heavy metal contaminated biomass (birch and sunflower), containing high amounts of Cd, Cu, Pb and Zn, resulting from phytoremediation, is investigated. The effect of the pyrolysis temperature (623, 673, 773 and 873 K) and the type of solid heat carrier (sand and fumed silica) on the distribution of the heavy metals in birch and sunflower pyrolysis fractions are studied. The goal of the set-up is 'concentrating' heavy metals in the ash/char fraction after thermal treatment, preventing them to be released in the condensable and/or volatile fractions. The knowledge of the behaviour of heavy metals affects directly future applications and valorisation of the pyrolysis products and thus contaminated biomass. They are indispensable for making and selecting the proper thermal conditions for their maximum recovery. In view of the future valorisation of these biomasses, the amounts of the pyrolysis fractions and the calorific values of the obtained liquid pyrolysis products, as a function of the pyrolysis temperature, are determined. 46 refs., 8 figs., 4 tabs.

  19. Removal of heavy metals from artificial metals contaminated water samples based on micelle-templated silica modified with pyoverdin I

    Institute of Scientific and Technical Information of China (English)

    PANADDA Tansupo; WORAKARN Chamonkolpradit; SAKSIT Chanthai; CHALERM Ruangviriyachai

    2009-01-01

    The micelle-templated silica (MTS) was firstly chemically modified with 3-glycidoxypropyl-trimethoxysilane (GPTMS) before immobilized with pyoverdin I. The characteristics of pyoverdin I-anchored onto the modified MTS were investigated using fluorescence, infrared spectra and scanning electron microscopy. The specific surface area of all materials was calculated by Bnmauer, Emmett and Teller (BET) method using nitrogen isotherm adsorption data. As the results, the surface area of commercial silica gel decreased from 609.2 to 405.4 m2/g, it indicated that the pyoverdin I could be immobilized onto the surface of silica solid support. This adsorbent was used for extraction of Fe(Ⅲ), Cu(Ⅱ), Zn(Ⅱ), and Pb(Ⅱ) in artificial metals contaminated water. Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using batch procedure. The optimum pH value for the removal of metal ions simultaneously on this adsorbent was 4.0. Complete desorption of the adsorbed metal ions from the adsorbent was carded out using 0.25 mol/L of EDTA. The effcct of different cations and anions on the adsorption of these metals on adsorbent was studied and the results showed that the proposed adsorbent could be applied to the highly saline samples and the sample which contains some transition metals.

  20. Common plants as alternative analytical tools to monitor heavy metals in soil

    OpenAIRE

    Malizia, Daniela; Giuliano, Antonella; Ortaggi, Giancarlo; Masotti, Andrea

    2012-01-01

    Background Herbaceous plants are common vegetal species generally exposed, for a limited period of time, to bioavailable environmental pollutants. Heavy metals contamination is the most common form of environmental pollution. Herbaceous plants have never been used as natural bioindicators of environmental pollution, in particular to monitor the amount of heavy metals in soil. In this study, we aimed at assessing the usefulness of using three herbaceous plants (Plantago major L., Taraxacum off...

  1. Effect of sulfate erosion on strength and leaching characteristic of stabilized heavy metal contaminated red clay%硫酸盐侵蚀条件下固化重金属污染土强度及浸出特性

    Institute of Scientific and Technical Information of China (English)

