WorldWideScience

Sample records for heavy metal chelator

  1. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    Directory of Open Access Journals (Sweden)

    Margaret E. Sears

    2013-01-01

    Full Text Available Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease.

  2. ELECTED PROBLEMS RELATED TO ENVIRONMENTAL HEAVY METALS EXPOSURE AND CHELATION THERAPY

    Directory of Open Access Journals (Sweden)

    Anna Skoczyńska

    2010-09-01

    Full Text Available Background: Exposure to heavy metals leads to functional and metabolic disturbances and many of them are included in pathogenesis of common diseases (arterial hypertension, atherosclerosis, neurodegenerative processes. In this context new therapeutic and prophylactic strategies are necessary. Patients diagnosed with chronic heavy metals intoxication usually require chelation to increase mobilisation of metals from tissues and elimination of them via urine. Acute poisoning with toxic metal may be difficult to diagnosis, especially in case of accidental intoxication or suicidal intention. Patients also require chelation after causative factor is identified. Objectives: To describe some problems connected with toxicity of metals poisoning and to review pharmacologic therapies that could have a role in poisoning with metals. Methods: A review of the literature was carried out and expert opinion expressed. Results/conclusion: Chelation is a common therapy in case of poisoning with toxic metals but it is satisfied only partially. A combined therapy with structurally different chelators or long-term acting chelators could become viable alternatives in the future. A combined therapy with an antioxidant plus chelator may be a good choice in patients chronically poisoned with metals. Exposure to lead should be taken into account during estimation of global cardiovascular risk.

  3. Heavy metal induced oxidative stress & its possible reversal by chelation therapy.

    Science.gov (United States)

    Flora, S J S; Mittal, Megha; Mehta, Ashish

    2008-10-01

    Exposure to heavy metals is a common phenomenon due to their environmental pervasiveness. Metal intoxication particularly neurotoxicity, genotoxicity, or carcinogenicity is widely known. This review summarizes our current understanding about the mechanism by which metalloids or heavy metals (particularly arsenic, lead, cadmium and mercury) induce their toxic effects. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. The toxic manifestations of these metals are caused primarily due to imbalance between pro-oxidant and antioxidant homeostasis which is termed as oxidative stress. Besides these metals have high affinity for thiol groups containing enzymes and proteins, which are responsible for normal cellular defense mechanism. Long term exposure to these metals could lead to apoptosis. Signaling components affected by metals include growth factor receptors, G-proteins, MAP kinases and transcription factors. Chelation therapy with chelating agents like calcium disodium ethylenediamine tetra acetic acid (CaNa(2)EDTA), British Anti Lewisite (BAL), sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), meso 2,3-dimercaptosuccinic acid (DMSA) etc., is considered to be the best known treatment against metal poisoning. Despite many years of research we are still far away from effective treatment against toxicity caused due to exposure to heavy metals/metalloids. The treatment with these chelating agents is compromised with number of serious side-effects. Studies show that supplementation of antioxidants along-with a chelating agent prove to be a better treatment regimen than monotherapy with chelating agents. This review attempts a comprehensive account of recent developments in the research on heavy metal poisoning particularly the role of oxidative stress/free radicals in the toxic manifestation, an update about the recent strategies for the treatment with chelating agents and a

  4. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  5. Heavy metals in the spinal cord of normal rats and of animals treated with chelating agents

    DEFF Research Database (Denmark)

    Schrøder, H D; Fjerdingstad, E; Danscher, G

    1978-01-01

    , the effects of six chelating agents (DEDTC, dithizone, oxine, EDTA, dipyridyl, and phenantroline) on the Timm pattern were tested. EDTA left the pattern unchanged, while the other compounds showed individual differences in their influence on the Timm pattern, suggesting that the heavy metal pattern...

  6. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    National Research Council Canada - National Science Library

    Sears, Margaret E

    2013-01-01

    .... While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning...

  7. Chelation in metal intoxication

    DEFF Research Database (Denmark)

    Aaseth, Jan; Skaug, Marit Aralt; Cao, yang

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due...... to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment...... of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new...

  8. Efficient removal of heavy metal ions from aqueous solution using salicylic acid type chelate adsorbent.

    Science.gov (United States)

    An, Fuqiang; Gao, Baojiao; Dai, Xin; Wang, Min; Wang, Xiaohua

    2011-09-15

    In this study, 5-aminosalicylic acid was successfully grafted onto the poly(glycidyl methacrylate) (PGMA) macromolecular chains of PGMA/SiO(2) to obtain a novel adsorbent designated as ASA-PGMA/SiO(2). The adsorption properties of ASA-PGMA/SiO(2) for heavy metal ions were studied through batch and column methods. The experimental results showed that ASA-PGMA/SiO(2) possesses strong chelating adsorption ability for heavy metal ions, and its adsorption capacity for Cu(2+), Cd(2+), Zn(2+), and Pb(2+) reaches 0.42, 0.40, 0.35, and 0.31 mmol g(-1), respectively. In addition, pH has a great influence on the adsorption capacity in the studied pH range. The adsorption isotherm data greatly obey the Langmuir and Freundlich model. The desorption of metal ions from ASA-PGMA/SiO(2) is effective using 0.1 mol l(-1) of hydrochloric acid solution as eluent. Consecutive adsorption-desorption experiments showed that ASA-PGMA/SiO(2) could be reused almost without any loss in the adsorption capacity. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qing; Cui, Yanrui; Li, Qilu; Sun, Jianhui, E-mail: sunjh@htu.cn

    2015-02-11

    Highlights: • A novel readily biodegradable chelating ligand was employed to remove heavy metals. • The effects of different conditions on the extraction with GLDA were probed. • Species distribution of metals before and after extraction with GLDA was analyzed. • GLDA was effective for Cd extraction from sludge samples under various conditions. • GLDA offers special insights in the effective removal of heavy metals. - Abstract: Tetrasodium of N,N-bis(carboxymethyl) glutamic acid (GLDA), a novel readily biodegradable chelating ligand, was employed for the first time to remove heavy metals from industrial sludge generated from a local battery company. The extraction of cadmium, nickel, copper, and zinc from battery sludge with the presence of GLDA was studied under different experimental conditions such as contact times, pH values, as well as GLDA concentrations. Species distribution of metals in the sludge sample before and after extraction with GLDA was also analyzed. Current investigation showed that (i) GLDA was effective for Cd extraction from sludge samples under various conditions. (ii) About 89% cadmium, 82% nickel and 84% copper content could be effectively extracted at the molar ratio of GLDA:M(II) = 3:1 and at pH = 4, whereas the removal efficiency of zinc was quite low throughout the experiment. (iii) A variety of parameters, such as contact time, pH values, the concentration of chelating agent, stability constant, as well as species distribution of metals could affect the chelating properties of GLDA.

  10. Fabrication of chelating diethylenetriaminated pan micro and nano fibers for heavy metal removal

    Directory of Open Access Journals (Sweden)

    Abdouss Majid

    2012-01-01

    Full Text Available In this study, commercial acrylic fibers were modified with diethylenetriamine to prepare metal chelating fibers. The effects of process parameters on the efficiency of the reaction were investigated. FTIR spectroscopy and TGA analysis were used to confirm the chemical changes made to the fibers during the reaction. The ability of the modified fibers for removal of Pb (II, Cu (II and Ce (IV ions from aqueous media was determined. The modified fibers showed a slight decrease in mechanical properties compared to raw ones. Furthermore, the acrylic micro fibers were electrospun to nanofibers and the ability of modified nanofibers for the adsorption of the metal ions was studied.

  11. Metal chelate surfactants. Kinzoku chelate kaimen kasseizai

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, S. (Kagoshima Univ., Kagoshima (Japan). Faculty of Engineering); Takeshita, T. (Sendai Polytechnic College, Kagoshima (Japan))

    1990-10-20

    The chelating agent which forms soluble metal chelates by combining with metal ions and masks metal irons, is one of builder added in order to improve the efficiency of surface activity. This report reviews the compounds having chelating ligands and surface activity. Hydrophobic groups have been introduced into the chelate ligands such as ethylenediamine, polyethylene-polyimines, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), aminophosphonic acids, and 2-salicylic acid. Carbon- and nitrogen-substitution products or ester- and amide-derivatives of EDTA and DTPA were found to form metal chelates and have excellent surface activities. Some of them were applied to additives for coatings, coal slurry fuels and anti-tumor drugs. 32 refs., 29 figs.

  12. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-09-15

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  13. Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation

    Directory of Open Access Journals (Sweden)

    Mohammad Anwar Hossain

    2012-01-01

    Full Text Available Heavy metal (HM toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS and methylglyoxal (MG, both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH, or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes—notably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II—act additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.

  14. The interactive effects of chelator, fertilizer, and rhizobacteria for enhancing phytoremediation of heavy metal contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Cutright, T.J. [Dept. of Civil Engineering, Univ. of Akron, Akron, OH (United States)

    2002-07-01

    The role of chelator, fertilizer, and enriched rhizobacteria in facilitating Cd, Cr, and Ni accumulation by Helianthus annuus was studied. It was found that by adding a synthetic chelator, EDTA, the shoot concentrations of Cd and Ni were significantly increased from 34.2 mg kg{sup -1} and 14.5 mg kg{sup -1} to 115 mg kg{sup -1} and 117 mg kg{sup -1}, respectively. However, the total biomass of plants was drastically decreased by 50 to 60%. Compared with this treatment, inoculating enriched rhizobacteria to plants grown under similar conditions maintained the surged shoot concentrations of Cd and Ni while increasing the plants biomass by more than 1.6-fold. It was also found that introducing a commercial fertilizer, Hydro-Gro trademark, to plants significantly increased the Ni accumulation by 3-fold and the plant biomass by 1.43-fold. These results suggest that combing fertilizers, chelators and/or rhizobacteria might provide a more effective approach for enhancing phytoremediation. (orig.)

  15. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Heavy metal

    African Journals Online (AJOL)

    niloticus after exposure to sublethal concentrations of heavy metals such as copper, lead and zinc for a 12-week period, using static renewable toxicity tests. The concentrations of the metals accumulated in the tissue of exposed fish were about 3-5 times higher than the concentrations detected in control fish.

  17. Metal ions, Alzheimer's disease and chelation therapy

    National Research Council Canada - National Science Library

    Budimir, Ana

    2011-01-01

    .... In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance...

  18. Characterization of changes in floc morphology, extracellular polymeric substances and heavy metals speciation of anaerobically digested biosolid under treatment with a novel chelated-Fe(2+) catalyzed Fenton process.

    Science.gov (United States)

    He, Juanjuan; Yang, Peng; Zhang, Weijun; Cao, Bingdi; Xia, Hua; Luo, Xi; Wang, Dongsheng

    2017-11-01

    A novel chelated-Fe(2+) catalyzed Fenton process (CCFP) was developed to enhance dewatering performance of anaerobically digested biosolid, and changes in floc morphology, extracellular polymeric substances (EPS) and heavy metals speciation were also investigated. The results showed that addition of chelating agents caused EPS solubilization by binding multivalent cations. Like traditional Fenton, CCFP performed well in improving anaerobically digested sludge dewatering property. The highly active radicals (OH, O2(-)) produced in classical Fenton and CCFP were responsible for sludge flocs destruction and consequently degradation of biopolymers into small molecules. Furthermore, more plentiful pores and channels were presented in cake after Fenton treatment, which was conducive to water drainage under mechanical compression. Additionally, a portion of active heavy metals in the form of oxidizable and reducible states were dissolved under CCFP. Therefore, CCFP could greatly simplify the operating procedure of Fenton conditioning and improve its process adaptability for harmless treatment of biological sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Investigation of gas chromatography for the determination of heavy metals, and of chelate gas chromatography for the analysis of trace elements in biological material. Comparison with other methods. Untersuchungen zur gaschromatographischen Bestimmung von Schwermetallen und Anwendung der Chelat-Gaschromatographie auf die Bestimmung von Spurenelementen in Biomatrices im Vergleich mit anderen Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Meierer, H.

    1984-01-01

    The gas chromatographic behaviour of the fluorinated diethyl dithiocarbamate chelates on packed columns was investigated. Special emphasis was put on the investigation of the behaviour of the unstable chelate adsorption or decomposition respectively. Zn-(FDEDTC){sub 2}, which was labelled with radioactive Zn, was chosen as a model substance for the unstable chelates. The investigation results led altogether to an optimized chromatography system, which is suitable for the determination of heavy metal traces in biological materials by means of chelate gas chromatography. For the purpose of demonstration, Ni, Co, Cu and Pb were determined in must, wine and yeast as a function of the fermentation process and after the blue fining of the wine and the results were compared with other analytical methods. (orig./RB).

  20. Synthesis of heavy metal chelating agent with four chelating groups of N{sup 1},N{sup 2},N{sup 4},N{sup 5}-tetrakis(2-mercaptoethyl)benzene-1,2,4,5-tetracarboxamide (TMBTCA) and its application for Cu-containing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng-He, E-mail: wangfenghe@njnu.edu.cn [Department of Environmental Science and Engineering, Nanjing Normal University, No.1 Wenyuan Road, Nanjing 210042 (China); Ji, Ying-Xue; Wang, Jun-Jie [Department of Environmental Science and Engineering, Nanjing Normal University, No.1 Wenyuan Road, Nanjing 210042 (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer A new heavy metal chelating agent of TMBTCA with four chelating groups was prepared and characterized. Black-Right-Pointing-Pointer The effects of mole ratio of reactants, reaction temperature, reaction time on the yield of TMBTCA were illustrated. Black-Right-Pointing-Pointer The effects of mole ratio of TMBTCA/Cu{sup 2+}, reaction time and pH on its application properties were researched. Black-Right-Pointing-Pointer This new chelating agent could effectively remove Cu{sup 2+} and CuEDTA to much lower than 0.5 mg/L. - Abstract: A novel heavy metal chelating agent, N{sup 1},N{sup 2},N{sup 4},N{sup 5}-tetrakis(2-mercaptoethyl) benzene-1,2,4,5-tetracarboxamide (TMBTCA), was designed with four chelating groups, and a facile one-step synthetic procedure was developed with pyromellitic dianhydride (PMDA) and cysteamine hydrochloride (CHC) as raw materials by aqueous acylation. The effects of mole ratio of reactants (CHC/PMDA), reaction temperature, and reaction time on the yield of TMBTCA were studied. Its application for Cu-containing wastewater was investigated. The experimental results showed that the maximum yield of TMBTCA was 75.92%, as the mole ratio of CHC/PMDA reached 4.8, reaction temperature was 5 Degree-Sign C, and reaction time was 6 h. It was observed that TMBTCA could effectively remove Cu{sup 2+} and CuEDTA to much lower than 0.5 mg/L (the discharge limit of copper ions in China). Furthermore, TMBTCA showed more affinity for cadmium and copper than some traditional commercial precipitants, such as DTC, TBA and TMT, via comparison of their ability for heavy metal removal, and the precipitates of Cu-TMBTCA and Cd-TMBTCA presented good stability in leaching tests. The results can provide a reference for design and further research on new kind of heavy metal chelating agent with more bonding sites, especially for heavy metal precipitation in PCB wastewater treatment.

  1. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  2. Chelation Therapy for Mercury Poisoning

    OpenAIRE

    Rong Guan; Han Dai

    2009-01-01

    Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role o...

  3. Chelation Therapy for Mercury Poisoning

    Directory of Open Access Journals (Sweden)

    Rong Guan

    2009-01-01

    Full Text Available Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role of chelating agents against mercury poisoning, which provides a promising research direction for broader application of chelation therapy in prevention and treatment of mercury poisoning.

  4. Quantitative measurement of metal chelation by fourier transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Monika E. Miller

    2015-12-01

    Full Text Available Nutritionally important minerals are more readily absorbed by living systems when complexed with organic acids, resulting in higher consumer demand and premium prices for these products. These chelated metals are produced by reaction of metal oxides and acids in aqueous solution. However, unreacted dry blends are sometimes misrepresented as metal chelates, when in reality they are only simple mixtures of the reactants typically used to synthesize them. This practice has increased interest in developing analytical methods that are capable of measuring the extent of metal chelation for quality control and regulatory compliance. We describe a novel method to rapidly measure the percent chelation of citric and malic acids with calcium, magnesium, and zinc. Utilization of attenuated total reflectance (FTIR-ATR provides for the direct, rapid measurement of solid samples. The inclusion of an internal standard allows independent determination of either free or chelated acids from integrated areas in a single spectrum.

  5. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  6. Development of a treatment process for the removal of heavy metals from raw water for drinking water supply using chelating ion exchange resins. Subproject 1. Final report; Entwicklung der Verfahrenstechnik zur Eliminierung von Schwermetallen aus Rohwaessern zur Trinkwassergewinnung mit chelatbildenden Kationenaustauscherharzen zur technischen Reife. Teilprojekt 1. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Overath, H.; Stetter, D.; Doerdelmann, O.

    2002-07-01

    Chelating cation exchange resins with iminodiacetic acid group (Lewatit TP 207 and Amberlite IRC 748) were tested for the removal of heavy metals in a drinking water treatment plant. The pilot scale filtration experiments were conducted by varying the operating conditions, such as flow rate and feed concentrations. Heavy metal concentrations (nickel, lead, cadmium, zinc) in the feed were adjusted between 20 and 200 {mu}g/L. Different methods for regeneration and conditioning of the resins were developed and investigated. Finally the ion exchange resins were tested according to German health regulations for ion exchangers in drinking water treatment. (orig.)

  7. Bioaccumulation of Heavy Metals

    African Journals Online (AJOL)

    komla

    acute toxicity and sublethal chronic action the devastating effects that the accumulation - ... surrounding waters. The results showed a programmes of heavy metals in aquatic strong and positive correlation (r = 0.97) ecosystems. between amounts of metals in the aquatic ...... Chemical composition of agricultural waste.

  8. Article Commentary: Chelation Therapy for Mercury Poisoning

    Directory of Open Access Journals (Sweden)

    Rong Guan

    2009-01-01

    Full Text Available Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role of chelating agents against mercury poisoning, which provides a promising research direction for broader application of chelation therapy in prevention and treatment of mercury poisoning.

  9. Supercritical Fluid Extraction of Metal Chelate: A Review.

    Science.gov (United States)

    Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao

    2017-03-04

    Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO 3 ) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.

  10. Evaluation of copper speciation in model solutions of humic acid by mini-columns packed with Chelex-100 and new chelating agents: Application to speciation of selected heavy metals in environmental water samples

    Energy Technology Data Exchange (ETDEWEB)

    Kiptoo, Jackson K., E-mail: kiptoojac@yahoo.com [Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi (Kenya); Ngila, J. Catherine [School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Westville, Durban 4000 (South Africa); Silavwe, Ned D. [Department of Chemistry, University of Swaziland, P/Bag 4, Kwaluseni (Swaziland)

    2009-12-30

    A solid-phase extraction procedure using mini-columns packed with Chelex-100 and two new chelating agents based on poly(vinyl chloride) functionalized with 3-ferrocenyl-3-hydroxydithioacrylic acid and N,N'-[1,1'-dithiobis(ethylene)]-bis(salicylideneimine) (H{sub 2}sales) loaded on microcrystalline naphthalene, is reported. The columns were used to separate labile copper fractions in model solutions and in real samples with subsequent determination using electrothermal atomic absorption spectrometry (ETAAS). Various model solutions containing 20 {mu}g L{sup -1} of Cu{sup 2+} and 0.0, 0.2, 2.0 and 20.0 mg L{sup -1} of humic acid, respectively, and buffered to pH 6.0, 7.0 and 8.0 were considered. Results showed a decrease in labile copper fraction with increase in humic acid concentration. Application of the procedure to speciation of Cu, Ni, Zn and Pb in various environmental water samples yielded labile fractions in the range of 1.67-55.75% against a total dissolved fraction of 44.08-69.77%. Comparison of the three chelating agents showed that H{sub 2}sales had a weaker metal chelating strength than Chelex-100, but PVC-FSSH had comparable chelating strength to Chelex-100.

  11. Phytochelatin biosynthesis and function in heavy-metal detoxification.

    Science.gov (United States)

    Cobbett, C S

    2000-06-01

    Plants respond to heavy-metal toxicity via a number of mechanisms. One such mechanism involves the chelation of heavy metals by a family of peptide ligands, the phytochelatins. Molecular genetic approaches have resulted in important advances in our understanding of phytochelatin biosynthesis. In particular, genes encoding the enzyme phytochelatin synthase have been isolated from plant and yeast species. Unexpectedly, genes with similar sequences to those encoding phytochelatin synthase have been identified in some animal species.

  12. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  13. Chelating agents to solubilize heavy metals from Oxisols contaminated by the addition of organic and inorganic residues Uso de quelantes na solubilização de metais pesados de Latossolos contaminados pela adição de resíduos orgânico e inorgânico

    Directory of Open Access Journals (Sweden)

    Aline Renée Coscione

    2009-02-01

    Full Text Available Phytoremediation is an attractive technique for soils contaminated with heavy metals, especially in conjunction with chelating agents to assist metal phytoextraction. Nevertheless, their studies in Brazil are rare. Thus, the objective of the present work was to evaluate the efficiency of the chelating agents EDDS and EDTA for the solubilization of heavy metals from two Oxisols contaminated by organic sources in Jaguariúna (LVJ and inorganic sources in Paulínia (LVP, São Paulo State, Southeastern Brazil. First, the soil samples were fractionated and the DTPA method was used to quantify heavy metals available forms. The results indicated that the metals were highly available in the soil fractions and could be solubilized by the chelating agents. The soil was suspended for 24 h in a chelating agent solution (EDTA or EDDS at rates of 0, 250, 500 and 750 mg kg-1 of soil. The concentration of solubilized heavy metals was determined in the resulting solution. The extent of metal solubilization varied according to soil type, the chelating agent added and the specific metal. The amount of iron solubilized, as compared to the total iron (LVJ was 11% (EDTA and 19% (EDDS. EDDS solubilized more Cu than EDTA in both soils but more Ni in LVJ, while EDTA solubilized more Zn in both soils but more Cd in LVP. Both EDTA and EDDS may be useful for phytoextraction from soils, although the iron content is an important factor regarding the phytoextraction of heavy metals with chelating agents in Oxisols.A fitoextração tem sido uma opção atrativa para remediar solos contaminados com metais pesados, principalmente quando associada à aplicação de quelantes ao solo, embora no Brasil seus estudos sejam muito incipientes. Portanto, o objetivo deste trabalho foi avaliar a eficiência dos quelantes EDTA e EDDS na solubilização de metais pesados em Latossolos contaminados por Cu, Zn, Cd e Ni, cujas fontes de contaminação foram: orgânica em Jaguariúna (LVJ e

  14. Aerosol-OT micelles in Sephadex gels for concentrating metal-dithizone chelates from water

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Tohru [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)]. E-mail: saitoh@numse.nagoya-u.ac.jp; Hattori, Kazuki [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Hiraide, Masataka [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2005-07-06

    Anionic surfactants, sodium dodecyl sulfate (SDS), and di-2-ethylhexyl sodium sulfosuccinate (Aerosol-OT, AOT), were incorporated into a hydrated macroreticular anion-exchanger such as a DEAE- or QAE-Sephadex A-25 gel. The observation of fluorescence spectra of N-phenyl-1-naphthlamine indicated the formation of the surfactant micelles in gels. The hydrophobicity of the micelles corresponded to octanol, tetrahydrofuran, or ethyl acetate. A hydrophobic chelating agent, dithizone (1,5-diphenylthiocarbazone), and its metal chelates were incorporated into the Sephadex gels. The complex formation with dithizone and the subsequent adsorption on Sephadex gels required 10 min. The metals collected in gels were desorbed with 8 M nitric acid. As a result of 300-fold concentrations, traces of heavy metal ions at ng l{sup -1} levels in river water were successfully determined by graphite-furnace atomic absorption spectrometry.

  15. Anti-oxidative, metal chelating and radical scavenging effects of ...

    African Journals Online (AJOL)

    Purpose: To evaluate protein hydrolysates and membrane ultrafiltration fractions of blue-spotted stingray for metal chelating and radical scavenging activities, as well as protection against oxidative protein damage. Methods: Stingray protein isolates were hydrolysed with alcalase, papain and trypsin for 3 h. Alcalase ...

  16. Distribution of Heavy Metal Pb

    OpenAIRE

    Samawi, Muh. Farid; Tambaru, Rahmadi; Husain, Aida Ala; Burhanuddin, Andi Iqbal

    2014-01-01

    Distribution of Heavy Metal Pb in Benthic Organism and Sediment Bonebatang Island Waters Benthic organisms Bonebatang Island waters consist of branching hard corals, massive hard corals, soft corals, sponges, macroalgae, coralline algae, seagrass and mussels have the potential to accumulate heavy metals Pb from the water column. Results of studies have determined the rate of accumulation of heavy metals Pb some benthic organisms in the Bonebatang Island waters. Branching hard corals have a...

  17. Complexation and Antimicrobial Studies of Some Divalent Metal Chelates

    Directory of Open Access Journals (Sweden)

    Suparna Ghosh

    2010-01-01

    Full Text Available Metal chelates of Ni(II and Cu(II with the ligand 5-acetamido-1,3,4-thiadiazole-2-sulphonamide have been synthesized. The isolated compounds have been characterized by elemental analysis, molar conductivity, magnetic moment, electronic and IR spectral studies. The analytical data reflects the metal to ligand stoichiometry to be 1: 2. The conductivity data of the complexes also suggests their non-electrolytic nature. The stability constants and free energy change for the complexes have been calculated.. Ligand and their complexes have been screened for their biological activity and the data show good activity of these complexes and ligands.

  18. (17) ACCUMULATION OF HEAVY METAL

    African Journals Online (AJOL)

    Adeyinka Odunsi

    The mean metal content of cassava leaf indicated that all the metals were higher in the leaf at high ... components of petroleum hydrocarbons ..... Atmos. Environ. 40: 5929-5941. Onder, S., Dursun, S., Gezgin, S. and. Demirbas, A. (2007). Determination. Accumulation of heavy metal pollutants on soil microbial population.

  19. Synthesis of Poly(hydroxamic Acid-Poly(amidoxime Chelating Ligands for Removal of Metals from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    M. R. Lutfor

    2011-01-01

    Full Text Available Synthesis of poly(hydroxamic acid-poly(amidoxime chelating ligands were carried out from poly(methyl acrylate-co-acrylonitrile grafted sago starch and hydroxylamine in alkaline medium. The binding property of metal ions was performed and maximum sorption capacity of the copper was 3.20 mmol/ g and the rate of exchange of some metals was faster, i.e. t½ ≈ 7 min (average. Two types of wastewater containing chromium, zinc, nickel, copper and iron, etc. were used and the heavy metal recovery was found to be highly efficient, about 99% of the metals could be removed from the metal plating wastewater.

  20. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  1. Theoretical and experimental studies on isotachophoresis in multi-moving chelation boundary system formed with metal ions and EDTA.

    Science.gov (United States)

    Zhang, Wei; Guo, Chen-Gang; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-09-07

    In this paper, a general mode and theory of moving chelation boundary based isotachophoresis (MCB-based ITP), together with the concept of decisive metal ion (DMI) having the maximum complexation constant (lg Kmax) with the chelator, were developed from a multi-MCB (mMCB) system. The theoretical deductions were: (i) the reaction boundary velocities in the mMCB system at steady state were equal to each other, resulting in a novel MCB-based ITP separation of metal ions; (ii) the boundary directions and velocities in the system were controlled by the fluxes of chelator and DMI, rather than other metal ions; and (iii) a controllable stacking of metal ions could be simultaneously achieved in the developed system. To demonstrate the deductions, a series of experiments were conducted by using model chelator of EDTA and metal ions of Cu(II) and Co(II) due to characteristic colors of blue [Cu-EDTA](2-) and pink [Co-EDTA](2-) complexes. The experiments demonstrated the correctness of theoretical deductions, indicating the validity of the developed model and theory of ITP. These findings provide guidance for the development of MRB-based ITP separation and stacking of metal ions in biological sample matrix and heavy metal ions in environmental samples.

  2. Investigations on organic fungicides. XI. The Role of metals and chelating agents in the fungitoxic action of sodium dimethyldithiocarbamate (NaDDC)

    NARCIS (Netherlands)

    Kaars Sijpesteijn, A.; Janssen, M.J.; Kerk, G.J.M. van der

    1957-01-01

    1. 1. The role of metals and chelating agents in the fungitoxic action of sodium dimethyldithiocarbamate (NaDDC) has been studied using Aspergillus niger as a test mould. 2. 2. In liquid glucose mineral salts medium containing only traces of heavy metals NaDDC does not produce a “first zone of

  3. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    Science.gov (United States)

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio. Copyright © 2015

  4. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*

    Science.gov (United States)

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. PMID:17323432

  5. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor

    DEFF Research Database (Denmark)

    Elling, C E; Thirstrup, K; Holst, Birgitte

    1999-01-01

    effect of, for example Cu(2+), and in several cases increased the affinity of the ions for the agonistic site. Wash-out experiments and structure-activity analysis indicated, that the high-affinity chelators and the metal ions bind and activate the mutant receptor as metal ion guided ligand complexes...... in the mutant receptors not by normal catecholamine ligands but instead either by free zinc ions or by zinc or copper ions in complex with small hydrophobic metal-ion chelators. Chelation of the metal ions by small hydrophobic chelators such as phenanthroline or bipyridine protected the cells from the toxic....... Because of the well-understood binding geometry of the small metal ions, an important distance constraint has here been imposed between TM-III and -VII in the active, signaling conformation of 7TM receptors. It is suggested that atoxic metal-ion chelator complexes could possibly in the future be used...

  6. Heavy metals in Mindhola river estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Rokade, M.A; Mandalia, A

    The heavy metal concentrations are studied along the Mindhola river estuary. Surface and bottom water samples were collected using Niskin Sampler. The sediment samples were collected using a Van Veen grab. The heavy metal concentration is estimated...

  7. Heavy metals in sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, S.A. (Millersville State College, PA); Frazier, J.G.

    1982-07-01

    Bone and barnacle samples from sea turtles (Hepidochelys olivacea) in Ecuador were analyzed for manganese, iron, copper, zinc and lead. Analysis was performed by flame atomic absorption spectroscopy. Results show that zinc and iron levels in bone and barnacles were greater than copper, manganese and lead levels. The significance of the findings is difficult to interpret because so little is known about baseline levels and physiological effects of heavy metals in the animals. (JMT)

  8. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  9. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Hong-Bo, Shao; Li-Ye, Chu; Cheng-Jiang, Ruan; Hua, Li; Dong-Gang, Guo; Wei-Xiang, Li

    2010-03-01

    Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal-contaminated soils.

  10. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse.

    OpenAIRE

    Karnitz Júnior, Osvaldo; Gurgel, Leandro Vinicius Alves; Melo, Júlio César Perin de; Botaro, Vagner Roberto; Melo, Tânia Márcia Sacramento; Gil, Rossimiriam Pereira de Freitas; Gil, Laurent Frédéric

    2007-01-01

    This work describes the preparation of new chelating materials derived from sugarcane bagasse for adsorption of heavy metal ions in aqueous solution. The first part of this report deals with the chemical modification of sugarcane bagasse with succinic anhydride. The carboxylic acid functions introduced into the material were used to anchor polyamines, which resulted in two yet unpublished modified sugarcane bagasse materials. The obtained materials were characterized by elemental analysis and...

  11. Metal-resistant microorganisms and metal chelators synergistically enhance the phytoremediation efficiency of Solanum nigrum L. in Cd- and Pb-contaminated soil.

    Science.gov (United States)

    Gao, Yang; Miao, Chiyuan; Wang, Yafeng; Xia, Jun; Zhou, Pei

    2012-06-01

    The effects of metal-resistant microorganisms and metal chelators on the ability of Solanum nigrum L. to accumulate heavy metals were investigated. In the presence of multiple metal contaminants (Cd and Pb), citric acid (CA) significantly enhanced the biomass and Cd accumulation of S. nigrum, but these conditions decreased the accumulation of Pb. Application of Cd- or Pb-resistant microorganisms improved the ability of S. nigrum to accumulate heavy metals and increased plant yield, but the effects of microorganisms on phytoextraction were smaller than the effects of CA. When plants were grown in the presence of Cd contamination, the co-application of CA and metal-resistant strains enhanced biomass by 30-50% and increased Cd accumulation by 25-35%. However, these conditions decreased Pb accumulation in the presence of Pb pollution. S. nigrum could tolerate a combination of Cd and Pb pollution. In the presence of CA and the metal-resistant microorganisms, the plants were able to acquire 15-25% more Cd and 10-15% more Pb than control plants. We propose that the synergistic combination of plants, microorganisms and chelators can enhance phytoremediation efficiency in the presence of multiple metal contaminants.

  12. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  13. Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Sinicropi, Maria Stefania; Caruso, Anna [University of Calabria, Department of Pharmaceutical Sciences, Rende (Italy); Amantea, Diana [University of Calabria, Department of Pharmacobiology, Rende (Italy); Saturnino, Carmela [University of Salerno, Department of Pharmaceutical Sciences, Fisciano (Italy)

    2010-07-15

    Exposure to toxic metals is a well-known problem in industrialized countries. Metals interfere with a number of physiological processes, including central nervous system (CNS), haematopoietic, hepatic and renal functions. In the evaluation of the toxicity of a particular metal it is crucial to consider many parameters: chemical forms (elemental, organic or inorganic), binding capability, presence of specific proteins that selectively bind metals, etc. Medical treatment of acute and chronic metal toxicity is provided by chelating agents, namely organic compounds capable of interacting with metal ions to form structures called chelates. The present review attempts to provide updated information about the mechanisms, the cellular targets and the effects of toxic metals. (orig.)

  14. Perspectives of plant-associated microbes in heavy metal phytoremediation.

    Science.gov (United States)

    Rajkumar, M; Sandhya, S; Prasad, M N V; Freitas, H

    2012-01-01

    "Phytoremediation" know-how to do-how is rapidly expanding and is being commercialized by harnessing the phyto-microbial diversity. This technology employs biodiversity to remove/contain pollutants from the air, soil and water. In recent years, there has been a considerable knowledge explosion in understanding plant-microbes-heavy metals interactions. Novel applications of plant-associated microbes have opened up promising areas of research in the field of phytoremediation technology. Various metabolites (e.g., 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophores, organic acids, etc.) produced by plant-associated microbes (e.g., plant growth promoting bacteria, mycorrhizae) have been proposed to be involved in many biogeochemical processes operating in the rhizosphere. The salient functions include nutrient acquisition, cell elongation, metal detoxification and alleviation of biotic/abiotic stress in plants. Rhizosphere microbes accelerate metal mobility, or immobilization. Plants and associated microbes release inorganic and organic compounds possessing acidifying, chelating and/or reductive power. These functions are implicated to play an essential role in plant metal uptake. Overall the plant-associated beneficial microbes enhance the efficiency of phytoremediation process directly by altering the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass production. The present work aims to provide a comprehensive review of some of the promising processes mediated by plant-associated microbes and to illustrate how such processes influence heavy metal uptake through various biogeochemical processes including translocation, transformation, chelation, immobilization, solubilization, precipitation, volatilization and complexation of heavy metals ultimately facilitating phytoremediation. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. The Heavy Metal Subculture and Suicide.

    Science.gov (United States)

    Stack, Steven; And Others

    1994-01-01

    Assessed relationship between heavy metal music and suicide with data on heavy metal magazine subscriptions and youth suicide in 50 states. Found that, controlling for other predictors of suicide, greater strength of metal subculture, higher youth suicide rate, suggests that music perhaps nurtures suicidal tendencies already present in subculture.…

  16. Industrial hygiene of selected heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Woodring, J.L.

    1993-08-01

    The industrial hygiene of heavy metals consists of recognition, evaluation, and control of exposures in the occupational environment. Several of these metals have been in use since ancient times. Reports of health effects and poisonings from overexposures also have a long history. This report discusses the industrial hygiene of the heavy metals, lead, cadmium, mercury, and manganese.

  17. Poisoning of domestic animals with heavy metals

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2009-01-01

    Full Text Available The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc are essential in very low concentrations for the survival of all forms of life. These are described as essential trace elements. However, when they are present in greater quantities, like the heavy metals lead, cadmium and mercury which are already toxic in very low concentrations, they can cause metabolic anomalies or poisoning. Heavy metal poisoning of domestic animals could result, for instance, from drinking-water contamination, high ambient air concentrations near emission sources, or intake via the food chain. Heavy metals are dangerous because they tend to bioaccumulate in a biological organism over time. Manifestation of toxicity of individual heavy metals varies considerably, depending on dose and time of exposure, species, gender and environmental and nutritional factors. Large differences exist between the effects of a single exposure to a high concentration, and chronic exposures to lower doses. The aim of this work is to present the source of poisoning and toxicity of some heavy metals (lead, mercury, cadmium, thallium, arsenic, as well as new data about effects of those heavy metals on the health of domestic animals. .

  18. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, Jan-Erik; Andrews, David; Futaana, Yoshifumi; Masters, Adam; Thomas, Nicolas; De Sanctis, Maria Cristina; Herique, Alain; Retherford, Kurt; Tortora, Paolo; Trigo-Rodriguez, Joseph; Ivchenko, Nickolay; Simon, Sven

    2017-04-01

    We propose a spacecraft mission (Heavy Metal) to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×10(19) kg make it one of the largest and densest of asteroids, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. The M5 mission Heavy Metal will investigate if (16) Psyche is the exposed metallic core of a planetesimal, formed early enough to melt and differentiate. High-resolution mapping of the surface in optical, IR, UV and radar wavebands, along with the determination of the shape and gravity field will be used to address the formation and subsequent evolution of (16) Psyche, determining the origin of metallic asteroids. It is conceivable that a cataclysmic collision with a second body led to the ejection of all or part of the differentiated core of the parent body. Measurements at (16) Psyche therefore provide a possibility to directly examine an iron-rich planetary core, similar to that expected at the center of all the major planets including Earth. A short-lived dynamo producing a magnetic field early in the life of (16) Psyche could have led to a remnant field (of tens of micro Tesla) being preserved in the body today. (16) Psyche is embedded in the variable flow of the solar wind. Whereas planetary magnetospheres and induced magnetospheres are the result of intense dynamo fields and dense conductive ionospheres presenting obstacles to the solar wind, (16) Psyche may show an entirely new 'class' of interaction as a consequence of its lack of a significant atmosphere, the extremely high bulk electrical conductivity of the asteroid, and the possible presence of intense magnetic fields retained in iron-rich material. The small characteristic scale of (16) Psyche ( 200 km) firmly places any solar wind interaction in the "sub-MHD" scale, in which kinetic

  19. Heavy metals in Antarctic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.E.A. de; Moreno, V.J. [Universidad Nacional de Mar del Plata (Argentina); Gerpe, M.S.; Vodopivez, C. [Instituto Antartico Argentino, Buenos Aires (Argentina)

    1997-02-01

    To evaluate levels of essential (zinc and copper) and non-essential (mercury and cadmium) heavy metals, 34 species of organisms from different areas close to the Antarctic Peninsula were analysed. These included algae, filter-feeders, omnivorous invertebrates and vertebrates. Mercury was not detected, while cadmium was found in the majority of organisms analysed (detection limit was 0.05 ppm for both metals). The highest cadmium concentration was observed in the starfish Odontaster validus. Anthozoans, sipunculids and nudibranchs showed maximum levels of zinc, while the highest copper level was found in the gastropod Trophon brevispira. Mercury and cadmium levels in fishes were below the detection limit. Concentrations of essential and non-essential metals in birds were highest in liver followed by muscle and eggs. Cadmium and mercury levels in muscle of southern elephant seals were above the detection limit, whereas in Antarctic fur seals they were below it. The objective of the study was to gather baseline information for metals in Antarctic Ocean biota that may be needed to detect, measure and monitor future environmental changes. 46 refs., 7 figs., 8 tabs.

