WorldWideScience

Sample records for heavy lanthanide including

  1. Handbook on the physics and chemistry of rare earths: Volume 19: Lanthanides/Actinides: Physics, 2

    International Nuclear Information System (INIS)

    Gschneidner, Karl A.; Eyring, LeRoy; Choppin, G.R.; Lander, G.H.

    1994-01-01

    This handbook comprises five chapters on the lanthanide and actinide materials. In the first chapter the inelastic neutron scattering behaviors of the lanthanides and actinides are compared. In the next chapter the focus is on neutron scattering by heavy fermion single crystal materials, including metallic materials with a paramagnetic ground state, superconductors, metallic and semiconducting antiferromagnets and nearly insulating paramagnets. In chapter three a comprehensive review of intermediate valence and heavy fermions in a wide variety of lanthanide and actinide compounds is given, ranging from metallic to insulating materials. In chapter four two issues on the high pressure behaviours of anomalous cerium, ytterbium and uranium compounds are dealt with. In the final chapter an extensive review is given the thermodynamic properties of lanthanide and actinide metallic systems

  2. Lanthanide extraction with 2,5-dimethyl-2-hydroxyhexanoic acid

    International Nuclear Information System (INIS)

    Miller, J.H.

    1977-12-01

    This research is concerned with the solvent extraction into chloroform of the lanthanides, using 2,5-dimethyl-2-hydroxyhexanoic acid (DMHHA). This acid is the first α-hydroxy aliphatic acid to be studied as an extracting agent for the lanthanides. The chloroform-water DMHHA partition constant was determined to be 1.0 (at 0.1 M ionic strength and 25 0 C). The acid dimerizes in chloroform with a constant of 56. The light lanthanides can be extracted into chloroform by forming complexes with the DMHHA anions. The extracted metal species is highly aggregated. This extraction has a solubility limit which increases with the addition of unionized acid. The resultant extract is also highly aggregated. At unionized acid-to-metal ratios greater than one, extractions first occur followed by the slow precipitation of the lanthanide. At the tracer level, neodymium is extracted primarily as NdA 3 (HA) 5 and (NdA 3 ) 2 (HA)/sub q/. Very small amounts of (NdA 3 ) 2 and other metal aggregates are also present. The heavy lanthanides do not extract from solutions of DMHHA and its potassium salt, but form aqueous emulsions and precipitates. In the presence of the organic soluble tetrabutylammonium ion the heavy lanthanides can be extracted, presumably as ion pairs. The stability constants of the light lanthanides and DMHHA were determined. The separation factors obtained from DMHHA extractions of the light lanthanides were also investigated and found to be comparable to those obtained employing normal aliphatic carboxylic acid

  3. Studies on the electrochemical behavior of heavy lanthanide ions and the synthesis, characterization of heavy metal chelate complexes

    International Nuclear Information System (INIS)

    Kang, Sam Woo; Chang, Choo Hwan; Son, Byung Chan; Suh, Moo Yul; Kim, Chae Kyun

    1991-01-01

    Electrochemical behavior of some heavy lanthanide ions(Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ , Yb 3+ and Lu 3+ ) in various supporting electrolytes has been investigated by dc polarography, differential pulse polarography and cyclic voltammetry. The peak potentials and the peak currents, their dependency on the concentration and pH effects, the reversibility of the electrode reactions are described. The reduction of Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ and Lu 3+ ions in 0.1M lithium chloride solution proceeds by a three-electron change directly to the metallic state, whereas the reduction of Yb 3+ proceeds by a one-electron change followed by a two-electron change. It was found that, in differential pulse polarography and cyclic voltammetry, the peak potential, peak current and current function showed constant value in the pH range of 4.0-6.0 by varying pH and scan rates. And also the current function is found to decrease as the sweep rate is increased when the pH reaches 4.0. This fact may indicate a chemical reaction coupled with the electrochemical reaction at lower pH values(pH 3+ ion is possible to determine voltammetrically within the error of ±3.5% in the presence of other competitive lanthanide ions. (Author)

  4. The spectroscopy and structure of some lanthanide chlorides in amide solutions

    International Nuclear Information System (INIS)

    Legendziewicz, J.; Bukietynska, K; Jezowsky-Trzebiatowska, B.

    1974-01-01

    The absorption spectra of Pr, Nd, Ho, and Er anhydrous and hydrated chlorides in formamide, methyl-, dimethyl-, and diethylformamide solutions have been investigated in the range of 8000 - 4200 cm -1 . By the Judd-Oefelt method of intensity analysis and by calculating the nepheloauxetic effect, the first coordination sphere of lanthanide ions and the approximate symmetry of amide solvates of anhydrous and hydrated lanthanide chlorides were determined. A difference between symmetry and coordination numbers for light and heavy lanthanide solvates has been found. Some considerations regarding the structure of lanthanide solvates and structure of amide molecules have been made. (B.T.)

  5. Scandium, yttrium and the lanthanides

    International Nuclear Information System (INIS)

    Hart, F.A.

    1987-01-01

    This chapter on the chemistry of the coordination complexes of scandium, yttrium and the lanthanides includes sections on the nitrogen and oxygen donor ligands and complex halides of scandium, and the phosphorus and sulfur donor ligands of yttrium and the lanthanides. Complexes with the macrocylic ligands and with halides are also discussed. Sections on the NMR and electronic spectra of the lanthanides are also included. (UK)

  6. Lanthanide/Actinide Opacities

    Science.gov (United States)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  7. Separation of lanthanides through hydroxyapatite

    International Nuclear Information System (INIS)

    Garcia M, F.G.

    2006-01-01

    With the objective of obtaining from an independent way to each one of the lanthanides 151 Pm, 161 Tb, 166 Ho and 177 Lu free of carrier and with high specific activities starting from the indirect irradiation via, it intends in this work to determine the viability of separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu, by means of ion exchange column chromatography, using hydroxyapatite (HAp) and fluorite like absorbent material in complexing media. It is important to mention that have registered separation studies among lanthanides of the heavy group with those of the slight group, using the same mass and, in comparison with this work, quantities different from the father were used and of the son, also, that the separation studies were carried out among neighboring lanthanides. In this investigation, it was determined the effect that its have the complexing media: KSCN, sodium tartrate, sodium citrate, EDTA and aluminon, their pH and concentration, in the adsorption of the lanthanides in both minerals, in order to determine the chromatographic conditions for separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu. The work consists of five chapters, in the first one they are presented a theoretical introduction of the characteristics more important of the lanthanides, the hydroxyapatite and the fluorite; in the second, it is deepened in the ion exchange, as well as the two techniques (XRD and High Vacuum Electron Microscopy) to make the characterization of LnCI 3 (Ln = Nd, Gd, Dy or Yb) synthesized. The third chapter, it describes the methodology continued in our experimental work; in the room, its are presented the obtained results of the static and dynamic method to determine the viability of separation of neighboring lanthanides; and finally, the five chapter shows the conclusions. In this study, it is concludes that the separation among neighboring lanthanides cannot be carried out in the minerals and used media; because practically these lanthanides

  8. Efficient Separation of Lanthanides Using Poly (Styrene-Divinyl Benzene) Aminated Anion Exchanger

    International Nuclear Information System (INIS)

    Borai, E.H.; Hassan, R.S.; El- Dessouky, M.I.; Ghonem, A.

    2008-01-01

    New chromatographic method was developed for the determination and separation of lanthanides using AS4A anionic column. The behavior of the column towards lanthanides was studied through many parameters, From the data obtained it is found that, affinity of the column toward investigated ions increase by increasing eluent concentration and it decrease retention factors. With the two investigated eluent (oxalic and citric acids), elution order for lanthanide elements was obtained in their atomic number from La to Lu. Retention times and retention orders obtained at these conditions clearly show that, lanthanides in AS4A are displaced according to anion exchange mechanism. More over separation of lanthanides using AS4A was studied using isocratic and gradient elution programs. Light and the first intermediate lanthanide elements were separated successfully by applying a gradient program containing 70% oxalic acid (100 mM) and 30% water. The problem of separation for heavy and the last intermediate lanthanide elements was solved using 100 mM alpha hydroxy isobutyric acid (α-HIBA)

  9. Scandium, yttrium and the lanthanide metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The hydroxide and oxide phases that exist for scandium(III) include scandium hydroxide, which likely has both amorphous and crystalline forms, ScOOH(s), and scandium oxide. This chapter presents the data selected for the stability constants of the polymeric hydrolysis species of scandium at zero ionic strength. The behaviour of yttrium, and the lanthanide metals, in the environment is largely dependent on their solution equilibria. Hydrolysis and other complexation reactions of yttrium and the lanthanide metals are important in the disposal of nuclear waste. The trivalent lanthanide metals include lanthanum(III) through lutetium(III). A number of studies have reported a tetrad effect for the geochemical behaviour of the lanthanide series, including stability constants and distribution coefficients. The solubility of many of the lanthanide hydroxide phases has been studied at fixed ionic strength. In studying the hydrolysis of cerium(IV), a number of studies have utilised oxidation-reduction reactions in determining the relevant stability constants.

  10. Elastic-constant systematics in f.c.c. metals, including lanthanides-actinides

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, Hassel [Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309 (United States); Migliori, Albert [Los Alamos National Laboratory (E536), Los Alamos, New Mexico 87545 (United States)

    2008-01-15

    For f.c.c. metals, using Blackman's diagram of dimensionless elastic-constant ratios, we consider the systematics of physical properties and interatomic bonding. We focus especially on the lanthanides-actinides La, Ce, Yb, Th, U, Pu, those for which we know some monocrystal elastic constants. Their behavior differs from the other f.c.c. metals, and all except La show a negative Cauchy pressure, contrary to most f.c.c. metals, which show a positive Cauchy pressure. Among the lanthanides-actinides, {delta}-Pu stands apart, consistent with its many odd physical properties. Based on elastic-constant correlations, we suggest that {delta}-Pu possesses a strong s-electron interatomic-bonding component together with a covalent component. Elastically, {delta}-Pu shows properties similar to Yb. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. A dynamic model to explain hydration behaviour along the lanthanide series

    International Nuclear Information System (INIS)

    Duvail, M.; Spezia, R.; Vitorge, P.

    2008-01-01

    An understanding of the hydration structure of heavy atoms, such as transition metals, lanthanides and actinides, in aqueous solution is of fundamental importance in order to address their solvation properties and chemical reactivity. Herein we present a systematic molecular dynamics study of Ln 3+ hydration in bulk water that can be used as reference for experimental and theoretical research in this and related fields. Our study of hydration structure and dynamics along the entire Ln 3+ series provides a dynamic picture of the CN behavioural change from light (CN=9 predominating) to heavy (CN=8 predominating) lanthanides consistent with the exchange mechanism proposed by Helm, Merbach and co-workers. This scenario is summarized in this work. The hydrated light lanthanides are stable TTP structures containing two kinds of water molecules: six molecules forming the trigonal prism and three in the centre triangle. Towards the middle of the series both ionic radii and polarizabilities decrease, such that first-shell water-water repulsion increases and water-cation attraction decreases. This mainly applies for molecules of the centre triangle of the nine-fold structure. Thus, one of these molecules stay in the second hydration sphere of the lanthanide for longer average times, as one progresses along the lanthanide series. The interchange between predominantly CN=9 and CN=8 is found between Tb and Dy. Therefore, we propose a model that determines the properties governing the change in the first-shell coordination number across the series, confirming the basic hypothesis proposed by Helm and Merbach. We show that it is not a sudden change in behaviour, but rather that it results from a statistical predominance of one first hydration shell structure containing nine water molecules over one containing eight. This is observed progressively across the series. (O.M.)

  12. Ternary complex formation of lanthanides and radiolanthanides with phosphate and serum proteins

    International Nuclear Information System (INIS)

    Neumaier, B.; Roesch, F.

    1999-01-01

    Radioyttrium was recently reported to form ternary complexes with phosphate and serum proteins in blood. In the present work it was investigated whether the trivalent radiolanthanides react in a chemically similar way. In systematic binding studies using gel filtration a ternary complex formation between different lanthanides, phosphate and serum proteins could be identified. The tendency to build a ternary compound of the type Ln III - phosphate - serum protein, however, is dependent on the ionic radii of the lanthanides. Whereas the light and transition lanthanides have a strong inclination to build a ternary complex, this tendency is weaker for the heavier ones. Taking into account the high content of phosphate in human blood, the corresponding ternary complexes of radiolanthanides represent an important transport form of these elements in blood. This finding may contribute to an understanding of the nuclear medical observation on the biodistribution of radiolanthanides. The heavy radiolanthanides can be classified as bone seeking metals, whereas the light and transition lanthanide elements accumulate mainly in the liver and the spleen. For the lighter radiolanthanides the corresponding ternary complexes thus represent an important transport form in blood. This physicochemical form of lanthanides mainly results in reticulo endothelial accumulation; on the other hand, the lower tendency of heavier lanthanides leads to preferential skeletal deposition. (orig.)

  13. Triheterometallic Lanthanide Complexes Prepared from Kinetically Inert Lanthanide Building Blocks

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Tropiano, Manuel; Kenwright, Alan M.

    2017-01-01

    Three molecular structures, each containing three different lanthanide(III) centres, have been prepared by coupling three kinetically inert lanthanide(III) complexes in an Ugi reaction. These 2 kDa molecules were purified by dialysis and characterised by NMR and luminescence techniques. The photo...... and lanthanide(III) centres in these molecules inhibits the efficient sensitisation of europium. We conclude that the intramolecular collisions required for efficient Dexter energy transfer from the sensitiser to the lanthanide(III) centre can be prevented by steric congestion....

  14. Photocytotoxic lanthanide complexes

    Indian Academy of Sciences (India)

    Among many applications of lanthanides, gadolinium complexes are used as magnetic resonance imaging (MRI) contrast agents in clinical radiology and luminescent lanthanides for bioanalysis, imaging and sensing. The chemistry of photoactive lanthanide complexes showing biological applications is of recent origin.

  15. 2. Intermetallic compounds with lanthanides

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    Theoretical considerations are given concerning the structures of intermetallic compounds of the lanthanides and thorium (R) on the one hand, and with Fe, Co or Ni (M) on the other. They all derive from the parent composition RM 5 with the CaCu 5 hexagonal structure. This consists of alternate layers in which the M atoms are distinguished as M 1 and M 2 . The other compounds whose structures are studied are obtained by systematic replacement of R by M, or vice versa. In the first type, every third R is replaced by two M's yielding R 2 M 17 compounds. The substitution may be truly random or structured in two ways: so that either the hexagonal structure is maintained or that it is converted into a rhombihedral one. In the second type, one M (in a M 1 position) out of every five is replaced by one R, giving rise to RM 2 compounds which form Laves phases. In the third type, the M 1 's are replaced by R's, resulting in compounds RM 3 . In the fourth type, every third M is replaced by R, yielding R 2 M 7 compounds. With M = Co and R a light lanthanide, the compounds are ferromagnets; with R yttrium, thorium, or a heavy lanthanide, they are ferrimagnets. The preparation of the compounds in an arc-melting apparatus under an Ar-atmosphere followed by annealing is described

  16. Calibration beads containing luminescent lanthanide ion complexes

    Science.gov (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  17. Secret lanthanides.

    Science.gov (United States)

    Sturza, C M

    2014-09-15

    Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz.

  18. Lanthanide metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peng

    2015-01-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  19. Lanthanide metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peng (ed.) [Nankai Univ., Tianjin (China). Dept. of Chemistry

    2015-03-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  20. Behaviour of trivalent actinides and lanthanide elements in chloride solution; Comportement des lanthanides et transuraniens trivalents en milieu chlorhydrique

    Energy Technology Data Exchange (ETDEWEB)

    Marin, B [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    The aim of this work is to compare the complexation in chloride solutions of trivalent lanthanides and actinides. We have first studied the solvatation of these cations without complexation. We found a difference between Am, Cm and Rare Earths (we can separate lanthanides into Light and Heavy Rare Earths). For studying the complexation we choose the technic of electrophoresis on paper after establishing a simple theory of mobilities in complex solutions. The hydrolysis of these cations was studied and compared in chloride solutions. We have then studied the complexation with the Cl{sup -} ligand in some solutions: HCl, NH{sub 4}Cl, CaCl{sub 2}, CeCl{sub 3}, LiCl. We have established that the complexation is the same in dilute HCl solutions but in concentrated solutions the trivalent actinides are more complexed. This difference is sharper in LiCl solutions. We also proposed the different models of complex in these solutions. (author) [French] Le but de ce travail est de comparer les transuraniens et lanthanides trivalents au point de vue de leur complexation en solution chlorhydrique. Nous avons ete amenes tout d'abord a etudier la solvatation de ces cations non complexes. C'est ainsi que nous pouvons constater une difference entre Am, Cm et les lanthanides. Ces derniers pouvant se separer en lanthanides legers et lanthanides lourds. Pour etudier la complexation nous avons utilise l'electrophorese sur papier apres avoir donne une theorie simple des mobilites en milieu complexant. Apres avoir etudie et compare l'hydrolyse de ces divers cations en solution chlorhydrique, nous avons etudie leur complexation avec l'ion Cl{sup -} dans dans divers milieux: HCl, NH{sub 4}Cl, CaCl{sub 2}, CeCl{sub 3}, LiCl. ous avons note qu'en solution HCl les deux series se comportent de la meme facon pour des concentrations faibles en Cl{sup -} mais que les transuraniens se complexent plus fortement dans les solutions concentrees. Cette difference s'accroit encore dans les milieux

  1. Yttrium and lanthanides in human lung fluids, probing the exposure to atmospheric fallout

    Energy Technology Data Exchange (ETDEWEB)

    Censi, P., E-mail: censi@unipa.it [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Tamburo, E. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); Speziale, S. [Deutsches GeoForschungsZentrum, Telegrafenberg, Potsdam, 14473 (Germany); Zuddas, P. [Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Randazzo, L.A. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Punturo, R. [Dipartimento di Scienze Geologiche, Universita di Catania, Corso Italia, 55 - 95129 Catania (Italy); Cuttitta, A. [I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); Arico, P. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy)

    2011-02-28

    Inhalation of airborne particles can produce crystallization of phosphatic microcrysts in intraaveolar areas of lungs, sometimes degenerating into pulmonary fibrosis. Results of this study indicate that these pathologies are induced by interactions between lung fluids and inhaled atmospheric dust in people exposed to volcanic dust ejected from Mount Etna in 2001. Here, the lung solid-liquid interaction is evaluated by the distribution of yttrium and lanthanides (YLn) in fluid bronchoalveolar lavages on selected individuals according the classical geochemical approaches. We found that shale-normalised patterns of yttrium and lanthanides have a 'V shaped' feature corresponding to the depletion of elements from Nd to Tb when compared to the variable enrichments of heavy lanthanides, Y, La and Ce. These features and concurrent thermodynamic simulations suggest that phosphate precipitation can occur in lungs due to interactions between volcanic particles and fluids. We propose that patterns of yttrium and lanthanides can represent a viable explanation of some pathology observed in patients after prolonged exposure to atmospheric fallout and are suitable to become a diagnostic parameter of chemical environmental stresses.

  2. Separation of lanthanides through hydroxyapatite; Separacion de lantanidos mediante hidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, F.G

    2006-07-01

    With the objective of obtaining from an independent way to each one of the lanthanides {sup 151} Pm, {sup 161} Tb, {sup 166} Ho and {sup 177} Lu free of carrier and with high specific activities starting from the indirect irradiation via, it intends in this work to determine the viability of separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu, by means of ion exchange column chromatography, using hydroxyapatite (HAp) and fluorite like absorbent material in complexing media. It is important to mention that have registered separation studies among lanthanides of the heavy group with those of the slight group, using the same mass and, in comparison with this work, quantities different from the father were used and of the son, also, that the separation studies were carried out among neighboring lanthanides. In this investigation, it was determined the effect that its have the complexing media: KSCN, sodium tartrate, sodium citrate, EDTA and aluminon, their pH and concentration, in the adsorption of the lanthanides in both minerals, in order to determine the chromatographic conditions for separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu. The work consists of five chapters, in the first one they are presented a theoretical introduction of the characteristics more important of the lanthanides, the hydroxyapatite and the fluorite; in the second, it is deepened in the ion exchange, as well as the two techniques (XRD and High Vacuum Electron Microscopy) to make the characterization of LnCI{sub 3} (Ln = Nd, Gd, Dy or Yb) synthesized. The third chapter, it describes the methodology continued in our experimental work; in the room, its are presented the obtained results of the static and dynamic method to determine the viability of separation of neighboring lanthanides; and finally, the five chapter shows the conclusions. In this study, it is concludes that the separation among neighboring lanthanides cannot be carried out in the minerals and used media; because

  3. The Lanthanide Contraction Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Oliver, Allen G.; Raymond, Kenneth N.

    2007-04-19

    A complete, isostructural series of lanthanide complexes (except Pm) with the ligand TREN-1,2-HOIQO has been synthesized and structurally characterized by means of single-crystal X-ray analysis. All complexes are 1D-polymeric species in the solid state, with the lanthanide being in an eight-coordinate, distorted trigonal-dodecahedral environment with a donor set of eight unique oxygen atoms. This series constitutes the first complete set of isostructural lanthanide complexes with a ligand of denticity greater than two. The geometric arrangement of the chelating moieties slightly deviates across the lanthanide series, as analyzed by a shape parameter metric based on the comparison of the dihedral angles along all edges of the coordination polyhedron. The apparent lanthanide contraction in the individual Ln-O bond lengths deviates considerably from the expected quadratic decrease that was found previously in a number of complexes with ligands of low denticity. The sum of all bond lengths around the trivalent metal cation, however, is more regular, showing an almost ideal quadratic behavior across the entire series. The quadratic nature of the lanthanide contraction is derived theoretically from Slater's model for the calculation of ionic radii. In addition, the sum of all distances along the edges of the coordination polyhedron show exactly the same quadratic dependency as the Ln-X bond lengths. The universal validity of this coordination sphere contraction, concomitant with the quadratic decrease in Ln-X bond lengths, was confirmed by reexamination of four other, previously published, almost complete series of lanthanide complexes. Due to the importance of multidentate ligands for the chelation of rare-earth metals, this result provides a significant advance for the prediction and rationalization of the geometric features of the corresponding lanthanide complexes, with great potential impact for all aspects of lanthanide coordination.

  4. Trends in metallo-organic chemistry of scandium, yttrium, and the lanthanides

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    Several interesting aspects of the metallo-organic chemistry of group 3 and the lanthanides have been highlighted, which include: (a) the chemistry of a few notable organolanthanide compounds, alkoxo and aryloxo derivatives derived from sterically demanding ligands, (b) new trends in the chemistry of lanthanide heterometallic alkoxides, (c) an account of zero valent organometallics of yttrium and the lanthanides, and (d) aspects of agostic interactions in the lanthanide metallo-organic compounds. (author). 49 refs

  5. Recovery of lanthanides

    International Nuclear Information System (INIS)

    Tilley, G.L.; Doyle, W.E.

    1990-01-01

    This paper discusses a method for recovering a lanthanide and thorium from a material containing a fluorine compound and the lanthanide and thorium. It comprises a. obtaining the material from a roasted, acid-leached bastnasite ore; b. forming a mixture of the material with at least about ten weight percent of silica; c. contacting the mixture with sulfuric acid; d. heating the mixture and sulfuric acid to a temperature of at least about 150 degrees C for at least about 3 hours to cause most of the fluorine to be released as a volatile material containing silicon and fluorine; e. contacting the reacted mixture with an aqueous medium consisting essentially of water to solubilize the lanthanide and thorium while leaving an insoluble residue; and f. separating the aqueous solution of the lanthanide and thorium from the insoluble residue

  6. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Lanthanide-doped upconverting phosphors for bioassay and therapy

    Science.gov (United States)

    Guo, Huichen; Sun, Shiqi

    2012-10-01

    Lanthanide-doped fluorescent materials have gained increasing attention in recent years due to their unique luminescence properties which have led to their use in wide-ranging fields including those of biological applications. Aside from being used as agents for in vivo imaging, lanthanide-doped fluorescent materials also present many advantages for use in bioassays and therapy. In this review, we summarize the applications of lanthanide-doped up-converting phosphors (UCPs) in protein and gene detection, as well as in photodynamic and gene therapy in recent years, and outline their future potential in biological applications. The current report could serve as a reference for researchers in relevant fields.

  8. Analytical chemistry of lanthanides

    International Nuclear Information System (INIS)

    Al-Sowdani, K.H.

    1986-12-01

    Candoluminescence of the lanthanides and the development of instruments for monitoring the phenomenon are described. The use of fluorescence spectroscopy, spectrofluorometry and spectrophotometry for the quantitative chemical analysis of the lanthanides is described. (U.K.)

  9. Development of ion imprinted polymers for the selective extraction of lanthanides from environmental samples

    International Nuclear Information System (INIS)

    Moussa, Manel

    2016-01-01

    The analysis of the lanthanide ions present at trace level in complex environmental matrices requires often a purification and preconcentration step. The solid phase extraction (SPE) is the most used sample preparation technique. To improve the selectivity of this step, Ion Imprinted Polymers (IIPs) can be used as SPE solid supports. The aim of this work was the development of IIPs for the selective extraction of lanthanide ions from environmental samples. In a first part, IIPs were prepared according to the trapping approach using 5,7-dichloroquinoline-8-ol as non-vinylated ligand. For the first time, the loss of the trapped ligand during template ion removal and sedimentation steps was demonstrated by HPLC-UV. Moreover, this loss was not repeatable, which led to a lack of repeatability of the SPE profiles. It was then demonstrated that the trapping approach is not appropriate for the IIPs synthesis. In a second part, IIPs were synthesized by chemical immobilization of methacrylic acid as vinylated monomer. The repeatability of the synthesis and the SPE protocol were confirmed. A good selectivity of the IIPs for all the lanthanide ions was obtained. IIPs were successfully used to selectively extract lanthanide ions from tap and river water. Finally, IIPs were synthesized by chemical immobilization of methacrylic acid and 4-vinylpyridine as functional monomers and either a light (Nd 3+ ) or a heavy (Er 3+ ) lanthanide ion as template. Both kinds of IIPs led to a similar selectivity for all lanthanide ions. Nevertheless, this selectivity can be modified by changing the nature and the pH of the washing solution used in the SPE protocol. (author)

  10. Pressure-induced polyamorphism in lanthanide-solute metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangliang; Li, Renfeng; Liu, Haozhe [Harbin Institute of Technology, Harbin (China); Center for High Pressure Science Technology Advanced Research, Changchun (China); Wang, Luhong [Harbin Institute of Technology, Harbin (China); Qu, Dongdong [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD (Australia); Zhao, Haiyan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Center for Advanced Energy Studies, University of Idaho, Idaho Falls, ID (United States); Chapman, Karena W.; Chupas, Peter J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-15

    The electronic structure inheritance of lanthanide-solvent atoms in lanthanide-based metallic glasses has been proposed. Is a polyamorphism possible in lanthanide-solute metallic glasses? So far, polyamorphic phase transitions in metallic glass containing lanthanide have been observed only in lanthanide-solvent metallic glasses. Here, a pressure-induced transition between two distinct amorphous states, accompanied by a 7% volume collapse at ambient pressure, was observed in La{sub 43.4}Pr{sub 18.6}Al{sub 14}Cu{sub 24} metallic glass, with low lanthanide content, by using in situ X-ray total scattering method. The transformation also indicated by changes in short range and medium range order. Thus, it is proposed that the lanthanide-solute metallic glasses also inherit 4f electronic transition from pure lanthanide element in polyamorphic transition. This discovery offers a supplement to research on lanthanide-based metallic glasses, which further provides a new perspective of the polyamorphic transformation in metallic glasses containing lanthanide element. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Extraction chromatography of lanthanides, ch. 8

    International Nuclear Information System (INIS)

    Siekierski, S.; Fidelis, I.

    1975-01-01

    The extraction of lanthanides by chelate formation with acidic organophosphorous extractants, by solvation of salts, and in the form of ion pairs is reviewed. The double-double effect and its significance for the lanthanide as well as the actinide separation is discussed. A short survey of the existing data on the enthalpies of lanthanide extraction and on the influence of temperature on their separation factor is given. The resolution ability of columns used for the separation of lanthanides is briefly surveyed

  12. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  13. Studies of Lanthanide Transport in Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo; Taylor, Christopher

    2018-04-02

    inclusion of Soret effects, Ln tend to migration down the temperature gradient and precipitate on the cold side of both the liquid metal filled pores and the Na-filled gap. The major physical kinetics has been included either in the media block or at the interface and the corresponding reaction rate constants have been clarified. This work can serve as a framework for the development of more sophisticated model by including more physical kinetics and determining the corresponding parameters. The greater understanding of the lanthanide transport in the U-Zr fuel allows for the fuel to be more efficiently engineered to mitigate FCCI and thus achieve to higher burnups.

  14. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  15. Lanthanide co-ordination frameworks: Opportunities and diversity

    International Nuclear Information System (INIS)

    Hill, Robert J.; Long, De-Liang; Hubberstey, Peter; Schroeder, Martin; Champness, Neil R.

    2005-01-01

    Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly more difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials

  16. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    International Nuclear Information System (INIS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln 2 (phen) 2 (SO 4 ) 3 (H 2 O) 2 ] n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)] n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO 4 2− anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of 5 D 0 → 7 F J (J=0–4) of the Eu(III)

  17. Lanthanide contraction effect on crystal structures of lanthanide coordination polymers with cyclohexanocucurbit[6]uril ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Li-Mei [College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001 (China); Liu, Jing-Xin, E-mail: jxliu411@ahut.edu.cn [College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002 (China)

    2017-01-15

    A series of compounds based on the macrocyclic ligand cyclohexanocucurbit[6]uril (Cy6Q[6]) with formulas (Ln(H{sub 2}O){sub 6}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·xH{sub 2}O [isomorphous with Ln=La (1), Ce (2), Pr (3) and Nd (4), x=11 (1), 11 (2), 10 (3) and 11 (4)], (Sm(H{sub 2}O){sub 5}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·10H{sub 2}O (5) and (Ln(H{sub 2}O){sub 5}(NO{sub 3})@Cy6Q[6])·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with Ln=Gd (6), Tb (7) and Dy (8), x=8 (6), 6 (7) and 6 (8)], have been successfully synthesized by the self-assembly of Cy6Q[6] with the corresponding lanthanide nitrate under hydrochloric acid aqueous solution in the presence of CdCl{sub 2}. Single-crystal X-ray diffraction analyses revealed that compounds 1–8 all crystallize in monoclinic space group P2{sub 1}/c, and display 1D coordination polymer structures. The lanthanide contraction effect on the structures of 1–8 has also been investigated and discussed in detail. In contrast, the reaction of Cy6Q[6] with the Ho(NO){sub 3}, Tm(NO){sub 3}, Yb(NO){sub 3} under the same conditions resulted in the compounds 9–11 with formulas Cy6Q[6]·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with x=10 (9), 10 (10), and 9 (11)], in which no lanthanide cations are observed. The structural difference of these compounds indicates that the Cy6Q[6] may be used in the separation of lanthanide cations. - Graphical abstract: The reaction of cyclohexanocucurbit[6]uril with lanthanide ions (La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+}) under hydrochloric acid in the presence of CdCl{sub 2} resulted in eleven compounds, which demonstrate interesting lanthanide contraction effect and provide a means of separating lanthanide ions. - Highlights: • Eleven compounds of the Ln{sup 3+} with the Cy6Q[6] were synthesized and described. • Compounds 1-8 demonstrate interesting lanthanide contraction effect.

  18. Lanthanide complexation in aqueous solutions

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1984-01-01

    The lanthanide elements form an extended series of cations with the same charge, slightly varying radii and useful magnetic and spectroscopic properties. Their use in technology is growing rapidly as their properties are more fully explored. The lanthanides also offer scientists valuable and often unique probes for investigating a variety of chemical and physical phenomena. This review has attempted to call attention to these latter uses without trying to provide a thorough discussion of all the relevant literature. Hopefully, awareness of the more interesting facets of present studies of lanthanide complexes in aqueous solution will spur even more advances in the use of these elements. (Auth.)

  19. Ion chromatography separation of lanthanides at trace concentrations from Gd Matrix and quantification by ICP-MS

    International Nuclear Information System (INIS)

    Raut, V.V.; Jeyakumar, S.; Nagar, B.K.; Deb, S.B.; Saxena, M.K.; Tomar, B.S.

    2014-01-01

    Gadolinium compounds are mainly used as burnable poison. The presence of certain impurities is undesirable in the nuclear grade Gd compounds. Gd 2 O 3 , a most common raw material used for the preparation of nuclear grade Gd compounds. Analysis of rare earth impurities in Gd-matrices is one of the important exercises carried out to ensure the purity of Gd 2 O 3 . Determination of lanthanides at trace concentrations in lanthanide (Gd) matrix is complicated and difficult to realize. This is because the selective separation of REE's in one of the lanthanide elements is a challenging task. The present study was carried out to explore the feasibility of separating trace level lanthanides from Gd matrix by ion interaction chromatography (IIC) and to develop an analytical methodology for the determination of lanthanides by inductively coupled plasma mass spectrometry (ICP-MS). In the present investigation, the reversed phase column was dynamically modified into sulphonic acid functionalized surface by using 0.025 M n-Octane sulphonic acid (OSA). With α-HIBA eluent system, the elution order follows as Lu to La. The separations are employed with gradient elution mode. Since the sample has large excess of Gd, elution profiles with concentration gradient of HIBA were attempted. Separated fractions of Light lanthanides (LLn) and Heavy lanthanides (HLn) were collected and analyzed by ICP-MS. During MS analysis, it was observed that due to high concentration of salt (Na salt of OSA) present in the collected fractions caused difficulty in ICP-MS . Hence the experiments were carried out using another ion interacting reagent viz. 0.03 M camphor-10-sulphonic acid (CSA). Initial concentration of HIBA was kept at 0.025 M up to 15 min for the elution of HLns i.e. from Lu to Tb and it was then increased to 0.05 M to 0.3 M in 30 min. After elution of Tb, outlet of the column was switched to drain for 7 min to separate bulk Gd fraction. From 22 to 35 min effluent fraction containing Eu

  20. Luminescent lanthanide coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  1. Spectral studies of Lanthanide interactions with membrane surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Karukstis, K.K.; Kao, M.Y.; Savin, D.A.; Bittker, R.A.; Kaphengst, K.J.; Emetarom, C.M.; Naito, N.R.; Takamoto, D.Y. [Harvey Mudd College, Claremont, CA (United States)

    1995-03-23

    We have monitored the interactions of the series of trivalent lanthanide cations with the thylakoid membrane surface of spinach chloroplasts using two complementary spectral techniques. Measurements of the fluorescence emission of the extrinsic probe 2-p-toluidinonaphthalene-6-sulfonate (TNS) and the absorbance of the intrinsic chromophore chlorophyll provide two sensitive means of characterizing the dependence of the cation-membrane interaction on the nature of the cation. In these systems, added lanthanide cations adsorb onto the membrane surface to neutralize exposed segments of membrane-embedded protein complexes. The lanthanide-induced charge neutralization increases the proximity of added TNS anion to the membrane surface as evidenced by variations in the TNS fluorescence level and wavelength of maximum emission. Our results reveal a strong dependence of TNS fluorescence parameters on both lanthanide size and total orbital angular momentum L value. Lanthanides with greater charge density (small size and/or low L value) enhance the TNS fluorescence level to a greater extent. A possible origin for the lanthanide-dependent TNS fluorescence levels is suggested in terms of a heterogeneity in the number and type of TNS binding sites. The data are consistent with the proposal that larger lanthanides with smaller enthalpies of hydration induce more significant membrane appression. 59 refs., 9 figs., 2 tabs.

  2. Luminescent lanthanide reporters: new concepts for use in bioanalytical applications

    International Nuclear Information System (INIS)

    Vuojola, Johanna; Soukka, Tero

    2014-01-01

    Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and a large surface area for biomolecule immobilization. Lanthanide-based reporters, when properly shielded from the quenching effects of water, usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling time-gated luminescence detection. Because of these properties, lanthanide-based reporters have found widespread applications in various fields of life. This review focuses on the field of bioanalytical applications. Luminescent lanthanide reporters and assay formats utilizing these reporters pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications. (topical review)

  3. The geochemistry and mobility of the lanthanides in marine sediments

    International Nuclear Information System (INIS)

    Elderfield, H.

    1988-07-01

    A study has been made to evaluate lanthanide mobility in sediments directly by measuring concentrations of 10 lanthanide elements in sediments and pore waters. Due to the very low concentrations of the lanthanides in sea water relative to marine sediments, evidence of lanthanide mobilization is usually difficult to detect from studies of solid-phase geochemistry. Results show that the lanthanides can be extremely mobile. Concentrations in pore waters up to 100 times sea water concentrations have been measured. The conclusions are tentative but the present data suggest that the lanthanides are mobilized during oxidation of organic-rich sediments and are relocated in part in association with secondary Fe-rich phases. The behaviour of Ce is, predictably, somewhat different from the other lanthanides and may be more mobile as a consequence of its redox chemistry. (author)

  4. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    Science.gov (United States)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  5. NMR study of structure of lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The diagnostic value PMR studies of diamagnetic lanthanide complexes to define the nature of the species in the lanthanide-pyruvate system is discussed. The use of NMR spectra of both diamagnetic and paramagnetic lanthanide complexes to obtain detailed structural information is reviewed

  6. Effective core potential methods for the lanthanides

    International Nuclear Information System (INIS)

    Cundari, T.R.; Stevens, W.J.

    1993-01-01

    In this paper a complete set of effective core potentials (ECPs) and valence basis sets for the lanthanides (Ce to Lu) are derived. These ECPs are consistent not only within the lanthanide series, but also with the third-row transition metals which bracket them. A 46-electron core was chosen to provide the best compromise between computational savings and chemical accuracy. Thus, the 5s and 5p are included as ''outer'' core while all lower energy atomic orbitals (AOs) are replaced with the ECP. Generator states were chosen from the most chemically relevant +3 and +2 oxidation states. The results of atomic calculations indicate that the greatest error vs highly accurate numerical potential/large, even-tempered basis set calculations results from replacement of the large, even-tempered basis sets with more compact representations. However, the agreement among atomic calculations remains excellent with both basis set sizes, for a variety of spin and oxidation states, with a significant savings in time for the optimized valence basis set. It is expected that the compact representation of the ECPs and valence basis sets will eventually encourage their use by computational chemists to further explore the bonding and reactivity of lanthanide complexes

  7. Lanthanides, thorium, iodine in terrestrail invertebrates

    International Nuclear Information System (INIS)

    Zhulidov, A.V.; Pokarzhevskij, A.D.; Katargin, N.V.; AN SSSR, Moscow

    1991-01-01

    It is shown that among examined terrestrial invertebrates the highest levels on lanthanide and thorium concentration are typical for animals, feeding on plant tissues - earthworms, molluscs, diploid. It is shown that there are no reasons to hope, that regularities of migration of transuranium elements and lanthanides in tropic chains are identical

  8. Ultrasmall lanthanide oxide nanoparticles for biomedical imaging and therapy

    CERN Document Server

    Lee, Gang Ho

    2014-01-01

    Most books discuss general and broad topics regarding molecular imagings. However, Ultrasmall Lanthanide Oxide Nanoparticles for Biomedical Imaging and Therapy, will mainly focus on lanthanide oxide nanoparticles for molecular imaging and therapeutics. Multi-modal imaging capabilities will discussed, along with up-converting FI by using lanthanide oxide nanoparticles. The synthesis will cover polyol synthesis of lanthanide oxide nanoparticles, Surface coatings with biocompatible and hydrophilic ligands will be discussed and TEM images and dynamic light scattering (DLS) patterns will be

  9. Luminescent Lanthanide Metal Organic Frameworks for cis-Selective Isoprene Polymerization Catalysis

    Directory of Open Access Journals (Sweden)

    Samantha Russell

    2015-11-01

    Full Text Available In this study, we are combining two areas of chemistry; solid-state coordination polymers (or Metal-Organic Framework—MOF and polymerization catalysis. MOF compounds combining two sets of different lanthanide elements (Nd3+, Eu3+/Tb3+ were used for that purpose: the use of neodymium was required due to its well-known catalytic properties in dienes polymerization. A second lanthanide, europium or terbium, was included in the MOF structure with the aim to provide luminescent properties. Several lanthanides-based MOF meeting these criteria were prepared according to different approaches, and they were further used as catalysts for the polymerization of isoprene. Stereoregular cis-polyisoprene was received, which in some cases exhibited luminescent properties in the UV-visible range.

  10. Diphenyl-phosphinyl-morpholide (DPPM) lanthanide trifluoroacetate adducts

    International Nuclear Information System (INIS)

    Carvalho, L.R.F. de; Kim, D.J.

    1984-01-01

    Preparation and properties of adducts of lanthanide salts and diphenyl-phosphinyl-morpholide (DPPM) have been described in the literature. Addition compounds containing lanthanide nitrates, isothiocyanates, perchlorates, chlorides, bromides with DPPM have been obtained. In this article, the preparation and characterization of the addition compounds of lanthanide trifluoroacetates (TFA) with DPPM are reported. The compounds of general formula Ln (TFA) 3 . 3DPPM, Ln= La-Lu, Y were characterized by elemental analysis, melting ranges, infrared spectra, absorption and emission visible spectra, X-ray powder patterns. (Author) [pt

  11. Use of lanthanide catalysts in air electrodes

    International Nuclear Information System (INIS)

    Souza Parente, L.T. de

    1982-01-01

    A review on the lanthanide catalysts suitable for the reduction catalysis of oxygen in air electrodes is presented. The kinds of lanthanide indicated to be used as catalysts of oxygen reduction are shown. (A.R.H.) [pt

  12. Experimental solubility measurements of lanthanides in liquid alkalis

    Science.gov (United States)

    Isler, Jeremy; Zhang, Jinsuo; Mariani, Robert; Unal, Cetin

    2017-11-01

    In metallic nuclear fuel, lanthanide fission products play a crucial role in the fuel burnup-limiting phenomena of fuel cladding-chemical interaction (FCCI). The lanthanides have been hypothesized to transport by a 'liquid-like' mechanism out of the metallic fuel to the fuel peripheral to cause FCCI. By liquid fission product cesium and liquid bond sodium, the lanthanides are transported to the peripheral of the fuel through the porosity of the fuel. This work investigates the interaction between the lanthanides and the alkali metals by experimentally measuring the solubility of lanthanides within liquid sodium, and neodymium in liquid cesium and mixtures of cesium and sodium. The temperature dependence of the solubility is experimentally determined within an inert environment. In addition, the dependence of the solubility on the alkali metal concentration in liquid mixtures of cesium and sodium was examined. In quantifying the solubility, the fundamental understanding of this transport mechanism can be better determined.

  13. Selective removal of lanthanides from natural waters, acidic streams and dialysate

    Energy Technology Data Exchange (ETDEWEB)

    Yantasee, Wassana, E-mail: wassana.yantasee@pnl.gov [Pacific Northwest National Laboratory (PNNL), P.O. Box 999, Richland, WA 99352 (United States); Fryxell, Glen E.; Addleman, R. Shane; Wiacek, Robert J.; Koonsiripaiboon, View; Pattamakomsan, Kanda; Sukwarotwat, Vichaya [Pacific Northwest National Laboratory (PNNL), P.O. Box 999, Richland, WA 99352 (United States); Xu Jide; Raymond, Kenneth N. [Chemistry Department, University of California, Berkeley, CA 94720 (United States); LBNL, Berkeley, CA 94720 (United States)

    2009-09-15

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, which increases public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd and Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS{sup TM}), that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (Prop-Phos), and 1-hydroxy-2-pyridinone (1,2-HOPO), from natural waters (river, ground and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate. The affinity, capacity, and kinetics of the lanthanide sorption, as well as regenerability of SAMMS materials were investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. In acid solutions, Prop-Phos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their use in chromatographic lanthanide separation. Over 95% of 100 {mu}g/L of Gd in dialysate was removed by the Prop-Phos-SAMMS after 1 min and 99% over 10 min. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties. Thus, they have a great potential to be used as in large-scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and in sorbent dialyzers for treatment of acute lanthanide poisoning.

  14. Selective removal of lanthanides from natural waters, acidic streams and dialysate

    International Nuclear Information System (INIS)

    Yantasee, Wassana; Fryxell, Glen E.; Addleman, R. Shane; Wiacek, Robert J.; Koonsiripaiboon, View; Pattamakomsan, Kanda; Sukwarotwat, Vichaya; Xu Jide; Raymond, Kenneth N.

    2009-01-01

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, which increases public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd and Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS TM ), that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (Prop-Phos), and 1-hydroxy-2-pyridinone (1,2-HOPO), from natural waters (river, ground and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate. The affinity, capacity, and kinetics of the lanthanide sorption, as well as regenerability of SAMMS materials were investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. In acid solutions, Prop-Phos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their use in chromatographic lanthanide separation. Over 95% of 100 μg/L of Gd in dialysate was removed by the Prop-Phos-SAMMS after 1 min and 99% over 10 min. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties. Thus, they have a great potential to be used as in large-scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and in sorbent dialyzers for treatment of acute lanthanide poisoning.

  15. Separation and estimation of lanthanides using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Datta, Arpita; Sivaraman, N.; Vasudeva Rao, P.R.

    2012-01-01

    The separation efficiency of individual lanthanides depends on the stability constant of the metal-ligand complex. Therefore, stability constant data of lanthanide complexes is important in the development of high performance separation procedures. The dynamic ion exchange HPLC technique was employed at our laboratory to estimate the stability constant of lanthanides with various complexing agents. In these studies, the retention times as well as capacity factors of lanthanides and some actinides were measured as a function of CSA, complexing agent concentrations and mobile phase pH. From these studies, a correlation has been established between capacity factor of a metal ion, concentrations of ion-pairing reagent and complexing agent with the stability constant of lanthanide complex

  16. Systemic analysis of thermodynamic properties of lanthanide halides

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Badalov, A.; Marufi, V.K.

    1992-01-01

    System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out

  17. Lanthanide-doped luminescent nanomaterials from fundamentals to bioapplications

    CERN Document Server

    Chen, Xueyuan; Tu, Datao

    2014-01-01

    Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the ...

  18. Optimization of the radio lanthanides separation device

    International Nuclear Information System (INIS)

    Vera T, A. L.

    2009-01-01

    At present, cancer is a major cause of mortality in our country, therefore, its prevention, diagnosis and treatment are vital to health systems. The cancer treatment and other diseases, from monoclonal antibodies, peptides, or amino macro aggregates marked with beta particle emitting radionuclides, is a highly promising field. The radioactive lanthanides: Pm, Tb, Ho, and Lu are beta emitters, which possess nuclear and chemical properties, which have shown their feasibility as radioisotopes of radiotherapeutic use. However, these radioisotopes are not available commercially in this connection, the Research Laboratory of Radioactive Materials of the National Institute of Nuclear Research, has developed the methodology of production of these radioisotopes and based on this work is designed, constructed and installed the radio lanthanides separation device for the radioisotopes production routinely. This device is part of the cell, , which has and auxiliary air service, an extraction system and is protected with a 10 cm of lead shielding. The radio lanthanides separation device is manual and easy to handle. The main function of this equipment is the radio lanthanides separation from extractive chromatography through packed columns with a commercial resin (Ln SPS) and coated on the top and bottom by fiberglass. The radio lanthanides separation device comprises a main carrousel where the separation columns and elution containers are mounted. It also has a system of open irradiation vials, carrier samples for columns and glassware. This paper presents a detailed description of the radio lanthanides separation device and its management, which allows the radioisotopes production Pm, Tb, Ho, and Lu from the separation of its parents Nd, Dy, Gd, and Yb respectively. (Author)

  19. Nonaqueous method for dissolving lanthanide and actinide metals

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1975-01-01

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol

  20. Recovery of uranium and lanthanides during the production of nitrophosphate fertilizers using tertiary amyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Habashi, F; Awadalla, F T

    1986-01-01

    When phosphate rock is dissolved in nitric acid, phosphoric acid and uranium can be selectively extracted by tertiary amyl alcohol; other impurities including the lanthanides remain in the aqueous phase. Uranium can be recovered from the alcohol phase by selective stripping and the lanthanides from the raffinate by extraction with tributyl phosphate.

  1. A sensitive fluorescent sensor of lanthanide ions

    CERN Document Server

    Bekiari, V; Lianos, P

    2003-01-01

    A fluorescent probe bearing a diazostilbene chromophore and a benzo-15-crown-5 ether moiety is a very efficient sensor of lanthanide ions. The ligand emits strong fluorescence only in the presence of specific ions, namely lanthanide ions, while the emission wavelength is associated with a particular ion providing high sensitivity and resolution.

  2. Lanthanide mixed ligand chelates for DNA profiling and latent fingerprint detection

    Science.gov (United States)

    Menzel, E. R.; Allred, Clay

    1997-02-01

    It is our aim to develop a universally applicable latent fingerprint detection method using lanthanide (rare-earth) complexes as a source of luminescence. Use of these lanthanide complexes offers advantages on several fronts, including benefits from large Stokes shifts, long luminescence lifetimes, narrow emissions, ability of sequential assembly of complexes, and chemical variability of the ligands. Proper exploitation of these advantages would lead to a latent fingerprint detection method superior to any currently available. These same characteristics also lend themselves to many of the problems associated with DNA processing in the forensic science context.

  3. Lanthanides in the frame of Molecular Magnetism

    Directory of Open Access Journals (Sweden)

    Gatteschi D.

    2014-07-01

    Full Text Available Molecular magnetism is producing new types of materials which cover up to date aspects of basic science together with possible applications. This article highlights recent results from the point of view of lanthanides which are now intensively used to produce single molecule magnets, single chain and single ion magnets. After a short introduction reminding the main steps of development of molecular magnetism, the basic properties of lanthanides will be covered highlighting important features which are enhanced by the electronic structure of lanthanides, like spin frustration and chirality, anisotropy and non collinear axes in zero and one dimensional materials. A paragraph of conclusions will discuss what has been done and theperspectives to be expected.

  4. Citrate-based open-quotes Talspeakclose quotes actinide-lanthanide separation process

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Toth, L.M.; Bond, W.D.

    1997-01-01

    Lanthanide elements are produced in relatively high yield by fission of 235 U. Almost all the lanthanide isotopes decay to stable nonradioactive lanthanide isotopes in a relatively short time. Consequently, it is highly advantageous to separate the relatively small actinide fraction from the relatively large quantities of lanthanide isotopes. The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. Previous work based on the use of lactic or glycolic acid has shown deleterious effects of some impurity ions such as zirconium(IV), even at concentrations on the order of 10 -4 M. Other perceived problems were the need to maintain the pH and reagent concentrations within a narrow range and a significant solubility of the organic phase at high carboxylic acid concentrations. The authors' cold experiments showed that replacing the traditional extractants glycolic or lactic acid with citric acid eliminates or greatly reduces the deleterious effects produced by impurities such as zirconium. An extensive series of batch tests was done using a wide range of reagent concentrations at different pH values, temperatures, and contact times. The results demonstrated that the citrate-based TALSPEAK can tolerate appreciable changes in pH and reagent concentrations while maintaining an adequate lanthanide extraction. Experiments using a three-stage glass mixer-settler showed a good lanthanide extraction, appropriate phase disengagement, no appreciable deleterious effects due to the presence of impurities such as zirconium, excellent pH buffering, and no significant loss of organic phase

  5. Effect of lanthanide contraction on the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien): Syntheses and characterizations of lanthanide complexes with a tetraelenidoantimonate ligand

    International Nuclear Information System (INIS)

    Zhao Jing; Liang Jingjing; Pan Yingli; Zhang Yong; Jia Dingxian

    2011-01-01

    Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en) 2 (dien)(η 2 -SbSe 4 )] (Ln=Ce(1a), Nd(1b)), [Ln(en) 2 (dien)(SbSe 4 )] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)(μ-η 1 ,η 2 -SbSe 4 )] ∞ (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)(η 2 -SbSe 4 )] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe 4 ] 3- acts as a monodentate ligand mono-SbSe 4 , a bidentate chelating ligand η 2 -SbSe 4 or a tridentate bridging ligand μ-η 1 ,η 2 -SbSe 4 to the lanthanide(III) center depending on the Ln 3+ ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with E g between 2.08 and 2.51 eV. - Graphical Abstract: Two structural types of lanthanide(III) selenidoantimonates are formed in both en-dien and en-trien mixed polyamines across lanthanide series, indicating the lanthanide contraction effect on the structures of the lanthanide(III) selenidoantimonates. Highlights: → Two structural types of lanthanide selenidoantimonates are prepared across the lanthanide series in both Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) systems. → The [SbSe 4 ] 3- anion acts as a mono-SbSe 4 , a η 2 -SbSe 4 or a μ-η 1 ,η 2 -SbSe 4 ligand to the Ln 3+ ions. → The soft base ligand [SbSe 4 ] 3- can be controlled to coordinate to the Ln 3+ ions with en+dien and en+trien as co-ligands.