    张海清; 杨宇友; 易宇成

    2017-01-01

    Solidification/stabilization (S/S) technology has been widely used for remediation of the heavy metal contaminated soils. The heavy metal ions will be leached from the stabilized contaminated soil under sulfate erosion conditions, which gives rise to secondary contamination to the areas around the mine sites. The commonly used Portland cement, fly ash and quicklime were taken as binder raw materials with various mix proportions. And then, the sulphuric acid and nitric acid method was used to investigate the leaching characteristic of stabilized heavy metal contaminated soils. The effects of binder types and binder contents, sulfate concentrations (1.5, 3.0 and 6.0 g/L) and erosion time (0, 7, 14 and 28 d) on leached concentrations of heavy metal ions from contaminated soils were studied. Moreover, a parameter named immobilization percentage (IP) was introduced to evaluate the influence of erosion time and sulfate concentration on immobilization effectiveness for heavy metal ions. The results showed that, the leached heavy metal concentrations increased with sulfate concentration and erosion time. Comparatively speaking, the composite binders that had calcium oxide in it exhibited the worst solidification effectiveness and the lowest immobilization percentage, with the largest leached heavy metal concentration.%污染土修复常采用固化稳定化技术.固化稳定化重金属污染土在酸侵蚀条件下其重金属离子会重新溶出,从而导致对周边环境的二次污染.以常用的水泥、粉煤灰和石灰为固化剂原料,设计不同组合及配比的固化剂,通过无侧限抗压强度试验及硫酸/硝酸法毒性浸出试验研究固化重金属污染土在酸侵蚀条件下的强度及浸出特性.探讨固化剂类型、硫酸盐浓度(1.5,3.0,6.0 g/L)和侵蚀龄期(0,7,14,28 d)对固化重金属污染土的强度及溶出浓度的影响,并引入固定率参数,进一步量化考察侵蚀龄期和侵蚀浓度对重金属离子固定率

  2. Trace metal contamination influenced by land use, soil age, and organic matter in montreal tree pit soil.

    Science.gov (United States)

    Kargar, Maryam; Jutras, Pierre; Clark, O Grant; Hendershot, William H; Prasher, Shiv O

    2013-09-01

    The short life span of many street trees in the Montreal downtown area may be due in part to higher than standard concentrations of trace metals in the tree pit soils. The effects of land use, soil organic matter, and time since tree planting in a given tree pit (soil age) were studied with respect to the total concentration of trace metals (Cr, Ni, Cu, Zn, Cd, and Pb) in soil collected from tree pits on commercial and residential streets. Contingency table analysis and multiple linear regression were applied to study how these variables were related to the total concentrations of trace metals in soil. Other variables, such as pH, street width, distance of the tree pit from the curb, and tree pit volume, were also used as input to statistical analysis to increase the analysis' explanatory power. Significantly higher concentrations of Cu, Cd, Zn, and Pb were observed in soils from commercial streets, possibly as a result of heavier traffic as compared with residential streets. Soil organic matter was positively correlated with the concentrations of Cu and Pb, probably due to the ability of organic matter to retain these trace metals. Nickel, Cu, Zn, Cd, and Pb were positively correlated with the soil age presumably because trace metals accumulate in the tree pit soil over time. This knowledge can be helpful in providing soil quality standards aimed at improving the longevity of downtown street trees.

  3. Chemical methods and phytoremediation of soil contaminated with heavy metals.

    Science.gov (United States)

    Chen, H M; Zheng, C R; Tu, C; Shen, Z G

    2000-07-01

    The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.

  4. Evaluation of Some Physiochemical Parameters and Heavy Metal Contamination in Hara Biosphere Reserve, Iran, Using a New Pollution Index Approach

    National Research Council Canada - National Science Library

    Iman Zarei; Alireza Pourkhabbaz; Hadi Babaei

    2016-01-01

    Background: The pollution of the aquatic environment with heavy metals has become a worldwide problem during recent years, due to their potential toxic effects and ability to bio-accumulate in aquatic ecosystem...

  5. Preliminary assessment of heavy metal contamination in surface water and sediments from Honghu Lake,East Central China

    Institute of Scientific and Technical Information of China (English)