  20. Effect of two biodegradable chelates on metals uptake, translocation and biochemical changes of Lantana Camara growing in fly ash amended soil.

    Science.gov (United States)

    Pandey, Shikha Kumari; Bhattacharya, Tanushree

    2017-10-20

    The present work had two purposes firstly to evaluate the potential of Lantana Camara for phytoextraction of heavy metals from fly ash amended soil and to assess the suitability of a proper biodegradable chelating agent for chelate assisted phytoextraction. Plants were grown in manure mixed soil amended with various concentration of fly ash. Two biodegradable chelating agents were added (EDDS and MGDA) in the same dose separately before maturation stage. Sampling was done at different growing stages. The plant took up metal in different plant parts in the following order: for Cu, and Zn leaf >root >stem, for Cr and Mn leaf>stem >root, for Ni root >leaf>stem and for Pb root≈leaf>stem respectively. For Cu, Zn, Cr and Mn Lantana camara acted as phytoextractor. Translocation factor and bioaccumulation coefficient was>1 signifying enrichment and translocation of metals in the plant. Morphological studies showed no toxicity symptom in the plant. Among biochemical parameters protein and nitrate reductase activity decreased, whereas, chlorophyll and peroxidise activity increased with the growth stages. Finally, it was evident from the results that Lantana Camara can be used as efficient phytoextractor of metals, with proper harvesting cycle and both chelate were proved as effective chelators for phytoextraction of metals.

  1. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current

  2. Chelation in metal intoxication XVI. Influence of chelating agents on chromate poisoned rats

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, S.K.; Srivastava, L.

    1985-01-01

    The ability of selective polyaminocarboxylic acids and common drugs to reduce the body burden of chromium and restore Cr induced biochemical alterations in chromate intoxicated rats was investigated. 1,2 Cychlohexylene dinitrilotetraacetic acid (CDTA) and triethylenetetramine hexacetic acid (TTHA) were more effective than p-aminosalicylic acid (PAS) and isoniazid (INH) in enhancing urinary excretion of Cr, lowering hepatic and blood levels of Cr and restoring inhibited activity of hepatic aldolase. The chromate antidotal property of chelators seem to be related to the combination of nitrogen and oxygen as the electron donating centres.

  3. Hazards of heavy metal contamination.

    Science.gov (United States)

    Järup, Lars

    2003-01-01

    The main threats to human health from heavy metals are associated with exposure to lead, cadmium, mercury and arsenic. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO. Heavy metals have been used by humans for thousands of years. Although several adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in some parts of the world, in particular in less developed countries, though emissions have declined in most developed countries over the last 100 years. Cadmium compounds are currently mainly used in re-chargeable nickel-cadmium batteries. Cadmium emissions have increased dramatically during the 20th century, one reason being that cadmium-containing products are rarely re-cycled, but often dumped together with household waste. Cigarette smoking is a major source of cadmium exposure. In non-smokers, food is the most important source of cadmium exposure. Recent data indicate that adverse health effects of cadmium exposure may occur at lower exposure levels than previously anticipated, primarily in the form of kidney damage but possibly also bone effects and fractures. Many individuals in Europe already exceed these exposure levels and the margin is very narrow for large groups. Therefore, measures should be taken to reduce cadmium exposure in the general population in order to minimize the risk of adverse health effects. The general population is primarily exposed to mercury via food, fish being a major source of methyl mercury exposure, and dental amalgam. The general population does not face a significant health risk from methyl mercury, although certain groups with high fish consumption may attain blood levels associated with a low risk of neurological damage to adults. Since there is a risk to the fetus in particular, pregnant women should avoid a high intake of certain fish, such as shark, swordfish and

  4. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  5. Heavy metal uptake of Geosiphon pyriforme

    Science.gov (United States)

    Scheloske, Stefan; Maetz, Mischa; Schüßler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  6. Biosorption of Heavy Metals by Biomass

    OpenAIRE

    AKÇİN, Göksel

    2014-01-01

    Wetland plants are successfully used in the biosorption of heavy metals in natural and constructed wetlands. In this study, the removal of heavy metals by water hyacinth [ Eichhornia crassipes (Mart.)Solms)] were investigated. The plants were grown under control in the Turkish climate. The biosorption was dependent on factors such as metal concentration, constant temperature, pH and relative moisture. The plants were exposed to different metal concentrations of Chromium(III), Chromi...

  7. Heavy Metal Music and Adolescent Suicidal Risk.

    Science.gov (United States)

    Lacourse, Eric; Claes, Michel; Villeneuve, Martine

    2001-01-01

    Studied differentiating characteristics of youth who prefer heavy metal music, worship music, and use music for vicarious release. Data for 275 secondary school students suggest that heavy metal music preference and worshipping is not related to suicidal risk when controlling for other suicide factors. Discusses findings in the context of…

  8. Heavy Metal Levels, Physicochemical Properties and Microbial ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Heavy Metal Levels, Physicochemical Properties and Microbial Diversity of Soil Matrix from University Solid Waste ... characteristics of soil samples from five different waste collection sites within the University of Benin, Benin City and evaluated using ...... phytoremediation of heavy metals contaminated soils: A review.

  9. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach.

    Science.gov (United States)

    Ullah, Abid; Mushtaq, Hafsa; Ali, Hazrat; Munis, Muhammad Farooq Hussain; Javed, Muhammad Tariq; Chaudhary, Hassan Javed

    2015-02-01

    Heavy metals, which have severe toxic effects on plants, animals, and human health, are serious pollutants of the modern world. Remediation of heavy metal pollution is utmost necessary. Among different approaches used for such remediation, phytoremediation is an emerging technology. Research is in progress to enhance the efficiency of this plant-based technology. In this regard, the role of rhizospheric and symbiotic microorganisms is important. It was assessed by enumeration of data from the current studies that efficiency of phytoremediation can be enhanced by assisting with diazotrophs. These bacteria are very beneficial because they bring metals to more bioavailable form by the processes of methylation, chelation, leaching, and redox reactions and the production of siderophores. Diazotrophs also posses growth-promoting traits including nitrogen fixation, phosphorous solubilization, phytohormones synthesis, siderophore production, and synthesis of ACC-deaminase which may facilitate plant growth and increase plant biomass, in turn facilitating phytoremediation technology. Thus, the aim of this review is to highlight the potential of diazotrophs in assisting phytoremediation of heavy metals in contaminated soils. The novel current assessment of literature suggests the winning combination of diazotroph with phytoremediation technology.

  10. Competitive sorption of heavy metals by water hyacinth roots.

    Science.gov (United States)

    Zheng, Jia-Chuan; Liu, Hou-Qi; Feng, Hui-Min; Li, Wen-Wei; Lam, Michael Hon-Wah; Lam, Paul Kwan-Sing; Yu, Han-Qing

    2016-12-01

    Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca 2+ and Mg 2+ . However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Stabilization treatment of the heavy metals in fly ash from municipal solid waste incineration using diisopropyl dithiophosphate potassium.

    Science.gov (United States)

    Xu, Ying; Chen, Yu; Feng, Yueyang

    2013-01-01

    A stabilization treatment was developed for heavy metals in fly ash from municipal solid waste incineration using the heavy metal chelator diisopropyl dithiophosphate potassium (DDP). The mechanism and effect of the DDP chelator treatment on heavy metals in the fly ash was also studied, along with the form transformation rules of the heavy metals after DDP chelator treatment. The results show that 1% DDP achieves a stabilization rate of over 95% for Pb, Zn, and Cd. The effect of DDP was better than that of inorganic stabilizers such as sodium sulphide and lime. The heavy metal concentrations in the leachate after the treatment were lower than those required by the Pollution Control Standards for Hazardous Waste Landfill (GB18598-2001). At pH 1-13, the heavy metal concentrations in the fly ash leachate were far lower than those using the inorganic stabilizers sodium sulphide and lime. DDP retains its stabilizing effect under a broader pH range. After stabilization treatment, the heavy metals in the exchangeable fraction and those bound to carbonates were mainly transformed into those bound to organic matter. This process decreases the unstable content and reduces the risk of secondary pollution of the stabilized products in the environment.

  12. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    J. F. Brennecke; M. A. Stadtherr

    1999-12-10

    The overall objectives of this project were to gain a fundamental understanding of the solubility and phase behavior of metal chelates in supercritical CO{sub 2}. Extraction with CO{sub 2} is an excellent way to remove organic compounds from soils, sludges and aqueous solutions, and recent research has demonstrated that, together with chelating agents, it is a viable way to remove metals, as well. In this project the authors sought to gain fundamental knowledge that is vital to computing phase behavior, and modeling and designing processes using CO{sub 2} to separate organics and metal compounds from DOE mixed wastes. The overall program was a comprehensive one to measure, model and compute the solubility of metal chelate complexes in supercritical CO{sub 2} and CO{sub 2}/cosolvent mixtures. Through a combination of phase behavior measurements, spectroscopy and the development of a new computational technique, the authors have achieved a completely reliable way to model metal chelate solubility in supercritical CO{sub 2} and CO{sub 2}/co-contaminant mixtures. Thus, they can now design and optimize processes to extract metals from solid matrices using supercritical CO{sub 2}, as an alternative to hazardous organic solvents that create their own environmental problems, even while helping in metals decontamination.

  13. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Wood impregnated with metal chelates dissolved in organic media tested for termite resistance

    Directory of Open Access Journals (Sweden)

    Lara Maistrello

    2011-08-01

    Full Text Available Wood manufactured products are subjected to biological decay due to fungi and insects. The use of copper chelates as biocides was proposed, due to their high stability which minimizes copper leaching into the environment. Considering the remarkable effectiveness showed by copper chelates on brown rot fungi, zinc and copper salicylate complexes were prepared in order to have metal chelates soluble in organic media available. The present study aimed at evaluating these metal chelates complexes as preservative agents for wood treatment against termites. Trials were performed on Reticulitermes lucifugus (Rossi and Kalotermes flavicollis (Fabricius. Results showed that in both termite species wood consumption was significantly lower on Cu-chelates treated samples compared to untreated wood, whereas the wood slices impregnated with Zn-chelates and the organic media alone gave an intermediate response. Interestingly, in one case solvent-impregnated wood was significantly more attractive than untreated wood for both species and further investigations are being carried out to clarify this behaviour.

  15. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  16. Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Kara, Ali; Uzun, Lokman; Besirli, Necati; Denizli, Adil

    2004-01-30

    Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) [poly(EGDMA-VIM)] hydrogel (average diameter 150-200 {mu}m) was prepared by copolymerizing ethylene glycol dimethacrylate (EGDMA) with n-vinyl imidazole (VIM). The copolymer hydrogel bead composition was characterized by elemental analysis and found to contain 5 EGDMA monomer units each VIM monomer unit. Poly(EGDMA-VIM) beads had a specific surface area of 59.8 m{sup 2}/g. Poly(EGDMA-VIM) beads were characterized by swelling studies and scanning electron microscopy (SEM). These poly(EGDMA-VIM) beads with a swelling ratio of 78% were used for the heavy metal removal studies. Chelation capacity of the beads for the selected metal ions, i.e., Cd(II), Hg(II) and Pb(II) were investigated in aqueous media containing different amounts of these ions (10-750 mg/l) and at different pH values (3.0-7.0). Chelation rate was very fast. The maximum chelation capacities of the poly(EGDMA-VIM) beads were 69.4 mg/g for Cd(II), 114.8 mg/g for Pb(II) and 163.5 mg/g for Hg(II). The affinity order on molar basis was observed as follows: Hg(II)>Cd(II)>Pb(II). Chelation behavior of heavy metal ions could be modelled using both the Langmuir and Freundlich isotherms. pH significantly affected the chelation capacity of VIM incorporated beads. Chelation of heavy metal ions from synthetic wastewater was also studied. The chelation capacities are 45.6 mg/g for Cd(II), 74.2 mg/g for Hg(II) and 92.5 mg/g for Pb(II) at 0.5 mmol/l initial metal concentration. Regeneration of the chelating-beads was easily performed with 0.1 M HNO{sub 3}. These features make poly(EGDMA-VIM) beads potential candidate adsorbent for heavy metal removal.

  17. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations.

    Science.gov (United States)

    Machuca, A; Pereira, G; Aguiar, A; Milagres, A M F

    2007-01-01

    To investigate the in vitro production of metal-chelating compounds by ectomycorrhizal fungi collected from pine plantations in southern Chile. Scleroderma verrucosum, Suillus luteus and two isolates of Rhizopogon luteolus were grown in solid and liquid modified Melin-Norkans (MMN) media with and without iron addition and the production of iron-chelating compounds was determined by Chrome Azurol S (CAS) assay. The presence of hydroxamate and catecholate-type compounds and organic acids was also investigated in liquid medium. All isolates produced iron-chelating compounds as detected by CAS assay, and catecholates, hydroxamates as well as oxalic, citric and succinic acids were also detected in all fungal cultures. Scleroderma verrucosum produced the greatest amounts of catecholates and hydroxamates whereas the highest amounts of organic acids were detected in S. luteus. Nevertheless, the highest catecholate, hydroxamate and organic acid concentrations did not correlate with the highest CAS reaction which was observed in R. luteolus (Yum isolate). Ectomycorrhizal fungi produced a variety of metal-chelating compounds when grown in liquid MMN medium. However, the addition of iron to all fungi cultures reduced the CAS reaction, hydroxamate and organic acid concentrations. Catecholate production was affected differently by iron, depending on the fungal isolate. The ectomycorrhizal fungi described in this study have never been reported to produce metal-chelating compound production. Moreover, apart from some wood-rotting fungi, this is the first evidence of the presence of catecholates in R. luteolus, S. luteus and S. verrucosum cultures.

  18. Aluminum and other metals in Alzheimer's disease: a review of potential therapy with chelating agents.

    Science.gov (United States)

    Domingo, Jose L

    2006-11-01

    Alzheimer's disease (AD) is characterized by the presence of neuritic plaques and neurofibrillary tangles in the brain. Although the causes of AD remain still unknown, it seems that certain environmental factors may be involved in the etiology and pathogenesis of the disease. While AD is associated with the abnormal aggregation of beta-amyloid protein in the brain, evidence shows that certain metals play a role in the precipitation and cytotoxicity of this protein. Among these metals, the potential role of aluminum as a possible ethiopathogenic factor in AD has been especially controversial. This review is mainly focused on the role of aluminum and metals such as copper and zinc in AD, as well as on metal chelator therapy as a potential treatment for AD. The effects of desferrioxamine and other Al chelating agents have been reviewed. The role of the metal chelator clioquinol in AD, which has been reported to reduce beta-amyloid plaques, presumably by chelation associated with copper and zinc, is also revised. Finally, the potential role of silicon in AD is also discussed.

  19. HEAVY METALS IN VINEYARDS AND ORCHARD SOILS

    Directory of Open Access Journals (Sweden)

    GUSTAVO BRUNETTO

    Full Text Available ABSTRACT The application of foliar fungicides in vineyards and orchards can increase soil concentration of heavy metals such as copper (Cu and zinc (Zn, up to the toxicity threshold for fruit trees and cover crops. However, some agronomic practices, such as liming, addition of organic fertilizers, cultivation of soil cover crops and inoculation of young plants with arbuscular mycorrhizal fungi can decrease the availability and the potential of heavy metal toxicity to fruit trees. This review aims to compile and present information about the effects of increasing concentrations of heavy metals, especially Cu and Zn, on soils cultivated with fruit trees and provides some agronomic practices of remediation. Information about the sources of heavy metals found in soils cultivated with fruit trees are presented; mechanisms of absorption, transport, accumulation and potential toxicity to plants are described.

  20. ASSESSMENT OF MACRONUTRIENTS AND HEAVY METALS IN ...

    African Journals Online (AJOL)

    Preferred Customer

    The dietary supplements of macronutrients and trace heavy metals from herbs and ... sustain temperature up to 230 oC and pressure up to 625 psi. .... manufacture of energy maintenance of health of reproductive system, immune system and.

  1. Chelant extraction of heavy metals from contaminated soils.

    Science.gov (United States)

    Peters, R W

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  2. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review.

    Science.gov (United States)

    Adrees, Muhammad; Ali, Shafaqat; Rizwan, Muhammad; Zia-Ur-Rehman, Muhammad; Ibrahim, Muhammad; Abbas, Farhat; Farid, Mujahid; Qayyum, Muhammad Farooq; Irshad, Muhammad Kashif

    2015-09-01

    In present era, heavy metal pollution is rapidly increasing which present many environmental problems. These heavy metals are mainly accumulated in soil and are transferred to food chain through plants grown on these soils. Silicon (Si) is the second most abundant element in the soil. It has been widely reported that Si can stimulate plant growth and alleviate various biotic and abiotic stresses, including heavy metal stress. Research to date has explored a number of mechanisms through which Si can alleviate heavy metal toxicity in plants at both plant and soil levels. Here we reviewed the mechanisms through which Si can alleviate heavy metal toxicity in plants. The key mechanisms evoked include reducing active heavy metal ions in growth media, reduced metal uptake and root-to-shoot translocation, chelation and stimulation of antioxidant systems in plants, complexation and co-precipitation of toxic metals with Si in different plant parts, compartmentation and structural alterations in plants and regulation of the expression of metal transport genes. However, these mechanisms might be associated with plant species, genotypes, metal elements, growth conditions, duration of the stress imposed and so on. Further research orientation is also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. THE IMPACT OF HEAVY METAL CONCENTRATION ON

    African Journals Online (AJOL)

    Temitope

    Key words: Water, contamination degree, geochemical factors, public health, heavy metal. INTRODUCTION. Earth is unique among other planets in the solar system since it has an environment where it has been able to thrive. Pure water rarely occurs in nature due to the capacity to dissolve numerous substances of heavy.

  4. Heavy metal removal and recovery using microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  5. The preparation and characterization of novel human-like collagen metal chelates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chenhui; Sun, Yan [Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering Northwest University, Xi' an 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Xi' an 710069 (China); Wang, Yaoyu [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi' an 710069 (China); Luo, Yane, E-mail: luoyane@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering Northwest University, Xi' an 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Xi' an 710069 (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering Northwest University, Xi' an 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Xi' an 710069 (China)

    2013-07-01

    In order to develop the nutritional trace elements which could be absorbed and utilized effectively, protein chelates were adopted. Calcium, copper and manganese were considered based on their physiological functions, and the new chelates of HLC-Ca, HLC-Cu and HLC-Mn were formed in MOPS or MES buffer and purified by gel chromatography, and then freeze-dried. And they were detected and analyzed by atomic absorption spectrophotometry, ultraviolet–visible absorption (UV–vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, fluorescence quenching method, circular dichroism (CD) and differential scanning calorimetry (DSC). The results showed that some chemical reactions happened between HLC and the three metal ions to form new chemical compounds. The thermodynamic parameters, ∆H, ∆G and ∆S, showed that the chelation process between HLC and metal ions was performed spontaneously. Fluorescence quenching spectra of HLC indicated that the quenching mechanism was static in nature. According to the data of DSC, the new chelates were more stable than the free HLC. And HLC-metal complex was non-toxic to the BHK21 cell through MTT assay. - Highlights: ► HLC-Ca, HLC-Cu and HLC-Mn were new chemical compounds and different to free HLC. ► Possible sites for Ca{sup 2+}, Cu{sup 2+} and Mn{sup 2+} to bind with HLC were presented. ► The chelation process between HLC and metal ions was performed spontaneously. ► The thermodynamic stability of the new chelates was higher than that of free HLC.

  6. Capability and Mechanisms of Macrofungi in Heavy Metal Accumulation:A Review

    Directory of Open Access Journals (Sweden)

    CHEN Miao-miao

    2017-10-01

    Full Text Available Some macrofungi have the ability to accumulate heavy metals, which is comparable to hyper-accumulator plants. Cordyceps militaris can accumulate Zn up to 20 000 mg·kg-1. Therefore, macrofungi have the potential to be used as an important bioremediation tool for heavy metals. In this review, we summarized the heavy metal resistant capacity of typical macrofungi and known relevant mechanisms. Generally, straw-decay fungi presented better capability for Cu, Ag and Cd enrichment than wood-decay fungi, while wood-decay fungi could accumulate Cr, Mg, Se and Pb. Different macrofungi species, different growth periods(mycelium and fruiting body and different parts of fruiting body showed different capability for heavy metals accumulation. General mechanisms for heavy metals accumulation in macrofungi included extracellular precipitation in the forms of polymeric substances, cell wall adsorption and intracellular absorption. Macrofungi could also detoxify by chelating metal ions by metallothionein(MT, secreting antioxidant enzymes(SOD, CAT, POD and degradating the misfolded proteins by ubiquitin-proteasome system(UPS. We also explored the potential of macrofungi in heavy metal remediation and pollution diagnostics as a biological indicator. Some macrofungi had been applied in the remediation of heavy metal contaminated soils and water. Finally, some future research areas including strain breeding and genetic engineering were discussed, which might provide references for the future studies.

  7. Heavy metals in equine biological components

    Directory of Open Access Journals (Sweden)

    Maria Verônica de Souza

    2014-02-01

    Full Text Available The objective of this research was to determine the concentration of heavy metals in the blood (Pb, Ni and Cd, serum (Cu and Zn and hair (Pb, Ni, Cd, Cu and Zn of horses raised in non-industrial and industrial areas (with steel mill, and to verify the possibility to use these data as indicators of environmental pollution. The samples were collected during summer and winter, aiming to verify animal contamination related to environment and season of the year. Copper and Zn contents determined in the serum and Cd and Ni contents obtained in the blood indicated no contamination effects of industries. For some animals, contents of Pb in the blood were higher than those considered acceptable for the species, but without relationship with industrialization and without clinical signs of Pb intoxication. The heavy metals evaluated on the hair of horses in this study were not increased with the presence of industries, but Cu and Cd contents were influenced by the season. The contents of some heavy metals in biological components analyzed were influenced by season sampling; however, serum, blood and hair may not be suitable to indicate differences in environmental contamination between the two contrasting areas. Most part of the heavy metal contents was lower or close to the reference values for horses. Serum, blood and hair components from horses may not be effective as indicators of environmental pollution with heavy metals. Industrialization and seasons have no effects on most part of heavy metals contents from those components.

  8. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids.

    Science.gov (United States)

    Messner, Donald J; Surrago, Christine; Fiordalisi, Celia; Chung, Wing Yin; Kowdley, Kris V

    2017-10-01

    Iron overload disorders may be treated by chelation therapy. This study describes a novel method for isolating iron chelators from complex mixtures including plant extracts. We demonstrate the one-step isolation of curcuminoids from turmeric, the medicinal food spice derived from Curcuma longa. The method uses iron-nitrilotriacetic acid (NTA)-agarose, to which curcumin binds rapidly, specifically, and reversibly. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin each bound iron-NTA-agarose with comparable affinities and a stoichiometry near 1. Analyses of binding efficiencies and purity demonstrated that curcuminoids comprise the primary iron binding compounds recovered from a crude turmeric extract. Competition of curcuminoid binding to the iron resin was used to characterize the metal binding site on curcumin and to detect iron binding by added chelators. Curcumin-Iron-NTA-agarose binding was inhibited by other metals with relative potency: (>90% inhibition) Cu2+ ~ Al3+ > Zn2+ ≥ Ca2+ ~ Mg2+ ~ Mn2+ (80% by addition of iron to the media; uptake was completely restored by desferoxamine. Ranking of metals by relative potencies for blocking curcumin uptake agreed with their relative potencies in blocking curcumin binding to iron-NTA-agarose. We conclude that curcumin can selectively bind toxic metals including iron in a physiological setting, and propose inhibition of curcumin binding to iron-NTA-agarose for iron chelator screening.

  9. DFT study of the interaction between DOTA chelator and competitive alkali metal ions.

    Science.gov (United States)

    Frimpong, E; Skelton, A A; Honarparvar, B

    2017-09-01

    1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid (DOTA) is an important chelator for radiolabeling of pharmaceuticals. The ability of alkali metals found in the body to complex with DOTA and compete with radio metal ions can alter the radiolabeling process. Non-covalent interactions between DOTA complexed with alkali metals Li + , Na + , K + and Rb + , are investigated with density functional theory using B3LYP and ωB97XD functionals. Conformational possibilities of DOTA were explored with a varying number of carboxylic pendant arms of DOTA in close proximity to the ions. It is found that the case in which four arms of DOTA are interacting with ions is more stable than other conformations. The objective of this study is to explore the electronic structure properties upon complexation of alkali metals Li + Na + , K + and Rb + with a DOTA chelator. Interaction energies, relaxation energies, entropies, Gibbs free energies and enthalpies show that the stability of DOTA, complexed with alkali metals decreases down the group of the periodic table. Implicit water solvation affects the complexation of DOTA-ions leading to decreases in the stability of the complexes. NBO analysis through the natural population charges and the second order perturbation theory, revealed a charge transfer between DOTA and alkali metals. Conceptual DFT-based properties such as HOMO/LUMO energies, ΔE HOMO-LUMO and chemical hardness and softness indicated a decrease in the chemical stability of DOTA-alkali metal complexes down the alkali metal series. This study serves as a guide to researchers in the field of organometallic chelators, particularly, radiopharmaceuticals in finding the efficient optimal match between chelators and various metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Studies on the occurrence and distribution of heavy metals in ...

    African Journals Online (AJOL)

    EJIRO

    induced pollution and high levels of heavy metals can often be attributed to anthropogenic influences, rather ... of heavy metal ions on bacteria and determined the heavy metals by bioassay. Collins and Stotzky (1992) ... the microbe, which alter the net charge of the cell. Once heavy metals are discharged into estuarine and ...

  11. Potentials and drawbacks of chelate-enhanced phytoremediation of soils

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Bouwman, L.A.; Japenga, J.; Draaisma, C.

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and

  12. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease.

    Science.gov (United States)

    Robert, Anne; Liu, Yan; Nguyen, Michel; Meunier, Bernard

    2015-05-19

    With the increase of life expectancy of humans in more than two-thirds of the countries in the World, aging diseases are becoming the frontline health problems. Alzheimer's disease (AD) is now one of the major challenges in drug discovery, since, with the exception of memantine in 2003, all clinical trials with drug candidates failed over the past decade. If we consider that the loss of neurons is due to a high level of oxidative stress produced by nonregulated redox active metal ions like copper linked to amyloids of different sizes, regulation of metal homeostasis is a key target. The difficulty for large copper-carrier proteins to directly extract copper ions from metalated amyloids might be considered as being at the origin of the rupture of the copper homeostasis regulation in AD brains. So, there is an urgent need for new specific metal chelators that should be able to regulate the homeostasis of metal ions, specially copper and iron, in AD brains. As a consequence of that concept, chelators promoting metal excretion from brain are not desired. One should favor ligands able to extract copper ions from sinks (amyloids being the major one) and to transfer these redox-active metal ions to copper-carrier proteins or copper-containing enzymes. Obviously, the affinity of these chelators for the metal ion should not be a sufficient criterion, but the metal specificity and the ability of the chelators to release the metal under specific biological conditions should be considered. Such an approach is still largely unexplored. The requirements for the chelators are very high (ability to cross the brain-blood barrier, lack of toxicity, etc.), few chemical series were proposed, and, among them, biochemical or biological data are scarce. As a matter of fact, the bioinorganic pharmacology of AD represents less than 1% of all articles dedicated to AD drug research. The major part of these articles deals with an old and rather toxic drug, clioquinol and related analogs, that

  13. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... and the lowest concentration was in the muscle. These findings agree with the result of Manahan (1992) that lower concentrations of heavy metals occurred in gills and bones than in the intestines and muscles. The metal, iron was found to have the highest concen- tration in the tissues of C. nigrodigitatus, ...

  14. Plant metallothioneins--metal chelators with ROS scavenging activity?

    NARCIS (Netherlands)

    Hassinen, V.H.; Tervahauta, A.I.; Schat, H.; Karenlampi, S.O.

    2013-01-01

    Metallothioneins (MTs) are ubiquitous cysteine-rich proteins present in plants, animals, fungi and cyanobacteria. In plants, MTs are suggested to be involved in metal tolerance or homeostasis, as they are able to bind metal ions through the thiol groups of their cysteine residues. Recent reports

  15. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangbo [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Inner Mongolia Key Laboratory of Biomass-Energy Conversion, The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 040100 (China); Xu, Wenzhong [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Ma, Mi, E-mail: mami@ibcas.ac.cn [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. Black-Right-Pointing-Pointer Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. Black-Right-Pointing-Pointer Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. Black-Right-Pointing-Pointer A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2-10 folds cadmium/arsenite and 2-3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  16. The preparation and characterization of novel human-like collagen metal chelates.

    Science.gov (United States)

    Zhu, Chenhui; Sun, Yan; Wang, Yaoyu; Luo, Yane; Fan, Daidi

    2013-07-01

    In order to develop the nutritional trace elements which could be absorbed and utilized effectively, protein chelates were adopted. Calcium, copper and manganese were considered based on their physiological functions, and the new chelates of HLC-Ca, HLC-Cu and HLC-Mn were formed in MOPS or MES buffer and purified by gel chromatography, and then freeze-dried. And they were detected and analyzed by atomic absorption spectrophotometry, ultraviolet-visible absorption (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, fluorescence quenching method, circular dichroism (CD) and differential scanning calorimetry (DSC). The results showed that some chemical reactions happened between HLC and the three metal ions to form new chemical compounds. The thermodynamic parameters, ∆H, ∆G and ∆S, showed that the chelation process between HLC and metal ions was performed spontaneously. Fluorescence quenching spectra of HLC indicated that the quenching mechanism was static in nature. According to the data of DSC, the new chelates were more stable than the free HLC. And HLC-metal complex was non-toxic to the BHK21 cell through MTT assay. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Removal of heavy metals from biowaste : modelling of heavy metal behaviour and development of removal technologies

    NARCIS (Netherlands)

    Veeken, A.H.M.

    1998-01-01

    In the Netherlands, recycling of solid organic waste streams as compost only becomes possible if the compost complies with the heavy metals standards of the BOOM decree. This dissertation focuses on the removal of heavy metals from biowaste, i.e. the source separated organic fraction of

  18. High performance ion chromatography of transition metal chelate complexes and aminopolycarboxylate ligands.

    Science.gov (United States)

    Tófalvi, Renáta; Horváth, Krisztián; Hajós, Péter

    2013-01-11

    A simple ion chromatographic method was developed for the separation of transition metal chelates (CuEDTA, CuDCTA, ZnEDTA, ZnDCTA) and free anionic complexing ligands (EDTA, DCTA) using alkaline carbonate eluents and conductivity detection. The complex equilibria and kinetic process of separations were studied in order to understand major factors in the control of selectivity and retention order of complex anions. A systematic study was applied to identify the additional peaks of the system as NaEDTA(3-), NaHEDTA(2-), Na(2)EDTA(2-), EDTA(4-)/HEDTA(3-), DCTA(4-)/HDCTA(-3). On the basis of microequilibrium considerations of chelating ligand, it was shown that one should expect the peaks of sodium chelates when the ligand is in excess in the sample solution. The probability density function was introduced for calculation of complex chromatograms, because complexing ligands can exist in at least two different interconvertible forms in the presence of metal ion. The chromatogram of interconverting chelate species can be given as the sum of probability density functions (P) weighed by the molar fractions of complexed (Φ(ML)) and dissociated (Φ(L)) forms. The influences of kinetic rate of complex formation and dissociation on the distribution of components between eluents and ion exchange stationary phases were quantitatively described and demonstrated by elution profiles. The applicability of the developed method is represented by the simultaneous analysis of transition metal chelates and inorganic anions. ICP-AES analysis and FTIR-ATR technique were used for confirmation of IC results for metals and ligands, respectively. Collection protocols for the heart-cutting procedure of chromatograms were applied in the analysis of target components. The limit of detection and linearity of the method in the range of 0.01-0.25 mM sample concentration were also presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure.

    Science.gov (United States)

    Sauge-Merle, Sandrine; Lecomte-Pradines, Catherine; Carrier, Patrick; Cuiné, Stéphan; Dubow, Michael

    2012-08-01

    Metallothioneins (MTs) are ubiquitous metal-binding, cysteine-rich, small proteins known to provide protection against toxic heavy metals such as cadmium. In an attempt to increase the ability of bacterial cells to accumulate heavy metals, sheep MTII was produced in fusion with the maltose binding protein (MBP) and localized to the cytoplasmic or periplasmic compartments of Escherichia coli. For all metals tested, higher levels of bioaccumulation were measured with strains over-expressing MBP-MT in comparison with control strains. A marked bioaccumulation of Cd, As, Hg and Zn was observed in the strain over-expressing MBP-MT in the cytoplasm, whereas Cu was accumulated to higher levels when MBP-MT was over-expressed in the periplasm. Metal export systems may also play a role in this bioaccumulation. To illustrate this, we over-expressed MBP-MT in the cytoplasm of two mutant strains of E. coli affected in metal export. The first, deficient in the transporter ZntA described to export numerous divalent metal ions, showed increasing quantities of Zn, Cd, Hg and Pb being bioaccumulated. The second, strain LF20012, deficient in As export, showed that As was bioaccumulated in the form of arsenite. Furthermore, high quantities of accumulated metals, chelated by MBP-MT in the cytoplasm, conferred greater metal resistance levels to the cells in the presence of added toxic metals, such as Cd or Hg, while other metals showed toxic effects when the export systems were deficient. The strain over-expressing MBP-MT in the cytoplasm, in combination, with disruption of metal export systems, could be used to develop strategies for bioremediation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  1. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  2. Mixed metal complexes of isoniazid and ascorbic acid: chelation ...

    African Journals Online (AJOL)

    Novel mixed complexes of isoniazid and ascorbic acid have been synthesized and characterized using infrared, electronic absorption data, elemental analysis, molar conductivity, melting point, thin layer chromatography and solubility. The metal ions involved in the complex formation are Cu2+, Zn2+ and Cd2+. The melting ...

  3. Mixed Metal Complexes of Isoniazid and Ascorbic Acid: Chelation ...

    African Journals Online (AJOL)

    HP

    email: misitura4real@yahoo.com. ABSTRACT. Novel mixed complexes of isoniazid and ascorbic acid have been synthesized and characterized using infrared, electronic absorption data, elemental analysis, molar conductivity, melting point, thin layer chromatography and solubility. The metal ions involved in the complex ...

  4. Group 4 Metal Complexes of Chelating Cyclopentadienyl-ketimide Ligands

    Czech Academy of Sciences Publication Activity Database

    Večeřa, M.; Varga, Vojtěch; Císařová, I.; Pinkas, Jiří; Kucharczyk, P.; Sedlařík, V.; Lamač, Martin

    2016-01-01

    Roč. 35, č. 5 (2016), s. 785-798 ISSN 0276-7333 R&D Projects: GA ČR(CZ) GA14-08531S; GA MŠk(CZ) LO1504 Institutional support: RVO:61388955 Keywords : group 4 metal complexes * cyclopentadienyl-ketimide ligands * metallocenes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.862, year: 2016

  5. Heavy metal hazards of Nigerian herbal remedies

    Energy Technology Data Exchange (ETDEWEB)

    Obi, E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria); Akunyili, Dora N. [National Agency of Food and Drug Administration and Control (NAFDAC), Lagos (Nigeria); Ekpo, B. [Department of Biochemistry, College of Medical Sciences, Abia State University, Uturu (Nigeria); Orisakwe, Orish E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria)]. E-mail: eorish@yahoo.com

    2006-10-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO{sub 3}.The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies.

  6. Effects of nutrient trace metal speciation on algal growth in the presence of the chelator [S,S]-EDDS

    NARCIS (Netherlands)

    Schowanek, D.; McAvoy, D.; Versteeg, D.; Hanstveit, A.

    1996-01-01

    This study tests the hypothesis that the apparent toxicity of strong chelators in standard algal growth inhibition tests (e.g. method OECD 201, EC C.3., ISO 8692) is related to essential trace metal bioavailability. This hypothesis was investigated for the chelator [S,S]-ethylene diamine disuccinate

  7. Heavy Metal Pollution Around International Hatay Airport

    Directory of Open Access Journals (Sweden)

    Abdullah Özkan

    2017-02-01

    Full Text Available In this study, it was aimed to determine the heavy metal pollution in the agricultural lands around Hatay airport and travel possible alteration in the amount of heavy metal on the land in accordance with the distance to the airport. For this purpose, the airport was chosen as the center and 27 soil samples were obtained around the airport at 2 km intervals in depth ranging from 0 to 30 cm. Lead (Pb, cadmium (Cd, nickel (Ni, chrome (Cr, cobalt (Co, aluminium (Al, iron (Fe, copper (Cu, manganese (Mn and zinc (Zn elements in soil samples were analysed using MP-AES instrument by DTPA method. (3 repetition for each sample. As a result of the analysis, heavy metal concentrations were found as Pb 0-1.45 mg/kg, Cd 0-0.220 mg/kg, Ni 0-3.95 mg/kg, Cr 0-0.780 mg/kg, Co 0-0.270 mg/kg, Al 0-0.700 mg/kg, Fe 1.47- 16.2 mg/kg, Cu 0.400-5.35 mg/kg, Mn 0-19 mg/kg and Zn 0.050-3.14 mg/kg. When comparing the obtained data through this study with allowable concentrations of heavy metals in soil of Environment and Forest Directorates Guidance, it was determined that the heavy metal concentration of the soil does not pose any problems in terms of heavy metal pollution. Besides, iron concentration was decreased when the distance to the airport is increased.

  8. Chromatography of metal ions with a triazine chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.N.

    1979-05-01

    The synthesis, characterization, and some analytical applications of a new triazine resin are described. Separation of group IB, IIB, VIB, and VIIB metal ions from group VIII metal ions is achieved by this PDT-4 resin. Calcium(II) and magnesium(II) are taken up at pH = 6, 0.1 M acetate and are eluted at pH = 6, 0.1 M sodium nitrate. Copper(II) is retained at pH = 6, 0.1 M acetate and pH = 1 hydrochloric acid and is eluted subsequently by 5 M perchloric acid. Molybdenum(VI) is sorbed selectively from 0.1 N sulfuric acid or hydrochloric acid and is eluted in a tight band by 0.1 N sodium hydroxide. Numerous rapid column chromatographic separations are reported using this new resin, including analysis of NBS standard samples.

  9. Transfer of heavy metals through terrestrial food webs: a review.

    Science.gov (United States)

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  10. Spectral and colorimetric characteristics of metal chelates of acylated cyanidin derivatives.