  6. Electronic structure of lanthanide scandates

    Science.gov (United States)

    Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.

    2018-02-01

    X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.

  7. Lanthanide ions as spectral converters for solar cells

    NARCIS (Netherlands)

    van der Ende, B.M.; Aarts, L.; Meijerink, A.

    2009-01-01

    The use of lanthanide ions to convert photons to different, more useful, wavelengths is well-known from a wide range of applications (e.g. fluorescent tubes, lasers, white light LEDs). Recently, a new potential application has emerged: the use of lanthanide ions for spectral conversion in solar

  8. High temperature vaporization/decomposition studies of lanthanide and actinide fluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1987-01-01

    Binary fluorides of the lanthanide and actinide elements comprise a fundamental class of compounds. The authors' investigations of their basic high temperature vaporization and/or decomposition behavior are aimed at elucidating more fully the thermal properties of selected tri- and tetrafluorides and extending such investigations to fluorides which have not been studied previously. Depending on the particular system and the specific experimental conditions, the authors' measurements can provide such information as the enthalpy associated with a congruent vaporization process and/or the relative stabilities of fluorides containing a lanthanide/actinide element in different oxidation states. The authors are also studying the congruent vaporization of selected lanthanide trifluorides with particular emphasis on two areas. The first concerns the variation in the enthalpies of sublimation of the trifluorides across the lanthanide series. Although this variation is rather small (δ5 kcal where ΔH/sub subl/ is approximately 100 kcal), it is larger than observed for other lanthanide trihalides and is unusually irregular. To examine this reported variation more closely, they are attempting to measure relative vapor pressures/enthalpies of vaporization by studying mixtures of two or more lanthanide trifluorides by the technique discussed above

  9. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  10. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  11. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 3. Heavy Lanthanides (Gd–Lu)

    Energy Technology Data Exchange (ETDEWEB)

    Mioduski, Tomasz [Institute of Nuclear Chemistry and Technology, 03195 Warszawa (Poland); Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl [Department of Chemistry, University of Warsaw, 02093 Warszawa (Poland); Zeng, Dewen, E-mail: dewen-zeng@hotmail.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2015-06-15

    This is the third part of the volume devoted to solubility data for the rare earth metal (REM) fluorides in water and in aqueous ternary and multicomponent systems. It covers experimental results of trivalent fluorides of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (so-called heavy lanthanides), since no quantitative data on solubilities of TbF{sub 4} and YbF{sub 2} (the most stable compounds at these valencies) are available. The related literature has been covered through the end of 2014. Compilations of all available papers with the solubility data are introduced for each REM fluoride with a corresponding critical evaluation. Every such assessment contains a collection of all solubility results in aqueous solution, a selection of suggested solubility data, a solubility equation, and a brief discussion of the multicomponent systems. Only simple fluorides (no complexes or double salts) are treated as the input substances in this report. General features of the systems, such as nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, solution pH, mixed solvent medium on the solubility, quality of the solubility results, and the solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  12. Factors in the complexation of lanthanides

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The lanthanide cations are classified as hard acids and thus will coordinate strongly with oxygen and fluorine donor atoms. The electrostatic model is applied to lanthanide complexes with the dielectric constant as a parameter; the plot of ΔG vs sum of ionic radii confirm the ionic nature of the bonding. The enthalpy and entropy changes are shown to compensate each other to produce an almost linear variation in the free energy of complexation. Outer-sphere and inner-sphere complexation is discussed

  13. Curvature of the Lanthanide Contraction: An Explanation

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth; Wellman, Daniel; Sgarlata, Carmelo; Hill, Aru

    2009-12-21

    A number of studies have shown that for isostructural series of the lanthanides (elements La through Lu), a plot of equivalent metal-ligand bond lengths versus atomic number differs significantly from linearity and can be better fit as a quadratic equation. However, for hydrogen type wave functions, it is the inverse of the average distance of the electron from the nucleus (an estimate of size) that varies linearly with effective nuclear charge. This generates an apparent quadratic dependence of radius with atomic number. Plotting the inverse of lanthanide ion radii (the observed distance minus the ligand size) as a function of effective nuclear charge gives very good linear fits for a variety of lanthanide complexes and materials. Parameters obtained from this fit are in excellent agreement with the calculated Slater shielding constant, k.

  14. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    Science.gov (United States)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry

  15. Determination of stability constants of lanthanide nitrate complex formation using a solvent extraction technique

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G.; Eberhardt, K.

    2006-01-01

    For lanthanides and actinides, nitrate complex formation is an important factor with respect to the reprocessing of nuclear fuels and in studies that treat partitioning and transmutation/conditioning. Different techniques, including microcalorimetry, various kinds of spectroscopy, ion-exchange and solvent extraction, can be used to determine stability constants of nitrate complex formation. However, it is uncommon that all lanthanides are studied at the same time, using the same experimental conditions and technique. The strengths of the complexes are different for lanthanides and actinides, a feature that may assist in the separation of the two groups. This paper deals with nitrate complex formation of lanthanides using a solvent extraction technique. Trace amounts of radioactive isotopes of lanthanides were produced at the TRIGA Mainz research reactor and at the Institutt for Energiteknikk in Kjeller, Norway (JEEP II reactor). The extraction of lanthanide ions into an organic phase consisting of 2, 6-bis-(benzoxazolyl)-4-dodecyloxylpyridine, 2-bromodecanoic acid and tert-butyl benzene as a function of nitrate ion concentration in the aqueous phase was studied in order to estimate the stability constants of nitrate complex formation. When the nitrate ion concentration is increased in the aqueous phase, the nitrate complex formation starts to compete with the extraction of metal ions. Thus the stability constants of nitrate complex formation can be estimated by measuring the decrease in extraction and successive fitting of an appropriate model. Extraction curves for La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho and Er were obtained and stability constants for their nitrate complex formation were estimated. Tb, Tm, Yb and Lu were also investigated, but no stability constants could be determined. The distribution ratios for the metal ions at low nitrate ion concentration were obtained at the same time, showing the effect of lanthanide contraction resulting in decreasing

  16. On the suitability of lanthanides as actinide analogs

    International Nuclear Information System (INIS)

    Raymond, Kenneth; Szigethy, Geza

    2008-01-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)

  17. Dietary intake and burden of lanthanide in main organs and tissues for Chinese man

    International Nuclear Information System (INIS)

    Zhu Hongda; Liu Qingfeng; Ouyang Li; Liu Husheng; Wang Naifen; Liu Yaqiong; Zhang Yongbao; Wang Ke; Chen Rusong

    2004-01-01

    Objective: To determine lanthanide concentrations in dietary foods and main organs or tissues for Chinese adult man and to estimate their daily intakes by ingestion and organ or tissue burdens. Methods: Ten kinds of organ or tissue samples collected in autopsy from 21 supplemental subjects of 4 areas with different dietary types in China who died suddenly, and had been healthy and normal before death. The concentrations of 11 lanthanide in foods and 14 lanthanide in these organ or tissue samples, including those collected from 31 subjects in the past, were analyzed by using ICP-MS or INAA technique as well as necessary QC measures. With uses of the local diet composition and relevant organ or tissue weights for Chinese Reference Man, their daily intakes and organ or tissue burdens were estimated. Results: The concentrations of 14 lanthanide in 12 categories of foods and 10 kinds of organ or tissue samples, their dietary daily intakes and organ or tissue burdens for Chinese adult men were obtained. Conclusion: Besides updating the relevant data of La, Ce and Eu in 5 kinds of organ or tissue and diet, this research obtained data on concentrations of other 11 lanthanide in Chinese foods and 10 kinds of organ or tissue, their daily intakes and burdens for the first time in China. The results provide more systematic bases for developing the parameters of Chinese Reference Man than before. This study provides also comparative data for different kinds of lanthanide, foods, organs or tissues and also the background values of Chinese soil

  18. Lanthanide-doped nanoparticles as the active optical medium in polymer-based devices

    NARCIS (Netherlands)

    Stouwdam, J.W.

    2004-01-01

    The luminescence of lanthanide ions in organic environment is greatly reduced compared to inorganic materials. This thesis describes the doping of the lanthanide ions in the core of inorganic nanoparticles that are soluble in organic solvents as a way to shield the lanthanide ions from the organic

  19. Analytical scheme for group separation of the lanthanides from biological materials before their determination by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Danko, B.; Samczynski, Z.; Dybczynski, R.

    2006-01-01

    The analytical procedure for the selective and quantitative isolation of the lanthanides as a group from biological materials has been developed on the basis of experiments with radio-tracers. Ion exchange and extraction column chromatography were used for the isolation of elements of interest from matrix and the other trace elements prior to irradiation in a nuclear reactor. The method enables quantitative separation of the lanthanide fraction, free from highly activating macro components, as well as from other trace elements including uranium, which can be the source of serious errors due to uranium 235 U fission reaction (n,f). In order to minimize the potential spectrometric interferences lanthanide fraction after neutron irradiation was divided into two sub-fractions, taking advantage of the different anion exchange affinities of individual lanthanide complexes with EDTA to strongly basic anion exchanger. The effective microwave digestion procedures for ca 500 mg biological samples was elaborated and the new, original method for checking the yield of the entire analytical procedure - including mineralization of the sample - was applied. Neutron activation analysis (NAA) of BCR 670 Aquatic Plant ? one of the only two CRMs of biological origin available on the market, which offers the certified values for all lanthanides was used for verification of performance of the proposed analytical scheme. (authors)

  20. Lanthanide (III) complexes of 2-(N-salicylideneamino)-4-phenylthiazole

    International Nuclear Information System (INIS)

    Sasidharan, G.N.; Mohanan, K.; Lakshmi Prabha, A.N.

    2002-01-01

    Lanthanide(III) complexes of 2-(N-salicylideneamino)-4- phenylthiazole (HSAT) have been synthesised and characterised by elemental, analytical, thermogravimetric, molar conductance, UV- visible, IR and NMR spectral data. The ligand coordinates to the lanthanide(III) ion in a tridentate fashion without deprotonation, giving complexes of the type [Ln(HSAT) 2 (NO 3 ) 3 ] and [Ln(HSAT) 2 (H 2 0) 3 Cl 3 ]. The spectral data reveal that the ligand is bonded to the lanthanide ion through azomethine nitrogen, ring nitrogen and phenolic oxygen without deprotonation. The nitrate group acts in a bidentate fashion. The ligand and the metal complexes exhibit antibacterial and antifungal activities. (author)

  1. Spectrophotometric, potentiometric, and gravimetric determination of lanthanides with peri-dihydroxynaphthindenone

    International Nuclear Information System (INIS)

    Hassan, S.S.M.; Mahmoud, W.H.

    1982-01-01

    Sensitive and reasonably selective methods are described for the spectrophotometric, potentiometric, and gravimetric determination of lanthanides using peri-dihydroxynaphthindenone as a novel chromogenic and precipitating reagent. The reagent forms a stable 1:2 (metal:reagent) type of complex with light lanthanides at pH 2-7 in 1:1 ethanol-water mixture. Low metal concentrations ( 4 L mol -1 cm -1 ) which obey Beer's law. Quantitative precipitation of the complexes from metal solutions of concentrations > 100 μg/mL permits both gravimetric quantitation by igniting the precipitates to the metal oxides and potentiometric titration of the excess reagent. Results with an average recovery of 98% (standard deviation 0.7%) are obtainable for 0.1 μg to 200 mg of all light lanthanides. Many foreign ions naturally occurring or frequently associated with lanthanides do not interfere or can be tolerated

  2. Spectrally resolved confocal microscopy using lanthanide centred near-IR emission

    DEFF Research Database (Denmark)

    Liao, Zhiyu; Tropiano, Manuel; Mantulnikovs, Konstantins

    2015-01-01

    The narrow, near infrared (NIR) emission from lanthanide ions has attracted great interest, particularly with regard to developing tools for bioimaging, where the long lifetimes of lanthanide excited states can be exploited to address problems arising from autofluorescence and sample transparency...

  3. Thermodynamic modelling of the extraction of nitrates of lanthanides by CMPO and by CMPO-like calixarene in concentrated nitric acid medium. Application in the optimization of the separation of lanthanides and actinides/lanthanides; Modelisation thermodynamique de l'extraction de nitrates de lanthanides par le CMPO et par un calixarene-CMPO en milieu acide nitrique concentre. Application a l'optimisation de la separation des lanthanides et des actinides/lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Belair, S

    2003-07-01

    The separation minor actinides / lanthanides in nitric acid medium is as one of problems of separative chemistry the most delicate within the framework of the processes allowing the recovery of long life radioelements present in the solutions of fission products. Previous studies showed that CMPO-substituted calix[4]arenes presents a better affinity for actinides than for lanthanides. To optimize the operating conditions of separation and to take into account the degree of non-ideality for the concentrated nitric solutions, we adopted a thermodynamic approach. The methodology taken to determine the number and the stoichiometry of the complexes formed in organic phase base on MIKULIN-SERGIEVSKII's model used through a software of data processing of experimental extraction isotherms. These tools are exploited at first on an extraction system engaging the CMPO, extractant reagent of actinides and lanthanides in concentrated nitric medium. The modelling of the system Ln(NO{sub 3}){sub 3}-HNO{sub 3}-H{sub 2}O/CMPO comes to confirm the results of several studies. At the same time, they allow to establish working hypotheses aiming at limiting the investigations of our researches towards the most stable complexes formed between lanthanides and CMPO-like calixarene to which the same method is then applied. An analytical expression of the selectivity of separation by the calixarene is established to determine the parameters and physico-chemical variables on which it depends. So, the ratio of the constants of extraction and the value of the activity of water of the system fixes the selectivity of separation of 2 elements. The exploitation of this relation allows to preview the influence of a variation of the concentration of nitric acid. Experiments of extraction confirm these forecasts and inform about the affinity of the calixarene with respect to lanthanides elements and to the americium. (author)

  4. Optical Properties of Lanthanides in Condensed Phase, Theory and Applications

    Directory of Open Access Journals (Sweden)

    Renata Reisfeld

    2015-04-01

    Full Text Available The basic theories of electronic levels and transition probabilities of lanthanides are summarized. Their interpretation allows practical preparation of new materials having application in lighting, solar energy utilization, optoelectronics, biological sensors, active waveguides and highly sensitive bioassays for in vitro detection in medical applications. The ways by which the weak fluorescence arising from electronic transition within the four f-configurations can be intensified will be discussed. This includes the intermixing of the four f-states with ligands of the host matrix, excitation to higher d-electronic states. Additional intensification of luminescence by plasmonic interaction with gold, silver and copper nanoparticles will be discussed. A short history of the time development of the research and the names of the scientists who made the major contribution of our understanding of lanthanides spectroscopy are presented.

  5. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    International Nuclear Information System (INIS)

    Goubard, F.; Vidal, F.; Bazzi, R.; Tillement, O.; Chevrot, C.; Teyssie, D.

    2007-01-01

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd 2 O 3 . These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films

  6. Lanthanide Cofactors for Triphosphorylation Ribozymes

    Science.gov (United States)

    Sweeney, K. J.; Müller, U. F.

    2017-07-01

    RNA world organisms could have used trimetaphosphate as energy source for thermodynamically unfavorable RNA polymerization. Using in vitro selection we show here that Lanthanides can serve as cofactors for ribozyme-catalyzed RNA triphosphorylation.

  7. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Wiencek, T.; O' Hare, E.; Fortner, J.; Wright, A. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Cheon, J.S.; Lee, B.O. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2017-02-15

    Advanced fast reactor concepts to achieve ultra-high burnup (∼50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys was performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.

  8. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo; Wiencek, T.; O' Hare, E.; Fortner, J.; Wright, A.; Cheon, J. S.; Lee, B. O.

    2017-02-01

    Advanced fast reactor concepts to achieve ultra-high burnup (~50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys was performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.

  9. Quantum chemical prediction of antennae structures in lanthanide complexes

    International Nuclear Information System (INIS)

    Ottonelli, M.; Musso, G.F.; Rizzo, F.; Dellepiane, G.; Porzio, W.; Destri, S.

    2008-01-01

    In this paper the quantum chemical semiempirical procedure recently proposed by us to predict ground- and excited-state geometries of lanthanide complexes, the pseudo coordination centre method (PCC), is preliminarily compared with the semiempirical sparkle model for the calculation of lanthanide complexes (SMLC). Contrary to the SMLC method, where the rare-earth ion is replaced by a reparameterized sparkle atom, in our approach we replace it with a metal ion which is already present in the chosen semiempirical parameterization. This implies that in the optimization of the geometry of the complexes a different weight is implicitly given to the complex region including the rare-earth ion and its neighbour atoms with respect to the region of the ligands aggregate. As a consequence our approach is expected to reproduce better than the SMLC one the geometry of the ligands aggregate embedded in the complex, while the contrary happens for the coordination distances

  10. Complexes of Y, La, and lanthanides with m-aminobenzoic acid

    International Nuclear Information System (INIS)

    Rzaczynska, Z.; Brzyska, W.

    1989-01-01

    m-Aminobenzoates of Y, La and lanthanides prepared in the reaction of the hydroxides of metal with m-aminobenzoic acid in solution have the general formula Ln(m-C 6 H 4 NH 2 COO) 3 .nH 2 O where n = 4 for Ho, Tm, n = 5 for Y, Sm, Dy, Er, Lu, and n = 6 for La, Nd, Eu, Gd, Tb, Yb. The water molecules in the hydrated compounds are in the outer coordination sphere. On heating in air at 350-410K dehydration occurs and anhydrous m-aminobenzoates Ln(m-C 6 H 4 NH 2 COO) 3 are formed. On the basis of the IR spectra it was found that the metal in hydrated m-aminobenzoate of lanthanides is simultaneously coordinated through amino- and carboxyl groups whereas in anhydrous m-aminobenzoates of lanthanides only trough the bidentate carboxyl group. From X-ray analysis it was stated that the hydrated m-aminobenzoates of lanthanides are isostructural in the whole range Y, La-Lu. (Author)

  11. Determination of lanthanides in fossil samples using laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Anzano, J.M.; Lasheras, R.J.; Canudo, I.; Laguna, M.

    2017-01-01

    As being a fast, simple and relatively non-destructive analytical technique Laser-induced breakdown spectroscopy (LIBS) has a large variety of applications including the analysis of paleontological samples. In this work LIBS is employed for the quantitative determination of lanthanides (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Sm, Tb, Tm and Yb) in vertebrate fossil samples comprising teeth, disarticulated complete or fragmented bones, eggshell fragments, and coprolites of dinosaurs, mammals and crocodiles. For emission line data, standard AnalaR grade salts of lanthanides were used. The major components: iron, calcium, magnesium, silicon and aluminum in the samples were also determined. The analytical information may be helpful in studying the samples for their age, formation environment and other paleontological properties. (author)

  12. Thermodynamic modelling of the extraction of nitrates of lanthanides by CMPO and by CMPO-like calixarene in concentrated nitric acid medium. Application in the optimization of the separation of lanthanides and actinides/lanthanides

    International Nuclear Information System (INIS)

    Belair, S.

    2003-01-01

    The separation minor actinides / lanthanides in nitric acid medium is as one of problems of separative chemistry the most delicate within the framework of the processes allowing the recovery of long life radioelements present in the solutions of fission products. Previous studies showed that CMPO-substituted calix[4]arenes presents a better affinity for actinides than for lanthanides. To optimize the operating conditions of separation and to take into account the degree of non-ideality for the concentrated nitric solutions, we adopted a thermodynamic approach. The methodology taken to determine the number and the stoichiometry of the complexes formed in organic phase base on MIKULIN-SERGIEVSKII's model used through a software of data processing of experimental extraction isotherms. These tools are exploited at first on an extraction system engaging the CMPO, extractant reagent of actinides and lanthanides in concentrated nitric medium. The modelling of the system Ln(NO 3 ) 3 -HNO 3 -H 2 O/CMPO comes to confirm the results of several studies. At the same time, they allow to establish working hypotheses aiming at limiting the investigations of our researches towards the most stable complexes formed between lanthanides and CMPO-like calixarene to which the same method is then applied. An analytical expression of the selectivity of separation by the calixarene is established to determine the parameters and physico-chemical variables on which it depends. So, the ratio of the constants of extraction and the value of the activity of water of the system fixes the selectivity of separation of 2 elements. The exploitation of this relation allows to preview the influence of a variation of the concentration of nitric acid. Experiments of extraction confirm these forecasts and inform about the affinity of the calixarene with respect to lanthanides elements and to the americium. (author)

  13. The kinetics of lanthanide complexation by EDTA and DTPA in lactate media.

    Science.gov (United States)

    Nash, K L; Brigham, D; Shehee, T C; Martin, A

    2012-12-28

    The interaction of trivalent lanthanide and actinide cations with polyaminopolycarboxylic acid complexing agents in lactic acid buffer systems is an important feature of the chemistry of the TALSPEAK process for the separation of trivalent actinides from lanthanides. To improve understanding of metal ion coordination chemistry in this process, the results of an investigation of the kinetics of lanthanide complexation by ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) and diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) in 0.3 M lactic acid/0.3 M ionic strength solution are reported. Progress of the reaction was monitored using the distinctive visible spectral changes attendant to lanthanide complexation by the colorimetric indicator ligand Arsenazo III, which enables the experiment but plays no mechanistic role. Under the conditions of these experiments, the reactions occur in a time regime suitable for study by stopped-flow spectrophotometric techniques. Experiments have been conducted as a function of EDTA/DTPA ligand concentration, total lactic acid concentration, and pH. The equilibrium perturbation reaction proceeds as a first order approach to equilibrium over a wide range of conditions, allowing the simultaneous determination of complex formation and dissociation rate constants. The rate of the complexation reaction has been determined for the entire lanthanide series (except Pm(3+)). The predominant pathway for lanthanide-EDTA and lanthanide-DTPA dissociation is inversely dependent on the total lactate concentration; the complex formation reaction demonstrates a direct dependence on [H(+)]. Unexpectedly, the rate of the complex formation reaction is seen in both ligand systems to be fastest for Gd(3+). Correlation of these results indicates that in 0.3 M lactate solutions the exchange of lanthanide ions between lactate complexes and the polyaminopolycarboxylate govern the process.

  14. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping

    KAUST Repository

    Wang, Feng; Han, Yu; Lim, Chinseong; Lu, Yunhao; Wang, Juan; Xu, Jun; Chen, Hongyu; Zhang, Chun; Hong, Minghui; Liu, Xiaogang

    2010-01-01

    or hexagonal) and upconversion emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal

  15. Citrate based ''TALSPEAK'' lanthanide-actinide separation process

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ''geological'' periods of time. The costs of building, maintaining, and operating a ''geological TRU repository'' can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ''TALSPEAK'' process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced

  16. Separation of lanthanides using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2006-01-01

    A micro solvent extraction system for the separation of lanthanides has been investigated. The micro flow channel is fabricated on a poly(methyl methacrylate) (PMMA) plate, and solvent extraction progresses by feeding aqueous and organic solutions into the channel simultaneously. The extraction equilibrium is quickly achieved, without any mechanical mixing, when a narrow channel (100 μm width and 100 μm depth) is used. The results of solvent extraction from the Pr/Nd and Pr/Sm binary solutions revealed that both lanthanides are firstly extracted together, and then, the lighter lanthanide extracted in the organic solution alternatively exchanges to the heavier one in the aqueous solution to achieve the extraction equilibrium. The phase separation of the aqueous and organic phases after extraction can also be successively achieved by contriving the cross section of the flow channel, and the extractive separation of Pr/Sm is demonstrated. (authors)

  17. Polymer Assembly Encapsulation of Lanthanide Nanoparticles as Contrast Agents for In Vivo Micro-CT.

    Science.gov (United States)

    Cruje, Charmainne; Dunmore-Buyze, Joy; MacDonald, Jarret P; Holdsworth, David W; Drangova, Maria; Gillies, Elizabeth R

    2018-03-12

    Despite recent technological advancements in microcomputed tomography (micro-CT) and contrast agent development, preclinical contrast agents are still predominantly iodine-based. Higher contrast can be achieved when using elements with higher atomic numbers, such as lanthanides; lanthanides also have X-ray attenuation properties that are ideal for spectral CT. However, the formulation of lanthanide-based contrast agents at the high concentrations required for vascular imaging presents a significant challenge. In this work, we developed an erbium-based contrast agent that meets micro-CT imaging requirements, which include colloidal stability upon redispersion at high concentrations, evasion of rapid renal clearance, and circulation times of tens of minutes in small animals. Through systematic studies with poly(ethylene glycol) (PEG)-poly(propylene glycol), PEG-polycaprolactone, and PEG-poly(l-lactide) (PLA) block copolymers, the amphiphilic block copolymer PEG 114 -PLA 53 was identified to be ideal for encapsulating oleate-coated lanthanide-based nanoparticles for in vivo intravenous administration. We were able to synthesize a contrast agent containing 100 mg/mL of erbium that could be redispersed into colloidally stable particles in saline after lyophilization. Contrast enhancement of over 250 HU was achieved in the blood pool for up to an hour, thereby meeting the requirements of live animal micro-CT.

  18. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Goubard, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)]. E-mail: fabrice.goubard@u-cergy.fr; Vidal, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Bazzi, R. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Tillement, O. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Nano-H, 23 rue Royal, 69001 Lyon (France); Chevrot, C. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Teyssie, D. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)

    2007-10-15

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd{sub 2}O{sub 3}. These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films.

  19. Adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution

    International Nuclear Information System (INIS)

    Tatsuya Suzuki

    2013-01-01

    The adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution were investigated. The adsorbed amounts of lanthanides and the degree of mutual separation of lanthanides increased with an increase in the concentration of lithium chloride in aqueous solution. The group separation of the trivalent actinides and lanthanides was observed. This separation phenomenon is similar in a hydrochloric acid solution. However, the adsorption behavior of lanthanides in lithium chloride is different from their behavior in a hydrochloric acid solution. This fact shows that the adsorption mechanisms of lanthanides in a lithium chloride aqueous solution and in a hydrochloric acid solution are different; the adsorption mechanisms are attributed to the ion exchange in a hydrochloric acid solution, and to the complex formation with pyridine group in a lithium chloride solution. (author)

  20. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Lippuner, Jonas; Roberts, Luke F., E-mail: jlippuner@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, MC 350-17, 1200 E California Boulevard, Pasadena CA 91125 (United States)

    2015-12-20

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y{sub e}, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y{sub e} ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y{sub e} lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y{sub e}, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y{sub e}, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  1. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-01-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y e , initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y e ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y e lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y e , but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y e , s, and τ to estimate whether or not the ejecta is lanthanide-rich

  2. Synthesis and characterization of lanthanide picrate complexes with 4-picoline-N-oxide (4-pic N O)

    International Nuclear Information System (INIS)

    Silva, E.M. da.

    1991-01-01

    The lanthanide picrate complexes with 4-picoline-N-oxide were obtained from ethanolic solutions of the hydrated lanthanide picrate and the ligand. The lanthanide content was determined by complexometric titration with EDTA. Carbon, Nitrogen and Hydrogen were determined by microanalytical procedures. Chemical analysis of the lanthanide picrate complexes are also presented. (author)

  3. Process for recovering yttrium and lanthanides from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, J.A.; Weterings, C.A.

    1983-06-28

    Process for recovering yttrium and lanthanides from wet-process phosphoric acid by adding a flocculant to the phosphoric acid, separating out the resultant precipitate and then recovering yttrium and lanthanides from the precipitate. Uranium is recovered from the remaining phosphoric acid.

  4. Gamma ray induced decomposition of lanthanide nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.

    1992-01-01

    Gamma ray induced decomposition of the lanthanide nitrates, Ln(NO 3 ) 3 .xH 2 O where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm and Yb has been studied at different absorbed doses up to 600 kGy. G(NO 2 - ) values depend on the absorbed dose and the nature of the outer cation. It has been observed that those lanthanides which exhibit variable valency (Ce and Eu) show lower G-values. An attempt has been made to correlate thermal and radiolytic decomposition processes. (author). 20 refs., 3 figs., 1 tab

  5. 'Americium(III)/trivalent lanthanides' separation using organothiophosphinic acids

    International Nuclear Information System (INIS)

    Hill, C.; Madic, C.; Baron, P.; Ozawa, Masaki; Tanaka, Yasumasa.

    1997-01-01

    The present paper describes the extraction of neodymium and other lanthanides by saponified Cyanex 301 acid. The saponification of commercial Cyanex 301 acid favoured the extraction of macro concentrations of neodymium from sodium nitrate aqueous solutions (pH eq ∼ 4). The amount of lanthanide extracted in the organic phase always reached the third of the initial concentration of saponified Cyanex 301 acid, which assumed a cation exchange mechanism to occur during the extraction. No nitrate anion took part in the complex formation. This paper also compares the abilities of purified Cyanex 301, Cyanex 302 and Cyanex 272 acids to extract and separate 241 Am(III) from 152 Eu(III). Very high separation factors S.F. Am/Eu were observed in the case of purified Cyanex 301 acid. Finally some studies are presented herein using tri-n-butylphosphate (TBP) as a synergistic extractant with Cyanex 301 acid to separate actinides from trivalent lanthanide. (author)

  6. Thermodecomposition of lanthanides (III) and ytrium (III) glucoheptonates

    International Nuclear Information System (INIS)

    Giolito, J.

    1987-01-01

    The lanthanides (III) and yttrium (III) glucoheptonates as well the D-glucoheptono 1-4 lactone were studied using common analytical methods, elemental microanalysis of carbon and hydrogen, thermogravimetry and differential scanning calorimetry. These compounds were prepared from the reaction between the lanthanides (III) and yttrium (III) hydroxides and glucoheptonic acid aqueous solution obtained by means of the delta lactone hydrolysis of this acid. After stoichiometric reaction the compounds were precipitated by the addition of absolute ethanol, washed with the same solvent and dried in desiccator. Thermogravimetric the (TG) curves of the lanthanides glucoheptonates of the ceric group present thermal profiles with enough differences permitting an easy caracterization of each compound and the yttrium (III) glucoheptonate TG curve showed a great similarity with the erbium (III) compound TG curve. The differential scanning calometry (DSC) curves showed endothermic and exothermic peaks by their shape, height and position (temperature) permit an easy and rapid identification of each compound specially if DSC and TG curves were examined simultaneously. (author) [pt

  7. Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence.

    Science.gov (United States)

    Zhang, Kun; Xie, Xiaoji; Li, Hongyu; Gao, Jiaxin; Nie, Li; Pan, Yue; Xie, Juan; Tian, Dan; Liu, Wenlong; Fan, Quli; Su, Haiquan; Huang, Ling; Huang, Wei

    2017-09-01

    Although proton conductors derived from metal-organic frameworks (MOFs) are highly anticipated for various applications including solid-state electrolytes, H 2 sensors, and ammonia synthesis, they are facing serious challenges such as poor water stability, fastidious working conditions, and low proton conductivity. Herein, we report two lanthanide-oxalate MOFs that are highly water stable, with so far the highest room-temperature proton conductivity (3.42 × 10 -3 S cm -1 ) under 100% relative humidity (RH) among lanthanide-based MOFs and, most importantly, luminescent. Moreover, the simultaneous response of both the proton conductivity and luminescence intensity to RH allows the linkage of proton conductivity with luminescence intensity. This way, the electric signal of proton conductivity variation versus RH will be readily translated to optical signal of luminescence intensity, which can be directly visualized by the naked eye. If proper lanthanide ions or even transition-metal ions are used, the working wavelengths of luminescence emissions can be further extended from visible to near infrared light for even wider-range applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermodynamical properties of liquid lanthanides-A variational approach

    Energy Technology Data Exchange (ETDEWEB)

    Patel, H. P. [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India); Thakor, P. B., E-mail: pbthakor@rediffmail.com [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Sonvane, Y. A. [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India)

    2015-06-24

    Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.

  9. Lanthanide complexes that respond to changes in cyanide concentration in water

    Energy Technology Data Exchange (ETDEWEB)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford (United Kingdom); Kenwright, Alan M. [Department of Chemistry, Durham University (United Kingdom)

    2017-06-26

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Lanthanide complexes that respond to changes in cyanide concentration in water

    International Nuclear Information System (INIS)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen; Kenwright, Alan M.

    2017-01-01

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Separation of Am from lanthanides by a synergistic mixture of purified Cyanex 301 and TBP

    International Nuclear Information System (INIS)

    Xinghai Wang; Yongjun Zhu; Rongzhou Jiao

    2002-01-01

    The dependence of the distribution ratios of 241 Am and lanthanides between purified Cyanex 301 (HBTMPDTP)-TBP-kerosene/nitrate solution on pH, lanthanide concentration in aqueous phase and degree of saponification of HBTMPDTP was investigated. The distribution ratios of 241 Am and lanthanides increase with pH and degree of saponification of HBTMPDTP and decrease with lanthanides concentration. Countercurrent multistage extraction consisting of 7 extraction, 3 washing and 2 stripping stages showed that more than 99,99% of 241 Am and less than 0.04% of lanthanides were extracted. The pH 1/2 value of Am was 2.45 compared to 3.16 in case of HBTMPDTP-kerosene extraction. (author)

  12. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fruetel, Julia A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Buckley, Heather L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arnold, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  13. Hot-pressed silicon nitride with various lanthanide oxides as sintering additives

    Science.gov (United States)

    Ueno, K.; Toibana, Y.

    1984-01-01

    The effects of addition of various lanthanide oxides and their mixture with Y2O3 on the sintering of Si3N4 were investigated. The addition of simple and mixed lanthanide oxides promoted the densification of Si3N4 in hot-pressing at 1800 C under 300-400kg/ centimeters squared for 60 min. The crystallization of yttrium and lanthanide-silicon oxynitrides which was observed inn the sintered body containing yttrium-lanthanide mixed oxides as additives led to the formation of a highly refractory Si3N4 ceramic having a bending strength of 82 and 84 kg/millimeters squared at room temperature and 1300 C respectively. In a Y2O3+La2O3 system, a higher molar ratio of La2O3 to Y2O3 gave a higher hardness and strength at high temperatures. It was found that 90 min was an optimum sintering time for the highest strength.

  14. Impact analysis and testing of tritiated heavy water transportation packages including hydrodynamic effects

    International Nuclear Information System (INIS)

    Sauve, R.G.; Tulk, J.D.; Gavin, M.E.

    1989-01-01

    Ontario Hydro has recently designed a new Type B(M) Tritiated Heavy Water Transportation Package (THWTP) for the road transportation of tritiated heavy water from its operating nuclear stations to the Tritium Removal Facility in Ontario. These packages must demonstrate the ability to withstand severe shock and impact scenarios such as those prescribed by IAEA standards. The package, shown in figure 1, comprises an inner container filled with tritiated heavy water, and a 19 lb/ft 3 polyurethane foam-filled overpack. The overpack is of sandwich construction with 304L stainless steel liners and 10.5 inch thick nominal foam walls. The outer shell is 0.75 inch thick and the inner shell is 0.25 inch thick. The primary containment boundary consists of the overpack inner liner, the containment lid and outer containment seals in the lid region. The total weight of the container including the 12,000 lb. payload is 36,700 lb. The objective of the present study is to evaluate the hydrodynamic effect of the tritiated heavy water payload on the structural integrity of the THWTP during a flat end drop from a height of 9 m. The study consisted of three phases: (i) developing an analytical model to simulate the hydrodynamic effects of the heavy water payload during impact; (ii) performing an impact analysis for a 9 m flat end drop of the THWTP including fluid structure interaction; (iii) verification of the analytical models by experiment

  15. Lanthanide light for biology and medical diagnosis

    International Nuclear Information System (INIS)

    Bünzli, Jean-Claude G.

    2016-01-01

    Optical imaging emerges as a vital component of the various techniques needed to meet the stringent requirements of modern bioanalysis and bioimaging. Lanthanide luminescent bioprobes (LLBs) have greatly contributed to this field during the past 35 years because they have definite advantages such as little or no photobleaching and, thanks to time-gated detection, high sensitivity. The review summarizes the numerous tools offered by LLBs under their various forms, coordination compounds, nanoparticles, upconverting nanoparticles and their bioconjugates. It then focuses on biosensing, including point-of-care analysis, and then on both in vitro and in vivo bioimaging with visible and NIR light. The last section compares the performances of LLBs versus those of other commonly used bioprobes (organic dyes, quantum dots, and transition metal complexes). It is concluded that although LLBs will not replace all of existing bioprobes, they add invaluable new specific technologies to the biologist and medical doctor toolboxes. A good deal of improvements are achieved through nanotechnologies, which demonstrates that progresses in biosciences depend on the intersection of different disciplines, photophysics, chemistry, biochemistry, nanotechnology, and materials science. - Highlights: • Lanthanide luminescent bioprobes (LLBs) are indispensable tools in biosciences. • The tools provided by LLBs are summarized. • Main trends in biosensing and point-of-care analysis are presented. • Issues regarding optical bioimaging with visible and NIR light are described. • Characteristics of LLBs, including nanoparticles, are compared to other bioprobes.

  16. Lanthanide light for biology and medical diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Bünzli, Jean-Claude G., E-mail: jean-claude.bunzli@epfl.ch [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 (China); Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-02-15

    Optical imaging emerges as a vital component of the various techniques needed to meet the stringent requirements of modern bioanalysis and bioimaging. Lanthanide luminescent bioprobes (LLBs) have greatly contributed to this field during the past 35 years because they have definite advantages such as little or no photobleaching and, thanks to time-gated detection, high sensitivity. The review summarizes the numerous tools offered by LLBs under their various forms, coordination compounds, nanoparticles, upconverting nanoparticles and their bioconjugates. It then focuses on biosensing, including point-of-care analysis, and then on both in vitro and in vivo bioimaging with visible and NIR light. The last section compares the performances of LLBs versus those of other commonly used bioprobes (organic dyes, quantum dots, and transition metal complexes). It is concluded that although LLBs will not replace all of existing bioprobes, they add invaluable new specific technologies to the biologist and medical doctor toolboxes. A good deal of improvements are achieved through nanotechnologies, which demonstrates that progresses in biosciences depend on the intersection of different disciplines, photophysics, chemistry, biochemistry, nanotechnology, and materials science. - Highlights: • Lanthanide luminescent bioprobes (LLBs) are indispensable tools in biosciences. • The tools provided by LLBs are summarized. • Main trends in biosensing and point-of-care analysis are presented. • Issues regarding optical bioimaging with visible and NIR light are described. • Characteristics of LLBs, including nanoparticles, are compared to other bioprobes.

  17. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Shimizu, Kazumi; Yokochi, Masashi; Burke, Terrence R.; Inagaki, Fuyuhiko

    2011-01-01

    A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (∼40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands.

  18. Electrospray mass spectrometry for actinides and lanthanide speciation

    International Nuclear Information System (INIS)

    Moulin, C.; Amekraz, B.; Colette, S.; Doizi, D.; Jacopin, C.; Lamouroux, C.; Plancque, G.

    2006-01-01

    Electrospray mass spectrometry (ES-MS) is a new speciation technique that has the great interest to be able to probe the element, the ligand and the complex in order to reach the speciation. This paper will focus on the use of ES-MS for the speciation of actinides/lanthanides on several systems of interest in various fields such as the interaction between DTPA (decorporant) and europium, HEBP and uranium, BTP (new extracting agent) and lanthanides with comparison with known chemistry as well as whenever possible with other speciation techniques

  19. 2,2',-bipyridine and 1,10-phenanthroline complexes of lanthanide(III) trifluoroacetates

    International Nuclear Information System (INIS)

    Misra, S.N.; Singh, M.

    1983-01-01

    The syntheses and characterization of lanthanide(III) triflloroacetate complexes with 2,2'-bipyridine and 1,10-phenanthroline are reported. Lanthanide(III) trifluoroacetates yield compounds of the type Ln(CF 3 COO) 3 .bipy or phen with 2,2'-bipyridine and 1,10-phenanthroline. Their properties and structures have been studied using chemical analyses. electronic and infrared spectra. Thermal analysis of a few complexes have also been done. The infrared data show that the trifluoroacetate group acts as a bidentate ligand making the coordination number of lanthanide eight. (author)

  20. Study on 'Tannix' an absorbent for heavy metals including uranium

    International Nuclear Information System (INIS)

    Nakamura, Yasuo

    1997-01-01

    To treat radioactive wastes including uranium and transuranic elements such as plutonium, americium etc., development of an absorbent which can be used to absorb and isolate these elements without producing secondary wastes after treatment was attempted. And an absorbent has been successfully developed by polymerizing tannin, a natural product. It is known that tannin binds heavy metals including uranium resulting to produce their precipitates. There are some reports suggesting its absorption ability for uranium. However, tannin has not been used to isolate a heavy metal from a solution because it is soluble in water. Here, insolubilization of tannin was attempted and a manufacturing method for a gelatinized insoluble tannin named as ''Tannix'' was established. Wattle tannin extracted from Mimosa pudica produced in Africa was dissolved in an alkaline solution and gelatinized by heating after the addition of formalin. Thus obtained insoluble tannin was used after crushing and sieving. This product, ''Tannix'' was able to absorb more than 99% of uranium in the waste. And the absorbed Tannin could be degraded by incineration even at a low temperature, leaving only uranium, but not producing any secondary product. (M.N.)

  1. Study on `Tannix` an absorbent for heavy metals including uranium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yasuo [Mitsubishi Nuclear Fuel Co. Ltd., Tokyo (Japan)

    1997-09-01

    To treat radioactive wastes including uranium and transuranic elements such as plutonium, americium etc., development of an absorbent which can be used to absorb and isolate these elements without producing secondary wastes after treatment was attempted. And an absorbent has been successfully developed by polymerizing tannin, a natural product. It is known that tannin binds heavy metals including uranium resulting to produce their precipitates. There are some reports suggesting its absorption ability for uranium. However, tannin has not been used to isolate a heavy metal from a solution because it is soluble in water. Here, insolubilization of tannin was attempted and a manufacturing method for a gelatinized insoluble tannin named as ``Tannix`` was established. Wattle tannin extracted from Mimosa pudica produced in Africa was dissolved in an alkaline solution and gelatinized by heating after the addition of formalin. Thus obtained insoluble tannin was used after crushing and sieving. This product, ``Tannix`` was able to absorb more than 99% of uranium in the waste. And the absorbed Tannin could be degraded by incineration even at a low temperature, leaving only uranium, but not producing any secondary product. (M.N.)

  2. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    Science.gov (United States)

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates. © 2014 Wiley Periodicals, Inc.

  3. Lanthanide and actinide separation studies using liquid chromatography

    International Nuclear Information System (INIS)

    Datta, Arpita; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2011-01-01

    Gradient elution procedure for isolation of individual lanthanides was studied extensively at our laboratory using monolith support. A large number of gradients were developed by varying the concentrations of CSA, α-HIBA, mobile phase pH and mobile phase flow rate. In a typical gradient run, the concentration of CSA and mobile phase flow rate were kept constant and only α-HIBA concentration was varied. Based on these studies, a binary gradient elution method was developed for the rapid separation of lanthanides, from La to Lu in about 2.8 min, with a mobile phase CSA, α-HIBA and pH being 0.03M, 0.05 to 0.15M and 3.4-3.8 respectively. The direct injection of dissolver solution from FBTR spent fuel into HPLC was investigated and the results are shown. The lanthanides present in dissolver solution were mutually separated as well as resolved from uranium and plutonium under dynamic ion exchange conditions using the monolithic column. The concentration of La, Ce, Pr, Nd and Sm were determined in the dissolver solution using a calibration plot

  4. Calorimetric approach of lanthanides (3) complexation and extraction by malonamides

    International Nuclear Information System (INIS)

    Flandin, J.L.

    2001-01-01

    In the field of long lived radionuclides separation, diamides are interesting extractants because of their ability to co-extract trivalent lanthanides and actinides, which is a preliminary and essential step in high level radioactive waste reprocessing. The research carried out contributes to a better understanding of the mechanisms and the aim is the determination of thermodynamics properties (Δ r G, Δ r H et Δ r S) related to the complexation and the extraction of lanthanides(III) by malonamides. The first part of the document deals with the complexation of lanthanides(III) by an hydrosoluble diamide. The experimental results obtained by UV-visible spectrometry, TRLIF, NMR and microcalorimetric titration proved that lanthanides(III)-TEMA interactions in aqueous medium are very weak and that the complexation reaction is endothermic. The TEMA ligand still stays in the second coordination sphere of coordination of the lanthanide ion. The second part of this study focuses on the extraction of neodymium(III) nitrate by a lipophilic diamide which is an exothermic reaction. The influence of the composition of aqueous and organic phases on the thermodynamics properties Δ r G et Δ r H has been studied by microcalorimetric titration. The most influent parameter is the total concentration in extractant. As a consequence, thermodynamic values are very dependent on the organic phase organisation before and alter extraction. At the same time, this study showed the interest of the calorimetric approach for the analysis of basic reactions like diamide dilution and their organisation as oligomeric aggregates. (author)

  5. Magnetic dipole moments of odd-odd lanthanides

    International Nuclear Information System (INIS)

    Sharma, S.D.; Gandhi, R.

    1988-01-01

    Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs

  6. Studies on trivalent lanthanide complexes of bis-vanillin p-phenylenediamine

    International Nuclear Information System (INIS)

    Shahma, Abu; Ahmad, Naseer

    1983-01-01

    The coordination interaction of lanthanide(III) chlorides with bis-vanillin o-phenylenediamine was studied by Ansari and Ahmad (1977). It was thought fruitful to compare these with the complexes of trivalent lanthanide ions with bis-vanillin p-phenylenediamine. The newly synthesized complexes were subjected to elemental, thermogravimetric and differential thermal analyses and their melting points, magnetic susceptibilities, molar conductances determined and infrared and electronic spectra taken. (author)

  7. Coordination symmetry determination of some lanthanide complexes by x-ray diffraction

    International Nuclear Information System (INIS)

    Oliveira Paiva Santos, C. de.

    1983-01-01

    The x-ray determination of the crystal and molecular structures of three lanthanide complexes is described. The work is a contribution to the study of the coordination chemistry of lanthanide ions with organic ligands and in particular, it aims to compare the observed point symmetry of the ion environment with spectroscopic predictions. (author)

  8. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  9. Novel open-framework architectures in lanthanide phosphonates

    Science.gov (United States)

    Groves, John A.; Stephens, Nicholas F.; Wright, Paul A.; Lightfoot, Philip

    2006-03-01

    Two novel three-dimensional lanthanide coordination polymers have been prepared hydrothermally with the phosphonic acid N,N-piperazine bis(methylenephosphonic acid), H 2O 3PCH 2N(C 2H 4) 2NCH 2PO 3H 2 ( LH 4). The structures of Gd 2( LH 2) 3ṡ3H 2O (I) and Nd 2( LH 2) 3ṡ9H 2O (II) have been characterised by single crystal X-ray techniques. One-dimensional 'lanthanide-phosphate' chains are a key feature in both structures, although there are major structural differences between the chains, with (I) displaying octahedral GdO 6 coordination and (II) showing eight-coordinate NdO 8 polyhedra. In each case, three-dimensional connectivity is completed by coordination of the phosphonate group resulting in open framework structures encapsulating loosely bound water molecules. Isostructural Y 3+ and Yb 3+ analogues of (I) have been prepared, suggesting that cation size is a key factor in controlling the differing reaction products. In the case of Y 2( LH 2) 3ṡ5H 2O, isostructural to (I), it is shown that the extra-framework water molecules may be removed reversibly without framework collapse. Structural relationships to other known lanthanide phosphonates are discussed.

  10. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows

    NARCIS (Netherlands)

    Cortelletti, P.; Skripka, A.; Facciotti, C.; Pedroni, M.; Caputo, G.; Pinna, N.; Quintanilla, M.; Benayas, A.; Vetrone, F.; Speghini, A.

    2018-01-01

    Lanthanide-activated SrF2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd3+ and Yb3+) NIR emissions was applied to investigate the

  11. Determination of stability constants of lanthanide complexes with tetracycline

    International Nuclear Information System (INIS)

    Saiki, Mitiko

    1975-01-01

    The stability constants of complexes compounds formed with tetracycline and lanthanides elements were determined for all lanthanides except promethium. The experimental procedure used was solvent extraction of the lanthanides labelled with their radioactive isotopes. It was shown that the formed complexes are mononuclear and that no hydroxo complexes or negatively charged complexes are formed in the experimental conditions of this work. Four methods of calculation were used for all complexes studied: the method of the average number of ligands, the method of limiting value, the method of two parameters and the method of weighted least squares. A comparison was made of the graphical methods with the method of least squares, showing the convenience of preceding least squares calculation by the graphical methods, in order to verify eventual mistakes of numerical data. It was shown the advantage of using radioisotopes of the elements for such a study, specially if the solvent extraction technique is used to-get the experimental data. (author)

  12. Detection of Fluorescence for Lanthanides in LiCl-KCl Molten Salt Medium

    International Nuclear Information System (INIS)

    Im, Hee Jung; Kim, Tack Jin; Song, Kyu Seok; Jee, Kwang Yong

    2007-01-01

    In the electrorefining step of the pyrochemical process, actinide ions dissolved in the LiCl-KCl eutectic salt are recovered as pure actinide metals at a cathode for a re-use as a nuclear fuel from the aspect of its nonproliferation of the nuclear fuel cycles. The lanthanide species dissolved in the LiCl-KCl eutectic salt play an important role in an effective metal purification during the electrorefining step, so it is necessary to understand the chemical and physical behaviors of lanthanides in molten salt. The in situ spectroscopic measurement system and studies according to temperature changes are essential for better understandable information. To our knowledge, the absorption studies of lanthanides at high temperatures have been reported before, but the fluorescence studies of those at high temperature are not reported yet. We will discuss here the fluorescence behaviors of lanthanides in LiCl-KCl molten salt medium according to a changing temperature

  13. Far-infrared spectroscopy of lanthanide-based molecular magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Sabrina

    2015-05-13

    This thesis demonstrates the applicability of far-infrared spectroscopy for the study of the crystal-field splitting of lanthanides in single-molecular magnetic materials. The far-infrared studies of three different kinds of single-molecular-magnetic materials, a single-ion magnet, a single-chain magnet and an exchange-coupled cluster, yielded a deeper understanding of the crystal-field splitting of the lanthanides in these materials. In addition, our results offered the opportunity to gain a deeper insight into the relaxation processes of these materials.

  14. Rapid separation of lanthanides and actinides on small particle based reverse phase supports

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    This paper presents the results on the use of short columns (3-5 cm long) with small particle size (1.8 {mu}m) for high performance liquid chromatographic separation of individual lanthanides and uranium from plutonium as well as uranium from thorium to achieve rapid separations i.e. separation time as short as 3.6 min for individual lanthanides, 1 min for thorium-uranium and 4.2 min for uranium from plutonium. These advantages can be exploited to significantly reduce analysis time, liquid waste generation as well as dose to operator when radioactive samples are analysed e.g. burn-up determination. In the present work, a dynamic ion-exchange chromatographic separation technique was employed using camphor-10-sulfonic acid (CSA) as the ion-pairing reagent and {alpha}-hydroxy isobutyric acid ({alpha}-HIBA) as the complexing reagent for the isolation of individual lanthanides as well as the separation of uranium from thorium. Uranium was separated from Pu(III) as well as Pu(IV) by reverse phase HPLC technique. The reverse phase HPLC was also investigated for the isolation and quantitative determination of uranium from thorium as well as lanthanide group from uranium. The dynamic ion-exchange technique using small particle support was demonstrated for measuring the concentrations of lanthanide fission products such as La, Ce, Pr, Nd and Sm in the dissolver solution of fast reactor fuel. Similarly, the assay of uranium in the dissolver solution of fast reactor was carried out using reverse phase HPLC technique. The rapid separation technique using reverse phase HPLC was also demonstrated for separation of lanthanides as a group from uranium matrix; samples of LiCl-KCl eutectic salt containing chlorides of lanthanides in uranium matrix (typically 1: 2000) were analysed. (orig.)