    Ying HU; Shihua QI; Chenxi WU; Yanping KE; Jing CHEN; Wei CHEN; Xiangyi GONG

    2012-01-01

    Heavy metal concentrations in surface water and sediments collected from Honghu Lake in Hubei Province,China were analyzed,and ecological risks were evaluated according to the sediment quality guidelines.The results showed that the average concentrations of heavy metals in surface water were ranked as:As > Zn >Cu > Cr > Pb > Ni > Cd > Hg.In comparison with results reported in other rivers and the background values,The Honghu Lake was polluted by As,Cr,Pb,Cu and Ni.Most of metals might be mainly from fertilizers,industrial effluent and domestic wastewater around the lake.Heavy metals concentrations were relatively higher in the inlet area than in other areas.Negative correlations were observed between most heavy metals and pH,while a significant positive correlation was present between Zn,Cd and Pb.In the sediment core,Cu,Zn,Cr and Ni showed a decreasing trend while Cd present an increasing trend.The decrease of As,Cu,Zn,Cr and Ni in the 1990s might due to the flood event in 1998.The analysis of ecological risk assessment based on sediment quality guidelines suggested that heavy metals in most sediments from the Honghu Lake had moderate toxicity,with Cr being the highest priority pollutant.

  6. Diagnosis of heavy metal contamination in agro-ecology of Gujranwala, Pakistan using cattle egret (Bubulcus ibis) as bioindicator.

    Science.gov (United States)

    Bostan, Nazish; Ashraf, Muhammad; Mumtaz, Abdul S; Ahmad, Iftikhar

    2007-03-01

    The present study investigated the status of heavy metals: Lead (Pb), Cadmium (Cd), Chromium (Cr), Cobolt (Co), Silver (Ag) and Nickle (Ni) residues in egg, regurgitate and sediment samples collected from two colonies of cattle egret (Bubulcus ibis) during the breeding seasons between April and August in 2004 and 2005. The mean concentration of heavy metals in eggs and regurgitates was found higher compared to the maximum residue limit (mrl) standards prescribed by Environmental Protection Agency (EPA). A further comparison was made with a similar study conducted in China. High concentrations of heavy metals have contributed to the altered breeding behaviour of the bird species studied. Based on these findings we suggested a regular monitoring of the spread of these pollutants as these have not yet reached to the sediments.

  7. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate

    Energy Technology Data Exchange (ETDEWEB)

    Labanowski, Jerome [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France); Monna, Fabrice [ARTeHIS, UMR 5594 CNRS, Univ. de Bourgogne Centre des Sciences de la Terre, Bat. Gabriel, F-21000 Dijon (France); Bermond, Alain [AgroParis Tech., Laboratoire de Chimie Analytique, 16 rue C. Bernard, 75231 Paris Cedex 05 (France); Cambier, Philippe; Fernandez, Christelle; Lamy, Isabelle [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France); Oort, Folkert van [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France)], E-mail: vanoort@versailles.inra.fr

    2008-04-15

    Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (Q{sub M1}) and less labile (Q{sub M2}). In citrate extractions, total extractability (Q{sub M1} + Q{sub M2}) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar Q{sub M1}/Q{sub M2} ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth. - Kinetically defined metal fractions mimic mobility aspects of heavy metals.

  8. Analytical techniques for estimation of heavy metals in soil ecosystem: a tabulated review.

    Science.gov (United States)

    Soodan, Rajneet Kour; Pakade, Yogesh B; Nagpal, Avinash; Katnoria, Jatinder Kaur

    2014-07-01

    Soil, an important environmental medium, is exposed to a number of pollutants including toxic heavy metals by various natural and anthropogenic activities. Consequently heavy metal contaminated soil has the potential to pose severe health risks and hazards to humans as well as other living creatures of the ecosystem through various routes of exposure such as direct ingestion, contaminated drinking ground water, food crops, contact with contaminated soil and through food chain. Therefore, it is mandatory to explore various techniques that could efficiently determine the occurrence of heavy metals in soil. A number of methods have been developed by several regulatory agencies and private laboratories and are applied routinely for the quantification and monitoring of soil matrices. The present review is an initiative to summarize the work on pollution levels of soil ecosystem and thus pertains to various extraction and quantification procedures used worldwide to analyze heavy metals in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The sociality of bioremediation: Hijacking the social lives of microbial populations to clean up heavy metal contamination

    OpenAIRE

    O'Brien, Siobhan; Buckling, Angus

    2015-01-01

    Bioremediation to remove toxic heavy metals from the environment relies on metal‐tolerant plants or microbes to do the job, but with varying degrees of success. Understanding the ecology and evolution of metal‐resistant bacterial societies could drastically improve the efficiency of microbial bioremediation.