    Science.gov (United States)

    Sigurdson, G T; Robbins, R J; Collins, T M; Giusti, M M

    2017-04-15

    Colorants derived from nature are increasingly popular due to consumer demand. Anthocyanins are a class of naturally occurring pigments that produce red-purple-blue hues in nature, especially when interacting with metal ions and co-pigments. The role of various acylations of cyanidin (Cy) derivatives on color expression and stability of Al(3+) and Fe(3+) chelates in pH 6-7 were evaluated by spectrophotometry (380-700nm) and colorimetry (CIE-L(∗)a(∗)b(∗)) during dark, ambient storage (48h). Increased substitution generally increased λmax of Cy chelates: malonic acid monoacylationimproved with increasing proportions of metal ions and acylation. Stability followed that diacylated cyanidin (p-coumaric-sinapic>ferulic-sinapic>sinapic-sinapic)>monoacylated (malonic≈sinapic>ferulic>p-coumaric). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  12. Heavy metal biosorption by bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Vecchio, A.; Finoli, C.; Di Simine, D.; Andreoni, V. [Department of Food Science and Microbiology, State University, Milan (Italy)

    1998-06-01

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the assessment of the capability of Brevibacterium sp. cells to remove bivalent ions, when present alone or in pairs, from aqueous solutions, using immobilized polyacrylamide cells of the microorganism in a flow-through system. The biosorption capacity of Brevibacterium cells was studied for lead, cadmium and copper. The metal cell binding capacity followed the order Cu > Pb > Cd, based on estimated q{sub max}. These values, expressed as mmol metal/g dry weight cells, were 0.54 for Cu, 0.36 for Pb and 0.14 for Cd. Polyacrylamide-gel immobilized cells were effective in Pb, Cu and Cd removal. Lead removal was not affected by the presence of Cd and Cu; lead instead inhibited Cd and Cu removal. The desorption of the metal, by fluxing a chelating solution, restored the metal binding capacity of the cells, thus affording the multiple use of the same biomass in the remediation treatment. (orig.) (orig.) With 5 figs., 4 tabs., 23 refs.

  13. Heavy metal mining using microbes.

    Science.gov (United States)

    Rawlings, Douglas E

    2002-01-01

    The use of acidiphilic, chemolithotrophic iron- and sulfur-oxidizing microbes in processes to recover metals from certain types of copper, uranium, and gold-bearing minerals or mineral concentrates is now well established. During these processes insoluble metal sulfides are oxidized to soluble metal sulfates. Mineral decomposition is believed to be mostly due to chemical attack by ferric iron, with the main role of the microorganisms being to reoxidize the resultant ferrous iron back to ferric iron. Currently operating industrial biomining processes have used bacteria that grow optimally from ambient to 50 degrees C, but thermophilic microbes have been isolated that have the potential to enable mineral biooxidation to be carried out at temperatures of 80 degrees C or higher. The development of higher-temperature processes will extend the variety of minerals that can be commercially processed.

  14. Pyrolized biochar for heavy metal adsorption

    Science.gov (United States)

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  15. Heavy metal detoxification in eukaryotic microalgae.

    Science.gov (United States)

    Perales-Vela, Hugo Virgilio; Peña-Castro, Julián Mario; Cañizares-Villanueva, Rosa Olivia

    2006-06-01

    Microalgae are aquatic organisms possessing molecular mechanisms that allow them to discriminate non-essential heavy metals from those essential ones for their growth. The different detoxification processes executed by algae are reviewed with special emphasis on those involving the peptides metallothioneins, mainly the post transcriptionally synthesized class III metallothioneins or phytochelatins. Also, the features that make microalgae suitable organisms technologies specially to treat water that is heavily polluted with metals is discussed.

  16. Microwave enhanced stabilization of heavy metal sludge.

    Science.gov (United States)

    Hsieh, Ching-Hong; Lo, Shang-Lien; Chiueh, Pei-Te; Kuan, Wen-Hui; Chen, Ching-Lung

    2007-01-02

    A microwave process can be utilized to stabilize the copper ions in heavy metal sludge. The effects of microwave processing on stabilization of heavy metal sludge were studied as a function of additive, power, process time, reaction atmosphere, cooling gas, organic substance, and temperature. Copper leach resistance increased with addition of aluminum metal powder, with increased microwave power, increased processing time, and using a gaseous environment of nitrogen for processing and air for cooling [N2/air]. The organic in the sludge affected stabilization, whether or not the organic smoldered. During heating in conventional ovens, exothermic oxidation of the organic resulted in sludge temperatures of about 500 degrees C for oven control temperatures of 200-500 degrees C. After microwave heating dried the sludge, the sludge temperature rose to 500 degrees C. The reaction between copper ions and metal aluminum in the dried sludge should be regarded as a solid phase reaction. Adding aluminum metal powder and reaction temperature were the key parameters in stabilizing copper in the heavy metal sludge, whether heated by microwave radiation or conventional oven. The mass balance indicates insignificant volatization of the copper during heating.

  17. Electrokinetic removal of heavy metals from soil

    Directory of Open Access Journals (Sweden)

    Puvvadi Venkata Sivapullaiah

    2015-03-01

    Full Text Available Removal of heavy metal ions from soils by electrokinetic treatment has several advantages. The extent of removal, however, is both soil specific and ion specific. The conditions to be maintained have to be established based on laboratory studies. With a view to maximize the removal of metal ions the trends of removal of heavy metal ions such as iron, nickel and cadmium form a natural Indian kaolinitic red earth during different conditions maintained in the electrokinetic extraction process are studied. A laboratory electrokinetic extraction apparatus was assembled for this purpose. Attempts are also made to elucidate the mechanism of removal of the metal ions from soil. The composition of the flushing fluid, voltage and duration of extraction are varied. While dilute acetic acid has been used to neutralize the alkalinity that develops at the cathode, EDTA solution has been used to desorb heavy metals from clay surface. Generally the extent of removal was proportional to the osmotic flow. Nickel and Cadmium are more effectively removed than iron. The percentage removal of Ni is generally proportional to the osmotic flow but shows sensitivity to the pH of the system. There is an optimum voltage for removal of metal ions from soil. The removal of iron was negligible under different conditions studied.

  18. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  19. Heavy Metal Pollution Assessment by Partial Geochemical ...

    African Journals Online (AJOL)

    Mn and Fe oxides are powerful absorbents of heavy metal cations in soils and stream sediments therefore considered in this environmental geochemical investigation. Steam sediment samples were collected from Au-Ag and Pb-Zn-Cu mineralized areas of the Rodalquilar old gold mine, located in the southeastern part of ...

  20. Heavy metals phytoremediation using Typha domingensis ...

    African Journals Online (AJOL)

    Phytoremediation as a tool employs aquatic macrophytes as a principal and inexpensive strategy for controlling environmental pollution. It is achieved through various mechanisms such as phytoextraction, phytostabilization, and phytovolatilization. In this study, heavy metal content of a contaminated drainage that empties ...

  1. Heavy Metals and Related Trace Elements.

    Science.gov (United States)

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  2. Assessment of physicochemical qualities, heavy metal ...

    African Journals Online (AJOL)

    Ogbe

    2012-08-23

    Aug 23, 2012 ... Key words: Aquatic biota, contamination, pollution, public health, microbial indicators, toxic effects. INTRODUCTION. Water is ... commonly occur in water and wastewater can be divided into four separate groups. ... heavy/toxic metal contamination of the Shanomi creek of the Warri river, hence the need for ...

  3. Electrodialytic decontamination of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted soil is a newly developed method, which combines the electrokinetic mevement of ions in soil with the principle of electrodialytis. The method has been proven to work in laboratory scale and at present two types of pilot plant tests are made....

  4. Evaluation of Physicochemical Properties and Heavy Metals ...

    African Journals Online (AJOL)

    Physicochemical properties of municipal dumpsite compost in Kano metropolis and concentration of heavy metals were investigated. Analysis was carried out by atomic absorption spectrometry (Buck Scientific VPG 210). The results shows that the compost pH (6.63-8.19), electric conductivity of compost (638-933μs/cm), ...

  5. 202 197 Heavy Metals and Microbial Contamin

    African Journals Online (AJOL)

    2008-12-02

    Dec 2, 2008 ... ABSTRACT: The heavy metal and microbial contaminants levels were evaluated in a commercial polyherbal .... (Cowan and Steel) was carried out to identify ... Statistical Analysis. Analysis of data obtained from this study was done using Excel Microsoft software. Analysis of Variance (ANOVA) was used for.

  6. HEAVY METALS PHYTOREMEDIATION USING Typha domingensis ...

    African Journals Online (AJOL)

    pc

    ABSTRACT. Phytoremediation as a tool employs aquatic macrophytes as a principal and inexpensive strategy for controlling environmental pollution. It is achieved through various mechanisms such as phytoextraction, phytostabilization, and phytovolatilization. In this study, heavy metal content of a contaminated drainage ...

  7. ASSESSMENT OF MACRONUTRIENTS AND HEAVY METALS IN ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. The macronutrients and heavy metals content of different parts of a locally found herb named ... inductively coupled plasma optical emission spectrometry (ICP-OES) and atomic absorption spectrophotometry. (AAS). .... involved in the formation of vitamin B12 or cobalamin and as such essential for erythrocyte.

  8. Environmental remediation from heavy metal pollution using ...

    African Journals Online (AJOL)

    Graft copolymers of polyacrlamide-grafted gum arabic were synthesized, blended with Moringa oleifera and characterized by IR spectroscopy. The potentials of the products to remove heavy metals from aqueous solutions were studied at room temperature (30oC) and this was experimented on iron (III) ions (Fe3+).

  9. ASSESSMENT OF HEAVY METALS AND CRUDE PROTEIN ...

    African Journals Online (AJOL)

    UNICORN

    MOLLUSCS AND CRUSTACEANS FROM TWO SELECTED CITIES IN. NIGERIA. Ogundiran ... are good sources of animal protein if they are found in contamination free environment. Key words: Heavy metals, ..... commonly used traditional preservation methods include sun-drying and hot-smoking. [28]. The sun-drying ...

  10. Comparative anatomy, nutraceutical potentials and heavy metal ...

    African Journals Online (AJOL)

    This study investigated the anatomical features, nutraceutical potentials and heavy metal compositions in two varieties of Lasianthera africana (P. Beauv) which is a member of the family Icacinaceae predominantly found mostly in southern Nigeria. The anatomical studies were carried out with free hand sectioning using a ...

  11. Metabolic Demands of Heavy Metal Drumming

    Directory of Open Access Journals (Sweden)

    Bryan Romero

    2016-07-01

    Full Text Available Background: The drum set involves dynamic movement of all four limbs. Motor control studies have been done on drum set playing, yet not much is known about the physiological responses to this activity. Even less is known about heavy metal drumming. Aims: The purpose of this study was to determine metabolic responses and demands of heavy metal drumming. Methods: Five semi-professional male drummers (mean ± SD age = 27.4 ± 2.6 y, height = 177.2 ± 3.8 cm, body mass = 85.1 ± 17.8 kg performed four prescribed and four self-selected heavy metal songs. Oxygen consumption (VO2, minute ventilation (VE and respiratory exchange ratio (RER were measured using a metabolic cart.  Heart rate (HR was measured using a heart rate monitor. VO2max was determined using a graded cycle ergometer test. Results: The results indicated a metabolic cost of 6.3 ± 1.4 METs and heart rate of 145.1 ± 15.7 beats·min-1 (75.4 ± 8.3% of age-predicted HRmax. VO2 peak values reached approximately 90% of the drummer’s VO2max when performing at the fastest speeds. According to these results, heavy metal drumming may be considered vigorous intensity activity (≥ 6.0 METs. The relative VO2max of 40.2 ± 9.5 mL·kg·min-1 leads to an aerobic fitness classification of “average” for adult males. Conclusions: The metabolic demands required during heavy metal drumming meet the American College of Sports Medicine guidelines for the development of health related fitness.  Keywords: Drum set, Exercise physiology, VO2, Music

  12. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    Science.gov (United States)

    Krzyżak, Jacek; Pogrzeba, Marta; Rusinowski, Szymon; Clifton-Brown, John; McCalmont, Jon Paul; Kiesel, Andreas; Mangold, Anja; Mos, Michal

    2017-09-01

    When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2) `time-zero' soil samples were taken to determine initial levels of total (aqua regia) and bioavailable (CaCl2 extraction) concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest) and winter (March, brown harvest) to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  13. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.

    Science.gov (United States)

    Lin, Zhuangsheng; Goddard, Julie

    2018-02-01

    Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal

  14. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Metal ion uptake properties of polystyrene-supported chelating polymer resins functionalized with (i) glycine, (ii) hydroxy benzoic acid, (iii) Schiff base and (iv) diethanol amine have been investigated. The effects of pH, time and initial concentration on the uptake of metal ions have been studied. The uptake of metal ion ...

  15. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7

    National Research Council Canada - National Science Library

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals...

  16. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes.

    Science.gov (United States)

    Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A

    2017-06-01

    Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb2+, Hg2+, and Ni2+ and the harmless Ca2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.

  17. Adsorption of heavy metal by natural clayey soil

    OpenAIRE

    Budianta, Wawan

    2015-01-01

    This study focused on the capability of Clayey soil to retain and release heavy metals. Batch experiment for sample of clayey soil was conducted with several concentrated solutions of heavy metals. The results show that the clayey soil sample may have a relatively high heavy metal retention capacity. This is particularly positive in the context of municipal waste disposal (landfills) in Indonesia Keywords: Adsorption, heavy metal, clayey soil, batch experiment

  18. Perilous Effects of Heavy Metals Contamination on Human Health

    OpenAIRE

    Naseem Zahra; Imran Kalim; Minahil Mahmood; Nageen Naeem

    2017-01-01

    Heavy metals form a versatile group of high density elements that vary considerably in their biological roles and chemical properties. Although many heavy metals are essential trace elements yet they have long been recognized as environmental pollutants due their toxic effects. Increased industrialization, urbanization anthropogenic activities like mining, smelting and other agricultural activities have resulted in accumulation of heavy metals in the environment. Heavy metals such as nickel, ...

  19. Heavy Metal Concentrations in Maltese Potable Water

    Directory of Open Access Journals (Sweden)

    Roberta Bugeja

    2015-05-01

    Full Text Available This study evaluates the levels of aluminum (Al, cadmium (Cd, chromium (Cr, copper (Cu, iron (Fe, lead (Pb, nickel (Ni and zinc (Zn in tap water samples of forty localities from around the Maltese Islands together with their corresponding service supply reservoirs. The heavy metal concentrations obtained indicated that concentrations of the elements were generally below the maximum allowed concentration established by the Maltese legislation. In terms of the Maltese and EU water quality regulations, 17.5% of the localities sampled yielded water that failed the acceptance criteria for a single metal in drinking water. Higher concentrations of some metals were observed in samples obtained at the end of the distribution network, when compared to the concentrations at the source. The observed changes in metal concentrations between the localities’ samples and the corresponding supply reservoirs were significant. The higher metal concentrations obtained in the samples from the localities can be attributed to leaching in the distribution network.

  20. ACCUMULATION OF HEAVY METALS IN BIOTA OF VYRLYTSA LAKE

    Directory of Open Access Journals (Sweden)

    Tetiana Bilyk

    2011-03-01

    Full Text Available Abstract. The main task was to investigate the pollution by heavy metals of biota of Vyrlytsa Lake. Thecontents of movable forms of heavy metals in aquatic plants, fish and snails was determined by atomicabsorbtion method and were made the conclusions about general state of the water object.Keywords: heavy metals, accumulation, biota, pollution, atomic absorption spectroscopy.

  1. Classification of Plants According to Their Heavy Metal Content ...

    African Journals Online (AJOL)

    Plants like other living organisms respond differently under different environmental conditions. An elevated level of heavy metals is one of the stresses which results into three classes of plants depending on their heavy metal content. The classes of plant species according to their accumulated heavy metals around North ...

  2. classification of plants according to their heavy metal content around

    African Journals Online (AJOL)

    Mgina

    ABSTRACT. Plants like other living organisms respond differently under different environmental conditions. An elevated level of heavy metals is one of the stresses which results into three classes of plants depending on their heavy metal content. The classes of plant species according to their accumulated heavy metals ...

  3. Heavy metals content in the stem bark of Detarium microcarpum ...

    African Journals Online (AJOL)

    The heavy metal analysis was carried out on the stem bark of D. microcarpum using an atomic absorption spectrophotometer (AAS). The heavy metals screened for include: lead, chromium, manganese, zinc and iron. The levels of manganese, zinc and iron were 13.91, 4.89 and 21.89 mg/L respectively. These heavy metals ...

  4. Absorption and bioaccumulation of heavy metals in giant African ...

    African Journals Online (AJOL)

    This study aimed at investigating the ability and effects (if any) of heavy metal accumulation in Giant African Land Snails (Archachatina marginata). 120 A. marginata growers were randomly allotted to 2 feed treatments (T1: Heavy metal contaminated pawpaw fruits and leaves; and T2: Heavy metal free pawpaw fruits and ...

  5. Studies of action of heavy metals on caffeine degradation by ...

    African Journals Online (AJOL)

    The isolate was encapsulated in gellan gum and its ability to degrade caffeine in the presence of heavy metals was determined. Out of the nine heavy metals tested, Copper (Cu), Mercury (Hg), and Silver (Ag) had significant effects on caffeine degradation at 1mg/L. Therefore, the concentration of these heavy metals was ...

  6. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    Science.gov (United States)

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  7. incidence of heavy metals in kano metropolis drinking water sources ...

    African Journals Online (AJOL)

    userpc

    into these sources as domestic sewage might be of kitchen and toilet origin heavily accumulated with soaps of heavy metals constituents. Heavy metal contamination with ... Water pollution has been a major challenge which requires ongoing evaluation. (Okonko et al., 2008).Presence of excessive amounts of heavy metals ...

  8. Bioaccumulation and toxic effects of some heavy metals in ...

    African Journals Online (AJOL)

    The contamination of the aquatic systems with heavy metals from natural anthropogenic sources has become a global problem which poses threats to ecosystems and natural communities. Hence this study reviews the effects of heavy metals in freshwater fishes. Fishes bioaccumulate heavy metals (including cadmium, zinc ...

  9. Sorbent extraction of rubeanic acid-metal chelates on a new adsorbent: Sepabeads SP70.

    Science.gov (United States)

    Soylak, Mustafa; Tuzen, Mustafa

    2006-11-02

    A sorbent extraction procedure for lead, iron, cadmium and manganese ions on Sepabeads SP70 adsorption resin has been presented prior to their flame atomic absorption spectrometric determinations. By the passage of aqueous samples including analyte ions-rubeanic acid chelates through Sepabeads SP70 column, metal chelates adsorb quantitatively and almost all matrix elements will pass through the column to drain. The influence of potential interfering ions was also studied. The validation of the method was made though the analysis of LGC 6010 Hard drinking water, SRM 1577b Bovine liver and GBW 07603 Bush branches and leaves standard reference materials (SRM). The method was applied to the determination of analyte ions from various water, wastewater, cow meat and milk, red wine, and tobacco samples with successfully results.

  10. Customizable Biopolymers for Heavy Metal Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred [University of California, Department of Chemical and Environmental Engineering (United States)], E-mail: wilfred@engr.ucr.edu

    2005-10-15

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted.

  11. Determination of metal ions by high-performance liquid chromatographic separation of their hydroxamic acid chelates

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, M.D.; Fritz, J.S.

    1987-09-15

    Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV), Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.

  12. Determination of heavy metals in the ambient atmosphere.

    Science.gov (United States)

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2017-01-01

    Heavy metal determination in ambient air is an important task for environmental researchers because of their toxicity to human beings. Some heavy metals (hexavalent chromium (Cr), arsenic (As), cadmium (Cd) and nickel (Ni)) have been listed as carcinogens. Furthermore, heavy metals in the atmosphere can accumulate in various plants and animals and enter humans through the food chain. This article reviews the determination of heavy metals in the atmosphere in different areas of the world since 2006. The results showed that most researchers concentrated on toxic metals, such as Cr, Cd, Ni, As and lead. A few studies used plant materials as bio-monitors for the atmospheric levels of heavy metals. Some researchers found higher concentrations of heavy metals surrounding industrial areas compared with residential and/or commercial areas. Most studies reported the major sources of the particulate matter and heavy metals in the atmosphere to be industrial emissions, vehicular emissions and secondary aerosols.

  13. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    Science.gov (United States)

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  14. Effect of heavy metals on bacterial transport

    Science.gov (United States)

    Zhang, H.; Olson, M. S.

    2010-12-01

    Adsorption of metals onto bacteria and soil takes place as stormwater runoff infiltrates into the subsurface. Changes in both bacterial surfaces and soil elemental content have been observed, and may alter the attachment of bacteria to soil surfaces. In this study, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyses were performed on soil samples equilibrated with synthetic stormwater amended with copper, lead and zinc. The results demonstrate the presence of copper and zinc on soil surfaces. To investigate bacterial attachment behavior, sets of batch sorption experiments were conducted on Escherichia Coli (E. coli) under different chemical conditions by varying solution compositions (nutrient solution vs synthetic stormwater). The adsorption data is best described using theoretical linear isotherms. The equilibrium coefficient (Kd) of E. coli is higher in synthetic stormwater than in nutrient solution without heavy metals. The adsorption of heavy metals onto bacterial surfaces significantly decreases their negative surface charge as determined via zeta potential measurements (-17.0±5.96mv for E. coli equilibrated with synthetic stormwater vs -21.6±5.45mv for E. coli equilibrated with nutrient solution), indicating that bacterial attachment may increase due to the attachment of metals onto bacterial surfaces and their subsequent change in surface charge. The attachment efficiency (α) of bacteria was also calculated and compared for both solution chemistries. Bacterial attachment efficiency (α) in synthetic stormwater is 0.997, which is twice as high as that in nutrient solution(α 0.465). The ratio of bacterial diameter : collector diameter suggests minimal soil straining during bacterial transport. Results suggest that the presence of metals in synthetic stormwater leads to an increase in bacterial attachment to soil surfaces. In terms of designing stormwater infiltration basins, the presence of heavy metals seems to

  15. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses......). In the stirred setup it is possible to shorten the transport route to few mm and to have a faster and continuous process. The present paper for the first time reports a direct comparison of the two options. The remediation of the stirred suspension showed faster than remediation of the water saturated soil even...... without a short distance between the membranes. The acidification of the suspended soil was fastest and following the mobilization of heavy metals. This may indicate that water splitting at the anion exchange membrane is used more efficiently in the stirred setup....

  16. Phytoremediation of Heavy Metals in Aqueous Solutions

    OpenAIRE

    Felix Aibuedefe AISIEN; Oluwole FALEYE; Eki Tina AISIEN

    2010-01-01

    One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd), lead (Pb) and zinc (Zn). Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especia...

  17. Heavy metals in carabids (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Ruslan Butovsky

    2011-05-01

    Full Text Available Carabid beetles (Coleoptera, Carabidae are one of the most studied soil groups in relation to heavy metal (HM accumulation and use for bioindication of environmental pollution. Accumulation of Zn and Cu in carabid beetles was species-, sex- and trophic group-specific. No differences were found in HM contents between omnivorous and carnivorous species. The use of carabid beetles as indicators of HM accumulation appears to be rather limited.

  18. Modeling Heavy Metal Removal in Wetlands.

    Science.gov (United States)

    1992-05-01

    1976 a,b,c) and Pettersson (1976) treated heavy metals uptake according to Michaelis-Menten kinetics ( Lehninger , 1975), discussed later in detail...copper kinetics equation as used in this modeling effort is presented below, after Lehninger (1975): dv_ dV, Ca (5) dt dt C.+K, where: v = rate of copper...the bulk solution, Cb, using either the Lineweaver-Burk double reciprocal or Eadie-Hofstee graphical methods ( Lehninger , 1975). Nielsen (1976 b) used

  19. Heavy metal emissions for Danish road transport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.; Slentoe, E.

    2010-04-15

    This report presents new heavy metal emission factors for cars, vans, trucks, buses, mopeds and motorcycles for each of the emission sources fuel consumption, engine oil, tyre wear, brake wear and road abrasion. The emission components covered are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn), all of them relevant for emission reporting to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long Range Transboundary Pollutants) convention. The report also presents a new Danish inventory for the year 2007. The following emissions in total TSP (in brackets) are calculated for the year 2007: As (8 kg), Cd (48 kg), Cr (197 kg), Cu (51 779 kg), Hg (28 kg), Ni (158 kg), Pb (6 989 kg), Se (33 kg) and Zn (28 556 kg). Per vehicle type cars are the most important source of emission for all heavy metal species, followed by vans, trucks, buses and 2-wheelers. By using the detailed emission factors and inventory calculation methods established in the present project, estimates of heavy metal emissions can be made for other years than 2007. (author)

  20. Heavy Metals Acting as Endocrine Disrupters

    Directory of Open Access Journals (Sweden)

    Bogdan Georgescu

    2011-10-01

    Full Text Available Last years researches focused on several natural and synthetic compounds that may interfere with the major functionsof the endocrine system and were termed endocrine disrupters. Endocrine disrupters are defined as chemicalsubstances with either agonist or antagonist endocrine effects in human and animals. These effects may be achievedby interferences with the biosynthesis or activity of several endogenous hormones. Recently, it was demonstratedthat heavy metals such as cadmium (Cd, arsen (As, mercury (Hg, nickel (Ni, lead (Pb and zinc (Zn may exhibitendocrine-disrupting activity in animal experiments. Emerging evidence of the intimate mechanisms of action ofthese heavy metals is accumulating. It was revealed, for example, that the Zn atom from the Zn fingers of theestrogen receptor can be replaced by several heavy metal molecules such as copper, cobalt, Ni and Cd. By replacingthe Zn atom with Ni or copper, binding of the estrogen receptor to the DNA hormone responsive elements in the cellnucleus is prevented. In both males and females, low-level exposure to Cd interferes with the biological effects ofsteroid hormones in reproductive organs. Arsen has the property to bind to the glucocorticoid receptor thusdisturbing glucocorticoids biological effects. With regard to Hg, this may induce alterations in male and femalefertility, may affect the function of the hypothalamo-pituitary-thyroid axis or the hypothalamo-pituitary-adrenal axis,and disrupt biosynthesis of steroid hormones.

  1. [Research advances in heavy metals pollution ecology of diatom].

    Science.gov (United States)

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  2. Removal of heavy metals from wastewater using electrocoagulation

    OpenAIRE

    Pokhrel, Nikunj

    2017-01-01

    Heavy metal contamination of water sources is a constant threat to human health. High exposure of heavy metals have often resulted in severe health hazards such as cancer, growth deficiency, liver and kidney damage and in some extreme cases death (World Health Organization, 2005). Heavy metals are often released into the environment and mainly into the water sources in the form of industrial and municipal wastewater. This thesis aims at examining the possibility of removing 5 different heavy ...

  3. Comparison of methanol and acetonitrile eluents for the quantitation of chelators specific to soft-metal ions by HPLC.

    Science.gov (United States)

    Ogawa, Shinya; Yoshimura, Etsuro

    2012-11-15

    HPLC eluent systems employing acetonitrile and methanol were evaluated for the quantitation of glutathione (GSH) and phytochelatin (PC(n)), a family of peptides implicated in heavy-metal detoxification in higher plants. The detection system is based on the dequenching of copper(I)-bathocuproine disulfonate and is specific for soft-metal chelators. Although both elution systems yielded comparable analytical performance for each PC(n), the acetonitrile system had a lower sensitivity for GSH and a steadily increasing baseline. The inferior properties of the acetonitrile system may be due to complex formation between acetonitrile and Cu(I) ions. Both methods were applied to measure peptide levels in the primitive red alga Cyanidioschyzon merolae. Coefficients of variation (CVs) were less than 5%, except for GSH and PC(4) determinations in the acetonitrile system, in cases when CV values were found to be 8.8% and 6.3%, respectively. Recoveries were greater than 96%, except for GSH determination in the acetonitrile system, with a recovery of 84.4%; however, the concentration measured in the acetonitrile system did not differ from that measured in the methanol system at a significance level of 0.05. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  5. Assessment of Heavy Metal Pollution in Sediment and Polychaete ...

    African Journals Online (AJOL)

    HEAVY METAL POLLUTION & POLYCHAETE WORMS FROM MZINGA CREEK & RAS DEGE MANGROVE ECOSYSTEM. 125 ... metal pollution. The concentration of metals in the geochemically available sediment fraction (easily reducible and oxidisable phases) is analysed to assess the ..... River inputs to the ocean.

  6. Synthesis, Characterization and Antimicrobial Activity of 5-(4-Methyl piperazinyl methylene-8-hydroxy quinoline and its Various Metal Chelates

    Directory of Open Access Journals (Sweden)

    I. J. Patel

    2006-01-01

    Full Text Available 5-Chloromethyl-8-quinolinol was condensed with 4-methyl piperazine in presence of sodium bicarbonate. The resulting 5-(4-methyl piper-azinylmethylene-8-quinolinol (MPQ was characterized by elemental analysis and spectral studies. The transition metal chelates viz Cu+2, Ni+2, Co+2, Mn+2, Zn+2, Cd+2, and Fe+3 of MPQ were prepared and characterized by metal-ligand (M:L ratio, IR and reflectance spectroscopies and magnetic properties. The antifungal activity of MPQ and its metal chelates was screened against various fungi. The results show that all these samples are good antifungal agents.

  7. Material Removes Heavy Metal Ions From Water

    Science.gov (United States)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  8. Magnetotactic bacteria. Promising biosorbents for heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Zhang, Yanzong; Ding, Xiaohui; Liu, Yan; Shen, Fei; Zhang, Xiaohong; Deng, Shihuai; Xiao, Hong; Yang, Gang; Peng, Hong [Sichuan Agricultural Univ., Chengdu (China). Provincial Key Lab. of Agricultural Environmental Engineering

    2012-09-15

    Magnetotactic bacteria (MTB), which can orient and migrate along a magnetic line of force due to intracellular nanosized magnetosomes, have been a subject of research in the medical field, in dating environmental changes, and in environmental remediation. This paper reviews the recent development of MTB as biosorbents for heavy metals. Ultrastructures and taxis of MTB are investigated. Adsorptions in systems of unitary and binary ions are highlighted, as well as adsorption conditions (temperature, pH value, biomass concentration, and pretreatments). The separation and desorption of MTB in magnetic separators are also discussed. A green method to produce metal nanoparticles is provided, and an energy-efficient way to recover precious metals is put forward during biosorption. (orig.)

  9. Effects of Heavy Metal Toxicity on Human Health

    OpenAIRE

    Guluzar Ozbolat; Abdullah Tuli

    2016-01-01

    Heavy metals are the elements that can be toxic even at low concentrations. It is often used as a group name for metals and semimetals (metalloids) that have been associated with contamination and potential toxicity or ecotoxicity. Heavy metals are toxic to human health. Because it cannot be discarded with (kidney, liver intestine, skin, lung) without special support from most of the body's normal excretion routes Therefore, a large part of the heavy metals accumulate in biological organisms...

  10. A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect-free Metal-Organic Framework Composite Membrane

    KAUST Repository

    Barankova, Eva

    2017-02-06

    Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating polythiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity.

  11. A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect-Free Metal-Organic Framework Composite Membrane.

    Science.gov (United States)

    Barankova, Eva; Tan, Xiaoyu; Villalobos, Luis Francisco; Litwiller, Eric; Peinemann, Klaus-Viktor

    2017-03-06

    Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly-thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Heavy metal and associated antibiotic resistance of fecal coliforms ...

    African Journals Online (AJOL)

    Objective: The pollution of the environment with toxic heavy metals is increasing globally with industrial progress. Microorganisms can be good bio-accumulators of particulate and soluble forms of heavy metals and subsequently resist antibiotics. The present study aimed at assessing the resistance pattern to multiple heavy ...

  13. Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles.

    Science.gov (United States)

    Boros, Eszter; Bowen, Alice M; Josephson, Lee; Vasdev, Neil; Holland, Jason P

    2015-01-01

    A novel reaction for chelate-free, heat-induced metal ion binding and radiolabeling of ultra-small paramagnetic iron oxide nanoparticles (USPIOs) has been established. Radiochemical and non-radioactive labeling studies demonstrated that the reaction has a wide chemical scope and is applicable to p-, d- and f-block metal ions with varying ionic sizes and formal oxidation states from 2+ to 4+. Radiolabeling studies found that 89Zr-Feraheme (89Zr-FH or 89Zr-ferumoxytol) can be isolated in 93 ± 3% radiochemical yield (RCY) and >98% radiochemical purity using size-exclusion chromatography. 89Zr-FH was found to be thermodynamically and kinetically stable in vitro using a series of ligand challenge and plasma stability tests, and in vivo using PET/CT imaging and biodistribution studies in mice. Remarkably, ICP-MS and radiochemistry experiments showed that the same reaction conditions used to produce 89Zr-FH can be employed with different radionuclides to yield 64Cu-FH (66 ± 6% RCY) and 111In-FH (91 ± 2% RCY). Electron magnetic resonance studies support a mechanism of binding involving metal ion association with the surface of the magnetite crystal core. Collectively, these data suggest that chelate-free labeling methods can be employed to facilitate clinical translation of a new class of multimodality PET/MRI radiotracers derived from metal-based nanoparticles. Further, this discovery is likely to have broader implications in drug delivery, metal separation science, ecotoxicology of nanoparticles and beyond.

  14. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis.

    Science.gov (United States)

    Polvi, Elizabeth J; Averette, Anna F; Lee, Soo Chan; Kim, Taeyup; Bahn, Yong-Sun; Veri, Amanda O; Robbins, Nicole; Heitman, Joseph; Cowen, Leah E

    2016-10-01

    Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which metal chelation

  15. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Polvi

    2016-10-01

    metal chelation modulates morphogenetic circuitry and echinocandin resistance, and illuminate a novel facet to metal homeostasis at the host-pathogen interface, with broad therapeutic potential.

  16. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Wenzhen Yuan

    2016-01-01

    Full Text Available With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1 Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS damage. (2 Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3 Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4 Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8 and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  17. The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles

    Directory of Open Access Journals (Sweden)

    Garrett Wheaton

    2015-07-01

    Full Text Available Extreme thermoacidophiles (Topt > 65 °C, pHopt < 3.5 inhabit unique environments fraught with challenges, including extremely high temperatures, low pH, as well as high levels of soluble metal species. In fact, certain members of this group thrive by metabolizing heavy metals, creating a dynamic equilibrium between biooxidation to meet bioenergetic needs and mechanisms for tolerating and resisting the toxic effects of solubilized metals. Extremely thermoacidophilic archaea dominate bioleaching operations at elevated temperatures and have been considered for processing certain mineral types (e.g., chalcopyrite, some of which are recalcitrant to their mesophilic counterparts. A key issue to consider, in addition to temperature and pH, is the extent to which solid phase heavy metals are solubilized and the concomitant impact of these mobilized metals on the microorganism’s growth physiology. Here, extreme thermoacidophiles are examined from the perspectives of biodiversity, heavy metal biooxidation, metal resistance mechanisms, microbe-solid interactions, and application of these archaea in biomining operations.

  18. Heavy metals bioaccumulation by edible saprophytic mushrooms

    Directory of Open Access Journals (Sweden)

    Ivan ŠIRIĆ

    2016-09-01

    Full Text Available The aim of this study was to determine the concentration of heavy metals Fe, Zn, Cu, Ni, Pb i Cd in certain edible species of saprophytic fungi and the substrate on three area of sampling, and to assess the role of individual species as biological indicators of environmental pollution. In this study were used three species of wild edible mushrooms (Agaricus macroarpus Bohus, Clitocybe inversa (Scop. ex Fr. Pat. and Macrolepiota procera (Scop. ex Fr. Sing.,. Completely developed and mature fruiting bodies were collected at random selection in localities of Trakošćan, Jaska and Petrova gora. At the same time, the substrate soil samples were collected from the upper horizon (0-10. Determination of heavy metals in mushrooms and the substrate soil were carried out by X-ray Fluorescence Spectrometry. The data obtained were analysed by means of the statistical program SAS V9.2. Significant differences were found in the concentrations of Fe, Zn, Cu, Ni, Pb and Cd between analysed species of mushrooms and localities of sampling (P 1. The consumption of investigated mushrooms poses no toxicological risk to human health due to low concentrations analysed metals.

  19. Dithiocarbamate-modified starch derivatives with high heavy metal adsorption performance.

    Science.gov (United States)

    Xiang, Bo; Fan, Wen; Yi, Xiaowei; Wang, Zuohua; Gao, Feng; Li, Yijiu; Gu, Hongbo

    2016-01-20

    In this work, three types of dithiocarbamate (DTC)-modified starch derivatives including DTC starch (DTCS), DTC enzymolysis starch (DTCES) and DTC mesoporous starch (DTCMS) were developed, which showed the significant heavy metal adsorption performance. The adsorption ability of these three DTC modified starch derivatives followed the sequences: DTCMS>DTCES>DTCS. In single metal aqueous solutions, the uptake amount of heavy metal ions onto the modified starches obeyed the orders: Cu(II)>Ni(II)>Cr(VI)>Zn(II)>Pb(II). The adsorption mechanism was proved by the chelating between DTC groups and heavy metal ions through the pH effect measurements. A monolayer adsorption of Langmuir isotherm model for the adsorption of Cu(II) onto DTCMS was well fitted rather than the multilayer adsorption of Freundlich isotherm model. The adsorption kinetics of Cu(II) onto starch derivatives was found to be fit well with the pseudo-second-order model. Additionally, in the presence of EDTA, the adsorption ability and uptake amount of heavy metal ions onto these three DTC modified starch derivatives is identical with the results obtained in the absence of EDTA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Ali [Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, 06532 Ankara (Turkey)], E-mail: ali.duran@kosgeb.gov.tr; Soylak, Mustafa [Department of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey); Tuncel, S. Ali [Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, 06532 Ankara (Turkey)

    2008-06-30

    Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) [poly(VP-PEGMA-EGDMA)] beads with an average size of 30-100 {mu}m were prepared by suspension polymerization. Poly(VP-PEGMA-EGDMA) beads were characterized by swelling studies, scanning electron microscopy (SEM), elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR). The beads with a swelling ratio of 65% were used for the heavy metal removal studies. Chelation capacity of the beads for the selected metal ions, i.e., Pb(II), Cd(II), Cr(III) and Cu(II) were investigated in aqueous media containing different amounts of these ions (5-80 mg/l) and at different pH values (2.0-10.0). The maximum chelation capacities of the poly(VP-PEGMA-EGDMA) beads were 18.23 mg/g for Pb(II), 16.50 mg/g for Cd(II), 17.38 mg/g for Cr(III) and 18.25 mg/g for Cu(II). The affinity order on mass basis was observed as follows: Cu(II) > Pb(II) > Cr(III) > Cd(II). pH significantly affected the chelation capacity of VP incorporated beads. Heavy metal adsorption on the poly(PEGMA-EGDMA) control microspheres was negligible. Regeneration of the chelating beads was easily performed with 0.1 M HNO{sub 3}. It was shown that these beads can be used effectively for heavy metal removal from aqueous solutions with repeatedly adsorption-desorption operations. These features show that poly(VP-PEGMA-EGDMA) beads are potential candidate sorbent for heavy metal removal.

  1. Heavy Metal Contents of Lake Sapanca

    OpenAIRE

    YALÇIN, Nevin; SEVİNÇ, Vahdettin

    2014-01-01

    The heavy metal pollution of Lake Sapanca located in the Marmara region (Turkey), was investigated over time. The lake is the drinking water source of the city of Adapazarı and its environs. The D-80 (TEM) motorway passes about 5 km along the lake's zero point in the Sapanca district. The motorway's wastewater drainages have been connected to the lake without having been subjected to any wastewater treatment. The motorway was opened to service in October 1990. An...

  2. Evaluation of heavy metal complex phytotoxicity

    Directory of Open Access Journals (Sweden)

    Vita Vasilyevna Datsenko

    2016-07-01

    Full Text Available The experimental data dealing with the effect of heavy metals contained in the technogenic contaminated soils on plant objects under controlled conditions was discussed. The aim of this work is to define the quantitative indicators of copper and zinc potential phytotoxicity, namely germination energy, simultaneous germination and duration of the test plants. It was found that the activity of the test plant growth is linked with copper and zinc complex action. Joint effect of copper and zinc is manifested both in inhibition of lettuce growth and determined, above all, by the nature contamination, soil properties and biological specificity of the test plants.