  15. Investigation of the photoluminescence properties of composite optical resins containing high lanthanide content

    International Nuclear Information System (INIS)

    Wang Dongmei; Wang Fuxiang; Peng Weixian

    2012-01-01

    Novel composite optical resins with high lanthanide content have been synthesized through a free radical copolymerization of methacrylic acid (MA), styrene (St) and Eu(DBM) 3 ·H 2 O nanocrystals. We characterized the structure, the thermal properties, dimensions and photoluminescence properties of Eu(DBM) 3 ·H 2 O nanocrystals. Our results indicated that the diameters of the Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. These materials exhibited characteristic europium ion luminescence. The europium-bearing nanocrystals and were then incorporated into the copolymer systems of MA/St and luminescence functional optical resins with high lanthanide content (50 wt%) were obtained. The combination of these particles and optical resins is facile because the diameter of Eu(DBM) 3 ·H 2 O is decreased. These copolymer-based optical resins not only possess good transparency and mechanical performance, but also exhibit an intense narrow band emission of lanthanide complexes and longer fluorescence lifetimes under UV excitation at room temperature. - Highlights: ► Novel composite optical resins with high lanthanide content have been synthesized. ► The Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. ► Fluorescent resins with high lanthanide content (50 wt%) were obtained. ► Resins exhibit intense emission of lanthanide and longer fluorescence lifetimes. ► Variety properties of Eu(DBM) 3 ·H 2 O nanocrystals were characterized.

  16. Calorimetric approach of lanthanides (3) complexation and extraction by malonamides; Approche calorimetrique de la complexation et de l'extraction des lanthanides (3) par les malonamides

    Energy Technology Data Exchange (ETDEWEB)

    Flandin, J.L

    2001-07-01

    In the field of long lived radionuclides separation, diamides are interesting extractants because of their ability to co-extract trivalent lanthanides and actinides, which is a preliminary and essential step in high level radioactive waste reprocessing. The research carried out contributes to a better understanding of the mechanisms and the aim is the determination of thermodynamics properties ({delta}{sub r}G, {delta}{sub r}H et {delta}{sub r}S) related to the complexation and the extraction of lanthanides(III) by malonamides. The first part of the document deals with the complexation of lanthanides(III) by an hydrosoluble diamide. The experimental results obtained by UV-visible spectrometry, TRLIF, NMR and microcalorimetric titration proved that lanthanides(III)-TEMA interactions in aqueous medium are very weak and that the complexation reaction is endothermic. The TEMA ligand still stays in the second coordination sphere of coordination of the lanthanide ion. The second part of this study focuses on the extraction of neodymium(III) nitrate by a lipophilic diamide which is an exothermic reaction. The influence of the composition of aqueous and organic phases on the thermodynamics properties {delta}{sub r}G et {delta}{sub r}H has been studied by microcalorimetric titration. The most influent parameter is the total concentration in extractant. As a consequence, thermodynamic values are very dependent on the organic phase organisation before and alter extraction. At the same time, this study showed the interest of the calorimetric approach for the analysis of basic reactions like diamide dilution and their organisation as oligomeric aggregates. (author)

  17. Fate of heavy metals including mercury in a sewage sludge incineration process

    International Nuclear Information System (INIS)

    Seo, Yong-Chil; Kim, Jeong-Hun; Pudasainee, Deepak; Yoon, Young-Sik; Cho, Sung-Jin

    2010-01-01

    Thermal treatment technology for sewage sludge incineration has several advantages. However, emission of heavy metals including mercury, into the environment from such technology utilization has been a major concern. In this paper heavy metals including mercury emission and distribution behavior within the different streams of a fluidized bed sewage sludge incineration process is presented. Emission of heavy metals and mercury at the inlet and outlet of APCDs and each incoming and outgoing streams were sampled and analyzed. Mercury and its speciation in flue gas were sampled and analyzed by Ontario Hydro Method. Solid and liquid samples were analyzed by US EPA method 7470A and 7471A, respectively. Heavy metals were sampled by US EPA method and analyzed by inductively coupled plasma-mass spectrometry. At the inlet of APCDs Cr, Ni and Pb were mainly enriched in coarse particles whereas, As was enriched in fine particles. Hg emission concentration in flue gas, on average was 326.73 μg/ Sm 3 and 4.44 μg/ Sm 3 at inlet APCDs and the stack emission, overall removal efficiency of APCDs was 98.6%. More than 83.3% of Hg was speciated into oxidized form at the inlet of APCD. Oxidized Hg was removed in wet APCDs leaving behind elemental Hg as dominant species in stack emission. Hg was mainly distributed in waste water (57.5%), other effluent and sludge (27.6%), waste water from spray dry reactor (12.3%), fly ash in hopper (2.5%). Further, detailed investigations would give more reliable mass distribution data and insight to control mercury from such sources. (author)

  18. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel

  19. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.

    Science.gov (United States)

    Du, H S; Wood, D J; Elshani, S; Wai, C M

    1993-02-01

    Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.

  20. Extraction of lanthanide(III) nitrates from water-salt solutions with n.-octanol

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Kudrova, A.V.; Valueva, O.V.; Pyartman, A.K.

    2004-01-01

    Extraction of lanthanide(III) nitrates (Ln=La-Nd, Sm-Gd) from aqueous-salt solutions at 298.15 K was studied using solution of n.-octanol, its concentration 6.31 mol/l. It was ascertained that at Ln(NO 3 ) 3 concentration in aqueous phase below 0.6 mol/l, there is actually no extraction. At higher concentrations of nitrates in aqueous phase the content of lanthanides(III) in organic phase increases in the series La-Gd. Isotherms of extraction were ascertained, its phase equilibria being described mathematically. It is shown that extraction of lanthanide(III) nitrates with n.-octanol should be realized from concentrated aqueous solutions [ru

  1. Separation of interfering elements in the neutron activation analysis of lanthanides in geological materials

    International Nuclear Information System (INIS)

    Saiki, M.

    1988-01-01

    A chemical procedure has been developed for the separation of U, Th, Fe, Sc, Na,Ta, and Mo which interfere in the neutron activation analysis of the lanthanide elements in geological materials. This procedure is based on the solvent extraction of interferents using a solution of tetracycline in benzyl alcohol. The lanthanide elements remaining in the aqueous phase are coprecipitated on calcium oxalate or ferric hydroxide for irradiation and subsequent determination by gamma ray spectrometry. The chemical separation procedure was applied in the analysis of lanthanides in two international geological reference materials GSP-1 (USGS), GS-N (CRPG) and in the analysis of a volcanic rock from Pocos de Caldas, MG, Brazil. The sensitivities for all the lanthanides were determined. (author) [pt

  2. Characterization and thermogravimetric analysis of lanthanide hexafluoroacetylacetone chelates.

    Science.gov (United States)

    Shahbazi, Shayan; Stratz, S Adam; Auxier, John D; Hanson, Daniel E; Marsh, Matthew L; Hall, Howard L

    2017-01-01

    This work reports the thermodynamic characterizations of organometallic species as a vehicle for the rapid separation of volatile nuclear fission products via gas chromatography due to differences in adsorption enthalpy. Because adsorption and sublimation thermodynamics are linearly correlated, there is considerable motivation to determine sublimation enthalpies. A method of isothermal thermogravimetric analysis, TGA-MS and melting point analysis are employed on thirteen lanthanide 1,1,1,5,5,5-hexafluoroacetylacetone complexes to determine sublimation enthalpies. An empirical correlation is used to estimate adsorption enthalpies of lanthanide complexes on a quartz column from the sublimation data. Additionally, four chelates are characterized by SC-XRD, elemental analysis, FTIR and NMR.

  3. Intercalation of lanthanide trichlorides in graphite

    International Nuclear Information System (INIS)

    Stumpp, E.; Nietfeld, G.

    1979-01-01

    The reactions of the whole series of lanthanide trichlorides with graphite have been investigated. Intercalation compounds have been prepared with the chlorides of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y whereas LaCl 3 , CeCl 3 , PrCl 3 and NdCl 3 do not intercalate. The compounds were characterized by chemical and X-ray analysis. The amount of c-axis increase is consistent with the assumption that the chlorides are intercalated in form of a chloride layer sandwich resmbling the sheets in YCl 3 . The chlorides which do not intercalate crystallize in the UCl 3 structure having 3 D arrangements of ions. Obviously, these chlorides cannot form sheets between the carbon layers. The ability of AlCl 3 to volatilize lanthanide chlorides through complex formation in the gas phase can be used to increase the intercalation rate strikingly. (author)

  4. Giant exchange interaction in mixed lanthanides

    Science.gov (United States)

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.

    2016-01-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470

  5. Actinides(3)/lanthanides(3) separation by nano-filtration assisted by complexation; Separation actinides(3)lanthanides(3) par nanofiltration assistee par complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sorin, A

    2006-07-01

    In France, one of the research trend concerning the reprocessing of spent nuclear fuel consists to separate selectively the very radio-toxic elements with a long life to be recycled (Pu) or transmuted (Am, Cm, Np). The aim of this thesis concerns the last theme about actinides(III)/lanthanides(III) separation by a process of nano-filtration assisted by complexation. Thus, a pilot of tangential membrane filtration was designed and established in a glove box at the ATALANTE place of CEA-Marcoule. Physico-chemical characterisation of the Desal GH membrane (OSMONICS), selected to carry out actinides(III)/lanthanides(III) separation, was realized to determine the zeta potential of the active layer and its resistance to ionizing radiations. Moreover, a parametric study was also carried out to optimize the selectivity of complexation, and the operating conditions of complex retention (influences of the transmembrane pressure, solute concentration, tangential velocity and temperature). Finally, the separation of traces of Am(III) contained in a mixture of lanthanides(III), simulating the real load coming from a reprocessing cycle, was evaluated with several chelating agents such as poly-amino-carboxylic acids according to the solution acidity and the [Ligand]/[Cation(III)] ratio. (author)

  6. Lanthanide and actinide complexation studies with tetradentate 'N' donor ligands

    International Nuclear Information System (INIS)

    Bhattacharyya, A.; Mohapatra, M.; Mohapatra, P.K.; Rawat, N.; Tomar, B.S.; Gadly, T.; Ghosh, S.K.; Manna, D.; Ghanty, T.K.

    2014-01-01

    Because of their similar charge and chemical behaviour separation of trivalent actinides and lanthanides is an important and challenging task in nuclear fuel cycle. Soft (S,N) donor ligands show selectivity towards the trivalent actinides over the lanthanides. Out of various 'N' donor ligands studied, bis(1,2,4)triazinyl bipyridine (BTBP) and bis(1,2,4)triazinyl phenanthroline (BTPhen) were found to be most promising. In order to understand the separation behaviour of these ligands, their complexation studies with these 'f' block elements are essential. In the present work, complexation studies of various lanthanide ions (La 3+ , Eu 3+ and Er 3+ ) was studied with ethyl derivatives of BTBP (C 2 BTBP) and BTBPhen (C 2 BTPhen) and pentyl derivative of BTBP (C 5 BTBP) in acetonitrile medium using UV-Vis spectrophotometry, fluorescence spectroscopy and solution calorimetry. Computational studies were also carried out to understand the experimental results

  7. The electronic structure of the lanthanides and actinides, a comparison

    International Nuclear Information System (INIS)

    Edelstein, N.M.

    1998-01-01

    Full text: Optical spectra of the two f-element series (the lanthanides and actinides) are comparable in many respects. For the trivalent ions isolated in single crystals, both series exhibit rich, narrow line spectra. These data can be analysed in terms of a parametric model based on a free-ion Hamiltonian plus the addition of a crystal field Hamiltonian. For most systems the agreement between the calculated and experimental energy levels is quite good. In the actinide series there appears to be a correlation between the magnitude of the crystal field and the inadequacy of the fits. The early actinides exhibit multiple oxidation states for which there is no precedent in the lanthanide series. The parametric model mentioned earlier has been utilized for some tetravalent actinide systems with reasonably good results. A selective survey of results describing the similarities and differences of various lanthanide and actinide systems will be given

  8. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Madeleine [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States); Schwieters, Charles D. [National Institutes of Health, Office of Intramural Research, Center for Information Technology (United States); Göbl, Christoph [Technische Universität München, Department of Chemistry (Germany); Opina, Ana C. L. [National Institutes of Health, Imaging Probe Development Center, National Heart, Lung, and Blood Institute (United States); Strub, Marie-Paule [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States); Swenson, Rolf E.; Vasalatiy, Olga [National Institutes of Health, Imaging Probe Development Center, National Heart, Lung, and Blood Institute (United States); Tjandra, Nico, E-mail: tjandran@nhlbi.nih.gov [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States)

    2016-10-15

    Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide’s magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using {sup 17}O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0–7.4) were not significant.

  9. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes

    International Nuclear Information System (INIS)

    Strickland, Madeleine; Schwieters, Charles D.; Göbl, Christoph; Opina, Ana C. L.; Strub, Marie-Paule; Swenson, Rolf E.; Vasalatiy, Olga; Tjandra, Nico

    2016-01-01

    Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide’s magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using "1"7O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0–7.4) were not significant.

  10. Valencies of the lanthanides

    OpenAIRE

    Johnson, David A.; Nelson, Peter G.

    2018-01-01

    The valencies of the lanthanides vary more than was once thought. In addition to valencies associated with a half-full shell, there are valencies associated with a quarter- and three-quarter-full shell. This can be explained on the basis of Slater’s theory of many-electron atoms. The same theory explains the variation in complexing constants in the trivalent state (the “tetrad effect”). Valency in metallic and organometallic compounds is also discussed.

  11. Adducts compounds of lanthanides (III) trifluoreacetates and yttrium and the N,N - dimenthylformamide

    International Nuclear Information System (INIS)

    Silva, M. das G. da.

    1983-01-01

    Some studies on lanthanides, f transition elements, and yttrium are presented. Adducts of lanthanides trifluoroacetates and N,N -dimethylformamide are described. The characterization of complexes from elementar analysis, conductance measurements, X-ray patterns, vibrational, electronics and fluorescence spectra are analysed. (M.J.C.) [pt

  12. Bioaccumulation pattern of lanthanides in pteridophytes and magnoliophytes species from Atlantic Forest

    International Nuclear Information System (INIS)

    Andre Luis Lima de Araujo; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Elvis Joacir De Franca

    2012-01-01

    The availability of chemical elements for plants is mainly dependent on the nature of the soil and characteristics of each species. The transfer factors of lanthanides from the soil to the tree leaves of the Atlantic Forest, Brazil, were calculated for one fern species (Alsophila sternbergii-Pteridophyta division) and four magnoliophytes species (Bathysa australis, Euterpe edulis, Garcinia gardneriana and Guapira opposita-Magnoliophyta division) obtained in two areas of Serra do Mar State Park and collected in two different seasons. Samples were analyzed by instrumental neutron activation analysis (INAA). The soil-to-plant transfer factor (TF = C plant :C soil ) in magnoliophytes species was correlated to the mass fraction of lanthanides in the soil, described by a exponential model (TF = a.C soil -b ). Despite the tree fern Alsophila sternbergii presented a hyperaccumulation of lanthanides, this species did not have a significant relationship between TF and mass fraction in soil. Results indicated that plants of Magnoliophyta division selected the input of lanthanides from the soil, while the same was not observed in Alsophila sternbergii. (author)

  13. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers

    International Nuclear Information System (INIS)

    Du, H.S.; Wood, D.J.; Elshani, Sadik; Wai, C.M.

    1993-01-01

    Thorium and the lanthanides are extracted by α-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed. (author)

  14. SEPARATION OF EUROPIUM FROM OTHER LANTHANIDE RAE EARTHS BY SOLVENT EXTRACTION

    Science.gov (United States)

    Peppard, D.F.; Horwitz, E.P.; Mason, G.W.

    1963-02-12

    This patent deals with a process of separating europium from other lanthanides present in aqueous hydrochloric or sulfuric acid solutions. The europium is selectively reduced to the divalent state with a divalent chromium salt formed in situ from chromium(III) salt plus zinc amalgam. The other trivalent lanthanides are then extracted away from the divalent europium with a nitrogen-flushed phosphoric acid ester or a phosphonic acid ester. (AEC)

  15. Lanthanide alkyl and silyl compounds: Synthesis, reactivity and catalysts for green

    Energy Technology Data Exchange (ETDEWEB)

    Pindwal, Aradhana [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The last few decades have witnessed enormous research in the field of organometallic lanthanide chemistry. Our research group has developed a few rare earth alkyl compounds containing tris(dimethylsilyl)methyl ligand and explored their reactivity. This thesis focusses on extending the study of lanthanide alkyl and silyl compounds to develop strategies for their synthesis and explore their reactivity and role as catalysts in processes such as hydrosilylation and cross-dehydrocoupling.

  16. Lanthanide behavior in hypersaline evaporation ponds at Guerrero Negro, Baja California, Mexico - an environment with halophiles

    Science.gov (United States)

    Choumiline, K.; López-Cortés, A.; Grajeda-Muñoz, M.; Shumilin, E.; Sapozhnikov, D.

    2013-12-01

    morphotypes of anoxygenic phototrophic bacteria Chloroflexus and Chromatium and few bundles of Microcoleus chthonoplastes whereas the lows (at 22 mm depth) were associated with low abundances of cells and morphotype richnesses of these groups of prokaryotes, where M. chthonoplastes, Chloroflexus and Chromatium persisted. Europium showed independent trends from both groups, being closer to the "group B". As an additional fact, the trace element uranium, commonly associated to organic-matter-rich-sediments and in some cases a representative of reducing conditions, seems to be enriched similarly to the light lanthanide "group A". It is hard to withstand at this point, but the preliminary results might suggest a preferential adsorption of light versus heavy lanthanides to the cell walls of some specific types of bacteria. This might be a pure physicochemical effect or a biological mechanism.

  17. The commercial production of compounds of the lanthanides and yttrium as CRT phosphor precursors

    International Nuclear Information System (INIS)

    Kilbourn, B.T.

    1987-01-01

    The consumer acceptance of color television at the start of the 60's was triggered by the phosphor industry's discovery and production of a satisfactory red phosphor using the element europium. This element, in the middle of the lanthanide series, had until that time been an academic curiosity, prepared only in gram quantities for research. The large-scale production by the lanthanide industry, in order to meet the demand for commercial quantities of high purity europium oxide, required the introduction of new technology. Lanthanide elements other than europium, such as cerium and terbium, are also needed as the active ions for many phosphors. In addition, the inert host lattice for those emitting ions can be provided by compounds of yttrium, the element above the lanthanides in the periodic table, with comparable properties. The lanthanide industry has developed processes to produce compounds of such elements in the required quantities and purities. For commercial separation of these elements a technology known as counter-current liquid-liquid extraction has been developed. This technique, commonly called solvent extraction, is illustrated and described. The initial ore preparation steps, together with the final high purity oxide production is also mentioned

  18. The best and the brightest: exploiting tryptophan-sensitized Tb(3+) luminescence to engineer lanthanide-binding tags.

    Science.gov (United States)

    Martin, Langdon J; Imperiali, Barbara

    2015-01-01

    Consider the lanthanide metals, comprising lanthanum through lutetium. Lanthanides form stable cations with a +3 charge, and these ions exhibit a variety of useful physical properties (long-lifetime luminescence, paramagnetism, anomalous X-ray scattering) that are amenable to studies of biomolecules. The absence of lanthanide ions in living systems means that background signals are generally a nonissue; however, to exploit the advantageous properties it is necessary to engineer a robust lanthanide-binding sequence that can be appended to any macromolecules of interest. To this end, the luminescence produced by tryptophan-sensitized Tb(3+) has been used as a selection marker for peptide sequences that avidly chelate these ions. A combinatorial split-and-pool library that uses two orthogonal linkers-one that is cleaved for selection and one that is cleaved for sequencing and characterization-has been used to develop lanthanide-binding tags (LBTs): peptides of 15-20 amino acids with low-nM affinity for Tb(3+). Further validating the success of this screen, knowledge about LBTs has enabled the introduction of a lanthanide-binding loop in place of one of the four native calcium-binding loops within the protein calcineurin B.

  19. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Guilin, E-mail: glzhuang@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Wulin [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Zheng Jun [Center of Modern Experimental Technology, Anhui University, Hefei 230039 (China); Yu Huiyou [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Wang Jianguo, E-mail: jgw@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-08-15

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H{sub 3}SIDA) and Ln(NO{sub 3}){sub 3} (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd{sup 3+} ions for anti-anti and syn-anti carboxylate bridges are -1.0 Multiplication-Sign 10{sup -3} and -5.0 Multiplication-Sign 10{sup -3} cm{sup -1}, respectively, which reveals weak antiferromagnetic interaction in 4. - Graphical abstract: Four lanthanide coordination polymers with N-(sulfoethyl) iminodiacetic acid were obtained under hydrothermal condition and reveal the weak antiferromagnetic coupling between two Gd{sup 3+} ions by Quantum Monte Carlo studies. Highlights: Black-Right-Pointing-Pointer Four lanthanide coordination polymers of H{sub 3}SIDA ligand were obtained. Black-Right-Pointing-Pointer Lanthanide ions play an important role in their structural diversity. Black-Right-Pointing-Pointer Magnetic measure exhibits that compound 4 features antiferromagnetic property. Black-Right-Pointing-Pointer Quantum Monte Carlo studies reveal the coupling parameters of two Gd{sup 3+} ions.

  20. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    Science.gov (United States)

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  1. Lanthanide-doped luminescent ionogels

    OpenAIRE

    Lunstroot, Kyra; Driesen, Kris; Nockemann, Peter; Van Hecke, Kristof; Van Meervelt, Luc; Görller-Walrand, Christiane; Binnemans, Koen; Bellayer, Séverine; Viau, Lydie; Le Bideau, Jean; Vioux, André

    2009-01-01

    Ionogels are solid oxide host networks confining at a meso-scale ionic liquids, and retaining their liquid nature. Ionogels were obtained by dissolving anthanide(III) complexes in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][Tf2N], followed by confinement of the lanthanide-doped ionic liquid mixtures in the pores of a nano-porous silica network. [C6mim][Ln(tta)4], where tta is 2-thenoyltrifluoroacetonate and Ln = Nd, Sm, Eu, Ho, Er, Yb, and [choli...

  2. Microwave synthesis of nanostructured oxide sorbents doped with lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, Andrey A., E-mail: mitrofanov-a@icloud.com; Silyavka, Elena S.; Shilovskikh, Vladimir V.; Kolonitckii, Petr D.; Sukhodolov, Nikolai G.; Selyutin, Artem A., E-mail: selutin@inbox.ru [Saint Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034 (Russian Federation)

    2016-06-17

    A number of nanostructured mesoporous oxide systems based on aluminum oxide, doped with lanthanide ions have been obtained in this study. Structure and morphology of oxides obtained have been examined by X-ray diffraction analysis, thermogravimetric analysis, scanning electron microscopy. The surface area of the samples was determined by the BET method. The dependence of the adsorption of insulin on synthesized oxides from the concentration was investigated. The containing of insulin in solutions after adsorption was determined by the Bradford method. The isotherms of adsorption of insulin on resulting oxide sorbents were plotted, the dependence capacity of the sorption of insulin from the lanthanide dopant was determined.

  3. Extended lanthanide-transition metal arrays with cyanide bridges: syntheses, structures, and catalytic applications

    International Nuclear Information System (INIS)

    Liu Shengming; Poplaukhin, Pavel; Ding Errun; Plecnik, Christine E.; Chen Xuenian; Keane, Mark A.; Shore, Sheldon G.

    2006-01-01

    Systematic synthetic procedures produced several different structural types of extended lanthanide-transition metal (group 10) complexes with cyanide bridges. Of these, one-dimensional ladder arrays containing a Yb-Pd combination have been converted to bimetallic heterogeneous catalysts on an oxide (SiO 2 ) surface that is more effective than supported Pd alone. Two lanthanide-Cu(I) complexes have been prepared. One type, an inclusion complex consists of lanthanide(III) cations encapsulated in the pockets of a three-dimensional anionic array that contains Cu(I)-CN-Cu(I) bridges. The second type, an extended layer complex, consists of joined five-membered rings in a 'tile-like' pattern with Ln-CN-Cu and Cu-CN-Cu bridges

  4. Thermoanalytical, spectroscopic and DFT studies of heavy trivalent lanthanides and yttrium(III) with oxamate as ligand

    Energy Technology Data Exchange (ETDEWEB)

    Caires, Flavio Junior; Gaglieri, Caroline, E-mail: caires.flavio@fc.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil). Faculdade de Ciencias; Nunes, Wilhan Donizete Goncalves; Nascimento, Andre Luiz Carneiro Soares do; Teixeira, Jose Augusto; Zangaro, Georgia Alvim Coelho; Treu-Filho, Oswaldo; Ionashiro, Massao [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil)

    2017-07-15

    Solid-state LnL{sub 3}∙nH{sub 2}O complexes, where Ln stands for trivalent lanthanides (Tb to Lu) or yttrium(III) and L is oxamate (NH{sub 2}COCO{sub 2}{sup -}), have been synthesized. The characterization of the complexes was performed by using elemental analysis (EA), complexometric titration with EDTA, thermoanalytical techniques such as simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), evolved gas analysis (TG-FTIR), infrared spectroscopy (IR) and powder X-ray diffraction (XRPD). The results provided information about thermal behavior, crystallinity, stoichiometry, coordination sites, as well as the products released during thermal degradation of the complexes studied. Theoretical calculation of yttrium oxamate, as representative of all complexes was performed using density functional theory (DFT) for studying the molecular structure and vibrational spectrum of the investigated molecule in the ground state. The optimized geometrical parameters and theoretical vibrational spectrum obtained by DFT calculations are in good agreement with the experimental results. (author)

  5. Energy transfer and quenching processes of excited uranyl ion and lanthanide ions in solutions

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Tomiyasu, Hiroshi

    1995-01-01

    Deactivation processes of photoexcited uranyl ion by various lanthanide ions in aqueous solution were studied. Each lanthanide ions show different interaction with excited uranyl ion depending on its lowest excited energy level, the number of 4f electrons and the acid concentration of the solution. (author)

  6. Stabilization of actinides and lanthanides in unusually high oxidation states

    International Nuclear Information System (INIS)

    Eller, P.G.; Penneman, R.A.

    1986-01-01

    Chemical environments can be chosen which stabilize actinides and lanthanides in unusually high or low oxidation states and in unusual coordination. In many cases, one can rationalize the observed species as resulting from strong charge/size influences provided by specific sites in host lattices (e.g., Tb(IV) in BaTbO 3 or Am(IV) in polytungstate anions). In other cases, the unusual species can be considered from an acid-base viewpoint (e.g., U(III) in AsF 5 /HF solution or Pu(VII) in Li 5 PuO 6 ). In still other cases, an interplay of steric and redox effects can lead to interesting comparisons (e.g., instability of double fluoride salts of Pu(V) and Pu(VI) relative to U, Np, and Am analogues). Generalized ways to rationalize compounds containing actinides and lanthanides in unusual valences (particularly high valences), including the above and numerous other examples, will form the focus of this paper. Recently developed methods for synthesizing high valent f-element fluorides using superoxidizers and superacids at low temperatures will also be described. 65 refs., 8 figs., 9 tabs

  7. Coordination chemistry of several radius-sensitive complexones and applications to lanthanide-actinide separations

    Energy Technology Data Exchange (ETDEWEB)

    Potter, M.W.

    1981-10-01

    The relationships between the lanthanide complex formation equilibria and the lanthanide-actinide separation application of three radius sensitive ligands have been studied. The consecutive stepwise formation constants of the 1:1, 2:1, and 3:1 chelate species formed by the interaction of DHDMB and the tripositive lanthanides and yttrium were determined potentiometrically at 0.1 M ionic strength and 25/sup 0/C. Results indicate that three different coordination modes, one tridentate and two bidentate are in evidence. Tracer level /sup 241/Am - /sup 155/Eu cation-exchange experiments utilizing DHDMB eluents indicate that this dihydroxycarboxylate does not form a sufficiently strong americium complex to elute that actinide ahead of europium. The overall stability of the americium 3:1 complex appears intermediate between samarium and europium. Cation-exchange elutions of /sup 241/Am, /sup 155/Eu, and /sup 160/Tb mixtures with EEDTA solutions prove that the EEDTA ligand is capable of eluting americium ahead of all of the tripositive lanthanide cations. The minimum separation occurs with terbium, where the Am-Tb separation factor is 1.71. 1,5-diaminopentane-N,N,N',N'-tetraacetic acid (PMDTA) was synthesized using cation exchange. A mathematical method was developed for the formation constants of the protonated and unprotonated lanthanide-PMDTA complexes from potentiometry. Cation-exchange elutions of tracer quantities of Am, Eu, and Tb revealed that terbium is eluted ahead of both americium and europium.

  8. Using lanthanide chelates and uranyl compounds for diagnostic by fluoroimmunoassays

    International Nuclear Information System (INIS)

    Santos, Elen G.; Tomiyama, Claudia S.; Kodaira, Claudia A.; Felinto, Maria C.F.C.; Lourenco, Ana V. S.; Brito, Hermi F.

    2009-01-01

    The importance of the luminescence of lanthanide ions and UO 2 2+ is related to its peculiar characteristics, e.g. long lifetime and line-like emission bands in the visible, which make these ions unique among the species that are known to luminescence. Recent developments in the field of supramolecular chemistry have allowed the design of ligands capable of encapsulating lanthanide ions, thus forming kinetically inert complexes. By introduction of chromophoric groups in these ligands, an intense luminescence of the ion can be obtained via the 'antenna effect', defined as a light conversion process involving distinct absorbing (ligand) and emitting (metal ion) components. In such a process, the quantities that contribute to the luminescence intensity are the efficiency of the absorption, the efficiency of the ligand-metal energy transfer, and the efficiency of the metal luminescence. Encapsulation of lanthanide ions with suitable ligands may therefore give rise to 'molecular devices' capable to emit strong, long-lived luminescence. Besides the intrinsic interest in their excited state properties, compounds of lanthanide ions, in particular of the Eu 3+ and Tb 3+ ions, and now UO 2 2+ are important for their potential use as luminescent labels for biological species in fluoroimmunoassays (FIAs). This is most interesting because fluorimetric labeling represents an alternative method to the use of radioactive labels, which has long been the most common way of quantifying immunoreactions. In this article we report information about luminescent materials, which gave a good signal to quantify biological molecules by TR-FIA, DELFIA , DSLFIA, RIA and FRET. (author)

  9. Optimization of the radio lanthanides separation device; Optimizacion de dispositivo para separacion de radiolantanidos

    Energy Technology Data Exchange (ETDEWEB)

    Vera T, A. L.

    2009-07-01

    At present, cancer is a major cause of mortality in our country, therefore, its prevention, diagnosis and treatment are vital to health systems. The cancer treatment and other diseases, from monoclonal antibodies, peptides, or amino macro aggregates marked with beta particle emitting radionuclides, is a highly promising field. The radioactive lanthanides: Pm, Tb, Ho, and Lu are beta emitters, which possess nuclear and chemical properties, which have shown their feasibility as radioisotopes of radiotherapeutic use. However, these radioisotopes are not available commercially in this connection, the Research Laboratory of Radioactive Materials of the National Institute of Nuclear Research, has developed the methodology of production of these radioisotopes and based on this work is designed, constructed and installed the radio lanthanides separation device for the radioisotopes production routinely. This device is part of the cell, , which has and auxiliary air service, an extraction system and is protected with a 10 cm of lead shielding. The radio lanthanides separation device is manual and easy to handle. The main function of this equipment is the radio lanthanides separation from extractive chromatography through packed columns with a commercial resin (Ln SPS) and coated on the top and bottom by fiberglass. The radio lanthanides separation device comprises a main carrousel where the separation columns and elution containers are mounted. It also has a system of open irradiation vials, carrier samples for columns and glassware. This paper presents a detailed description of the radio lanthanides separation device and its management, which allows the radioisotopes production Pm, Tb, Ho, and Lu from the separation of its parents Nd, Dy, Gd, and Yb respectively. (Author)

  10. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties.

    Science.gov (United States)

    Pan, Gencai; Bai, Xue; Yang, Dongwen; Chen, Xu; Jing, Pengtao; Qu, Songnan; Zhang, Lijun; Zhou, Donglei; Zhu, Jinyang; Xu, Wen; Dong, Biao; Song, Hongwei

    2017-12-13

    Cesium lead halide (CsPbX 3 ) perovskite nanocrystals (NCs) have demonstrated extremely excellent optical properties and great application potentials in various optoelectronic devices. However, because of the anion exchange, it is difficult to achieve white-light and multicolor emission for practical applications. Herein, we present the successful doping of various lanthanide ions (Ce 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Dy 3+ , Er 3+ , and Yb 3+ ) into the lattices of CsPbCl 3 perovskite NCs through a modified hot-injection method. For the lanthanide ions doped perovskite NCs, high photoluminescence quantum yield (QY) and stable and widely tunable multicolor emissions spanning from visible to near-infrared (NIR) regions are successfully obtained. This work indicates that the doped perovskite NCs will inherit most of the unique optical properties of lanthanide ions and deliver them to the perovskite NC host, thus endowing the family of perovskite materials with excellent optical, electric, or magnetic properties.

  11. U, TH and lanthanides in street soils of Sao Paulo city, Brazil

    International Nuclear Information System (INIS)

    Ticianelli, R.B.; Ribeiro, A.P.; Figueiredo, A.M.G.; Zanh, G.S.

    2013-01-01

    The study of lanthanide distribution in urban environments has become of interest over the last years, due to the increased industrial use of these elements. Sao Paulo is the 6th largest metropolitan region of the world, with about 20 million inhabitants in its metropolitan area, more than 9 million motor vehicles and intense industrial activity. There is little information on U, Th, and lanthanide contents in urban soils, and there are as of yet no reference values for these elements in soils of Sao Paulo city. The present study aimed to determine U, Th and lanthanide concentrations in soils adjacent to avenues of highly dense traffic downtown in Sao Paulo city, to assess their possible sources and potential environmental impacts. The analytical technique employed was Instrumental Neutron Activation Analysis (INAA). Th and U levels ranged from 4.0 to 37.0 mg kg -1 and from 1.6 to 18.7 mg kg -1 , respectively. These values are higher than literature values for U and Th in Brazilian superficial soils. The results obtained for the lanthanides indicate enrichment in La and Ce. However, a possible anthropogenic source should be investigated since high background values of these elements may be associated to the natural geological composition of the soils. (author)

  12. Specification and comparative calculation of enthalpies and Gibbs formation energies of anhydrous lanthanide nitrates

    International Nuclear Information System (INIS)

    Del' Pino, Kh.; Chukurov, P.M.; Drakin, S.I.

    1980-01-01

    Analyzed are the results of experimental depermination of formation enthalpies of waterless nitrates of lanthane cerium, praseodymium, neodymium and samarium. Using method of comparative calculation computed are enthalpies of formation of waterless lanthanide and yttrium nitrates. Calculated values of enthalpies and Gibbs energies of waterless lanthanide nitrate formation are tabulated

  13. X-ray spectroscopy studies of nonradiative energy transfer processes in luminescent lanthanide materials

    Science.gov (United States)

    Pacold, Joseph I.

    having a strong charge-transfer character. A second primary result comes from an an x-ray excited optical luminescence (XEOL) study that demonstrates, for the first time, that the high flux of modern synchrotron light sources can induce high fractional populations of excited states in trivalent lanthanide phosphors. In this work we have identified the leading-order nonlinear-response mechanism by drawing on strong similarities between XEOL and cathodoluminescence. These results establish the groundwork for studies that would allow deeper inquiry into energy-transfer mechanisms through time-resolved x-ray pump/optical-probe spectroscopies, through time-resolved x-ray emission spectroscopy, or through quantifying of higher-order nonlinear effects at further-enhanced fractional excitation levels. The above scientific results are augmented by a supporting effort in instrumental methodology. This includes the development of high-efficiency x-ray emission spectrometers and their use in collaborations to study pressure-induced changes in f-electron physics and to characterize the intermediate states that occur after photoexcitation of the photosystem-II protein.

  14. Highly Luminescent, Water-Soluble Lanthanide Fluorobenzoates: Syntheses, Structures and Photophysics, Part I: Lanthanide Pentafluorobenzoates.

    Science.gov (United States)

    Kalyakina, Alena S; Utochnikova, Valentina V; Bushmarinov, Ivan S; Ananyev, Ivan V; Eremenko, Igor L; Volz, Daniel; Rönicke, Franziska; Schepers, Ute; Van Deun, Rik; Trigub, Alexander L; Zubavichus, Yan V; Kuzmina, Natalia P; Bräse, Stefan

    2015-12-01

    Highly luminescent, photostable, and soluble lanthanide pentafluorobenzoates have been synthesized and thoroughly characterized, with a focus on Eu(III) and Tb(III) complexes as visible emitters and Nd(III) , Er(III) , and Yb(III) complexes as infrared emitters. Investigation of the crystal structures of the complexes in powder form and as single crystals by using X-ray diffraction revealed five different structural types, including monomeric, dimeric, and polymeric. The local structure in different solutions was studied by using X-ray absorption spectroscopy. The photoluminescence quantum yields (PLQYs) of terbium and europium complexes were 39 and 15 %, respectively; the latter value was increased almost twice by using the heterometallic complex [Tb0.5 Eu0.5 (pfb)3 (H2 O)] (Hpfb=pentafluorobenzoic acid). Due to the effectively utilized sensitization strategy (pfb)(-) →Tb→Eu, a pure europium luminescence with a PLQY of 29 % was achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chelation studies involving decontamination of light lanthanides by polyaminopolycarboxylic

    International Nuclear Information System (INIS)

    Hassan, N.E.H.

    1985-01-01

    The present thesis constitutes chelation studies involving decontamination of light lanthanides, cobalt , and uranium with 2,2-bis-acryloyliminomethylene- acid (BAETA) using the spectrophotometric method. the work carried out aimed to clear up the effectiveness of BAETA as a decontaminating agent for radioactive nuclides from human body . the thesis includes a general introduction , outlines the aim of work and contains three main chapters . the results of the work are discussed at the end of the thesis. the first chapter deals with a comprehensive survey of the relevant literature. this includes the metabolism and toxicity of cerium, uranium, cobalt and Ln +3 elements, general methodologies of internal decontamination, choice and effectiveness of chelating agents

  16. Synthesis, crystal structure and luminescence properties of lanthanide coordination polymers with a new semirigid bridging thenylsalicylamide ligand

    International Nuclear Information System (INIS)

    Song, Xue-Qin; Wang, Li; Zhao, Meng-Meng; Wang, Xiao-Run; Peng, Yun-Qiao; Cheng, Guo-Quan

    2013-01-01

    Two new lanthanide coordination polymers based on a semirigid bridging thenylsalicylamide ligand ([Ln 2 L 3 (NO 3 ) 6 ]·(C 4 H 8 O 2 ) 2 ) ∞ were obtained and characterized by elemental analysis, X-ray diffraction, IR and TGA measurements. The two compounds are isostructure and possess one dimensional trapezoid ladder-like chain built up from the connection of isolated LnO 3 (NO 3 ) 3 polyhedra (distorted monocapped antisquare prism) through the ligand. The photoluminescence analysis suggest that there is an efficient ligand-to-Ln(III) energy transfer in Tb(III) complex and the ligand is an efficient “antenna” for Tb(III). From a more general perspective, the results demonstrated herein provide the possibility of controlling the formation of the desired lanthanide coordination structure to enrich the crystal engineering strategy and enlarge the arsenal for developing excellent luminescent lanthanide coordination polymers. - Graphical abstract: We present herein one dimensional lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display interesting structures but also possess strong luminescence properties. Display Omitted - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit interesting structures. • The luminescent properties of Tb(III) complexes are discussed in detail

  17. Lanthanide phosphonates: Synthesis, thermal stability and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Amghouz, Z., E-mail: amghouz.uo@uniovi.es [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Garcia, J.R.; Garcia-Granda, S. [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Clearfield, A. [Department of Chemistry, Texas A and M University, College Station, TX 77842-3012 (United States); Rodriguez Fernandez, J.; Pedro, I. de [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Report of the complete series of lanthanide 1,4-phenylbis(phosphonate). Black-Right-Pointing-Pointer Synthesis under conventional hydrothermal synthesis or microwave-assisted hydrothermal synthesis. Black-Right-Pointing-Pointer Cation size is the key factor for the structural and particles size variations. Black-Right-Pointing-Pointer Thermal behaviour is characterized by unusual very high thermal stability. - Abstract: Series of novel organic-inorganic hybrids materials based on trivalent lanthanides (Ln = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and 1,4-phenylbis(phosphonate) obtained under hydrothermal conditions either by oven heat or microwave irradiation. The anhydrous compounds containing La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho, are isostructural. However, the compounds based on Y, Er, Tm, Yb, and Lu are hydrated and their structures have not yet been solved. The series of compounds are characterized by PXRD, TEM, SEM-EDX and thermal analyses (TG-MS and DSC). TEM study show a variable particles size with a minimum mean-particle size of ca. 30 nm. These compounds exhibit unusual very high thermal stability. The size of particles and the thermal stability are depending on lanthanide(III) cation features. All the investigated materials show paramagnetic behaviour. The magnetic susceptibility data follow a Curie-Weiss laws with paramagnetic effective moments in good agreement with those expected for Ln{sup 3+} free ions.

  18. Syntheses, structures, photoluminescence and photocatalysis of 2D layered lanthanide-carboxylates with 2, 2′-dithiodibenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ling; Zhong, Jie-Cen; Qiu, Xing-Tai; Sun, Yan-Qiong, E-mail: sunyq@fzu.edu.cn; Chen, Yi-Ping

    2017-02-15

    Two series of lanthanide-carboxylates, [Ln(2,2′-dtba)(2,2′-Hdtba)(EtOH)]{sub n} (I:Ln=Eu(1a), Dy(1b)) and [Ln(2,2′-dtba)(2,2′-Hdtba)(4,4′-bpy){sub 0.5}]{sub n} (II:Ln=Eu(2a), Dy(2b), Tb(2c) 2,2′-H{sub 2}dtba=2,2′-dithiodibenzoic acid, 4,4′-bpy=4,4′-bipyridine) have been synthesized under hydrothermal conditions. Interestingly, the H{sub 2}dtba organic ligand was generated by in situ S–S reaction of 2-mercaptobenzoic acid. Compounds I and II possess different 2D layered structures based on similar 1D [Ln(2,2′-dtba)]{sup +} chains. Photoluminescence studies reveal that compounds I and II exhibit strong lanthanide characteristic emission bands. Remarkably, Compounds 1b and 2a both exhibit good photocatalytic activity for degradation of Rhodamine-B (Rh-B) under the simulated sunlight irradiation. - Graphical abstract: Two series of lanthanide-carboxylates have been in situ synthesized under hydrothermal conditions. The lanthanide-carboxylates exhibit strong lanthanide characteristic emission bands and good photocatalytic activity for degradation of Rhodamine-B. - Highlights: • 2D layered lanthanide-carboxylates with 2,2′-dithiodibenzoic acid. • In situ S–S reaction of 2-mercaptobenzoic acid under hydrothermal condition. • The Emission spectra of I and II exhibit the characteristic transition of lanthanide ions. • Compounds 1b and 2a exhibit good photocatalytic activity for degradation of Rhodamine-B.

  19. Actinide-lanthanide separation by bipyridyl-based ligands. DFT calculations and experimental results

    International Nuclear Information System (INIS)

    Borisova, Nataliya E.; Eroshkina, Elizaveta A.; Korotkov, Leonid A.; Ustynyuk, Yuri A.; Alyapyshev, Mikhail Yu.; Eliseev, Ivan I.; Babain, Vasily A.

    2011-01-01

    In order to gain insights into effect of substituents on selectivity of Am/Eu separation, the synthesis and extractions tests were undertaken on the series of bipyridyl-based ligands (amides of 2,2'-bipyridyl-6,6'-dicarboxylic acid: L Ph - N,N'-diethyl-N,N'-diphenyl amide; L Bu2 - tetrabutyl amide; L Oct2 - tetraoctyl amide; L 3FPh - N,N'-diethyl-N,N'-bis-(3-fluorophenyl) amide; as well as N,N'-diethyl-N,N'-diphenyl amide of 4,4'-dibrom-2,2'-bipyridyl-6,6'-dicarboxylic acid and N,N'-diethyl-N,N'-diphenyl amide of 4,4'-dinitro-2,2'-bipyridyl-6,6'-dicarboxylic acid) as well as structure and stability of their complexes with lanthanides and actinides were studied. The extraction tests were performed for Am, lanthanide series and transition metals in polar diluents in presence of chlorinated cobalt dicarbolide and have shown high distribution coefficients for Am. Also was found that the type of substituents on amidic nitrogen exerts great influence on the extraction of light lanthanides. For understanding of the nature of this effect we made QC-calculations at DFT level, binding constants determination and X-Ray structure determination of the complexes. The UV/VIS titration performed show that the composition of all complexes of the amides with lanthanides in solution is 1:1. In spite of the binding constants are high (lgβ about 6-7 in acetonitrile solution), lanthanide ions have binding constants with the same order of magnitude for dialkyl substituted extractants. The X-Ray structures of the complexes of bipyridyl-based amides show the composition of 1:1 and the coordination number of the ions being 10. The DFT optimized structures of the compounds are in good agreement with that obtained by X-Ray. The gas phase affinity of the amides to lanthanides shows strong correlation with the distribution ratios. We can infer that the bipyridyl-based amides form complexes with metal nitrates which have similar structure in solid and gas phases and in solution, and the DFT

  20. Sol–gel preparation of selected lanthanide aluminium garnets

    Czech Academy of Sciences Publication Activity Database

    Dubnikova, N.; Garskaite, E.; Pinkas, J.; Bezdička, Petr; Beganskiene, A.; Kareiva, A.

    2010-01-01

    Roč. 55, č. 2 (2010), s. 213-219 ISSN 0928-0707 Institutional research plan: CEZ:AV0Z40320502 Keywords : lanthanide aluminium garnets * sol-gel processing Subject RIV: CA - Inorganic Chemistry Impact factor: 1.525, year: 2010

  1. Diagnostic study about lanthanides (rare earths)

    International Nuclear Information System (INIS)

    Ribeiro, G.F.

    1985-01-01

    The world situation of rare earths (lanthanides) is evaluated, and a comparison of the Brazilian situation in respect to other countries is established, concerning the following aspects: geology of mineral deposits; main sources, uses, reserves and production; their consumption, prices and state-of-art of geological researches and industrial processes for physical and chemical separation / concentration of these elements. (C.L.B.) [pt

  2. Chemistry of Selected Core Samples, Concentrate, Tailings, and Tailings Pond Waters: Pea Ridge Iron (-Lanthanide-Gold) Deposit, Washington County, Missouri

    Science.gov (United States)

    Grauch, Richard I.; Verplanck, Philip L.; Seeger, Cheryl M.; Budahn, James R.; Van Gosen, Bradley S.

    2010-01-01

    The Minerals at Risk and for Emerging Technologies Project of the U.S. Geological Survey (USGS) Mineral Resources Program is examining potential sources of lanthanide elements (rare earth elements) as part of its objective to provide up-to-date geologic information regarding mineral commodities likely to have increased demand in the near term. As part of the examination effort, a short visit was made to the Pea Ridge iron (-lanthanide-gold) deposit, Washington County, Missouri in October 2008. The deposit, currently owned by Wings Enterprises, Inc. of St. Louis, Missouri (Wings), contains concentrations of lanthanides that may be economic as a primary product or as a byproduct of iron ore production. This report tabulates the results of chemical analyses of the Pea Ridge samples and compares rare earth elements contents for world class lanthanide deposits with those of the Pea Ridge deposit. The data presented for the Pea Ridge deposit are preliminary and include some company data that have not been verified by the USGS or by the Missouri Department of Natural Resources, Division of Geology and Land Survey (DGLS), Geological Survey Program (MGS). The inclusion of company data is for comparative purposes only and does not imply an endorsement by either the USGS or MGS.

  3. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS

    International Nuclear Information System (INIS)

    Bentlin, Fabrina R.S.; Santos, Clarissa M.M. dos; Flores, Érico M.M.; Pozebon, Dirce

    2012-01-01

    Highlights: ► Ultrasound was investigated and applied for red wine samples preparation. ► Aliquots of 50 μL of sample were nebulized and transported to plasma. ► FI and pneumatic nebulization/aerosol desolvation were used. ► LODs of the ICP-MS method for lanthanides determination were at ng L −1 level. ► Lanthanides concentration allowed red wines classification. - Abstract: This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 μL of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L −1 , respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration.

  4. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    Energy Technology Data Exchange (ETDEWEB)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J. (CSIRO/MHT); (CSIRO/MSE)

    2010-08-23

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  5. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    International Nuclear Information System (INIS)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J.

    2010-01-01

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  6. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Voort, D. D. van der, E-mail: d.d.v.d.voort@tue.nl; Water, W. van de; Kunnen, R. P. J.; Clercx, H. J. H.; Heijst, G. J. F. van [Applied Physics Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Maes, N. C. J.; Sweep, A. M.; Dam, N. J. [Mechanical Engineering Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Lamberts, T. [Institute of Theoretical Chemistry, University of Stuttgart, D-70569 Stuttgart (Germany)

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  7. Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Yokochi, Masashi; Kobashigawa, Yoshihiro; Inagaki, Fuyuhiko

    2009-01-01

    Paramagnetic lanthanide ions fixed in a protein frame induce several paramagnetic effects such as pseudo-contact shifts and residual dipolar couplings. These effects provide long-range distance and angular information for proteins and, therefore, are valuable in protein structural analysis. However, until recently this approach had been restricted to metal-binding proteins, but now it has become applicable to non-metalloproteins through the use of a lanthanide-binding tag. Here we report a lanthanide-binding peptide tag anchored via two points to the target proteins. Compared to conventional single-point attached tags, the two-point linked tag provides two to threefold stronger anisotropic effects. Though there is slight residual mobility of the lanthanide-binding tag, the present tag provides a higher anisotropic paramagnetic effect

  8. Preparation, characterization and thermal behaviour study of double selenates of lanthanides, yttrium and beryllium

    International Nuclear Information System (INIS)

    Ribeiro, C.A.

    1988-01-01

    The lanthanides (III) and yttrium (III) double selenates were studied using common analytical methods, atomic absorption, X-ray diffraction infra-red absorption, thermogravimetry and differential thermal analysis. These compounds were prepared from the mixture of lanthanides (III) and yttrium (III) selenates aqueous solution and basic beryllium selenates aqueous solution, obeying equimolar relation (1:1) to the cation

  9. Medium temperature reaction between lanthanide and actinide carbides and hydrogen; Reaction a temperature moyenne entre les monocarbures de lanthanides et d'actinides et l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Dean, G; Lorenzelli, R; Pascard, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    Hydrogen is fixed reversibly by the lanthanide and actinide mono carbides in the range 25 - 400 C, as for pure corresponding metals. Hydrogen goes into the carbides lattice through carbon vacancies and the total fixed amount is approximately equal to two hydrogen atoms per initial vacancy. Final products c.n thus be considered as carbo-hydrides of general formula M(C{sub 1-x}, H{sub 2x}). The primitive CFC, NaCl type, structure remains unchanged but expands strongly in the case of actinide carbides. With lanthanide carbides, hydrogenation induces a phase transformation with reappearance of the metal structure (HCP). Hydrogen decomposition pressures of all the studied carbo-hydrides are greater than those of the corresponding di-hydrides. (authors) [French] Les monocarbures d'actinides et de lanthanides fixent reversiblement de l'hydrogene a temperature peu elevee, a peu pres dans les memes conditions que les metaux purs correspondants. L'hydrogene penetre dans le reseau des carbures par l'intermediaire des lacunes de carbone, et la quantite totale fixee est approximativement egale a deux atomes d'hydrogene par lacune initiale. Les produits obtenus peuvent donc etre consideres comme des carbohydrures de formule generale M(C{sub 1-x}, H{sub 2x}). La structure d'origine CFC, type NaCl est conservee, mais avec une forte expansion, dans le cas des carbures d'actinides. En revanche, l'hydrogenation entraine un changement de phase cristalline avec retour a la structure du metal (HC) pour les carbures de lanthanides. Tous les carbohydrures etudies ont des tensions de decomposition en hydrogene superieures a celles des dihydrures correspondants. (auteurs)

  10. Catalytic properties of lanthanide amide, imide and nitride formed by thermal degradation of liquid ammonia solutions of Eu and Yb metal

    International Nuclear Information System (INIS)

    Imamura, H.; Mizuno, K.; Ohishi, K.; Suda, E.; Kanda, K.; Sakata, Y.; Tsuchiya, S.