  10. Retrospective analysis of heavy metal contamination in Rhode Island based on old and new herbarium specimens1

    Science.gov (United States)

    Rudin, Sofia M.; Murray, David W.; Whitfeld, Timothy J. S.

    2017-01-01

    Premise of the study: Herbarium specimens may provide a record of past environmental conditions, including heavy metal pollution. To explore this potential, we compared concentrations of copper, lead, and zinc in historical and new collections from four sites in Rhode Island, USA. Methods: We compared historical specimens (1846 to 1916) to congener specimens collected in 2015 at three former industrial sites in Providence, Rhode Island, and one nonindustrial site on Block Island. Leaf material was prepared by UltraWAVE SRC Microwave Digestion, and heavy metal concentrations were measured by inductively coupled plasma–atomic emission spectroscopy. Results: Heavy metal concentrations in the historical and new specimens were measurable for all elements tested, and levels of copper and zinc were comparable in the historical and 2015 collections. By contrast, the concentration of lead declined at all sites over time. Significant variability in heavy metal concentration was observed between taxa, reflecting their varied potential for elemental accumulation. Discussion: It seems clear that herbarium specimens can be used to evaluate past levels of pollution and assess local environmental changes. With careful sampling effort, these specimens can be a valuable part of environmental science research. Broadening the possible applications for herbarium collections in this way increases their relevance in an era of reduced funding for collections-based research. PMID:28090410

  11. Bacteria as Potential Indicators of Heavy Metal Contamination in a Tropical Mangrove and the Implications on Environmental and Human Health

    Science.gov (United States)

    De La Rosa-Acosta, Melanie; Jiménez-Collazo, Johannys; Maldonado-Román, Marixa; Malavé-Llamas, Karlo; Musa-Wasil, Juan C.

    2017-01-01

    Heavy metal (HM) exposure has been associated with human health diseases like cancer, kidney and liver damage, neurological disorders, motor skills, low bone density and learning problems. With the beginning of the industrialization, the heavy metals in high concentration contribute to putting on the risk the humans in the vicinity. Our study site is located in Cataño, Puerto Rico. This is a highly industrialized area. It is surrounded by a recreational park, a rum distillery, two thermoelectric factories, and was impacted by CAPECO (oil refinery) explosion in 2009. Las Cucharillas marsh is part of The San Juan Bay Estuary System, considered as a critical wildlife area. The mangrove marsh has three of the four mangrove species found in PR Laguncularia racemosa, Avicennia germinans and Rhizophora mangle. This study was aimed at seven different heavy metals: Arsenic (As), Cadmium (Cd), Chromium (Cr), Lead (Pb), Zinc (Zn), Mercury (Hg) and Copper (Cu). These metals at high concentrations are of human health concern due to their toxicity, persistence, bioaccumulative and bio magnification potentials. Contamination of surface sediments with HM affects the food chain, starting with marine organisms up to humans. The people who live near the contaminated area and the local fishermen are at high risk of exposure. Studies reveal that certain microorganisms can resist the toxicity of heavy metals even at high concentrations. Our study pretends to exploit the sensitive nature of some bacteria to HM and use them as bioindicators. The objective of this research is to assess the bacterial community on the mangrove marsh, identify these bacteria and correlate bacterial species with the type and concentration of the metals found on the site. Our preliminary results with the BIOLOG® identification were five bacteria that are: Carnobacterium inhibens, Cupriavidus gilardii, Enterococcus maloduratus, Microbacterium flavescens and Ralstonia pickettii. This study will continue with an

  12. Field Demonstration of Energy Plants Production on Heavy Metal Contaminated Farmland%典型重金属污染农田能源植物示范种植研究

    Institute of Scientific and Technical Information of China (English)