  3. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    Science.gov (United States)

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  4. Layered Double Hydroxides as Effective Adsorbents for U(VI and Toxic Heavy Metals Removal from Aqueous Media

    Directory of Open Access Journals (Sweden)

    G. N. Pshinko

    2013-01-01

    Full Text Available Capacities of different synthesized Zn,Al-hydrotalcite-like adsorbents, including the initial carbonate [Zn4Al2(OH12]·CO3·8H2O and its forms intercalated with chelating agents (ethylenediaminetetraacetic acid (EDTA, diethylenetriaminepentaacetic acid (DTPA, and hexamethylenediaminetetraacetic acid (HMDTA and heat-treated form Zn4Al2O7, to adsorb uranium(VI and ions of toxic heavy metals have been compared. Metal sorption capacities of hydrotalcite-like adsorbents have been shown to correlate with the stability of their complexes with the mentioned chelating agents in a solution. The synthesized layered double hydroxides (LDHs containing chelating agents in the interlayer space are rather efficient for sorption purification of aqueous media free from U(VI irrespective of its forms of natural abundance (including water-soluble bi- and tricarbonate forms and from heavy metal ions. [Zn4Al2(OH12]·EDTA·nH2O is recommended for practical application as one of the most efficient and inexpensive synthetic adsorbents designed for recovery of both cationic and particularly important anionic forms of U(VI and other heavy metals from aqueous media. Carbonate forms of LDHs turned out to be most efficient for recovery of Cu(II from aqueous media with pH0≥7 owing to precipitation of Cu(II basic carbonates and Cu(II hydroxides. Chromate ions are efficiently adsorbed from water only by calcinated forms of LDHs.

  5. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    Assessment of Heavy Metal Contamination in Soils around Cassava Processing Mills in Sub- Urban Areas of Delta State, Southern Nigeria. ... The percent anthropogenic fraction of metals in the soil follow the order Cd > Zn > Ni > Cu > Fe > Cr > Pb. Keywords: Anthropogenic input, cassava, heavy metals, pollution index ...

  6. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    at pH 6 they are found to be Cd(II) and Cr(VI) selective. Metal ion uptake properties of resins follow Freundlich's equation. The resins are recyclable and are therefore employed for the removal of heavy metal pollutants from industrial waste water. Keywords. Uptake properties; heavy metal ion; selectivity; recyclability. 1.

  7. Fractionation, characterization and speciation of heavy metals in ...

    African Journals Online (AJOL)

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation ...

  8. Determination of heavy metals in water sediments and Tilapia zilli ...

    African Journals Online (AJOL)

    The study investigated the heavy metal concentration in Tilapia zilli and water sediments along Kolo Creek in Ogbia Local Government Area, Bayelsa State. Tilapia fish and sediment samples were collected from 5 stations, and analyzed for heavy metals following standard procedures. Four metals (Copper, Lead. Cadmium ...

  9. Assessment and bioremediation of heavy metals from crude oil ...

    African Journals Online (AJOL)

    The assessment of the levels of heavy metals present in crude oil contaminated soil and the application of the earthworm - Hyperiodrilus africanus with interest on the bioremediation of metals from the contaminated soil was investigated within a 90-days period under laboratory conditions. Selected heavy metals such as ...

  10. Heavy metals occurrence in Italian food supplements

    Directory of Open Access Journals (Sweden)

    Brizio P.

    2013-04-01

    Full Text Available In recent years a significant increase in food supplements consumption has been observed, maybe in the belief that they couldn’t be dangerous for consumers health, even if they don’t achieved medical effects. However, environmental pollution can cause heavy metals contamination that could exceed maximum levels established by European legislation. Aim of this work was to evaluate arsenic, cadmium, chromium, lead and mercury content in 12 food supplements seized in a Piedmont shop by the Italian authority against food adulteration. All metals were analysed after mineralization and dilution steps by ICP-MS, with the exception of mercury, detected by the direct analyser TDA-AAS. Only one sample exceed the European maximum limits for lead (3,00 mg/kg but warning levels of chromium (over 3,00 mg/Kg has been detected in three of them.

  11. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa. [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1995-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  12. Investigation of DOTA-Metal Chelation Effects on the Chemical Shift of 129 Xe

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K; Slack, CC; Vassiliou, CC; Dao, P; Gomes, MD; Kennedy, DJ; Truxal, AE; Sperling, LJ; Francis, MB; Wemmer, DE; Pines, A

    2015-09-17

    Recent work has shown that xenon chemical shifts in cryptophane-cage sensors are affected when tethered chelators bind to metals. Here in this paper, we explore the xenon shifts in response to a wide range of metal ions binding to diastereomeric forms of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) linked to cryptophane-A. The shifts induced by the binding of Ca2+, Cu2+, Ce3+, Zn2+, Cd2+, Ni2+, Co2+, Cr2+, Fe3+, and Hg2+ are distinct. In addition, the different responses of the diastereomers for the same metal ion indicate that shifts are affected by partial folding with a correlation between the expected coordination number of the metal in the DOTA complex and the chemical shift of 129Xe. Lastly, these sensors may be used to detect and quantify many important metal ions, and a better understanding of the basis for the induced shifts could enhance future designs.

  13. 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications

    Directory of Open Access Journals (Sweden)

    Prachayasittikul V

    2013-10-01

    Full Text Available Veda Prachayasittikul,1 Supaluk Prachayasittikul,2 Somsak Ruchirawat,3 Virapong Prachayasittikul11Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, 2Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand; 3Laboratory of Medicinal Chemistry, Chulabhorn Research Institute and Chulabhorn Graduate Institute, Bangkok, ThailandAbstract: Metal ions play an important role in biological processes and in metal homeostasis. Metal imbalance is the leading cause for many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. 8-Hydroxyquinoline (8HQ is a small planar molecule with a lipophilic effect and a metal chelating ability. As a result, 8HQ and its derivatives hold medicinal properties such as antineurodegenerative, anticancer, antioxidant, antimicrobial, anti-inflammatory, and antidiabetic activities. Herein, diverse bioactivities of 8HQ and newly synthesized 8HQ-based compounds are discussed together with their mechanisms of actions and structure–activity relationships.Keywords: metal binding compound, antineurodegenerative, anticancer, antidiabetic, multifunctional actions, structure–activity relationships

  14. Effect of heavy metal and EDTA application on heavy metal uptake ...

    African Journals Online (AJOL)

    The present study investigates the effect of different concentration of heavy metals (Cd, Cr and Pb) and ethylenediaminetetraacetic acid (EDTA) application on two Brassica species (Brassica carinata and Brassica juncea). EDTA application had significant (p<0.05) effect on shoot length, shoot fresh weight, shoot dry weight, ...

  15. Characteristics of heavy metal pollution on roadside soil along highway

    Science.gov (United States)

    Zheng, Chaocheng

    2017-10-01

    Highway traffic is the main source of heavy metal pollution. Due to limited cropland, it is very common to plant crops along the highways. So, in view of agricultural products safety, heavy metal pollution by highway traffic to soils along highway is widely concerned. Therefore, to study distribution traits, accumulative laws and influence factors of heavy metals in agricultural soils could provide scientific evidence and theoretical basis for environmental protection along express way.

  16. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7

    OpenAIRE

    Songcan Chen; Xiaomin Li; Guoxin Sun; Yingjiao Zhang; Jianqiang Su; Jun Ye

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of...

  17. Impact of heavy metals on the female reproductive system

    OpenAIRE

    Piotr Rzymski; Katarzyna Tomczyk; Pawel Rzymski; Barbara Poniedziałek; Tomasz Opala; Maciej Wilczak

    2015-01-01

    Introduction. It has been recognized that environmental pollution can affect the quality of health of the human population. Heavy metals are among the group of highly emitted contaminants and their adverse effect of living organisms has been widely studied in recent decades. Lifestyle and quality of the ambient environment are among these factors which can mainly contribute to the heavy metals exposure in humans. Objective. A review of literature linking heavy metals and the female repr...

  18. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-03-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  19. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-01-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  20. Reduction of heavy metal (Pb2+) biosorption in zebrafish model using alginic acid purified from Ecklonia cava and two of its synthetic derivatives.

    Science.gov (United States)

    Fernando, I P Shanura; Sanjeewa, K K Asanka; Kim, Seo-Young; Lee, Jung-Suck; Jeon, You-Jin

    2018-01-01

    Heavy metal contamination has become a major problem that causes severe environmental and health issues due to their biosorption, bioaccumulation, and toxicity. This study was designed to evaluate heavy metal chelating abilities of alginic acid (AA) extracted from the brown seaweed Ecklonia cava and two of its derivatives prepared by the partial oxidation of the 2° OH groups (OAA) and partial carboxylation of the monomeric units (CAA) upon reducing the heavy metal biosorption in zebrafish (Danio rerio) modal. Metal ions were quantified using ICP-OES and biopolymers were characterized by FTIR and XRD analysis. All investigated biopolymers indicated potential ability for chelating Pb2+, Cu2+, Cd2+, As3+, and Ag+. The sorption capacities were in the order of CAA>OAA>AA. All biopolymers indicated a comparatively higher chelation towards Pb2+. AA, OAA, and CAA could effectively reduce Pb2+ induced toxicity and Pb2+ stress-induced ROS production in zebrafish embryos. Besides, they could reduce the biosorption of Pb2+ in adult zebrafish which could lead to bioaccumulation. Since alginic acid purified from E. cava and its derivatives could be utilized as seaweed derived biopolymers to purify heavy metals contaminated water and as a dietary supplement to reduce heavy metal biosorption in organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of heavy metal adsorption on silicene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2014-06-02

    Based on first-principles calculations, we study the effects of heavy metal atoms (Au, Hg, Tl, and Pb) adsorbed on silicene. We find that the hollow site is energetically favorable in each case. We particulary address the question how the adsorption modifies the band structure in the vicinity of the Fermi energy. Our results demonstrate that the heavy metal adatoms result in substantial energy gaps and band splittings in the silicene sheet as long as the binding is strong, which, however, is not always the case. (© 2014 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim) Carbon nanotube flexible sponge was manufactured as high performance electromagnetic shielding material. Chemical vapour deposition (CVD) synthesized sponges with extreme light weight show an electromagnetic shielding above 20 dB and a specific electromagnetic shielding as high as 1100 dB cm3g-1 in the whole 1-18 GHz range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    Directory of Open Access Journals (Sweden)

    Balakrishna Pillay

    2013-05-01

    Full Text Available Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation, treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals.

  3. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    Science.gov (United States)

    Olaniran, Ademola O.; Balgobind, Adhika; Pillay, Balakrishna

    2013-01-01

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals. PMID:23676353

  4. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies.

    Science.gov (United States)

    Olaniran, Ademola O; Balgobind, Adhika; Pillay, Balakrishna

    2013-05-15

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals.

  5. Remediation of biochar on heavy metal polluted soils

    Science.gov (United States)

    Wang, Shuguang; Xu, Yan; Norbu, Namkha; Wang, Zhan

    2018-01-01

    Unreasonable mining and smelting of mineral resources, solid waste disposal, sewage irrigation, utilization of pesticides and fertilizers would result in a large number of heavy metal pollutants into the water and soil environment, causing serious damage to public health and ecological safety. In recent years, a majority of scholars tried to use biochar to absorb heavy metal pollutants, which has some advantages of extensive raw material sources, low-cost and high environmental stability. This paper reviewed the definition, properties of biochar, the mechanism of heavy metal sorption by biochar and some related problems and prospects, to provide some technical support for the application of biochar into heavy metal polluted soils.

  6. Adsorption of heavy metal in freeway by asphalt block

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  7. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products

    OpenAIRE

    Limmatvapirat, C.; Limmatvapirat, S.; Charoenteeraboon, J.; Wessapan, C.; Kumsum, A.; Jenwithayaamornwech, S.; Luangthuwapranit, P.

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as li...

  8. Biomimetic Taste Receptors with Chiral Recognition by Photoluminescent Metal-Organic Frameworks Chelated with Polyaniline Helices.

    Science.gov (United States)

    Lee, Tu; Lin, Tsung Yan; Lee, Hung Lin; Chang, Yun Hsuan; Tsai, Yee Chen

    2016-01-22

    The adsorption of phenylaniline (Phe) enantiomers on (+)-polyaniline (PAN)-chelated [In(OH)(bdc)]n microcrystals was carefully designed and studied by using the Job titration, circular dichroism, X-ray photoelectron spectroscopy, and photoluminescence to mimic heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors in selective, but not specific, ligand binding with chiral recognition and signal transduction. Six essential working principles across different length scales are unraveled: 1) a chiral (+)-PAN (host), 2) specific sites for Phe-(+)/PAN (guest-host) binding, 3) a conformational change of (+)-PAN after binding with Phe enantiomers, 4) different degrees of packing for (+)-PAN, 5) interactions between (+)-PAN and the underlying signal-generating framework (i.e., [In(OH)(bdc)]n microcrystals), and 6) a systematic photoluminescent signal combination by using principal-component analysis from the other three polymer-chelated metal-organic frameworkds (MOFs), such as poly(acrylic acid) (PAA), sodium alginate (SA), and polyvinylpyrrolidone (PVP) to enhance the selectivity and discrimination capabilities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Peptide-tethered monodentate and chelating histidylidene metal complexes: synthesis and application in catalytic hydrosilylation.

    Science.gov (United States)

    Monney, Angèle; Nastri, Flavia; Albrecht, Martin

    2013-04-28

    The Nδ,Nε-dimethylated histidinium salt (His*) was tethered to oligopeptides and metallated to form Ir(III) and Rh(I) NHC complexes. Peptide-based histidylidene complexes containing only alanine, Ala-Ala-His*-[M] and Ala-Ala-Ala-His*-[M] were synthesised ([M] = Rh(cod)Cl, Ir(Cp*)Cl2), as well as oligopeptide complexes featuring a potentially chelating methionine and tyrosine residue, Met-Ala-Ala-His*-Rh(cod)Cl and Tyr-Ala-Ala-His*-Rh(cod)Cl. Chelation of the methionine-containing histidylidene ligand was induced by halide abstraction from the rhodium centre, while tyrosine remained non-coordinating under identical conditions. High catalytic activities in hydrosilylation were achieved with all peptide-based rhodium complexes. The cationic S(Met),C(His*)-bidentate peptide rhodium catalyst outperformed the monodentate neutral peptide complexes and constitutes one of the most efficient rhodium carbene catalysts for hydrosilylation, providing new opportunities for the use of peptides as N-heterocyclic carbene ligands in catalysis.

  10. Sorption of heavy metals on a chitosan-grafted-polypropylene nonwoven geotextile

    Directory of Open Access Journals (Sweden)

    Vandenbossche M.

    2013-04-01

    Full Text Available This work describes the development of an environmental friendly functionalized polypropylene nonwoven geotextile (PP in order to trap heavy metals in sediments and sludges. Chitosan was chosen as the sorbent because of its ability to trap heavy metals, of its natural origin (from shells, and of its low cost. PP was first functionalized with acrylic acid using a cold plasma process, in order to bring some reactive carboxylic functions onto the surface. Chitosan was then covalently grafted on the acrylic acid modified polypropylene. The functionalized surfaces were characterized by FTIR (Fourier Transform InfraRed and chitosan was thus proven to be grafted. The ability of the functionalized textile to trap heavy metals was then investigated. Copper was chosen as the model heavy metal, and artificial solutions of CuSO4 were prepared for the experiments. Sorption studies among the concentration of copper in polluted solutions at 20°C were carried out with PP-g-AA-chitosan (Polypropylene-grafted-Acrylic acid-chitosan in order to evaluate the maximum of absorption of this surface: the textile can chelate copper increasingly with the initial copper concentration until 800 ppm where it reaches a plateau at about 30 mg/L. The effects of pH and of the ionic strength (absorption in a NaCl containing solution were finally investigated. The trapping of Cu2+ decreases slowly when the ionic strength increases. For a seawater-like NaCl concentration of 30g/L, the textile still chelates about 20 mg/L of Cu2+. Finally, the optimum pH to trap the maximum amount of copper was determined to be 4.75, which corresponds to the optimum pH for the solubility of the chitosan.

  11. Review on nanoadsorbents: a solution for heavy metal removal from wastewater.

    Science.gov (United States)

    Thekkudan, Vinni Novi; Vaidyanathan, Vinoth Kumar; Ponnusamy, Senthil Kumar; Charles, Christy; Sundar, SaiLavanyaa; Vishnu, Dhanya; Anbalagan, Saravanan; Vaithyanathan, Vasanth Kumar; Subramanian, Sivanesan

    2017-04-01

    Elimination of heavy metals from contaminated streams is of prime concern due to their ability to cause toxic chaos with the metabolism of flora and fauna alike. Use of advanced nano-engineered technologies such as the innovative combination of surface chemistry, chemical engineering fundamentals and nanotechnology opens up particularly attractive horizons towards treatment of heavy metal contaminated water resources. The obtained product of surface engineered nanoadsorbent produced has successfully proven to show rapid adsorption rate and superior sorption efficiency towards the removal of a wide range of defiant heavy metal contaminants in wastewater. The use of these materials in water treatment results in markedly improved performance features like large surface area, good volumetric potential, extra shelf-lifetime, less mechanical stress, stability under operational conditions with excellent sorption behaviour, no secondary pollution, strong chelating capabilities and they are easy to recover and reuse. This review intends to serve as a one-stop-reference by bringing together all the recent research works on nanoparticles synthesis and its advantages as adsorbents in the treatment of heavy metal polluted wastewater that have so far been undertaken, thereby providing researchers with a deep insight and bridging the gap between past, present and future of the elegant nanosorbents.

  12. Simulation of heavy metal contamination of fresh water bodies: Toxic ...

    African Journals Online (AJOL)

    The results show that ZnSO4 was significantly toxic to the fish only after 96 hours. Co-contamination of the water with both toxicants was found to ameliorate the toxic effects of ZnSO4 significantly. The metal chelating property of glyphosate may be responsible for the observed attenuation of toxicity in the fish in Group ...

  13. Remediation of heavy metal contaminated soil | Nanda | African ...

    African Journals Online (AJOL)

    This paper investigates the plant-microbial interactions in reclaiming the metal contaminated soil with attention to some significant soil biochemical characteristics during the process. Keywords: Heavy metals, bioremediation, phytoremediation, rhizosphere, rhizobacteria, bioaugmentation. African Journal of Biotechnology ...

  14. Phytoremediation of heavy metals roadside contaminated soil using ...

    African Journals Online (AJOL)

    Computing Services

    2013-10-23

    Oct 23, 2013 ... E. camaldeulensis. This suggests that E. camaldeulensis was the best candidate species for phytoremediation of HM contaminated soils. Key words: Keywords: Phytoextraction, Roadside soil, Heavy metal, ... production, construction, vehicle exhaust, waste disposal, ... Unlike organic pollutants, metals.

  15. Emulsifier type, metal chelation and pH affect oxidative stability of n-3-enriched emulsions

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Jacobsen, Charlotte

    2008-01-01

    -enriched oil-in-water emulsion. The selected food emulsifiers were Tween 80, Citrem, sodium caseinate and lecithin. Lipid oxidation was evaluated by determination of peroxide values and secondary volatile oxidation products. Moreover, the zeta potential and the droplet sizes were determined. Twen resulted......Recent research has shown that the oxidative stability of oil-in-water emulsions is affected by the type of surfactant used as emulsifier. The aim of this study was to evaluate the effect of real food emulsifiers as well as metal chelation by EDTA and pH on the oxidative stability of a 10% n-3...... in the least oxidatively stable emulsions, followed by Citrem. When iron was present, caseinate-stabilized emulsions oxidized slower than lecithin emulsions at pH 3, whereas the opposite was the case at pH 7. Oxidation generally progressed faster at pH 3 than at pH 7, irrespective of the addition of iron. EDTA...

  16. Effect of heavy metals on enzymes production by Hebeloma crustuliniforme

    Directory of Open Access Journals (Sweden)

    Hanna Dahm

    2014-08-01

    Full Text Available Studies were carried out in order to dętermine the effect of some heavy metals (Cu, Cd, Pb, Zn on the production of enzymes (cellulases, peetinases. proteases by ectomycorrhizal fungus Hebeloma crusliliniforme (Buli.: Fr. Quél. All the heavy metals inhibited the general enzymatic activity regardless of the source of carbon used. The metals reduced the egzocellulolytic activity more in media with cellulose powder than with CMC (carboxymethylocellulosc. Among pectolytic enzymes heavy metals most strongly inhibited polygalacturonase (PG. The heavy metals did not harmful affect the activity of pectate lyase (PGL. Proteolytic activity of Hebeloma crustuliniforme was leasi affected by zinc (Zn. The degree of inhibition of enzymes by heavy metals can be presented in the following order Pb < Zn < Cd

  17. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7.

    Science.gov (United States)

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-09-29

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments.

  18. In silico strategies for the selection of chelating compounds with potential application in metal-promoted neurodegenerative diseases

    Science.gov (United States)

    Rodríguez-Rodríguez, Cristina; Rimola, Albert; Alí-Torres, Jorge; Sodupe, Mariona; González-Duarte, Pilar

    2011-01-01

    The development of new strategies to find commercial molecules with promising biochemical features is a main target in the field of biomedicine chemistry. In this work we present an in silico-based protocol that allows identifying commercial compounds with suitable metal coordinating and pharmacokinetic properties to act as metal-ion chelators in metal-promoted neurodegenerative diseases (MpND). Selection of the chelating ligands is done by combining quantum chemical calculations with the search of commercial compounds on different databases via virtual screening. Starting from different designed molecular frameworks, which mainly constitute the binding site, the virtual screening on databases facilitates the identification of different commercial molecules that enclose such scaffolds and, by imposing a set of chemical and pharmacokinetic filters, obey some drug-like requirements mandatory to deal with MpND. The quantum mechanical calculations are useful to gauge the chelating properties of the selected candidate molecules by determining the structure of metal complexes and evaluating their stability constants. With the proposed strategy, commercial compounds containing N and S donor atoms in the binding sites and capable to cross the BBB have been identified and their chelating properties analyzed.

  19. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.J.; Clemente, Rafael; Roig, Asuncion; Bernal, M.P

    2003-04-01

    The effects of organic amendments on metal bioavailability were not always related to their degree of humification. - Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg{sup -1}) and Zn (2602 mg kg{sup -1}), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg{sup -1}) and Pb (190 mg kg{sup -1}). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl{sub 2} or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg{sup -1} soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish.

  20. Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils.

    Science.gov (United States)

    Juwarkar, Asha Ashok; Yadav, Santosh Kumar; Kumar, Phani; Singh, Sanjeev Kumar

    2008-10-01

    The pot experiments were conducted to evaluate the effect of different concentrations of arsenic, chromium and zinc contaminated soils, amended with biosludge and biofertilizer on the growth of Jatropha curcas which is a biodiesel crop. The results further showed that biosludge alone and in combination with biofertilizer significantly improved the survival rates and enhanced the growth of the plant. With the amendments, the plant was able to grow and survive upto 500, 250 and 4,000 mg kg(-1) of As, Cr and Zn contaminated soils, respectively. The results also showed that zinc enhanced the growth of J. curcas more as compared to other metals contaminated soils. The heavy metal accumulation in plant increased with increasing concentrations of heavy metals in soil, where as a significant reduction in the metal uptake in plant was observed, when amended with biosludge and biofertilizer and biosludge alone. It seems that the organic matter present in the biosludge acted as metal chelator thereby reducing the toxicity of metals to the plant. Findings suggest that plantation of J. curcas may be promoted in metal contaminated soils, degraded soils or wasteland suitably after amending with organic waste.

  1. Hydroponic phytoremediation of heavy metals and radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  2. Heavy metals biogeochemistry in abandoned mining areas

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available Plants growing on the abandoned Portuguese mines, highly contaminated with W, Sn, As, Cd, Cu, Zn and Pb, have been studied for their biogeochemical indication/prospecting and mine restoration potential. The results of analysis show that the species best suited for biogeochemical indicating are: aerial tissues of Halimium umbellatum (L. Spach, for As and W; leaves of Erica arborea L. for Bi, Sn, W and mostly Pb; stems of Erica arborea L. for Pb; needles of Pinus pinaster Aiton and aerial tissues of Pteridium aquilinum (L. Kuhn for W; and leaves of Quercus faginea Lam. for Sn. The aquatic plant studied (Ranunculus peltatus Schrank can be used to decrease the heavy metals, and arsenic amounts into the aquatic environment affected by acid mine drainages.

  3. Antioxidant and Metal Chelation-Based Therapies in the Treatment of Prion Disease

    Directory of Open Access Journals (Sweden)

    Marcus W. Brazier

    2014-04-01

    Full Text Available Many neurodegenerative disorders involve the accumulation of multimeric assemblies and amyloid derived from misfolded conformers of constitutively expressed proteins. In addition, the brains of patients and experimental animals afflicted with prion disease display evidence of heightened oxidative stress and damage, as well as disturbances to transition metal homeostasis. Utilising a variety of disease model paradigms, many laboratories have demonstrated that copper can act as a cofactor in the antioxidant activity displayed by the prion protein while manganese has been implicated in the generation and stabilisation of disease-associated conformers. This and other evidence has led several groups to test dietary and chelation therapy-based regimens to manipulate brain metal concentrations in attempts to influence the progression of prion disease in experimental mice. Results have been inconsistent. This review examines published data on transition metal dyshomeostasis, free radical generation and subsequent oxidative damage in the pathogenesis of prion disease. It also comments on the efficacy of trialed therapeutics chosen to combat such deleterious changes.

  4. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif) Protein to Heavy Metals

    OpenAIRE

    Kamala Boonyodying; Thanakorn Watcharasupat; Waranan Yotpanya; Thawatchai Kitti; Wanna Kawang; Duangkamol Kunthalert; Sutthirat Sitthisak

    2012-01-01

    A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif) recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to...

  5. X-ray fluorescence spectroscopic determination of heavy metals and ...

    African Journals Online (AJOL)

    Purpose: To determine the heavy metal and trace element composition of the powdered aerial parts of Origanum sipyleum L. and its water extract. Methods: The heavy metal and trace elements content of the powdered plant material and 2 % aqueous extract were evaluated by x-ray fluorescence spectroscopy with silicon ...

  6. Assessment of heavy metals in Lake Uluabat, Turkey | Elmaci ...

    African Journals Online (AJOL)

    The accumulation of heavy metals (Cu, Ni, Zn, Cd, Pb, Cr, B, As) was measured in water, plankton and sediment samples taken from different areas of Lake Uluabat during January 2003 to February 2004. The sequential extraction used in this study is useful to assess the potential mobility of heavy metals in the sediment ...

  7. Bioaccumulation of Heavy Metals by Moringa Oleifera in Automobile ...

    African Journals Online (AJOL)

    Plants accumulate minerals essential for their growth from the environment alongside with heavy metals from contaminated areas.This study investigated bioaccumulation of heavy metals by Moringa oleifera in automobile workshops in three selected local government areas in Ibadan. This was done with a view to ...

  8. Sediment-Water Exchange of Selected Heavy Metals at the ...

    African Journals Online (AJOL)

    Organic matter oxidation contributed to the mobilization of heavy metals, demonstrating the significant effect of atmospheric oxidation on heavy metals dynamics at the Makupa creek backwaters during low tide. Humic and fluvic acid mobilization did not have a significant effect in the mobilization of Fe (Pearson correlation ...

  9. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    Heavy Metals Pollution on Surface Water Sources in Kaduna Metropolis, Nigeria. JA Aliyu, Y Saleh, S Kabiru. Abstract. This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes ...

  10. Heavy metal contents of Azidirachta indica collected from Akungba ...

    African Journals Online (AJOL)

    Azadirachta indica has many medicinal values, particularly among the Africans, and these have been reported [9, 10, 11, 12, 13]. Plants located along highways .... of heavy metals indicate that significant heavy metal pollution from extraneous source(s) has taken place. Table 6 showed correlation coefficients carried out.

  11. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    Directory of Open Access Journals (Sweden)

    Marek Slávik,Tomáš Tóth

    2014-02-01

    Full Text Available In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86 times. For relatively safety is growing of Pisum sativum L., where there was no exceed any limits values. The root vegetables are dangerous, where the sample of Raphanus sativus L. exceed 6.71978 times the limit values for Pb although the content of lead in the soil was under hygienic limits. Transfer of heavy metals into consume parts of vegetables was no limited by high content of humus into soil. Transfer of heavy metals into consume parts of vegetables was no limited by weakly alkaline soil reaction. These factors are considered for factors limited mobility and input heavy metals into plants. We determined heavy metals by AAS method on a Varian 240 FS and method AMA 254.

  12. Physicochemical characteristics and heavy metal levels in soil ...

    African Journals Online (AJOL)

    Distribution pattern of heavy metals in petrol stations, abattoirs, mechanic workshops and hospital incinerator sites were Mn > Zn > Pb > Cd, while for dumpsites Zn > Mn > Pb > Cd. Pollution index indicated that soil qualities varied between slightly contaminated to severely polluted status. This showed that the heavy metal ...

  13. Evaluation of heavy metal uptake and translocation by Acacia ...

    African Journals Online (AJOL)

    Many organic and inorganic pollutants, including heavy metals are being transported and mixed with the cultivated soils and water. Heavy metals are the most dangerous pollutants as they are nondegradable and accumulate and become toxic to plants and animals. An experiment was conducted in the glasshouse to ...

  14. Characterization of Heavy Metals in Vegetables Using Inductive ...

    African Journals Online (AJOL)

    The heavy metals or trace elements play an important role in the metabolic pathways during the growth and development of plants, when available in required concentration. The heavy metal concentration of. Cadmium (Cd), Cobalt (Co), Copper (Cu), Iron (Fe), Nickel (Ni), Lead (Pb) and Zinc (Zn) was analyzed using ...

  15. Investigation of the origin and distribution of heavy metals around ...

    African Journals Online (AJOL)

    2010-04-28

    Apr 28, 2010 ... This study was based on the outcome of the soil geochemical survey which was conducted by the Council for Geoscience around Ebenezer Dam during .... Rock sampling: The concentrations of heavy metals in the soil were used to plot the .... Rose et al., 1979; Alloway et al., 1997). Heavy metals. Granitic.

  16. Ecological risk assessment of heavy metals pollution on irrigated ...

    African Journals Online (AJOL)

    This paper assessed the heavy metals pollution in irrigated soil of salanta river valley of Sharada industrial area with aim of assessing the potential ecological risk of Cd, Cu, Cr and Zn. Soil samples were collected from five plots randomly selected along the stream and heavy metals (Cd, Cu, Cr and Zn) and pH were ...

  17. Urban water pollution by heavy metals and health implication in ...

    African Journals Online (AJOL)

    Studies of common heavy metals were conducted at Onitsha, Anambra State, the most urbanized city in Southeastern Nigeria. It was discovered that both surface and subsurface water were heavily polluted. Seven (7) heavy metals namely: arsenic (As+2), cadmium (Cd+2), lead (Pb+2), mercury (Hg+2), zinc (Zn+2), copper ...

  18. Species sensitivity analysis of heavy metals to freshwater organisms.

    Science.gov (United States)

    Xin, Zheng; Wenchao, Zang; Zhenguang, Yan; Yiguo, Hong; Zhengtao, Liu; Xianliang, Yi; Xiaonan, Wang; Tingting, Liu; Liming, Zhou

    2015-10-01

    Acute toxicity data of six heavy metals [Cu, Hg, Cd, Cr(VI), Pb, Zn] to aquatic organisms were collected and screened. Species sensitivity distributions (SSD) curves of vertebrate and invertebrate were constructed by log-logistic model separately. The comprehensive comparisons of the sensitivities of different trophic species to six typical heavy metals were performed. The results indicated invertebrate taxa to each heavy metal exhibited higher sensitivity than vertebrates. However, with respect to the same taxa species, Cu had the most adverse effect on vertebrate, followed by Hg, Cd, Zn and Cr. When datasets from all species were included, Cu and Hg were still more toxic than the others. In particular, the toxicities of Pb to vertebrate and fish were complicated as the SSD curves of Pb intersected with those of other heavy metals, while the SSD curves of Pb constructed by total species no longer crossed with others. The hazardous concentrations for 5 % of the species (HC5) affected were derived to determine the concentration protecting 95 % of species. The HC5 values of the six heavy metals were in the descending order: Zn > Pb > Cr > Cd > Hg > Cu, indicating toxicities in opposite order. Moreover, potential affected fractions were calculated to assess the ecological risks of different heavy metals at certain concentrations of the selected heavy metals. Evaluations of sensitivities of the species at various trophic levels and toxicity analysis of heavy metals are necessary prior to derivation of water quality criteria and the further environmental protection.

  19. Assessment of toxic heavy metal loading in topsoil samples within ...

    African Journals Online (AJOL)

    gilly

    There is dearth in information on the impact of lime- stone and other mineral explorations on the surrounding environment in terms of heavy metals pollution in Nigeria. ... grinded using agate mortar. They were sieved using nylon sieve with 0.5 mm mesh size. Analyses of heavy metals and other soil properties. The pH of soil ...

  20. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    unguis. The isolated fungi were investigated for their potential to remove heavy metals from wastewater effluent of tanning leather industry. Such effluent was alkaline (pH, 8.2) with high content of total soluble salts (30.6 mS/cm) and heavy metals ...

  1. Fungicide, antibiotic, heavy metal resistance and salt tolerance of ...

    African Journals Online (AJOL)

    Fungicide, antibiotic, heavy metal resistance and salt tolerance of root nodule isolates from Vicia palaestina. ... African Journal of Biotechnology ... The objective of this study was to investigate the effects of fungicides, antibiotics, heavy metal and salt on growth of Rhizobium isolates which isolated from the Vicia palaestina ...

  2. Heavy metal bioaccumulation in the fish communities of Areba River ...

    African Journals Online (AJOL)

    All the 22 fish species analysed were contaminated with heavy metals ranging from 2 to 7 times above the WHO and New Zealand maximum acceptable limits for food. Fe and Zn were the highest bioaccumulated heavy metals while Mn and V where generally the lowest. Ni was not detected in Ischthys henryi, so also were ...

  3. Heavy metal biosorption sites in Penicillium cyclopium | Tsekova ...

    African Journals Online (AJOL)

    The biomass of Penicillium cyclopium was subjected to chemical treatment to study the role of the functional groups in the biosorption of heavy metal ions. The modifications of the functional groups were examined with infrared spectroscopy. Hydroxyl groups were identified as providing the major sites of heavy metal ...

  4. Relationships between heavy metals in the catfish, Chrysicthys ...

    African Journals Online (AJOL)

    Relationships between heavy metals in the catfish, Chrysicthys nigrodigitatus , water column and sediments of taylor creek, southern Nigeria. ... The best relationships were observed for Ni-Zn (r=0.72) and Cd-Pb (r=0.65). Partitioning coefficients (£d) of heavy metals between dissolved phase and SPM were generally low, ...

  5. urban dietary heavy metal intake from protein foods and vegetables

    African Journals Online (AJOL)

    Mgina

    ABSTRACT. Contamination of food and food products by heavy metals has made dietary intake as one of the major routes of these harmful elements to human beings. The human dietary intake of heavy metals cadmium, copper, lead and zinc from protein-foods (beans, meat, fish, milk) and green vegetables consumed daily ...

  6. Urban Dietary Heavy Metal Intake from Protein Foods and ...

    African Journals Online (AJOL)

    Contamination of food and food products by heavy metals has made dietary intake as one of the major routes of these harmful elements to human beings. The human dietary intake of heavy metals cadmium, copper, lead and zinc from protein-foods (beans, meat, fish, milk) and green vegetables consumed daily from ...

  7. assessment of heavy metals concentrations in the surface water of ...

    African Journals Online (AJOL)

    User

    This work aimed at assessing the concentrations of heavy metals in the surface water of Bompai-. Jakara drainage basin. The points of ... Keywords: Heavy metals, surface water, drainage basin, standard limit. INTRODUCTION. Water pollution in .... discrepancies in values obtained. Pb concentrations recorded in this study ...

  8. Sorption of Heavy Metal Ions from Mine Wastewater by Activated ...

    African Journals Online (AJOL)

    Michael

    2016-12-02

    Dec 2, 2016 ... Buah, W. K. and Dankwah, J. R. (2016), “Sorption of Heavy Metals from Mine Wastewater by Activated. Carbons Prepared ... A study on sorption of heavy metal ions: Lead (Pb2+), Copper (Cu2+) and Cadmium (Cd2+) from mine wastewater by activated ... (Pb), having relatively high densities and are toxic.

  9. A bioseparation process for removing heavy metals from waste ...

    African Journals Online (AJOL)

    A bioseparation process for removing heavy metals from waste water using biosorbents. ... The presence of heavy metals in the environment is of major concern because of their toxicity, bioaccumulating tendency, and threat to human life and the environment. In recent years, many low cost sorbents such as algae, fungi ...

  10. Heavy Metals Levels in Fish Samples from North Central Nigerian ...

    African Journals Online (AJOL)

    Heavy Metals Levels in Fish Samples from North Central Nigerian Rivers. IS Eneji, E Ogah, R Vesuwe, LA Nnamonu, R Sha'Ato. Abstract. Most aquatic organisms are capable of accumulating heavy metals to concentrations much higher than those present in water and sediments in their environment. In this piece of work, ...

  11. Heavy Metals in Soils and Tomatoes Grown in Urban Fringe ...

    African Journals Online (AJOL)

    user

    Heavy metals are ubiquitous in the environment, as a result of both natural and anthropogenic activities, and humans are exposed to them through various pathways. (Wilson and Pyatt, 2007). Heavy metals like iron, tin, copper, manganese and vanadium occur naturally in the environment and could serve as plant nutrients.

  12. Concentrations of Heavy Metals in Some Important Rivers of Owerri ...

    African Journals Online (AJOL)

    Water samples from Rivers Azaraegbelu, Ogochie, Okatankwu and Otamiri were analyzed for lead (Pb), arsenic (As), cadmium (Cd) and zinc (Zn). The concentration of lead was highest in water samples ... values of the heavy metals analyzed. Keywords: Heavy metals, concentration, river, pollution, bioavailability, toxicity ...

  13. Heavy Metal Concentrations In A West African Sahel Reservoir ...

    African Journals Online (AJOL)

    ... mean concentrations varied significantly between stations (P<0.05). The concentrations of heavy metals were below contamination levels and fall within the limits reported for other West African small sahel reservoirs. Keywords: Heavy metals, Pollutants, Environment, Alau reservoir, Sahel, Enrichment Animal Research ...

  14. Concentration of heavy metals in a Niger Delta Mangrove Creek ...

    African Journals Online (AJOL)

    ... was no statistically significant difference (P > 0.05) in the concentration of heavy metals at the study stations. The EDTA hardness depicts hard water condition. The extremely low levels of the toxic heavy metals, Ni, Cr, Pb, Cd, and Hg, and total hydrocarbon content (THC) of <1 mg/l indicate that the water was not polluted.

  15. Heavy metal bioaccumulation and biomarkers of oxidative stress in ...

    African Journals Online (AJOL)

    Human activities can have dramatic effects on animal populations around urban areas with heavy metal contamination being a primary cause of harm. Amphibians, as residents of aquatic systems and with their semi-permeable skin are especially susceptible to heavy metal contamination. To better understand the effect of ...

  16. Assessment of heavy metal contamination in raw milk for human ...

    African Journals Online (AJOL)

    The presence of heavy metals in various farm inputs, including feed, fertilizer, water and environment leads to excretion of the residues in animals' milk. Because consumption of milk contaminated with heavy metals poses serious threats to consumers' health, a study was conducted in 2012 – 2013 in Pakistan to evaluate ...