    1998-01-01

    The catalytic properties of lanthanide amide, imide and nitride prepared by the use of liquid ammonia solutions of lanthanide metals (Ln=Eu and Yb) were studied for catalytic hydrogenation. The reaction of Eu or Yb metal solutions in liquid ammonia with silica yielded SiO 2 -grafted lanthanide amide in the divalent state. The divalent amide showed catalytic activity for the selective hydrogenation of dienes and benzene. It was found that partial hydrogenation of benzene occurred with a very high selectivity for cyclohexene. Amides of calcium, strontium and barium were examined similarly in connection with catalytic studies on divalent amides. Imide and nitride, into which the lanthanide (Ln/AC) deposited by impregnation of active carbon (AC) with liquid ammonia solutions of lanthanide metals were converted thermally, were studied catalytically. It was concluded that imide or imide-like species generated during the thermal degradation of lanthanide amide to nitride were very active in the hydrogenation of ethene. Lanthanide nitride was virtually inactive, but the nitride highly dispersed on active carbon was activated when subjected to evacuation treatment above about 1000 K. (orig.)

  11. Recovery of uranium and the lanthanides from phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Habashi, F; Awadalla, F T; Zailaf, M

    1986-06-01

    A process is proposed for the treatment of phosphate rock for the recovery of uranium and lanthanides. The process assures the production of phosphatic fertilisers without polluting the environment with radioactive material.

  12. Biosorption of lanthanides using three kinds of seaweed biomasses

    International Nuclear Information System (INIS)

    Sakamoto, Nobuo; Wang, Yudan; Gao, Lidi; Kano, Naoki; Imaizumi, Hiroshi

    2010-01-01

    In order to evaluate the efficiency of seaweed biomass as sorbent for rare earth elements (REEs), sorption experiment from aqueous solutions containing known amount of lanthanide (La, Eu or Yb) using three kinds of Ca-loaded dried seaweeds (brown algae: Sargassum hemiphyllum, green algae: Ulva pertusa and red algae: Schizymenia dubyi) in single component system was explored. Furthermore, the sorption mechanism of these elements was investigated by applying Langmuir and Freundlich isotherm equations to the data obtained. In addition, to confirm the characteristics of the seaweed biomasses, the surface morphology of the biomass before and after metal adsorption was determined by Scanning Electron Microscope (SEM). Consequently, the following matters have been mainly clarified. (1) The morphology of Sargassum hemiphyllum and Ulva pertusa surface has hardly changed even after exposing to metals. On the other hand, the change of the surface condition on Schizymenia dubyi after adsorption was observed. (2) Adsorption isotherms using the seaweed biomass can be described by Langmuir and Freundlich isotherms satisfactorily for lanthanide. These adsorption may have occurred mainly by monolayer reaction because of better-fitting for Langmuir model. (3) The seaweed biomasses could be an efficient sorbent for REEs. Particularly, Ulva pertusa is found to be a promising biosorbent for removing La. (4) Ion-exchange process is considered to be the main mechanism responsible for the sorption of lanthanide ion onto the seaweed biomass. (author)

  13. Lanthanides(3)/ actinides (3) separation by nano-filtration-complexation in aqueous medium

    International Nuclear Information System (INIS)

    Chitry, F.; Pellet-Rostaing, S.; Gozzi, C.; Lemaire, M.; Guy, A.; Foos, J.

    2000-01-01

    Lanthanides(III)/actinides(III) separation is a major research subject in matter of treatment of high activity liquid effluents. Liquid-liquid extraction actually gives the best results for this separation. In order to demonstrate that nano-filtration (NF) is a valuable alternative to liquid-liquid extraction, we tried to separate different lanthanides(III) with a nano-filtration process combined with a selective complexation step. At first DTPA (diethylene-triamine-pentaacetic acid) combined with a Sepa MG-17 (Osmonics) gave a 95% retention of Gd 3+ and a 50% retention of La 3+ . Then new hydrosoluble and more selective ligands derived from DTPA were synthesized. One of them combined with a Sepa MG-17 membrane allowed a 87% retention of Gd 3+ and a 5% retention of La 3+ . The same nano-filtration-complexation system was experimented with an equimolar aqueous solution of Gd 3+ , Pr 3+ and La 3+ . Other experiments in the field of actinides(III)/lanthanides(III) separation were also performed. (authors)

  14. Effect of the Lithium Oxide Concentration on a Reduction of Lanthanide Oxides

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Jeong, Myeong-Soo; Do, Jae-Bum; Seo, Chung-Seok

    2007-01-01

    The pyrochemical reduction process of spent oxide fuel is one of the options to handle spent PWR fuels in Korea. After spent oxide fuel is converted to a metallic form, fission products will be removed from the resultant uranium and higher actinide metals by an electrorefining process. The chemical behaviors of lanthanide oxides during the pyrochemical process has been extensively studied. It was also reported that about 30 to 50% of several lanthanide oxides were reduced to corresponding metals by an electrolytic reduction process having 1 wt% of a lithium oxide concentration. Korea Atomic Energy Research Institute (KAERI), however, has been used 3 wt% of lithium oxide to increase the applied current of the electrolytic reduction process. Though it was reported that U 3 O 8 was reduced to uranium metal having a high reduction yield at 3 wt% of the Li 2 O concentration, the effect of the lithium oxide concentration on the reduction of lanthanide oxides has not been clarified

  15. Separation device of radio lanthanides (DISER)

    International Nuclear Information System (INIS)

    Vera T, A.L.; Monroy G, F.; Vazquez M, J.C.; Jimenez B, F.

    2008-01-01

    At the present time the cancer is one of the main causes of mortality in our country, therefore, its prevention, diagnostic and treatment is of vital importance for those health systems. The treatment of the cancer and other illnesses, starting from monoclonal antibodies, peptides, macro aggregates or marked aminoacids with beta particles emitting radioisotopes, it is an extremely promising field. The radioactive lanthanides: Promethium 149, Terbium 161, Holmium 166 and Lutetium 177 are beta emitting (β), which possess nuclear and chemical properties that have shown their feasibility like radioisotopes of radiotherapeutic use. However, these radioisotopes are not commercially available; to this respect, the Radioactive Materials Research Laboratory (LIMR) of the National Institute of Nuclear Research (ININ), it has developed the methodology of production of these radioisotopes and based on these works, there is designed, built and mounted the Radio lanthanides Separation Device (DISER) able to carry out the radioisotopes production in a routine way. This device is content in a cell that has an auxiliary air service, an extraction system and it is protected with a lead armor-plating of 10 cm. The DISER it is manual and easy of managing. The main function of this equipment is the radio lanthanides separation starting from the extractive chromatography by means of packed columns with a commercial resin (LnSPS) and recovered in the superior and inferior part by fiber glass. The DISER is composed by a main carrousel where the separation columns and the elution recipients are mounted. Also counts with an opening system of irradiation vials, port samples for columns and glass material. The present work presents a detailed description of the DISER, as well as its handling that allows to produce the radioisotopes Promethium-149, Terbium-161, Holmium-166 and Lutetium-177 starting from the separation of its parent elements Neodymium-149, Gadolinium-161, Dysprosium-166 and

  16. Lanthanide Lewis acid-mediated enantioselective conjugate radical additions.

    Science.gov (United States)

    Sibi, Mukund P; Manyem, Shankar

    2002-08-22

    [reaction: see text] Lanthanide triflates along with proline-derived ligands have been found to be efficient catalysts for enantioselective conjugate addition of nucleophilic radicals to enoates. N-Acyl oxazolidinones, when used as achiral additives, gave meaningful enhancements in the ees for the product.

  17. Influencing fatty acid composition of yeasts by lanthanides

    Czech Academy of Sciences Publication Activity Database

    Kolouchová, I.; Sigler, Karel; Zimola, M.; Řezanka, Tomáš; Matatková, O.; Masák, J.

    2016-01-01

    Roč. 32, č. 8 (2016), s. 126 ISSN 0959-3993 R&D Projects: GA ČR GA14-00227S Institutional support: RVO:61388971 Keywords : Fatty acids * Lanthanides * Microbial lipids Subject RIV: EE - Microbiology, Virology Impact factor: 1.658, year: 2016

  18. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  19. Organometallic complex chemistry of plutonium and selected lanthanides

    International Nuclear Information System (INIS)

    Seemann, U.

    1987-01-01

    This study deals with the metallo-organic chemistry of plutonium and also with that of some lanthanides. For plutonium, the conversion of Cs 2 PuCl 6 with four equivalents KCp is investigated. In the series Sm, Gd, Dy and Er, compounds of the type Cp 2 LnX and the base adducts with acetonitrile are analysed. The ligand X passes the series Cl, N 3 , NCS and NCO. Both, the thermal and the vibrational spectroscopic behaviour is investigated. In addition, the effect of a changed ligand sphere on the optical spectrum is discussed. The adduct-free compounds are described by a ternary reaction not yet known from literature. For the first time, force constant calculations are carried out on metallo-organic compounds of lanthanides. With the exception of Cp 2 LnCl compounds, all compouds are presented for the first time in the framework of this study. (orig.) [de

  20. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    Science.gov (United States)

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  1. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth.

    Science.gov (United States)

    Vu, Huong N; Subuyuj, Gabriel A; Vijayakumar, Srividhya; Good, Nathan M; Martinez-Gomez, N Cecilia; Skovran, Elizabeth

    2016-04-01

    Methylobacterium extorquens AM1 has two distinct types of methanol dehydrogenase (MeDH) enzymes that catalyze the oxidation of methanol to formaldehyde. MxaFI-MeDH requires pyrroloquinoline quinone (PQQ) and Ca in its active site, while XoxF-MeDH requires PQQ and lanthanides, such as Ce and La. Using MeDH mutant strains to conduct growth analysis and MeDH activity assays, we demonstrate that M. extorquens AM1 has at least one additional lanthanide-dependent methanol oxidation system contributing to methanol growth. Additionally, the abilities of different lanthanides to support growth were tested and strongly suggest that both XoxF and the unknown methanol oxidation system are able to use La, Ce, Pr, Nd, and, to some extent, Sm. Further, growth analysis using increasing La concentrations showed that maximum growth rate and yield were achieved at and above 1 μM La, while concentrations as low as 2.5 nM allowed growth at a reduced rate. Contrary to published data, we show that addition of exogenous lanthanides results in differential expression from the xox1 and mxa promoters, upregulating genes in the xox1 operon and repressing genes in the mxa operon. Using transcriptional reporter fusions, intermediate expression from both the mxa and xox1 promoters was detected when 50 to 100 nM La was added to the growth medium, suggesting that a condition may exist under which M. extorquens AM1 is able to utilize both enzymes simultaneously. Together, these results suggest that M. extorquens AM1 actively senses and responds to lanthanide availability, preferentially utilizing the lanthanide-dependent MeDHs when possible. The biological role of lanthanides is a nascent field of study with tremendous potential to impact many areas in biology. Our studies demonstrate that there is at least one additional lanthanide-dependent methanol oxidation system, distinct from the MxaFI and XoxF MeDHs, that may aid in classifying additional environmental organisms as methylotrophs. Further

  2. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501.970 Porto Alegre, RS (Brazil); Santos, Clarissa M.M. dos; Flores, Erico M.M. [Departamento de Quimica Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Pozebon, Dirce, E-mail: dircepoz@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501.970 Porto Alegre, RS (Brazil)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ultrasound was investigated and applied for red wine samples preparation. Black-Right-Pointing-Pointer Aliquots of 50 {mu}L of sample were nebulized and transported to plasma. Black-Right-Pointing-Pointer FI and pneumatic nebulization/aerosol desolvation were used. Black-Right-Pointing-Pointer LODs of the ICP-MS method for lanthanides determination were at ng L{sup -1} level. Black-Right-Pointing-Pointer Lanthanides concentration allowed red wines classification. - Abstract: This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 {mu}L of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L{sup -1}, respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration.

  3. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La–Lu

    NARCIS (Netherlands)

    Dyall, K.G.; Gomes, A.S.P.; Visscher, L.

    2010-01-01

    Relativistic basis sets of double-zeta, triple-zeta, and quadruple-zeta quality have been optimized for the lanthanide elements La-Lu. The basis sets include SCF exponents for the occupied spinors and for the 6p shell, exponents of correlating functions for the valence shells (4f, 5d and 6s) and the

  4. Systematic comparisons between the 4d spectra of lanthanide atoms and solids

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, E R [Bonn Univ. (Germany, F.R.). Physikalisches Inst.

    1979-02-14

    It is shown that the lanthanides can be divided into two groups according to the occupation of the 4f subshell in the solid and in the atom. In the first group the 4d absorption spectrum in the atom and in the solid are similar. In the second group the atomic spectrum of the element with nuclear charge Z corresponds to the solid with nuclear charge (Z + 1). Predictions are made for the 4d spectra of those lanthanides which remain to be observed.

  5. Systematic comparisons between the 4d spectra of lanthanide atoms and solids

    International Nuclear Information System (INIS)

    Radtke, E.R.

    1979-01-01

    It is shown that the lanthanides can be divided into two groups according to the occupation of the 4f subshell in the solid and in the atom. In the first group the 4d absorption spectrum in the atom and in the solid are similar. In the second group the atomic spectrum of the element with nuclear charge Z corresponds to the solid with nuclear charge (Z + 1). Predictions are made for the 4d spectra of those lanthanides which remain to be observed. (author)

  6. Stability complexes of lanthanide ions with some macrocyclic polyethers

    International Nuclear Information System (INIS)

    Poluehktov, N.S.; Malinka, E.V.; Meshkova, S.B.; Bel'tyukova, S.V.; Danilkovich, M.M.

    1984-01-01

    Stability of lanthanide complexes with macrocyclic polyethers has been studied versus the number of f-electrons, spin- and orbital angular momenta of the Lu 3+ ion ground states. The following compounds were used as macrocyclic complexones: 12-crown-4 (12C4), tert-bulylbenzo-15-crown-5(BB15C5), 18-crown-6 (18C6), ditert-butylbenzo-18-crown-6(DBB18C6), dibenzo-30-crown-10 (DB30C10), cryptand [2, 2, 1] (Cr[2, 2, 1]). It is shoWn that the stability constants of the studied lanthanide complexes can be described rather satisfactorily by an expression suggested earlier that relates their values with the number of 4f-electrons and the S and L quantum numbers of the ground states of the lantharide ions

  7. Basic TRLFS data of some lanthanides using a tunable laser system and a red-optimized detection system

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Anne [Dresden Technische Univ. (Germany). Inst. for Zoology, Molecular Cell Physiology and Endocrinology; Barkleit, Astrid [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements; Geipel, Gerhard [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biogeochemistry

    2016-07-01

    Lanthanides are crucial raw materials for modern high-tech products and used in medicine, especially as contrast enhancing agents for magnetic resonance imaging [1]. To study their interactions in the geo- and biosphere, Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), which is a non-invasive, very sensitive, and versatile state of the art method, is used. Up to now, TRLFS is well established for actinides but only some lanthanides (especially Eu and Tb). To extent this scope, we investigate the basic luminescence properties of all lanthanide elements.

  8. Medium temperature reaction between lanthanide and actinide carbides and hydrogen

    International Nuclear Information System (INIS)

    Dean, G.; Lorenzelli, R.; Pascard, R.

    1964-01-01

    Hydrogen is fixed reversibly by the lanthanide and actinide mono carbides in the range 25 - 400 C, as for pure corresponding metals. Hydrogen goes into the carbides lattice through carbon vacancies and the total fixed amount is approximately equal to two hydrogen atoms per initial vacancy. Final products c.n thus be considered as carbo-hydrides of general formula M(C 1-x , H 2x ). The primitive CFC, NaCl type, structure remains unchanged but expands strongly in the case of actinide carbides. With lanthanide carbides, hydrogenation induces a phase transformation with reappearance of the metal structure (HCP). Hydrogen decomposition pressures of all the studied carbo-hydrides are greater than those of the corresponding di-hydrides. (authors) [fr

  9. f-state luminescence of lanthanide and actinide ions in solution

    International Nuclear Information System (INIS)

    Beitz, J.V.

    1993-01-01

    Detailed studies of the luminescence of aquated Am 3+ are presented in the context of prior lanthanide and actinide ion work. The luminescing state of aquated Am 3+ is confirmed to be 5 D l based on observed emission and excitation spectra. The luminescence lifetime of Am 3+ in H 2 O solution is (22 ± 3) ns and (155 ± 4) ns in D 2 O solution at 295 K. Judd-Ofelt transition intensity theory qualitatively describes the observed Am 3+ relative integrated fluorescence intensities. Recent luminescence studies on complexed trivalent f-element ions in solution are reviewed as to the similarities and differences between lanthanide ion 4f state and actinide ion 5f state properties

  10. Structural investigation of the complexation of uranyl and lanthanide ions by CMPO-functionalized calixarenes

    International Nuclear Information System (INIS)

    Cherfa, S.

    1998-12-01

    A way to reduce the volume of nuclear wastes is to make a simultaneous extraction of actinides and lanthanides for their ulterior separation. Historically, the two first series of extractants used for the reprocessing of these wastes are the phosphine oxides and the CMPO (carbamoyl methyl phosphine oxide). In order to better know the type of complexes formed during the extraction, have been carried out structural studies concerning these two series (uranyl complexes and lanthanide nitrates). These studies have been carried out by X-ray diffraction on monocrystals. More recently, a new series of extracting molecules of lanthanides (III) and actinides (III) have been developed. It has been shown that in functionalizing an organic macrocycle of calixarene type (cyclic oligomer resulting of the poly-condensation of phenolic units) by a ligand of CMPO type, the extracting power of these molecules in terms of yield and selectivity towards the lighter lanthanides was superior to those of the CMPO alone. This study, carried out by X-ray diffraction on monocrystals of complexes formed between these ligands calix[4]arenes-CMPO (with 4 phenolic units) with uranyl and lanthanides nitrates, has allowed to define the type of the formed complexes, that is to say to establish the stoichiometry and the coordination mode (monodentate or bidentate) of the CMPO functions. These different steps of characterization have allowed too to determine the correlations existing between the complexes structures in the one hand and the selectivity and the exacerbation of the extracting power measured in liquid phase on the other hand. (O.M.)

  11. Selective Lanthanides Sequestration Based on a Self-Assembled Organo-silica

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M.; Reye, C.; Corriu, R.J. P. [Univ Montpellier, Inst Charles Gerhardt Montpellier, UMR 5253, Chim Mol and Org Solide, F-34095 Montpellier 5 (France); Besson, E. [ICSM Site Marcoule, UMR 5257, Inst Chim Separat Marcoule, F-30207 Bagnols Sur Ceze (France); Van der Lee, Arie [Univ Montpellier, Inst Europeen Membranes, UMR 5635, CNRS, F-34095 Montpellier 5 (France); Besson, E.; Chollet, H. [CEA Valduc, Dept Traitement Mat Nucl, F-21120 Is Sur Tille (France); Guilard, R. [Univ Bourgogne, Inst Chim Mol, CNRS, ICMUB, UMR 5260, F-21078 Dijon (France)

    2010-07-01

    In this paper, we investigate the cation-exchange properties of a self-assembled hybrid material towards trivalent ions, lanthanides (La{sup 3+}, Eu{sup 3+}, Gd{sup 3+}, Yb{sup 3+}) and Fe{sup 3+}. The bis-zwitterionic lamellar material was prepared by sol-gel process from only 3-aminopropyltriethoxysilane (APTES), succinic anhydride, and ethylenediamine. In ethanol heated under reflux, the exchange ethylenediammonium versus Ln{sup 3+} proved to be complete by complexometry measurements and elemental analyses, one Cl{sup -} ion per one Ln(III) remaining as expected for charge balance. In aqueous solution at 20 degrees C, the material was found to be selective towards lanthanide in spite of the similarity of their ionic radii. The cation uptake depends on the nature of the salt, the difference between two lanthanides reaching up to 20% in some cases. Finally, ion-exchange reaction with FeCl{sub 3} was chosen as a probe to get more information on the material after incorporation of trivalent ions. Based on Moessbauer spectroscopic investigations on the resulting material in conjunction with the XRD analysis of materials containing trivalent ions, a structural model was proposed to describe the incorporation of trivalent ions by exchange reaction within the original zwitterionic material. (authors)

  12. Sorption Speciation of Lanthanides/Actinides on Minerals by TRLFS, EXAFS and DFT Studies: A Review

    Directory of Open Access Journals (Sweden)

    Xiaoli Tan

    2010-11-01

    Full Text Available Lanthanides/actinides sorption speciation on minerals and oxides by means of time resolved laser fluorescence spectroscopy (TRLFS, extended X-ray absorption fine structure spectroscopy (EXAFS and density functional theory (DFT is reviewed in the field of nuclear disposal safety research. The theoretical aspects of the methods are concisely presented. Examples of recent research results of lanthanide/actinide speciation and local atomic structures using TRLFS, EXAFS and DFT are discussed. The interaction of lanthanides/actinides with oxides and minerals as well as their uptake are also of common interest in radionuclide chemistry. Especially the sorption and inclusion of radionuclides into several minerals lead to an improvement in knowledge of minor components in solids. In the solid-liquid interface, the speciation and local atomic structures of Eu(III, Cm(III, U(VI, and Np(IV/VI in several natural and synthetic minerals and oxides are also reviewed and discussed. The review is important to understand the physicochemical behavior of lanthanides/actinides at a molecular level in the natural environment.

  13. Evidence of different stoichiometries for the limiting carbonate complexes of lanthanides(3)

    International Nuclear Information System (INIS)

    Philippini, V.

    2007-12-01

    Two stoichiometries have been proposed by different laboratories to interpret measurements on the limiting carbonate complexes of An 3+ and Ln 3+ cations. The study of the solubility of double carbonates (AlkLn(CO 3 ) 2 ,xH 2 O) in concentrated carbonate solutions at room temperature and high ionic strengths has shown that on the one hand the lightest lanthanides (La and Nd) form Ln(CO 3 ) 4 5- whereas the heaviest (Eu and Dy) form Ln(CO 3 ) 3 3- in the studied chemical conditions, and on the other hand, that the kinetics of precipitation of double carbonates depends on the alkali metal and the lanthanide ions. The existence of two stoichiometries for the limiting carbonate complexes was confirmed by capillary electrophoresis hyphenated to an inductively coupled plasma mass spectrometer (CE-ICP-MS), used to extend the study to the whole series of lanthanides (except Ce, Pm and Yb). Two behaviours have been put forward comparing the electrophoretic mobilities: La to Tb form Ln(CO 3 ) 4 5- while Dy to Lu form Ln(CO 3 ) 3 3- . Measurements by time resolved laser fluorescence spectroscopy (TRLFS) on Eu(III) indicate small variations of the geometry of Eu(CO 3 ) 3 3- complex, specially with Cs + . Although analogies are currently used among the 4f-block trivalent elements, different aqueous speciations are evidenced in concentrated carbonate solutions across the lanthanide series. (author)

  14. The Role of Chromohalobacter on Transport of Lanthanides and Cesium in the Dolomite Mineral System

    Energy Technology Data Exchange (ETDEWEB)

    Zengotita, Frances [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Emerson, Hilary Palmer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Wayne State Univ., Detroit, MI (United States); Swanson, Juliet S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-01

    The chemical behavior of actinide series elements and fission products is a concern for the Waste Isolation Pilot Plant repository due to their uncertain mobility in the subsurface salt formation. In this work, we are observing the behavior of the halophilic bacterium, Chromohalobacter, and its effect on the mobility of lanthanides and cesium in the presence of dolomite. Batch and minicolumn experiments were conducted with Cs+ and lanthanides (Nd3+, Eu3+) to quantify potential transport with bacteria. Preliminary results show that Cs does not interact strongly with dolomite or Chromohalobacter, while the lanthanides can interact strongly with both minerals and bacteria depending on which the Ln contacts first.

  15. Method of growing yttrium aluminate and/or lanthanide single crystals with perovskite structure

    International Nuclear Information System (INIS)

    Kvapil, Jiri; Perner, B.; Kvapil, Josef; Blazek, K.

    1989-01-01

    Single crystals of yttrium aluminate and/or lanthanide with perovskite structure are grown from melt in a vacuum at a pressure of gas residues of max. 0.01 Pa. The melt contains 1±0.05 gram-ions of aluminium per gram-ion of yttrium and/or lanthanides. The single crystals are then heated in a vacuum (0.01 Pa) at temperatures of 1,450 to 1,800 degC for 2 to 3 hours. (B.S.)

  16. Average electronegativity, electronic polarizability and optical basicity of lanthanide oxides for different coordination numbers

    International Nuclear Information System (INIS)

    Zhao Xinyu; Wang Xiaoli; Lin Hai; Wang Zhiqiang

    2008-01-01

    On the basis of new electronegativity values, electronic polarizability and optical basicity of lanthanide oxides are calculated from the concept of average electronegativity given by Asokamani and Manjula. The estimated values are in close agreement with our previous conclusion. Particularly, we attempt to obtain new data of electronic polarizability and optical basicity of lanthanide sesquioxides for different coordination numbers (6-12). The present investigation suggests that both electronic polarizability and optical basicity increase gradually with increasing coordination number. We also looked for another double peak effect, that is, electronic polarizability and optical basicity of trivalent lanthanide oxides show a gradual decrease and then an abrupt increase at the Europia and Ytterbia. Furthermore, close correlations are investigated among average electronegativity, optical basicity, electronic polarizability and coordination number in this paper

  17. A fundamental self-generated quenching center for lanthanide-doped high-purity solids

    International Nuclear Information System (INIS)

    Auzel, F.

    2002-01-01

    An intrinsic self-generated quenching center for lanthanide-doped high-purity solids is presented for transitions, which cannot be quenched by cross-relaxation. This center, in fact a cluster-like pair of active centers, is shown to come from a particular multiphonon-assisted energy transfer between them. Being due to the vibronic properties of the host it cannot be suppressed. Its role in lanthanide first excited states self-quenching is analyzed and a simple mathematical expression is derived. This law is compared with experimental results for self-quenching in Er-doped fluorophosphate glasses

  18. Calmodulin-lanthanide ion exchange kinetics

    International Nuclear Information System (INIS)

    Buccigross, J.; O'Donnell, C.; Nelson, D.

    1985-01-01

    A flow dialysis apparatus suitable for the study of high affinity metal binding proteins has been utilized to study calmodulin-metal exchange kinetics. Calmodulin labeled with Eu-155 and Gd-153 was dialyzed against buffer containing various competing metal ions. The rate of metal exchange was monitored by a gamma-ray scintillation detector. The kinetics of exchange are first order, and the rates fall into two categories: Ca (II) and CD (II) in one, and the lanthanides Eu (III), Gd (III), and La (III) in the other

  19. Electromotive force measurement of lanthanides in Bi solution

    International Nuclear Information System (INIS)

    Sheng, Jiawei; Yamana, Hajimu; Moriyama, Hirotake

    2000-01-01

    The thermodynamic properties of Tb, Dy and Ho dissolved in liquid Bi were determined by the electromotive force (EMF) measurement method. The EMF of the following galvanic cell was measured in the range of 500-800degC over a wide range of solute concentration. Ln(solid)|KCl-LiCl|Ln-Bi (solution) There was observed a linear relationship between the EMFs and the lanthanide (Ln) concentrations in liquid Bi phase at a constant temperature, which agreed with the Nernst's equation. The obtained activity coefficients of lanthanides in liquid Bi solution were almost constant at a fixed temperature condition. Temperature effects on the activity coefficients could be expressed by the following equation: log γ=a+b/T, where a and b are experimental constants which correspond to the entropy and enthalpy of the formation of Ln-Bi compound in the melt, respectively. The thermodynamic quantities obtained were discussed in terms of their systematics along the 4f series. (author)

  20. Synthesis and characterization of metal soaps of lanthanides (III)

    International Nuclear Information System (INIS)

    Payolla, Filipe Boccato; Ribeiro, Sidney Jose Lima; Massbni, Antonio Carlos

    2015-01-01

    The present study describes synthesis and partial characterization of Eu"3"+, Nd"3"+, Dy"3"+, Tb"3"+ and Yb"3"+ behenate complexes. The compounds were analyzed using IR-Spectroscopy, TG-DTG, DSC, elemental analysis, XRD, luminescence and SEM. The results show the purity of the compounds. The XRD analysis and the SEM images show the high crystallinity of the complexes. TG-DTG and DSC analyses do not show a liquid crystal behavior, as occurs with other lanthanide metallic soaps. The mass loses until 1000° C show that the compounds lose ligand fragments at specific temperatures. XRD of the residues are compatible with the respective lanthanide oxides. The luminescence analysis shows that the Eu"3"+, Nd"3"+ and Tb"3"+ complexes presents appreciable emission. The Judd-Ofelt parameters obtained are compatible with the values found in the literature. It was not possible to obtain the complexes in a glass-form because it is difficult to prevent the crystallization of the complexes even using liquid nitrogen. The XDR data indicate that one of the complexes axis has 52 Å of length, agreeing with a structure containing behenate-lanthanide ion-behenate. The structures of the complexes were not fully elucidated and more analyses are necessary. The complexes presented a molar ratio of 3:1 (L:M) and were formulated as Bh_3Eu, Bh_3Nd, Bh_3Dy, Bh_3Tb e Bh_3Yb (Bh = behenate anion). (author)

  1. Surface-Supported Robust 2D Lanthanide-Carboxylate Coordination Networks.

    Science.gov (United States)

    Urgel, José I; Cirera, Borja; Wang, Yang; Auwärter, Willi; Otero, Roberto; Gallego, José M; Alcamí, Manuel; Klyatskaya, Svetlana; Ruben, Mario; Martín, Fernando; Miranda, Rodolfo; Ecija, David; Barth, Johannes V

    2015-12-16

    Lanthanide-based metal-organic compounds and architectures are promising systems for sensing, heterogeneous catalysis, photoluminescence, and magnetism. Herein, the fabrication of interfacial 2D lanthanide-carboxylate networks is introduced. This study combines low- and variable-temperature scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) experiments, and density functional theory (DFT) calculations addressing their design and electronic properties. The bonding of ditopic linear linkers to Gd centers on a Cu(111) surface gives rise to extended nanoporous grids, comprising mononuclear nodes featuring eightfold lateral coordination. XPS and DFT elucidate the nature of the bond, indicating ionic characteristics, which is also manifest in appreciable thermal stability. This study introduces a new generation of robust low-dimensional metallosupramolecular systems incorporating the functionalities of the f-block elements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Lanthanide(III) Complexes with Tridentate Schiff Base Ligand ...

    African Journals Online (AJOL)

    Lanthanide complexes, hydrazino, antioxidant activity, X-ray structure. 1. Introduction ... measured using a Johnson Matthey scientific magnetic suscepti- bility balance. 2.1. .... of the ligand and that the nitrogen atom supporting this proton is not involved in the ... 4f-electrons are not involved in the coordination. These facts.

  3. DFTB{sup +} and lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Hourahine, B [Department of Physics, SUPA, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Aradi, B; Frauenheim, T, E-mail: benjamin.hourahine@strath.ac.u [BCCMS, Universitaet Bremen, Am Fallturm 1, 28359 Bremen (Germany)

    2010-07-01

    DFTB{sup +} is a recent general purpose implementation of density-functional based tight binding. One of the early motivators to develop this code was to investigate lanthanide impurities in nitride semiconductors, leading to a series of successful studies into structure and electrical properties of these systems. Here we describe our general framework to treat the physical effects needed for these problematic impurities within a tight-binding formalism, additionally discussing forces and stresses in DFTB. We also present an approach to evaluate the general case of Slater-Koster transforms and all of their derivatives in Cartesian coordinates. These developments are illustrated by simulating isolated Gd impurities in GaN.

  4. Fluorescence Spectra Studies on the Interaction between Lanthanides and Calmodulin

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The conformation of Calmodulin(CaM) induced by lanthanides has been examined using fluorescence methods.With the addition of lanthanide (Ln3+), the intrinsic fluorescence intensity of CaM without calcium ions (Apo-CaM) first increases and then decreases.Ln3+ causes the decrease of intrinsic fluorescence intensity of calcium saturated CaM (Ca2+4-CaM) only at high concentrations.At low concentrations, Ln3+ results not only in the enhancement of fluorescence intensity of Apo-CaM, but also in a blue shift of the maximum emission wavelengh of dansyl labeled calmodulin(Apo-D-CaM).The molecular mechanism of the interaction between Ln3+ and CaM has been discussed in the light of the fluorescence spectra.

  5. Water molecule-enhanced CO2 insertion in lanthanide coordination polymers

    International Nuclear Information System (INIS)

    Luo Liushan; Huang Xiaoyuan; Wang Ning; Wu Hongyan; Chen Wenbin; Feng Zihao; Zhu Huiping; Peng Xiaoling; Li Yongxian; Huang Ling; Yue Shantang; Liu Yingliang

    2009-01-01

    Two new lanthanide coordination polymers H 2 N(CH 3 ) 2 .[Eu III 2 (L 1 ) 3 (L 2 )] (1, L 1 =isophthalic acid dianion, L 2 =formic acid anion) and [La III (2,5-PDC)(L 2 )](2, 2,5-PDC=2,5-pyridinedicarboxylate dianion) were synthesized under solvothermal conditions. It is of interest that the formic ligand (L 2 ) is not contained in the stating materials, but arises from the water molecule-enhanced CO 2 insertion during the solvothermal process. Both of the two compounds exhibit complicated three dimensional sandwich-like frameworks. - Graphical abstract: Two new lanthanide coordination polymers involving water molecule-enhanced CO 2 insertion resulting in the formation of formic anion and dimethylammonium cation were synthesized under solvothermal conditions.

  6. High-performance separation and supercritical extraction of lanthanides and actinides

    International Nuclear Information System (INIS)

    Datta, Arpita; Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Extensive studies were carried out at Chemistry Group, IGCAR for the rapid separation of individual lanthanides and actinides using dynamic ion-exchange chromatographic technique. The atom percent fission was determined from the concentrations of the lanthanide fission products, uranium and plutonium contents of dissolver solution. These advantages were exploited to significantly reduce analysis time, liquid waste generation as well as dose to operator. Supercritical fluid extraction (SFE) of actinides from waste matrices was studied in detail at our laboratory using modified supercritical carbon dioxide (Sc-CO 2 ). Complete extraction and recovery of uranium, plutonium and americium from various matrices was achieved using Sc-CO 2 modified with suitable ligands. The technique was demonstrated for the recovery of plutonium from actual waste received from different laboratories. (author)

  7. New lanthanide hydrogen phosphites LnH (P03H)2 2H20

    International Nuclear Information System (INIS)

    Durand, J.; Tijani, N.; Cot, L.; Loukili, M.; Rafiq, M.

    1988-01-01

    LnH ((P0 3 H) 2 2H 2 0 is prepared from lanthanide oxide and phosphorous acid with Ln = La, Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er or Tm. By thermal gravimetric analysis LnH (P0 3 H) 2 and LnH 2 P 2 0 5 (P0 3 H) 2 are obtained. The three salts are orthorhombic. Parameters and space groups are given for the three salts of each lanthanide. 4 tabs., 13 refs

  8. Synthetic approaches to lanthanide complexes with tetrapyrrole type ligands

    International Nuclear Information System (INIS)

    Pushkarev, V E; Tomilova, L G; Tomilov, Yu V

    2008-01-01

    Approaches to the synthesis of single-, double- and triple-decker complexes of lanthanides with phthalocyanines and their analogues known to date are considered. Examples of preparation of sandwich-type complexes based on other metals of the Periodic system are given.

  9. Lanthanides-based graphene catalysts for high performance hydrogen evolution and oxygen reduction

    International Nuclear Information System (INIS)

    Shinde, S.S.; Sami, Abdul; Lee, Jung-Ho

    2016-01-01

    Highlights: • Facile, scalable in-situ synthesis of lanthanide (La, Eu, Yb) doped graphene frameworks. • Efficient electrocatalytic performance towards HER and ORR. • Eu-Gr hybrid shows HER performance; onset & overpotential (81 & 160 mV), & Tafel slope (52 mV dec −1 ). • Eu-Gr exhibits superior activity of ORR; onset potential (0.92 V), electron transfer number (4.03). • Excellent long-term stability in HER and ORR, comparable to those of commercial Pt/C catalysts. - Abstract: The design of efficient electrocatalysts for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) has received enormous consideration due to their effectiveness in modern renewable energy technologies such as fuel cells, electrolyzers, and metal–air batteries. Herein, we present a facile method to fabricate lanthanides (L = La, Eu, Yb)-doped graphene materials as catalyst for the HER and ORR that show desirable electrocatalytic activities as well as long-term stability. The Eu-graphene hybrid has showed unbeatable HER performance such as small values of onset potential (81 mV), overpotential (160 mV), and Tafel slope (52 mV dec −1 ), along with a high exchange current density (7.55 × 10 −6 A cm −2 ). The L-graphenes also exhibit superior electrocatalytic activity for ORR, including small Tafel slopes (96, 66, and 105 mV dec −1 for La-Gr, Eu-Gr, and Yb-Gr, respectively), positive onset potential (∼0.83–0.92 V), high electron transfer numbers (∼3.84–4.03), and excellent enduring strength, analogous to those of viable Pt/C catalysts. The excellent electrocatalytic performance is attributed to the synergistic effect of abundant edges and doping sites, high electrical conductivity, large active surface areas and fast charge transfer; which renders lanthanide-based graphene hybrids as potentially great candidate for energy conversion systems.

  10. A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Xie, Yujie; Zhang, Hao-Li; Chen, Hao; Cai, Huijuan; Liu, Weisheng; Tang, Yu [State Key Lab. of Applied Organic Chemistry, Key Lab. of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou Univ. (China); Song, Bo [State Key Lab. of Fine Chemicals, School of Chemistry, Dalian Univ. of Technology, Dalian (China)

    2017-03-01

    A stimuli-responsive lanthanide-based smart nanocomposite has been fabricated by supramolecular assembly and applied as an active material in multidimensional memory materials. Conjugation of the lanthanide complexes with carbon dots provides a stimuli response that is based on the modulation of the energy level of the ligand and affords microsecond-to-nanosecond fluorescence lifetimes, giving rise to intriguing memory performance in the spatial and temporal dimension. The present study points to a new direction for the future development of multidimensional memory materials based on inorganic-organic hybrid nanosystems. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS.

    Science.gov (United States)

    Bentlin, Fabrina R S; dos Santos, Clarissa M M; Flores, Erico M M; Pozebon, Dirce

    2012-01-13

    This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 μL of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L(-1), respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. AAMQS: A non-linear QCD analysis of new HERA data at small-x including heavy quarks

    International Nuclear Information System (INIS)

    Albacete, Javier L.; Armesto, Nestor; Salgado, Carlos A.; Milhano, Jose Guilherme; Quiroga Arias, Paloma

    2011-01-01

    We present a global analysis of available data on inclusive structure functions and reduced cross sections measured in electron-proton scattering at small values of Bjorken-x, x<0.01, including the latest data from HERA on reduced cross sections. Our approach relies on the dipole formulation of DIS together with the use of the non-linear running coupling Balitsky-Kovchegov equation for the description of the small-x dynamics. We improve our previous studies by including the heavy quark (charm and beauty) contribution to the reduced cross sections, and also by considering a variable flavor scheme for the running of the coupling. We obtain a good description of the data, with the fit parameters remaining stable with respect to our previous analyses where only light quarks were considered. The inclusion of the heavy quark contributions resulted in a good description of available experimental data for the charm component of the structure function and reduced cross section provided the initial transverse distribution of heavy quarks was allowed to differ from (more specifically, to have a smaller radius than) that of the light flavors. (orig.)

  13. AAMQS: A non-linear QCD analysis of new HERA data at small-x including heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Albacete, Javier L. [CEA/Saclay, URA 2306, Unite de Recherche Associee au CNRS, Institut de Physique Theorique, Gif-sur-Yvette cedex (France); Armesto, Nestor; Salgado, Carlos A. [Universidade de Santiago de Compostela, Departamento de Fisica de Particulas and IGFAE, Santiago de Compostela (Spain); Milhano, Jose Guilherme [Instituto Superior Tecnico (IST), Universidade Tecnica de Lisboa, CENTRA, Lisboa (Portugal); Theory Unit, CERN, Physics Department, Geneve 23 (Switzerland); Quiroga Arias, Paloma [UPMC Univ. Paris 6 and CNRS UMR7589, LPTHE, Paris (France)

    2011-07-15

    We present a global analysis of available data on inclusive structure functions and reduced cross sections measured in electron-proton scattering at small values of Bjorken-x, x<0.01, including the latest data from HERA on reduced cross sections. Our approach relies on the dipole formulation of DIS together with the use of the non-linear running coupling Balitsky-Kovchegov equation for the description of the small-x dynamics. We improve our previous studies by including the heavy quark (charm and beauty) contribution to the reduced cross sections, and also by considering a variable flavor scheme for the running of the coupling. We obtain a good description of the data, with the fit parameters remaining stable with respect to our previous analyses where only light quarks were considered. The inclusion of the heavy quark contributions resulted in a good description of available experimental data for the charm component of the structure function and reduced cross section provided the initial transverse distribution of heavy quarks was allowed to differ from (more specifically, to have a smaller radius than) that of the light flavors. (orig.)

  14. Advancing the scientific basis of trivalent actinide-lanthanide separations

    International Nuclear Information System (INIS)

    Nash, K.L.

    2013-01-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl - ). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  15. Dynamics of anion exchange of lanthanides in aqueous-organic complexing media

    International Nuclear Information System (INIS)

    Sheveleva, I.V.; Bogatyrev, I.O.

    1987-01-01

    Effect of organic solvents (ethanol, acetone, acetonitrile) on change in kinetic parameters of the anion exchange process (anion-exchange column chromatography) of r.e.e. (europium and gadolinium) in complexing nitric acid media has been studied. It is established that complex LnA 4 anion is the only sorbing form of europium and gadolinium on anionite. When the organic component content of the solution being the same, the dynamic parameters of lanthanide exchange have higher values in aqueous-acetonitrile and aqueous-acetone media in comparison with aqueous-enthanol solutions of nitric acid. Lesser mobility of complex lanthanide anions in aqueous-alcoholic solutions can be explained by stronger solvation in the presence of solvents with higher acceptor properties

  16. Trivalent lanthanide/actinide separation in the spent nuclear fuel wastes' reprocessing

    International Nuclear Information System (INIS)

    Narbutt, J.; Krejzler, J.

    2006-01-01

    Separation of trivalent actinides, in particular americium and curium, from lanthanides is an important step in an advanced partitioning process for future reprocessing of spent nuclear fuels. Since the trivalent actinides and lanthanides have similar chemistries, it is rather difficult to separate them from each other. The aim of presented work was to study solvent extraction of Am(III) and Eu(III) in a system containing diethylhemi-BTP (6-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2'-bipyridine) and COSAN (protonated bis(chlorodicarbollido)cobalt(III)). The system was chosen by several groups working in the integrated EC research Project EUROPART. Several physicochemical properties of the extraction system were analyzed and discussed

  17. Studies of Some Lanthanide(III Nitrate Complexes of Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Kishor Arora Mukesh Sharma

    2009-01-01

    Full Text Available The studies of 16 new lanthanide(III nitrate complexes of Schiff base ligands are discussed. Schiff bases were obtained by the condensation of 2–methyl–4–N,N–bis–2' –cyanoethyl aminobenzaldehyde with aniline and 3 different substituted anilines. Lanthanide(III nitrates, viz. gadolinium(III nitrate, lanthanum(III nitrate, samarium(III nitrate and cerium(III nitrate were chosen to synthesize new complexes. The complexes were characterized on the basis of physicochemical studies viz. elemental analysis, spectral, viz. IR and electronic spectral and magnetic studies. TGA studies of some of the representative complexes were also done. Some of the representative complexes were also screened for the anti microbial studies.

  18. Molecular design of highly efficient extractants for separation of lanthanides and actinides by computational chemistry

    International Nuclear Information System (INIS)

    Uezu, Kazuya; Yamagawa, Jun-ichiro; Goto, Masahiro

    2006-01-01

    Novel organophosphorus extractants, which have two functional moieties in the molecular structure, were developed for the recycle system of transuranium elements using liquid-liquid extraction. The synthesized extractants showed extremely high extractability to lanthanides elements compared to those of commercially available extractants. The results of extraction equilibrium suggested that the structural effect of extractants is one of the key factors to enhance the selectivity and extractability in lanthanides extractions. Furthermore, molecular modeling was carried out to evaluate the extraction properties for extraction of lanthanides by the synthesized extractants. Molecular modeling was shown to be very useful for designing new extractants. The new concept to connect some functional moieties with a spacer is very useful and is a promising method to develop novel extractants for treatment of nuclear fuel. (author)

  19. Diffractive heavy flavor production-including W/sup +-/ and Z/sup 0/

    International Nuclear Information System (INIS)

    White, A.R.

    1986-01-01

    It is shown that when the Pomeron has the semiperturbative origin in QCD, diffractive heavy quark production is independent from, and not suppressed relative to, the perturbative gluon fusion process. It is emphasized that anomalously large diffractive heavy flavor cross-sections could anticipate correspondingly large cross-sections for the diffractive production of W/sup +-/ and Z 0 -providing distinctive evidence for the dynamical nature of the electroweak Higgs sector

  20. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping

    KAUST Repository

    Wang, Feng

    2010-02-25

    Doping is a widely applied technological process in materials science that involves incorporating atoms or ions of appropriate elements into host lattices to yield hybrid materials with desirable properties and functions. For nanocrystalline materials, doping is of fundamental importance in stabilizing a specific crystallographic phase, modifying electronic properties, modulating magnetism as well as tuning emission properties. Here we describe a material system in which doping influences the growth process to give simultaneous control over the crystallographic phase, size and optical emission properties of the resulting nanocrystals. We show that NaYF 4 nanocrystals can be rationally tuned in size (down to ten nanometres), phase (cubic or hexagonal) and upconversion emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal phase and size arises from a strong dependence on the size and dipole polarizability of the substitutional dopant ion. Our results suggest that the doping-induced structural and size transition, demonstrated here in NaYF 4 upconversion nanocrystals, could be extended to other lanthanide-doped nanocrystal systems for applications ranging from luminescent biological labels to volumetric three-dimensional displays. © 2010 Macmillan Publishers Limited. All rights reserved.

  1. Complexes of trivalent lanthanide ions with schiff base derived from vanillin and triethylenetetraamine

    International Nuclear Information System (INIS)

    Shahma, A.; Athar, M.; Ahmad, N.

    1982-01-01

    Complexes of lanthanide(III) ions with the schiff base derived from vanillin and triethylenetetraamine have been synthesised and characterised on the basis of elemental analyses, molar conductance, magnetic moment, IR and thermal analysis data. The thermograms show the elimination (OH)(OCH 3 )C 6 H 3 CH-group at low temperatures before the elimination of triethylenetetraamine part corroborating the observation made on the basis of IR spectral data. This is a clear indication of the non-coordination of the phenolic hydroxyl groups. The lanthanide ions in the complexes exhibit eight coordination numbers. (author)

  2. N,N-dimethylformamide (dMF) adducts of lanthanide trifluoroacetates

    International Nuclear Information System (INIS)

    Vicentini, G.; Silva, M.G. da

    1984-01-01

    Addition compounds of lanthanide iodides, acetates, nitrates, perchlorates, chlorides, perhenates, hexathiocyanates, chromiates, isothiocyanates and hexafluorophosphates with DMF have been extensively described in the literature. This article reports the preparation and characterization of adducts with general formula Ln(CF 3 COO) 3 . 2 DMF. (Author) [pt

  3. Fragment molecular orbital method for studying lanthanide interactions with proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tsushima, Satoru [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Komeiji, Y. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Mochizuki, Y. [Rikkyo Univ., Tokyo (Japan)

    2017-06-01

    The binding affinity of the calcium-binding protein calmodulin towards Eu{sup 3+} was studied as a model for lanthanide protein interactions in the large family of ''EF-hand'' calcium-binding proteins.

  4. XPS study of the Ln 5p,4f-electronic states of lanthanides in Ln2O3

    International Nuclear Information System (INIS)

    Teterin, Yu.A.; Teterin, A.Yu.; Utkin, I.O.; Ryzhkov, M.V.

    2004-01-01

    The present work analyses the fine structure of the low binding energy (E b , 0-50 eV) X-ray photoelectron spectra XPS of lanthanide (La through Lu excepted for Pm) oxides, and compares it with the non-relativistic X α -discrete variation calculation results for the clusters reflecting the close environment of lanthanides in oxides. The obtained results show that the Ln 4f n -electrons of lanthanides in oxides by their spectral parameters have much in common with the M 3d-electrons in oxides of the 3d-transition metals. According to these data, the Ln 4f shell of lanthanides is rather outer and can participate in the formation of molecular orbitals in compounds. The XPS data at least do not contradict the theoretical suggestion about the significant participation of the Ln 4f-electrons in formation of the molecular orbitals in the studied materials. The spectra in the Ln 5p-O 2s binding energy region of the studied lanthanide oxides were found to exhibit the complicated structure instead of separated peaks due to the electrons of the Ln 5p 3/2,5/2 and O 2s atomic shells. Taking into account the energy differences between the inner (Ln 3d) and outer (Ln 5p) electronic shells for some metallic lanthanides and their oxides, the Ln 5p atomic shells were shown to participate in the formation of the inner valence molecular orbitals (IVMO). That agrees qualitatively with the calculation results

  5. A generic biokinetic model for predicting the behaviour of the lanthanide elements in the human body

    International Nuclear Information System (INIS)

    Taylor, D.M.; Leggett, R.W.

    2003-01-01

    Information on the biokinetics of the 15 elements of the lanthanide series, 57 La to 71 Lu, is too sparse to permit individual development of meaningful biokinetic models to describe the behaviour of each of the elements in humans. The lanthanides show a regular gradation in chemical properties across the series, and animal studies indicate that this is reflected in regular differences in their deposition in tissues such as the liver and skeleton. These regular differences in chemical and biological behaviour have been utilised to construct a generic lanthanide biokinetic model and to define element-specific parameters for each element in the series. This report describes the use of the available biokinetic data for humans and animals to derive the parameters for each of the elements. (author)

  6. Facile synthesis of upconversion nanoparticles with high purity using lanthanide oleate compounds

    Science.gov (United States)

    Kang, Ning; Ai, Chao-Chao; Zhou, Ya-Ming; Wang, Zuo; Ren, Lei

    2018-02-01

    A novel strategy for preparing highly pure NaYF4-based upconversion nanoparticles (UCNPs) was developed using lanthanide oleate compounds [Ln(OA)3] as the precursor, denoted as the Ln-OA preparation method. Compared to the conventional solvothermal method for synthesizing UCNPs using lanthanide chloride compounds (LnCl3) as the precursor (denoted as the Ln-Cl method), the Ln-OA strategy exhibited the merits of high purity, reduced purification process and a uniform size in preparing core and core-shell UCNPs excited by a 980 or 808 nm near infrared (NIR) laser. This work sheds new insight on the preparation of UCNPs and promotes their application in biomedical fields.

  7. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    International Nuclear Information System (INIS)

    Wang Yige; Wang Li; Li Huanrong; Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-01-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex

  8. Application of multi-step excitation schemes for detection of actinides and lanthanides in solutions by luminescence/chemiluminescence laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Izosimov, I. [Joint Institute for Nuclear Research, Joliot Curie 6, Dubna 141980 (Russian Federation)

    2016-07-01

    The use of laser radiation with tunable wavelength allows the selective excitation of actinide/lanthanide species with subsequent registration of luminescence/chemiluminescence for their detection. This work is devoted to applications of the time-resolved laser-induced luminescence spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for the detection of lanthanides and actinides. Results of the experiments on U, Eu, and Sm detection by TRLIF (Time Resolved Laser Induced Fluorescence) method in blood plasma and urine are presented. Data on luminol chemiluminescence in solutions containing Sm(III), U(IV), and Pu(IV) are analyzed. It is shown that appropriate selectivity of lanthanide/actinide detection can be reached when chemiluminescence is initiated by transitions within 4f- or 5f-electron shell of lanthanide/actinide ions corresponding to the visible spectral range. In this case chemiluminescence of chemiluminogen (luminol) arises when the ion of f element is excited by multi-quantum absorption of visible light. The multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanide/actinide species in solutions. (author)

  9. Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy.

    Science.gov (United States)

    Nishio, Masaki; Inami, Shinnosuke; Katayama, Misaki; Ozutsumi, Kazuhiko; Hayashi, Yoshihito

    2012-01-16

    Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.

  10. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    Science.gov (United States)

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  11. Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dongqin; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering (China)

    2015-07-15

    Nanoscale luminescent lanthanide-based metal–organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal–organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

  12. Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight

    Science.gov (United States)

    Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.

    2018-02-01

    The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.

  13. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    International Nuclear Information System (INIS)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox) 0.5 (H 2 O)] n ·2n(H 2 O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H 2 sfpip)(ox)(H 2 O) 4 ] n ·2n(H 2 O) (Ln=Nd (8) Sm (9)), [H 2 ox=oxalic acid, H 3 sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H 3 sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox 2− anions as linkers to bridge the adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.