    余海波; 宋静; 骆永明; 周守标; 吴龙华

    2011-01-01

    为探索安全经济利用重金属中度-重度污染农田的模式,在浙江某典型重金属复合污染农田开展了能源植物(甜高粱Sweet sorghum、甘蔗Saccharum sinensisRoxb.、香根草Vetiveria和盐肤木Rhus chinensis)种植示范研究.结果表明,经施加0.1%的石灰和0.2%的磷矿粉改良后,土壤pH值升高,有效态重金属含量显著降低.甜高粱、甘蔗和香根草的生物量受到土壤有效态重金属的一定影响.甘蔗、甜高粱汁液总糖和还原糖的含量并没有受到不同处理的显著影响.汁液的单位面积产量,甜高粱是甘蔗的2倍多.研究结果说明,在重金属污染农田施加适量的改良剂(石灰和磷矿粉)后可以进行甘蔗、甜高粱、香根草等能源植物的生产.%To explore the possibility of safe and beneficial use of farmland moderately to heavily contaminated by heavy metals, a field demonstration of energy crop production was carried out on a heavy metal contaminated farmland in Zhejiang Province. The results showed the soil pH increased and available heavy metal contents significantly reduced after the addition of 0.1% lime and 0.2% phosphate rock. The biomass of sweet sorghum,sugar cane and vetiver was affected by available heavy metals in the soil. The total sugar and reductive sugar content of the juice from sweet sorghum and sugar cane were not significantly affected by the treatments. Sweet sorghum produced more than twice juice per unit area than sugar cane. The results showed that addition of soil amendments enabled energy crop production on farmland contaminated by heavy metals.

  13. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 heavy metal pollution. PMID:28234944

  14. Heavy metal contamination in Phrynops geoffroanus (Schweigger, 1812) (Testudines: Chelidae) in a River Basin, São Paulo, Brazil.

    Science.gov (United States)

    Piña, C I; Lance, V A; Ferronato, B O; Guardia, I; Marques, T S; Verdade, L M

    2009-12-01

    The Piracicaba River basin is considered the most disturbed river basin in the state of São Paulo. Considerable amounts of agricultural residues are seasonally drained into the river, and the region is also highly urbanized and industrialized with an incipient sewage treatment system. The presence of heavy metals has been previously reported for the water and riverbed in Piracicaba river basin. In this study we evaluated 13 heavy metals in the blood of 37 Geoffroy's side-necked turtles, Phrynops geoffroanus, from Piracicaba River and Piracicamirim Creek, one of its tributaries. Blood levels of As, Co, Cr, Se and Pb varied among sites, whereas Sn varied between males and females. However, no obvious pathology was detected. Serum level of Cu (2,194 ng g(-1)) and Pb (1,150 ng g(-1)) found in this study are the highest ever described for any reptile; however, no clinical symptoms have been detected in the present study. There is no information about the time scale of such contamination, which could be currently subclinical and yet lead to a breakdown in the population reproductive success in a few years. Based on the present study, legal enforcement is urged in order to locate and extirpate heavy metal sources in the Piracicaba River basin. In addition, monitoring should include humans and commercial fish consumed in local markets.

  15. Water Quality Pollution Indices to Assess the Heavy Metal Contamination, Case Study: Groundwater Resources of Asadabad Plain In 2012

    Directory of Open Access Journals (Sweden)