  17. Heavy metals in soils of cocoa plantation (Theobroma cacao L.)

    Science.gov (United States)

    Cocoa has experienced significant growth in recent years in Peru and the presence of heavy metals in the soils of these plantations is a potential problem for the export of this product. Contents of heavy metals (Cd, Ni, Pb, Fe, Cu, Zn, Mn) in soils from 19 plantations that have been in production f...

  18. Assessment of heavy metal pollution in soils along major roadside ...

    African Journals Online (AJOL)

    EJIRO

    living organisms, when permissible concentration levels are exceeded. Heavy ... index (Igeo), and (3) Classify heavy metals by their similarities and ..... and classify metals. Statistical analysis. Analysis of variance was employed to determine whether groups of variables have the same mean. Sites showed no significant ...

  19. Influence of different concentration of heavy metals on the seed ...

    African Journals Online (AJOL)

    use

    Some heavy metals in higher doses may cause metabolic disorders and growth inhibition for most of the plant species. This study was performed in order to evaluate two tomato varieties (Barakat and. Local tomato) response to ordinary Heavy Metals (Fe, Pb and Cu) in northern of Iran. Five doses (0,. 0.001, 0.01, 0.1 and ...

  20. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    Microorganisms play a vital role in heavy metal contaminated soil and wastewater by the mechanisms of biosorption. In this study, heavy metal resistant bacteria were isolated from an electroplating industrial effluent samples that uses copper, cadmium and lead for plating. These isolates were characterized to evaluate their ...

  1. Comparative Studies on Mosses for Heavy Metals Pollution ...

    African Journals Online (AJOL)

    Ekiti, a rural town was investigated using mosses grown in the localities as possible bio-indicators. The sources of these heavy metals were discovered to include: vehicular emission and incineration of domestic wastes and the heavy metals from ...

  2. Determination of heavy metals and genotoxicity of water from an ...

    African Journals Online (AJOL)

    Thus, the present study aimed to quantify and evaluate the heavy metal genotoxicity of artesian water in the city by Atomic absorption spectrophotometer analysis and testing with the Allium cepa test, respectively. This study reveals a chemical contamination in well water in the city, caused by the presence of heavy metals.

  3. Heavy Metal Music and Adolescent Suicidality: An Empirical Investigation.

    Science.gov (United States)

    Scheel, Karen R.; Westefeld, John S.

    1999-01-01

    Investigates the relationship between preference for heavy metal music and vulnerability to suicide among high school students. Results indicate that preference for heavy metal music among adolescents may be sign of increased suicidal vulnerability, but also suggests that the source of the problem may lie more in personal and familial…

  4. heavy metals pollution on surface water sources in kaduna ...

    African Journals Online (AJOL)

    ABSTRACT. This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted ...

  5. Assessment of heavy metals concentrations in coastal sediments in ...

    African Journals Online (AJOL)

    EJIRO

    This study was undertaken to evaluate the heavy metals contamination of copper, zinc, manganese, iron, chromium ... Key words: Marine pollution, heavy metals, coastal sediments, toxicity, Nosy Be, Mahajanga, Madagascar. INTRODUCTION .... source of Cd and Pb in sediments come from ferry port activities and from the ...

  6. Heavy metal contamination of selected spices obtained from Nigeria ...

    African Journals Online (AJOL)

    ADOWIE PERE

    KEYWORDS: heavy metal; contamination; Nigeria; spices; health; daily intake. Over the millennia, spices have been used in changing world's cuisine and medicine (Dukes,. 2003). Regrettably, significant quantities of heavy metals have been detected in natural food spices such as pepper and mustard (Krejpcio, 2007; ...

  7. X-ray fluorescence spectroscopic determination of heavy metals and ...

    African Journals Online (AJOL)

    Purpose: To determine the heavy metal and trace element composition of the powdered aerial parts of. Origanum sipyleum L. and its water extract. Methods: The heavy metal and trace elements content of the powdered plant material and 2 % aqueous extract were evaluated by x-ray fluorescence spectroscopy with silicon ...

  8. Assessment of heavy metal pollution in soils along major roadside ...

    African Journals Online (AJOL)

    ... to create awareness of vehicular heavy metal pollution to Botswana policy makers in the mitigation of vehicular pollution, as it is barely monitored. Key words: Heavy metal contamination, roadside soils, enrichment factors, contamination factor, pollution load index, geoaccumulation index, cluster analysis, factor analysis.

  9. Heavy Metals Accumulation Characteristics of Vegetables in Hangzhou City, China

    Directory of Open Access Journals (Sweden)

    GU Yan-qing

    2015-08-01

    Full Text Available A field survey of heavy metal concentrations in soils and vegetables grown in 30 vegetable farmlands of Hangzhou City were carried out. Through calculating the bioconcentration factor(BCFand transfer factor(TFfor different heavy metals(Cu, Zn, Cd, Cr and Pbin 27 kinds of different vegetables which belong to leafy vegetables, root vegetables or eggplant fruit vegetables, assessing their accumulation characteristics of heavy metals according to the differences of the bio-concentration factor, the reasonable proposals were put forward to optimize the planting structure of vegetables in mild and middle-level heavy metal contamination soils. The experimental results were as follows: In soils with mild and middle-level heavy metal contamination, leafy vegetables, such as crown daisy, cabbage, celery and Chinese long cabbage, had relatively low enrichment ability of heavy metals, so as the root and fruit vegetables like white radish, carrot, tomatoes, hence these vegetables could be planted preferentially. In contrast, some kinds of vegetables, including white amaranth, red amaranth, tatsoi, broccoli, gynura, brassica juncea and lettuce of leafy vegetables, lactuca sativa, taro, red radish and cherry radish of rhizome vegetables and sweet pepper of fruit vegetables, had relatively high accumulation ability of heavy metal, which should be avoided to be planted in soils with mild and middle-level heavy metal contamination.

  10. Heavy metal contamination of soil and sediment in Zambia | Ikenaka ...

    African Journals Online (AJOL)

    Heavy metal pollution is one of the most important problems in Zambia and causes serious effects to humans and animals. The aim of the present study was to evaluate the spatial distribution of heavy metals in main areas of Zambia and understand the characteristics of the pollution in each area. River and lake sediments ...

  11. Heavy metals accumulation in edible part of vegetables irrigated ...

    African Journals Online (AJOL)

    Hassana Ibrahim Mustapha

    In this present study, the quality of municipal wastewater used for irrigation of spinach was investigated for its heavy metal build-up. The municipal wastewater used for irrigation and the irrigated spinach samples were collected and analyzed for their heavy metal concentrations. The results indicate that the municipal ...

  12. Heavy metal accumulation in Melilotus officinalis under crown Olea ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... wastewater has been applied for 7 years. This would provide knowledge that guides future research into the protection of the environment and domestic animals from exposure to heavy metals with potential to cause health problems. Although total concentrations of heavy metals in soil poorly indicate their ...

  13. Classification of Plants According to Their Heavy Metal Content ...

    African Journals Online (AJOL)

    The classes of plant species according to their accumulated heavy metals around North Mara Gold Mine were not known. ... requirements, optimizations, growth rates and the incidence of pests and diseases are required on the identified heavy metal hyperaccumulator plants for possible future remediation of the study area.

  14. Uptake and elimination kinetics of heavy metals by earthworm ...

    African Journals Online (AJOL)

    Earthworm inoculation of petroleum hydrocarbon contaminated soil is thought to catalyze the bioremediation. Most bioremediation studies focus on the petroleum hydrocarbon content and not on the heavy metals. Here, the uptake kinetics of heavy metals by earthworm in used engine oil contaminated soil was investigated.

  15. Utilization of Plant Refuses as Component of Heavy Metal Ion ...

    African Journals Online (AJOL)

    Waste materials like fruit and vegetable refuses were utilized as component of sensors capable of detecting heavy metals like lead ions and mercury ions by electrochemical method. The ability of the fabricated sensors to detect the presence of heavy metals was analyzed using electrochemical methods like cyclic ...

  16. assessment of heavy metal concentration in water around the ...

    African Journals Online (AJOL)

    nb

    lead, nickel and zinc (EU 1998, TBS 2005,. WHO 2008).When heavy metal concentrations in water exceed ... that the dependency of heavy metal concentration on rainfall variations can be complex (Meybeck ..... IAEA 2009 Nuclear energy series establishment of uranium mining and processing operations in the context of ...

  17. Determination of Heavy Metal Genotoxicity and their Accumulation ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: This study investigated bioaccumulation of heavy metals and cytogenotoxic effects that could result from exposure of fish to heavy metals in the Asa River, Ilorin, Nigeria. The three different fish species, Tilapia zilli, Oreochromis niloticus and Sarotherodon galilaeus were obtained from the Asa River and the ...

  18. Determination of heavy metals in chinese prickly ash from different ...

    African Journals Online (AJOL)

    The highest concentrations of Pb and As in CPA exceeded the maximum permissible limits in China. Based on current safety standards, the concentrations of heavy metals in these CPA samples mean they are safe for human consumption. Conclusions: The status of heavy metal concentrations of CPA should be further ...

  19. Study on physicochemical and heavy metals (Pb, Fe, Mn ...

    African Journals Online (AJOL)

    A study on the physicochemical and heavy metals concentration of drinking water in Dutse Jigawa State was conducted between May, 2010 and February 2011. The parameters analyzed were the colour, odour, taste, temperature, turbidity, conductivity, pH, alkalinity, total hardness, dissolved oxygen and some heavy metals ...

  20. Levels of some heavy metals in cassava and plantain from ...

    African Journals Online (AJOL)

    Test

    ABSTRACT: The concentrations of heavy metals (Ni, Zn, Cu, Pb and Fe) were determined in cassava and plantain from farmlands in kaani and Kpean Communities in Khana Local. Government Area of Rivers State, Nigeria. Samples were collected, prepared, digested and analyzed using AAS. The levels of heavy metals ...

  1. Heavy Metal Pollution of Vegetable Crops Irrigated with Wastewater ...

    African Journals Online (AJOL)

    User

    exotic and traditional vegetables (samples = 240) irrigated with wastewater from some parts of Accra were studied. ... pesticides (McBride, 2003), as well as ...... Chemical speciation of heavy metals in sewage sludge and related matrices. In. Heavy Metals in Wastewater and Sludge. Treatment Process. (J. N. Lester, ed.), pp ...

  2. Heavy metal accumulation in Melilotus officinalis under crown Olea ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... This study was conducted to investigate heavy metal accumulation in Melilotus officinalis under crown. Olea europaea L forest in Rey town (Tehran, Iran), irrigated with wastewater and well water. Zn, Pb, Cr and Ni were determined at two sites. Heavy metal total concentrations (mg kg-1) in clay soils of pH ...

  3. Heavy metals accumulation in vegetables grown along the ...

    African Journals Online (AJOL)

    Heavy metals accumulation in vegetables grown along the Msimbazi River in Dar es Salaam, Tanzania. ... International Journal of Biological and Chemical Sciences ... With exception to Ipomea batata, other vegetables contained at least two types of heavy metals with high concentrations beyond the permissible values ...

  4. Synergistic Effects of Heavy Metals and Pesticides in Living Systems

    Directory of Open Access Journals (Sweden)

    Nitika Singh

    2017-10-01

    Full Text Available There is a widespread repeated exposure of the population to the pesticides and heavy metals of occupational and environmental origin. Such population is forced to undergo continuous stress imposed by combined exposure of the heavy metals and different classes of the pesticides used in agricultural as well as health practices. The existing reports from several workers have indicated that heavy metals and pesticides in combination may lead more severe impact on the human health when compared to their individual effects. Such a combination of pesticides and heavy metals may also change or influence the detection of exposure. Several studies in past have shown the synergistic toxic effects of heavy metals and pesticides. Such evaluations have revealed the synergistic interactions of various heavy metals and pesticides in animals as well as humans. The aim of the present article is to provide a synthesis of existing knowledge on the synergistic effects of heavy metal and pesticides in living systems. The information included in this article may be useful for different environment protection agencies and policy makers to consider the combined effects of heavy metals and pesticides on humans while designing strategies toward environmental protection and safety regulations about human health.

  5. Removal of heavy metals from aqueous solution by using mango ...

    African Journals Online (AJOL)

    user

    2011-03-14

    Mar 14, 2011 ... waste pollution, thermal pollution, shipping water pollution and radioactive wastes (Tyagi and Mehra, 1994). Heavy metals such as zinc, lead and chromium ... alkalis, acids, detergents and heat, which may enhance the amount of the metal sorbed. When non-viable biomass is used in the removal of heavy ...

  6. Distribution of Heavy Metals in the Coastal Marine Surficial ...

    African Journals Online (AJOL)

    the trend of pollution in coastal areas has been increasing over time. In Tanzania, heavy metals in sediments have been determined in the Dar es. Salaam harbour (Machiwa 1992, 2000) and along. River Msimbazi (A'khabuhaya and Lodenius. 1988). Heavy metals concentration have also been measured from sediments ...

  7. Assessment of Heavy Metal Status of Boreholes in Calabar South ...

    African Journals Online (AJOL)

    Assessment of Heavy Metal Status of Boreholes in Calabar South Local Government Area, Cross River State, Nigeria. GN Njar, AI Iwara, RA Offiong, TD Deekor. Abstract. Although, many heavy metals are necessary in small amounts for the normal development of the biological cycles, most of them become toxic at high ...

  8. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae).

    Science.gov (United States)

    Lavid, N; Schwartz, A; Yarden, O; Tel-Or, E

    2001-02-01

    Co-localization of polyphenols and peroxidase activity was demonstrated in epidermal glands of the waterlily (Nymphaea) by histochemistry. Total phenols, tannins and peroxidase activity were determined quantitatively in plant extracts. Polyphenols were partially identified and were found to consist mainly of hydrolyzable tannins, gallic and tannic acid derivatives. Nymphaea polyphenols were shown to chelate Cr, Hg, and Pb in vitro, and Cd-binding by polymerized polyphenols was demonstrated in leaves exposed to Cd in vivo. Both polyphenols and peroxidases were found at very high constitutive levels, which were not induced or altered by external conditions, such as light and heavy-metal stress. It is suggested that the polymerization of polyphenols by peroxidases, enhanced after heavy-metal uptake and detoxification, is responsible for the binding of heavy metals in Nymphaea epidermal glands.

  9. Reducing hazardous heavy metal ions using mangium bark waste.

    Science.gov (United States)

    Khabibi, Jauhar; Syafii, Wasrin; Sari, Rita Kartika

    2016-08-01

    The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu(2+) > Ni(2+) > Pb(2+) > Hg(2+), while those from mixture solutions showed that Hg(2+) > Cu(2+) > Pb(2+) > Ni(2+). Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg(2+) in a mixture solution and Cu(2+) in single-metal solution. The Cu(2+) absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater.

  10. Heavy metals in the environment; uncertainty and sensitivity analysis of spatial predictions of heavy metals in wheat

    NARCIS (Netherlands)

    Brus, D.J.; Jansen, M.J.W.

    2004-01-01

    Heavy metals seriously threaten the health of human beings when they enter the food chain. Therefore, policymakers require precise predictions of heavy metal concentrations in agricultural crops. In this paper we quantify the uncertainty of regression predictions of Cd and Pb in wheat (Triticum

  11. Modeling of Heavy Metal Transformation in Soil Ecosystem

    Science.gov (United States)

    Kalinichenko, Kira; Nikovskaya, Galina N.

    2017-04-01

    The intensification of industrial activity leads to an increase in heavy metals pollution of soils. In our opinion, sludge from biological treatment of municipal waste water, stabilized under aerobic-anaerobic conditions (commonly known as biosolid), may be considered as concentrate of natural soil. In their chemical, physical and chemical and biological properties these systems are similar gel-like nanocomposites. These contain microorganisms, humic substances, clay, clusters of nanoparticles of heavy metal compounds, and so on involved into heteropolysaccharides matrix. It is known that microorganisms play an important role in the transformation of different nature substances in soil and its health maintenance. The regularities of transformation of heavy metal compounds in soil ecosystem were studied at the model of biosolid. At biosolid swelling its structure changing (gel-sol transition, weakening of coagulation contacts between metal containing nanoparticles, microbial cells and metabolites, loosening and even destroying of the nanocomposite structure) can occur [1, 2]. The promotion of the sludge heterotrophic microbial activities leads to solubilization of heavy metal compounds in the system. The microbiological process can be realized in alcaligeneous or acidogeneous regimes in dependence on the type of carbon source and followed by the synthesis of metabolites with the properties of flocculants and heavy metals extragents [3]. In this case the heavy metals solubilization (bioleaching) in the form of nanoparticles of hydroxycarbonate complexes or water soluble complexes with oxycarbonic acids is observed. Under the action of biosolid microorganisms the heavy metals-oxycarbonic acids complexes can be transformed (catabolised) into nano-sizing heavy metals- hydroxycarbonates complexes. These ecologically friendly complexes and microbial heteropolysaccharides are able to interact with soil colloids, stay in the top soil profile, and improve soil structure due

  12. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    Directory of Open Access Journals (Sweden)

    Bechan Sharma

    2014-01-01

    Full Text Available Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity, central nervous system (neurotoxicity, DNA (genotoxicity, and kidney (nephrotoxicity in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium induced oxidative stress as well as the possible remedies of metal(s toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s. This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals.

  13. Biomedical implications of heavy metals induced imbalances in redox systems.

    Science.gov (United States)

    Sharma, Bechan; Singh, Shweta; Siddiqi, Nikhat J

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals.

  14. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    Science.gov (United States)

    Singh, Shweta; Siddiqi, Nikhat J.

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144

  15. [Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor].

    Science.gov (United States)

    Hou, Qi-Hui; Ma, An-Shou; Zhuang, Xiu-Liang; Zhuang, Guo-Qiang

    2013-01-01

    Microbial whole-cell biosensor is an excellent tool to assess the bioavailability of heavy metal in soil and water. However, the traditional physicochemical instruments are applied to detect the total metal. Furthermore, microbial whole-cell biosensor is simple, rapid and economical in manipulating, and is thus a highly qualified candidate for emergency detection of pollution incidents. The biological component of microbial whole-cell biosensor mostly consists of metalloregulatory proteins and reporter genes. In detail, metalloregulatory proteins mainly include the MerR family, ArsR family and RS family, and reporter genes mainly include gfp, lux and luc. Metalloregulatory protein and reporter gene are related to the sensitivity, specificity and properties in monitoring. The bioavailability of heavy metals is alterable under different conditions, influenced by pH, chelate and detection methods and so on. Increasing the accumulation of intracellular heavy metal, modifying the metalloregulatory proteins and optimizing the detecting conditions are important for improving the sensitivity, specificity and accuracy of the microbial whole-cell biosensor. The future direction of microbial whole-cell biosensor is to realize the monitoring of pollutions in situ and on line.

  16. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  17. Human health risk assessment of heavy metals in urban stormwater.

    Science.gov (United States)

    Ma, Yukun; Egodawatta, Prasanna; McGree, James; Liu, An; Goonetilleke, Ashantha

    2016-07-01

    Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A new chelating reagent and application for coprecipitation of some metals in food samples by FAAS.

    Science.gov (United States)

    Yıldız, Esra; Saçmacı, Şerife; Kartal, Şenol; Saçmacı, Mustafa

    2016-03-01

    A new, simple and rapid coprecipitation method has been developed to separate and preconcentrate traces of Co(II), Cu(II), Fe(III), Pb(II) and Mn(II) in different samples prior to their determinations by flame atomic absorption spectrometry (FAAS). 2-[(E)-(8-hydroxy-2-methylquinolin-5-yl) diazenyl] benzoic acid (QAN) was firstly synthesized and characterized as a new chelating reagent for determination of some metals. IR spectra, (1)H-NMR spectrum and elemental analysis were evaluated for the characterization of the reagent. These metals were quantitatively recovered with Ni(II)/QAN precipitate in pH range of 8-10. Different factors such as sample volume, amount of QAN, and Ni(II) as carrier element, sample volume, and matrix effects for improving the quality of the preconcentration procedure were optimized. Under optimized experimentally established conditions, analytical detection limits were in the range of 0.03-0.83μgL(-1), while precision (RSD) was coprecipitation method was verified by the analysis of certified reference materials. The method was applied to the determination of the analytes in real samples such as food samples and make up products, and accuracy was found high (recoveries >95%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Removal of PCR error products and unincorporated primers by metal-chelate affinity chromatography.

    Directory of Open Access Journals (Sweden)

    Indhu Kanakaraj

    Full Text Available Immobilized Metal Affinity Chromatography (IMAC has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and "histidine tags" genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu(2+-iminodiacetic acid (IDA agarose spin column, 94-99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu(2+-IDA agarose can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs.

  20. The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Kulli, B.; Balmer, M.; Krebs, R.; Lothenbach, B.; Geiger, G.; Schulin, R.

    1999-12-01

    Metal uptake and removal from the soil by plants may be a useful measure to remediate contaminated soils. These processes can be enhanced by adding metal chelators to soil. The authors investigated the effect of nitrolotriacetate (NTA) and urea on the uptake of Cd, Cu, and Zn by lettuce (Lactuca sativa L. ev. Orion) and Italian ryegrass (Lolium perenne L. ev. Bastion) in pot experiments. Nitric acid-extractable heavy metal concentrations in the contaminated soil were 2 mg Cd, 530 mg Cu, and 700 mg Zn/kg. Three NTA treatments were compared with two urea treatments, and a control. Nitrilotriacetate and urea increased the NaNO{sub 3}-extractable soil concentrations of the three metals. At the highest NTA dose, metal concentrations in the aboveground plant biomass was 4 to 24 times greater than in the control plants. While NTA increased plant metal concentrations, it reduced plant matter production. At lower doses, this effect was small. At the highest NTA dose, plant growth was almost completely inhibited. Severe visual symptoms indicated metal toxicity as the likely cause. The urea treatments generally increased the plant matter production. Total metal uptake was in general larger at the lowest or at the intermediate NTA dose than at the highest doses. Little additional total metal uptake was achieved with NTA treatments than with urea. Compared with the controls, neither NTA nor urea enhanced total uptake under the given conditions by more than threefold.

  1. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    Science.gov (United States)

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Skubala, Piotr, E-mail: piotr.skubala@us.edu.pl [Department of Ecology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Zaleski, Tomasz [Department of Soil Science and Soil Protection, Agricultural University in Krakow, Mickiewicza 21, 31-120 Cracow (Poland)

    2012-01-01

    In this study we aimed to identify different reactions of oribatid species to heavy metal pollution and to measure concentrations of cadmium, zinc and copper in oribatid species sampled along a gradient. Oribatid mites were sampled seasonally during two years in five meadows located at different distances from the zinc smelter in the Olkusz District, southern Poland. Oribatids were shown to withstand critical metal concentration and established comparatively abundant and diverse communities. The highest abundance and species richness of oribatids were recorded in soils with moderate concentrations of heavy metals. Four different responses of oribatid species to heavy metal pollution were recognized. Heavy metals (Zn, Pb, Cd, Ni) and various physical (bulk density, field capacity, total porosity) and chemical (K{sub av}, P{sub av}, N, C, pH) factors were recognized as the structuring forces that influence the distribution of oribatid species. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. None of the species can be categorized as accumulators or non-accumulators of the heavy metals - the pattern depends on the metal. The process of bioconcentration of the toxic metal (regulated) and essential elements (accumulated) was generally different in the five oribatid species studied. - Highlights: Black-Right-Pointing-Pointer Responses of oribatid mites to metal contamination along a gradient in meadow soils were studied. Black-Right-Pointing-Pointer Small concentrations of heavy metals positively influenced the abundance of oribatid mites. Black-Right-Pointing-Pointer Four different responses of oribatid species to heavy metal pollution were recognised. Black-Right-Pointing-Pointer Bioaccumulation of the toxic metal and essential elements proceeded differently in oribatid species. Black-Right-Pointing-Pointer Five studied oribatid species were deconcentrators of cadmium.

  3. Heavy metals in vegetables and potential risk for human health

    Directory of Open Access Journals (Sweden)

    Fernando Guerra

    2012-02-01

    Full Text Available Ingestion of vegetables containing heavy metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals. Slowly released into the body, heavy metals can cause an array of diseases. This study aimed to investigate the concentrations of cadmium, nickel, lead, cobalt and chromium in the most frequently consumed foodstuff in the São Paulo State, Brazil and to compare the heavy metal contents with the permissible limits established by the Brazilian legislation. A value of intake of heavy metals in human diets was also calculated to estimate the risk to human health. Vegetable samples were collected at the São Paulo General Warehousing and Centers Company, and the heavy metal content was determined by atomic absorption spectrophotometry. All sampled vegetables presented average concentrations of Cd and Ni lower than the permissible limits established by the Brazilian legislation. Pb and Cr exceeded the limits in 44 % of the analyzed samples. The Brazilian legislation does not establish a permissible limit for Co contents. Regarding the consumption habit of the population in the São Paulo State, the daily ingestion of heavy metals was below the oral dose of reference, therefore, consumption of these vegetables can be considered safe and without risk to human health.

  4. Microalgae - A promising tool for heavy metal remediation.

    Science.gov (United States)

    Suresh Kumar, K; Dahms, Hans-Uwe; Won, Eun-Ji; Lee, Jae-Seong; Shin, Kyung-Hoon

    2015-03-01

    Biotechnology of microalgae has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. Inexpensive growth requirements (solar light and CO2), and, the advantage of being utilized simultaneously for multiple technologies (e.g. carbon mitigation, biofuel production, and bioremediation) make microalgae suitable candidates for several ecofriendly technologies. Microalgae have developed an extensive spectrum of mechanisms (extracellular and intracellular) to cope with heavy metal toxicity. Their wide-spread occurrence along with their ability to grow and concentrate heavy metals, ascertains their suitability in practical applications of waste-water bioremediation. Heavy metal uptake by microalgae is affirmed to be superior to the prevalent physicochemical processes employed in the removal of toxic heavy metals. In order to evaluate their potential and to fill in the loopholes, it is essential to carry out a critical assessment of the existing microalgal technologies, and realize the need for development of commercially viable technologies involving strategic multidisciplinary approaches. This review summarizes several areas of heavy metal remediation from a microalgal perspective and provides an overview of various practical avenues of this technology. It particularly details heavy metals and microalgae which have been extensively studied, and provides a schematic representation of the mechanisms of heavy metal remediation in microalgae. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. HEAVY METAL LOADS IN THE SOIL OF DEBRECEN

    Directory of Open Access Journals (Sweden)

    SÁNDOR SZEGEDI

    2007-12-01

    Full Text Available Results of examinations on the amount, and spatial distribution of heavy metal compounds in the soil of Debrecen, their geographic, pedologic and ecologic aspects are presented in this study. The effects of the differences in traffic conditions, build-up/land use and the density of vegetation on the heavy metal content of the soils have been examined in city of Debrecen and its closer environment.Cadmium-, cobalt-, nickel-, lead-, and copper-contents of the soil samples taken from 88 sites of the sample area have been studied after acidic extraction, using atomic absorption spectrometer with the flame technique. Close-to-background concentrations of heavy metals in unpolluted soils of the forested area of the Nagyerd were determined. Spatial differences in the heavy metal content of the soils for the whole area of Debrecen have been studied. Influence of soil properties (humus, Calcium- Carbonate content, pH and grain-size distribution on the binding and mobility of heavy metals in the soil has been examined. Vertical distribution and mobility of heavy metal compounds in acid sandy soils was determined. Heavy metal content of soil in the most sensitive areas, playgrounds, recreational areas, urban gardens and grazing fields along busy roads has been surveyed.

  6. The Metal Chelators, Trientine and Citrate, Inhibit the Development of Cardiac Pathology in the Zucker Diabetic Rat

    Directory of Open Access Journals (Sweden)

    John W. Baynes

    2009-01-01

    Full Text Available Purpose. The objective of this study was to determine the efficacy of dietary supplementation with the metal chelators, trientine or citric acid, in preventing the development of cardiomyopathy in the Zucker diabetic rat. Hypothesis. We hypothesized that dietary chelators would attenuate metal-catalyzed oxidative stress and damage in tissues and protect against pathological changes in ventricular structure and function in type II diabetes. Methods. Animals (10 weeks old included lean control (LC, fa/+, untreated Zucker diabetic fatty (ZDF, fa/fa, and ZDF rats treated with either trientine (triethylenetetramine or citrate at 20 mg/d in drinking water, starting when rats were frankly diabetic. Cardiac functional assessment was determined using a Millar pressure/volume catheter placed in the left ventricle at 32 weeks of age. Results. End diastolic volume for the ZDF animals increased by 36% indicating LV dilatation (P<.05 and was accompanied by a 30% increase in the end diastolic pressure (P≤.05. Both trientine and citric acid prevented the increases in EDV and EDP (P<.05. Ejection fraction and myocardial relaxation were also significantly improved with chelator treatment. Conclusion. Dietary supplementation with trientine and citric acid significantly prevented structural and functional changes in the diabetic heart, supporting the merits of mild chelators for prevention of cardiovascular disease in diabetes.

  7. The metal chelators, trientine and citrate, inhibit the development of cardiac pathology in the Zucker diabetic rat.

    Science.gov (United States)

    Baynes, John W; Murray, David B

    2009-01-01

    The objective of this study was to determine the efficacy of dietary supplementation with the metal chelators, trientine or citric acid, in preventing the development of cardiomyopathy in the Zucker diabetic rat. We hypothesized that dietary chelators would attenuate metal-catalyzed oxidative stress and damage in tissues and protect against pathological changes in ventricular structure and function in type II diabetes. Animals (10 weeks old) included lean control (LC, fa/+), untreated Zucker diabetic fatty (ZDF, fa/fa), and ZDF rats treated with either trientine (triethylenetetramine) or citrate at 20 mg/d in drinking water, starting when rats were frankly diabetic. Cardiac functional assessment was determined using a Millar pressure/volume catheter placed in the left ventricle at 32 weeks of age. End diastolic volume for the ZDF animals increased by 36% indicating LV dilatation (P < .05) and was accompanied by a 30% increase in the end diastolic pressure (P chelator treatment. Dietary supplementation with trientine and citric acid significantly prevented structural and functional changes in the diabetic heart, supporting the merits of mild chelators for prevention of cardiovascular disease in diabetes.

  8. Heavy metals, PAHs and toxicity in stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2011-01-01

    Concentrations of 6 different heavy metals and total Polycyclic Aromatic Hydrocarbons (PAH) were determined in stormwater runoff and in the pond water of two Danish wet detention ponds. The pond water samples were analyzed for toxic effects, using the algae Selenastrum capricornutum as a test...... organism. Stormwater and pond water from a catchment with light industry showed high levels of heavy metals, especially zinc and copper. The pond water showed high toxic effects and copper were found to be the main toxicant. Additionally, a large part of the copper was suspected to be complex bound......, reducing the potential toxicity of the metal. Another catchment (residential) produced stormwater and pond water with moderate concentration of heavy metals. The pond water occasionally showed toxic effects but no correlation between heavy metals and toxicity was identified. PAHs concentrations were...

  9. Effects of metal ion chelators on DNA strand breaks and inactivation produced by hydrogen peroxide in Escherichia coli: detection of iron-independent lesions.

    OpenAIRE

    Asad, N R; Leitão, A C

    1991-01-01

    In order to study the role of metallic ions in the H2O2 inactivation of Escherichia coli cells, H2O2-sensitive mutants were treated with metal ion chelators and then submitted to H2O2 treatment. o-Phenanthroline, dipyridyl, desferrioxamine, and neocuproine were used as metal chelators. Cell sensitivity to H2O2 treatment was not modified by neocuproine, suggesting that copper has a minor role in OH production in E. coli. On the other hand, prior treatment with iron chelators protected the cell...

  10. Luminescent investigations of terbium(III) biosorption as a surrogate for heavy metals and radionuclides.

    Science.gov (United States)

    Achyuthan, Komandoor E; Arango, Dulce C; Carles, Elizabeth L; Cutler, Christopher E; Meyer, Lauren A; Brozik, Susan M

    2009-07-01

    We describe a metal transport system for investigating the interfacial interactions between the anionic surface charge of a gram-negative bacterium (Escherichia coli) and a trivalent cationic metal, Tb3+. We believe this is the first description of the uptake kinetics, sub- and intracellular distribution, and temporal fate of Tb3+ ion in E. coli. We used the luminescence of the terbium-dipicolinic acid chelate to study metal ion transport. The bacteria had a high tolerance for the metal (IC(50) = 4 mM Tb3+). Metal ion transport was passive and metabolism independent. The uptake kinetics rapidly reached a maximum within 15 min, followed by a stasis for 60 min, and declining thereafter between 120 and 240 min, resulting in a biphasic curve. During this period, greater than one-third of the metal ion was sequestered within the cell. Our choice of a safe Biosafety Level I E. coli bacteria and the relatively non-toxic Tb3+ metal represents a model system for luminescent investigations of biosorption, for studying bacterial-water interfacial chemistry and for the bioremediation of heavy metals and radionuclides.

  11. Polyaza macroligands as potential agents for heavy metal removal from wastewater

    Directory of Open Access Journals (Sweden)

    Elizondo Martínez Perla

    2013-01-01

    Full Text Available Two polyaza macroligands N,N´-bis(2-aminobenzyl-1,2- ethanediamine (L1 and 3,6,9,12-tetraaza-4(1,2,11(1,2-dibenzo-1(1,3- piridinaciclotridecafano (L2 were characterized and investigated for their metal ion extraction capabilities. The nature of all complexes was established by spectroscopic techniques. The equilibrium constants were determined by spectrophotometric and potentiometric techniques and the residual concentration of metals in the solutions by Atomic Absorption Spectrometry (AAS. The capacity of the ligands to remove heavy metals such as Cu(II, Ni(II, Cd(II, Zn(II and Pb(II as insoluble complexes was evaluated in wastewater from industrial effluents. These agents showed high affinity for the studied metals. The values of equilibrium constants of the isolated complexes (between 1 x 104 and 2 x 107 demonstrated the feasibility of applying these chelating agents as an alternative to remove heavy metals from industrial effluents.

  12. Heavy Metal Contents in Some Commonly Consumed Vegetables

    African Journals Online (AJOL)

    dell

    effects on consumers of the vegetables. The regulations on food quality have lowered the maximum permissible levels of toxic metals in human food and this call for a good and vigorous food quality control on the concentrations of trace metals in food. The mean and range of heavy metals concentrations in eight green ...

  13. Heavy metal content of selected African leafy vegetables planted in ...

    African Journals Online (AJOL)

    zino

    Data analysis. Data on metal content obtained from the AAS was analyzed for variance using ANOVA and multiple mean comparisons were done using Tukeys at 5% level. Pearson's Product Moment was used to correlate the amount of metal in soil to that in the plant. RESULTS AND DISCUSSION. Heavy metals in soils.

  14. Heavy metal music and adolescent suicidality: an empirical investigation.

    Science.gov (United States)

    Scheel, K R; Westefeld, J S

    1999-01-01

    This study investigated the relationship between preference for heavy metal music and vulnerability to suicide among 121 high school students. Heavy metal fans had less strong reasons for living (especially male fans) and had more thoughts of suicide (especially female fans). For a large majority, listening to music (all types) had a positive effect on mood. Overall, the results indicate that preference for heavy metal music among adolescents may be a "red flag" for increased suicidal vulnerability, but also suggest that the source of the problem may lie more in personal and familial characteristics than in any direct effects of the music. Implications for intervention and for future research are discussed.

  15. Variegate porphyria and heavy metal poisoning from ingestion of "moonshine".

    Science.gov (United States)

    Hughes, G S; Davis, L

    1983-08-01

    A patient with cavitary tuberculosis, hepatic cirrhosis, bullous skin lesions over sun-exposed surfaces, disorientation, and a chronic, as well as recent, history of illicit alcohol consumption was found to have acute variegate porphyria by characteristic fecal and urinary porphyrin studies. Elevated levels of lead and arsenic were found in serum and urine without evidence of heavy metal storage in hair and liver. We suspect that the variegate porphyria was precipitated by the ingestion of heavy metals contained in illicit alcohol. In a patient with disorientation, bullous skin lesions, and a history of illicit alcohol ingestion, one must consider heavy metal intoxication and secondary porphyrin abnormalities.

  16. Convection-aided collection of metal ions using chelating porous flat-sheet membranes.

    Science.gov (United States)

    Saito, Kaori; Saito, Kyoichi; Sugita, Kazuyuki; Tamada, Masao; Sugo, Takanobu

    2002-04-19

    Chelating porous membranes were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer onto a polyethylene flat sheet and subsequent conversion of the epoxy group to an iminodiacetate group as a chelate-forming group. The chelating group density on the resultant porous flat-sheet membrane of 1.0 mol/kg was comparable to that of commercially available chelating beads. The pure water permeability of the membrane was 40% that of the trunk porous membrane, which was used for microfiltration. During the permeation of a copper chloride solution through the membrane, diffusional mass-transfer resistance of copper ion was negligible, since the ion was transported by convective flow through the pore. The tensile strength and elongation at break of the membranes were measured as a function of dose of electron-beam irradiation, the degree of grafting, and the chelating group density to determine an applicable range for practical use.

  17. Heavy Metals in Marine Pollution Perspective-A Mini Review

    Science.gov (United States)

    Ansari, T. M.; Marr, I. L.; Tariq, N.

    Anthropogenic inputs of pollutants such as heavy metals into the marine environment have increased their levels to large extents within past a few decades. These pollutants tend to accumulate in the bottom sediments. As a result, ecosystems such as seaports or other industrialized coastal areas that have chronic inputs of metals have highly contaminated sediments. This characteristic has led to concerns over the ecological effects that may be associated with sediment quality. Of particular concern are toxic effects and the potential for bioaccumulation of metals in biota exposed to the sediments. The availability of heavy metals to the biomass of a polluted region is the prime concern both in terms of the prediction of the effects of metal pollution on an ecosystem and in terms of possible human health risks. With growing interest on environmental issues, several intriguing questions related to heavy metals are often raised. This review addresses the basic concepts, sources, speciation, mode of action, levels, analytical measurement, bioavailability, bioaccumulation, biological role and toxicity of heavy metals in the marine environment. Lead, Cadmium, Zinc, Copper, Manganese, Iron, Mercury, Arsenic and Barium are selected because these metals are common and are often at measurable levels in marine samples. An attempt has been made to answer the queries presented by the environmentalists working on various aspects of heavy metal pollution in the marine environment

  18. Dinuclear metal complexes derived from a bis-chelating heterocyclic ligand

    Directory of Open Access Journals (Sweden)

    Worku Assefa

    2009-08-01

    Full Text Available 4,6-bis-{1-[(4,6-dichloro-[1,3,5]triazine-2-yl-hydrazone]-ethyl-benzene-1,3-diol, C16H12N10O2Cl4 (H2-BDTD, and Co(II, Ni(II, Cu(II and Zn(II complexes derived from its dibasic bis-chelating form (BDTD2- or L2- were prepared in methanol-triethylamine and characterized by MS, NMR, IR, UV-VIS and AA spectroscopic studies. Conductivities, magnetic susceptibility measurements and thermal analyses showed bis-N,N,O donor behavior of L2-. The analytical data indicate that the metal to ligand ratio is 2:1 in all the complexes. The coordination of triethylamine, water and chloride ion are observed in the Co(II, Zn(II and Ni(II complexes. The absence of ionizable or coordinated chloride in Cu(II complex is a notable feature. Octahedral geometry for Co(II, Zn(II and Ni(II and square planar geometry for Cu(II complexes are proposed. The paramagnetic complexes exhibit subnormal magnetic moments at room temperature (RT.