  14. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-15

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox){sub 0.5}(H{sub 2}O)]{sub n}·2n(H{sub 2}O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H{sub 2}sfpip)(ox)(H{sub 2}O){sub 4}]{sub n}·2n(H{sub 2}O) (Ln=Nd (8) Sm (9)), [H{sub 2}ox=oxalic acid, H{sub 3}sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H{sub 3}sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox{sup 2−} anions as linkers to bridge the adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.

  15. Lanthanide-IMAC enrichment of carbohydrates and polyols.

    Science.gov (United States)

    Schemeth, Dieter; Rainer, Matthias; Messner, Christoph B; Rode, Bernd M; Bonn, Günther K

    2014-03-01

    In this study a new type of immobilized metal ion affinity chromatography resin for the enrichment of carbohydrates and polyols was synthesized by radical polymerization reaction of vinyl phosphonic acid and 1,4-butandiole dimethacrylate using azo-bis-isobutyronitrile as radical initiator. Interaction between the chelated trivalent lanthanide ions and negatively charged hydroxyl groups of carbohydrates and polyols was observed by applying high pH values. The new method was evaluated by single standard solutions, mixtures of standards, honey and a more complex extract of Cynara scolymus. The washing step was accomplished by acetonitrile in excess volumes. Elution of enriched carbohydrates was successfully performed with deionized water. The subsequent analysis was carried out with matrix-free laser desorption/ionization-time of flight mass spectrometry involving a TiO2 -coated steel target, especially suitable for the measurement of low-molecular-weight substances. Quantitative analysis of the sugar alcohol xylitol as well as the determination of the maximal loading capacity was performed by gas chromatography in conjunction with mass spectrometric detection after chemical derivatization. In a parallel approach quantum mechanical geometry optimizations were performed in order to compare the coordination behavior of various trivalent lanthanide ions. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Analysis and separation of lanthanide elements

    International Nuclear Information System (INIS)

    Almeida Pimentel, E. de.

    1973-01-01

    Improvements of rare earth separation by the combined use of acetic and critic acid were studied and analytical methods for determining some of the lanthanides were tryed out. Separations of the R.E. studied were favorable when citric acid (solution A) and acetic acid (solution B) were used in the proportion of 10:1 at pH=4,00. Neutron activation, spectro-photometric, polarographic, volumetric and gravimetric procedures allowed the determination of 8 R.E.; samarium, neodymium, praseodymium, lanthanum, cerium, holmium, erbium and europium

  17. Polymetallic lanthanide (III) complexes for the design of new luminescent materials

    International Nuclear Information System (INIS)

    Marchal, C.

    2008-09-01

    The incorporation of f elements in highly organized polymetallic complexes is of great interest in supramolecular chemistry and allows the combination of their nano-scopic size with the magnetic or optical properties of the metal ions. However due to the difficulty in controlling the coordination environment of these ions, the assembly of lanthanide-based polynuclear architectures has lagged behind that of other systems. These factors make the rational design for the construction of supramolecular lanthanide complexes quite challenging. In order to better understand the factors determining the assembly of lanthanide-based polymetallic arrays, we designed two different types of organic ligands, which favor, in one case, formation of infinite polymetallic complexes (coordination polymers), and in the case the assembly of discrete polymetallic architectures. Thus, we show that the use of flexible and multi-dentate picolinate-derivative ligands enables the formation of infinite and luminescent infinite frameworks which display very interesting luminescent properties. Geometry of the ligand has a great influence on the final network architecture. Particularly, implementation of four picolinate units within a tetrapodal ligand results in the controlled assembly of 1-D coordination polymers. Conversely to favor the controlled assembly of discrete polymetallic arrays we use dissymmetric ligands which displays low denticity. Complexation studies of a tridentate 8- hydroxyquinoline-derivative ligand as well as a tetradentate ligand possessing an oxazoline ring are presented. (author)

  18. NMR-based Enantiodifferentiation of Chiral trans-2-Phenylcyclopropane Derivatives Using a Chiral Lanthanide Shift Reagent

    International Nuclear Information System (INIS)

    Cho, Nam Sook; Kim, Hyun Sook; Song, Mi Sook

    2011-01-01

    In contrast with optical methods, there is no need to characterize the pure enantiomers. Instead, the NMR method makes use of chiral reagents that convert a mixture of enantiomers into a mixture of diastereomeric complexes. Integration of the resulting NMR spectra yields a direct measurement of enantiomeric purity as long as there is a sufficiently large difference between the chemical shifts of the two diastereoisomeric complexes to produce baseline-resolved peaks. Absolute enantiomeric configurations can also be determined using this method. Chiral lanthanide shift reagents have been used since the 1970s to form addition complexes with various compounds through interactions with electron donor sites. Lanthanide-induced, pseudo-contact shifts (LIS) are a function of the distance, r, between the nuclei under observation and the lanthanide center, and the angle, θ, between the line connecting the metal ion with the observed nucleus and the line representing the CLSR magnetic axis

  19. Novel lanthanide doped micro- and mesoporous solids. Characterization of ion-host-interactions, species distribution and luminescence properties using time-resolved luminescence spectroscopy

    International Nuclear Information System (INIS)

    Gessner, Andre

    2010-12-01

    In this work lanthanide-doped microporous zeolites, microporous-mesoporous hybrid materials and mesoporous silicates were investigated regarding their luminescence properties and the ion-host-interactions using time-resolved luminescence spectroscopy. Thereby, time-resolved emission spectra (TRES) provide information in the wavelength and time domain. For the analysis of the TRES a broad set of analytic methods was applied and thus a corresponding ''toolbox'' developed. Fitting of the luminescence decays was performed with a discrete number of exponentials and supported by luminescence decay times distributions. Time-resolved area normalized emission spectra (TRANES), an advancement of TRES, could be used for the determination of the number of emissive lanthanide species in porous materials for the first time. Calculation of the decay-associated spectra (DAS) allowed the correlation of spectral information with luminescence decay times and thus delivered the luminescence spectra of the different europium species. For europium(III) we could use in addition the time-dependent asymmetry ratio and spectral evolution of the 5 D 0 - 7 F 0 -transition with time to obtain further information about the distribution of the lanthanide ions in the host material. Luminescence decay times and spectra allowed conclusions on the number of OH-oscillators in and the symmetry of the first coordination sphere. For the microporous and microporous-mesoporous materials were found different lanthanide species, which were characterized by the above mentioned methods. These lanthanide species can be found on different positions in the host material. One position is located deep in the pore system. Here, lanthanide ions are hardly accessible for water and mainly coordinated by framework oxygens. This results in long luminescence decay times and distorted coordination spheres. The second position can be found near or on the outer surface or in the mesopores. Lanthanide ions located here, are

  20. Contribution to the study of pseudohalides complexes of tervalent, lanthanides and actinides in solution

    International Nuclear Information System (INIS)

    Cuillerdier, Christine.

    1981-10-01

    Some complexes formed with halides or pseudohalides (iodide, cyanide, azide and thiocyanate) and tervalent lanthanides and actinides have been studied in solution. Methods like solvent extraction, polarography have been used to measure inner plus outer sphere complexation and spectroscopic methods have been chosen to study inner sphere complexes only. It has been found that inner sphere complexe of americium and neodymium with cyanide exist in aqueous solutions. Tervalent actinides form stronger inner sphere complexes with azide than lanthanide in solution. Thiocyanate complexes appear to be inner sphere and N-bonded [fr

  1. Coordination polymers of some lanthanide(III) nitrate with schiff bases

    International Nuclear Information System (INIS)

    Dwivedi, D.K.; Shukla, B.K.; Shukla, R.K.

    1991-01-01

    The Schiff bases derived from 2-hydroxy-1-naphthaldehyde and salicylaldehyde with o-dianisidine, p-phenylene diamine and benzidine and their lanthanide(III) complexes have been synthesized and characterized by elemental, I.R., thermal, magnetic and D.R.S. studies. (author). 7 refs

  2. FY17 Progress in Modeling of Lanthanide Transport in Metallic Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matthews, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-19

    A critical review of fuel-clad-chemical interactions along with modelling requirements is published. The mechanism of lanthanide transport is studied experimentally (NEUP collaboration) and using simulations and initial results are published in Refs.

  3. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang

    2016-01-01

    lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large

  4. Study on the phosphate reaction characteristics of lanthanide chlorides in molten salt with operating conditions

    International Nuclear Information System (INIS)

    Lee, Tae-Kyo; Hwang, Taek-Sung; Cho, Yung-Zun; Eun, Hee-Chul; Park, Hwan-Seo; Park, Geun-Il; Son, Sung-Mo

    2013-01-01

    A minimization of waste salt is one of the most important issues for the optimization of pyroprocessing. The separation of fission products in waste salts and the reuse of purified waste salt are promising strategies for minimizing the waste salt amounts. The phosphate precipitation of lanthanide is currently being considered for eutectic (LiCl–KCl) waste salt purification. In this research, the effects of molten salt temperature (400–550°C) and reaction time (max. 180 min) upon conversion into the phosphate of lanthanides was investigated using 1 and 3 kg of eutectic salt. The conversion efficiency of lanthanides to molten salt-insoluble precipitates and phosphates was increased with an increase in molten salt temperature and operating time until it attained a specific temperature and time. K 3 PO 4 as a precipitant was more favorable than Li 3 PO 4 in terms of reactivity. To obtain over a 99% overall conversion efficiency, about 30 min was required in the case of using K 3 PO 4 at 450°C, but about 120 min in the case of using Li 3 PO 4 at 550°C. The lanthanide precipitates formed by a reaction with phosphate were a mixture of monoclinic structures, usually representing a polyhedron structure, and a tetragonal structure, representing a platelet structure. (author)

  5. Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12

    International Nuclear Information System (INIS)

    Dorenbos, P.; Shalapska, T.; Stryganyuk, G.; Gektin, A.; Voloshinovskii, A.

    2011-01-01

    The excitation and emission properties of the lanthanides Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Er 3+ , Tm 3+ , and Yb 3+ in LiYP 4 O 12 were studied by vacuum ultra-violet spectroscopy at 10 K. It provides information on the energies of 4f-5d excitation and emission bands. In the case of Er 3+ spin forbidden emission was observed. Charge transfer excitation bands were identified for Eu 3+ , Sm 3+ , Tm 3+ , and Yb 3+ , and in the case of Yb 3+ charge transfer luminescence is observed. All data appear to be consistent with each other and have been used to construct a level scheme showing the location of the energy levels of all trivalent and divalent lanthanides in LiYP 4 O 12 . - Research Highlights: → The spectroscopy of most of the trivalent lanthanides in LiYP 4 O 12 is presented for the first time. → Charge transfer luminescence of Yb3+ is reported. → We demonstrate that the energy of the first 4f-5d transition and the charge transfer band agree with predictive models. → For the first time a scheme with the location of all lanthanide states (divalent and trivalent ) w.r.t. de-valence and conduction band of LIP 4 O 12 is presented.

  6. Synthesis and investigation of uranylphosphates, uranylarsenanes, and uranylvanadates of lanthanides

    International Nuclear Information System (INIS)

    Chernorukov, N.G.; Knyazev, A.V.; Barch, S.V.; Feoktisova, S.V.; Suleymanov, E.V.

    2000-01-01

    Currently compounds A k (B V UO 6 ) k-m (OH) m .nH 2 O (A k - Y, La-Lu, B V -P, As, V) are of interest as the possible mineral-like forms of linkage in an environment of uranium and radioactive isotopes of lanthanides of an artificial origin, as modeling systems for study of similar compounds of six-valence neptunium and plutonium, and as objects, suitable for allocation and division lanthanides and actinides. In order to determine a role of water molecules in the formation of the crystal structure of inorganic hydrates and processes of dehydration uranium minerals with the general formula A k (B V UO 6 ) k-m (OH) m .nH 2 O and their synthetic analogues (A k - one-, two- and three-valent elements, B V -elements of the fifth group of Periodic system) are rather convenient objects. (authors)

  7. Bis(pentamethylene)urea complexes of the lanthanide nitrates: synthesis, characterization, properties

    International Nuclear Information System (INIS)

    Souza, H.K.S. de; Pedrosa, A.M.G.; Marinho, E.P.M.; Batista, M.K.S.; Melo, D.M.A.; Zinner, K.; Zinner, L.B.; Zukerman-Schpector, J.; Vicentini, G.

    2003-01-01

    Lanthanide nitrate complexes of bis(pentamethylene)urea (BPMU) with general formula Ln(NO 3 ) 3 3BPMU, where Ln: La, Nd, Sm, Eu, Ho and Er have been prepared and characterized based on CHN elemental analyses, lanthanide titration with EDTA, molar conductivity, spectroscopic data and thermal studies. The infrared spectra show that ligands (BPMU) are bonded through the carbonyl oxygen, nitrate counter-ions are bidentate linked to the central ions. The structure of the neodymium complex was determined. The crystal is monoclinic, P2 1/c ,Z=4, with the following parameters: a=10.148(1) A, b=21.879(2), c=19.154(2) A, β=104.11(1) deg., V=4124.3(7) A 3 . The polyhedron is a distorted tricapped trigonal prism, coordination number nine

  8. Energetic lanthanide complexes: coordination chemistry and explosives applications

    International Nuclear Information System (INIS)

    Manner, V W; Barker, B J; Sanders, V E; Laintz, K E; Scott, B L; Preston, D N; Sandstrom, M; Reardon, B L

    2014-01-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  9. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baoxia [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Huang, Yankai [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhu, Xu; Hao, Yuanqiang [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Ding, Yujie [College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wei, Wei; Wang, Qi [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Qu, Peng, E-mail: qupeng0212@163.com [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Xu, Maotian, E-mail: xumaotian@sqnc.edu.cn [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2016-03-17

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg{sup 2+} detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb{sup 3+} from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg{sup 2+} into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg{sup 2+}. As a kind of Hg{sup 2+} nanosensor, the probe exhibited excellent selectivity for Hg{sup 2+} and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg{sup 2+} in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg{sup 2+} was achieved based on time-resolved spectroscopy.

  10. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    International Nuclear Information System (INIS)

    Liu, Baoxia; Huang, Yankai; Zhu, Xu; Hao, Yuanqiang; Ding, Yujie; Wei, Wei; Wang, Qi; Qu, Peng; Xu, Maotian

    2016-01-01

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg"2"+ detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb"3"+ from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg"2"+ into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg"2"+. As a kind of Hg"2"+ nanosensor, the probe exhibited excellent selectivity for Hg"2"+ and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg"2"+ in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg"2"+ was achieved based on time-resolved spectroscopy.

  11. Lanthanide - actinide separation: a challenge in the back end of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mohapatra, P.K.

    2015-01-01

    Due to their similar size and chemical state, separation of trivalent lanthanide and actinide ions has always been a challenging topic of research. Of late, the growing concern for the radioactive waste management in the back end of the nuclear fuel cycle has led to the possibility of transmuting the long-lived transuranides in high flux reactors. This necessitates the development of processes for the separation of lanthanides and actinides in acidic/low pH media. In view of the high absorption cross section of few lanthanides, their presence in relatively large proportion (10-100 times) impedes the transmutation process. Processes such as the TRAMEX and TALSPEAK have been used for the separation of lanthanides from trivalent actinides. Of late soft donor ligands containing S and N donor atoms have been used for the selective extraction of trivalent actinide ions. The commercially available S-donor compound, CYANEX 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid) has been used to yield separation factor (S.F.) values in the excess of 6000. Synergistic extraction with N-donor ligands such as 2,2'-bipyridyl and 1,10-phenanthroline have yielded S.F. values close to 40,000. N-donor ligands such as BTP (bis-triazinylpyridine), BTBP (bis-triazinylbipyridyl) and BTPhen (bis-triazinyl-phenanthroline) have been particularly effective from relatively acidic feed conditions. The present lecture will give a brief outline of the separation processes and experimental results of studies carried out using various S and N donor ligands. Use of room temperature ionic liquids for more favorable separations will be highlighted. Liquid membrane separation results for application to back end nuclear fuel cycle will also be discussed. (author)

  12. Mean-field potential approach for thermodynamic properties of lanthanide: Europium as a prototype

    Science.gov (United States)

    Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2018-03-01

    In the present paper, a simple conjunction scheme [mean-field potential (MFP) + local pseudopotential] is used to study the thermodynamic properties of divalent lanthanide europium (Eu) at extreme environment. Present study has been carried out due to the fact that divalent nature of Eu arises because of stable half-filled 4f-shell at ambient condition, which has great influence on the thermodynamic properties at extreme environment. Due to such electronic structure, it is different from remaining lanthanides having incomplete 4f-shell. The presently computed results of thermodynamic properties of Eu are in good agreement with the experimental results. Looking to such success, it seems that the concept of MFP approach is successful to account contribution due to nuclear motion to the total Helmholtz free energy at finite temperatures and pressure-induced inter-band transfer of electrons for condensed state of matter. The local pseudopotential is used to evaluate cold energy and hence MFP accounts the s-p-d-f hybridization properly. Looking to the reliability and transferability along with its computational and conceptual simplicity, we would like to extend the present scheme for the study of thermodynamic properties of remaining lanthanides and actinides at extreme environment.

  13. A new method for the homogeneous precipitative separation of trace level lanthanides as oxalates: application to different types of geological samples

    International Nuclear Information System (INIS)

    Premadas, A.; Cyriac, Bincy; Kesavan, V.S.

    2013-01-01

    Oxalate precipitation of lanthanides in acidic medium is a widely used selective group separation method at percentage to trace level in different types of geological samples. Most of the procedures are based on the heterogeneous oxalate precipitation of lanthanides using calcium as carrier. In the heterogeneous precipitation, the co-precipitated impurities from the matrix elements are more, besides if the pH at the time of precipitation is not monitored carefully there is a chance of losing some of the lanthanides. In this report, we present a new homogeneous oxalate precipitation of trace level lanthanides from different types of geological samples using calcium as carrier. In the present method pH is getting adjusted (pH ∼1) on its own, after the hydrolysis of urea added to the sample solution. This acidic pH is essential for the complete precipitation of the lanthanides. Therefore, no critical parameter adjustment for the precipitation is involved in the proposed method. The oxalate precipitate obtained was in crystalline nature which facilitates the fast settlement, easy filtration; besides the co-precipitated matrix elements are very less as compared to normal heterogeneous oxalate precipitation of lanthanides. Another advantage is more quantity of the sample can be taken for the separation of lanthanides which is a limitation for other separation methods reported. Accuracy of the method was checked by analyzing nine international reference materials comprising different types of geological samples obtained from Canadian Certified Reference Project Materials such as syenite samples SY-2, SY-3 and SY-4; gabro sample MRG-1; soil samples SO-1 and SO-2; iron formation sample FeR-2; lake sediments LKSD-2 and LKSD-4. The values of the lanthanides obtained for these reference materials are comparable with recommended values, indicating that the method is accurate. The reproducibility is characterized by a relative standard deviation (RSD) of 1 to 6% (n=4). (author)

  14. Synthesis, characterization and properties of lanthanide trifluoroacetate complexes with N-(1-adamantyl) acetamide

    International Nuclear Information System (INIS)

    Miranda Junior, P.; Isolani, P.C.; Vicentini, G.; Zinner, L.B.

    1999-01-01

    Complexes of lanthanide trifluoacetates and N-(1-adamantyl) acetamide (ADA) with composition Ln (TFA) 3 .ADA (Ln=Nd, Sm, Eu, Gd, Tb, Dy; TFA trifluoroacetate) were synthesized by titration of lanthanides with EDTA and CHN microanalytical procedures. According to IR spectra the bonding of ADA occurs through the carbonyl oxygen. Compounds of Nd 3+ , Sm 3+ and Eu 3+ present two bands attributed to v aa COO and that of Gd 3+ Tb 3+ only one. In all cases only one band is attributed to v a -s COO. The absorption spectra of the neodymium and the emission spectra of the europium compounds were determined and interpreted. (author)

  15. Increasing lanthanide luminescence by use of the RETEL effect.

    Science.gov (United States)

    Leif, Robert C; Vallarino, Lidia M; Becker, Margie C; Yang, Sean

    2006-08-01

    Luminescent lanthanide complexes produce emissions with the narrowest-known width at half maximum; however, their significant use in cytometry required an increase in luminescence intensity. The companion review, Leif et al., Cytometry 2006;69A:767-778, described a new technique for the enhancement of lanthanide luminescence, the Resonance Energy Transfer Enhanced Luminescence (RETEL) effect, which increases luminescence and is compatible with standard slide microscopy. The luminescence of the europium ion macrocyclic complex, EuMac, was increased by employing the RETEL effect. After adding the nonluminescent gadolinium ion complex of the thenoyltrifluoroacetonate (TTFA) ligand or the sodium salt of TTFA in ethanol solution, the EuMac-labeled sample was allowed to dry. Both a conventional arc lamp and a time-gated UV LED served as light sources for microscopic imaging. The emission intensity was measured with a CCD camera. Multiple time-gated images were summed with special software to permit analysis and effective presentation of the final image. With the RETEL effect, the luminescence of the EuMac-streptavidin conjugate increased at least six-fold upon drying. Nuclei of apoptotic cells were stained with DAPI and tailed with 5BrdUrd to which a EuMac-anti-5BrdU conjugate was subsequently attached. Time-gated images showed the long-lived EuMac luminescence but did not show the short-lived DAPI fluorescence. Imaging of DNA-synthesizing cells with an arc lamp showed that both S phase and apoptotic cells were labeled, and that their labeling patterns were different. The images of the luminescent EuMac and fluorescent DAPI were combined to produce a color image on a white background. This combination of simple chemistry, instrumentation, and presentation should make possible the inexpensive use of the lanthanide macrocycles, Quantum Dyes, as molecular diagnostics for cytological and histopathological microscopic imaging. (c) 2006 International Society for Analytical

  16. Complexes of light lanthanides with 2,4-dimethoxybenzoic acid

    Directory of Open Access Journals (Sweden)

    WIESLAWA FERENC

    2000-01-01

    Full Text Available The complexes of light lanthanides with 2,4-dimethoxybenzoic acid of the formula: Ln(C9H9O43·nH2O where Ln = La(III, Ce(III, Pr(III, Nd(III, Sm(III, Eu(III, Gd(IIII, and n = 3 for La(III, Gd(III, n = 2 for Sm(III, Eu(III, and n = 0 for Ce(III, Pr(III, Nd(III have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric studies and X-ray diffraction measurements. The complexes have colours typical for Ln3+ ions (La, Ce, Eu, Gd-white, Sm-cream, Pr-green, Nd-violet. The carboxylate group in these complexes is a symmetrical, bidentate, chelating ligand. They are crystalline compounds characterized by various symmetry. On heating in air to 1273 K the 2,4-dimethoxybenzoates of the light lanthanides decompose in various ways. The hydrated complexes decompose in two or three steps while those of anhydrous ones only in one or two. The trihydrate of lanthanum 2,4-dimethoxybenzoate first dehydrates to form the anhydrous salt, which then decomposes to La2O3via the intermediate formation of La2O2CO3. The hydrates of Sm(III, Eu(III, Gd(III decompose in two stages. First, they dehydrate forming the anhydrous salts, which then decompose directly to the oxides of the respective metals. The anhydrous complexes of Ce(III, Pr(III decompose in one step, while that of Nd(III in two. The solubilities of the 2,4-dimethoxybenzoates of the light lanthanides in water and ethanol at 293 K are in the order of: 10-3 mol dm-3 and 10-4-10-3 mol dm-3, respectively.

  17. Study of the actinide-lanthanide separation from nuclear waste by a new pyrochemical process; Etude de la separation actinides-lanthanides des dechets nucleaires par un procede pyrochimique nouveau

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F. [CEA Marcoule, Departement de Retraitement, des Dechets et du Demantelement, 30 - Bagnols-sur-Ceze (France)]|[Institut National Polytechnique, 38 - Grenoble (France)

    1997-01-01

    The theoretical extraction and separation of platinoids, actinides and lanthanides is allowed by thermodynamic using two adapted reducing agents: zinc and magnesium. Thereby, a pyrochemical method for the nuclear waste processing has been devised. The high temperature handling of the elements in fluoride forms and their processing by a reactive metallic phase required special precautions. The study of the behavior of matter in exploratory systems allowed the development of an experimental technology for the treatment and contacting of phases. The thermodynamical analysis of the experimental results shows the feasibility of the process. A model was developed to predict the distribution coefficients of zirconium, uranium and lanthanum as a function of the system composition. An estimation method was proposed in order to evaluate the distribution coefficients in diluted solution of all the actinides and lanthanides existing in the fission products between LiF CaF{sub 2} and Zn-Mg at 720 deg C. Coupled with the experimental results, the estimates results may be extrapolated to concentrated solutions allowing predictions of the separation of all actinides and lanthanides. The rapidity of element transfer is induced by a thermal effect caused by the high exothermicity of the reduction by magnesium. The kinetic coefficients have been linked with the reduction enthalpy of each element. Moreover, the kinetics seem limited by chemical reaction and not by mass transfer. (author) 66 refs.

  18. Application of lanthanide ions doped in different glasses

    International Nuclear Information System (INIS)

    Dhondiyal, Charu Chandra

    2015-01-01

    The transfer of optical excitation energy from one ion/molecule to another ion/molecule has proved to be of potential importance in industrial application as well as research. Rare earth elements (RE) although not as rare as some of them occur more prevalently then other well known material (e.g. silver, tin, tungsten) are special group of elements of the periodic table comprising lanthanide series (from lanthanum to lutetium) and actinide series (from actinium to lawrencium). Most of the actinides are highly radioactive hence their uses are limited. Fluorescence is the particular optical property of lanthanide (RE) ions. The narrow absorption and emission lines exhibited by the RE ions in crystals, glasses and solutions have always made these ions attractive as sensitive probes of solids and liquid state and also makes them useful in laser technology, CRT displays, UV to visible converters and optical communications etc. In recent years there has been a special interest to study the properties and applications of rare earth doped in glasses. Lanthanide ions in glasses play an important role, especially by retaining their emission capabilities, in the host matrix. Glass as a dielectric material plays an important role in science and industry. Its chemical, physical and particular optical properties make it suitable for applications such as opto-electronic materials, laboratory equipment, laser gain media, etc. Photoluminescence from rare earth doped glasses are of major interest in the research area of optoelectronic device applications like phosphors, display monitors, lasers and amplifiers for communication systems. Now a days, development of optical devices based on rare-earth ions doped materials is one of the interesting fields of research. Rare earth doped glasses are widely used as laser materials, optical amplifiers, optical memory devices, magneto-optical devices, medical lasers, eye safe lasers, flat panel displays, fluorescent lamps, white LED's etc

  19. Gas-phase reactivity of lanthanide cations with fluorocarbons: C-F versus C-H and C-C bond activation

    International Nuclear Information System (INIS)

    Cornehl, H.H.; Hornung, G.; Schwarz, H.

    1996-01-01

    The gas-phase reactivity of the fluorinated hydrocarbons CF 4 , CHF 3 , CH 3 F, C 2 F 6 , 1,1-C 2 H 4 F 2 , and C 6 F 6 with the lanthanide cations Ce + , Pr + , Sm + , Ho + , Tm + , and Yb + and the reactivity of C 6 H 5 F with all lanthanide cations Ln + (Ln = La-Lu, with the exception of Pm + ) have been examined by Fourier-transform ion cyclotron resonance mass spectrometry. The perfluorinated compounds tetrafluoromethane and hexafluoroethane as well as trifluoromethane do not react with any lanthanide cation. Selective activation of the strong C-F bonds in fluoromethane, 1,1-difluoroethane, hexafluorobenzene, and fluorobenzene appears as a general reaction scheme along the 4f row. Experimental evidence is given for a 'harpoon'-like mechanism for the F atom abstraction process which operates via an initial electron transfer from the lanthanide cation to the fluorinated substrate in the encounter complex Ln + RF. The most reactive lanthanides La + , Ce + , Gd + , and Tb + and also the formal closed-shell species Lu + exhibit additional C-H and C-C bond activation pathways in the reaction with fluorobenzene, namely dehydrohalogenation as well as loss of a neutral acetylene molecule. In the case of Tm + and Yb + the formation of neutral LnF 3 is observed in a multistep process via C-C coupling and charge transfer. 17 refs., 2 figs., 2 tabs

  20. Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications

    NARCIS (Netherlands)

    Pagis, C.; Ferbinteanu, M.; Rothenberg, G.; Grecea, S.

    2016-01-01

    This short critical review outlines the main synthetic strategies used in the designed synthesis of lanthanide-based metal organic frameworks (Ln-MOFs). It explains the impact of the choice of organic linker on the final network topology, and it highlights the applications of Ln-MOFs in the

  1. Lanthanide-based fluorescent tracers in complex media

    International Nuclear Information System (INIS)

    Brichart, Thomas

    2014-01-01

    Tracers are objects allowing the determination of the position or the distribution of a product; tracers are currently used in a great variety of domains. Despite the fact that each field has it's own specifications, it is possible to find tracers in medicine (contrast agents), anti-counterfeiting or geological exploration. We have developed lanthanide complex tracers for oil field injection waters. Those tracers, derived from the DOTA, have been detected at concentration lower than 1 ppb, thanks to a simple and compact apparatus. This detection has been made possible by the use of time-resolved fluorescence spectroscopy, this technique allows us to get rid of the background noise created by the intrinsic fluorescence of oil residues that are present in production waters. We also demonstrated how we can, through a reverse microemulsion synthesis, encapsulate several different dyes inside a single nanoparticle composed of a gold core and a silica shell. We showed as well, how those particles can be used as smart tracers to gather data, such as temperature, pH, solvents, etc. inside the well. Finally the use of lanthanides and scale inhibitors properties allowed us to create a simple and fast dosing protocol of such scale inhibitors in injection waters. This dosage will then allow the quick adjustment of their concentration inside each well. (author) [fr

  2. Evidence of different stoichiometries for the limiting carbonate complexes of lanthanides(3); Mise en evidence d'un changement de stoechiometrie du complexe carbonate limite au sein de la serie des lanthanides(3)

    Energy Technology Data Exchange (ETDEWEB)

    Philippini, V

    2007-12-15

    Two stoichiometries have been proposed by different laboratories to interpret measurements on the limiting carbonate complexes of An{sup 3+} and Ln{sup 3+} cations. The study of the solubility of double carbonates (AlkLn(CO{sub 3}){sub 2},xH{sub 2}O) in concentrated carbonate solutions at room temperature and high ionic strengths has shown that on the one hand the lightest lanthanides (La and Nd) form Ln(CO{sub 3}){sub 4}{sup 5-} whereas the heaviest (Eu and Dy) form Ln(CO{sub 3}){sub 3}{sup 3-} in the studied chemical conditions, and on the other hand, that the kinetics of precipitation of double carbonates depends on the alkali metal and the lanthanide ions. The existence of two stoichiometries for the limiting carbonate complexes was confirmed by capillary electrophoresis hyphenated to an inductively coupled plasma mass spectrometer (CE-ICP-MS), used to extend the study to the whole series of lanthanides (except Ce, Pm and Yb). Two behaviours have been put forward comparing the electrophoretic mobilities: La to Tb form Ln(CO{sub 3}){sub 4}{sup 5-} while Dy to Lu form Ln(CO{sub 3}){sub 3}{sup 3-}. Measurements by time resolved laser fluorescence spectroscopy (TRLFS) on Eu(III) indicate small variations of the geometry of Eu(CO{sub 3}){sub 3}{sup 3-} complex, specially with Cs{sup +}. Although analogies are currently used among the 4f-block trivalent elements, different aqueous speciations are evidenced in concentrated carbonate solutions across the lanthanide series. (author)

  3. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang

    2016-10-04

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.

  4. Selective chelation and extraction of lanthanides and actinides with supercritical fluids

    International Nuclear Information System (INIS)

    Brauer, R.D.; Carleson, T.E.; Harrington, J.D.; Jean, F.; Jiang, H.; Lin, Y.; Wai, C.M.

    1994-01-01

    This report is made up of three independent papers: (1) Supercritical Fluid Extraction of Thorium and Uranium with Fluorinated Beta-Diketones and Tributyl Phosphate, (2) Supercritical Fluid Extraction of Lanthanides with Beta-Diketones and Mixed Ligands, and (3) A Group Contribution Method for Predicting the Solubility of Solid Organic Compounds in Supercritical Carbon Dioxide. Experimental data are presented demonstrating the successful extraction of thorium and uranium using fluorinated beta-diketones to form stable complexes that are extracted with supercritical carbon dioxide. The conditions for extracting the lanthanide ions from liquid and solid materials using supercritical carbon dioxide are presented. In addition, the Peng-Robison equation of state and thermodynamic equilibrium are used to predict the solubilities of organic solids in supercritical carbon dioxide from the sublimation pressure, critical properties, and a centric factor of the solid of interest

  5. Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals

    Science.gov (United States)

    Tobolkina, Elena A.; Skripnikova, Tatiana A.; Starikova, Anna A.; Shumilova, Galina I.; Pendin, Andrey A.

    2018-01-01

    Demetallation of metalloporphyrin molecules is one of the essential degradation reactions in photosynthesis. The effect of metalloporphyrin nature on removal of central metals from tetraphenylporphyrin complexes based on lanthanide group metals (Dy, Er, Lu, Ho) has been studied. pH values, at which the metal ions leave the metalloporphyrin complex were established using two-phase spectrophotometric titration with potentiometric pH-control. The pH values decrease with the increase of atomic numbers of lanthanide groups, as well as with increase of 4f-electrons. The reaction of an extra ligand exchange for the hydroxide ion was studied. For Dy-, Er- and Ho-tetraphenylporphyrin complexes one particle of extra ligand coordinates with one porphyrin complex. A complex with dimeric particles can be formed for the system of Lu-tetraphenylporphyrin. Constants of the ion exchange reactions were calculated.

  6. New Lanthanide Alkynylamidinates and Diiminophosphinates

    Directory of Open Access Journals (Sweden)

    Farid M. Sroor

    2015-11-01

    Full Text Available This contribution reports the synthesis and structural characterization of several new lithium and lanthanide alkynylamidinate complexes. Treatment of PhC≡CLi with N,N′-diorganocarbodiimides, R–N=C=N–R (R = iPr, Cy (cyclohexyl, in THF or diethyl ether solution afforded the lithium-propiolamidinates Li[Ph–C≡C–C(NCy2] S (1: R = iPr, S = THF; 2: R = Cy, S = THF; 3: R = Cy, S = Et2O. Single-crystal X-ray diffraction studies of 1 and 2 showed the presence of typical ladder-type dimeric structures in the solid state. Reactions of anhydrous LnCl3 (Ln = Ce, Nd, Sm or Ho with 2 in a 1:3 molar ratio in THF afforded a series of new homoleptic lanthanide tris(propiolamidinate complexes, [Ph–C≡C–C(NCy2]3Ln (4: Ln = Ce; 5: Ln = Nd; 6: Ln = Sm; 7: Ln = Ho. The products were isolated in moderate to high yields (61%–89% as brightly colored, crystalline solids. The chloro-functional neodymium(III bis(cyclopropylethynylamidinate complex [{c-C3H5–C≡C–C(NiPr2}2Ln(µ-Cl(THF]2 (8 was prepared from NdCl3 and two equiv. of Li[c-C3H5–C≡C–C(NiPr2] in THF and structurally characterized. A new monomeric Ce(III-diiminophosphinate complex, [Ph2P(NSiMe32]2Ce(µ-Cl2Li(THF2 (9, has also been synthesized in a similar manner from CeCl3 and two equiv. of Li[Ph2P(NSiMe32]. Structurally, this complex resembles the well-known “ate” complexes (C5Me52Ln(µ-Cl2Li(THF2. Attempts to oxidize compound 9 using trityl chloride or phenyliodine(III dichloride did not lead to an isolable cerium(IV species.

  7. Silica-modified monodisperse hexagonal lanthanide nanocrystals: synthesis and biological properties

    Czech Academy of Sciences Publication Activity Database

    Kostiv, Uliana; Janoušková, Olga; Šlouf, Miroslav; Kotov, Nikolay; Engstová, Hana; Smolková, Katarína; Ježek, Petr; Horák, Daniel

    2015-01-01

    Roč. 7, č. 43 (2015), s. 18096-18104 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA15-01897S Institutional support: RVO:61389013 ; RVO:67985823 Keywords : upconverting * nanoparticles * lanthanide Subject RIV: CD - Macromolecular Chemistry; FD - Oncology ; Hematology (FGU-C) Impact factor: 7.760, year: 2015

  8. Hot test of a TALSPEAK procedure for separation of actinides and lanthanides using recirculating DTPA-lactic acid solution

    International Nuclear Information System (INIS)

    Persson, G.; Svantesson, I.; Wingefors, S.; Liljenzin, J.O.

    1984-01-01

    Results are reported from a hot test of a TALSPEAK type process for separation of higher actinides (Am, Cm) from lanthanides. Actinides and lanthanides are extracted by 1 M HDEHP and separated by selective strip of the actinides, using a mixture of DTPA and lactic acid (reversed TALSPEAK process). In order to minimize the generation of secondary waste, a procedure using recirculating DTPA-Lactic acid solution has been developed. A separation factor between Am and Eu of 132 was achieved. In regard to separations of Am and Cm from commercial HLLW (high level liquid wastes), the factor corresponds to 1.5% of the lanthanide group remaining with the actinides. The loss of Am was about 0.2%. 9 figures, 3 tables

  9. Photon parameters for gamma-rays sensing properties of some oxide of lanthanides

    Directory of Open Access Journals (Sweden)

    Shams A.M. Issa

    2018-06-01

    Full Text Available In the present research work, the mass attenuation coefficients (μm representing the interaction of gamma photons with some oxide of lanthanides (Lu2O3Yb2O3, Er2O3, Sm2O3, Dy2O3, Eu2O3, Nd2O3, Pr6O11, La2O3 and Ce2O3 were investigated using WinXCom software in the wide energy range of 1 keV–100 GeV. The calculated values of μm afterwards were used to evaluate some gamma rays sensing properties as effective atomic effective atomic numbers (Zeff, effective electron densities (Nel, half value layer (HVL and mean free path (MFP. The computed data observes that, the Lu2O3 shown excellent γ-rays sensing response in the broad energy range. At the absorption edges of the high elements present in the lanthanide compounds, more than a single value of Zeff were found due to the non-uniform variation of µm. Comparisons with experiments wherever possible have been achieved for the calculated µm and Zeff values. The calculated properties are beneficial expanded use of designing in radiation shielding, gas sensors, glass coloring agent and in electronic sensing devices. Keywords: Oxide of lanthanides, Gamma ray sensors, Effective atomic numbers, Half value layer

  10. Approximate estimation method of the degree of lanthanide tetr[ effect and application to the tetr[ effects in lanthanide ionic r[ii

    International Nuclear Information System (INIS)

    Minami, M.

    1998-01-01

    Fitting of qu[ratic curves to four defined subgroups of lanthanides shows that the tetr[ effects in Ln 3+ ionic r[ii with coordination number (CN) 6 are larger than those with CN 8. The features for the first tetr[ are peculiar compared with other three subgroups, with both CN. The observed facts can be explained in terms of configuration of 4f electron clouds and their interaction with ligands. (orig.)

  11. Sparkle/PM7 Lanthanide Parameters for the Modeling of Complexes and Materials.

    Science.gov (United States)

    Dutra, José Diogo L; Filho, Manoel A M; Rocha, Gerd B; Freire, Ricardo O; Simas, Alfredo M; Stewart, James J P

    2013-08-13

    The recently published Parametric Method number 7, PM7, is the first semiempirical method to be successfully tested by modeling crystal structures and heats of formation of solids. PM7 is thus also capable of producing results of useful accuracy for materials science, and constitutes a great improvement over its predecessor, PM6. In this article, we present Sparkle Model parameters to be used with PM7 that allow the prediction of geometries of metal complexes and materials which contain lanthanide trications. Accordingly, we considered the geometries of 224 high-quality crystallographic structures of complexes for the parameterization set and 395 more for the validation of the parameterization for the whole lanthanide series, from La(III) to Lu(III). The average unsigned error for Sparkle/PM7 for the distances between the metal ion and its coordinating atoms is 0.063Å for all lanthanides, ranging from a minimum of 0.052Å for Tb(III) to 0.088Å for Ce(III), comparable to the equivalent errors in the distances predicted by PM7 for other metals. These distance deviations follow a gamma distribution within a 95% level of confidence, signifying that they appear to be random around a mean, confirming that Sparkle/PM7 is a well-tempered method. We conclude by carrying out a Sparkle/PM7 full geometry optimization of two spatial groups of the same thulium-containing metal organic framework, with unit cells accommodating 376 atoms, of which 16 are Tm(III) cations; the optimized geometries were in good agreement with the crystallographic ones. These results emphasize the capability of the use of the Sparkle Model for the prediction of geometries of compounds containing lanthanide trications within the PM7 semiempirical model, as well as the usefulness of such semiempirical calculations for materials modeling. Sparkle/PM7 is available in the software package MOPAC2012, at no cost for academics and can be obtained from http://openmopac.net.

  12. Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell Efficiency.

    Science.gov (United States)

    Hajjiah, Ali; Samir, Effat; Shehata, Nader; Salah, Mohamed

    2018-05-23

    This paper introduces lanthanide-doped ceria nanoparticles as silicon solar cell back-side coaters, showing their influence on the solar cell efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce 4+ state ions to the Ce 3+ ones. These O-vacancies follow the rule of improving silicon solar cell conductivity through a hopping mechanism. Besides, under near-ultra violet (near-UV) excitation, the reduced trivalent cerium Ce 3+ ions are directly responsible for down converting the un-absorbed UV wavelengths to a resultant green photo-luminescence emission at ~520 nm, which is absorbed through the silicon solar cell’s active layer. Adding lanthanide elements such as Neodymium “Nd” as ceria nanoparticle dopants helps in forming extra oxygen vacancies (O-vacancies), followed by an increase in the number of Ce 4+ to Ce 3+ ion reductions, thus enhancing the conductivity and photoluminescence down conversion mechanisms. After introducing lanthanide-doped ceria nanoparticles on a silicon solar cell surface, a promising enhancement in the behavior of the solar cell current-voltage curve is observed, and the efficiency is improved by about 25% of its initial value due to the mutual impact of improving both electric conductivity and optical conversions.

  13. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows.

    Science.gov (United States)

    Cortelletti, P; Skripka, A; Facciotti, C; Pedroni, M; Caputo, G; Pinna, N; Quintanilla, M; Benayas, A; Vetrone, F; Speghini, A

    2018-02-01

    Lanthanide-activated SrF 2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd 3+ and Yb 3+ ) NIR emissions was applied to investigate the thermometric properties of the nanoparticles. It was found that an appropriate doping with Er 3+ ions can increase the thermometric properties of the Nd 3+ -Yb 3+ coupled systems. In addition, a core containing Yb 3+ and Tm 3+ can generate light in the visible and UV regions upon near-infrared (NIR) laser excitation at 980 nm. The multishell structure combined with the rational choice of dopants proves to be particularly important to control and enhance the performance of nanoparticles as NIR nanothermometers.

  14. Correlation of retention of lanthanide and actinide complexes with stability constants and their speciation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Viswanathan, K.S.; Ghosh, Suddhasattwa; Srinivasan, T.G.; Vasudeva Rao, P.R. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2013-03-01

    The present study describes a correlation that is developed from retention of lanthanide and actinide complexes with the stability constant. In these studies, an ion-pairing reagent, camphor-10-sulphonic acid (CSA) was used as the modifier and organic acids such as {alpha}-hydroxy isobutyric acid ({alpha}-HIBA), mandelic acid, lactic acid and tartaric acid were used as complexing reagent for elution. From these studies, a correlation has been established between capacity factor of a metal ion, concentration of ion-pairing reagent and complexing agent with the stability constant of metal complex. Based on these studies, it has been shown that the stability constant of lanthanide and actinide complexes can be estimated using a single lanthanide calibrant. Validation of the method was carried out with the complexing agents such as {alpha}-HIBA and lactic acid. It was also demonstrated that data from a single chromatogram can be used for estimation of stability constant at various ionic strengths. These studies also demonstrated that the method can be applied for estimation of stability constant of actinides with a ligand whose value is not reported yet, e.g., ligands of importance in the lanthanide-actinide separations, chelation therapy etc. The chromatographic separation method is fast and the estimation of stability constant can be done in a very short time, which is a significant advantage especially in dealing with radioactive elements. The stability constant data was used to derive speciation data of plutonium in different oxidation states as well as that of americium with {alpha}-HIBA. The elution behavior of actinides such as Pu and Am from reversed phase chromatographic technique could be explained based on these studies. (orig.)

  15. The extraction of lanthanides and americium by benzyldiakylamines and benzyltrialkylammonium nitrates from the nitrate solutions; structure and aggregation of their salts

    International Nuclear Information System (INIS)

    Jedinakova, V.; Zilkova, J.; Dvorak, Z.; Vojtiskova, M.

    1982-01-01

    Benzyldialkylamine and benzyltrialkylammonium nitrates were used for the extraction of lanthanides and americium from aqueous nitrate solutions. The dependence of the extraction performance for Ln(III) and Am(III) on the concentration of nitric acid, the kind and concentration of salting-out agents in the aqueous phase, and the kind of solvent were investigated. The extraction of Am(III) is compared with the extraction of lanthanides. The difference in distribution coefficients for lanthanides and americium can be utilized for the separation of lanthanides and americium. Using vapor phase osmometry and cryoscopy the association of these compounds was measured at 5.5deg, 25deg and 37deg C, allowing rough estimates of ΔH and ΔS for the formation of the aggregates, monomers in the case of benzyldiethylamine, benzyldibutylamine, benzyldihexylamine and benzyldioctylamine, tetramers for the benzyldibutylamine nitrate and tetramers for benzyldimethyldodecylammonium nitrate. (author)

  16. Dinitrogen and Related Chemistry of the Lanthanides: A Review of the Reductive Capture of Dinitrogen, As Well As Mono- and Di-aza Containing Ligand Chemistry of Relevance to Known and Postulated Metal Mediated Dinitrogen Derivatives

    Directory of Open Access Journals (Sweden)

    Damien N. Stringer

    2010-02-01

    Full Text Available This paper reviews the current array of complexes of relevance to achieving lanthanide mediated nitrogen fixation. A brief history of nitrogen fixation is described, including a limited discussion of successful transition metal facilitated nitrogen fixation systems. A detailed discussion of the numerous lanthanide-nitrogen species relevant to nitrogen fixation are discussed and are related to the Chatt cycle for nitrogen fixation.

  17. Study of the reaction between Uranium(III) and Lanthanide oxide by using the UV-VIS spectrophotometer

    International Nuclear Information System (INIS)

    Kim, Tack-Jin; Cho, Young-Hwan; Choi, In-Kyu; Choi, Kwang-Soon; Jee, Kwang-Yong

    2006-01-01

    Recently, ionic melts have become attractive reaction media in many fields. Molten salt based electrochemical processes have been proposed as a promising method for future nuclear programs and more specifically for spent fuel processing. Molten alkaline chloride based melts are considered as a promising reaction media. For this, it is interesting to understand the chemical nature of the actinides and lanthanides in high-temperature melt. Some spectroscopy provides essential information on the exact nature of f-block elements LiCl-KCl melt system. The knowledge on the basic chemical properties of these lanthanide oxides and U(III) in molten salt media is essential for developing suitable processes. However, few studies have been reported until now on the interaction between U metal and lanthanide oxides in LiCl-KCl melt. So, we studied the interaction between U(III) and Ln(III) by using the UV-VIS spectra. UV-vis spectrometry is a strong analytical technique for characterizing chemical species and their behavior in molten salt

  18. Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity

    Science.gov (United States)

    Shiju, C.; Arish, D.; Kumaresan, S.

    2013-03-01

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H2O2. The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  19. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    International Nuclear Information System (INIS)

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-01-01

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1–3 contain four types of 2 1 helical chains. While the Nd(III) ions are bridged through μ 2 -HIDC 2− and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of solvent DMF to formate acid or oxalic acid under solvothermal conditions. The isostructural complexes 1–3 contain four types of different 2 1 helical chains in the 2D layer and 1 exhibits bright red solid-state phosphorescence upon UV radiation. - Highlights: • Four unexpected 2D lanthanide coordination compounds have been synthesized through in situ reactions under solvothermal conditions. • The complexes 1–3 contain four types of 2 1 helical chains in the layer. • Complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature

  20. Simulating the synthesis and thermodynamic characteristics of the desolvation of lanthanide borohydride tris-Tetrahydrofuranates

    Science.gov (United States)

    Gafurov, B. A.; Mirsaidov, I. U.; Nasrulloeva, D. Kh.; Badalov, A.

    2013-10-01

    Lanthanide borohydride tris-tetrahydrofuranates (Ln(BH4) · 3THF, where THF is tetrahydrofuran and Ln is La, Nd, Sm, Gd, Er, Yb, and Lu) is synthesized via the exchange reaction of lanthanide(III) chloride and sodium borohydride in THF. It is found that synthesis proceeds according to a stepwise mechanism and the product of the reaction (lanthanide borohydride) initiates the process. The two-step character of the desolvation of Ln(BH4)3 · 3THF under steady-state conditions in the temperature range of 300 to 400 K is determined through X-ray phase and chemical analyses, tensiometry, and gas volumetry. It is established that one mole and then two moles of THF are removed from the initial sample at the first and second steps, respectively. Equations for barograms are obtained and the thermodynamic characteristics of desolvation of Ln(BH4)3 · 3THF under study are calculated. Gibbs energy values of the stages of process are determined semi-empirically. The law of its change for the entire series of Ln(BH4)3 · 3THF is determined with the emergence of the tetrad effect.

  1. Direct nano ESI time-of-flight mass spectrometric investigations on lanthanide BTP complexes in the extraction-relevant diluent 1-octanol

    International Nuclear Information System (INIS)

    Steppert, M.; Walther, C.; Geist, A.; Fanghanel, Th.

    2009-01-01

    The present work focuses on investigations of a highly selective ligand for Am(III)/Ln(III) separation: bis-triazinyl-pyridine (BTP). By means of nano-electro-spray mass spectrometry, complex formation of BTP with selected elements of the lanthanide series is investigated. We show that the diluent drastically influences complex speciation. Measurements obtained in the extraction-relevant diluent 1-octanol show the occurrence of Ln(BTP) i (i 1-3) species in different relative abundances, depending on the lanthanide used. Here, the relative abundances of the Ln(BTP) 3 complexes correlate with the distribution ratios for extraction to the organic phase of the respective lanthanide. (authors)

  2. Advances in lanthanide-based luminescent peptide probes for monitoring the activity of kinase and phosphatase.

    Science.gov (United States)

    Pazos, Elena; Vázquez, M Eugenio

    2014-02-01

    Signaling pathways based on protein phosphorylation and dephosphorylation play critical roles in the orchestration of complex biochemical events and form the core of most signaling pathways in cells (i.e. cell cycle regulation, cell motility, apoptosis, etc.). The understanding of these complex signaling networks is based largely on the biochemical study of their components, i.e. kinases and phosphatases. The development of luminescent sensors for monitoring kinase and phosphatase activity is therefore an active field of research. Examples in the literature usually rely on the modulation of the fluorescence emission of organic fluorophores. However, given the exceptional photophysical properties of lanthanide ions, there is an increased interest in their application as emissive species for monitoring kinase and phosphatase activity. This review summarizes the advances in the development of lanthanide-based luminescent peptide sensors as tools for the study of kinases and phosphatases and provides a critical description of current examples and synthetic approaches to understand these lanthanide-based luminescent peptide sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structural trends in a series of isostructural lanthanide-copper metallacrown sulfates (Ln(III) = Pr, Nd, Sm, Eu, Gd, Dy and Ho): hexaaquapentakis[μ3-glycinehydroxamato(2-)]sulfatopentacopper(II)lanthanide(III) heptaaquapentakis[μ3-glycinehydroxamato(2-)]sulfatopentacopper(II)lanthanide(III) sulfate hexahydrate.