    Soheil Sobhan Ardakani

    2016-09-01

    Full Text Available Background & Aims of the Study: Due to the increasing pollution of water resources, tow documented methods: the Heavy metal potential index (HPI and the Heavy metal evaluation index (HEI were evaluated for their suitability for contamination monitoring of heavy metals (As, Zn, Pb, Cd and Cu contamination in groundwater resources of Asadabad Plain during spring and summer in 2012. Materials & Methods: In this analytical observational study, concentrations of heavy metals have been evaluated at 30 important groundwater sampling stations. For this purpose, collect samples in pre-cleaned, acid-soaked polyethylene bottles. Add 2 mL conc HNO3/L sample and mix well. Cap tightly and store in refrigerator until ready for analysis. Metal concentrations were determined using inductively coupled plasma- optical emission spectrometry (ICP-OES. Results: The results showed that mean concentrations of As, Zn, Pb, Cd and Cu in groundwater samples in spring season were 52.53±13.62, 15.51±23.45, 10.10±2.80, 4.48±1.80 and 8.63±10.87 μg l−1, respectively and in summer season were 57.60±16.90, 14.99±17.66, 9.28±2.46, 4.57±1.73 and 10.45±10.30 μg l−1, respectively. Therefore the mean values of indices in samples from spring and summer seasons were 25.61 and 27.28 respectively for HPI and were 9.29 and 8.88 respectively for HEI, and indicates low contamination levels. Comparing the mean concentrations of the evaluated metals with WHO permissible limits showed a significant difference (P<0.05. Thus, the mean concentrations of the metals were significantly lower than the permissible limits. Conclusions: Despite of the heavy metal pollution of the groundwater resources in Asadabad Plain is lower than WHO permissible limits, but the irregular and long-term usage of agricultural inputs, use of wastewater and sewage sludge in agriculture, over use of organic fertilizers and establishment of pollutant industries can threaten the groundwater resources of this

  16. EVALUATION OF AQUATIC SEDIMENT ROLE AS A SOURCE OF HEAVY METALS CONTAMINANT FOR WATER BODIES IN THE RECLAMATION AREAS OF MUD LAPINDO

    Directory of Open Access Journals (Sweden)

    Novi Anitra

    2016-09-01

    Full Text Available Sediment plays an important roles as a source of heavy metals such as Pb, Cu and Zn. It is also for aquatic sediment in the Sarinah Island. The aim of this research was to evaluate the role of aquatic sediment in reclamation area of Lapindo Mud as a source of heavy metals contaminant (Pb, Cu, Zn for water bodies in the Porong River estuary, Sidoarjo. The evaluation was conducted by determination of Contamination Factor, CF and Risk Assessment Code, RAC based on the geochemical fractions of heavy metals in sediment. Heavy metals fractions were determined using BCR sequential extraction modified by Chakraborty (2015. Sediment samples were collected from two locations, i.e. first location at 7°34'26.76"S, 112°52'53.76"E and second location at 7°33'31.35" S, 112°51'05.56" E. Sample was collected using Eickman Grab sampler and stored in a dark container at 4oC. Heavy metals concentration was determined by using Atomic Absorption Spectrophotometry. As a result, CF for metal Cu was the highest comparable to CF for metal Pb and Zn at both locations. It indicates that the retention time of Cu in aquatic sediment was lower than the one of Pb and Zn. It means that Cu was easy to released from sediment to the water body so it would contaminate it. Based on the RAC value, sediment at second location had highest role to release the first fraction of Cu, (the fraction of dissolved metals in the sediment pore water and the second fraction of Cu (the easy to leachable-freely exchangeable fraction of heavy metals and metals fraction in the form of carbonates which could directly available for biota in water bodies. The conclusion is even though mangrove has been planted in the reclamation area of Lapindo mud for metals adsorption the aquatic sediment in this area has potential role as a source of Cu contaminant, especially at the sea closed toreclamation area.

  17. Using rank-order geostatistics for spatial interpolation of highly skewed data in a heavy-metal contaminated site.

    Science.gov (United States)

    Juang, K W; Lee, D Y; Ellsworth, T R

    2001-01-01

    The spatial distribution of a pollutant in contaminated soils is usually highly skewed. As a result, the sample variogram often differs considerably from its regional counterpart and the geostatistical interpolation is hindered. In this study, rank-order geostatistics with standardized rank transformation was used for the spatial interpolation of pollutants with a highly skewed distribution in contaminated soils when commonly used nonlinear methods, such as logarithmic and normal-scored transformations, are not suitable. A real data set of soil Cd concentrations with great variation and high skewness in a contaminated site of Taiwan was used for illustration. The spatial dependence of ranks transformed from Cd concentrations was identified and kriging estimation was readily performed in the standardized-rank space. The estimated standardized rank was back-transformed into the concentration space using the middle point model within a standardized-rank interval of the empirical distribution function (EDF). The spatial distribution of Cd concentrations was then obtained. The probability of Cd concentration being higher than a given cutoff value also can be estimated by using the estimated distribution of standardized ranks. The contour maps of Cd concentrations and the probabilities of Cd concentrations being higher than the cutoff value can be simultaneously used for delineation of hazardous areas of contaminated soils.