  19. Metal chelate affinity precipitation: purification of BSA using poly(N-vinylcaprolactam-co-methacrylic acid) copolymers.

    Science.gov (United States)

    Ling, Yuan-Qing; Nie, Hua-Li; Brandford-White, Christopher; Williams, Gareth R; Zhu, Li-Min

    2012-06-01

    This investigation involves the metal chelate affinity precipitation of bovine serum albumin (BSA) using a copper ion loaded thermo-sensitive copolymer. The copolymer of N-vinylcaprolactam with methacrylic acid PNVCL-co-MAA was synthesized by free radical polymerization in aqueous solution, and Cu(II) ions were attached to provide affinity properties for BSA. A maximum loading of 48.1mg Cu(2+) per gram of polymer was attained. The influence of pH, temperature, BSA and NaCl concentrations on BSA precipitation and of pH, ethylenediaminetetraacetic acid (EDTA) and NaCl concentrations on elution were systematically probed. The optimum conditions for BSA precipitation occurred when pH, temperature and BSA concentration were 6.0, 10°C and 1.0 mg/ml, respectively and the most favorable elution conditions were at pH 4.0, with 0.2M NaCl and 0.06 M EDTA. The maximum amounts of BSA precipitation and elution were 37.5 and 33.7 mg BSA/g polymer, respectively. It proved possible to perform multiple precipitation/elution cycles with a minimal loss of polymer efficacy. The results show that PNVCL-co-MAA is a suitable matrix for the purification of target proteins from unfractionated materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. In vitro growth inhibition of mastitis causing bacteria by phenolics and metal chelators

    Energy Technology Data Exchange (ETDEWEB)

    Chew, B.P.; Tjoelker, L.W.; Tanaka, T.S.

    1985-11-01

    Antimicrobial activities of three phenolic compounds and four metal chelators were tested at 0, 250, 500, and 1000 ppm in vitro against four major mastitis-causing bacteria, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pnuemoniae, and Escherichia coli. Overall, butylated hydroxyanisole and tert-butylhydroquinone showed the greatest antimicrobial activity. These phenolics were bactericidal at 250 to 500 ppm against all four bacteria tested. The butylated hydroxytoluene was bactericidal against the gram-positive bacteria but was ineffective against the coliforms. At 250 ppm, disodium ethylenediaminetetraacetic acid was bactericidal against the gram-positive bacteria but much less effective against the gram-negatives. However, diethylene-triaminepentaacetic acid was more growth inhibitory than ethylenediaminetetraacetic acid against the gram-negative bacteria and especially against Escherichia coli. All other compounds were generally much less effective or ineffective against all four microorganisms. Therefore, butylated hydroxyanisole, butylated hydroxytoluene, tert-butylhydroquinone, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid may have practical implications in the prevention or treatment of bovine mastitis.

  1. Coupling bioleaching and electrokinetics to remediate heavy metal contaminated soils.

    Science.gov (United States)

    Huang, Qingyun; Yu, Zhen; Pang, Ya; Wang, Yueqiang; Cai, Zhihong

    2015-04-01

    In this study, bioleaching was coupled with electrokinetics (BE) to remove heavy metals (Cu, Zn, Cr and Pb) from contaminated soil. For comparison, bioleaching (BL), electrokinetics (EK), and the chemical extraction method were also applied alone to remove the metals. The results showed that the BE method removed more heavy metals from the contaminated soil than the BL method or the EK method alone. The BE method was able to achieve metal solubilization rates of more than 70 % for Cu, Zn and Cr and of more than 40 % for Pb. Within the range of low current densities (electrokinetics can effectively remediate heavy metal-contaminated soils and that preliminary tests should be conducted before field operation to detect the lowest current density for the greatest metal removal.

  2. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  3. Sulphur-containing Amino Acids: Protective Role Against Free Radicals and Heavy Metals.

    Science.gov (United States)

    Colovic, Mirjana B; Vasic, Vesna M; Djuric, Dragan M; Krstic, Danijela Z

    2018-01-30

    Sulphur is an abundant element in biological systems, which plays an important role in processes essential for life as a constituent of proteins, vitamins and other crucial biomolecules. The major source of sulphur for humans is plants being able to use inorganic sulphur in the purpose of sulphur-containing amino acids synthesis. Sulphur-containing amino acids include methionine, cysteine, homocysteine, and taurine. Methionine and cysteine are classified as proteinogenic, canonic amino acids incorporated in protein structure. Sulphur amino acids are involved in the synthesis of intracellular antioxidants such as glutathione and N-acetyl cysteine. Moreover, naturally occurring sulphur-containing ligands are effective and safe detoxifying agents, often used in order to prevent toxic metal ions effects and their accumulation in human body. Literature search for peer-reviewed articles was performed using PubMed and Scopus databases, and utilizing appropriate keywords. This review is focused on sulphur-containing amino acids - methionine, cysteine, taurine, and their derivatives - glutathione and N-acetylcysteine, and their defense effects as antioxidant agents against free radicals. Additionally, the protective effects of sulphur-containing ligands against the toxic effects of heavy and transition metal ions, and their reactivation role towards the enzyme inhibition are described. Sulphur-containing amino acids represent a powerful part of cell antioxidant system. Thus, they are essential in the maintenance of normal cellular functions and health. In addition to their worthy antioxidant action, sulphur-containing amino acids may offer a chelating site for heavy metals. Accordingly, they may be supplemented during chelating therapy, providing beneficial effects in eliminating toxic metals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Heavy metal contamination of groundwater resources in a Nigerian ...

    African Journals Online (AJOL)

    conductivity meter (Jenway model), while the concentrations of the heavy metals (Co, Fe, Pb and Cu) were determined using atomic absorption spectrophotometer (AAS). The trend of dispersion of each variable was demonstrated on Landsat ETM+ ...

  5. Seasonal variation in heavy metal concentration in mangrove foliage

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A; Wafar, S.; Bhosle, N

    Seasonal variation in the concentration of some heavy metals in the leaves of seven species of mangrove vegetation from Goa, revealed that maximum concentration of iron and manganese occurs during the monsoon season without any significant toxic...

  6. Adsorption of heavy metals by agroforestry waste derived activated ...

    African Journals Online (AJOL)

    Adsorption of heavy metals by agroforestry waste derived activated carbons applied to aqueous solutions. Jane M Misihairabgwi, Abisha Kasiyamhuru, Peter Anderson, Colin J Cunningham, Tanya A Peshkur, Ignatious Ncube ...

  7. Heavy metal pollution of vegetable crops irrigated with wastewater ...

    African Journals Online (AJOL)

    144) and edible parts of both exotic and traditional vegetables (samples = 240) irrigated with wastewater from some parts of Accra were studied. The concentrations of heavy metals in mg/l were quantified in wastewater from Accra and ...

  8. De novo transcriptome assembly of heavy metal tolerant Silene dioica

    Czech Academy of Sciences Publication Activity Database

    Čegan, R.; Hudzieczek, V.; Hobza, Roman

    2017-01-01

    Roč. 11, MAR (2017), s. 118-119 ISSN 2213-5960 Institutional support: RVO:61389030 Keywords : genome * Silene dioica * RNA-Seq * Transcriptome * Heavy metal tolerance * Sex chromosomes Subject RIV: EB - Genetics ; Molecular Biology

  9. Baby Teeth Link Autism and Heavy Metals, NIH Study Suggests

    Science.gov (United States)

    ... Release Thursday, June 1, 2017 Baby teeth link autism and heavy metals, NIH study suggests Cross-section ... Sinai Health System Baby teeth from children with autism contain more toxic lead and less of the ...

  10. Polysiloxane based CHEMFETs for the detection of heavy metal ions

    NARCIS (Netherlands)

    Lugtenberg, R.J.W.; Antonisse, M.M.G.; Egberink, Richard J.M.; Engbersen, Johannes F.J.; Reinhoudt, David

    1996-01-01

    The development of polysiloxane based chemically modified field effect transistors (CHEMFETs) for heavy metal ions is described. Different polar siloxane copolymers have been synthesized via an anionic copolymerization of hexamethylcyclotrisiloxane,

  11. Estimation of Heavy Metals in Neem Tree Leaves along Katsina ...

    African Journals Online (AJOL)

    Michael Horsfall

    Garcia and Millan, 1998). The Nigerian situation is further exacerbated by the reality of increasing large-scale importation of old/fairly used vehicles for use on the Nigerian highways (Alo, 2008). Heavy metals are important group of pollutants.

  12. Antimicrobial, heavy metal resistance and plasmid profile of ...

    African Journals Online (AJOL)

    The antimicrobial, heavy metal resistance patterns and plasmid profiles of Coliforms (Enterobacteriacea) isolated from nosocomial infections and healthy human faeces were compared. Fifteen of the 25 isolates from nosocomial infections were identified as Escherichia coli, and remaining as Kelebsiella pneumoniae.

  13. 255 effects of some heavy metal pollutants on fertility characteristics

    African Journals Online (AJOL)

    DR. AMINU

    2010-06-01

    ) and Zinc (Zn). As Aydinalp and Marinova (2003) observe, a precise knowledge of heavy metals concentration and the forms in which they are found, their dependence on soil's physico-chemical properties provide a basis.

  14. Phycoremediation of Wastewater: Heavy Metal and Nutrient Removal Processes

    Directory of Open Access Journals (Sweden)

    Kwarciak-Kozłowska Anna

    2014-12-01

    Full Text Available Phycoremediation is the use of algae for the removal or biotrans-formation of pollutants from wastewater. The study is a novel at-tempt to integrate nutrient (N and P removal and some heavy met-als (iron, manganese and zinc bioaccumulation from municipal wastewater using two microalgae species: Chlorella vulgaris and Scenedesmus armatus. The Chlorella vulgaris showed higher re-moval of total nitrogen (TN both in influent and effluent waste water than Scenedesmus armatus. Nevertheless, more than 51% of total phosphorus (TP in effluent and 36% in influent wastewaters were removed by Scenedesmus armatus. More efficient microalga in heavy metal removal in influent wastewater was Scenedesmus armatus. The results showed that Chlorella vulgaris was appropriate for TN removal and bioaccumulation of heavy metals from effluent wastewater. Nevertheless, Scenedesmus armatus was highly pref-erable for heavy metals removal from influent wastewater.

  15. Removal of nutrient and heavy metal loads from sewage effluent ...

    African Journals Online (AJOL)

    2015-07-04

    Jul 4, 2015 ... tial of vetiver grass in removing nutrient and heavy metal loads from wastewater ... retention using the methods of water analysis described by. Sauter and ..... forming an immobilised microbial biomass on supporting surfaces ...

  16. Excited state evolution towards ligand loss and ligand chelation at group 6 metal carbonyl centres.

    Science.gov (United States)

    Manton, Jennifer C; Amirjalayer, Saeed; Coleman, Anthony C; McMahon, Suzanne; Harvey, Emma C; Greetham, Gregory M; Clark, Ian P; Buma, Wybren Jan; Woutersen, Sander; Pryce, Mary T; Long, Conor

    2014-12-21

    the reactive state responsible for the arrested CO-loss has significant metal-to-carbonyl charge-transfer character. The CO-loss product (η(6)-allylbenzene)Cr(CO)2 formed following irradiation of (η(6)-allylbenzene)Cr(CO)3 reacts further with the pendent alkenyl group to form the chelate product (η(6),η(2)-allylbenzene)Cr(CO)2.

  17. Study of Correlation Between Heavy Metal Concentration, Street ...

    African Journals Online (AJOL)

    ABSTRACT: This study was aimed at evaluating heavy metal contents in street dust of five major roads within the trunk of Kano metropolis. The dust were collected from heavy traffic roads of the city which include Zaria road (ZR), Maiduguri road (MR), Katsina road (KR), Hadejia road (HR) and Bayero University Kano road ...

  18. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  19. Studies of heavy metal contents and microbial composition of ...

    African Journals Online (AJOL)

    FLEXI-DONEST

    Waste engine oil in soil creates unsatisfactory conditions for plant growth ranging from heavy metal toxicity to ... perennial which grows best in warm frost-free areas. Guinea grass can withstood continuous heavy grazing .... These identified as active members ofbioremediation microbial consortia by Ekundayo and Obuekwe.

  20. Heavy metal contamination of amaranthus grown along major ...

    African Journals Online (AJOL)

    Consumption of food contaminated with heavy metals is a major source of health problems for man and animals. Vegetable cropping along major highways with heavy vehicular movement has been a serious concern to food safety experts in large cities. A study was, therefore, carried out in two major highways in Lagos, ...

  1. Assessment of heavy metal pollution in soils along major roadside ...

    African Journals Online (AJOL)

    EJIRO

    1Department of Agricultural Engineering and Land Planning, Botswana College of Agriculture, Private Bag 0027,. Gaborone, Botswana. 2Department of Basic Sciences, Botswana College of ... residents along roads with heavy traffic loads are subjected to increasing levels of contamination with heavy metals (Ghrefat and ...

  2. Study of Correlation Between Heavy Metal Concentration, Street ...

    African Journals Online (AJOL)

    This study was aimed at evaluating heavy metal contents in street dust of five major roads within the trunk of Kano metropolis. The dust were collected from heavy traffic roads of the city which include Zaria road (ZR), Maiduguri road (MR), Katsina road (KR), Hadejia road (HR) and Bayero University Kano road (BR).

  3. Atmospheric heavy metal deposition in the Copenhagen area

    DEFF Research Database (Denmark)

    Andersen, Allan; Hovmand, Mads Frederik; Johnsen, Ib

    1978-01-01

    Atmospheric dry and wet deposition (bulk precipitation) of the heavy metals Cu, Pb, Zn, Ni, V and Fe over the Copenhagen area was measured by sampling in plastic funnels from 17 stations during a twelve-month period. Epigeic bryophytes from 100 stations in the area were analysed for the heavy met...

  4. HEAVY METAL LEVELS IN PADDY SOILS AND RICE (ORYZA ...

    African Journals Online (AJOL)

    Mgina

    metals in O. sativa grains harvested locally as well as to set the baseline levels of some heavy ... Machiwa – Heavy Metal Levels in Paddy Soils and Rice … .... where 0.5 g of dried soil or rice (polished rice and paddy rice) samples were weighed in 50 ml volumetric flasks. De-ionized water. (1 ml) was added, the flasks were ...

  5. Heavy metal adsorption by montmorillonites modified with natural organic cations

    OpenAIRE

    Cruz-Guzmán Alcalá, M.; Celis, R.; Hermosín, M.C.; Koskinen, W. C.; Nater, E. A.; Cornejo, J.

    2006-01-01

    Agricultural and industrial pollution release large amounts of heavy metals into the atmosphere, surface water, soil, and plants. The protection and restoration of soils and water contaminated with heavy metals generate a great need to develop efficient adsorbents for these pollutants. This study reports the adsorption of Pb(II) and Hg(II) by two reference montmorillonites, Wyoming (SWy-2) and Arizona (SAz-1), that were pretreated with various natural organic cations containing different func...

  6. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia

    OpenAIRE

    M. Najiah; Tee, L.W.

    2011-01-01

    Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus) weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg2+, Cr6+, Cd2+, Cu2+). Results revealed that bacteria were resistant against lincomycin (92%), oleandomycin (72.7%) an...

  7. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    OpenAIRE

    Huixuan Li; Yingru Li; Ming-Kuo Lee; Zhongwei Liu; Changhong Miao

    2015-01-01

    China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1) spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2) spatial statistical met...

  8. Heavy Metals in Soils of auto- mechanic shops and refuse ...

    African Journals Online (AJOL)

    Atomic Absorption Spectrophotometer (UnicamSolaar32 model) was used for analyzing the digested soil samples for heavy metal content. Mean concentrations of the selected heavy metals in the dumpsite soil at Apir were 0.003 mg/Kg, 0.2414 mg/Kg, 0.2552 mg/Kg, 0.1882 mg/Kg and 0.0210 mg/Kg for Cd, Cr, Cu, Pb and ...

  9. Distribution of heavy metals from flue gas in algal bioreactor

    Science.gov (United States)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  10. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    M. Ghaemy

    2014-03-01

    Full Text Available Chelating resins are suitable materials for the removal of heavy metals in water treatments. A copolymer, Poly(MMA-co-MA, was synthesized by radical polymerization of maleic anhydride (MA and methyl methacrylate (MMA, characterized and transformed into multifunctional nanochelating resin beads (80–150 nm via hydrolysis, grafting and crosslink reactions. The resin beads were characterized by swelling studies, field emission scanning electron microscopy (FESEM and Fourier transform infrared spectroscopy (FTIR. The main purpose of this work was to determine the adsorption capacity of the prepared resins (swelling ratio ~55% towards metal ions such as Hg2+, Cd2+, Cu2+ from water at three different pH values (3, 6 and 9. Variations in pH and types of metal ions have not significantly affected the chelation capacity of these resins. The maximum chelation capacity of one of the prepared resin beads (Co-g-AP3 for Hg2+ was 63, 85.8 and 71.14 mg/g at pH 3, 6 and 9, respectively. Approximately 96% of the metal ions could be desorbed from the resin. Adsorption capacity of these resins towards three commercial synthetic azo dyes was also investigated. The maximum adsorption of dye AY42 was 91% for the resin Co-g-AP3 at room temperature. This insures the applicability of the synthesized resins for industrial applications.

  11. Research on heavy metal pollution of river Ganga: A review

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2017-06-01

    Full Text Available River Ganga is considered sacred by people of India for providing life sustenance to environment and ecology. Anthropogenic activities have generated important transformations in aquatic environments during the last few decades. Advancement of human civilization has put serious questions to the safe use of river water for drinking and other purposes. The river water pollution due to heavy metals is one of the major concerns in most of the metropolitan cities of developing countries. These toxic heavy metals entering the environment may lead to bioaccumulation and biomagnifications. These heavy metals are not readily degradable in nature and accumulate in the animal as well as human bodies to a very high toxic amount leading to undesirable effects beyond a certain limit. Heavy metals in riverine environment represent an abiding threat to human health. Exposure to heavy metals has been linked to developmental retardation, kidney damage, various cancers, and even death in instances of very high exposure. The following review article presents the findings of the work carried out by the various researchers in the past on the heavy metal pollution of river Ganga.

  12. Content of some heavy metals in soil and corn grain

    Energy Technology Data Exchange (ETDEWEB)

    Wells, K.L. (Univ. of Kentucky, Lexington (United States)); Henson, G.; Kelley, G. (McLean and Hopkins Counties, KY (United States))

    1993-01-01

    In an attempt to find causes for lower than expected corn (Zea mays L.) production along the bottomlands of the Green and Pond Rivers in western Kentucky, corn fields were sampled for soil and corn grain to determine heavy metal content. Samples from sixteen carefully selected fields were analyzed for Cd, Cr, Pb, and Ni content. Yield of corn was not related to either soil or grain content of these heavy metals. There was also not relationship between soil pH and heavy metal accumulation by grain or heavy metal accumulation by grain and soil and Ni were within the range of values reported in the literature for uncontaminated soils. However, soil content of Cd was near or above the upper end of the ranges reported in the literature, even on control samples taken upstream from sites of potential heavy metal pollution. Karnak soils (fine, montmorillonitic, nonacid, mesic Vertic Haplaquepts), which are high in montmorillonitic clay content and have high cation exchange capacities, had higher Cd content than the other soils sampled. Except for two sites, grain Cd content was similar to values reported in the literature. Corn yields were found to be generally lower on Karnak soils than on other soils, raising the possibility that observed lower than expected yields are related to the poor physical characteristics of these soils rather than heavy metal pollutants in floodwaters. 8 refs., 1 fig., 6 tabs.

  13. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products.

    Science.gov (United States)

    Limmatvapirat, C; Limmatvapirat, S; Charoenteeraboon, J; Wessapan, C; Kumsum, A; Jenwithayaamornwech, S; Luangthuwapranit, P

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health.

  14. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  15. Heavy metals in five Sabellidae species (Annelida, Polychaeta): ecological implications.

    Science.gov (United States)

    Giangrande, Adriana; Licciano, Margherita; Del Pasqua, Michela; Fanizzi, Francesco Paolo; Migoni, Danilo; Stabili, Loredana

    2017-02-01

    The present work analyzed three hard-bottom and two soft-bottom species of sabellid polychaetes to determine the content of several heavy metals in their branchial crown and body. The highest concentrations of heavy metals were recorded in the hard-bottom species Branchiomma bairdi, a recent Mediterranean introduction. Differences in the metal concentrations were most notable in the high trace metal levels of the branchial crown for all the studied species. Statistical analysis showed that the Mediterranean hard-bottom species were similar each other in their heavy metal content in the body as well as in the branchial crown and appeared separated from all the other species. Arsenic and vanadium hyperaccumulation in the branchial crowns of the considered sabellid species probably acts as a deterrent for predation. The observed differences among the examined species were discussed not only at the light of habitat colonization but also in terms of the phylogeny.

  16. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  17. Phytoremediation of heavy metals--concepts and applications.

    Science.gov (United States)

    Ali, Hazrat; Khan, Ezzat; Sajad, Muhammad Anwar

    2013-05-01

    The mobilization of heavy metals by man through extraction from ores and processing for different applications has led to the release of these elements into the environment. Since heavy metals are nonbiodegradable, they accumulate in the environment and subsequently contaminate the food chain. This contamination poses a risk to environmental and human health. Some heavy metals are carcinogenic, mutagenic, teratogenic and endocrine disruptors while others cause neurological and behavioral changes especially in children. Thus remediation of heavy metal pollution deserves due attention. Different physical and chemical methods used for this purpose suffer from serious limitations like high cost, intensive labor, alteration of soil properties and disturbance of soil native microflora. In contrast, phytoremediation is a better solution to the problem. Phytoremediation is the use of plants and associated soil microbes to reduce the concentrations or toxic effects of contaminants in the environments. It is a relatively recent technology and is perceived as cost-effective, efficient, novel, eco-friendly, and solar-driven technology with good public acceptance. Phytoremediation is an area of active current research. New efficient metal hyperaccumulators are being explored for applications in phytoremediation and phytomining. Molecular tools are being used to better understand the mechanisms of metal uptake, translocation, sequestration and tolerance in plants. This review article comprehensively discusses the background, concepts and future trends in phytoremediation of heavy metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Heavy metal music meets complexity and sustainability science.

    Science.gov (United States)

    Angeler, David G

    2016-01-01

    This paper builds a bridge between heavy metal music, complexity theory and sustainability science to show the potential of the (auditory) arts to inform different aspects of complex systems of people and nature. The links are described along different dimensions. This first dimension focuses on the scientific aspect of heavy metal. It uses complex adaptive systems theory to show that the rapid diversification and evolution of heavy metal into multiple subgenres leads to a self-organizing and resilient socio-musicological system. The second dimension builds on the recent use of heavy metal as a critical thinking model and educational tool, emphasizing the artistic component of heavy metal and its potential to increase people's awareness of environmental sustainability challenges. The relationships between metal, complexity theory and sustainability are first discussed independently to specifically show mechanistic links and the reciprocal potential to inform one domain (science) by the other (metal) within these dimensions. The paper concludes by highlighting that these dimensions entrain each other within a broader social-cultural-environmental system that cannot be explained simply by the sum of independent, individual dimensions. Such a unified view embraces the inherent complexity with which systems of people and nature interact. These lines of exploration suggest that the arts and the sciences form a logical partnership. Such a partnership might help in endeavors to envision, understand and cope with the broad ramifications of sustainability challenges in times of rapid social, cultural, and environmental change.

  19. Heavy metal adsorption of Streptomyces chromofuscus K101

    Directory of Open Access Journals (Sweden)

    Said Mohamed Daboor

    2014-06-01

    Full Text Available Objective: To find the best actinomycete that has potential application value in the heavy metal remediation due to its special morphological and physiological metabolism. Methods: In some areas of River Nile, Egypt, a total of 67 actinomycete isolates (17 isolates from surface water and 50 from sediment were identified. In addition, the studied area was characterized by a large amount of submerged macrophyte species Ceratophyllum demersum, one free floating species Eichhornia crassipes and two emergent species Polygonum tomentosum and Saccharum spontaneum with the highest biomass production values. Many methods are used in this research like qualitative evaluation of heavy metals, minimum inhibitory concentration of heavy metal determination, metal binding assay, heavy metal assessment, etc. Results: Many actinomycetes isolates were isolated from River Nile, Egypt, the absorbent efficiency of one isolate Streptomyces chromofuscusK101 showed the most efficient metal binding activity. The adsorption process of Zn2+ , Pb2+ and Fe 2+ single or mixture metal ions was investigated, where the order of adsorption potential ( Zn2+ >Pb2+ >Fe 2+ was observed in single metal reaction. The adsorption in mixed metal reactions was the same order as in single-metal ion with a significant decrease in Fe 2+ and Pb2+ adsorption. Conclusions: In conclusion the metal adsorption reactions were very fast, pH dependent and culture age-independent, suggestive of a physicochemical reaction between cell wall components and heavy metal ions. The absorbent removal efficiency was determined as a function of ion concentration, pH and temperature.

  20. Influence of chelation ratio of metal alkoxides on aging of PZT 53/47 ...

    Indian Academy of Sciences (India)

    Administrator

    gel-based synthesis routes, generally demands the use of chelating agents in order to avoid fast hydrolysis and also to allow an easier manipulation of intermediates as well as final solutions. Under these conditions, stability issues sometimes ...

  1. Assessment of heavy metal removal technologies for biowaste by physico-chemical fractionation

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    2003-01-01

    In the Netherlands, the heavy metal content of biowaste-compost frequently exceeds the legal standards for heavy metals. In order to assess heavy metal removal technologies, a physico-chemical fractionation scheme was developed to gain insight into the distribution of heavy metals (Cd, Cu, Pb and

  2. Influence of chelation ratio of metal alkoxides on aging of PZT 53/47 ...

    Indian Academy of Sciences (India)

    In this work, we explore the sol–gel-based synthesis route of lead zirconate titanate (Pb(Zr0.53Ti0.47)O3 or PZT 53/47) using acetylacetone-chelated propoxides as intermediate reactants. Our main purpose here is to analyse the influence of the alkoxides:acetylacetone chelation ratio on the time evolution of mean particle ...

  3. Body burdens of heavy metals in Lake Michigan wetland turtles.

    Science.gov (United States)

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  4. Streptomyces sp. MUM212 as a Source of Antioxidants with Radical Scavenging and Metal Chelating Properties

    Directory of Open Access Journals (Sweden)

    Loh Teng-Hern Tan

    2017-05-01

    Full Text Available Reactive oxygen species and other radicals potentially cause oxidative damage to proteins, lipids, and DNA which may ultimately lead to various complications including mutations, carcinogenesis, neurodegeneration, cardiovascular disease, aging, and inflammatory disease. Recent reports demonstrate that Streptomyces bacteria produce metabolites with potent antioxidant activity that may be developed into therapeutic drugs to combat oxidative stress. This study shows that Streptomyces sp. MUM212 which was isolated from mangrove soil in Kuala Selangor, Malaysia, could be a potential source of antioxidants. Strain MUM212 was characterized and determined as belonging to the genus Streptomyces using 16S rRNA gene phylogenetic analysis. The MUM212 extract demonstrated significant antioxidant activity through DPPH, ABTS and superoxide radical scavenging assays and also metal-chelating activity of 22.03 ± 3.01%, 61.52 ± 3.13%, 37.47 ± 1.79%, and 41.98 ± 0.73% at 4 mg/mL, respectively. Moreover, MUM212 extract was demonstrated to inhibit lipid peroxidation up to 16.72 ± 2.64% at 4 mg/mL and restore survival of Vero cells from H2O2-induced oxidative damages. The antioxidant activities from the MUM212 extract correlated well with its total phenolic contents; and this in turn was in keeping with the gas chromatography–mass spectrometry analysis which revealed the presence of phenolic compounds that could be responsible for the antioxidant properties of the extract. Other chemical constituents detected included hydrocarbons, alcohols and cyclic dipeptides which may have contributed to the overall antioxidant capacity of MUM212 extract. As a whole, strain MUM212 seems to have potential as a promising source of novel molecules for future development of antioxidative therapeutic agents against oxidative stress-related diseases.

  5. Determination of trace heavy metals in some textile products ...

    African Journals Online (AJOL)

    The concentrations of trace heavy metals in textile samples collected from Tokat, Turkey, were determined by flame and/or graphite furnace atomic absorption spectrometry after microwave digestion. The relative standard deviations for the determinations were found to be lower than 10 %. The concentrations of trace metals ...

  6. Assessment of heavy metals concentration in water, soil sediment ...

    African Journals Online (AJOL)

    The term heavy metal refers to any metallic chemical element that has a relatively high density and is toxic at low concentrations. This study was conducted in four eastern Rift Valley lakes which included Lakes Oloidien, Crater, Elementaita and Nakuru, to determine the presence and levels of lead, arsenic, cadmium and ...

  7. Study of Correlation Between Heavy Metal Concentration, Street ...

    African Journals Online (AJOL)

    needs to evaluate heavy metal content of water and food, the metal content of street has to be evaluated ... were recorded. The samples (dust) were transferred to clean labeled polyethylene bags and were directly ..... cell membranes via anion transport system in to the cell, the compounds are readily reduced to trivalent.

  8. Potential Human Health Risk Assessment of Heavy Metals Intake via ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Key Words: Heavy Metals, leafy vegetable, daily intake of metals, health risk index, target hazard quotient. (THQ), zinc, lead .... Family. Parts used/ consumed. 1. Telferia occidentalis. Fluted pumpkin. Ugu. Cucurbitaceae ..... Characterization and functional properties. .... Science and Total Environment, 350: 28–37. Zhou, H ...

  9. Bioaccumulation of heavy metals in water, sediment and fish ...

    African Journals Online (AJOL)

    The highest levels of heavy metal accumulated in the liver of C. anguillaris were Fe, Cu, Pb, Cd and Zn than accumulated in O. niloticus. In gills of C. anguillaris, the highest accumulation of metal levels were Zn, Fe, Pb, Cd and Cu than accumulation in gills of O. niloticus. In muscles of C. anguillaris, the highest accumulation ...

  10. Biomonitoring of heavy metals pollution in Lake Burullus, Northern ...

    African Journals Online (AJOL)

    aghomotsegin

    Aquatic macrophytes and benthos are unchangeable biological filters and they carry out purification of the water bodies by accumulating dissolved metals and toxins in their tissues. In view of their potential to entrap several toxic heavy metals, 3 groups of benthos and 6 macrophytes (submerged species: Potamogeton.

  11. Speciation of Heavy Metals in Sediment of Agbabu Bitumen deposit ...

    African Journals Online (AJOL)

    Speciation of heavy metals Cu, Cd, Pb, Ni, Zn, Mn, Fe, Cr and Hg was carried out on sediment of Agbabu with a sequential extraction procedure in the dry and rainy seasons of year 2008. Hg was not detected in all the fractions in the two seasons. In the dry season, all the metals were mostly abundant in Fraction-5, however ...

  12. Heavy metal speciation and their accumulation in sediments of Lake ...

    African Journals Online (AJOL)

    Several sediment samples in Lake Burullus have been affected by the discharges of heavy metals through different drains. The study aimed to analyze the chemical speciation of these metals. In particular, the chemical forms of Cd, Cu, Fe, Mn, Pb and Zn in sediments collected in spring season were studied using a ...

  13. Assessment of Heavy Metal Content of Branded Pakistani Herbal ...

    African Journals Online (AJOL)

    Erah

    The plants imbibe toxic metals in various ways including the environment they grow in, contaminated water, agricultural expedients, storage environment and manufacturing processes [7]. The purpose of this study was to evaluate the heavy metals contents of some selected herbal products available in the Pakistani market.

  14. Tolerance and Accumulation of Heavy Metals by Descurainia sophia L.

    Directory of Open Access Journals (Sweden)

    Hoda Karamooz

    2016-01-01

    Full Text Available Today, biosphere pollution has accelerated strongly with start of industrial revolution by toxicity of heavy metals. One of existing pollution is soil pollution. Unfortunately, soil pollution by metals is as intensive environmental stress for plant hence for human. Plants, which are able to store heavy metals in their organs, can be used for phytoremediation of polluted soils and utilization of these plants is effective for phytoremediation as a cheap and economic method. In this research, the absorption rate of Cd (II, Ni (II by Descurainia sophia was considered in hydroponic conditions. Plants were grown in Hoagland media containing different concentrations of Cd (II, Ni (II. An experiment in a completely randomized design with three replications was conducted. Two weeks after treatment of plants the sample were gathered and metal concentration was measured by atomic absorption spectroscopy. Besides, the content of chlorophyll and proline was measured. The results showed the chlorophyll content in high concentrations of the metals (Cd (II, Ni (II was decreased in plants that were sign of pigment degradation in presence of heavy metals. Similarly, the proline content in plants was increased under stress which was sign of damage of heavy metal stress on plant and activation of defensive mechanisms in this condition. The effects of toxic concentration of nickel and cadmium on metal accumulation in these plants showed that roots were able to absorb more than shoots, which is sign of elements connection to root cell wall.

  15. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    Wageningen, the Netherlands. Sheppard, D.S., Claridge, G.G.C. and Campbell,. I.B.(2000). Metal contribution of soil at Scott urban-rural land use gradients. Applied. Geochemistry, 15: 513-530. Umoren, I.U. and Onianwa, P.C. (2005). Concentrations and distribution of some heavy metals in urban soils of Ibadan, Nigeria.

  16. Modeling effluent heavy metal concentrations in a bioleaching ...

    African Journals Online (AJOL)

    SONY

    Artifical neural networks practices were used to predict the recovery of heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) from dewatered metal plating sludge (with no sulfide or sulfate compounds) using bioleaching process involving Acidithiobacillus ferrooxidans. The bioleaching process was operated as a completely mixed batch ...

  17. DETERMINATION OF TRACE HEAVY METALS IN SOME TEXTILE ...

    African Journals Online (AJOL)

    a

    People want to be able to buy clothing, bedding and household textiles that have been tested and are not dyed in any way with harmful substances [6-8]. Textile products contain some organic and inorganic substance including trace metal ions. Especially, reactive and pigment dyes contain trace heavy metals at high level.

  18. Toxic effect of heavy metals on aquatic environment | Baby ...

    African Journals Online (AJOL)

    The indiscriminate discharge of industrial effluents, raw sewage wastes and other waste pollute most of the environments and affect survival and physiological activities of target organisms. Metals in particular have a tendency to accumulate and undergo food chain magnification. Heavy metals affect all groups of organisms ...

  19. Nutrients and heavy metal distribution in thermally treated pig manure

    DEFF Research Database (Denmark)

    Kuligowski, Ksawery; Poulsen, Tjalfe G.; Stoholm, Peder

    2008-01-01

    Ash from pig manure treated by combustion and thermal gasification was characterized and compared in terms of nutrient, i.e., potassium (K), phosphorus (P) and heavy metal, i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) contents. Total nutrient and metal concentrations...

  20. Determination of Some Heavy Metals Levels in Funaria ...

    African Journals Online (AJOL)

    This was attributed to the concentrations of motor vehicles and some industries that have increased in the town over time. Other heavy metals (Cd and Ni) were found in relatively smaller concentrations. The absorption of these metals was related to their concentrations in the atmosphere as a result of industrial and ...

  1. Determination of essential and heavy metals in Kenyan honey by ...

    African Journals Online (AJOL)

    In this project, honey samples collected from different parts of Kenya, namely, Laikipia, Baringo, Nairobi, Ngong, Mbeere, Embu, Kitui, Kibwezi and Lamu were analysed to determine the levels of selected heavy metals (Pb, Cd, Zn, Cu, As) and essential metals (K, Na, Ca, Mg, Fe). The samples were analysed using flame ...

  2. Electrochemical activity of heavy metal oxides in the process of ...

    Indian Academy of Sciences (India)

    The influence of heavy metal oxides on the chloride induced corrosion of steel reinforcement in concrete was studied. Significant inhibition and stimulation of chloride induced corrosion have been observed. Basicity and acidity of the relevant metal ions, and their ability to form complexes are considered as the main factors ...

  3. Determination of some heavy metals in spinach and lettuce from ...

    African Journals Online (AJOL)

    Heavy metals such as copper, zinc, cadmium and lead were analyzed in vegetable samples (lettuce and spinach) obtained from ten major markets within Kaduna ... From the stipulated limits set by WHO/FAO, consumers of vegetables from this study areas were likely to be liable to copper toxicity and some few metals as ...

  4. Analysis of Some Heavy Metals in Grass ( Paspalum Orbiculare ...

    African Journals Online (AJOL)

    The increased deposition of trace metals from vehicle exhausts on plants has raised concerns about the risks of the quality of food consumed by humans since the heavy metals emitted through the exhaust by vehicles can enter food chain through deposition on grass grazed by animals. Grass (Paspalum Orbiculare) and ...

  5. Assessment of Heavy Metals Pollution in Dumpsites in Ilorin ...

    African Journals Online (AJOL)

    Speciation and distribution of heavy metals in soil controls the degree to which metals and their compounds are mobile, extractable, and plant available. Eight strategically located dumpsites in Ilorin metropolis (an averagely growing city and a state capital) were chosen for dumpsites-soil characteristics study. Both the ...

  6. Heavy metals burden in Kidney and heart tissues of Scarus ...

    African Journals Online (AJOL)

    Levels of selected heavy metals (Pb, Co, Cu, Ni, Zn, Mn and Cd) in the heart and kidney tissues of parrot fish, collected from the Arabian Gulf, Eastern Province of Saudi Arabia, were determined by wet-digestion based atomic absorption method. The results showed that accumulation pattern of analyzed metals in the kidney ...

  7. ASSESSMENT OF HEAVY METAL STATUS OF BOREHOLES IN ...

    African Journals Online (AJOL)

    Osondu

    2012-02-13

    Feb 13, 2012 ... transported as either dissolved species in water or as an integral part ... In addition, to a small extent, the metals enter the human bodies via food, drinking water and air. Though, some heavy metals. (e.g. copper, selenium, zinc) are essential to maintain the .... The values of total suspended solids. (TSS) and ...

  8. Bioaccumulation of heavy metals in Amaranthus sp. L sold at ...

    African Journals Online (AJOL)

    The study was design to assess the bioaccumulation of heavy metals in spinach sold at vegetable farms at Katsina metropolis, using Atomic absorption spectrometer VPG 210 model for the metals analysis.The study reveals that cadmium has recorded highest concentration followed by chromium and zinc, at Kofar ...

  9. Concentration of heavy metals from traffic emissions on plant ...

    African Journals Online (AJOL)

    In recent years, emission and combustion of fossils and fuels have been identified as primary sources of atmospheric metallic burden. Detailed information about this is not readily available in Nigeria. This study was therefore carried out to determine the concentration of heavy metals (e.g. lead, mercury and cadmium} ...

  10. Levels of Petroleum Hydrocarbons and some Heavy Metals in ...

    African Journals Online (AJOL)

    Michael Horsfall

    water bodies receiving effluents is emphasized in order to forestall cumulative effects of pollutants which may lead to sub-lethal consequences in the aquatic ... heavy metal pollution (Osibanjo and Ajayi, 1980,. Foulkes. 1990). Bioaccumulation in ... Soluble metallic soaps were hydrolyzed by acidification. Oils and solids or ...

  11. Geospatial analyses in support of heavy metal contamination ...

    African Journals Online (AJOL)

    The results showed that NDVI values increased with distance from roads (R2 0.508-0.965; p < 0.05), indicating that proximity to roads reduced grass vigour. Metal concentrations in grass tissue were lower than in soil by an average factor of nine, but varied as the soil concentrations. The concentrations of the heavy metals ...