    Science.gov (United States)

    Pavlishchuk, Anna V; Kolotilov, Sergey V; Fritsky, Igor O; Zeller, Matthias; Addison, Anthony W; Hunter, Allen D

    2011-07-01

    The seven isostructural complexes, [Cu(5)Ln(C(2)H(4)N(2)O(2))(5)(SO(4))(H(2)O)(6.5)](2)(SO(4))·6H(2)O, where Ln(III) = Pr, Nd, Sm, Eu, Gd, Dy and Ho, are representatives of the 15-metallacrown-5 family. Each dianion of glycinehydroxamic acid (GlyHA) links two Cu(II) cations forming a cyclic [CuGlyHA](5) frame. The Ln(III) cations are located at the centre of the [CuGlyHA](5) rings and are bound by the five hydroxamate O atoms in the equatorial plane. Five water molecules are coordinated to Cu(II) cations, and one further water molecule, located close to an inversion centre between two adjacent [Cu(5)Ln(GlyHA)(5)](2+) cations, is disordered around this inversion centre and coordinated to a Cu(II) cation of either the first or second metallacrown ether. Another water molecule and one of the two crystallographically independent sulfate anions are coordinated, the latter in a bidentate fashion, to the Ln(III) cation in the axial positions. The second sulfate anion is not coordinated to the cation, but is located in an interstitial position on a crystallographic inversion centre, thus leading to disorder of the O atoms around the centre of inversion. The Ln-O bond distances follow the trend of the lanthanide contraction. The apical Ln-O bond distances are very close to the sums of the ionic radii. However, the Ln-O distances within the metallacrown units are slightly compressed and the Ln(III) cations protrude significantly from the plane of the otherwise flat metallacrown ligand, thus indicating that the cavity is somewhat too small to accommodate the Ln(III) ions comfortably. This effect decreases with the size of the lanthanide cation from complex (I) (Ln(III) = Pr; 0.459) to complex (VII) (Ln(III) = Ho; 0.422), which indicates that the smaller lanthanide cations fit the cavity of the pentacopper metallacrown ring better than the larger ones. The diminished contraction of Ln-O distances within the metallacrown planes leads to an aniostropic contraction of the unit

  4. Calix[6]arenes functionalized with malondiamides at the upper rim as possible extractants for lanthanide and actinide cations

    International Nuclear Information System (INIS)

    Almaraz, M.; Esperanza, S.; Magrans, O.; Mendoza, J. de; Pradus, P.

    2001-01-01

    Lipophilic malondiamides have been recently employed successfully as extractants for lanthanide and actinide cations from strongly acidic media. Many complexes between malondiamides and lanthanide-actinides cations have been studied by different techniques. For many of these complexes it has been observed that more than one malondiamide ligand participates in the complexation of each metallic cation. Incorporation of two or three malondiamide moieties into a calixarene platform would probably improve both extraction and selectivity with respect to the already tested malondiamides. According to CPK examination, a calix[6]arene substituted at the upper rim with two or three malondiamide moieties should constitute a promising ligand for lanthanide and actinide cations due to co-operative complexation with the malondiamides. Based on these considerations, we synthesised calix[6]arenes functionalized with malonic acid derivatives. (author)

  5. X-ray absorption and magnetic studies of trivalent lanthanide ions sorbed on pristine and phosphate-modified boehmite surfaces

    International Nuclear Information System (INIS)

    Yoon, Soh-Joung; Helmke, Philip A.; Amonette, James E.; Bleam, William F.

    2002-01-01

    The feasibility of immobilizing radionuclides on mineral surfaces was examined in the absence and the presence of phosphate anions, using trivalent lanthanide ions (Eu3+, Gd3+, and Dy3+) as chemical analogues of trivalent actinide radionuclides. The amount of the lanthanide ions (Ln3+) sorbed on boehmite (gamma-AlOOH) surfaces dramatically increased on the presence of phosphate below pH 5. The structure of the sorbed lanthanide was determined by X-ray absorption spectroscopy, magnetic susceptibility measurements, and electron paramagnetic resonance spectroscopy. We proved Dy3+ forms precipitates on boehmite surfaces in the presence of phosphate, and Gd3+ both in the presence and absence of phosphate. In the presence of phosphate, however, these rare-earth cations react to from ultrafine particles of LnPO4 surface precipitates on boehmite surfaces

  6. Studies of lanthanide complexes by a combination of spectroscopic methods

    Czech Academy of Sciences Publication Activity Database

    Krupová, Monika; Bouř, Petr; Andrushchenko, Valery

    2015-01-01

    Roč. 22, č. 1 (2015), s. 44 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] Institutional support: RVO:61388963 Keywords : lanthanide complexes * chirality sensing * chirality amplification * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry

  7. Thermochemistry of selected lanthanide and actinide hydroxycarbonates and carbonates

    International Nuclear Information System (INIS)

    Merli, L.; Fuger, J.

    1996-01-01

    Lanthanide and actinide carbonates and hydroxycarbonates are, together with the hydroxides, important compounds in the problematics of high level waste disposal, since such and related compounds may appear as solid phases as a result of the interaction of the waste with natural waters. Experimental results on the stability and relationships between these compounds, particularly the hydroxycarbonates, are relatively fragmentary and arise mainly from solubility measurements, and, to a lesser extent, from enthalpy of formation determinations. We report here the enthalpies of formation of a number of well characterized hydroxycarbonates of trivalent lanthanides, namely those of neodymium, samarium, dysprosium, ytterbium, and of americium, as well as that of neodymium sesquicarbonate, using solution calorimetry in acidic media. The obtained values are discussed in the light of literature data on existing solubility and enthalpy of formation of related compounds. Our results have been obtained with a newly conceived sealed calorimeter, briefly described in the paper, in which the CO 2 produced during the dissolution reaction is maintained in solution, thus eliminating the problem of the kinetically slow evolution of the CO 2 (g) from the medium and the irregularities in the associated thermal effect. (orig.)

  8. Complexes of groups 3,4, the lanthanides and the actinides containing neutral phophorus donor ligands

    International Nuclear Information System (INIS)

    Fryzuk, M.D.; Haddad, T.S.; Berg, D.J.

    1990-01-01

    Of relevance to this review are complexes of the early transition elements, in particular groups 3 and 4 and the lanthanides and actinides. In this review the authors have attempted to collect all the data up to the end of 1988 for complexed of groups 3 and 4, the lanthanides and the actinides that contain phosphorus donor ligands. The 1989s have seen a renaissance of the use of phosphine donors for the early d elements (groups 3 and 4) and the f elements. Neutral phosphorus donors are defined as primary (PH 2 R), secondary (PH 2 ) or tertiary phosphines (PR 3 ), including complexes of phosphine, PH 3 . Also reviewed are complexes of PF 3 and phosphites, P(OR) 3 . Specifically excluded are phosphido derivates, PR 2 . The ability of a neutral phosphorus donor to bind the metals of groups 3 and 4, the lanthanides and the actinides is now well established. While there are still no examples of lanthanum or actinium phosphine complexes, such derivatives should be accessible at least for lanthanum. series. However, there is no obvious chemical reason to suggest that such derivatives cannot be generated. The phosphine ligands that appear to generate the most stable phosphine-metal interaction are chelating phosphines such as dmpe, trmpe and trimpsi. In addition, the use of the chelate effect in conjunction with a hard ligand such as the amide in - N(SiMe 2 CH 2 PMe 2 ) 2 , or an alkoxide as found in - OC(BU t ) 2 CH 2 PMe 2 , also appears to be effective in anchoring the phosphine donor to the metal. The majority of low oxidation state derivatives of the group 4 elements are stabilized by phosphine donors in contrast with other parts of the transition series where one finds that classic π-acceptor-type ligands such as CO or RNC are utilized. 233 refs

  9. Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish

    DEFF Research Database (Denmark)

    Baatrup, E

    1991-01-01

    metals are well known pollutants in the aquatic environment. Their interaction with relevant chemical stimuli may interfere with the communication between fish and environment. 5. The affinity for a number of ligands and macromolecules makes heavy metals most potent neurotoxins. 6. The present Mini......1. Today, fish in the environment are inevitably exposed to chemical pollution. Although most hazardous substances are present at concentrations far below the lethal level, they may still cause serious damage to the life processes of these animals. 2. Fish depend on an intact nervous system......, including their sense organs, for mediating relevant behaviour such as food search, predator recognition, communication and orientation. 3. Unfortunately, the nervous system is most vulnerable and injuries to its elements may dramatically change the behaviour and consequently the survival of fish. 4. Heavy...

  10. Adducts of between lanthanide (III) trifluoromethanesulfonate and yttrium (III) and tetramethylene sulphoxide ligand

    International Nuclear Information System (INIS)

    Assis Araujo, F. de.

    1983-01-01

    The synthesis, characterization and spectroscopic properties of lanthanides trifluoromethanesulfonate complexes with tetramethylenesulfoxide (TMSO), are described. The interpretation of X-ray powder patterns show one isomorphous series. (M.J.C.) [pt

  11. Comparison of the thermodynamic properties and high temperature chemical behavior of lanthanide and actinide oxides

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Rauh, E.G.

    1977-01-01

    The thermodynamic properties of the lanthanide and actinide oxides are examined, compared, and associated with a variety of high temperature chemical behavior. Trends are cited resulting from a number of thermodynamic and spectroscopic correlations involving solid phases, species in aqueous solution, and molecules and ions in the vapor phase. Inadequacies in the data and alternative approaches are discussed. The characterization of nonstoichiometric phases stable only at high temperatures is related to a network of heterogeneous and homogeneous equilibria. A broad perspective of similarity and dissimilarity between the lanthanides and actinides emerges and forms the basis of the projected needs for further study

  12. NMR study of heteroligand lanthanide complexes. Structure and stoichiometry of chelates of cerium subgroup with 18-member polyethers

    International Nuclear Information System (INIS)

    Bajbalov, S.P.; Kriger, Yu.G.

    1993-01-01

    Different ligand complexes of lanthanides were studied by the method of 1 H NMR, the results being presented. The literature data on the study of complexes of the class in solution were generalized. Detection of lanthanide-induced splitting of group CH 2 diastereotopic proton signals of macrocyclic polyethers in the complexes is enough to identify kinetically stable complexes, having inclusive type structure. 16 refs., 2 figs., 2 tabs

  13. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yuanzeng Min

    2014-02-01

    Full Text Available Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs, which can be excited by near-infrared (NIR laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  14. A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework

    International Nuclear Information System (INIS)

    Du, Pei-Yao; Liao, Sheng-Yun; Gu, Wen; Liu, Xin

    2016-01-01

    A 3D lanthanide MOF with formula [Sm 2 (abtc) 1.5 (H 2 O) 3 (DMA)]·H 2 O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol. - Highlights: • A three-dimensional lanthanide metal-organic framework has been synthesized. • Complex 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. • Complex 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules.

  15. Filled buckyballs: recent developments from the endohedral metallofullerenes of lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, F T [Magdeburg Univ. (Germany). Chemisches Inst.

    1995-05-15

    Metal-containing fullerenes - an intensively studied area of research. Recent developments in the field of endohedral metallofullerenes of lanthanides and the perspectives these results provide for the future are discussed herein. An additional theme is the specific incorporation of metal salts in carbon nanotubes, relatives of fullerenes, which Green et al. reported recently. (orig.)

  16. Addition compounds of yttrium and lanthanide perrhenates with tetramethylene sulphoxide

    International Nuclear Information System (INIS)

    Umeda, K.

    1977-01-01

    Adducts of lanthanide perrhenates with tetramethylene sulfoxide are prepared and characterized. The compounds having as general formula Ln(Re04) 3 .7.5 TMSO(ln=La-Lu and Y) are characterized by elemental analysis, infrared spectra, molar conductance measurements, x-ray powder patterns, differential scanning calorimetry curves, melting temperature range measurements and thermogravimetric analysis [pt

  17. Analysis of the shift of zero-phonon lines for f–d luminescence of lanthanides in relation to the Dorenbos model

    International Nuclear Information System (INIS)

    Zych, Aleksander; Ogieglo, Joanna; Ronda, Cees; Mello Donegá, Celso de; Meijerink, Andries

    2013-01-01

    The Dorenbos relation is an empirical model that relates the position of the lowest fd level of any lanthanide ion with that of Ce 3+ in the same host lattice. The relation is widely used to estimate the energy of fd levels of trivalent lanthanide ions in a given host lattice based on the peak position of the lowest fd level of at least one of the lanthanide ions in that host. The energy of fd levels is determined from peak maxima in excitation and emission spectra. In this work we use the position of zero-phonon lines (ZPLs) as input to investigate the accuracy of the Dorenbos relation. To this end, the ZPL positions of the fd bands for trivalent lanthanide ions in four different host lattices (CaF 2 , Y 3 Al 5 O 12 , LiYF 4 , and YPO 4 ) were obtained and used as input in the Dorenbos relation. The results are compared to those obtained through the standard procedure using band maxima. The data indicate that the ZPL approach gives more accurate estimates for the position of the lowest fd level with standard deviations that are 2–3 times smaller than those obtained for band maxima. The results confirm the concept of the Dorenbos model (constant energy difference between the fd levels of lanthanides) and show that the accuracy is even better than previously reported. The main cause for the larger deviation from positions of band maxima is related to a larger inaccuracy in determining band maxima compared to ZPLs. - Highlights: ► Zero-phonon lines were measured for the lanthanide series in different hosts. ► Values for the Dorenbos relation were revised for the zero-phonon line approach. ► Revised values are based on multiple materials where zero-phonon lines are observed.

  18. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    International Nuclear Information System (INIS)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-01-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln 2 (Hpdc) 2 (C 2 O 4 )(H 2 O) 4 ] n ·2nH 2 O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H 3 pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H 3 pdc was decomposed into (ox) 2− with Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P2 1 /c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1–4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities. - Graphical abstract: Four 3D microporous lanthanide coordination polymers with reversible structural interconversion have been synthesized. They exhibit characteristic emission bands of the lanthanide ions and possess great thermal stability. - Highlights: • Four lanthanide coordination polymers have been hydrothermal synthesized. • There is an in situ reaction in 1 in which H 3 pdc was decomposed into (ox) 2− with the Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. • TGA and XRD studies reveal that upon hydration–dehydration, compounds 1–4 undergo a reversible structural interconversion process through a cooling-heating cycle. • Compounds 1–4 exhibit characteristic lanthanide-centered luminescence

  19. Theory of the normal modes of vibrations in the lanthanide type crystals

    Science.gov (United States)

    Acevedo, Roberto; Soto-Bubert, Andres

    2008-11-01

    For the lanthanide type crystals, a vast and rich, though incomplete amount of experimental data has been accumulated, from linear and non linear optics, during the last decades. The main goal of the current research work is to report a new methodology and strategy to put forward a more representative approach to account for the normal modes of vibrations for a complex N-body system. For illustrative purposes, the chloride lanthanide type crystals Cs2NaLnCl6 have been chosen and we develop new convergence tests as well as a criterion to deal with the details of the F-matrix (potential energy matrix). A novel and useful concept of natural potential energy distributions (NPED) is introduced and examined throughout the course of this work. The diagonal and non diagonal contributions to these NPED-values, are evaluated for a series of these crystals explicitly. Our model is based upon a total of seventy two internal coordinates and ninety eight internal Hooke type force constants. An optimization mathematical procedure is applied with reference to the series of chloride lanthanide crystals and it is shown that the strategy and model adopted is sound from both a chemical and a physical viewpoints. We can argue that the current model is able to accommodate a number of interactions and to provide us with a very useful physical insight. The limitations and advantages of the current model and the most likely sources for improvements are discussed in detail.

  20. An optical authentication system based on imaging of excitation-selected lanthanide luminescence.

    Science.gov (United States)

    Carro-Temboury, Miguel R; Arppe, Riikka; Vosch, Tom; Sørensen, Thomas Just

    2018-01-01

    Secure data encryption relies heavily on one-way functions, and copy protection relies on features that are difficult to reproduce. We present an optical authentication system based on lanthanide luminescence from physical one-way functions or physical unclonable functions (PUFs). They cannot be reproduced and thus enable unbreakable encryption. Further, PUFs will prevent counterfeiting if tags with unique PUFs are grafted onto products. We have developed an authentication system that comprises a hardware reader, image analysis, and authentication software and physical keys that we demonstrate as an anticounterfeiting system. The physical keys are PUFs made from random patterns of taggants in polymer films on glass that can be imaged following selected excitation of particular lanthanide(III) ions doped into the individual taggants. This form of excitation-selected imaging ensures that by using at least two lanthanide(III) ion dopants, the random patterns cannot be copied, because the excitation selection will fail when using any other emitter. With the developed reader and software, the random patterns are read and digitized, which allows a digital pattern to be stored. This digital pattern or digital key can be used to authenticate the physical key in anticounterfeiting or to encrypt any message. The PUF key was produced with a staggering nominal encoding capacity of 7 3600 . Although the encoding capacity of the realized authentication system reduces to 6 × 10 104 , it is more than sufficient to completely preclude counterfeiting of products.

  1. Investigation of lanthanides as neutron multipliers for hybrid and fusion reactor blankets

    International Nuclear Information System (INIS)

    Sahin, Sumer

    1982-01-01

    The neutronic performance of three lanthanides ( 149 Sm, europium, and gadolinium) as neutron multiplier for the blanket of a fusion-fission (hybrid) and a pure fusion reactor has been evaluated and compared with that of beryllium and lead. During the calculations, the fission zone is made up of UO 2 rods from the LOTUS experimental hybrid facility now under construction at the Nuclear Engineering Laboratory of the Swiss Federal Institute of Technology in Lausanne. In fusion blanket the fuel zone is replaced by pure lithium. The calculations were performed for two different boundary conditions for the left boundary: (a) reflecting, representative of a typical confinement geometry, and (b) vacuum, which represents a typical blanket experiment in plane geometry. For a vacuum left boundary, threshold reactions are reduced by a factor of about 2 while 1/v-type reactions are decreased by a factor of between 5 and 10, as a consequence of the softer spectrum produced by a reflecting left boundary. In general, the results, notably tritium breeding and energy multiplication, are comparable for the lanthanide multipliers and for beryllium and lead if the left boundary is a vacuum. The use of 149 Sm is slightly less effective than europium or gadolinium and all of the lanthanides perform better for a vacuum left boundary than for the reflecting case. The analyses presented here also illustrate the importance of potential spectral shifts that can occur as the result of experimental exigencies

  2. Polysulfide coordination clusters of the lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ying-Zhao; Bestgen, Sebastian; Gamer, Michael T.; Roesky, Peter W. [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Karlsruhe (Germany); Konchenko, Sergey N. [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Karlsruhe (Germany); Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk (Russian Federation); Novosibirsk State University (Russian Federation)

    2017-10-16

    The reaction of [(DippForm){sub 2}Ln(thf){sub 2}] with an excess of elemental sulfur in toluene resulted in the formation of the trinuclear polysulfide coordination clusters [(DippForm){sub 3}Ln{sub 3}S{sub 12}] (Ln=Sm, Yb; DippForm=N,N'-bis(2,6-diisopropylphenyl)formamidinate). These are the first f element coordination clusters (Ln{sub n}S{sub x}) with a larger polysulfide unit (n and x>2). The formation of the coordination clusters can be rationalized by the reductive cleavage of S{sub 8} with divalent lanthanides. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Study of electron spectra of lanthanide complexes with carbonyl-containing reagents

    International Nuclear Information System (INIS)

    Tishchenko, M.A.; Gerasimenko, G.I.; Markina, A.I.; Tishchenko, V.V.; Rybalka, V.B.; Tsitko, A.S.

    1990-01-01

    Interaction of lanthanide complexes (Ln=Er, Nd, Ho) of 2-acetylindandione-1,3 with polyphenols was investigated by the methods of electron spectroscopy. Position, intensity, oscillator strengths of supersensitive transitions, formed in the system of different-ligand complexes were determined. 10 refs.; 4 figs.; 3 tabs

  4. Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora; Jensen, Kim Degn; Stephens, Ifan E.L.

    2017-01-01

    Platinum-lanthanide alloys are very promising as active and stable catalysts for the oxygen reduction reaction (ORR) in low-temperature fuel cells. We have fabricated Pt and Pt5Gd metallic thin films via (co-)sputtering deposition in an ultra-high vacuum (UHV) chamber. The electrochemical ORR...

  5. Separation process for lanthanides based on solvation properties of non ionic surfactants

    International Nuclear Information System (INIS)

    Draye, M.; Favre-Reguillon, A.; Foos, J.; Cote, G.

    2004-01-01

    In the present study, cloud-point extraction is used with a lipophilic chelating agent (8-hydroxyquinoline) to extract and separate lanthanum (III) and gadolinium (III) from an aqueous solution. The methodology used is based on the formation of lanthanide (III) organic complexes that are soluble in a micellar phase of non-ionic surfactant. The lanthanide (III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud-point temperature. The cloud-point temperature, the structure of the lipophilic part of the nonionic surfactant and the chelating agent - metal molar ratio are identified as factors determining the extraction efficiency and selectivity. With Triton X-114, high selectivity and decontamination factor for Gd(III) is observed indicating that micelle mediated extraction involving cloud-point extraction is promising for the specific separation of actinide ions from nuclear waste solution. (authors)

  6. Lanthanide metal complex-based membrane electrodes for sensing of biological amino alcohols

    International Nuclear Information System (INIS)

    Mahajan, Rakesh Kumar; Kaur, Ravneet; Shinoda, Satoshi; Tsukube, Hiroshi

    2008-01-01

    Electrodes selective for amino alcohols were prepared by incorporating lanthanide tris(β-diketonates) in PVC membranes, which formed 1:1 highly coordinated complexes with amino alcohols. Several electrodes gave near-Nernstian slopes for 2-amino-3-methyl-1-butanol in the linear concentration range of 1.0 x 10 -1 to 1.0 x 10 -3 M, while the low detection limits of these electrodes were order of ∼10 -4 M. Although the observed response profiles were significantly dependent on the natures of the targeted amino alcohols, the electrodes exhibited stable potentiometric signals in the pH range of 6-12 in short time period of 20 s. The related monoalcohol, diol, and zwitterionic amino acid substrates gave no response, indicating that the present type of lanthanide tris(β-diketonates) were applicable in potentiometric sensing of amino alcohols

  7. Synthesis and study on complexes of some lanthanides to L-isoleucine

    International Nuclear Information System (INIS)

    Le Minh Tuan; Pham Minh Tuan; Tran The Dinh

    2007-01-01

    The formation of lanthanide (La, Pr and Nd) complexes with L-isoleucine have been studied as a function of pH values. The titrations were performed at 25 o C, and the ionic strength of the medium was maintained at 0.10 M by using potassium nitrate. The formation curves of their complexes (n-p[L]) were obtained by means of the titration data. Then the stability constants were determined in relation to these curves. The complexes were synthesized in the mixture of water-ethanol. The coordination of the complexes were determined by elements analysis, 13 C-NMR, 1 H-NMR and IR methods. These complexes are formulated as Ln(HIle) 3 .(NO 3 ) 3 .3H 2 O; (Ln: La, Pr and Nd,; L-Ile: L-isoleucine). Comparison of the IR, 13 C-NMR and 1 H-NMR spectra of the ligand with those of their complexes shows that isoleucine acts as a bidentate ligand bonding the lanthanide ions through the amino and carboxylate groups. (author)

  8. Role of Lanthanides in the Traceability of the Milk Production Chain.

    Science.gov (United States)

    Aceto, Maurizio; Musso, Davide; Calà, Elisa; Arieri, Fabio; Oddone, Matteo

    2017-05-24

    The traceability and authentication of milk were studied using trace and ultratrace elements as chemical markers. Among these variables, the group of lanthanides resulted in being particularly useful for this purpose as a result of their homogeneous distribution inside milk, which showed on the contrary to be intrinsically inhomogeneous from the elemental point of view. Using in this pilot study milk samples from a factory in Piedmont (Italy), we demonstrated that the distribution of lanthanides can be used as a fingerprint to put into relation the soil of the pasture land on which cows graze and the bottled milk produced in the factory. In fact, the distribution is maintained nearly unaltered along the production chain of milk, apart from the passage into the stomachs of the cows. Using the same variables, it was possible to discriminate between milk produced in the factory and milk samples taken from the large-scale retail trade.

  9. Controlled synthesis of bright and compatible lanthanide-doped upconverting nanocrystals

    Science.gov (United States)

    Cohen, Bruce E.; Ostrowski, Alexis D.; Chan, Emory M.; Gargas, Daniel J.; Katz, Elan M.; Schuck, P. James; Milliron, Delia J.

    2017-01-31

    Certain nanocrystals possess exceptional optical properties that may make them valuable probes for biological imaging, but rendering these nanoparticles biocompatible requires that they be small enough not to perturb cellular systems. This invention describes a phosphorescent upconverting sub-10 nm nanoparticle comprising a lanthanide-doped hexagonal .beta.-phase NaYF.sub.4 nanocrystal and methods for making the same.

  10. Biocombatibility and in vivo toxicity assessment of multilayered polymer encapsulated lanthanide doped particles

    International Nuclear Information System (INIS)

    Dhanya, C.R.; Sri Sivakumar; Jaishree, J.; Abraham, Annie

    2013-01-01

    Layer-by-layer (LbL) deposition technique has led to the development of multilayered multifunctional nanoparticles that can prove to be promising system for directed drug delivery. Recently, surface functionalized Lanthanide doped nanoparticles have been explored as a candidate for biomedical applications like bio-detection, fluorescence imaging and drug delivery. The toxicity behaviors of biomedical devices proposed for therapeutic use in human must be checked for their toxicity behaviors in animal models. Here, we have presented an initial systematic animal toxicity study of polymer encapsulated lanthanide doped particle in Swiss Albino mice. Polymer coated LNPs with concentration of 100 nM in PBS was administered intravenously through tail vein according to body weight (4μl/g). Animal behavior, survival and animal mass, were monitored and evaluated over short-term (one week) and long-term (one month) periods, after which animals were euthanized. Blood was collected for evaluating clinical biochemistry (SGOT and SGPT) and hematological parameters, and tissues (liver and kidney) for organ histology. Results demonstrated normal serum clinical biochemistry in animals for both short and long time exposure. Histological examination of LNP treated mice also showed normal histology of liver and kidney even after one month of administration. Similar results were obtained for hematological evaluation. Results exhibited the systemic nontoxic nature of the polymer encapsulated lanthanide particles and their suitability as a tool for tumor targeted drug delivery. (author)

  11. Local Structure in Americium and Californium Hexa-cyanoferrates - Comparison with Their Lanthanide Analogues

    International Nuclear Information System (INIS)

    Dupouy, G.; Bonhoure, I.; Dumas, Th.; Moisy, Ph.; Petit, S.; Den Auwer, Ch.; Conradson, St.D.; Hennig, Ch.; Scheinost, A.C.; Le Naour, C.; Simoni, E.

    2011-01-01

    Metal hexa-cyanoferrates are well known molecular solids for a large variety of cations, although very little has been described for actinide adducts. Two new members of actinide(III) hexa-cyanoferrates were synthesized with the cations americium and californium. They were structurally characterized by infrared and X-ray absorption spectroscopy. Combined EXAFS data at the iron K edge and actinide L 3 edge provide evidence for a three-dimensional model for these two new compounds. Structural data in terms of bond lengths were compared to those reported for the parent lanthanide(III) compounds, neodymium and gadolinium hexa-cyanoferrates, respectively: the americium compound with (KNd(III)Fe(II)-Fe-III(CN) 6 .4H 2 O and the californium compound with (KGd(III)Fe(II)(CN) . 3.5H 2 O and (KGd(III)Fe(II)(CN) 6 .3H 2 O. This comparison between actinide and lanthanide homologues has been carried out on the basis of ionic radii considerations. The americium and neodymium environments appear to be very similar and are arranged in a tri-capped trigonal prism polyhedron of coordination number 9 (CN: 9), in which the americium atom is bonded to six nitrogen atoms and to three water molecules. For the californium adduct, a similar comparison and bond length and angle values derived from EXAFS studies suggest that the californium cation sits in a bi-capped trigonal prism (CN: 8) as in (KGd(III)Fe(II)(CN) 6 . 3H 2 O. This arrangement differs from that in the structure of (KGd(III)Fe(II)(CN) 6 .3.5H 2 O, in which the gadolinium atom is surrounded by 9 atoms. This is one of the rare pieces of information revealed by EXAFS spectroscopy for americium and californium in comparison to lanthanide atoms in molecular solid compounds. A discussion on the decrease in bond length and coordination number from americium to californium is also provided, on the basis of crystallographic results reported in the literature for actinide(III) and lanthanide(III) hydrate series. (authors)

  12. Lanthanide Organophosphate Spiro Polymers: Synthesis, Structure, and Magnetocaloric Effect in the Gadolinium Polymer.

    Science.gov (United States)

    Gupta, Sandeep K; Bhat, Gulzar A; Murugavel, Ramaswamy

    2017-08-07

    Spirocyclic lanthanide organophosphate polymers, {[Ln(dipp)(dippH)(CH 3 OH)(H 2 O) 2 ](CH 3 OH) 2 } n [Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Ho (10), Er (11)], have been prepared from the reaction of Ln(NO 3 ) 3 ·xH 2 O with sterically hindered 2,6-diisopropylphenyl phosphate (dippH 2 ) using aqueous NaOH as the base. The one-dimensional chainlike lanthanide (III) organophosphate coordination polymers have been characterized with the aid of analytical and spectroscopic methods. The single crystal structure determination of polymers (2-5 and 7-11) reveals that in these compounds the hydrophobic organic groups of the phosphate provide a protective coating for the inorganic lanthanide phosphate polymeric chain. The encapsulation of inorganic lanthanide phosphate core, which has very low solubility product, within the organic groups assists in the facile crystallization of the polymers. The di- and monoanionic organophosphate ligands dipp 2- and dippH - display [2.111] and [2.110] binding modes, respectively, in 2-5 and 7. However, they exhibit only [2.110] binding mode in the case of 8-11. This results in the formation of two different types of polymers. While the lighter rare-earth metal ions in 2-5 and 7 display eight coordinate biaugmented trigonal prismatic geometry, the heavier rare-earth metal ions in 9-11 exhibit a seven coordinate capped trigonal prismatic environment. The Tb(III) ion in 8 displays distorted pentagonal bipyramidal geometry. Magnetic studies reveal the presence of weak antiferromagnetic interactions between the Ln(III) ions through the organophosphate ligand. The isotropic Gd(III) polymer 7 exhibits a maximum entropy change of 17.83 J kg -1 K -1 for a field change of 7.0 T at 2.5 K, which is significant considering the high molecular weight of the organophosphate ligand. These polymers represent the first family of any structurally characterized rare-earth organophosphate polymers derived from monoesters

  13. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in- situ formed lanthanide complexes

    Science.gov (United States)

    Wang, Yige; Wang, Li; Li, Huanrong; Liu, Peng; Qin, Dashan; Liu, Binyuan; Zhang, Wenjun; Deng, Ruiping; Zhang, Hongjie

    2008-03-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.

  14. New strategies for the chemical separation of actinides and lanthanides

    International Nuclear Information System (INIS)

    Hudson, M.J.; Iveson, P.B.

    2002-01-01

    A general model is proposed for the effective design of ligands for partitioning. There is no doubt that the correct design of a molecule is required for the effective separation by separation of metal ions such as lanthanides(III) and actinides(III). Heterocyclic ligands with aromatic rings systems have a rich chemistry, which is only now becoming sufficiently well understood, in relation to the partitioning process. The synthesis, characterisation and structures of some chosen molecules will be introduced in order to illustrate some important features. For example, the molecule N-butyl-2-amino-4,6-di (2-pyridyl)-1,3,5-triazine (BADPTZ), which is an effective solvent extraction reagent for actinides and lanthanides, has been synthesised, characterised and its interaction with metal ions studied. The interesting and important features of this molecule will be compared with those of other heterocyclic molecules such as 2,6-bis(5-butyl-1,2,4-triazol-3-yl) pyridine (DBTZP), which is a candidate molecule for the commercial separation of actinides and lanthanide elements. Primary Coordination Sphere. One of the most critical features concerning whether a molecule is a suitable extraction reagent is the nature of the binding and co-ordination in the primary co-ordination sphere. This effect will be considered in depth for the selected heterocylic molecules. It will be shown how the bonding of the heterocyclic and nitrate ligands changes as the complete lanthanide series is traversed from lanthanum to lutetium. For effective solvent extraction, the ligand(s) should be able completely to occupy the primary co-ordination sphere of the metal ion to be extracted. Interactions in the secondary co-ordination sphere are of less importance. Inter-complex Hydrogen Bonding Interactions. Another feature that will be considered is the intermolecular binding between ligands when bound to the metal ion. Thus the intermolecular structures between complex molecules will be considered

  15. Versatile lanthanide-azide complexes with azide/carboxylate/hydroxy mixed bridged chain exhibiting magnetic and luminescent properties

    International Nuclear Information System (INIS)

    Wang Haichao; Xue Min; Guo Qian; Zhao Jiongpeng; Liu Fuchen; Ribas, Joan

    2012-01-01

    Two new lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb for 1 and Tb for 2, isonic=isonicotinate), were obtained in hydrothermal condition. X-ray diffraction analysis indicated the two complexes are isomorphic chain structure in which the Ln III ions are mixed bridged by the azide anions, hydroxyl anions and carboxylate groups of the isonicotinate ligands. Further studies indicated weak antiferromagnetic interactions between the Ln III ions in 1 and 2, and complex 2 exhibit green sensitized Luminescent character of Tb III ion. - Graphical abstract: Two new 1D lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb III for 1 and Tb III for 2, isonic=isonicotinate), were synthesized by hydrothermal reaction and exhibit interesting magnetism and fluorescence properties. Highlights: ► The research provided a new method for synthesizing lanthanide-azide complexes. ► The complexes have an interesting azide/hydroxyl/carboxylate mixed bridged1D chain structure. ► The antiferromagnetic coupling between the complexes and 2 displays green luminescence.

  16. Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, K; Abrao, A

    1975-06-01

    The separation of individual lanthanides, especially Ce, Nd, Pr, Sm and La, from a rare earth chlorides concentrate by the industrial processing of monazite sand is made. To reach this goal the homogeneous fractional precipitation and ion exchange techniques were combined. Using the rare earths concentrate depleted in Cerium, fractions enriched in Nd, Pr and Sm, and one final filtrate enriched in La were obtained, by the hydrolysis of urea. The separation of individual lanthanides (Nd, Pr, Sm and La) was accomplished using two strong cationic ion exchanger columns, the second with Cu(II) as retaining ion, and EDTA-NH/sub 4/ solution buffered with acetic acid as eluant. The annoying problem of precipitation into the column during the RE elution was solved. The difficult EDTA and Cu(II) recovery was the precipitation of Cu/sub 2/S and disruption of Cu-EDTA complex by hydrolysis of thiourea. The combination of both techniques allowed the preparation of individual lanthanides as Nd, Pr and La with 99% and Sm with 90% purity.

  17. Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange

    International Nuclear Information System (INIS)

    Umeda, K.; Abrao, A.

    1975-01-01

    The separation of individual lanthanides, especially Ce, Nd, Pr, Sm and La, from a rare earth chlorides concentrate by the industrial processing of monazite sand is made. To reach this goal the homogeneous fractional precipitation and ion exchange techniques were combined. Using the rare earths concentrate depleted in Cerium, fractions enriched in Nd, Pr and Sm, and one final filtrate enriched in La were obtained, by the hydrolysis of urea. The separation of individual lanthanides (Ns, Pr, Sm and La) was accomplished using two strong cationic ion exchanger columns, the second with Cu(II) as retaining ion, and EDTA-NH 4 solution buffered with acetic acid as eluant. The annoy problem of precipitation into the column during the RE elution was solved. The difficult EDTA and Cu(II) recovery was the precipitation of Cu 2 S and disruption of CU-EDTA complex by hydrolysis of thiourea. The combination of both techniques allowed the preparation of individual lanthanides as Nd, Pr and La with 99% and Sm with 90% purity

  18. Synthesis and characterization of lanthanide based nanomaterials for radiation detection and biomedical applications

    Science.gov (United States)

    Yao, Mingzhen

    2011-12-01

    Lanthanide based nanomaterials have shown a great potential in various areas such as luminescence imaging, luminescent labels, and detection of cellular functions. Due to the f-f transitions of the metal ion, luminescence of lanthanide ions is characterized by sharp and narrow emissions. In this dissertation lanthanide based nanoparticles such as Ce3+, Eu3+ and other lanthanide ions doped LaF3 were synthesized, their characterization, encapsulation and embedding into hybrid matrix were investigated and some of their biomedical and radiological applications were studied. DMSO is a common solvent which has been used widely for biological applications. LaF3:Ce nanoparticles were synthesized in DMSO and it was found that their fluorescent emission originates from the metal-to-ligand charge-transfer excited states. After conjugation with PpIX and then encapsulation within PLGA, the particles show efficient uptake by cancer cells and great cytotoxicity, which is promising for applications in cancer treatments. However, the emission of Eu3+ in DMSO is totally different from LaF3:Ce, very strong characteristic luminescence is observed but no emissions from metal-to-ligand charge-transfer excited states as observed in LaF3:Ce in DMSO. Besides, it is very interesting to see that the coupling of Eu 3+ with O-H oscillations after water was introduced has an opposite effect on emission peaks at 617 nm and its shoulder peak at 613 nm. As a result, the intensity ratio of these two emissions has a nearly perfect linear dependence on increasing water concentration in Eu-DMSO, which provides a very convenient and valuable method for water determination in DMSO. Ce3+ has been well known as an emitter for radiation detection due to its very short decay lifetime. However, its emission range limited the environment in which the detection system works. Whereas, Quantum dots have high luminescence quantum efficiency but their low stopping power results in very weak scintillation

  19. X-ray study of chemical bonding in actinides(IV) and lanthanides(III) hexa-cyanoferrates

    International Nuclear Information System (INIS)

    Dumas, T.

    2011-01-01

    Bimetallic cyanide molecular solids derived from Prussian blue are well known to foster long-range magnetic ordering and show an intense inter-valence charge transfer band resulting from an exchange interaction through the cyanide-bridge. For those reasons the ferrocyanide and ferricyanide building blocks have been chosen to study electronic delocalization and covalent character in actinide bonding using an experimental and theoretical approach based on X-ray absorption spectroscopy. In 2001, the actinide (IV) and early lanthanides (III) hexacyanoferrate have been found by powder X-ray diffraction to be isostructural (hexagonal, P6 3 /m group). Here, extended X-ray Absorption Fine Structure (EXAFS) at the iron K-edge and actinide L 3 -edge have been undertaken to probe the local environment of both actinides and iron cations. In an effort to describe the cyano bridge, a double edge fitting procedure including both iron and actinide edges and based on multiple scattering approach has been developed. We have also investigated the electronic properties of these molecular solids. Low energy electronic transitions have been used iron L 2,3 edge, nitrogen and carbon K-edge and also actinides N 4,5 edge to directly probe the valence molecular orbitals of the complex. Using a phenomenological approach, a clear distinctive behaviour between actinides and lanthanides has been shown. Then a theoretical approach using quantum chemistry calculation has shown more specifically the effect of covalency in the actinide-ferrocyanide bond. More specifically, π interactions were underlined by both theoretical and experimental methods. Finally, in agreement with the ionic character of the lanthanide bonding no inter-valence charge transfer has been observed in the corresponding optical spectra of these compounds. On the contrary, optical spectra for actinides adducts (except for thorium) show an intense inter-valence charge transfer band like in the transition metal cases which is

  20. A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Du, Pei-Yao [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China); Liao, Sheng-Yun [Department of Applied Chemistry, Tianjin University of Technology, Tianjin 300384 (China); Gu, Wen, E-mail: guwen68@nankai.edu.cn [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China); Liu, Xin, E-mail: liuxin64@nankai.edu.cn [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China)

    2016-12-15

    A 3D lanthanide MOF with formula [Sm{sub 2}(abtc){sub 1.5}(H{sub 2}O){sub 3}(DMA)]·H{sub 2}O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol. - Highlights: • A three-dimensional lanthanide metal-organic framework has been synthesized. • Complex 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. • Complex 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules.

  1. Luminescence and host lattice structure of crystalline micro and nanoparticles co-doped with lanthanide ions

    International Nuclear Information System (INIS)

    Zurba, Nadia Khaled; Ferreira, Jose Maria da Fonte

    2012-01-01

    This article reports the investigation of crystalline micro and nanoparticles codoped with lanthanide ions, aiming at correlate their host lattice structure and chemical composition to the luminescence features. For this purpose, five phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy coupled to energy dispersive X-ray (EDX) spectroscopy, and photoluminescence (PL) spectroscopy, namely performed by their chromatic coordinates, radiance, luminance and PL emission spectra. This type of investigation concerning the optical characterization of luminescent crystalline micro and nanoparticles doped with lanthanide ions might be useful for scientific and practical applications, such as in light-emitting devices, luminescent paintings, ceramics, sensors, in nanoscience and nanotechnology. (author)

  2. Paleotransport of lanthanides and strontium recorded in calcite compositions from tuffs at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Chipera, S.J.

    1996-01-01

    Secondary calcite occurs in both saturated and unsaturated hydrologic zones (SZ and UZ, respectively) in the tuffs at Yucca Mountain, Nevada, USA. In the upper UZ, the major constituents of the calcite crystal structure (C, O) have surface origins. At greater depth there is a open-quotes barren zone,close quotes straddling the water table, where calcite is rare and mixing of surface and subsurface sources may occur. Deep in the SZ, distinctive Mn calcites reflect deep sources, including Ca released as analcime or albite formed and carbonates derived from underlying Paleozoic rocks. In the UZ and in the barren zone, above the deep Mn calcites, variations in calcite lanthanide chemistry can be used to distinguish rhyolitic from quartz-latitic sources. Lanthanide ratios and Sr contents of calcites record the chemical evolution of waters flowing through the UZ and upper SZ. Variations in calcite chemistry in the UZ and in the barren zone show that (1) Sr, which is readily exchanged with clays or zeolites, is essentially removed from some flowpaths that are in contact with these minerals and (2) traces of Mn oxides found in the tuffs have a significant effect of groundwater chemistry in the UZ and in the barren zone by removing almost all Ce from solution (evidenced by characteristic Ce depletions in calcite throughout this zone). Extreme Ce removal may be a result of Ce oxidation (Ce 3+ → Ce 4+ ) at the surfaces of some Mn oxides, particularly rancieite. Higher Sr contents and lack of Ce depletions in the deeper Mn calcites reflect different ages, origins, and transport systems. The calcite record of lanthanide and Sr transport in the UZ shows that minor minerals (clays and zeolites) and even trace minerals (Mn oxides) will affect the compositions of groundwaters that flow over distances greater than a few tens of meters. 43 refs., 8 figs., 4 tabs

  3. Secondary electronic processes and the structure of X-ray photoelectron spectra of lanthanides in oxygen-containing compounds

    International Nuclear Information System (INIS)

    Teterin, Yu.A.; Teterin, A.Yu.; Lebedev, A.M.; Ivanov, K.E.

    2004-01-01

    X-ray photoelectron spectra of lanthanide compounds in the binding energy range 0-1250 eV beside the spin-orbitally split doublets exhibit fine structure. In particular, in the low-energy spectral range 0-50 eV such structure appears most likely due to the formation of the inner (IVMO) and outer (OVMO) valence molecular orbitals. The many-body perturbation shows up in the spectra of all the studied electronic shells but with different probabilities, while the multiplet splitting and dynamic effect in the spectra of just some inner shells. The present work studies the X-ray photoelectron spectral structure of lanthanide (La-Lu except for Pm) oxides and orthoniobates due to the secondary electronic processes accompanying the photoemission from the inner shells: many-body perturbation and dynamic effect. As a result, for example, the relative intensity of the line due to the many-body perturbation (shake-up process) with ΔE sat ∼4 eV for LaNbO 4 was found to decrease with decreasing of the binding energy of the inner electrons from 0.72 (E b for La 3d 5/2 =834.8 eV) to 0.28 (E b for La 4d 5/2 =102.9 eV). The full-width at half-maximum of the Ln 3d 5/2 line of lanthanide oxides and orthoniobates decreases as the atomic number Z of lanthanide grows in the range 58≤Z≤67 to the middle of the lanthanide row, and then increases. This agrees with the fact that for the beginning of the lanthanide row the Ln 3d 5/2 photoemission is accompanied by the shake-up process, while for the second half of the row--by the shake-down. It is important to note that it is connected with the Ln 4f binding energy change relative to the OVMO in compounds. The present work also confirms experimentally that the dynamic effect due to the gigantic Coster-Kronig transitions observed in the Ln 4p spectra takes place within the inner Ln 4p, 4d and outer Ln 4f shells with formation of the additional two-hole final state Ln 4p 6 4d 8 4f n+1 . The influence of the chemical environment on the Ln 4

  4. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    Science.gov (United States)

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  5. Hysteresis in Lanthanide Zirconium Oxides Observed Using a Pulse CV Technique and including the Effect of High Temperature Annealing.

    Science.gov (United States)

    Lu, Qifeng; Zhao, Chun; Mu, Yifei; Zhao, Ce Zhou; Taylor, Stephen; Chalker, Paul R

    2015-07-29

    A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrO x ; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N₂ ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 10 12 cm -2 for as-deposited sample to 4.55 × 10 12 cm -2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10 - ⁶ A/cm² at V g = +0.5 V for the as-deposited sample to 10 -3 A/cm² at V g = +0.5 V for the 900 °C annealed one.

  6. Hysteresis in Lanthanide Zirconium Oxides Observed Using a Pulse CV Technique and including the Effect of High Temperature Annealing

    Directory of Open Access Journals (Sweden)

    Qifeng Lu

    2015-07-01

    Full Text Available A powerful characterization technique, pulse capacitance-voltage (CV technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111 substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD. The results indicated that: (1 more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2 the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.

  7. Structure and Magnetic Properties of Lanthanide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, James Henry [Vanderbilt Univ., Nashville, TN (United States)

    2014-06-01

    We have had considerable success on this project, particularly in the understanding of the relationship between nanostructure and magnetic properties in lanthanide nanocrystals. We also have successfully facilitated the doctoral degrees of Dr. Suseela Somarajan, in the Department of Physics and Astronomy, and Dr. Melissa Harrison, in the Materials Science Program. The following passages summarize the various accomplishments that were featured in 9 publications that were generated based on support from this grant. We thank the Department of Energy for their generous support of our research efforts in this area of materials science, magnetism, and electron microscopy.

  8. Synthetic Smectite Colloids: Characterization of Nanoparticles after Co-Precipitation in the Presence of Lanthanides and Tetravalent Elements (Zr, Th

    Directory of Open Access Journals (Sweden)

    Muriel Bouby

    2015-09-01

    Full Text Available The magnesian smectite hectorite is a corrosion product frequently detected in nuclear waste glass alteration experiments. The structural incorporation of a single trivalent lanthanide was previously demonstrated. Hectorite was presently synthesized, for the first time, in the presence of several lanthanides (La, Eu, Yb following a multi-step synthesis protocol. The smallest-sized particles (nanoparticles, NPs were isolated by centrifugation and analyzed by asymmetrical flow field-flow fractionation (AsFlFFF coupled to ICP-MS, in order to obtain information on the elemental composition and distribution as a function of the size. Nanoparticles can be separated from the bulk smectite phase. The particles are able to accommodate even the larger-sized lanthanides such as La, however, with lower efficiency. We, therefore, assume that the incorporation proceeds by substitution for octahedral Mg accompanied by a concomitant lattice strain that increases with the size of the lanthanides. The presence of a mixture does not seem to affect the incorporation extent of any specific element. Furthermore, syntheses were performed where in addition the tetravalent zirconium or thorium elements were admixed, as this oxidation state may prevail for many actinide ions in a nuclear waste repository. The results show that they can be incorporated as well.

  9. Thermodynamics of complexation of lanthanides with 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl) pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, N.; Bhattacharyya, A.; Tomar, B.S. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radiochemistry Div.; Ghosh, S.K.; Gadly, T. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Bioorganic Div.

    2011-07-01

    Solvent extraction studies on separation of trivalent actinides from lanthanides using 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl) pyridines have shown promising results with respect to separation factor and efficiency in acidic medium. In order to understand their complexation behavior, the stability constant (log {beta}) of trivalent lanthanides (La, Nd, Eu, Tb, Ho, Tm, Lu) with 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl)pyridine (ethyl-BTP) have been determined in methanol medium (ionic strength 0.01 M) using spectrophotometric titrations. The stoichiometry of the complexes is found to vary with the ionic size of lanthanide ion. The variation in log {beta} across the lanthanide series is attributed to variation in solvation characteristics of the metal ion. Comparison of log {beta} for Ln(III)-ethyl-BTP complexes with other alkyl derivatives showed increase in the stability with increasing length of the alkyl group due to hydrophobic interaction. In the case of Eu(III), the speciation was also corroborated by time resolved fluorescence spectroscopy. The thermodynamic parameters ({delta} G, {delta} H, {delta} S) for complexation of Eu(III) with ethyl-BTP, were determined by microcalorimetry, which revealed strong metal ion-ligand interaction with the reactions driven mainly by enthalpy. (orig.)

  10. Study of the luminescence of tris(2-thenoyltrifluoroacetonato)lanthanide(III) complexes covalently linked to 1,10-phenanthroline-functionalized hybrid sol-gel glasses

    International Nuclear Information System (INIS)

    Lenaerts, Philip; Ryckebosch, Eline; Driesen, Kris; Deun, Rik van; Nockemann, Peter; Goerller-Walrand, Christiane; Binnemans, Koen

    2005-01-01

    The solubility and uniform distribution of lanthanide complexes in sol-gel glasses can be improved by covalently linking the complexes to the sol-gel matrix. In this study, several lanthanide β-diketonate complexes (Ln=Nd, Sm, Eu, Tb, Er, Yb) were immobilized on a 1,10-phenanthroline functionalized sol-gel glass. For the europium(III) complex, a sol-gel material of diethoxydimethylsilane (DEDMS) with polymer-like properties was derived. For the other lanthanide complexes, the sol-gel glass was prepared by using a matrix of tetramethoxysilane (TMOS) and DEDMS. Both systems were prepared under neutral reaction conditions. High-resolution emission and excitation spectra were recorded. The luminescence lifetimes were measured

  11. Lanthanide-binding peptides with two pendant aminodiacetate arms: impact of the sequence on chelation.

    Science.gov (United States)

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Gateau, Christelle; Delangle, Pascale

    2012-03-21

    Lanthanide complexes with a series of hexapeptides-incorporating two unnatural chelating amino acids with aminodiacetate groups, Ada(1) and Ada(2)-have been examined in terms of their speciation, structure, stability and luminescence properties. Whereas Ada(2) acts as a tridentate donor in all cases, Ada(1) may act as a tetradentate donor thanks to the coordination of the amide carbonyl function assisted by the formation of a six-membered chelate ring. The position of the Ada(1) residue in the sequence is demonstrated to be critical for the lanthanide complex speciation and structure. Ada(1) promotes the coordination of the backbone amide function to afford a highly dehydrated Ln complex and an S-shape structure of the peptide backbone, only when found in position 2.

  12. Pollution of agricultural crops with lanthanides, thorium and uranium studied by instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.; Mizera, J.; Randa, Z.; Vavrova, M.

    2007-01-01

    The lanthanide elements, Th and U were measured in soils and agricultural crops collected in an area polluted by emissions from a phosphate fertilizer plant. Concentrations of the above elements in the soil and crop samples were determined by instrumental neutron activation analysis (INAA). Selected crop samples were also analyzed using radiochemical neutron activation analysis (RNAA) based on alkaline-oxidative fusion of the irradiated samples followed by precipitation of REE oxalates. Elevated levels of lanthanides, Th and U were found in some samples, especially in wheat chaff and parsley. (author)

  13. Physiochemical and spectroscopic behavior of actinides and lanthanides in solution, their sorption on minerals and their compounds formed with macromolecules

    International Nuclear Information System (INIS)

    Jimenez R, M.