  18. Assessment of Heavy Metal Contamination and Calculation of Its Pollution Index for Uglješnica River, Serbia.

    Science.gov (United States)

    Milivojević, Jelena; Krstić, Dragana; Šmit, Biljana; Djekić, Vera

    2016-11-01

    The aim of the study was to assess the water pollution in terms of total content of heavy metals by parameter called Heavy metal pollution index (HPI). The water samples were collected from four different locations along the course of the river during spring and the autumn seasons. The concentrations of lead (Pb), cadmium (Cd), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), arsenic (As) and mercury (Hg) were determined using atomic absorption spectroscopy. The data were used to evaluate HPI of the river water. The mean value of HPI was 67.487 for the spring season, and 80.676 for the autumn season. The average for both seasons and all sampling sites is 74.082. The maximum value of 112.722 found at one sampling site is above the critical index limit of 100. Also, from the values of mean HPI for each sampling site could be concluded that the pollution load at sampling site-4 is the most significant (HPI 89.575).

  19. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand.

    Science.gov (United States)

    Wongsasuluk, Pokkate; Chotpantarat, Srilert; Siriwong, Wattasit; Robson, Mark

    2014-02-01

    Most local people in the agricultural areas of Hua-ruea sub-district, Ubon Ratchathani province (Thailand), generally consume shallow groundwater from farm wells. This study aimed to assess the health risk related to heavy metal contamination in that groundwater. Samples were randomly collected from 12 wells twice in each of the rainy and the dry seasons and were analyzed by inductive coupled plasma spectrometry-mass spectrometry (ICP-MS). The concentration of detected metals in each well and the overall mean were below the acceptable groundwater standard limits for As, Cd, Cr, Cu, Hg, Ni and Zn, but Pb levels were higher in four wells with an overall average Pb concentration of 16.66 ± 18.52 μg/l. Exposure questionnaires, completed by face-to-face interviews with 100 local people who drink groundwater from farm wells, were used to evaluate the hazard quotients (HQs) and hazard indices (HIs). The HQs for non-carcinogenic risk for As, Cu, Zn and Pb, with a range of 0.004-2.901, 0.053-54.818, 0.003-6.399 and 0.007-26.80, respectively, and the HI values (range from 0.10 to 88.21) exceeded acceptable limits in 58 % of the wells. The HI results were higher than one for groundwater wells located in intensively cultivated chili fields. The highest cancer risk found was 2.6 × 10(-6) for As in well no. 11. This study suggested that people living in warmer climates are more susceptible to and at greater risk of groundwater contamination because of their increased daily drinking water intake. This may lead to an increased number of cases of non-carcinogenic and carcinogenic health defects among local people exposed to heavy metals by drinking the groundwater.

  20. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis.

    Science.gov (United States)

    Ferati, Flora; Kerolli-Mustafa, Mihone; Kraja-Ylli, Arjana

    2015-06-01

    The concentrations of As, Cd, Cr, Co, Cu, Ni, Pb, and Zn in water and sediment samples from Trepça and Sitnica rivers were determined to assess the level of contamination. Six water and sediment samples were collected during the period from April to July 2014. Most of the water samples was found within the European and Kosovo permissible limits. The highest concentration of As, Cd, Pb, and Zn originates primarily from anthropogenic sources such discharge of industrial water from mining flotation and from the mine waste eroded from the river banks. Sediment contamination assessment was carried out using the pollution indicators such as contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), pollution load index (PLI), and geo-accumulation index (Igeo). The CF values for the investigated metals indicated a high contaminated nature of sediments, while the Cd values indicated a very high contamination degree of sediments. The mCd values indicate a high degree of contamination of Sitnica river sediment to ultrahigh degree of contamination of Trepça river sediment. The PLI values ranged from 1.89 to 14.1 which indicate that the heavy metal concentration levels in all investigated sites exceeded the background values and sediment quality guidelines. The average values of Igeo revealed the following ranking of intensity of heavy metal contamination of the Trepça and Sitnica river sediments: Cd > As > Pb > Zn > Cu > Co > Cr > Ni. Cluster analysis suggests that As, Cd, Cr, Co, Cu, Ni, Pb, and Zn are derived from anthropogenic sources, particularly discharges from mining flotation and erosion form waste from a zinc mine plant. In order to protect the sediments from further contamination, the designing of a monitoring network and reducing the anthropogenic discharges are suggested.