  12. Removal Of Heavy Metals From Industrial Wastewaters Using Local ...

    African Journals Online (AJOL)

    Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents from the wastewaters. The percentage removal of the metals from the ...

  13. Assessment of heavy metal contents of green leafy vegetables

    Directory of Open Access Journals (Sweden)

    V. Jena

    2013-01-01

    Full Text Available Vegetables are rich sources of vitamins, minerals, and fibers, and have beneficial antioxidative effects. Ingestion of vegetables containing heavy metals is one of the main routes through which these elements enter the human body. Slowly released into the body, however, heavy metals can cause an array of diseases. In this study we investigated the concentrations of copper, chromium, zinc, and lead in the most frequently consumed vegetables including Pimpinella anisum, Spinacia oleracea, Amaranthus viridis, Coriandrum sativum, and Trigonella foenum graecum in various sites in Raipur city, India. Atomic absorption spectrophotometry was used to estimate the levels of these metals in vegetables. The mean concentration for each heavy metal in the samples was calculated and compared with the permissible levels set by the Food and Agriculture Organization and World Health Organization. The intake of heavy metals in the human diet was also calculated to estimate the risk to human health. Our findings indicated the presence of heavy metals in vegetables in the order of Cr > Zn > Cu > Pb. Based on these findings, we conclude that the vegetables grown in this region are a health hazard for human consumption.

  14. Heavy Metals Contamination of Table Salt Consumed in Iran

    Science.gov (United States)

    Cheraghali, Abdol Majid; Kobarfard, Farzad; Faeizy, Noroldin

    2010-01-01

    Lead, cadmium, mercury and arsenic are the most important heavy metals which may cause health risks following consumption of contaminated foods. Table salt is one the mostly used food additive with unique place in food consumption. Although purified table salt is expected to have lower level of contamination, some Iranians still prefer to use rock salt. Use of rock salt for food purposes has been banned by Iranian health authorities. In this study, heavy metal contamination of table salt consumed in Iran has been investigated. One hundred samples of rock and refined table salts were analyzed using atomic absorption spectrophotometeric methods for the presence of toxic heavy metals. The mean concentration of tested tracer metals including Cd, Pb, Hg and As was 0.024, 0.438, 0.021 and 0.094 μg/g, respectively. The concentrations of tested heavy metals were well below the maximum levels set by Codex. However, no statistically significant difference was found between contamination of rock salt and refined salt to heavy metals. PMID:24363718

  15. Metallic Element Chelated Tag Labeling (MeCTL) for Quantitation of N-Glycans in MALDI-MS.

    Science.gov (United States)

    Yang, Lijun; Peng, Ye; Jiao, Jing; Tao, Tao; Yao, Jun; Zhang, Ying; Lu, Haojie

    2017-07-18

    N-glycosylation plays an important role in chief biological and pathological processes. Quantifying the N-glycan is important since glycan alterations are related to many diseases. In this study, we developed a novel N-glycan quantitation approach using metallic element chelated tag labeling (MeCTL) through reductive amination. The MeCTL strategy is of high labeling efficiency and accurate in quantitation with high reproducibility (CV 0.99) within 2 orders of magnitude of dynamic range. Additionally, it provides significant cross-ring fragmentation to distinguish N-glycan isomers. Furthermore, multiplex quantitation by chelation with several different rare earth elements can be achieved. At last, this strategy has been successfully used for evaluation of N-glycan changes in human serum associated with CRC, indicating its potential in clinical applications including disease N-glycome profiling and relative quantitation.

  16. Iron Chelation

    Science.gov (United States)

    Skip to main content Menu Donate Treatments Therapies Iron Chelation Iron chelation therapy is the main treatment ... have iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you ...

  17. Mosses accumulate heavy metals from the substrata of coal ash

    Directory of Open Access Journals (Sweden)

    Vukojević Vanja

    2005-01-01

    Full Text Available Plants that are able to accumulate and tolerate extraordinarily high concentrations of heavy metals (hyperaccumulators can be used for phytoremediation (removal of contaminants from soils or phytomining (growing a crop of plants to harvest the metals. Two moss species, Bryum capillare Hedw. and Ceratodon purpureus Hedw., were tested as potential phytoremedies under in vivo conditions on a coal ash disposal site in the surroundings of Obrenovac (NW Serbia. The content of various heavy metals (iron, manganese zinc, lead, nickel, cadmium, and copper in the mosses and substrata were investigated over a period of three years. Iron and zinc were found to have the highest concentration in the mosses.

  18. Ecotoxicology of heavy metals: Liquid-phase extraction by nanosorbents

    Science.gov (United States)

    Burakov, A.; Romantsova, I.; Babkin, A.; Neskoromnaya, E.; Kucherova, A.; Kashevich, Z.

    2015-11-01

    The paper considers the problem of extreme toxicity heavy metal compounds dissolved in wastewater and liquid emissions of industrial enterprises to living organisms and environment as a whole. The possibility of increasing extraction efficiency of heavy metal ions by sorption materials was demonstrated. The porous space of the latter was modified by carbon nanotubes (CNTs) during process of the chemical vapour deposition (CVD) of carbon on metal oxide catalysts. The increasing of the sorption capacity (10-30%) and the sorption rate of nanomodified activated carbons in comparison with standard materials in the example of absorption of Co2+ and Ni2+ ions from aqueous solutions was proven.

  19. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    In each case, four tissues; gills, bone, intestine and muscle were compared with the level of metals in the water. Lower concentrations of metals were recorded in water than in fish. Lower concentration of the metals found in fish and water was less than that recommended by the World Health Organisation (WHO) guideline ...

  20. Critical loads of heavy metals for soils

    NARCIS (Netherlands)

    Vries, de W.; Groenenberg, J.E.; Lofts, S.; Tipping, E.; Posch, M.

    2012-01-01

    To enable a precautionary risk assessment for future inputs of metals, steady-state methods have been developed to assess critical loads of metals avoiding long-term risks to food quality and eco-toxicological effects on organisms in soils and surface waters. A critical load for metals equals the

  1. Predatory insects as bioindicators of heavy metal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Nummelin, Matti [Department of Biological and Environmental Sciences, P.O. Box 65, University of Helsinki, FIN-00014 (Finland)]. E-mail: matti.nummelin@helsinki.fi; Lodenius, Martin [Department of Biological and Environmental Sciences, P.O. Box 65, University of Helsinki, FIN-00014 (Finland); Tulisalo, Esa [Department of Biological and Environmental Sciences, P.O. Box 65, University of Helsinki, FIN-00014 (Finland); Hirvonen, Heikki [Department of Biological and Environmental Sciences, P.O. Box 65, University of Helsinki, FIN-00014 (Finland); Alanko, Timo [Statistics Finland, FIN-00022 (Finland)

    2007-01-15

    Heavy metal concentrations of different predatory insects were studied near by a steel factory and from control sites. Waterstriders (Gerridae), dragon fly larvae (Odonata), antlion larvae (Myrmeleontidae) and ants (Formicidae) were analyzed by AAS. In most cases the metal concentrations were higher near the factory, but e.g. waterstriders had higher cadmium concentrations in control area. Discriminant analysis clearly reveals that all these insect groups can be used as heavy metal indicators. However, the commonly used ants were the least effective in indicating the differences between the factory and control sites. Waterstriders are good in detecting differences in iron and manganese, but seem to be poor in accumulating nickel and lead. Antlions are efficient in detecting differences in iron. Antlions and ants are effective in accumulating manganese; as well antlions are efficient in accumulating cadmium. Waterstriders are poor in accumulating lead, but antlions and ants are effective. - Waterstriders, dragon fly larvae, antlion larvae, and ants can be used as heavy metal indicators.

  2. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeon Ho; Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2015-04-15

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

  3. Two metallothionein genes in Oxya chinensis: molecular characteristics, expression patterns and roles in heavy metal stress.

    Directory of Open Access Journals (Sweden)

    Yaoming Liu

    Full Text Available Metallothioneins (MTs are small, cysteine-rich, heavy metal-binding proteins involved in metal homeostasis and detoxification in living organisms. In the present study, we cloned two MT genes (OcMT1 and OcMT2 from Oxya chinensis, analyzed the expression patterns of the OcMT transcripts in different tissues and at varying developmental stages using real-time quantitative PCR (RT-qPCR, evaluated the functions of these two MTs using RNAi and recombinant proteins in an E. coli expression system. The full-length cDNAs of OcMT1 and OcMT2 encoded 40 and 64 amino acid residues, respectively. We found Cys-Cys, Cys-X-Cys and Cys-X-Y-Z-Cys motifs in OcMT1 and OcMT2. These motifs might serve as primary chelating sites, as in other organisms. These characteristics suggest that OcMT1 and OcMT2 may be involved in heavy metal detoxification by capturing the metals. Two OcMT were expressed at all developmental stages, and the highest levels were found in the eggs. Both transcripts were expressed in all eleven tissues examined, with the highest levels observed in the brain and optic lobes, followed by the fat body. The expression of OcMT2 was also relatively high in the ovaries. The functions of OcMT1 and OcMT2 were explored using RNA interference (RNAi and different concentrations and treatment times for the three heavy metals. Our results indicated that mortality increased significantly from 8.5% to 16.7%, and this increase was both time- and dose-dependent. To evaluate the abilities of these two MT proteins to confer heavy metal tolerance to E. coli, the bacterial cells were transformed with pET-28a plasmids containing the OcMT genes. The optical densities of both the MT-expressing and control cells decreased with increasing concentrations of CdCl2. Nevertheless, the survival rates of the MT-overexpressing cells were higher than those of the controls. Our results suggest that these two genes play important roles in heavy metal detoxification in O. chinensis.

  4. Two metallothionein genes in Oxya chinensis: molecular characteristics, expression patterns and roles in heavy metal stress.

    Science.gov (United States)

    Liu, Yaoming; Wu, Haihua; Kou, Lihua; Liu, Xiaojian; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2014-01-01

    Metallothioneins (MTs) are small, cysteine-rich, heavy metal-binding proteins involved in metal homeostasis and detoxification in living organisms. In the present study, we cloned two MT genes (OcMT1 and OcMT2) from Oxya chinensis, analyzed the expression patterns of the OcMT transcripts in different tissues and at varying developmental stages using real-time quantitative PCR (RT-qPCR), evaluated the functions of these two MTs using RNAi and recombinant proteins in an E. coli expression system. The full-length cDNAs of OcMT1 and OcMT2 encoded 40 and 64 amino acid residues, respectively. We found Cys-Cys, Cys-X-Cys and Cys-X-Y-Z-Cys motifs in OcMT1 and OcMT2. These motifs might serve as primary chelating sites, as in other organisms. These characteristics suggest that OcMT1 and OcMT2 may be involved in heavy metal detoxification by capturing the metals. Two OcMT were expressed at all developmental stages, and the highest levels were found in the eggs. Both transcripts were expressed in all eleven tissues examined, with the highest levels observed in the brain and optic lobes, followed by the fat body. The expression of OcMT2 was also relatively high in the ovaries. The functions of OcMT1 and OcMT2 were explored using RNA interference (RNAi) and different concentrations and treatment times for the three heavy metals. Our results indicated that mortality increased significantly from 8.5% to 16.7%, and this increase was both time- and dose-dependent. To evaluate the abilities of these two MT proteins to confer heavy metal tolerance to E. coli, the bacterial cells were transformed with pET-28a plasmids containing the OcMT genes. The optical densities of both the MT-expressing and control cells decreased with increasing concentrations of CdCl2. Nevertheless, the survival rates of the MT-overexpressing cells were higher than those of the controls. Our results suggest that these two genes play important roles in heavy metal detoxification in O. chinensis.

  5. Identifying sugarcane expressed sequences associated with nutrient transporters and peptide metal chelators

    Directory of Open Access Journals (Sweden)

    Antonio Figueira

    2001-12-01

    Full Text Available Plant nutrient uptake is an active process, requiring energy to accumulate essential elements at higher levels in plant tissues than in the soil solution, while the presence of toxic metals or excess of nutrients requires mechanisms to modulate the accumulation of ions. Genes encoding ion transporters isolated from plants and yeast were used to identify sugarcane putative homologues in the sugarcane expressed sequence tag (SUCEST database. Five cluster consensi with sequence homology to plant high-affinity phosphate transporter genes were identified. One cluster consensus allowed the prediction of a full-length protein containing 541 amino acids, with 81% amino acid identity to the Nicotiana tabacum NtPT1 gene, consisting of 12 membrane-spanning domains divided by a large hydrophilic charged region. Putative homologues to Arabidopsis thaliana micronutrient transporter genes were also detected in some of the SUCEST libraries. Iron uptake in grasses involves the release of the phytosiderophore mugeneic acid (MA which chelate Fe3+ which is then absorbed by a specific transporter. Sugarcane expressed sequence tag (EST homologous to genes coding for three enzymes of the mugeneic acid biosynthetic pathway [nicotianamine synthase; nicotianamine transferase; and putative mugeneic acid synthetase (ids3] and a putative Fe3+-phytosiderophore transporter were detected. Seven sugarcane sequence clusters were identified with strong homology to members of the ZIP gene family (ZIP1, ZIP3, ZIP4, IRT1 and ZNT1, while four clusters homologous to ZIP2 and three to ZAT were found. Homologues to members of another gene family, Nramp, which code for broad-specificity transition metal transporters were also detected with constitutive expression. Partial transcripts homologous to genes encoding gamma-glutamylcysteine synthetase, glutathione synthetase, and phytochelatin synthase (responsible for biosynthesis of the metal chelator phytochelatin and all four types of the

  6. Heavy metal pollution and genetic adaptations in ectomycorrhizal fungi

    OpenAIRE

    COLPAERT, Jan

    2008-01-01

    Heavy metal toxicity is a strong trigger for evolutionary adaptation in terrestrial biota that colonise metalliferous soils. Here, I will focus on the occurrence of metal tolerance in ectomycorrhizal fungi, the predominant group of root symbionts of pioneer trees that try to colonise severely polluted sites. A considerable amount of literature exists on metal-tolerant plants, which is in sharp contrast to what we know about the tolerance in the fungal symbiotic partners that associate with th...

  7. Heavy metals in the volcanic environment and thyroid cancer.

    Science.gov (United States)

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2017-12-05

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  8. Heavy Metals in ToxCast: Relevance to Food Safety (SOT)

    Science.gov (United States)

    Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals hav...

  9. Facile fabrication of hydrophilic nanofibrous membranes with an immobilized metal-chelate affinity complex for selective protein separation.

    Science.gov (United States)

    Zhu, Jing; Sun, Gang

    2014-01-22

    In this study, we report a facile approach to fabricate functionalized poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membranes as immobilized metal affinity membranes for selective protein separation. Hydrophilic PVA-co-PE nanofibrous membranes with controlled fiber sizes were prepared via a melt extrusion process. A chelating group, iminodiacetic acid (IDA), was covalently attached to cyanuric acid activated membrane surfaces to form coordinative complexes with metal ions. The prepared membranes were applied to recover a model protein, lysozyme, under various conditions, and a high lysozyme adsorption capacity of 199 mg/g membrane was found under the defined optimum conditions. Smaller fiber size with a higher immobilized metal ion density on membrane surfaces showed greater lysozyme adsorption capacity. The lysozyme adsorption capacity remained consistent during five repeated cycles of adsorption-elution operations, and up to 95% of adsorbed lysozyme was efficiently eluted by using a phosphate buffer containing 0.5 M NaCl and 0.5 M imidazole as an elution media. The successful separation of lysozyme with high purity from fresh chicken egg white was achieved by using the present affinity membrane. These remarkable features, such as high capacity and selectivity, easy regeneration, as well as reliable reusability, demonstrated the great potential of the metal-chelate affinity complex immobilized nanofibrous membranes for selective protein separation.

  10. Perspectives in endocrine toxicity of heavy metals--a review.

    Science.gov (United States)

    Rana, S V S

    2014-07-01

    An attempt has been made to review the endocrine/hormonal implications of a few environmentally significant metals, viz, lead, mercury, cadmium, copper, arsenic and nickel, in man and animals. Special emphasis has been given to the adrenals, thyroid, testis, ovary and pancreas. Toxic metals can cause structural and functional changes in the adrenal glands. Their effects on steroidogenesis have been reviewed. It has been reported that thyroid hormone kinetics are affected by a number of metallic compounds. Occupational exposure to a few of these metals can cause testicular injury and sex hormone disturbances. Protective effects of a few antioxidants on their reproductive toxicity have also been discussed. Information gathered on female reproductive toxicity of heavy metals shows that exposure to these metals can lead to disturbances in reproductive performance in exposed subjects. Certain metals can cause injury to the endocrine pancreas. Exposure to them can cause diabetes mellitus and disturb insulin homeostasis. The need to develop molecular markers of endocrine toxicity of heavy metals has been suggested. Overall information described in this review is expected to be helpful in planning future studies on endocrine toxicity of heavy metals.

  11. Heavy metal contamination in the Western Indian Ocean (a review)

    Science.gov (United States)

    Mamboya, F. A.; Pratap, H. B.; Björk, M.

    2003-05-01

    Western Indian Ocean Coast has many potential marine ecosystems such as mangrove, seagrass meadows, macroalgae, and coral reefs. It is largely unspoiled environment however, tourism and population growth in coastal urban centres, industrialization, are presenting a risk of pollutants input to the marine environment of the Western Indian Ocean. Mining, shipping and agricultural activities also input contaminants into the marine environment via runoff, vessel operations and accidental spillage. Heavy metals are among the pollutants that are expected to increase in the marine environment of the Western Indian Ocean. The increase in heavy metal pollution can pose a serious health problem to marine organism and human through food chain. This paper reviews studies on heavy metal contamination in the Western Indian Ocean. It covers heavy metal studies in the sediments, biota, particulates and seawater collected in different sites. In comparison to other regions, only few studies have been conducted in the Western Indian Ocean and are localized in some certain areas. Most of these studies were conducted in Kenyan and Tanzanian coasts while few of them were conducted in Mauritius, Somalia and Reunion. No standard or common method has been reported for the analysis or monitoring of heavy metals in the Western Indian Ocean.

  12. Heavy metal accumulation by carrageenan and agar producing algae

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, K.S. [Moscow State Univ. (Russian Federation). Faculty of Biology; Bird, K.T. [North Carolina Univ., Wilmington, NC (United States). Center for Marine Science Research

    1994-09-01

    The accumulation of six heavy metals Cu, Cd, Ni, Zn, Mn and Pb was measured in living and lzophilized algal thalli. The agar producing algae were Gracilaria tikvahiae and Gelidium pusillum. The carrageenan producing macroalgae were Agardhiella subulata and the gametophyte and tetrasporophyte phases of Chondrus crispus. These produce primarily iota, kappa and lambda carrageenans, respectively. At heavy metal concentrations of 0.5 mg L{sup -1}, living thalli of Gracilaria tikvahiae generally showed the greatest amount of accumulation of the 6 heavy metals tested. The accumulation of Pb was greater in the living thalli of all four species than in the lyophilized thalli. Except for Agardhiella subulata, lyophilized thalli showed greater accumulation of Ni, Cu and Zn. There was no difference in heavy metal accumulation between living and lyophilized thalli in the accumulation of Cd. Manganese showed no accumulation at the tested concentration. There did not appear to be a relationship between algal hydrocolloid characteristics and the amounts of heavy metals accumulated. (orig.)

  13. SPECIATION OF HEAVY METALS AT WATER-SEDIMENT INTERFACE

    Directory of Open Access Journals (Sweden)

    Chiara Ferronato

    2013-09-01

    Full Text Available The objective of the study was to understand the equilibrium relationship between the heavy metals concentrations in superficial water and pore water. At  water-sediment interface, the equilibrium rapidly changed and it is influenced by chemico-physical parameters of aquatic ecosystems. The hydraulic safety of Bologna plain (North Italy depends on network of artificial canals and they are related with natural rivers of Reno basin (Reno river and its tributaries. The natural and artificial water courses flowed in agricultural, urban and industrial land. The heavy metals concentration in water and sediment discriminated the human pressure on the land and their spatial distribution in sediment could predict the hazard of pollution in aquatic ecosystems. We compared the heavy metals concentrations in pore water and superficial water determined in natural rivers and artificial canals, and more pollution in artificial canals than natural rivers was found. Furthermore, the coefficient of partition (log Kd between water and sediments was calculated to evaluate the bioavailability of heavy metals adsorbed on the sediments. The heavy metals extracted in deionised water at equilibrium after 16 h showed higher concentrations than those determined directly on water samples.

  14. New trends in removing heavy metals from wastewater.

    Science.gov (United States)

    Zhao, Meihua; Xu, Ying; Zhang, Chaosheng; Rong, Hongwei; Zeng, Guangming

    2016-08-01

    With the development of researches, the treatments of wastewater have reached a certain level. Whereas, heavy metals in wastewater cause special concern in recent times due to their recalcitrance and persistence in the environment. Therefore, it is important to get rid of the heavy metals in wastewater. The previous studies have provided many alternative processes in removing heavy metals from wastewater. This paper reviews the recent developments and various methods for the removal of heavy metals from wastewater. It also evaluates the advantages and limitations in application of these techniques. A particular focus is given to innovative removal processes including adsorption on abiological adsorbents, biosorption, and photocatalysis. Because these processes have leaded the new trends and attracted more and more researches in removing heavy metals from wastewater due to their high efficency, pluripotency and availability in a copious amount. In general, the applicability, characteristic of wastewater, cost-effectiveness, and plant simplicity are the key factors in selecting the most suitable method for the contaminated wastewater.

  15. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected...... that the speciation of these metals was similar in the two ashes. On the other hand, the leaching behaviour (and concentration) of Cr was diverse. The apparent similar speciation of Cd, Pb, Zn and Cu was only partly confirmed in the following electrodialytic remediation experiments. Significant differences in re......Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...

  16. Precipitation of heavy metals in waste waters; Precipitacion de metales pesados en las aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Stutzel, K.; Peldszus, R.

    1997-06-01

    Heavy metals content in effluents is regulated due to their toxicity. To minimized them different precipitating agents are used. A comparison between some precipitating agents (the most common is H{sub 2}S) wit trimercapto-s-triazine (TMT 15) is shown. Solubility products of TMT 15 with divalent metals are very low: the precipitation with TMT 15 gives a heavy metal concentration in effluents below regulated levels. (Author)

  17. Bioavailability of heavy metals in soils: definitions and practical implementation--a critical review.

    Science.gov (United States)

    Kim, Rog-Young; Yoon, Jeong-Ki; Kim, Tae-Seung; Yang, Jae E; Owens, Gary; Kim, Kwon-Rae

    2015-12-01

    Worldwide regulatory frameworks for the assessment and remediation of contaminated soils have moved towards a risk-based approach, taking contaminant bioavailability into consideration. However, there is much debate on the precise definition of bioavailability and on the standardization of methods for the measurement of bioavailability so that it can be reliably applied as a tool for risk assessment. Therefore, in this paper, we reviewed the existing definitions of heavy metal bioavailability in relation to plant uptake (phytoavailability), in order to better understand both the conceptual and operational aspects of bioavailability. The related concepts of specific and non-specific adsorption, as well as complex formation and organic ligand affinity were also intensively discussed to explain the variations of heavy metal solubility and mobility in soils. Further, the most frequently used methods to measure bioavailable metal soil fractions based on both chemical extractions and mechanistic geochemical models were reviewed. For relatively highly mobile metals (Cd, Ni, and Zn), a neutral salt solution such as 0.01 M CaCl2 or 1 M NH4NO3 was recommended, whereas a strong acid or chelating solution such as 0.43 M HNO3 or 0.05 M DTPA was recommended for strongly soil-adsorbed and less mobile metals (Cu, Cr, and Pb). While methods which assessed the free metal ion activity in the pore water such as DGT and DMT or WHAM/Model VI, NICA-Donnan model, and TBLM are advantageous for providing a more direct measure of bioavailability, few of these models have to date been properly validated.

  18. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  19. Magnetic fluctuations in heavy-fermion metals

    DEFF Research Database (Denmark)

    Mason, T.E.; Petersen, T.; Aeppli, G.

    1995-01-01

    Elastic and inelastic neutron scattering have been used to study the antiferromagnetic ordering and magnetic excitations of the U heavy-fermion superconductors UPd2Al3 and URu2Si2 above and below T-N. While both materials exhibit the coexistence of superconductivity and antiferromagnetic order, t...

  20. 100 - 107_Funtua_Heavy metals

    African Journals Online (AJOL)

    pc

    were washed with soap and rinsed with distilled water to avoid sample contamination(Awofolu,2005) . Five soil samples from each sampling location and depths were randomly collected and pooled together to form a composite from each of the sampling locations. The control samples were collected to validate the heavy.

  1. Heavy metal biosorption by bacterial cells

    NARCIS (Netherlands)

    Vecchio, A; Finoli, C; Di Simine, D; Andreoni, [No Value

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the

  2. The environmental impact of gold mines: pollution by heavy metals

    Science.gov (United States)

    Abdul-Wahab, Sabah; Marikar, Fouzul

    2012-06-01

    The gold mining plant of Oman was studied to assess the contribution of gold mining on the degree of heavy metals into different environmental media. Samples were collected from the gold mining plant area in tailings, stream waters, soils and crop plants. The collected samples were analyzed for 13 heavy metals including vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), cadmium (Cd), cobalt (Co), lead (Pb), zinc (Zn), aluminium (Al), strontium (Sr), iron (Fe) and barium (Ba). The water in the acid evaporation pond showed a high concentration of Fe as well as residual quantities of Zn, V, and Al, whereas water from the citizens well showed concentrations of Al above those of Omani and WHO standards. The desert plant species growing closed to the gold pit indicated high concentrations of heavy metals (Mn, Al, Ni, Fe, Cr, and V), while the similar plant species used as a control indicated lesser concentrations of all heavy metals. The surface water (blue) indicated very high concentrations of copper and significant concentrations of Mn, Ni, Al, Fe, Zn, lead, Co and Cd. The results revealed that some of the toxic metals absorbed by plants indicated significant metal immobilization.

  3. Clostridia initiate heavy metal bioremoval in mixed sulfidogenic cultures.

    Science.gov (United States)

    Alexandrino, Maria; Costa, Rodrigo; Canário, Adelino V M; Costa, Maria C

    2014-03-18

    Sulfate reducing bacteria (SRB) are widely used for attenuating heavy metal pollution by means of sulfide generation. Due to their low metal tolerance, several SRB species depend on associated bacteria in mixed cultures to cope with metal-induced stress. Yet the identity of the SRB protecting bacteria is largely unknown. We aimed to identify these associated bacteria and their potential role in two highly metal-resistant mixed SRB cultures by comparing bacterial community composition and SRB activity between these cultures and two sensitive ones. The SRB composition in the resistant and sensitive consortia was similar. However, whereas the SRB in the sensitive cultures were strongly inhibited by a mixture of copper, zinc, and iron, no influence of these metals was detected on SRB growth and activity in the resistant cultures. In the latter, a Gram-positive population mostly assigned to Clostridium spp. initiated heavy metal bioremoval based on sulfide generation from components of the medium (mainly sulfite) but not from sulfate. After metal levels were lowered by the Clostridium spp. populations, SRB started sulfate reduction and raised the pH of the medium. The combination of sulfite reducing Clostridium spp. with SRB may improve green technologies for removal of heavy metals.

  4. Comprehensive study of the chelation and coacervation of alkaline earth metals in the presence of sodium polyphosphate solution.

    Science.gov (United States)

    Momeni, Arash; Filiaggi, Mark Joseph

    2014-05-13

    The effect of chelation of three alkaline earth metals (Ca, Sr, and Ba) by polyphosphates on the pH and viscosity of the solution is examined and correlated to the phosphate glass properties. Also, the impact of the polyphosphate average degree of polymerization (D(p)) as well as the type and amount of chelated divalent cation on the degradation rate of the chains is studied. Subsequently, the number of divalent cations required for polyphosphate chain agglomeration to form a coacervate, and the resulting composition of these coacervates, was investigated. A decrease in polyphosphate solution pH during chelation was routinely obtained, with a sudden shift in the rate of pH drop occurring around a divalent cation/phosphorus molar ratio of 0.18. Longer chains or cations with a smaller ionic radius accelerated the rate of D(p) reduction. The number of divalent cations required for coacervation depends on different variables such as the polyphosphate concentration, the D(p), and the type of divalent cation. The formed coacervate retains the D(p) of polyphosphate originally used for coacervation, and the resulting Ca/P molar ratio depends largely on the amount of calcium being used during coacervation. Overall, this article helps one to understand the coacervation of polyphosphates in order to exploit their potential as a biomaterial.

  5. Fluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing

    Directory of Open Access Journals (Sweden)

    Idelma A. A. Terra

    2017-12-01

    Full Text Available The accumulation of heavy metals in the human body and/or in the environment can be highly deleterious for mankind, and currently, considerable efforts have been made to develop reliable and sensitive techniques for their detection. Among the detection methods, chemical sensors appear as a promising technology, with emphasis on systems employing optically active nanofibers. Such nanofibers can be obtained by the electrospinning technique, and further functionalized with optically active chromophores such as dyes, conjugated polymers, carbon-based nanomaterials and nanoparticles, in order to produce fluorescent and colorimetric nanofibers. In this review we survey recent investigations reporting the use of optically active electrospun nanofibers in sensors aiming at the specific detection of heavy metals using colorimetry and fluorescence methods. The examples given in this review article provide sufficient evidence of the potential of optically electrospun nanofibers as a valid approach to fabricate highly selective and sensitive optical sensors for fast and low-cost detection of heavy metals.

  6. Dustfall Heavy Metal Pollution During Winter in North China.

    Science.gov (United States)

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Shu, Tong-tong; Chen, Fan-tao; Zheng, Xiao-xia; Gong, Zhao-ning

    2015-10-01

    In order to study heavy metal pollution in dustfall during Winter in North China, forty-four dustfall samples were collected in North China Region from November 2013 to March 2014. Then forty trace elements content were measured for each sample by inductively coupled plasma-mass spectrometry. Finally, the contamination characteristics of the main heavy metals were studied through a multi-method analysis, including variability analysis, Pearson correlation analysis and principal component analysis. Results showed that the relative contents of cadmium (Cd), zinc (Zn), copper (Cu), bismuth (Bi), lead (Pb) exceeded the standards stipulated in Chinese soil elements background values by amazing 4.9 times. In this study, conclusions were drawn that dustfall heavy metal pollution in the region was mainly caused by transport pollution, metallurgy industrial pollution, coal pollution and steel industrial pollution.

  7. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis.

    Science.gov (United States)

    Cobbett, Christopher; Goldsbrough, Peter

    2002-01-01

    Among the heavy metal-binding ligands in plant cells the phytochelatins (PCs) and metallothioneins (MTs) are the best characterized. PCs and MTs are different classes of cysteine-rich, heavy metal-binding protein molecules. PCs are enzymatically synthesized peptides, whereas MTs are gene-encoded polypeptides. Recently, genes encoding the enzyme PC synthase have been identified in plants and other species while the completion of the Arabidopsis genome sequence has allowed the identification of the entire suite of MT genes in a higher plant. Recent advances in understanding the regulation of PC biosynthesis and MT gene expression and the possible roles of PCs and MTs in heavy metal detoxification and homeostasis are reviewed.

  8. Deena Weinstein, Heavy Metal: The Music and Its Culture

    OpenAIRE

    Grassy, Elsa

    2009-01-01

    Au moment où la sociologue Deena Weinstein publie Heavy Metal : The Music and Its Culture, en 1991, le heavy metal fait l’objet de controverses très médiatisées aux États-Unis. Le procès de Judas Priest pour incitation au suicide vient de faire les gros titres, et tous les conservateurs du pays passent leurs journées à écouter des disques à l’envers, à la recherche de paroles sataniques. Le livre de Weinstein s’inspire de ce climat sulfureux qui entoure le heavy metal depuis ses débuts mais a...

  9. Electrodialytic Removal of Heavy Metals from Different Solid Waste Products

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Pedersen, Anne Juul

    2003-01-01

    A variety of heavy metal polluted waste products must be handled today. Electrochemical methods have been developed for remediation of polluted soil. One of the methods is the electrodialytic remediation method that is based on electromigration of heavy metal ions and ionic species within the soil...... matrix, and a separation of the soil and the process solutions, where the heavy metals are concentrated, with ion exchange membranes. For remediation of some soils, such as calcareous soils, it is necessary to add an enhancement solution. It was shown in a laboratory experiment that ammonium citrate...... could be used when removing Cu and Cr from a soil with 25% carbonates. The final concentrations of the elements were below the target values after the remediation. A question of whether the electrodialytic remediation method can be used for other waste products arose. Preliminary experiments showed...

  10. Effect of Heavy Metals in Plants of the Genus Brassica.

    Science.gov (United States)

    Mourato, Miguel P; Moreira, Inês N; Leitão, Inês; Pinto, Filipa R; Sales, Joana R; Martins, Luisa Louro

    2015-08-04

    Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra.

  11. Effect of heavy metals on growth and heavy metal content of Allium porrum L. and Pisum sativum L

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhage, L.; Jaeger, H.J.

    1985-01-01

    The effects of cadmium, lead, zinc and copper, singly and in combination, on yield, heavy metal content and the mineral composition of Allium porrum L. and Pisum sativum L. have been investigated. The Cd, Pb, Zn and Cu concentrations of shoots and roots of Allium porrum increased with increasing heavy metal contamination of soil. However, no visible symptoms of heavy metal toxicity were recognized. The dry matter production was reduced as a function of heavy metal concentration and combination. The mechanisms of combinations were mostly synergistic. The correlation between pollutant contents (nmol/shoot) and yield was higher than the correlation between heavy metal concentrations of soil or shoots (ppm) and yield. Results of regression analyses showed that the inhibition of copper translocation caused by Cd, Pb and Zn was responsible for the yield depressions. The antagonism between Cd and N-deficiency showed that the level of N-supply was without negative effects on yield depressions of Pisum sativum caused by Cd. In contrast to this, the N-form played an important role in Cd-toxicity as the synergism between Cd and NH4 illustrated. K-deficiency as well as acidic nutrient solution (pH=4) diminished the root/shoot-barrier for Cd and therefore Cd-translocation from roots to shoots increased. Concerning calcium, magnesium and iron the decrease of ion uptake caused by Cd was statistically significant higher than yield depression.

  12. Characterization of a heavy metal translocating P-type ATPase gene from an environmental heavy metal resistance Enterobacter sp. isolate.

    Science.gov (United States)

    Chien, Chih-Ching; Huang, Chia-Hsuan; Lin, Yi-Wei

    2013-03-01

    Heavy metals are common contaminants found in polluted areas. We have identified a heavy metal translocating P-type ATPase gene (hmtp) via fosmid library and in vitro transposon mutagenesis from an Enterobacter sp. isolate. This gene is believed to participate in the bacterium's heavy metal resistance traits. The complete gene was identified, cloned, and expressed in a suitable Escherichia coli host cell. E. coli W3110, RW3110 (zntA::Km), GG48 (ΔzitB::Cm zntA::Km), and GG51 (ΔzitB::Cm) were used to study the possible effects of this gene for heavy metal (cadmium and zinc in particular) resistance. Among the E. coli strains tested, RW3110 and GG48 showed more sensitivity to cadmium and zinc compared to the wild-type E. coli W3110 and strain GG51. Therefore, strains RW3110 and GG48 were chosen for the reference hosts for further evaluation of the gene's effect. The results showed that expression of this heavy metal translocating P-type ATPase gene could increase the ability for zinc and cadmium resistance in the tested microorganisms.

  13. Heavy metal pollution in coastal areas of South China: a review.

    Science.gov (United States)

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-11-15

    Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990 s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Using microbiological leaching method to remove heavy metals from sludge

    Directory of Open Access Journals (Sweden)

    Zhuyu Gu

    2017-01-01

    Full Text Available Microbial leaching is one of the most effective methods to remove heavy metals from sludge. In the conducted researches, the sludge samples were processed with Thiobacillus ferrooxidans and Thiobacillus thiooxidans obtained via cultivation, extraction and purification processes. Heavy metals such as Pb, Cd, Cu and Ni were leached from sludge by Thiobacillus ferrooxidans and Thiobacillus thiooxidans within different substrate concentration and pH value conditions. It is defined that from the point of view of economy and efficiency the optimal concentration of FeSO4.7H2O and sulfur for bio-leaching process was 0.2 g. The leaching rates of heavy metals such as Pb, Cd, Cu and Ni of the same concentration were 74.72%, 81.54%, 70.46% and 77.35% respectively. However, no significant differences depending on the pH value among the leaching rates were defined, even for the pH value of 1.5. Along with the removal of heavy metals from sludge, the organic matter, N, P, K were also leached to some extent. The losing rate of phosphorus was the highest and reached 38.44%. However, the content of organic matter, N, P, K in the processed sludge were higher in comparison with level I of the National Soil Quality Standards of China. Ecological risk of heavy metals in sludge before and after leaching was assessed by Index of Geo-accumulation (Igeo and comprehensive potential risk (RI. The results of research defined that the content of heavy metals in sludge meets the level of low ecological risk after leaching and their contents is lower in comparison with the National Agricultural Sludge Standard of China. Sludge leached by biological methods is possible to use for treatment for increasing soil fertility.

  15. Heavy metals accumulation affects bone microarchitecture in osteoporotic patients.

    Science.gov (United States)

    Scimeca, Manuel; Feola, Maurizio; Romano, Lorenzo; Rao, Cecilia; Gasbarra, Elena; Bonanno, Elena; Brandi, Maria Luisa; Tarantino, Umberto

    2017-04-01

    Bone metabolism is affected by mechanical, genetic, and environmental factors and plays a major role in osteoporosis. Nevertheless, the influence of environmental pollution on the occurrence of osteoporosis is still unclear and controversial. In this context, heavy metals are the most important pollutants capable to affect bone mass. The aim of this study was to investigate whether heavy metals accumulation in bone tissues could be related to the altered bone metabolism and architecture of osteoporotic patients. To this end, we analyzed 25 bone head biopsies osteoporotic patients and 25 bone head biopsies of osteoarthritic patients. Moreover we enrolled 15 patients underwent hip arthroplasty for high-energy hip fracture or osteonecrosis of the femoral head as a control group. Bone head biopsies were studied by BioQuant-osteo software, scanning electron microscopy and Energy Dispersive X-ray microanalysis. We found a prevalence of lead, cadmium and chromium accumulation in osteoporotic patients. Noteworthy, high levels of sclerostin, detected by immunohistochemistry, correlate with the accumulation of heavy metal found in the bone of osteoporotic patients, suggesting a molecular link between heavy metal accumulation and bone metabolism impairment. In conclusion, the presence of heavy metals into bone shed new light on the comprehension of the pathogenesis of osteoporosis since these elements could play a non redundant role in the development of osteoporosis at cellular/molecular and epigenetic level. Nevertheless, in vivo and in vitro studies need to better elucidate the molecular mechanism in which heavy metals can participate to osteoporosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1333-1342, 2017. © 2016 Wiley Periodicals, Inc.

  16. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis.

    Directory of Open Access Journals (Sweden)

    Ranhao Sun

    Full Text Available The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals.