    2010-01-01

    From the chemical view point, the light actinides has been those most studied; particularly the uranium, because is the primordial component of the nuclear reactors. The chemical behavior of these elements is not completely defined, since they can behave as transition metals or metals of internal transition, as they are the lanthanides. The actinides are radioactive; between them they are emitters of radiation alpha, highly toxic, of live half long and some very long, and artificial elements. For all this, to know them sometimes is preferable to use their chemical similarity with the lanthanides and to study these. In particular, the migration of emitters of radiation alpha to the environment has been studied taking as model the uranium. It is necessary to mention that actinides and lanthanides elements are in the radioactive wastes of the nuclear reactors. In the Chemistry Department of the Instituto Nacional de Investigaciones Nucleares (ININ) the researches about the actinides and lanthanides began in 1983 and, between that year and 1995 several works were published in this field. In 1993 the topic was proposed as a Department project and from then around of 13 institutional projects and managerial activity have been developed, besides 4 projects approved by the National Council of Science and Technology. The objective of the projects already developed and of the current they have been contributing knowledge for the understanding of the chemical behavior of the lanthanides and actinides, as much in solution as in the solid state, their behavior in the environment and the chemistry of their complexes with recurrent and lineal macromolecules. (Author)

  14. Magnetic Circular Dichroism of Porphyrin Lanthanide M3+ Complexes

    Czech Academy of Sciences Publication Activity Database

    Andrushchenko, Valery; Padula, Daniele; Zhivotova, E.; Yamamoto, S.; Bouř, Petr

    2014-01-01

    Roč. 26, č. 10 (2014), s. 655-662 ISSN 0899-0042 R&D Projects: GA ČR GA13-03978S; GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:GA AV ČR(CZ) M200550902 Institutional support: RVO:61388963 Keywords : magnetic circular dichroism * lanthanides * porphyrin complexes * density functional theory * sum over state computations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.886, year: 2014

  15. Molecular dynamics simulations of ter-pyridine and bis-triazinyl-pyridine complexes with lanthanide cations; Etude de dynamique moleculaire de complexes de la bis-triazinyl-pyridine (BTP) et de la terpyridine avec des lanthanides(3)

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, Ph. [CEA Valrho, (DCC/DRRV/SEMP), 30 - Marcoule (France)

    2000-07-01

    /In{sup 3+} interaction energies lower, compared with complexes without NO{sub 3}{sup -}. By contrast, with a-bromo-caprate anions, the TPY/Ln{sup 3+} interaction energy is the highest for Eu{sup 3+} owing to the strong interaction of the counter-ions with Ln{sup 3+} cations and to the small size of Lu{sup 3+}. Gibbs free energy differences ({delta}{delta}G) can be calculated in molecular dynamics simulations using the free energy perturbation theory. These calculations serve to account for entropy and were made for the vacuum phase first to assess the selectivity of TPY and BTP with respect to the lanthanide(III) cations, and then to assess the selectivity of each cation for the two ligands. With or without nitrate counter-ions, both ligands are selective for the smaller Lu{sup 3+} cation. Without NO{sub 3}{sup -} anions, every Ln{sup 3+} cation is selective towards BTP versus TPY whereas with nitrate ions, the {delta}G differences approach zero. For the water phase, Ln{sup 3+} complexes with TPY and with BTP, including NO{sub 3}- ions or without counter-ions, dissociate after a few picoseconds of molecular dynamics simulations. The only complexes that do not dissociate are those with La{sup 3+} or Eu{sup 3+}, ter-pyridine, and three {alpha}-bromo-caprate anions. For these two complexes, one water molecule is bound to the cation according to recent Time-Resolved Laser-Induced Fluorescence results. The Gibbs free energy difference between these two complexes in water solution reveals a slight preference for Eu{sup 3+}, highlighting the future difficulty of calculating separation of lanthanide(III) from actinide(III) cations. The calculations reported here call for further investigations. First, new simulations can be performed with different soft donor atom ligands, and from the theoretical standpoint, the description of 'non-bonded' interactions and the introduction of an explicit polarization term in the potential energy expression need to be examined in greater

  16. Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays.

    Science.gov (United States)

    Abdelrahman, Ahmed I; Dai, Sheng; Thickett, Stuart C; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A

    2009-10-28

    We describe the synthesis and characterization of metal-encoded polystyrene microspheres by multiple-stage dispersion polymerization with diameters on the order of 2 mum and a very narrow size distribution. Different lanthanides were loaded into these microspheres through the addition of a mixture of lanthanide salts (LnCl(3)) and excess acrylic acid (AA) or acetoacetylethyl methacrylate (AAEM) dissolved in ethanol to the reaction after about 10% conversion of styrene, that is, well after the particle nucleation stage was complete. Individual microspheres contain ca. 10(6)-10(8) chelated lanthanide ions, of either a single element or a mixture of elements. These microspheres were characterized one-by-one utilizing a novel mass cytometer with an inductively coupled plasma (ICP) ionization source and time-of-flight (TOF) mass spectrometry detection. Microspheres containing a range of different metals at different levels of concentration were synthesized to meet the requirements of binary encoding and enumeration encoding protocols. With four different metals at five levels of concentration, we could achieve a variability of 624, and the strategy we report should allow one to obtain much larger variability. To demonstrate the usefulness of element-encoded beads for highly multiplexed immunoassays, we carried out a proof-of-principle model bioassay involving conjugation of mouse IgG to the surface of La and Tm containing particles and its detection by an antimouse IgG bearing a metal-chelating polymer with Pr.

  17. Static and dynamic modelling of lanthanide and actinide cations in solution

    International Nuclear Information System (INIS)

    Marjolin, A.

    2012-01-01

    We propose a theoretical approach, based on both quantum analyses (energy decomposition analysis and topological analysis of the chemical bond) and classical molecular dynamics, for the study of f-element complexes. First, we introduce the different QM methods adapted to the study of f-elements and use them for geometry optimization and interaction energy calculations of the model system [M-(OH 2 )] m+ where M is a lanthanide or actinide cation. We then perform energy decomposition analysis to quantify the physical nature of the metal-ligand interaction in terms of the different contributions. Furthermore, the different energy contributions will be used as reference curves for the parameterization of the polarizable force fields AMOEBA and SIBFA. Next, starting from the optimized geometries, we establish the reference diabatic dissociation curves at high level of theory so as to take into account the multi-reference nature of the systems. These dissociation curves will also be used for parameterization of the AMOEBA potential. We then propose a three step validation protocol as well as a first application, it being the computation of Gibbs hydration free energies for the f-element cations. We also propose an extension of the SIBFA force field to trivalent lanthanide ions and tetravalent actinide ions. Last, we use the topological analysis approaches of ELF and NCI to investigate the nature of the different interactions in Gadolinium(III) model and real systems. The aim of the whole study was to develop and apply different theoretical approaches so as to be able to discriminate between lanthanide and actinide cations. Indeed, despite their similar chemical behavior, they still feature a selective character that we wish to be able to both explain and predict. (author) [fr

  18. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I).

    Science.gov (United States)

    Hanna, Jill R; Allan, Christopher; Lawrence, Charlotte; Meyer, Odile; Wilson, Neil D; Hulme, Alison N

    2017-05-14

    The CuAAC 'click' reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III)-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I). This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible 'turn-on' catalytic sensors for the detection of ligand-bound copper(I).

  19. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I

    Directory of Open Access Journals (Sweden)

    Jill R. Hanna

    2017-05-01

    Full Text Available The CuAAC ‘click’ reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I. This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible ‘turn-on’ catalytic sensors for the detection of ligand-bound copper(I.

  20. Heavy baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.

    1994-06-01

    We review the experimental and theoretical status of baryons containing one heavy quark. The charm and bottom baryon states are classified and their mass spectra are listed. The appropriate theoretical framework for the description of heavy baryons is the Heavy Quark Effective Theory, whose general ideas and methods are introduced and illustrated in specific examples. We present simple covariant expressions for the spin wave functions of heavy baryons including p-wave baryons. The covariant spin wave functions are used to determine the Heavy Quark Symmetry structure of flavour-changing current-induced transitions between heavy baryons as well as one-pion and one-photon transitions between heavy baryons of the same flavour. We discuss 1/m Q corrections to the current-induced transitions as well as the structure of heavy to light baryon transitions. Whenever possible we attempt to present numbers to compare with experiment by making use of further model-dependent assumptions as e.g. the constituent picture for light quarks. We highlight recent advances in the theoretical understanding of the inclusive decays of hadrons containing one heavy quark including polarization. For exclusive semileptonic decays we discuss rates, angular decay distributions and polarization effects. We provide an update of the experimental and theoretical status of lifetimes of heavy baryons and of exclusive nonleptonic two body decays of charm baryons. (orig.)

  1. Valence determination of rare earth elements in lanthanide silicates by L 3-XANES spectroscopy

    International Nuclear Information System (INIS)

    Kravtsova, Antonina N; Guda, Alexander A; Soldatov, Alexander V; Goettlicher, Joerg; Taroev, Vladimir K; Suvorova, Lyudmila F; Tauson, Vladimir L; Kashaev, Anvar A

    2016-01-01

    Lanthanide silicates have been hydrothermally synthesized using Cu and Ni containers. Chemical formulae of the synthesized compounds correspond to K 3 Eu[Si 6 O 15 ] 2H 2 O, HK 6 Eu[Si 10 O 25 ], K 7 Sm 3 [Si 12 O 32 ], K 2 Sm[AlSi 4 O 12 ] 0.375H 2 O, K 4 Yb 2 [Si 8 O 21 ], K 4 Ce 2 [Al 2 Si 8 O 24 ]. The oxidation state of lanthanides (Eu, Ce, Tb, Sm, Yb) in these silicates has been determined using XANES spectroscopy at the Eu, Ce, Tb, Sm, Yb, L 3 - edges. The experimental XANES spectra were recorded using the synchrotron radiation source ANKA (Karlsruhe Institute of Technology) and the X-ray laboratory spectrometer Rigaku R- XAS. By comparing the absorption edge energies and white line intensities of the silicates with the ones of reference spectra the oxidation state of lanthanides Eu, Ce, Tb, Sm, Yb has been found to be equal to +3 in all investigated silicates except of the Ce-containing silicate from the run in Cu container where the cerium oxidation state ranges from +3 (Ce in silicate apatite and in a KCe silicate with Si 12 O 32 layers) to +4 (starting CeO 2 or oxidized Ce 2 O 3 ). (paper)

  2. Cooperative loading of multisite receptors with lanthanide containers: an approach for organized luminescent metallopolymers.

    Science.gov (United States)

    Babel, Lucille; Guénée, Laure; Besnard, Céline; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2018-01-14

    Metal-containing (bio)organic polymers are materials of continuously increasing importance for applications in energy storage and conversion, drug delivery, shape-memory items, supported catalysts, organic conductors and smart photonic devices. The embodiment of luminescent components provides a revolution in lighting and signaling with the ever-increasing development of polymeric light-emitting devices. Despite the unique properties expected from the introduction of optically and magnetically active lanthanides into organic polymers, the deficient control of the metal loading currently limits their design to empirical and poorly reproducible materials. We show here that the synthetic efforts required for producing soluble multi-site host systems L k are largely overcome by the virtue of reversible thermodynamics for mastering the metal loading with the help of only two parameters: (1) the affinity of the luminescent lanthanide container for a single binding site and (2) the cooperative effect which modulates the successive fixation of metallic units to adjacent sites. When unsymmetrical perfluorobenzene-trifluoroacetylacetonate co-ligands (pbta - ) are selected for balancing the charge of the trivalent lanthanide cations, Ln 3+ , in six-coordinate [Ln(pbta) 3 ] containers, the explored anti-cooperative complexation processes induce nearest-neighbor intermetallic interactions twice as large as thermal energy at room temperature ( RT = 2.5 kJ mol -1 ). These values have no precedent when using standard symmetrical containers and they pave the way for programming metal alternation in luminescent lanthanidopolymers.

  3. Study of the actinide-lanthanide separation from nuclear waste by a new pyrochemical process

    International Nuclear Information System (INIS)

    Lemort, F.

    1997-01-01

    The theoretical extraction and separation of platinoids, actinides and lanthanides is allowed by thermodynamic using two adapted reducing agents: zinc and magnesium. Thereby, a pyrochemical method for the nuclear waste processing has been devised. The high temperature handling of the elements in fluoride forms and their processing by a reactive metallic phase required special precautions. The study of the behavior of matter in exploratory systems allowed the development of an experimental technology for the treatment and contacting of phases. The thermodynamical analysis of the experimental results shows the feasibility of the process. A model was developed to predict the distribution coefficients of zirconium, uranium and lanthanum as a function of the system composition. An estimation method was proposed in order to evaluate the distribution coefficients in diluted solution of all the actinides and lanthanides existing in the fission products between LiF CaF 2 and Zn-Mg at 720 deg C. Coupled with the experimental results, the estimates results may be extrapolated to concentrated solutions allowing predictions of the separation of all actinides and lanthanides. The rapidity of element transfer is induced by a thermal effect caused by the high exothermicity of the reduction by magnesium. The kinetic coefficients have been linked with the reduction enthalpy of each element. Moreover, the kinetics seem limited by chemical reaction and not by mass transfer. (author)

  4. Lanthanides separation by counter - current electrophoretic using α - hydroxyisobutyric acid

    International Nuclear Information System (INIS)

    Alleluia, I.B.

    1975-01-01

    Studies about counter-current electrophoretic separation of rare earth metal ions using α-hydroxyisobutyric acid as complexing electrolyte are discussed. La, Pr, Nd, Sm and Eu were separated and fractions with purities better than 99,9% were obtained, using neutron activation analysis. A relation between the first stability constant of the α-hydroxyisobutyrate/lanthanide complexes and their migration velocities were observed. (M.J.C.) [pt

  5. Analytical applications of superacid dissolution of actinide and lanthanide substrates

    International Nuclear Information System (INIS)

    Avens, L.R.; Eller, P.G.; Asprey, L.B.; Abney, K.D.; Kinkead, S.A.

    1987-01-01

    The superacid system HF/SbF 5 is extraordinarily effective for total dissolution of actinide and lanthanide ceramic oxides, fluorides, and metals. Optical or gamma spectroscopy can be used directly on the solutions. Evaporation of the HF/SbF 5 solvent under vacuum leaves a residue which is easily dissolved by ordinary mineral acids. The resulting aqueous solutions are readily amenable to conventional analytical methods

  6. Polymerization of lanthanide acrylonitrile complexes.

    Science.gov (United States)

    el-Mossalamy, El-Sayed H; Khalil, Ahmed A

    2002-01-01

    The molecular complexes of some lanthanides scandium (Sc3+), yttrium (Y3+), lanthanum (La3+), gadolinium (Gd3+), cerium (Ce3+) and ytterbium (Yb3) have been studies in dimethyl formamide (DMF) spectrophtometrically equilibrium constants (K), molar extintion coefficient (epsilon), energy of transition (E) and free energy (delta G*) were calculated. The polymerization of acrylonitrile has been studied and investigated in the presence of Sc3+, Y3+, La3+, Gd3+, Ce3+, and Yb3+ ions. The IR spectra of the formed AN-M (III) Br3 polymer complexes show the absence of the C identical to N band and the presence of two new bands corresponding to NH2 and OH groups. Magnetic moment values and the thermal stabilities of homopolymer and the polymer complexes were studied by means of thermogravimetric analysis and the activation energies for degradation were calculated.

  7. Study of the selectivity of poly-nitrogenous extracting molecules in the complexation of actinides (III) and lanthanides (III) in solution in anhydrous pyridine; Etude de la selectivite de molecules extractantes polyazotees dans la complexation des actinides (III) et des lanthanides (III) en solution dans la pyridine anhydre

    Energy Technology Data Exchange (ETDEWEB)

    Riviere, Ch

    2000-10-05

    The aim of this work is to better understand the factors which contribute to the separation of lanthanides(III) and actinides(III). Polydentate nitrogenous molecules present an interesting selectivity. A thermodynamic study of the complexation in pyridine of lanthanide and uranium by the bipyridine ligand (bipy) has been carried out. The formation constants and the thermodynamic values of the different complexes have been determined. It has been shown that the bipy complexes formation is controlled by the enthalpy and unfavored by the entropy. The conductometry has revealed too a significant difference in the uranium and lanthanides complexation by the bipyridine ligand. The use of the phenanthroline ligand induces a better complexation of the metallic ions but the selectivity is not improved. On the other hand, the decrease of the basicity and the increase of the ligand denticity (for instance in the case of the use of ter-pyridine) favour the selectivity without improving the complexation. The selectivity difference for the complexation of actinides(III) and lanthanides(III) by the different studied ligands (independent systems) has been confirmed by experiments of inter-metals competition. (O.M.)

  8. Assembly and luminescence properties of lanthanide-polyoxometalates/polyethyleneimine/SiO{sub 2} particles with core–shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: junwang924@yahoo.com.cn; Fan, Shaohua; Zhao, Weiqian; Zhang, Hongyan

    2013-01-01

    In this paper, two lanthanide-polyoxometalate (LnW{sub 10}) complexes were bonded on the surface of the polyethyleneimine (PEI)-modified silica nanoparticles with different sizes, resulting in the formation of LnW{sub 10}/PEI/SiO{sub 2} particles. The hybrid core–shell particles were characterized by infrared, luminescent spectra, scanning electronic microscope, and transmission electronic microscope. The particles obtained exhibit the fine spherical core–shell structure and the excellent luminescence properties. The luminescence spectra studies revealed that the formation of LnW{sub 10}/PEI/SiO{sub 2} particles and the size of particle have an influence on the luminescence properties of lanthanide ions. - Highlights: ► SiO{sub 2}/polyethyleneimine (PEI) shows the chemisorption for Ln-polyoxometalates (LnW{sub 10}). ► The core-shell LnW{sub 10}/PEI/SiO{sub 2} nanoparticles with different sizes were fabricated. ► The hybrid particles exhibit the excellent luminescence properties. ► The sizes of particles affect the luminescence properties of lanthanide ions.

  9. Heavy-heavy and heavy-light quarks interactions generated by QCD vacuum

    Directory of Open Access Journals (Sweden)

    Musakhanov Mirzayusuf

    2017-01-01

    Full Text Available The QCD vacuum is populated by instantons that correspond to the tunneling processes in the vacuum. This mechanism creates the strong vacuum gluon fields. As result, the QCD vacuum instantons induce very strong interactions between light quarks, initially almost massless. Such a strong interactions bring a large dynamical mass M of the light quarks and bound them to produce almost massless pions in accordance with the spontaneous breaking of the chiral symmetry (SBCS. On the other hand, the QCD vacuum instantons also interact with heavy quarks and responsible for the generation of the heavy-heavy and heavy-light quarks interactions, with a traces of the SBCS. If we take the average instanton size ρ¯=0.33$\\bar \\rho = 0.33$ fm, and the average inter-instanton distance R¯=1$\\bar R = 1$ fm we obtain the dynamical light quark mass to be M = 365 MeV and the instanton media contribution to the heavy quark mass ΔM=70 MeV. These factors define the coupling between heavy-light and heavy-heavy quarks induced by the QCD vacuum instantons. We consider first the instanton effects on the heavy-heavy quarks potential, including its spin-dependent part. We also discuss those effects on the masses of the charmonia and their hyperfine mass splittings. At the second part we discuss the interaction between a heavy and light quarks generated by instantons and it’s effects.

  10. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  11. Flexible Photonics: Polymer LEDs Made from Monochromatic Red Emitting Lanthanide/Polymer Blends. Phase 1

    National Research Council Canada - National Science Library

    O'Regan, Marie

    1999-01-01

    .... Spectrally pure, red emitting flexible LEDs have been fabricated. Close to a four-fold increase in device efficiency is obtained when a suitable lanthanide complex is blended with the semi-conducting host polymer...

  12. 1,3-thiazole as suitable antenna ligand for lanthanide photoluminescence in [LnCl{sub 3}(thz){sub 4}].0.5thz, Ln = Sm, Eu, Gd, Tb, Dy

    Energy Technology Data Exchange (ETDEWEB)

    Dannenbauer, Nicole; Mueller-Buschbaum, Klaus [Wuerzburg Univ. (Germany). Inst. for Inorganic Chemistry; Kuzmanoski, Ana; Feldmann, Claus [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Inorganic Chemistry

    2014-02-15

    The series of luminescent monomeric lanthanide thiazole complexes [LnCl{sub 3}(thz){sub 4}].0.5thz (Ln = Sm, Eu, Gd, Tb, Dy; thz = 1,3-thiazole) has been synthesised and characterised by powder and single-crystal X-ray diffraction, IR and photoluminescence spectroscopy, DTA/TG as well as elemental analysis. The colourless compounds exhibit photoluminescence in the visible region with varying quantum efficiencies up to QY = 48 % for [LnCl{sub 3}(thz){sub 4}].0.5thz. Both, the lanthanide ions as well as the thiazole ligand contribute to the luminescence. Excitation can be achieved via intra-4f transitions and by exciting the ligand, emission is observed mainly from the lanthanide ions again by 4f transitions. Thiazole can transfer energy to the lanthanide ions, which further feeds the lanthanide emission by an efficient antenna effect even at room temperature. The lanthanide ions show pentagonal-bipyramidal coordination by three chloride anions and four N atoms of 1,3-thiazole, which leads to a strong {sup 5}D{sub 0} → {sup 7}F{sub 4} transition for europium. Significant differences arise as compared to thiophene complexes because no sulphur atom is involved in the metal coordination, as the thiazole ligand is solely coordinated via its nitrogen function. (orig.)

  13. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Donmez, Mert [Department of Chemistry, Faculty of Art and Sciences, Duzce University, Duzce 81620 (Turkey); Yilmaz, M. Deniz, E-mail: deniz.yilmaz@gidatarim.edu.tr [Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya 42080 (Turkey); Kilbas, Benan, E-mail: benankilbas@duzce.edu.tr [Department of Chemistry, Faculty of Art and Sciences, Duzce University, Duzce 81620 (Turkey)

    2017-02-15

    Highlights: • The nanosensors based on gold nanoparticles functionalized with lanthanide complexes were synthesized. • The nanosensors selectively and sensitively detected DPA, a biomarker of bacterial spores. • Ratiometric sensing of DPA by a ternary complex was achieved by ligand displacement strategy. - Abstract: Gold nanoparticles (GNPs) functionalized with ethylenediamine-lanthanide complexes (Eu-GNPs and Tb-GNPs) were used for the selective fluorescent detection of dipicolinic acid (DPA), a unique biomarker of bacterial spores, in water. Particles were characterized by transmission electron microscopy and zeta potential measurements. The coordination of DPA to the lanthanides resulted in the enhancement of the fluorescence. A selective response to DPA was observed over the nonselective binding of aromatic ligands. The ligand displacement strategy were also employed for the ratiometric fluorescent detection of DPA. 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedion (TFNB) was chosen as an antenna to synthesize ternary complexes. The addition of DPA on EuGNP:TFNB ternary complex quenched the initial emission of the complex at 615 nm and increased the TFNB emission at 450 nm when excited at 350 nm. The results demonstrated that the ratiometric fluorescent detection of DPA was achieved by ligand displacement strategy.

  14. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.

    Science.gov (United States)

    Gao, Nan; Zhang, Yunfang; Huang, Pengcheng; Xiang, Zhehao; Wu, Fang-Ying; Mao, Lanqun

    2018-06-05

    Lanthanide-based luminescent sensors have been widely used for the detection of the anthrax biomarker dipicolinic acid (DPA). However, mainly based on DPA sensitization to the lanthanide core, most of them failed to realize robust detection of DPA in bacterial spores. We proposed a new strategy for reliable detection of DPA by perturbing a tandem energy transfer in heterobinuclear lanthanide coordination polymer nanoparticles simply constructed by two kinds of lanthanide ions, Tb 3+ and Eu 3+ , and guanosine 5'-monophosphate. This smart luminescent probe was demonstrated to exhibit highly sensitive and selective visual luminescence color change upon exposure to DPA, enabling accurate detection of DPA in complex biosystems such as bacterial spores. DPA release from bacterial spores on physiological germination was also successfully monitored in real time by confocal imaging. This probe is thus expected to be a powerful tool for efficient detection of bacterial spores in responding to anthrax threats.

  15. Synthesis and characterization of novel lanthanide- and actinide-containing titanates and zircono-titanates; relevance to nuclear waste disposal

    International Nuclear Information System (INIS)

    Shoup, S.L.S.

    1995-08-01

    Before experiments using actinide elements are performed, synthetic routes are tested using lanthanides of comparable ionic radii as surrogates. Compound and solid solution formation in several lanthanide-containing titanate and zircono-titanate systems have been established using X-ray diffraction (XRD) analysis, which helped to define interesting and novel experiments, some of which have been performed and are discussed, for selected actinide elements. The aqueous solubilities of several lanthanide- and actinide-containing compounds, representative of the systems studied, were tested in several leachants, including the WIPP open-quotes Aclose quotes brine, following modified Materials Characterization Center procedures (MCC-3). The WIPP open-quotes Aclose quotes brine is a synthetic substitute for that found in nature at the Waste Isolation Pilot Plant (WIPP) in New Mexico. The concentrations of cerium, used as a surrogate for plutonium, leached by the WIPP open-quotes Aclose quotes brine from all the cerium-containing compounds and solid solutions tested were below the Inductively Coupled Plasma (ICP) atomic emission spectrometry limit of detection (10 ppm) established for cerium in this brine. The concentrations of plutonium leached from the two plutonium-containing solid solutions were less than 1 ppm as determined by gross alpha counting and alpha pulse height analysis. Concentrations of strontium leached by the WIPP brine from stable strontium containing titanate compounds, studied as possible immobilizers of both 90 Sr and actinide elements, were also quite low. These compound and solid solution formation investigations and the aqueous solubility studies suggest that the types of titanate and zircono-titanate compounds and solid solutions studied in this work appear to be useful as host matrices for nuclear waste immobilization

  16. Detection of phosphorylation states by intermolecular sensitization of lanthanide-peptide conjugates.

    Science.gov (United States)

    Pazos, Elena; Goličnik, Marko; Mascareñas, José L; Vázquez, M Eugenio

    2012-10-04

    The luminescence of a designed peptide equipped with a coordinatively-unsaturated lanthanide complex is modulated by the phosphorylation state of a serine residue in the sequence. While the phosphorylated state is weakly emissive, even in the presence of an external antenna, removal of the phosphate allows coordination of the sensitizer to the metal, yielding a highly emissive supramolecular complex.

  17. Contribution for study on positron annihilation in tris (dipivaloilmethanates) lanthanides (III)

    International Nuclear Information System (INIS)

    Ribeiro e Silva, M.E.S.

    1988-01-01

    Some data on life time of positron and annihilation by Doppler effect in tris (dipivaloilmethanates) lanthanides (III), Ln (dpm) 3 , and Ln = Eu, Gd, Dy, Ho, Er, Tm and Yb are shown. Some results from positronium (Ps) in complexes except Eu (dpm) 3 , chemical aspects and properties of positron and positronium are evaluated. (M.J.C.) [pt

  18. Effect of a lanthanide ion on the micellation and self-organization of lyotropic liquid crystal systems

    International Nuclear Information System (INIS)

    Selivanova, N.M.; Osipova, V.V.; Galyametdinov, Yu.G.

    2006-01-01

    Lanthanide-containing lyotropic liquid-crystalline systems were synthesized and their phase behavior, as well as the micellar behavior of aqueous solutions of decaethylene glycol monodecyl ether in the absence and presence of a lanthanide ion, were studied. Tensimetry and conductometry were used to determine the critical micellation concentration, and the values obtained by these methods were found to be in close agreement with each other. Polarization microscopy observations showed that, in concentrated aqueous solutions, ordered lyotropic mesophases arise. The parameters of the phase transitions in the systems under study were determined. The mesophase obtained was demonstrated to have a 2D hexagonal supramolecular structure [ru

  19. Lanthanide and actinide ion phytoextraction: investigations of biosorption chemistry

    International Nuclear Information System (INIS)

    Rayson, Gary D.; Serna, Debbie D.; Moore, Jessica L.

    2009-01-01

    Investigations of the chemical interactions responsible for passive biosorption of a lanthanide (Eu (III)) and an actinide (U (VI)) metal ion is described. Spectroscopic methods for the elucidation of chemical functionalities on cultured anther cell walls from the plant Datura innoxia include metal ion luminescence measurements. These have revealed the presence of distinctly different binding environments involving one, two, and three carboxylate moieties for Eu (III) and UO 2 2+ binding and sulfonates (or sulfates) and phosphates for sequestration of Eu (III) on the uranyl ion, respectively. Additional investigations of the apparent affinities of these metals to this material have revealed the presence of both low and high affinity sites for the binding of Eu (III) with weak electrostatic attractions proposed for binding at high metal concentrations (i.e., low affinities) and surface coordination interactions responsible for higher affinities. Conversely, total uranyl ion binding revealed only a single distribution of interactions based on apparent affinities. (author)

  20. New spectrofluorometer with pulsed intensified photodiodes array for direct trace determination of actinides and lanthanides in solutions

    International Nuclear Information System (INIS)

    Decambox, P.; Kirsch, B.; Mauchien, P.; Moulin, C.

    1989-01-01

    Actinides and lanthanides in solution at very low level are determined by Time-Resolved Laser-Induced Spectrofluorometry (TRLIS) with pulsed intensified photodiodes array detection. Temporal resolution allows discrimination against short lifetime fluorescence and measurement of fluorescence lifetime in various matrices. The use of laser source leads to excitation selectivity and high sensitivity. Multichannel detection allows to cover the entire wavelength range of interest which leads to emission selectivity and rapidity. These different advantages are present in the newly commercialized spectrofluorometer FLUO 2001 together with specially analytical adapted software. The apparatus and performances obtained for several actinides and lanthanides are presented

  1. Thermal decomposition of lanthanide and actinide tetrafluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1988-01-01

    The thermal stabilities of several lanthanide/actinide tetrafluorides have been studied using mass spectrometry to monitor the gaseous decomposition products, and powder X-ray diffraction (XRD) to identify solid products. The tetrafluorides, TbF 4 , CmF 4 , and AmF 4 , have been found to thermally decompose to their respective solid trifluorides with accompanying release of fluorine, while cerium tetrafluoride has been found to be significantly more thermally stable and to congruently sublime as CeF 4 prior to appreciable decomposition. The results of these studies are discussed in relation to other relevant experimental studies and the thermodynamics of the decomposition processes. 9 refs., 3 figs

  2. Using remote substituents to control solution structure and anion binding in lanthanide complexes

    DEFF Research Database (Denmark)

    Tropiano, Manuel; Blackburn, Octavia A.; Tilney, James A.

    2013-01-01

    A study of the anion-binding properties of three structurally related lanthanide complexes, which all contain chemically identical anion-binding motifs, has revealed dramatic differences in their anion affinity. These arise as a consequence of changes in the substitution pattern on the periphery ...

  3. Structure of the X-ray photoelectron spectra of fluorides and oxides of lanthanides connected with the dynamic effect

    International Nuclear Information System (INIS)

    Teterin, Yu.A.; Teterin, A.Yu.; Lebedev, A.M.; Utkin, I.O.; Nikitin, A.S.

    1998-01-01

    Impact of dynamic effect on the fine structure of the X-ray electron spectra of the lanthanide oxides and fluorides is considered. Significant complication of the Ln4p-electrons occurs due to interaction of configurations of the basic single-hole and additional two-hole finite states of the 4p 5 4d 10 4f n ↔ 4p 6 4d 8 4f n+1 type. Impact of the atoms nature of the nearest surrounding of the lanthanides ions on the parameters of such fine structure is evaluated [ru

  4. On the elimination of cerium in lanthanides such as lanthanum, yttrium and europium

    International Nuclear Information System (INIS)

    Ishii, Eiichi; Miyake, Yoshizo

    1974-01-01

    The following two methods have been investigated for the separation of Ce, containing 0.002-1.0% in lanthanides such as La, Y and Eu. (1) Treatment of lanthanide oxides containing Ce by dilute acids. (2) Elimination of Ce by the conversion of its valency state and by the additional effect using scavenger. The concentration of Ce was determined using radiotracer techniques. The first method was unsuitable because Ce was highly soluble even in dilute acetic acid. In the case of the second method, the percentage of separaton of Ce in La or Y were 97-99% by the use of the scavenger, regardless of Ce contents. When 0.002-0.5% of Ce was contained in Y or Eu, high elimination percentage (98-99%) of Ce was obtained by the conversion of the valency state of Ce because of the formation of colloidal solutions

  5. True-coincidence correction when using an LEPD for the determination of the lanthanides in the environment via k0-based INAA.

    Science.gov (United States)

    Freitas, M C; De Corte, F

    1994-01-01

    As part of a recent study on the environmental effects caused by the operation of a coal-fired power station at Sines, Portugal, k0-based instrumental neutron activation analysis (INAA) was used for the determination of the lanthanides (and also of tantalum and uranium) in plant leaves and lichens. In view of the accuracy and sensitivity of the determinations, it was advantageous to make use of a low-energy photon detector (LEPD). To begin with, in the present article, a survey is given of the former developments leading to user-friendly procedures for detection efficiency calibration of the LEPD and for correction for true-coincidence (cascade summing) effects. As a continuation of this, computer coincidence correction factors are now tabulated for the relevant low-energetic gamma-rays of the analytically interesting lanthanide, tantalum, and uranium radionuclides. Also the 140.5-keV line of 99Mo/99mTc is included, molybdenum being the comparator chosen when counting using an LEPD.

  6. Lattice disorder in strongly correlated lanthanide and actinide intermetallics

    International Nuclear Information System (INIS)

    Booth, C.H.; Bauer, E.D.; Maple, M.B.; Lawrence, J.M.; Kwei, G.H.; Sarrao, J.L.

    2001-01-01

    Lanthanide and actinide intermetallic compounds display a wide range of correlated-electron behavior, including ferromagnetism, antiferromagnetism, nonmagnetic (Kondo) ground states, and so-called 'non-Fermi liquid' (NFL) behavior. The interaction between f electrons and the conduction band is a dominant factor in determining the ground state of a given system. However, lattice disorder can create a distribution of interactions, generating unusual physical properties. These properties may include NFL behavior in many materials. In addition, lattice disorder can cause deviations from standard Kondo behavior that is less severe than NFL behavior. A review of the lattice disorder mechanism within a tight-binding model is presented, along with measurements of the YbBCu 4 and UPd x Cu 5-x systems, demonstrating the applicability of the model. These measurements indicate that while the YbBCu 4 system appears to be well ordered, both site interchange and continuous bond-length disorder occur in the UPd x Cu 5-x series. Nevertheless, the measured bond-length disorder in UPdCu 4 does not appear to be enough to explain the NFL properties simply with the Kondo disorder model. (au)

  7. KCeSe[sub 4]: A new solid-state lanthanide polychalcogenide

    Energy Technology Data Exchange (ETDEWEB)

    Sutorik, A C; Kanatzidis, M G [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemistry and Center for Fundamental Materials Research

    1992-12-01

    Cerium and molten potassium selenide flux provide access to KCeSe[sub 4]. The structure of this novel lanthanide polychalcogenide is related to the CuAl[sub 2] structure, and Ce and Se form anionic layers with K[sup +] ions in the cavities. Each Ce[sup 3+] ion is surrounded by eight Se[sub 2][sup 2-] units in a square antiprismatic arrangement (structure shown on the right). (orig.).

  8. Theoretical study of the structure and reactivity of lanthanide and actinide based organometallic complexes; Etude theorique de la structure et de la reactivite de complexes organometalliques de lanthanides et d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Barros, N

    2007-06-15

    In this PhD thesis, lanthanide and actinide based organometallic complexes are studied using quantum chemistry methods. In a first part, the catalytic properties of organo-lanthanide compounds are evaluated by studying two types of reactions: the catalytic hydro-functionalization of olefins and the polymerisation of polar monomers. The reaction mechanisms are theoretically determined and validated, and the influence of possible secondary non productive reactions is envisaged. A second part focuses on uranium-based complexes. Firstly, the electronic structure of uranium metallocenes is analysed. An analogy with the uranyl compounds is proposed. In a second chapter, two isoelectronic complexes of uranium IV are studied. After validating the use of DFT methods for describing the electronic structure and the reactivity of these compounds, it is shown that their reactivity difference can be related to a different nature of chemical bonding in these complexes. (author)

  9. Coupling between chip based isotachophoresis and multi-collector inductively coupled plasma mass spectrometry for separation and measurement of lanthanides

    International Nuclear Information System (INIS)

    Vio, Laurent; Cretier, Gerard; Rocca, Jean-Louis; Chartier, Frederic; Geertsen, Valerie; Gourgiotis, Alkiviadis; Isnard, Helene; Morin, Pierre

    2012-01-01

    This paper presents the conception and fabrication of a micro-system for lanthanides separation and its coupling with a multi-collector inductively coupled plasma mass spectrometer for isotope ratio measurements. The lanthanides separation is based on the isotachophoresis technique and the micro-system conception has been adapted in order to fit with glove box limitations in view of future spent nuclear fuels analysis. The micro-device was tested by using a mixture of standard solutions of natural elements and the separation of 13 lanthanides was successfully performed. The micro-device was then coupled to a multi-collector inductively coupled plasma mass spectrometer for the on-line measurements of Nd and Sm isotope ratios. The isotopes of Nd and Sm were acquired online in multi-collection mode after separation of the two elements with an injection amount of 5 ng. Results obtained on the Nd and Sm isotope ratio measurements on transient signals are presented and discussed. (authors)

  10. Measurement of isotopic composition of lanthanides in reprocessing process solutions by high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC/ICP-MS)

    International Nuclear Information System (INIS)

    Okano, Masanori; Jitsukata, Shu; Kuno, Takehiko; Yamada, Keiji

    2011-01-01

    Isotopic compositions of fission products in process solutions and wastes in a reprocessing plant are valuable to proceed safety study of the solutions and research/development concerning treatment/disposal of the wastes. The amount of neodymium-148 is a reliable indication to evaluate irradiation history. The isotopic compositions of samarium and gadolinium in high radioactive wastes are referred to as essential data to evaluate environmental impact in geological repositories. However, pretreatment of analysis must be done with complicated chemical separation such as solvent extraction and ion exchange. The actual measurement data of isotopic compositions of lanthanides comparable to the one of actinides in spent fuel reprocessing process has not been obtained enough. Rapid and high sensitive analytical technique based on high-performance liquid chromatography (HPLC) with an inductively coupled plasma mass spectrometry (ICP-MS) has been developed for the measurement of isotopic compositions of lanthanides in spent fuel reprocessing solutions. HPLC/ICP-MS measurement system was customized for a glove-box to be applied to the radioactive solutions. The cation exchange chromatographic columns (Shim-pack IC-C1) and injection valve (20μL) were located inside of the glove-box except the chromatographic pump. The elements of lanthanide group were separated by a gradient program of HPLC with α-hydroxyisobutyric acid. Isotopic compositions of lanthanides in eluate was sequentially analyzed by a quadruple ICP-MS. Optimization of parameter of HPLC and ICP-MS measurement system was examined with standard solutions containing 14 lanthanide elements. The elements of lanthanides were separated by HPLC and detected by ICP-MS within 25 minutes. The detection limits of Nd-146, Sm-147 and Gd-157 were 0.37 μg L -1 , 0.69 μg L -1 and 0.47 μg L -1 , respectively. The analytical precision of the above three isotopes was better than 10% for standard solutions of 100 μg L -1 with

  11. Separation of lanthanides (III) and actinides (III) by calixarenes containing acetamide-phosphine oxides functions

    International Nuclear Information System (INIS)

    Garcia Carrera, A.; Dozol, J.F.; Rouquette, H.

    2001-01-01

    The carbamoyl methyl phosphine oxide CMPO is the well known extractant of the TRUEX process for extraction of actinides from highly salted acidic wastes. In the framework of an European research contract coordinated by CEA/DDCC. V. Boehmer (Mainz, Germany) synthesized calix(4)arenes bearing CMPO moieties either on the wide rim, or on the narrow rim. Some of these calixarenes used at a concentration 10 -3 M are more efficient than CMPO used at a two hundred fifty fold higher concentration. Moreover, calixarene skeleton leads to a strong selectivity among lanthanides, this selectivity is much less obvious for CMPO. Selectivity order is reversed according to whether CMPO unit is borne by the wide rim or the narrow rim. The most efficient calixarenes allow actinides to be separated from most of the lanthanides except the lightest ones. (authors)

  12. Theoretical study of the structure and reactivity of lanthanide and actinide based organometallic complexes

    International Nuclear Information System (INIS)

    Barros, N.

    2007-06-01

    In this PhD thesis, lanthanide and actinide based organometallic complexes are studied using quantum chemistry methods. In a first part, the catalytic properties of organo-lanthanide compounds are evaluated by studying two types of reactions: the catalytic hydro-functionalization of olefins and the polymerisation of polar monomers. The reaction mechanisms are theoretically determined and validated, and the influence of possible secondary non productive reactions is envisaged. A second part focuses on uranium-based complexes. Firstly, the electronic structure of uranium metallocenes is analysed. An analogy with the uranyl compounds is proposed. In a second chapter, two isoelectronic complexes of uranium IV are studied. After validating the use of DFT methods for describing the electronic structure and the reactivity of these compounds, it is shown that their reactivity difference can be related to a different nature of chemical bonding in these complexes. (author)

  13. Cloud point extraction: an alternative to traditional liquid-liquid extraction for lanthanides(III) separation.

    Science.gov (United States)

    Favre-Réguillon, Alain; Draye, Micheline; Lebuzit, Gérard; Thomas, Sylvie; Foos, Jacques; Cote, Gérard; Guy, Alain

    2004-06-17

    Cloud point extraction (CPE) was used to extract and separate lanthanum(III) and gadolinium(III) nitrate from an aqueous solution. The methodology used is based on the formation of lanthanide(III)-8-hydroxyquinoline (8-HQ) complexes soluble in a micellar phase of non-ionic surfactant. The lanthanide(III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud point temperature (CPT). The structure of the non-ionic surfactant, and the chelating agent-metal molar ratio are identified as factors determining the extraction efficiency and selectivity. In an aqueous solution containing equimolar concentrations of La(III) and Gd(III), extraction efficiency for Gd(III) can reach 96% with a Gd(III)/La(III) selectivity higher than 30 using Triton X-114. Under those conditions, a Gd(III) decontamination factor of 50 is obtained.

  14. Extraction characteristics of trivalent lanthanides and actinides in mixtures of dinonylnaphthalenesulfonic acid and carboxylic acids

    International Nuclear Information System (INIS)

    West, M.H.

    1983-03-01

    Dinonylnaphthalenesulfonic acid (HDNNS) has been shown to be an effective liquid cation exchanger for the extraction of metal ions. This extractant has proven to be successful in the extraction of trivalent lanthanides and actinides in the pH range of 2.0 to 3.0, although it shows little selectivity for individual ions because of its strong acid character. In an effort to improve the selectivity of HDNNS between trivalent lanthanides and actinides, carboxylic acids were added to the organic phase and the effects on the extraction characteristics of HDNNS were investigated. Three carboxylic acids - nonanoic, cyclohexanecarboxylic, and cyclohexanebutyric - were studied with the following metals: Am(III), Cm(III), Ce(III), Eu(III), and Tm(III). The distributions of the metal ions were studied holding the HDNNS concentration constant while varying the carboxylic acid concentrations over a range of 1.0 x 10 -5 M to 1.0 M. Results indicated that the greatest enhancement of the extraction occurred at a carboxylic acid concentration of 1.0 x 10 -2 M with negative effects occurring at 0.5 M and 1.0 M. The effects on the extraction of the trivalent lanthanides and actinides were interpreted in terms of the structural differences of the carboxylic acids, the effect of the carboxylic acids on the HDNNS extraction mechanism, and the ionic properties of the metals studied

  15. Study of Optical and Structural Characteristics of Ceria Nanoparticles Doped with Negative and Positive Association Lanthanide Elements

    Directory of Open Access Journals (Sweden)

    N. Shehata

    2014-01-01

    Full Text Available This paper studies the effect of adding lanthanides with negative association energy, such as holmium and erbium, to ceria nanoparticles doped with positive association energy lanthanides, such as neodymium and samarium. That is what we called mixed doped ceria nanoparticles (MDC NPs. In MDC NPs of grain size range around 6 nm, it is proved qualitatively that the conversion rate from Ce4+ to Ce3+ is reduced, compared to ceria doped only with positive association energy lanthanides. There are many pieces of evidence which confirm the obtained conclusion. These indications are an increase in the allowed direct band gap which is calculated from the absorbance dispersion measurements, a decrease in the emitted fluorescence intensity, and an increase in the size of nanoparticles, which is measured using both techniques: transmission electron microscope (TEM and X-ray diffractometer (XRD. That gives a novel conclusion that there are some trivalent dopants, such as holmium and erbium, which can suppress Ce3+ ionization states in ceria and consequently act as scavengers for active O-vacancies in MDC. This promising concept can develop applications which depend on the defects in ceria such as biomedicine, electronic devices, and gas sensors.

  16. Synthesis, characterization and reactivity of some lanthanide organometallics

    International Nuclear Information System (INIS)

    Marchal, N.

    1991-12-01

    Organo lanthanides with reactive metal-carbon bonds are obtained by direct synthesis of the metal (powder) and a hydrocarbon in ether medium, like with alkali metals. Two types of synthesis are envisaged: formation of covalent bonds by opening cycles, only biphenylene is reactive enough in regard to ytterbium and samarium, these organometallic compounds can also be prepared by the classical way, i.e. reaction of 2.2'-dilithio biphenyl on rare earth halogenides and coupling of 6.6-dimethylfulvene leading to dicyclopentadienyl compounds with Sm and Yb. The reactivity of these complexes is studied by catalysis of ethylene polymerization

  17. Structural biology of the lanthanides-mining rare earths in the Protein Data Bank.

    Science.gov (United States)

    Djinovic-Carugo, Kristina; Carugo, Oliviero

    2015-02-01

    With its about 100,000 three-dimensional structures, the Protein Data Bank is a copious source of information: it contains also some hundreds of structures of macromolecules complexed with lanthanide cations, which are examined here. These cations, which are found in a wide variety of protein types, were introduced to determine the structures, by exploiting their anomalous dispersion (in crystallographic studies, where they are also used as crystallization additives) or the paramagnetic pseudocontact shifts (in NMR analyses). The coordination numbers in the first coordination sphere are very variable, though they tend to be close to those that are observed in small molecules or in water solution. The coordination polyhedra are also quite variable as it can be expected for large cations. Interestingly, lanthanide cations are frequently observed in packing bridges between symmetry equivalent molecules in crystals, where they tend to form polynuclear complexes, with up to seven cations bridged by water/hydroxide ligands. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Use of binary alloys of the lanthanides for tritium recovery from CTR blankets

    International Nuclear Information System (INIS)

    Carstens, D.H.W.

    1978-01-01

    Liquid binary alloys of the lanthanide metals have been proposed as getters of tritium from breeder blankets of controlled thermonuclear reactors. Because of the high stability of the lanthanide hydrides at reactor temperatures (500--1000 0 C), these alloys should prove highly efficient in this application and a series of experiments designed to test this applicability are summarized here. Sieverts' experiments using deuterium were carried out on a series of alloys of La and Ce. For eutectics of the approximate composition Ln 5 M where Ln is La or Ce and M is an iron-group metal, it was found that the deuteriding capacities and the equilibrium pressures were close to those of the parent metal. Experiments measuring the extraction rate of low-level tritium from helium streams using La 5 . 25 Ni were carried out. The tritium was rapidly gettered down to about 10 ppM and more slowly over periods of 1--2 h to below 0.1 ppM

  19. A neutron and synchrotron investigation of the electronic structure of lanthanide zirconates

    International Nuclear Information System (INIS)

    Clements, Richard; Kennedy, Brendan; Ling, Chris; Stampfl, Anton P.J.

    2009-01-01

    Full text: The lanthanide zirconates are of interest for use in inert matrix fuels and nuclear wasteforms. A variety of studies have been performed to determine the suitability of a material as an inert matrix or wasteform. For use in these applications, the material's structure must be resistant to radiation damage and its thermal, thermodynamic and mechanical properties must be known. The structure's ability to incorporate an actinide host into the lattice vacancy must also be known. These properties may be better understood by investigating the f-electronic structure, which has historically proved difficult to model. We have undertaken a synthesis of the full range of lanthanide zirconate series using solid state techniques. We have performed neutron powder diffraction on a selection of the series in conjunction with the following measurements using synchrotron radiation: powder x-ray diffraction, VUV photoluminescence spectra, x-ray photoemission spectroscopy (XPS) and x-ray absorption near edge spectroscopy (XANES) The results are to be analysed using OFT modeling techniques. These results will be presented, along with details of the analysis and synthetic techniques used.

  20. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.; Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.

    2013-01-01

    Summary: • Pd will bind lanthanide fission products. • 2 wt% Pd in alloy is expected to allow 20 at% Heavy Metal burnup, 4 wt% Pd possibly 30-40 at% HM burnup. • For recycled fuel with some lanthanide carryover, palladium additive will also prevent premature FCCI. • Novel uranium alloy systems suitable for burning transuranics were identified. • U-Mo-Ti-Zr and U-W-Mo irradiations may perform comparably to U-10Zr, but the real tests needed must include Pu and Np for TRU burning. – Diffusion couples with alloys and Fe or cladding; – Irradiations

  1. Lanthanide modification of CdSe/ZnS core/shell quantum dots

    DEFF Research Database (Denmark)

    Dethlefsen, Johannes Rytter; Mikhailovsky, Alexander A.; Burks, Peter T.

    2012-01-01

    Lanthanide-modified CdSe quantum dots (CdSe(Ln) QDs) have been prepared by heating a solution of Cd(oleate)(2), SeO2, and Ln(bipy)(S2CNEt2)(3) (bipy = 2,2'-bipyridine) to 180-190 degrees C for 10-15 min. The elemental compositions of the resulting CdSe(Ln) cores and CdSe(Ln)/ZnS core/shell QDs show...

  2. Study of 2-methyl-2-oxo-3,5-di-tert. -butyl-. delta. /sup 4/-1,3,2-oxazaphospholine interaction with lanthanide shifting reagents. [Lanthanides: Eu, Pr

    Energy Technology Data Exchange (ETDEWEB)

    Turov, A.V.; Povolotskij, M.I.; Balitskij, Yu.V.; Kornilov, M.Yu.; Boldeskul, I.E. (AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii; Kievskij Gosudarstvennyj Univ. (Ukrainian SSR))

    1983-10-01

    2-methyl-2-oxo-3.5-di-tret.-butyl-..delta../sup 4/-1, 3, 2-oxazaphospholine in CDCl/sub 3/ solution reacts with lanthanide shifting reagents-tris (dipivaloylmethanates) of europium (3) and praseodymium (3)-with the formation of adducts of constant composition. At that, in (/sup +/H, /sup 13/C) NMR spectra considerable pseudocontact induced shifts of substratum signals take place. Geometry of the adducts formed is calculated.

  3. Thermal decomposition of double selenates of lanthanides (III), yttrium (III) and ammonium

    International Nuclear Information System (INIS)

    Crespi, M.S.

    1989-01-01

    Double selenates of lanthanides, yttrium and ammonium were prepared by treating mixtures of simple selenates with equimolar amounts and then dried in a vacuum desiccator containing anhydrous calcium chloride, protected from light. The compounds were studied using the conventional analytical methods such as infrared absorption spectra, X-ray diffraction, differential thermal analysis (DTA), and thermogravimetry (TG). (author)

  4. Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts

    DEFF Research Database (Denmark)

    Ståhlberg, Tim; Sørensen, Mathilde Grau; Riisager, Anders

    2010-01-01

    The direct conversion of glucose to 5-(hydroxymethyl)furfural (HMF) in ionic liquids with lanthanide catalysts was examined in search of a possibly more environmentally feasible process not involving chromium. The highest HMF yield was obtained with ytterbium chloride or triflate together...

  5. Organometallic compounds of the lanthanides, actinides and early transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Cardin, D J [Trinity Coll., Dublin (Ireland); Cotton, S A [Stanground School, Peterborough (UK); Green, M [Bristol Univ. (UK); Labinger, J A [Atlantic Richfield Co., Los Angeles, CA (USA); eds.

    1985-01-01

    This book provides a reference compilation of physical and biographical data on over 1500 of the most important and useful organometallic compounds of the lanthanides, actinides and early transition metals representing 38 different elements. The compounds are listed in molecular formula order in a series of entries in dictionary format. Details of structure, physical and chemical properties, reactions and key references are clearly set out. All the data is fully indexed and a structural index is provided.

  6. The determination of lanthanum and lanthanide elements by means of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Kuelcue, N.