  1. Evaluation of Some Physiochemical Parameters and Heavy Metal Contamination in Hara Biosphere Reserve, Iran, Using a New Pollution Index Approach

    Directory of Open Access Journals (Sweden)

    Iman Zarei

    2016-07-01

    Full Text Available Background: The pollution of the aquatic environment with heavy metals has become a worldwide problem during recent years, due to their potential toxic effects and ability to bio-accumulate in aquatic ecosystems. Heavy metals are sensitive indicators for monitoring changes in the aquatic environment. Methods: In this study, total concentrations of Cr, Pb, Cu, Zn, and Fe were measured in water and sediments from nine sites, based on ecological conditions and human activities and the effects of sediment pH and sediment organic matter on bioavailability of selected metals were determined. Modified degree of contamination (mCd was computed in order to determine anthropogenically derived sediment contamination. Results: Mean concentration of metals in water found to be in the following order: Pb > Fe > Zn > Cu > Cr, while in sediment samples it was Fe > Cr > Zn > Pb > Cu. The average content of examined metals in water was higher than the chronic values in marine surface water guideline values. Mean content of Cr, Pb and Fe in sediments were higher than average of the less contaminated sample but Cu and Zn were lower than this guideline value. In the study area, mCd values were less than 1.5 with values ranging from 0.71 to 1.02. Conclusion: The results of this study indicated with a decrease in organic matter and pH in sediments, the concentration of copper and iron increased. Base on modified contamination degree, the sediments of Hara Biosphere Reserve are considered to be in the zero to very low contamination status.

  2. Effects of Microbial and Heavy Metal Contaminants on Environmental/Ecological Health and Revitalization of Coastal Ecosystems in Delaware Bay

    Directory of Open Access Journals (Sweden)

    Gulnihal Ozbay

    2017-06-01

    Full Text Available The presence of heavy metals, excess nutrients, and microbial contaminants in aquatic systems of coastal Delaware has become a public concern as human population increases and land development continues. Delaware's coastal lagoons have been subjected to problems commonly shared by other coastal Mid-Atlantic states: turbidity, sedimentation, eutrophication, periodic hypoxic/anoxic conditions, toxic substances, and high bacterial levels. The cumulative impact of pollutants from run-off and point sources has degraded water quality, reduced the diversity and abundance of various fish species, invertebrates, and submerged aquatic vegetation. The effects are especially pronounced within the manmade dead end canal systems. In this article, we present selected case studies conducted in the Delaware Inland Bays. Due to the ecological services provided by bivalves, our studies in Delaware Inland Bays are geared toward oysters with special focus on the microbial loads followed by the water quality assessments of the bay. The relationships between oysters (Crassostrea virginica, microbial loads and nutrient levels in the water were investigated. The heavy metal levels monitored further away from the waste water treatment plant in the inland bays are marginally higher than the recommended EPA limits. Also, our studies confirmed that aerobic bacteria and Vibrionaceae levels are salinity dependent. Total bacteria in oysters increased when nitrate and total suspended solids increased in the waters. Studies such as these are important because every year millions of Americans consume raw oysters. Data collected over the last 10 years from our studies may be used to build a predictive index of conditions that are favorable for the proliferation of human pathogenic bacteria. Results from this study will benefit the local community by helping them understand the importance of oyster aquaculture and safe consumption of oysters while making them appreciate their