  17. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    Science.gov (United States)

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  18. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  19. Modern Chemistry Techniques Applied to Metal Behavior and Chelation in Medical and Environmental Systems ? Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Andresen, B; Burastero, S R; Chiarappa-Zucca, M L; Chinn, S C; Coronado, P R; Gash, A E; Perkins, J; Sawvel, A M; Szechenyi, S C

    2005-02-03

    This report details the research and findings generated over the course of a 3-year research project funded by Lawrence Livermore National Laboratory (LLNL) Laboratory Directed Research and Development (LDRD). Originally tasked with studying beryllium chemistry and chelation for the treatment of Chronic Beryllium Disease and environmental remediation of beryllium-contaminated environments, this work has yielded results in beryllium and uranium solubility and speciation associated with toxicology; specific and effective chelation agents for beryllium, capable of lowering beryllium tissue burden and increasing urinary excretion in mice, and dissolution of beryllium contamination at LLNL Site 300; {sup 9}Be NMR studies previously unstudied at LLNL; secondary ionization mass spec (SIMS) imaging of beryllium in spleen and lung tissue; beryllium interactions with aerogel/GAC material for environmental cleanup. The results show that chelator development using modern chemical techniques such as chemical thermodynamic modeling, was successful in identifying and utilizing tried and tested beryllium chelators for use in medical and environmental scenarios. Additionally, a study of uranium speciation in simulated biological fluids identified uranium species present in urine, gastric juice, pancreatic fluid, airway surface fluid, simulated lung fluid, bile, saliva, plasma, interstitial fluid and intracellular fluid.

  20. Preparation, spectral, X-ray powder diffraction and computational studies and genotoxic properties of new azo-azomethine metal chelates

    Science.gov (United States)

    Bitmez, Şirin; Sayin, Koray; Avar, Bariş; Köse, Muhammet; Kayraldız, Ahmet; Kurtoğlu, Mükerrem

    2014-11-01

    A new tridentate azo-azomethine ligand, N‧-[{2-hydroxy-5-[(4-nitrophenyl)diazenyl]phenyl}methylidene]benzohydrazidemonohydrate, (sbH·H2O) (1), is prepared by condensation of benzohydrazide and 2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzaldehyde (a) with treatment of a solution of diazonium salt of p-nitroaniline and 2-hydroxybenzaldehyde in EtOH. The five coordination compounds, [Co(sb)2]·4H2O (2), [Ni(sb)2]·H2O (3), [Cu(sb)2]·4H2O (4), [Zn(sb)2]·H2O (5) and [Cd(sb)2]·H2O (6) are prepared by reacting the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ions with the ligand. The structures of the compounds are elucidated from the elemental analyses data and spectroscopic studies. It is found the ligand acts as a tridentate bending through phenolic and carbonyl oxygens and nitrogen atom of the Cdbnd Nsbnd group similar to the most of salicylaldimines. Comparison of the infrared spectra of the ligand and its metal complexes confirm that azo-Schiff base behaves as a monobasic tridentate ligand towards the central metal ion with an ONO donor sequence. Upon complexation with the ligand, the Cd(II), and Zn(II) ions form monoclinic structures, while Co(II), Cu(II) and Ni(II) ions form orthorhombic structures. Quantum chemical calculations are performed on tautomers and its metal chelates by using DFT/B3LYP method. Most stable tautomer is determined as tautomer (1a). The geometrical parameters of its metal chelates are obtained as theoretically. The NLO properties of tautomer (1a) and its metal complexes are investigated. Finally, the ligand and its metal complexes are assessed for their genotoxicity.

  1. Sorption of heavy metal ions on new metal-ligand complexes chemically derived from Lycopodium clavatum

    Energy Technology Data Exchange (ETDEWEB)

    Pehlivan, E.; Ersoz, M.; Yildiz, S. [Univ. of Selcuk, Konya (Turkey); Duncan, H.J. [Univ. of Glasgow, Scotland (United Kingdom)

    1994-08-01

    Sorption of heavy metal ions from aqueous solution has been investigated as a function of pH using a novel exchanger system whereby Lycopodium clavatum is functionalized with carboxylate and glyoxime metal-ligand complexes. The new ligand exchangers were prepared using a reaction of diaminosporopollenin with various metal-ligand complexes of glyoxime and monocarboxylic acid. The sorptive behavior of these metal-ligand exchangers and the possibilities to remove and to recover selectively heavy metal cations using these systems are discussed on the basis of their chemical natures and their complexing properties.

  2. Geopolymer as an adsorbent of heavy metal: A review

    Science.gov (United States)

    Ariffin, Nurliyana; Abdullah, Mohamad Mustafa Al Bakri; Zainol, Remy Rozainy Mohd Arif; Murshed, Mohd Fared

    2017-09-01

    This paper reviews about geopolymer based adsorbent focusing in the removal of heavy metal. The reviews include fundamental and types of material used in the formation of adsorbents. Geopolymer based adsorbent got attention recently due to its unique three-dimensional network structure, with fixed size pores and paths that allow certain heavy metal to pass through. Most materials that applied as adsorbent such as fly ash, metakaolin, kaolin and dolomite. A lot of sludge nowadays only dumped in the landfill which can be used as one of new materials as geopolymer based adsorbent.

  3. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    On behalf of the Ministry of the Environment DCE at Aarhus University annually reports heavy metals (HM) emissions to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution). This report presents updated heavy metal emission factors...... for stationary combustion plants and the corresponding improved emission inventories for the following HMs: Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn). The report presents data for the year 2009 and time series for 1990...

  4. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    DEFF Research Database (Denmark)

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2012-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through...... the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even...

  5. Photoelectrochemical detection of toxic heavy metals

    CSIR Research Space (South Africa)

    Chamier, J

    2010-09-01

    Full Text Available atomic fluorescence spectroscopy (CVAFS). These techniques are sensitive and accurate in their detection of metals in the environment but are expensive to maintain, immobile and require sample preparation. Immobilisation of cation-selective flourophores...

  6. Synthesis, Characterization and Antimicrobial Activity of Metal Chelates of 5-(4-N, N-Diethylamino sulfonyl phenyl azo-8-hydorxy quinoline

    Directory of Open Access Journals (Sweden)

    A. U. Patel

    2009-01-01

    Full Text Available 4-N,N-Diethylamino sulfonyl phenyl amine was synthesized by diazotization and coupled with 8-hydroxyquinoline. The resultant 5-(4-N,N-diethylamino sulfonyl phenyl azo-8-hydorxy quinoline (DSAQ was characterized by elemental analysis and spectral studies. The transition metal chelates viz. Cu2+, Ni2+, Co2+, Mn2+ and Zn2+of DSAQ were prepared and characterized by metal-ligand (M:L ratio. IR and reflectance spectroscopy and magnetic properties. The anti fungal activity of DSAQ and its metal chelates was screened against various fungi. The results show that all these samples are good antifungal agents.

  7. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    Science.gov (United States)

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2017-11-15

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Toxicity assessment of heavy metal mixtures by Lemna minor L.

    Science.gov (United States)

    Horvat, Tea; Vidaković-Cifrek, Zeljka; Orescanin, Visnja; Tkalec, Mirta; Pevalek-Kozlina, Branka

    2007-10-01

    The discharge of untreated electroplating wastewaters directly into the environment is a certain source of heavy metals in surface waters. Even though heavy metal discharge is regulated by environmental laws many small-scale electroplating facilities do not apply adequate protective measures. Electroplating wastewaters contain large amounts of various heavy metals (the composition depending on the facility) and the pH value often bellow 2. Such pollution diminishes the biodiversity of aquatic ecosystems and also endangers human health. The aim of our study was to observe/measure the toxic effects induced by a mixture of seven heavy metals on a bioindicator species Lemna minor L. Since artificial laboratory metal mixtures cannot entirely predict behaviour of metal mixtures nor provide us with informations relating to the specific conditions in the realistic environment we have used an actual electroplating wastewater sample discharged from a small electroplating facility. In order to obtain three more samples with the same composition of heavy metals but at different concentrations, the original electroplating wastewater sample has undergone a purification process. The purification process used was developed by Orescanin et al. [Orescanin V, Mikelić L, Lulić S, Nad K, Rubcić M, Pavlović G. Purification of electroplating wastewaters utilizing waste by-product ferrous sulphate and wood fly ash. J Environ Sci Health A 2004; 39 (9): 2437-2446.] in order to remove the heavy metals and adjust the pH value to acceptable values for discharge into the environment. Studies involving plants and multielemental waters are very rare because of the difficulty in explaining interactions of the combined toxicities. Regardless of the complexity in interpretation, Lemna bioassay can be efficiently used to assess combined effects of multimetal samples. Such realistic samples should not be avoided because they can provide us with a wide range of information which can help explain

  9. A novel route for the removal of bodily heavy metal lead (II)

    Science.gov (United States)

    Huang, Weirong; Zhang, Penghua; Xu, Hui; Chang, Shengli; He, Yongju; Wang, Fei; Liang, Gaowei

    2015-09-01

    The lead ion concentration in bile is considerably higher than in blood, and bile is released into the alimentary tract. Thiol-modified SBA-15 administered orally can combine with lead ions in the alimentary tract. In this paper, the in vitro lead absorption of bile was investigated. This thiol-modified SBA-15 material was used in pharmacodynamics studies on rabbits. The result that the lead content in faeces was notably higher indicates that thiol-modified SBA-15 can efficiently remove lead. The mechanism could include the following: thiol-modified SBA-15 material cuts off the heavy metal lead recirculation in the process of bile enterohepatic circulation by chelating the lead in the alimentary tract, causing a certain proportion of lead to be removed by the thiol mesoporous material, and the lead is subsequently egested out of the body in faeces. The results indicate that this material might be a potential non-injection material for the removal bodily heavy metal lead in the alimentary tract. This material may also be a useful means of lead removal, especially for non-acute sub-poisoning symptoms.

  10. Rhizobacteria of Populus euphratica Promoting Plant Growth Against Heavy Metals.

    Science.gov (United States)

    Zhu, Donglin; Ouyang, Liming; Xu, Zhaohui; Zhang, Lili

    2015-01-01

    The heavy metal-resistant bacteria from rhizospheric soils of wild Populus euphratica forest growing in arid and saline area of northwestern China were investigated by cultivation-dependent methods. After screening on medium sparked with zinc, copper, nickel and lead, 146 bacteria strains with different morphology were isolated and most of them were found to be resistant to at least two kinds of heavy metals. Significant increase in fresh weight and leaf surface area of Arabidopsis thaliana seedlings under metal stress were noticed after inoculated with strains especially those having multiple-resistance to heavy metals such as Phyllobacterium sp. strain C65. Investigation on relationship between auxin production and exogenous zinc concentration revealed that Phyllobacterium sp. strain C65 produced auxin, and production decreased as the concentration of zinc in medium increased. For wheat seedlings treated with zinc of 2 mM, zinc contents in roots of inoculated plants decreased by 27% (P < 0.05) compared to the uninoculated control. Meanwhile, zinc accumulation in the above-ground tissues increased by 22% (P < 0.05). The translocation of zinc from root to above-ground tissues induced by Phyllobacterium sp. strain C65 helped host plants extract zinc from contaminated environments more efficiently thus alleviated the growth inhibition caused by heavy metals.

  11. Normal concentrations of heavy metals in autistic spectrum disorders.

    Science.gov (United States)

    Albizzati, A; Morè, L; Di Candia, D; Saccani, M; Lenti, C

    2012-02-01

    Autism is a neurological-psychiatric disease. In the last 20 years we witnessed a strong increase of autism diagnoses. To explain this increase, some scientists put forward the hypothesis that heavy metal intoxication may be one of the causes of autism. The origin of such an intoxication was hypothesised to be vaccines containing thimerosal as antimicrobic preservative. This preservative is mainly made up of mercury. The aim of our research was to investigate the correlation between autism and high biological concentrations of heavy metals. Seventeen autistic patients, between 6 and 16 years old (average: 11.52 DS: 3.20) (15 males and 2 females), were investigated, as well as 20 non autistic subjects from neuropsychiatric service between 6 and 16 years (average: 10.41 DS: 3.20) (15 males and 2 females). In both groups blood, urine and hair samples were analysed trough means of a semiquantitative analysis of heavy metal dosing. The metals analysed were Lead, mercury, cadmium and aluminium, since their build-up may give both neurological and psychiatric symptoms. The comparison of the mean values of the concentrations between the groups, performed with ANOVA test, has shown no statistically relevant differences. There wasn't correlation between autism and heavy metal concentration.

  12. Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins.

    Science.gov (United States)

    Bae, W; Chen, W; Mulchandani, A; Mehra, R K

    2000-12-05

    A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal-chelating phytochelatin analogs (Glu-Cys)(n)Gly (EC8 (n = 8), EC11 (n = 11), and EC20 (n = 20)) were synthesized, linked to a lpp-ompA fusion gene, and displayed on the surface of E. coli. For comparison, EC20 was also expressed periplasmically as a fusion with the maltose-binding protein (MBP-EC20). Purified MBP-EC20 was shown to accumulate more Cd(2+) per peptide than typical mammalian metallothioneins with a stoichiometry of 10 Cd(2+)/peptide. Cells displaying synthetic phytochelatins exhibited chain-length dependent increase in metal accumulation. For example, 18 nmoles of Cd(2+)/mg dry cells were accumulated by cells displaying EC8, whereas cells exhibiting EC20 accumulated a maximum of 60 nmoles of Cd(2+)/mg dry cells. Moreover, cells with surface-expressed EC20 accumulated twice the amount of Cd(2+) as cells expressing EC20 periplasmically. The ability to genetically engineer ECs with precisely defined chain length could provide an attractive strategy for developing high-affinity bioadsorbents suitable for heavy metal removal. Copyright 2000 John Wiley & Sons, Inc.

  13. Phytoremediation of heavy metal contaminated soil by Jatropha curcas.

    Science.gov (United States)

    Chang, Fang-Chih; Ko, Chun-Han; Tsai, Ming-Jer; Wang, Ya-Nang; Chung, Chin-Yi

    2014-12-01

    This study employed Jatropha curcas (bioenergy crop plant) to assist in the removal of heavy metals from contaminated field soils. Analyses were conducted on the concentrations of the individual metals in the soil and in the plants, and their differences over the growth periods of the plants were determined. The calculation of plant biomass after 2 years yielded the total amount of each metal that was removed from the soil. In terms of the absorption of heavy metal contaminants by the roots and their transfer to aerial plant parts, Cd, Ni, and Zn exhibited the greatest ease of absorption, whereas Cu, Cr, and Pb interacted strongly with the root cells and remained in the roots of the plants. J. curcas showed the best absorption capability for Cd, Cr, Ni, and Zn. This study pioneered the concept of combining both bioremediation and afforestation by J. curcas, demonstrated at a field scale.

  14. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  15. Heavy Metals Speciation in Dust Samples from Various Parts of ...

    African Journals Online (AJOL)

    Dust samples were collected using 1m2 HDPE containers, oven dried at 70OC and sieved through 100ìm nylon sieve. 1g of each sample was digested using HCl/HNO3/H2O2 acid mixture and the concentration levels of 8 selected metals were measured using ICP-MS. Average concentrations of heavy metals in dust ...

  16. Nanopolysaccharides for adsorption of heavy metal ions from water

    OpenAIRE

    Liu, Peng

    2014-01-01

    With population expansion and industrialization, heavy metal has become one of the biggest and most toxic water pollutants, which is a serious problem for human society today. The aim of this work is to explore the potential of nanopolysaccharides including nanocellulose and nanochitin to remove metal ions from contaminated water. The above nano-polysaccharides are of interest in water purification technologies due to their high surface area, high mechanical properties, and versatile surface ...

  17. Heavy metals status of street roaming ruminants in north western ...

    African Journals Online (AJOL)

    The metals (Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn) levels were determined using atomic absorption spectroscopy (Alpha Star Model 4, Chem Tech Analytical) after acid digestion. The results showed that heavy metals concentration in cow blood ranged from 1.53+1.20 to 29.92+2.60 mg/L, goats from 3.11+0.02 to 17.57+0.05 ...

  18. Evidence of heavy metal accumulations in sooty terns

    Energy Technology Data Exchange (ETDEWEB)

    Stoneburner, D.L.; Patty, P.C.; Robertson, W.B.

    1980-03-01

    Research report: Sooty terns nesting at Dry Tortugas, Fla., were analyzed to determine levels of heavy metal bioaccumulation. Tissues, feces, and eggs were analyzed by neutron activation techniques. The highest levels of mercury were found in eggs, feathers, and blood; of cadmium in kidney and bone; and of selenium in kidney, liver, and feathers. The concentrations of metals found in the eggs indicate that they are being transmitted to succeeding generations. (29 references, 1 table)

  19. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    Science.gov (United States)

    1987-02-01

    scrubbers . Metal containing dusts may be recoveredý and could require landfill disposal’ or further treatment. 3.3.5 Flexibility. T,.sts have c:learly...extract metals from soils. The following are brief descriptions of these methods. 3.11.1.1 Acids/ NH3 . Both strong and weak acid solutions have been...ammonia leaching and solvent extraction. The basic reactions are as follows.’ Cu + Cu(NH 3 )4 2 + 4NH40H- b2Ca( NH3 )* + 4H 2 O 4Cu( NH3 )* + Oz + H20

  20. Removal of heavy metal from industrial effluents using Baker's yeast

    Science.gov (United States)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  1. Use of cestodes as indicator of heavy-metal pollution.

    Science.gov (United States)

    Yen Nhi, Tran Thi; Mohd Shazili, Noor Azhar; Shaharom-Harrison, Faizah

    2013-01-01

    Thirty snakehead fish, Channa micropeltes (Cuvier, 1831) were collected at Lake Kenyir, Malaysia. Muscle, liver, intestine and kidney tissues were removed from each fish and the intestine was opened to reveal cestodes. In order to assess the concentration of heavy metal in the environment, samples of water in the surface layer and sediment were also collected. Tissues were digested and the concentrations of manganese (Mn), zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) were analysed by using inductively-coupled plasma mass-spectrometry (ICP-MS) equipment. The results demonstrated that the cestode Senga parva (Fernando and Furtado, 1964) from fish hosts accumulated some heavy metals to a greater extent than the water and some fish tissues, but less than the sediment. In three (Pb, Zn and Mn) of the five elements measured, cestodes accumulated the highest metal concentrations, and in remaining two (Cu and Cd), the second highest metal accumulation was recorded in the cestodes when compared to host tissues. Therefore, the present study indicated that Senga parva accumulated metals and might have potential as a bioindicator of heavy-metal pollution. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Selected heavy metals speciation in chemically stabilised sewage sludge

    Science.gov (United States)

    Wiśniowska, Ewa; Włodarczyk-Makuła, Marła

    2017-11-01

    Selected heavy metals (Pb, Ni, Cd) were analysed in soil, digested sewage sludge as well as in the sludge stabilised with CaO or Fenton's reagent. The dose of Fenton's reagent was as follows: Fe2+ = 1g.L-1, Fe2+/H2O2=1:100; stabilisation lasted for 2 h. Dose of CaO was equal to 1 g CaO.g d.m.-1 Total concentration of all metals in the digested sewage sludge was higher than in the soil. Chemical stabilisation of sludge with Fenton's reagent increased total metal content in the sludge as a result of total solids removal. Opposite effect was stated when the sludge was mixed with CaO. Also chemical fractions of heavy metals were identified (exchangeable, carbonate bound, iron oxides bound, organic and residual). The results indicate that stabilisation of the sludge with Fenton's reagent increased mobility of heavy metals compared to the digested sludge. Amendment of CaO increased percent share of examined metals in residual fraction, thus immobilised them and decreased their bioavailability.

  3. In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles.

    Science.gov (United States)

    Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2012-01-01

    Chelation therapy involving organic chelators for treatment of heavy metal intoxication can cause cardiac arrest, kidney overload, mineral deficiency, and anemia. In this study, superparamagnetic iron oxide nanoparticles (SPIONs) modified with an edible biopolymer poly(γ-glutamic acid) (PGA) were synthesized by coprecipitation method, characterized and evaluated for their removal efficiency of heavy metals from a metal solution, and simulated gastrointestinal fluid (SGIF). Instrumental characterization of bare- and PGA-SPIONs revealed 7% coating of PGA on SPIONs with a spherical shape and an iron oxide spinel structure belonging to magnetite. The particle sizes as determined from transmission electron microscopy images were 8.5 and 11.7 nm for bare- and PGA-SPIONs, respectively, while the magnetization values were 70.3 and 61.5 emu/g. Upon coating with PGA, the zeta potentials were shifted from positive to negative at most of the environmental pH (3-8) and biological pH (1-8), implying good dispersion in aqueous suspension and favorable conditions for heavy metal removal. Batch studies showed rapid removal of lead and cadmium with the kinetic rates estimated by pseudo-second-order model being 0.212 and 0.424 g/mg · min, respectively. A maximum removal occurred in the pH range 4-8 in deionized water and 5-8 in SGIF corresponding to most gastrointestinal pH except for the stomach. Addition of different ionic strengths (0.001-1 M sodium acetate) and essential metals (Cu, Fe, Zn, Mg, Ca, and K) did not show any marked influence on lead removal by PGA-SPIONs, but significantly reduced the binding of cadmium. Compared to deionized water, the lead removal from SGIF was high at all pH with the Langmuir monolayer removal capacity being 98.70 mg/g for the former and 147.71 mg/g for the latter. However, a lower cadmium removal capacity was shown for SGIF (23.15 mg/g) than for deionized water (31.13 mg/g). These results suggest that PGA-SPIONs could be used as a metal

  4. HPTLC Fingerprinting and Cholinesterase Inhibitory and Metal-Chelating Capacity of Various Citrus Cultivars and Olea europaea

    Directory of Open Access Journals (Sweden)

    Fatma Sezer Senol

    2016-01-01

    Full Text Available Inhibitory activity of thirty-one ethanol extracts obtained from albedo, flavedo, seed and leaf parts of 17 cultivars of Citrus species from Turkey, the bark and leaves of Olea europaea L. from two locations (Turkey and Cyprus as well as caff eic acid and hesperidin was tested against acetylcholinesterase (AChE and butyrylcholinesterase (BChE, related to the pathogenesis of Alzheimer’s disease, using ELISA microtiter assays at 500 μg/mL. Metal-chelating capacity of the extracts was also determined. BChE inhibitory effect of the Citrus sp. extracts was from (7.7±0.7 to (70.3±1.1 %, whereas they did not show any inhibition against AChE. Cholinesterase inhibitory activity of the leaf and bark ethanol extracts of O. europaea was very weak ((10.2±3.1 to (15.0±2.3 %. The extracts had either no or low metal-chelating capacity at 500 μg/mL. HPTLC fingerprinting of the extracts, which indicated a similar phytochemical pattern, was also done using the standards of caffeic acid and hesperidin with weak cholinesterase inhibition. Among the screened extracts, the albedo extract of C. limon ‘Interdonato’, the flavedo extracts of ‘Kara Limon’ and ‘Cyprus’ cultivars and the seed extract of C. maxima appear to be promising as natural BChE inhibitors.

  5. Speciation of heavy metals in River Rhine

    NARCIS (Netherlands)

    Vega, F.A.; Weng, L.

    2013-01-01

    Chemical speciation of Zn, Cu, Ni, Cd and Pb in River Rhine was studied by measuring free ion concentration and distribution in nanoparticles, and by comparing the measurement with speciation modeling. Concentrations of free metal ions were determined in situ using Donnan Membrane Technique (DMT).

  6. Simultaneous determination of toxic heavy metals in metformin hydrochloride using reversed-phase high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Steenkamp, P.A. (Dept. of Chemistry and Biochemistry, Rand Afrikaans Univ., Auckland Park (South Africa)); Coetzee, P.P. (Dept. of Chemistry and Biochemistry, Rand Afrikaans Univ., Auckland Park (South Africa))

    1993-08-01

    A rapid and sensitive reversed phase HPLC technique was developed for the determination of seven toxic heavy metals in biological matrices. Cd, Pb, Ni, Co, Bi, Cu and Hg could be detected and quantified at ppb level in Metformin hydrochloride, a pharmaceutical product used in the treatment of certain cases of diabetes. This was achieved by the evaluation of the stability of NaDEDTC in the presence of water and different buffers at different pH-values. A direct injection/on-column derivatization HPLC procedure was developed employing NaDEDTC as chelating agent, a C-18 reversed phase analytical column and a photodiode assay detector. Dilute metal ion solutions could be analyzed by direct injection of the test sample. The analysis of trace levels of metals in a pure pharmaceutical product however required the inclusion of a sample preparation step prior to analysis. (orig.)

  7. Elimination of heavy metals from leachates by membrane electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R. [Technische Universitaet Dresden, Institut fuer Siedlungs- und Industriewasserwirtschaft, Mommsenstrasse 13, 01062 Dresden (Germany); Seidel, H. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Bioremediation, Permoserstrasse 15, D-04318 Leipzig (Germany); Rahner, D. [Technische Universitaet Dresden, Institut fuer Physikalische Chemie und Eektrochemie, Mommsenstrasse 13, D-01062 Dresden (Germany); Morgenstern, P. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Analytik, Permoserstrasse 15, D-04318 Leipzig (Germany); Loeser, C. [Technische Universitaet Dresden, Institut fuer Lebensmittel- und Bioverfahrenstechnik, Bergstrasse 120, D-01062 Dresden (Germany)

    2004-10-01

    The elimination of heavy metals from bioleaching process waters (leachates) by electrolysis was studied in the anode and cathode region of a membrane electrolysis cell at current densities of 5-20 mA/cm{sup 2} using various electrode materials. The leaching waters containing a wide range of dissolved heavy metals, were high in sulfate, and had pH values of approx. 3. In preliminary tests using a rotating disc electrode the current density-potential curve (CPK) was recorded at a rotation velocity of 0, 1000 and 2000 rpm and a scan rate of 10 mV/s in order to collect information on the influence of transport processes on the electrochemical processes taking place at the electrodes. The electrochemical deposition-dissolution processes at the cathode are strongly dependent on the hydrodynamics. Detailed examination of the anodic oxidation of dissolved Mn(II) indicated that the manganese dioxide which formed adhered well to the electrode surface but in the cathodic return run it was again reduced. Electrode pairs of high-grade steel, lead and coal as well as material combinations were used to investigate heavy metal elimination in a membrane electrolysis cell. Using high-grade steel, lead and carbon electrode pairs, the reduction and deposition of Cu, Zn, Cr, Ni and some Cd in metallic or hydroxide form were observed in an order of 10-40 % in the cathode chamber. The dominant process in the anode chamber was the precipitation of manganese dioxide owing to the oxidation of dissolved Mn(II). Large amounts of heavy metals were co-precipitated by adsorption onto the insoluble MnO{sub 2}. High-grade steel and to some extent lead anodes were dissolved and hence were proven unsuitable as an anode material. These findings were largely confirmed by experiments using combination electrodes of coal and platinized titanium as an anode material and steel as a cathode material.The results indicate that electrochemical metal separation in the membrane electrolysis cell can represent a

  8. Concentrations of heavy metals in effluent discharges downstream ...

    African Journals Online (AJOL)

    ONOS

    2010-01-18

    Jan 18, 2010 ... Various effluent samples were collected from their sources of discharge to the Ikpoba river in Benin. City, Edo State between September and October, 2008. Six heavy metals (cadmium, chromium, copper, nickel, lead and zinc) in the effluents and receiving water were analyzed by atomic absorption.

  9. Tree Leaves as Bioindicator of Heavy Metal Pollution in Mechanic ...

    African Journals Online (AJOL)

    Heavy metal accumulation in soils is of concern in agricultural production due to the adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. Soil and plant samples were collected from mechanic village in Odeda local Government of Ogun State. The soil ...

  10. Assessment of Leaching of some Heavy Metals from Domestic ...

    African Journals Online (AJOL)

    The aim of this study is to assess the possible leaching of heavy metals from ceramic wares into different solutions. Ceramic spoon, pot, soup bowl, plate, mug and cup were leached in batch process using hot water and 4 % solutions of glacial acetic acid, HCl acid, NaOH and Na2CO3 respectively. Chromium, manganese ...

  11. Levels of heavy metals, total hydrocarbon and organic carbon ...

    African Journals Online (AJOL)

    The sediment samples of River Ethiope and Ikpoba River were collected and extracted using n-hexane (BDH, England) and the resulting extracts were read at 460nm with a spectrophotometer. The heavy metal analysis was carried out by using atomic absorption spectroscopy. The organic carbon was determined by ...

  12. Trend of Heavy Metal Concentrations in Lagos Lagoon Ecosystem ...

    African Journals Online (AJOL)

    komla

    of Physical and Chemical Oceanography, Bar Beach, Victoria Island, Lagos,. Nigeria. *Corresponding author. Email: bayotitoloju@yahoo.com. Abstract. The distribution and occurrence of heavy metals in the sediment, water and benthic animals of the Lagos lagoon during the dry and rainy seasons were investigated over a ...

  13. Removal of nutrient and heavy metal loads from sewage effluent ...

    African Journals Online (AJOL)

    A deliberate lowering of effluent pH may increase root uptake thereby possibly reducing the clean-up time and improving effluent quality. There is potential for application of this technology in cities struggling with the cost of conventional sewage treatment. Keywords: bio-accumulation, bio-sorption, heavy metals, hydroponic, ...

  14. HEAVY METAL CONTENT OF AYURVEDIC HERBAL MEDICINE PRODUCTS

    Science.gov (United States)

    Case reports of individuals taking Ayurvedic herbal medicine products (HMPs) suggest that they may contain lead, mercury, and/or arsenic. We analyzed the heavy metal content of Ayurvedic HMPs manufactured in India and Pakistan, available in South Asian grocery stores in the Bost...

  15. Determination of Some Heavy Metals in Selected Beauty and ...

    African Journals Online (AJOL)

    Determination of Some Heavy Metals in Selected Beauty and African Black Soaps Commonly Used in Kano – Nigeria. ... HNO3 and HCl (5:5:1 ratio) and analyzed for Ni, Cu, Fe, Co, Pb and Mn contents using air-acetylene flame atomic absorption spectrophotometer (Alpha 4) model by the standard calibration technique.

  16. Bait preference in basket trap fishing operation and heavy metal ...

    African Journals Online (AJOL)

    The bait preference of basket traps fishing operation and heavy metal contamination in the trap catches from Lagos Lagoon were carried out between January and June 2011. Sixty baskets traps were used for the fishing operation, twenty basket traps were baited each with soap, coconut and maize. Clibanarius africanus ...

  17. Safety Evaluation of Osun River Water Containing Heavy Metals and ...

    African Journals Online (AJOL)

    olayemitoyin

    1Environmental, Analytical and Nutritional Chemistry Research Laboratory, Department of Chemical Sciences,. Osun State University ... Summary: This study evaluated the pH, heavy metals and volatile organic compounds (VOCs) in Osun river water. It also evaluated its ..... toxicity of pollutants. ALT and AST are markers of.

  18. Variations in the mineral composition and heavy metals content of ...

    African Journals Online (AJOL)

    The parts of Moringa oleifera were assessed for mineral composition and some heavy metal contents in this study, which included Ca, Mg, K, Na, Mn, Fe, Zn, Co, Se, Pb and Cd. Parts of the plant were obtained from Badagry in Lagos State, Nigeria. The samples were digested with HNO3 and analysed for the mineral ...

  19. INTRODUCTION Heavy metal pollution of water has become a ...

    African Journals Online (AJOL)

    major environmental problem almost since the advent of agricultural ... Nations state that monitoring eight elements in fish Hg, Cd, Pb, As, Cu, ..... Research J. Environ. Science, 3 (5):522-529. Staniskiene, B.; Matusevicius, P.; Budreckiene, R. and Skibniewska, K.A. 2006. Distribution of heavy metals in tissues of freshwater.

  20. A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal ...

    African Journals Online (AJOL)

    Michael Horsfall

    attention is focused on the reduction of anthropogenic pollutants such as industrial effluents, domestic sewage and mining wastes which are the main sources of heavy metal contaminants in the ocean. Concordantly, most of the human aquaculture activities such as the use of chemicals like feed additives, antibiotics, soil ...

  1. levels of heavy metals in gubi dam water bauchi, nigeria

    African Journals Online (AJOL)

    Ada

    rivers to the ocean is in the form of particulate ... B.M. Wufem, Chemistry Programme, Abubakar Tafawa Balewa University, P.M.B. 0248, Bauchi. A.Q. Ibrahim ..... Chemistry. Wiley Interscience NY, p. 780. Sukiman, S.B., 1989. The determination of heavy metals in water, suspended materials and sediments from Langat River,.

  2. autatimz@gmail.com Heavy Metal Concentrations around a Hospital ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    Basorun market Dumpsite and UI football field (Mean ± Standard deviation) and USEPA Upper Limit for Heavy Metals in Soil. Parameter. UCH. Bottom Ash. BASORUN. U.I.. USEPA. (Incinerator) ... unconnected with the fact that wastes are not allowed to be decomposed at the UCH incinerator, the point only serves as a ...

  3. Heavy Metals Levels in Fish Samples from North Central Nigerian ...

    African Journals Online (AJOL)

    MBI

    2014-12-24

    Dec 24, 2014 ... liver of Tilapia zilli has the highest level of heavy metals with the concentration of ... This indicates that the fish samples could be used to monitor Mn and Cr pollution levels ... Many studies have implicated industrial or human.

  4. Heavy Metals Accumulation In Roadside Soil And Vegetation Along ...

    African Journals Online (AJOL)

    Levels of some heavy metals in soil and vegetation along a major highway in Libya were determined by Atomic Absorption Spectrophotometry. The concentrations of Pb, Cd, Ni, Zn, Cu, Cr and Mn in soil and vegetation all decreased with distance from the road, indicating their relation to traffic. The concentrations of the ...

  5. Heavy metal contamination of Clarias gariepinus from a lake and ...

    African Journals Online (AJOL)

    Heavy metal contamination of Clarias gariepinus from a lake and fish farm in Ibadan, Nigeria. FE Olaifa, AK Olaifa, AA Adelaja, AG Owolabi. Abstract. Adult Clarias gariepinus (African Catfish) were purchased from Eleiyele Lake and Zartech fish farm in Ibadan. Water samples were also collected in February (dry season) ...

  6. Determination of some heavy metals concentration in the tissues of ...

    African Journals Online (AJOL)

    Lead (Pb), Cobalt (Co), and Copper (Cu) concentrations were determined in bone, muscle and gill of two fish species (tilapia fish and cat-fish) collected from Tiga dam Kano, Nigeria during October, 2010. The mean concentrations of the heavy metals varied depending on the type of the tissue and fish species. Generally ...

  7. Assessment of heavy metals leachability from traditional clay pots ...

    African Journals Online (AJOL)

    The clay pots may transfer ones of their constituents into foodstuffs when they are coated with glazes which are said to contain heavy metals like Pb and Cd. This study was conducted to determine if traditional clay pots (unglazed) can also behave the same way. Leachate from the clay raw pulp material was initially ...

  8. Assessment of heavy metals leachability from traditional clay pots ...

    African Journals Online (AJOL)

    Abstract. The clay pots may transfer ones of their constituents into foodstuffs when they are coated with glazes which are said to contain heavy metals like Pb and Cd. This study was conducted to determine if traditional clay pots (unglazed) can also behave the same way. Leachate from the clay raw pulp material was initially ...

  9. Heavy Metals and Microbial Contaminants in a Commercial ...

    African Journals Online (AJOL)

    The heavy metal and microbial contaminants levels were evaluated in a commercial polyherbal product against the backdrop of reports of high levels of such contaminants in similar herbal products elsewhere in Nigeria, India and China. Atomic absorption spctrophotometric technique was used for the analysis of the herbal ...

  10. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    The samples were tested for yeasts and moulds, total plate counts, Faecal coliforms, total coliforms, Escherichia coli, Salmonella, Shigella and Staphylococcus aureus using tested International Organization for Standardization (ISO) microbial determination methods. Quantitative determination of heavy metals: zinc, iron, ...

  11. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    plate counts, Faecal coliforms, total coliforms, Escherichia coli, Salmonella, Shigella and Staphylococcus aureus using tested International Organization for Standardization (ISO) microbial determination methods. Quantitative determination of heavy metals: zinc, iron, lead, copper, cadmium and aluminium was carried out by ...

  12. Comparative study of Heavy Metals Distribution in a Mechanic ...

    African Journals Online (AJOL)

    A comparative study of heavy metals; Lead, Chromium, Arsenic, Nickel, Cadmium and Mercury distribution was carried out in Oluku and Otofure both in Metropolitan Benin City, Edo State Nigeria with the view to determine the level of concentration and contribution of each site investigated. Thirty eight (38) soil samples were ...

  13. Water quality characteristics and pollution levels of heavy metals in ...

    African Journals Online (AJOL)

    The main aim of this study was to assess the level of water quality of Lake Haiq, Ethiopia with respect to selected physical parameters and heavy metals. Parameters such as temperature, pH, turbidity, electrical conductivity and total dissolved solids were measured in situ. While total alkalinity, chloride, ammonia, nitrate and ...

  14. DETERMINATION OF SOME HEAVY METALS IN SPINACH AND ...

    African Journals Online (AJOL)

    user

    and minerals which is required for human health. They are made up of chiefly cellulose, hemicelluloses and pectin substances that give them their texture and ..... heavy Metals from Long-Range. Transboundary Air Pollution. Joint. Task Force on the Health Aspects of Long-Range Transboundary Air. Pollution, Geneva. 8.

  15. Assessment of Heavy Metal Content of Branded Pakistani Herbal ...

    African Journals Online (AJOL)

    Purpose: To investigate the heavy metals present in branded Pakistani herbal medicines used in the management of various human ailments. Method: The herbal dosage forms assessed were tablets, capsules and syrups. The samples were prepared for analysis by wet digestion method using nitric acid and perchloric acid ...

  16. Distribution of Heavy Metals in Organs of Freshwater Fishes from ...

    African Journals Online (AJOL)

    MBI

    2015-12-24

    Dec 24, 2015 ... ABSTRACT. This work was carried out to investigate the accumulation profile of heavy metals in three fish species namely;. Albula vulpe, Clarias gariepinus and Tilapia zilli. The maximum mean concentration, 53.95 mg/kg was recorded for Mn in the liver. Cd, Cr and Pb, measured relatively lower ...

  17. heavy metal pollution asse al pollution assessment in the sediments

    African Journals Online (AJOL)

    User

    ABSTRACT. Sediments were collected from Dumba and to assess the pollution statusof the sedim. Cadmium (Cd), Chromium (Cr), Copper (Cu. (Zn) and Arsenic (As) were analysed using concentration of heavy metals varies bet with standard average shale to assess pollution in Dumba and KwataYobe sedi assessed ...

  18. Heavy metal analyses and nutritional composition of raw and ...

    African Journals Online (AJOL)

    In view of this study and the importance of fish in human diet, it is recommended that biological monitoring of fishes meant for consumption from these two water bodies be carried out regularly to ensure human safety. Keywords: Nutritional composition, heavy metals, fresh water fishes, marine water fishes, lagoons ...

  19. Problem of landfilling environments pollution by heavy metals

    Science.gov (United States)

    Zilenina, V. G.; Ulanova, O. V.; Begunova, L. A.

    2017-10-01

    The article discusses the problems of snow and soil pollution by heavy metals. The results of physical and chemical special features of the deposit environment are given. Also, the results of snow mantle research in Irkutsk are described. The problem of manganese degradation from electrochemical cells disposed in the SMW areas is being discussed.

  20. Electrodialytic Remediation of Heavy Metal Polluted Soil. An Innovative Technique

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik; Karlsmose, Bodil

    1997-01-01

    Electrodialytic remediationof heavy metal polluted soil is a newly developed method which combines the electrokinetic movement of ions in soil with the principle of electrodialysis. The method has prowen to work in laboratorscale and at presnet two types of pilot plants are build....