    1982-01-01

    The quantitative analysis of all lanthanide elements (except Pm) was carried out concurrently using X-ray fluorescence analysis. By choice of suitable preparative methods (thin layer samples prepared by pipetting solutions onto filter paper) and use of an internal standard (Sr) it was possible to obtain linear calibration curves up to high concentrations in the solution (85 g/l) and to suppress disturbances caused by absorption and secondary fluorescence. A correction procedure was developed for reflection superimpositions in the L-spectra of the lanthanide elements which, through selection of the most favourable reflections for analysis, permitted concurrent determination of all 14 elements. Main and secondary constitutents can be analysed whereas enrichment is required for trace analysis. Under routine usage the actual limits of detection range from 3 to 17 μg/cm 2 or alternatively 0.3 to 1.7 mg/ml. (orig.) [de

  7. Synthesis, crystal structure and luminescent properties of lanthanide extended structure with asymmetrical dinuclear units based on 2-(methylthio)benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiane K.; Souza, Viviane P. de; Luz, Leonis L. da [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Menezes Vicenti, Juliano R. de [Escola de Química e Alimento, FURG, 96203-900 Rio Grande, RS (Brazil); Burrow, Robert A. [Departamento de Química, UFSM, 97105-900 Santa Maria, RS (Brazil); Severino Alves; Longo, Ricardo L. [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Malvestiti, Ivani, E-mail: ivani@ufpe.br [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil)

    2016-02-15

    The extended structures [Ln{sub 2}(L){sub 6}(OH{sub 2}){sub 4}] with L=2-(methylthio)benzoato (2-CH{sub 3}S–C{sub 6}H{sub 4}COO{sup −}) and Ln=Tb (1), Eu (2) and Gd (3) were successfully synthesized and characterized. The single crystal structure of compound 1 was determined and showed an extended structure made up of asymmetrical dinuclear units with the formula catena-poly[{Tb(H_2O)_4}-(μ-L-1κO:2κO'){sub 2}-{Tb(L-κO,O')_2}-(μ-L-1κO:2κO'){sub 2}]. In the molecule of 1, there are two distinct metal sites. The Tb atom in site 1 is bound to four coordinated water molecules and four oxygen atoms from four different benzoate ligands, two of which bridge to site 2 Tb atoms on one side and two to site 2 Tb atoms on the other side. The site 2 Tb atom is bound to four oxygen atoms from two chelating benzoate ligands and four oxygen atoms from four different benzoate ligands, two of which bridge to site 1 Tb atoms on one side and two to site 1 Tb atoms on the other side. The bridging benzoate ligands extend the framework in one-dimension with alternating site 1/site 2 Tb atoms. The luminescent properties of these asymmetric dinuclear extended structures are quite peculiar and showed a single emitting lanthanide center. The quantum yields of 1 (ca. 50–55%) is practically independent of the excitation energy, whereas those of 2 are vanishing small (<1%) when excited at the ligand states and become sizable (ca. 10–20%) upon excitation at the intra-4f manifold. To reconcile these experimental observations in conjunction with the spectral data for compounds 1 and 3, a strong interaction between the lanthanide emitting states at sites 1 and 2 was proposed. For compound 1, the numerical solutions of the rate equations provided evidences that when the transition rates between the emitting states at both sites are larger than the highest decaying rate of these states, the system becomes an effective single emitter. This establishes, for the first time

  8. Introduction to molecular magnetism from transition metals to lanthanides

    CERN Document Server

    Benelli, Cristiano

    2015-01-01

    This first introduction to the rapidly growing field of molecular magnetism is written with Masters and PhD students in mind, while postdocs and other newcomers will also find it an extremely useful guide. Adopting a clear didactic approach, the authors cover the fundamental concepts, providing many examples and give an overview of the most important techniques and key applications. Although the focus is one lanthanide ions, thus reflecting the current research in the field, the principles and the methods equally apply to other systems. The result is an excellent textbook from both a scientif

  9. X-ray powder diffraction data on miscellaneous lanthanide compounds

    International Nuclear Information System (INIS)

    Ferguson, I.F.; Hughes, T.E.

    1978-08-01

    Recent work on neutron absorbing materials has produced various new X-ray diffraction powder patterns of compounds of the lanthanides. Various inconsistencies in previously published data have been noted, and accurate measurements have been made of the lattice parameters of the rare earth oxides Sm 2 0 3 , Eu 2 0 3 , Gd 2 0 3 which have the monoclinic rare earth type B- structure, as well as Eu0. These data are recorded for reference. The optimum conditions for obtaining X-ray powder diffraction data from europium compounds are also noted. (author)

  10. Method of cerium separation from other lanthanides and yttrium

    International Nuclear Information System (INIS)

    Tran, Duc Hiep; Mostecky, J.

    1988-01-01

    Cerium is separated from a suspension produced during the aerial oxidation process. The suspension is subject to a cyclic process of two-stage fractional dissolution. Following the first dissolution, almost all cerium remains undissolved while 95% of the other lanthanides pass into the solution. The filtrate of the second stage of dissolution containing about 5% of ceriumm is returned for oxidation with the next batch of hydroxide mixed concentrate. Following oxidation, the two-stage fractional dissolution is repeated. This cycling provides quantitative cerium separation from other rare earth elements. (E.S.)

  11. Study of the selectivity of poly-nitrogenous extracting molecules in the complexation of actinides (III) and lanthanides (III) in solution in anhydrous pyridine

    International Nuclear Information System (INIS)

    Riviere, Ch.

    2000-01-01

    The aim of this work is to better understand the factors which contribute to the separation of lanthanides(III) and actinides(III). Polydentate nitrogenous molecules present an interesting selectivity. A thermodynamic study of the complexation in pyridine of lanthanide and uranium by the bipyridine ligand (bipy) has been carried out. The formation constants and the thermodynamic values of the different complexes have been determined. It has been shown that the bipy complexes formation is controlled by the enthalpy and unfavored by the entropy. The conductometry has revealed too a significant difference in the uranium and lanthanides complexation by the bipyridine ligand. The use of the phenanthroline ligand induces a better complexation of the metallic ions but the selectivity is not improved. On the other hand, the decrease of the basicity and the increase of the ligand denticity (for instance in the case of the use of ter-pyridine) favour the selectivity without improving the complexation. The selectivity difference for the complexation of actinides(III) and lanthanides(III) by the different studied ligands (independent systems) has been confirmed by experiments of inter-metals competition. (O.M.)

  12. Equilibrium constants in aqueous lanthanide and actinide chemistry from time-resolved fluorescence spectroscopy: The role of ground and excited state reactions

    International Nuclear Information System (INIS)

    Billard, I.; Luetzenkirchen, K.

    2003-01-01

    Equilibrium constants for aqueous reactions between lanthanide or actinide ions and (in-) organic ligands contain important information for various radiochemical problems, such as nuclear reprocessing or the migration of radioelements in the geosphere. We study the conditions required to determine equilibrium constants by time-resolved fluorescence spectroscopy measurements. Based on a simulation study it is shown that the possibility to determine equilibrium constants depends upon the reaction rates in the photoexcited states of the lanthanide or actinide ions. (orig.)

  13. The interaction of actinide and lanthanide ions with hemoglobin and its relevance to human and environmental toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit, E-mail: amitk@barc.gov.in [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ali, Manjoor [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ningthoujam, Raghumani S. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Gaikwad, Pallavi [Department of Zoology, Savitribai Phule Pune University, Pune 411 007, Mumbai (India); Kumar, Mukesh [Solid State, Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Nath, Bimalendu B. [Department of Zoology, Savitribai Phule Pune University, Pune 411 007, Mumbai (India); Pandey, Badri N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-04-15

    Highlights: • The sites of Ln and An interaction in Hb depend upon their charge-to-ionic-radii ratio. • Th(IV), Ce(IV) and U(VI) altered structure and oxygen-binding of Hb. • Spectroscopic studies determined binding characteristics of actinides. • Metal–Hb interaction was tested in an environmentally-important aquatic midge, Chironomus. - Abstract: Due to increasing use of lanthanides/actinides in nuclear and civil applications, understanding the impact of these metal ions on human health and environment is a growing concern. Hemoglobin (Hb), which occurs in all the kingdom of living organism, is the most abundant protein in human blood. In present study, effect of lanthanides and actinides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] on the structure and function of Hb has been investigated. Results showed that these metal ions, except Ce(IV) interacted with carbonyl and amide groups of Hb, which resulted in the loss of its alpha-helix conformation. However, beyond 75 μM, these ions affected heme moiety. Metal–heme interaction was found to affect oxygen-binding of Hb, which seems to be governed by their closeness with the charge-to-ionic-radius ratio of iron(III). Consistently, Ce(IV) being closest to iron(III), exhibited a greater effect on heme. Binding constant and binding stoichiometry of Th(IV) were higher than that of U(VI). Experiments using aquatic midge Chironomus (possessing human homologous Hb) and human blood, further validated metal–Hb interaction and associated toxicity. Thus, present study provides a biochemical basis to understand the actinide/lanthanide-induced interference in heme, which may have significant implications for the medical and environmental management of lanthanides/actinides toxicity.

  14. The interaction of actinide and lanthanide ions with hemoglobin and its relevance to human and environmental toxicology

    International Nuclear Information System (INIS)

    Kumar, Amit; Ali, Manjoor; Ningthoujam, Raghumani S.; Gaikwad, Pallavi; Kumar, Mukesh; Nath, Bimalendu B.; Pandey, Badri N.

    2016-01-01

    Highlights: • The sites of Ln and An interaction in Hb depend upon their charge-to-ionic-radii ratio. • Th(IV), Ce(IV) and U(VI) altered structure and oxygen-binding of Hb. • Spectroscopic studies determined binding characteristics of actinides. • Metal–Hb interaction was tested in an environmentally-important aquatic midge, Chironomus. - Abstract: Due to increasing use of lanthanides/actinides in nuclear and civil applications, understanding the impact of these metal ions on human health and environment is a growing concern. Hemoglobin (Hb), which occurs in all the kingdom of living organism, is the most abundant protein in human blood. In present study, effect of lanthanides and actinides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] on the structure and function of Hb has been investigated. Results showed that these metal ions, except Ce(IV) interacted with carbonyl and amide groups of Hb, which resulted in the loss of its alpha-helix conformation. However, beyond 75 μM, these ions affected heme moiety. Metal–heme interaction was found to affect oxygen-binding of Hb, which seems to be governed by their closeness with the charge-to-ionic-radius ratio of iron(III). Consistently, Ce(IV) being closest to iron(III), exhibited a greater effect on heme. Binding constant and binding stoichiometry of Th(IV) were higher than that of U(VI). Experiments using aquatic midge Chironomus (possessing human homologous Hb) and human blood, further validated metal–Hb interaction and associated toxicity. Thus, present study provides a biochemical basis to understand the actinide/lanthanide-induced interference in heme, which may have significant implications for the medical and environmental management of lanthanides/actinides toxicity.

  15. Design and synthesis of some polyaminopolycarboxylic acids and the structural influence of their anions on the separation of actinides and lanthanides

    International Nuclear Information System (INIS)

    Tse, P.K.

    1983-01-01

    Investigation of some methods for the preparation of four polyaminopolycarboxylic acids: thiobis(ethylenenitrilo)-N,N,N',N'-tetraacetic acid, N,N-bis(2-aminoethyl)aniline-N',N',N'',N''-tetraacetic acid, bis(3-aminopropyl)ether-N,N,N',N'-tetraacetic acid and N,N-bis[N',N'-dicarboxymethyl-3-aminopropyl]-N-methylammonioacetate are reported. The coordinating properties of their anions with regard to lanthanide ions have been examined. Polyaminopolycarboxylates form 1:1 chelate species with trivalent lanthanide ions in aqueous media. The stability constants of their metal chelate species depend upon the size of the chelating rings formed, the basicity of the middle atom in the chain, and the number of coordination points between anion and metal cation. Tracer level 241 Am- 155 Eu cation-exchange experiments explore how the relative magnitude of the chelate stability constants affects the separation of members of the lanthanide and actinide series

  16. Some aspects of synergistic extraction of actinides and lanthanides from mixed aqueous-organic media

    International Nuclear Information System (INIS)

    Shukla, J.P.; Subramanian, M.S.

    1981-01-01

    Various aspects of the synergistic extraction and separation of actinides and lanthanides from mixed aqueous-organic solutions (polar media) have been reviewed. Notable recent developments as well as its current status in solvent extraction systems where the aqueous acidic phase contains an organic solvent which is completely miscible with water, are presented briefly. In general, extraction increases in the presence of an organic component. The less polar the additive, the higher is the tendency to form neutral metal complexes which ultimately brings about an increase in the extraction. In a polar media, synergism has mostly been observed, though antagonism is not uncommon. An attempt has been made to classify the factors that play an important role in polar phase extractions. Also, their influence particularly on the extractability of actinides and lanthanides is discussed. The discussion is limited to the factors affecting the extraction equilibria, effect of dielectric constant of the polar medium, solvation of the extracting agent and to the composition and stability of the metal complex in the organic phase. Hydroxyl (OHsup(-)) bearing organic additives, e.g. alcohols, and solvents not containing the hydroxyl group such as acetone, dimethylsulphoxide, tetrahydrofuran, amides and acetonitrile etc. are the two major classes of organic additives considered in these studies. Generally, synergistic effect in extraction of the ion-association (TBP, TOPO, sulphoxides etc.) or anion exchange (amines etc.) type is relatively more pronounced compared to other extractions. A tabular summary concerning extraction of actinides and lanthanides from polar media is appended for ready reference. (author)

  17. Efficiency of crystalline laser materials based on lanthanides

    International Nuclear Information System (INIS)

    Synek, M.

    1990-01-01

    Lanthanide-based laser-crystal efficiency has been investigated, using the laser-active ions Dy 2+ and Nd 3+ as significant illustrations. Authors' calculations, and various approaches by other authors, are reviewed. In specific examples of treatment, the analytical self-consistent field(SCF) expansion method has been used to calculate accurate ab initio wave functions and energy levels for a number of excited states of Nd 3+ and Dy 2+ , which were investigated for the first time. General group-theoretical principles were considered and the formulae for crystal-field parameters were obtained. The Racah quantum numbers were included in these calculations, in fact showing sizeable energy effects. Oscillator strengths, calculated from the SCF wave functions, revealed which orbitals can be neglected without influencing the transition probability at the fourth significant figure. The relationship to the spectral character of the pumping device was considered. The efficiency parameters (mechanical, economic, and energetic) have to be considered as supplementing the related threshold energy parameter. It would be conceivable to predict the applicability of competing laser systems to a specific task, based on integrated energy pictures. (author). 32 refs., 2 tabs

  18. Structure and potential applications of amido lanthanide complexes chelated by bifunctional b-diketiminate ligand

    Czech Academy of Sciences Publication Activity Database

    Olejník, R.; Padělková, Z.; Fridrichová, A.; Horáček, Michal; Merna, J.; Růžička, A.

    2014-01-01

    Roč. 759, JUN 2014 (2014), s. 1-10 ISSN 0022-328X R&D Projects: GA ČR GAP106/10/0924 Institutional support: RVO:61388955 Keywords : Bifunctional b-diketiminates * lanthanides * hydroamination Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.173, year: 2014

  19. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    Science.gov (United States)

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  20. Synthesis, magnetic and spectral studies of lanthanide(III) chloride complexes of hydrazones of isonicotinic acid hydrazide

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Agarwal, Himanshu; Prasad, Ram

    1996-01-01

    The synthesis, magnetic and spectral properties of trivalent lanthanide chlorides with N-isonicotinamidobenzalaldimine (INH-BENZ), N-isonicotinamidoanisalaldimine (INH-ANSL) and N-isonicotinamido-p-dimethylaminobenzalaldimine (INH-PDAB) are described. 13 refs., 2 tabs

  1. Accurate determination of trace amounts of lanthanum, yttrium and all stable lanthanides in biological materials by Ion Chromatography

    International Nuclear Information System (INIS)

    Dybczynski, R.S.; Kulisa, K.; Danko, B.; Samczynski, Z.

    2007-01-01

    The analytical procedure for the isolation and preconcentration of La, Y and the lanthanides from biological materials and their determination by ion chromatography (IC) with the use of Dionex Ion Pac CS3 + CG3 column (sulfonic acid type), α-hydroxyisobutyric acid (α-HIBA) as an eluent, and PAR or Arsenazo III as color forming reagents, was elaborated. The scheme originally devised for NAA, involving microwave assisted digestion and multi step separation employing ion exchange and extraction chromatography columns was used to selectively recover REE fraction (without scandium) with 100% yield. The REE fraction was analyzed by IC at 25 and 70 o C. The run at 70 o C enabled resolution of Y and Dy peaks and as a result made possible quantitative determination of La, Y, and all lanthanides. Investigation on the mechanism of band spreading revealed that longitudinal diffusion in the stationary phase considerably contributed to the total plate height. Surprisingly, the plate height (H) calculated from Y peak was distinctly lower than H values of the adjacent lanthanides. The method was validated by analyzing several certified reference materials (CRMs). (authors)

  2. Adducts of some hydrated lanthanide methanesulphonates and N, N - dimethyl - diphenylphosphinamide (DDPA)

    International Nuclear Information System (INIS)

    Felicissimo, A.M.P.; Oliveira, W. de

    1987-01-01

    The addition compounds of hydrated lanthanide methanesulphonates (MS) with DDPA is analysed. The compounds with composition Ln (MS) 3 . 2 DDPA (Ln = Ce - Gd) were characterized by elemental analysis, infrared spectra, emission spectrum of the europium compound and molar electrolytic conductance in methanol. The ligand DDPA, was prepared by treating diphenylphosphoryl chloride with dimethylamine in benzene solutions. (M.J.C.) [pt

  3. Preparation and characterization of the adducts between lanthanide methanesulfonates and thioxane oxide

    International Nuclear Information System (INIS)

    Castro e Silva, E. de.

    1983-01-01

    The preparation and characterization of the adduct between lanthanide methanesulphonates and thioxane oxide are presented. The compounds characterization by conductance measurements, X-ray powder patterns, infrared, visible and fluorescence spectra, TG, DTG and DTA curves was made. According to the X-ray patterns, three isomorphous series were obtained: a-La-Gd b-Tb-Dy and c-Ho-Lu, Y. (M.J.C.) [pt

  4. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    Science.gov (United States)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox)0.5(H2O)]n·2n(H2O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H2sfpip)(ox)(H2O)4]n·2n(H2O) (Ln=Nd (8) Sm (9)), [H2ox=oxalic acid, H3sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H3sfpip resulted in two types of structures. Compounds 1-7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox2- anions as linkers to bridge the adjacent layers. Compounds 8-9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1-7 to 8-9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1-9 were also investigated.

  5. Recent progress in actinide and lanthanide solvent extraction

    International Nuclear Information System (INIS)

    Musikas, C.; Hubert, H.; Benjelloun, N.; Vitorge, P.; Bonnin, M.; Forchioni, A.; Chachaty, C.

    1983-04-01

    Work in progress on actinide solvent extraction is briefly reviewed in this paper. 1 H and 31 P NMR are used to elucidate several fundamental unsolved problems concerning organophosphorous extractants often used in actinides extraction: determination of site of dialkylthiophosphate protonation and addition of basic phosphine oxide to dibutylthiophosphoric acid dimer. Extraction of Am III and Eu from high radioactivity level wastes by tetrasubsituted methylene diamides is investigated. Trivalent actinide-lanthanide group are separated by solvent extraction using soft donor ligand complexes which are more stable. The synergism of dinonylnaphtalene sulfonic acid (HDNNS) associated with several neutral donors like TBP, TOPO, amides are examined in the trivalent and tetravalent actinide extraction

  6. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands; Simulations par mecanique quantique et dynamique moleculaire de la complexation de cations alcalino-terreux et lanthanides par des ligands polyaminocarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Durand, S

    1999-07-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA{sup 4-}, ethylene-diamino-tri-acetate-acetic acid EDTA(H){sup 3-}, tetra-aza-cyclo-dodecane-tetra-acetate DOTA{sup 4-}, methylene-imidine-acetate MIDA{sup 2-}) are reported. First, a consistent set of Lennard-Jones parameters for La{sup 3+}, Eu{sup 3+} and Lu{sup 3+} cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA{sup 4-}, EDTA(H){sup 3-}, DOTA{sup 4-} and 1:2 complexes of lanthanide cations with MIDA{sup 2-} were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca{sup 2+} vs Sr{sup 2+} and vs Ba{sup 2+} on the one hand, and with La{sup 3+} vs Eu{sup 3+} and vs Lu{sup 3+} on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  7. Effect of lanthanide on the microstructure and structure of LnMn0.5Fe0.5O3 nanoparticles with Ln=La, Pr, Nd, Sm and Gd prepared by the polymer precursor method

    International Nuclear Information System (INIS)

    Romero, Mariano; Faccio, Ricardo; Martínez, Javier; Pardo, Helena; Montenegro, Benjamín; Plá Cid, Cristiani Campos; Pasa, André A.

    2015-01-01

    The synthesis of LnMn 0.5 Fe 0.5 O 3 perovskite nanoparticles by the polymer precursor method showed a strong intrinsic dependence with different lanthanides (Ln=La, Pr, Nd, Sm and Gd). The polymerization level reached in the polymer precursor was proportional to the atomic number of lanthanide with exception of samarium, which showed the formation of a different precursor based in a citrate chelate with ethyleneglycol bonded as adduct. The increasing level of polymerization of the polymer precursors showed the formation of large-size perovskite nanoparticles after its calcination. SAXS and TEM analyses suggested that nanoparticles obtained, using this method, have a squared-like microstructure in connection with the polymer precursor microstructure. Structural analysis showed an orthorhombic structure with a slight decline in the Jahn–Teller distortion when the atomic number of lanthanide increases. Mössbauer spectroscopy showed the presence of a majority site in agreement with the Pbnm orthorhombic structure best fitted with Rietveld refinements and in some cases, a more distorted site attributed to local inhomogeneities and oxygen vacancies. - Highlights: • Precursor polymerization level is lower in the presence of lighter lanthanides. • Lighter lanthanide perovskite nanoparticles after calcination are lower-sized. • Nanoparticles obtained by this method have lamellae microstructure. • Jahn–Teller distortion declines for heavier lanthanide perovskites. • Oxygen vacancy phase was observed in lighter lanthanide perovskites

  8. Ionic Liquid and Supercritical Fluid Hyphenated Techniques for Dissolution and Separation of Lanthanides, Actinides, and Fission Products

    International Nuclear Information System (INIS)

    Wai, Chien M.; Mincher, Bruce

    2012-01-01

    This project is investigating techniques involving ionic liquids (IL) and supercritical (SC) fluids for dissolution and separation of lanthanides, actinides, and fission products. The research project consists of the following tasks: Study direct dissolution of lanthanide oxides, uranium dioxide and other actinide oxides in [bmin][Tf 2 N] with TBP(HNO 3 ) 1.8 (H 2 O) 0.6 and similar types of Lewis acid-Lewis base complexing agents; Measure distributions of dissolved metal species between the IL and the sc-CO 2 phases under various temperature and pressure conditions; Investigate the chemistry of the dissolved metal species in both IL and sc-CO 2 phases using spectroscopic and chemical methods; Evaluate potential applications of the new extraction techniques for nuclear waste management and for other projects. Supercritical carbon dioxide (sc-CO 2 ) and ionic liquids are considered green solvents for chemical reactions and separations. Above the critical point, CO 2 has both gas- and liquid-like properties, making it capable of penetrating small pores of solids and dissolving organic compounds in the solid matrix. One application of sc-CO 2 extraction technology is nuclear waste management. Ionic liquids are low-melting salts composed of an organic cation and an anion of various forms, with unique properties making them attractive replacements for the volatile organic solvents traditionally used in liquid-liquid extraction processes. One type of room temperature ionic liquid (RTIL) based on the 1-alkyl-3-methylimidazolium cation [bmin] with bis(trifluoromethylsulfonyl)imide anion [Tf 2 N] is of particular interest for extraction of metal ions due to its water stability, relative low viscosity, high conductivity, and good electrochemical and thermal stability. Recent studies indicate that a coupled IL sc-CO 2 extraction system can effectively transfer trivalent lanthanide and uranyl ions from nitric acid solutions. Advantages of this technique include operation at

  9. Separation and analysis of lanthanides by isotachophoresis coupled with inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Vio, Laurent; Cretier, Gerard; Rocca, Jean-Louis; Chartier, Frederic; Geertsen, Valerie; Gourgiotis, Alkiviadis; Isnard, Helene

    2012-01-01

    This study is a large project initiated by the French Nuclear Agency, and concerns the development of a new electrolyte system for the separation of lanthanides by isotachophoresis. This new system is based on a leading electrolyte that incorporates 2-hydroxy-2-methylbutyric acid as complexing agent. The optimization of separation conditions (complexing agent concentration, pH, capillary dimensions, injection conditions, and current intensity) performed by experiments on a commercial capillary instrument with contactless conductivity detection, which allows to improve the separation of 13 lanthanides (La to Lu, except Pm and Ho). We have also directly coupled the isotachophoresis to an inductively coupled plasma mass spectrometer to visualize the mono-elementary elution bands and demonstrate the potentiality of the method for isotope ratio measurements. The application to a simulated solution representative of a fraction of fission products present in a MOX spent fuel is presented in this paper to demonstrate the possible application in future on nuclear fuel samples. (authors)

  10. Catalytic Oligomerization of Terminal Alkynes by Lanthanide Carbyls (η5-C5Me5)2LnCH(SiMe3)2 (Ln = Y, La, Ce)

    NARCIS (Netherlands)

    Heeres, H.J.; Teuben, J.H.

    1991-01-01

    Lanthanide and group 3 carbyls Cp*2LnCH(SiMe3)2 (1, Ln = Y; 2, Ln = La; 3, Ln = Ce) are active catalyst precursors for the oligomerization of terminal alkynes HC≡CR (R = alkyl, aryl, SiMe3). The regioselectivity and the extent of oligomerization depend strongly on the lanthanide applied as well as

  11. Heavy flavors

    International Nuclear Information System (INIS)

    Cox, B.; Gilman, F.J.; Gottschalk, T.D.

    1986-11-01

    A range of issues pertaining to heavy flavors at the SSC is examined including heavy flavor production by gluon-gluon fusion and by shower evolution of gluon jets, flavor tagging, reconstruction of Higgs and W bosons, and the study of rare decays and CP violation in the B meson system. A specific detector for doing heavy flavor physics and tuned to this latter study at the SSC, the TASTER, is described. 36 refs., 10 figs

  12. Thermodynamic study on the complexation of Trivalent actinide and lanthanide cation by N-donor ligands in homogeneous conditions; Etude thermodynamique de la complexation des ions actinide (III) et lanthanide (III) par des ligands polyazotes en milieu homogene

    Energy Technology Data Exchange (ETDEWEB)

    Miguirditchian, M

    2004-07-01

    Polydentate N-donor ligands, alone or combined with a synergic acid, may selectively extract minor actinides(III) from lanthanide(III) ions, allowing to develop separation processes of long-live radioelements. The aim of the researches carried out during this thesis was to better understand the chemical mechanisms of the complexation of f-elements by Adptz, a tridentate N-donor ligand, in homogeneous conditions. A thermodynamic approach was retained in order to estimate, from an energetic point of view, the influence of the different contributions to the reaction, and to acquire a complete set of thermodynamic data on this reaction. First, the influence of the nature of the cation on the thermodynamics was considered. The stability constants of the 1/1 complexes were systematically determined by UV-visible spectrophotometry for every lanthanide ion (except promethium) and for yttrium in a mixed solvent methanol/water in volume proportions 75/25%. The thermodynamic parameters ({delta}H{sup 0} {delta}{sup S}) of complexation were estimated by the van't Hoff method and by micro-calorimetry. The trends of the variations across the lanthanide series are compared with similar studies. The same methods were applied to the study of three actinide(III) cations: plutonium, americium and curium. The comparison of these values with those obtained for the lanthanides highlights the increase of stability of these complexes by a factor of 20 in favor of the actinide cations. This gap is explained by a more exothermic reaction and is associated, in the data interpretation, to a higher covalency of the actinide(III)-nitrogen bond. Then, the influence of the change of solvent composition on the thermodynamic of complexation was studied. The thermodynamic parameters of the complexation of europium(III) by Adptz were determined for several fractions of methanol. The stability of the complex formed increases with the percentage of methanol in the mixed solvent, owing to an

  13. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Lippy F. [Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013 (Brazil); Correa, Charlane C. [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil); Ribeiro, Sidney J.L.; Santos, Molíria V. dos [Institute of Chemistry, São Paulo State University − UNESP, CP 355 Araraquara-SP 14801-970 Brazil (Brazil); Dutra, José Diogo L.; Freire, Ricardo O. [Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE 49100-000 (Brazil); Machado, Flávia C., E-mail: flavia.machado@ufjf.edu.br [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil)

    2015-07-15

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal – prismatic geometry. The 2,5-tdc{sup 2−} ligands connect four Ln(III) centers, adopting (κ{sup 1}–κ{sup 1})–(κ{sup 1}–κ{sup 1})–μ{sub 4} coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes. - Graphical abstract: Three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), were synthesized and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. - Highlights: • Three new LnMOFs were synthesized and fully characterized. • Ho{sup 3+}, Gd{sup 3+} and Eu{sup 3+} complexes photoluminescence properties were investigated. • Theoretical approaches for Eu{sup 3+} complex luminescence has been performed. • An energy level diagram is used to establish the ligand-to-metal energy transfer. • These metal−organic frameworks can act as light conversion molecular devices.

  14. Development and Testing of an Americium/Lanthanide Separation Flowsheet Using Sodium Bismuthate

    Energy Technology Data Exchange (ETDEWEB)

    Jack Law; Bruce Mincher; Troy Garn; Mitchell Greenhalgh; Nicholas Schmitt; Veronica Rutledge

    2014-04-01

    The separation of Am from the lanthanides and curium is a key step in proposed advanced fuel cycle scenarios. The partitioning and transmutation of Am is desirable to minimize the long-term heat load of material interred in a future high-level waste repository. A separation process amenable to process scale-up remains elusive. Given only subtle chemistry differences within and between the ions of the trivalent actinide and lanthanide series this separation is challenging ; however, higher oxidation states of americium can be prepared using sodium bismuthate and separated via solvent extraction using diamylamylphosphonate (DAAP) extraction. Among the other trivalent metals only Ce is also oxidized and extracted. Due to the long-term instability of Am(VI) , the loaded organic phase is readily selectively stripped to partition the actinide to a new acidic aqueous phase. Batch extraction distribution ratio measurements were used to design a flowsheet to accomplish this separation. Additionally, crossflow filtration was investigated as a method to filter the bismuthate solids from the feed solution prior to extraction. Results of the filtration studies, flowsheet development work and flowsheet performance testing using a centrifugal contactor are detailed.

  15. Analysis of lanthanides and actinides in sea sediments from the Gulf of Tehuantepec

    International Nuclear Information System (INIS)

    Eduardo Ordonez-Regil; Genoveva Garcia-Rosales; Omar Eduardo Gutierrez-Muniz

    2011-01-01

    Seawater contains trace elements in solution, such as lanthanides and uranium, which can act as natural tracers when they flocculate to form the sediments of the seabed. Uranium is a special case because it is a radioactive element with isotopic ratio close to 1.14 ( 234 U/ 238 U) in sea water. Uranium is also present in all fractions of sediments, although the isotopic ratio in each fraction takes a specific value depending on its origin and surrounding environment. This work has been conducted in order to analyze lanthanides and uranium in a core of sea sediments. It is focused on separating the fractions forming the layers along the depth profile of the core sample so as to determine the 234 U/ 238 U activity ratios in fractions of organic matter, aquatic life skeletons and dissolved minerals. The Neutron Activation Analysis showed the presence of U, Lu, Hf, Eu, Ce and Yb ranging up to 50 ppm while alpha spectrometry gave a series of 234 U/ 238 U activity ratios which are discussed on the basis of statistical analysis. (author)

  16. Control of oxygen vacancies and Ce+3 concentrations in doped ceria nanoparticles via the selection of lanthanide element

    International Nuclear Information System (INIS)

    Shehata, N.; Meehan, K.; Hudait, M.; Jain, N.

    2012-01-01

    The effect of lanthanides that have positive association energies with oxygen vacancies, such as samarium and neodymium, and the elements with negative association energies, such as holmium and erbium, on ionization state of cerium and, consequentially, the oxygen vacancy concentration in doped ceria nanoparticles are investigated in this article. Structural and optical characterizations of the doped and undoped ceria nanoparticles, synthesized using chemical precipitation, are carried out using transmission electron microscopy, X-ray diffractometry, optical absorption spectroscopy, and fluorescence spectroscopy. It is deduced that the negative association energy dopants decrease the conversion of Ce +4 into Ce +3 and, hence, scavenge the oxygen vacancies, evidenced by the observed increase in the allowed direct bandgap, decrease in the integrated fluorescence intensity, and increased the size of doped nanoparticles. The opposite trends are obtained when the positive association dopants are used. It is concluded that the determining factor as to whether a lanthanide dopant in ceria acts as a generator or scavenger of oxygen vacancies in ceria nanoparticles is the sign of the association energy between the element and the oxygen vacancies. The ability to tailor the ionization state of cerium and the oxygen vacancy concentration in ceria has applications in a broad range of fields, which include catalysis, biomedicine, electronics, and environmental sensing.

  17. Cys-Ph-TAHA: a lanthanide binding tag for RDC and PCS enhanced protein NMR

    NARCIS (Netherlands)

    Peters, Fabian; Maestre-Martinez, M.; Leonov, A.; Kovacic, L.; Becker, S.; Boelens, R.; Griesinger, C.

    2011-01-01

    Here we present Cys-Ph-TAHA, a new nonadentate lanthanide tag for the paramagnetic labelling of proteins. The tag can be easily synthesized and is stereochemically homogenous over a wide range of temperatures, yielding NMR spectra with a single set of peaks. Bound to ubiquitin, it induced large

  18. Spectrophotometric Study of Ternary Complex Forming Systems of Some Lanthanide Metal Ions with Eriochrome Cyanine R in Presence of Cetylpyridinium Bromide for Microdetermination

    Directory of Open Access Journals (Sweden)

    A. S. Dhepe

    2011-01-01

    Full Text Available Study of coordination compounds of lanthanide elements has received a great attention due to growing applications in science and technology. Number of chromogenic reagents form water soluble colored complexes with lanthanides. Eriochrome cyanine R (ECR a member of triphenylmethane type of dye has been reported to form green colored complexes with lanthanides and has been used for microdetermination of these metal ions. Addition of cationic surfactant, Cetylpyridinium bromide (CPB, a cationic surfactant sensitizes the color reactions of Gd(III, Tb(III, Dy(III, Ho(III and Lu(III with ECR. Formation of water soluble, highly colored ternary complexes with a considerable bathochromic shift of about 50 nm in presence of surfactant has been observed. Optimum reaction conditions and other analytical parameters were also evaluated. Stoichiometric ratio 1:3:3 of Ln: ECR: CPB are responsible for the observed rise in molar absorptivity and sensitivity. Beer’s law was obeyed between 0.50 to 13.00 ppm. Effective photometric range and molar absorptivity of these ternary complexes have been calculated. Effect of some common interfering ions on determination of these lanthanide metal ions was studied. A simple, rapid and highly sensitive spectrophotometeric method has been proposed for the determination of metal ions understudy.

  19. Addition compounds of lanthanide-and yttrium trifluoromethanesulfonates and N,N-dimethylacetamide (DMA)

    International Nuclear Information System (INIS)

    Vicentini, G.; Tamura, T.

    1982-01-01

    Preparation of addition compounds of hydrated lanthanide trifluoromethanesulfonates and DMA, with general formula Ln (CF 3 SO 3 ) 3 .6H 2 O.x DMA is described. The compounds obtained are characterized by elemental analysis, X-ray diagrams, infrared absorption spectra, electrolytical conductance in nitromethane and acetonitrile, absorption spectra of the neodymium compound and emission spectra of the europium compound. (A.R.H.) [pt

  20. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Liu, Lang [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450002 (China); College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473601 (China); Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Ng, Seik-Weng [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 80203 (Saudi Arabia)

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.

  1. Gibbs free energy of formation of liquid lanthanide-bismuth alloys

    International Nuclear Information System (INIS)

    Sheng Jiawei; Yamana, Hajimu; Moriyama, Hirotake

    2001-01-01

    The linear free energy relationship developed by Sverjensky and Molling provides a way to predict Gibbs free energies of liquid Ln-Bi alloys formation from the known thermodynamic properties of aqueous trivalent lanthanides (Ln 3(5(6+ ). The Ln-Bi alloys are divided into two isostructural families named as the LnBi 2 (Ln=La, Ce, Pr, Nd and Pm) and LnBi (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb). The calculated Gibbs free energy values are well agreed with experimental data

  2. Reaction between phenyl derivatives of lanthanides and carbonyl compounds

    International Nuclear Information System (INIS)

    Sigalov, A.B.; Petrov, Eh.S.; Rybakova, L.F.; Beletskaya, I.P.

    1983-01-01

    Reactions of PhLnI (Ln=Yb, Eu, Sm, Ce) with α, β-unsaturated ketons (trans-chalcone and benzalacetone) are considered as well as with 9-fluorene and benzophenone. The regioselectivity of the reaction of PhLnI addition to enones is compared with similar reactions of PhMgX and PhLi. The reaction between PhLnI and trans-chalcone proceeds regiospecifically as 1, 2-addition in contrast with reactions of PhMgI and PhLi. A new reaction of lanthanide carbinolate deoxygenation under the effect of reducers was found. The reaction product yields are presented

  3. Lanthanides and actinides extraction by calixarenes containing CMPO groups

    International Nuclear Information System (INIS)

    Garcia Carrera, A.

    2001-01-01

    In the framework of the French program SPIN concerning the radioactive waste management, researches are performed to develop processes allowing the separation of long-lived radioisotopes in order to their transmutation or their specific conditioning. These studies deal with the extraction and the separation of trivalent lanthanides and actinides in acid solution. Many systems ''calixarene-diluent-aqueous phase'' are examined by extraction liquid-liquid and membrane transport. The extraction efficiency and the selectivity of the synthesized calixarene-CMPO and of the CMPO are compared with these cations, as the nitric acid extraction by these molecules. (A.L.B.)

  4. Separation device of radio lanthanides (DISER); Dispositivo de separacion de radiolantanidos (DISER)

    Energy Technology Data Exchange (ETDEWEB)

    Vera T, A.L. [FES-Zaragoza, UNAM, 09000 Mexico D.F. (Mexico); Monroy G, F.; Vazquez M, J.C.; Jimenez B, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: veratrevino@hotmail.com

    2008-07-01

    At the present time the cancer is one of the main causes of mortality in our country, therefore, its prevention, diagnostic and treatment is of vital importance for those health systems. The treatment of the cancer and other illnesses, starting from monoclonal antibodies, peptides, macro aggregates or marked aminoacids with beta particles emitting radioisotopes, it is an extremely promising field. The radioactive lanthanides: Promethium 149, Terbium 161, Holmium 166 and Lutetium 177 are beta emitting ({beta}), which possess nuclear and chemical properties that have shown their feasibility like radioisotopes of radiotherapeutic use. However, these radioisotopes are not commercially available; to this respect, the Radioactive Materials Research Laboratory (LIMR) of the National Institute of Nuclear Research (ININ), it has developed the methodology of production of these radioisotopes and based on these works, there is designed, built and mounted the Radio lanthanides Separation Device (DISER) able to carry out the radioisotopes production in a routine way. This device is content in a cell that has an auxiliary air service, an extraction system and it is protected with a lead armor-plating of 10 cm. The DISER it is manual and easy of managing. The main function of this equipment is the radio lanthanides separation starting from the extractive chromatography by means of packed columns with a commercial resin (LnSPS) and recovered in the superior and inferior part by fiber glass. The DISER is composed by a main carrousel where the separation columns and the elution recipients are mounted. Also counts with an opening system of irradiation vials, port samples for columns and glass material. The present work presents a detailed description of the DISER, as well as its handling that allows to produce the radioisotopes Promethium-149, Terbium-161, Holmium-166 and Lutetium-177 starting from the separation of its parent elements Neodymium-149, Gadolinium-161, Dysprosium-166

  5. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands

    International Nuclear Information System (INIS)

    Durand, S.

    1999-01-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA 4- , ethylene-diamino-tri-acetate-acetic acid EDTA(H) 3- , tetra-aza-cyclo-dodecane-tetra-acetate DOTA 4- , methylene-imidine-acetate MIDA 2- ) are reported. First, a consistent set of Lennard-Jones parameters for La 3+ , Eu 3+ and Lu 3+ cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA 4- , EDTA(H) 3- , DOTA 4- and 1:2 complexes of lanthanide cations with MIDA 2- were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca 2+ vs Sr 2+ and vs Ba 2+ on the one hand, and with La 3+ vs Eu 3+ and vs Lu 3+ on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  6. Synthesis, structure and photoluminescence of novel lanthanide (Tb(III), Gd(III)) complexes with 6-diphenylamine carbonyl 2-pyridine carboxylate

    International Nuclear Information System (INIS)

    An Baoli; Gong Menglian; Cheah, Kok-Wai; Wong, Wai-Kwok; Zhang Jiming

    2004-01-01

    A novel organic ligand, 6-diphenylamine carbonyl 2-pyridine carboxylic acid (HDPAP), and the corresponding lanthanide complexes, tris(6-diphenylamine carbonyl 2-pyridine carboxylato) terbium(III) (Tb-DPAP) and tris(6-diphenylamine carbonyl 2-pyridine carboxylato) gadolinium(III) (Gd-DPAP) have been designed and synthesized. The crystal structure and photoluminescence of Tb-DPAP and Gd-DPAP have been studied. The results showed that the lanthanide complexes have electroneutral structures, and the solid terbium complex emits characteristic green fluorescence of Tb(III) ions at room temperature while the gadolinium complex emits the DPAP ligand phosphorescence. The lowest triplet level of DPAP ligand was calculated from the phosphorescence spectrum of Gd-DPAP in N,N-dimethyl formamide (DMF) dilute solution determined at 77 K, and the energy transfer mechanisms in the lanthanide complexes were discussed. The lifetimes of the 5 D 4 levels of Tb 3+ ions in the terbium complex were examined using time-resolved spectroscopy, and the values are 0.0153±0.0001 ms for solid Tb(DPAP) 3 ·11.5H 2 O and 0.074±0.007 ms for 2.5x10 -5 mol/l Tb-DPAP ethanol solution

  7. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds

    International Nuclear Information System (INIS)

    Dorenbos, Pieter

    2013-01-01

    Employing data from luminescence spectroscopy, the inter 4f-electron Coulomb repulsion energy U(6, A) in Eu 2+/3+ impurities together with the 5d-centroid energy shift ϵ c (1,3+,A) in Ce 3+ impurities in 40 different fluoride, chloride, bromide, iodide, oxide, sulfide, and nitride compounds has been determined. This work demonstrates that the chemical environment A affects the two energies in a similar fashion; a fashion that follows the anion nephelauxetic sequence F, O, Cl, Br, N, I, S, Se. One may then calculate U(6, A) from well established and accurate ϵ c (1,3+,A) values which are then used as input to the chemical shift model proposed in Dorenbos (2012) [19]. As output it provides the chemical shift of 4f-electron binding energy and therewith the 4f-electron binding energy relative to the vacuum energy. In addition this method provides a tool to routinely establish the binding energy of electrons at the top of the valence band (work function) and the bottom of the conduction band (electron affinity) throughout the entire family of inorganic compounds. How the electronic structure of the compound and lanthanide impurities therein change with type of compound and type of lanthanide is demonstrated. -- Highlights: ► A relationship between 5d centroid shift and 4f-electron Coulomb repulsion energy is established. ► Information on the absolute 4f-electron binding energy of lanthanides in 40 compounds is provided. ► A new tool to determine absolute binding energies of electrons in valence and conduction bands is demonstrated

  8. Lanthanides and actinides extraction by calixarenes containing CMPO groups; Extraction des lanthanides et des actinides au moyen de calixarenes portant des groupements CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Carrera, A

    2001-07-01

    In the framework of the French program SPIN concerning the radioactive waste management, researches are performed to develop processes allowing the separation of long-lived radioisotopes in order to their transmutation or their specific conditioning. These studies deal with the extraction and the separation of trivalent lanthanides and actinides in acid solution. Many systems ''calixarene-diluent-aqueous phase'' are examined by extraction liquid-liquid and membrane transport. The extraction efficiency and the selectivity of the synthesized calixarene-CMPO and of the CMPO are compared with these cations, as the nitric acid extraction by these molecules. (A.L.B.)

  9. Magneto, spectral and thermal studies of lanthanum and lanthanide(3) bromide and nitrate complexes of 2,2'bipyridine mono N-oxide

    International Nuclear Information System (INIS)

    Agarwal, R.K.

    1988-01-01

    Lanthanide(3) bromide and nitrate complexes of 2,2'-bipyridine mono N-oxide (BipyNO) having the composition Ln(BipyNO) 3 Br 3 and Ln(BipyNO) 2 (NO 3 ) 3 (Ln=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Yb) have been prepared and characterized by means of conductance, molecular weight, magnetic and spectral studies. The ligand acts as a bidentate O,N-chelating agent. The coordination number nine or ten for lanthanide ions has been assigned to these complexes. 3 tabs., 25 refs. (author)

  10. Synthesis, crystal structures, and luminescent properties of two series' of new lanthanide (III) amino-carboxylate-phosphonates.

    Science.gov (United States)

    Zhou, Tian-Hua; Yi, Fei-Yan; Li, Pei-Xin; Mao, Jiang-Gao

    2010-02-01

    Hydrothermal reactions of lanthanide(III) chlorides with 4-HOOC-C(6)H(4)-CH(2)NHCH(2)PO(3)H(2) (H(3)L) at different ligand-to-metal (L/M) ratios afforded nine new lanthanide(III) carboxylate-phosphonates with two types of 3D network structures, namely, LnCl(HL)(H(2)O)(2) (Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Er, 6) and [Ln(2)(HL)(H(2)L)(L)(H(2)O)(2)].4H(2)O (Ln = Nd, 7; Sm, 8; Eu, 9). Compounds 1-6 are isostructural and feature a 3D network in which the LnO(7)Cl polyhedra are interconnected by bridging CPO(3) tetrahedra into 2D inorganic layers parallel to the bc plane. These layers are further cross-linked by organic groups of the carboxylate-phosphonate ligands via the coordination of the carboxylate groups into a pillared-layered architecture. Compounds 7-9 are also isostructural and feature a 3D open-framework composed of 1D lanthanide(III) phosphonate inorganic slabs which are further bridged by organic groups of the carboxylate-phosphonate liagnds via the coordination of the carboxylate groups, forming large 1D tunnels along the b-axis which are filled by lattice water molecules. Luminescent measurements indicate that compounds 2, 4, and 5 show strong emission bands in red, green, and yellow light region, respectively. Magnetic properties of 2, 3, 5, and 7 have also been studied.

  11. Detection scheme for bioassays based on 2,6-pyridinedicarboxylic acid derivatives and enzyme-amplified lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, Tanja [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Karst, Uwe [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)]. E-mail: u.karst@utwente.nl

    2004-11-15

    2,6-Pyridinedicarboxylic acid (PDC) and its derivatives are introduced as a new sensitizer system for enzyme-amplified lanthanide luminescence (EALL), a detection scheme for bioassays, which combines enzymatic amplification with time-resolved luminescence measurements of lanthanide chelates. Various PDC esters have been synthesized as esterase substrates that are cleaved to PDC in the presence of the enzyme. PDC forms luminescent complexes with Tb(III) or Eu(III), and the evaluation of the reaction is used for the selective and sensitive detection of esterases. For an esterase from hog liver a limit of detection of 10{sup -3} u/mL (equivalent to 10{sup -9} mol/L) and a limit of quantification of 3 x 10{sup -3} u/mL (equivalent to 3 x 10{sup -9} mol/L) could be achieved. As a second model reaction, xanthine oxidase (XOD) catalyzes the oxidation of 2,6-pyridinedicarboxaldehyde to PDC. Here, the limit of detection was 3 x 10{sup -3} u/mL and the limit of quantification 10{sup -2} u/mL for XOD from microorganisms. Major advantage of the tridentate PDC ligand is the possibility to perform all steps of the assay within or close to the physiological pH range, while the established EALL schemes based on bidentate salicylates or bisphenols have to be carried out at strongly alkaline pH to ensure sufficient complexation with the lanthanides.

  12. Synthesis and characterisation of some lanthanide perchlorate complexes of 4-nitrosoantipyrine

    International Nuclear Information System (INIS)

    Jayasankar, H.; Indrasenan, P.

    1988-01-01

    Seven lanthanide perchlorate complexes of 4-nitrosoantipyrine (NAP) of the general formula [Ln(NAP) 4 ClO 4 ](ClO 4 ) 2 (where Ln=La, Pr, Nd, Sm, Gd, Dy and Y), have been synthesised and characterised by elemental analyses, molecular weights, conductances, magnetic moments and infrared and electronic spectral data. In these nine-coordinated complexes, all the four NAP molecules are coordinated bidentately and one of the perchlorate groups is coordinated monodentately. (author). 12 refs

  13. Investigations for the influence of geochemical parameters on the sorption and desorption of lanthanides and uranium onto opalinus clay as potential host rock for a repository

    International Nuclear Information System (INIS)

    Moeser, Christina

    2010-01-01

    The development of a disposal in deep geological formations for radioactive waste is a very important task for the future. The safety assessment for more than a hundred thousand years needs a full understanding of all processes of interaction between the radioactive waste and the surrounded formations. This work contributes to this understanding. The interaction between lanthanides (homologues of the actinides americium, curium and berkelium) / uranium and the host rock opalinus clay under influence of organic substances (NOM) have been analyzed and discussed. The complex system was split into 3 binary basic systems with the following interactions - Interactions between lanthanides / uranium and NOM - Interactions between lanthanides / uranium and the opalinus clay - Interactions between NOM and opalinus clay All binary systems can be influenced by geological parameters like pH, ion strength and competing cations. The sorption / desorption of the lanthanides onto the opalinus clay is analyzed via inductively coupled plasma mass spectrometry. For the investigation of the complexation behavior of metals with NOM we used capillary electrophoresis coupled with inductively coupled plasma mass spectrometry. Under these conditions the chosen model organic humic acid affected the sorption of the lanthanides onto opalinus clay favorably. The smaller organic compounds, which dominate in the composition of the clay organics, remobilized the metals after sorption onto clay and the sorption can be inhibited by NOM. Due to the reduced metal sorption onto Opalinus clay by NOM, a migration through the clay may be possible.

  14. Valency state changes in lanthanide-contained systems under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, A

    1980-08-01

    Changes in valency state induced by pressure in samarium sulphide SmS remind one of alchemy, as the mat black initial substance shines golden after the electron transition. The alchemist's dream is of course not realized, however the compound does exhibit an unusually interesting behaviour in the new state. The valency state of samarium as newly appeared fluctuated very rapidly between two electron configurations. Manipulation of the valency state by pressure or chemical substitution can basically change the physical properties of systems containing lanthanides. The phenomena are described and discussed in the following survey.

  15. Status of the lanthanides and actinides in the periodic table

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    In extended discussions and correspondence with Ekkehard Fluck, the author was made aware of a problem with the Periodic Table, i.e., which element should be shown in the main table as the representative of the lanthanide series and the actinide series. In earlier discussion, he came to the conclusion that lanthanum and actinium are not the elements which should appear, but rather lutetium and lawrencium are more appropriate for inclusion in their place. This paper will attempt to justify the reasons for the above conclusions. 4 refs

  16. Magnetic Properties of linear chain compounds formed by lanthanide (III) ions and nitronyl-nitroxide radicals

    Energy Technology Data Exchange (ETDEWEB)

    Benelli, C.; Caneschi, A.; Gatteschi, D.; Pardi, L. (Florence Univ. (IT)); Rey, P. (CEA Centre d' Etudes Nucleaires de Grenoble, 38 (FR). Dept. de Recherche Fondamentale)

    1988-12-01

    The magnetic properties of novel linear chain compounds containing lanthanide (III) ions (gadolinium, europium) coupled to stable nitronyl-nitroxide radicals are reported. The metal ions and the radicals are regularly alternating along the chain. The magnetic behaviors appears to be dominated by antiferromagnetic interactions between the radicals.

  17. Magnetic Properties of linear chain compounds formed by lanthanide (III) ions and nitronyl-nitroxide radicals

    International Nuclear Information System (INIS)

    Benelli, C.; Caneschi, A.; Gatteschi, D.; Pardi, L.; Rey, P.

    1988-01-01

    The magnetic properties of novel linear chain compounds containing lanthanide (III) ions (gadolinium, europium) coupled to stable nitronyl-nitroxide radicals are reported. The metal ions and the radicals are regularly alternating along the chain. The magnetic behaviors appears to be dominated by antiferromagnetic interactions between the radicals

  18. Cost-effective energy management for hybrid electric heavy-duty truck including battery aging

    NARCIS (Netherlands)

    Pham, H.T.; Bosch, van den P.P.J.; Kessels, J.T.B.A.; Huisman, R.G.M.

    2013-01-01

    Battery temperature has large impact on battery power capability and battery life time. In Hybrid Electric Heavy-duty trucks (HEVs), the high-voltage battery is normally equipped with an active Battery Thermal Management System (BTMS) guaranteeing a desired battery life time. Since the BTMS can

  19. Synthesis, structures, and luminescent properties of lanthanide complexes with triphenylphospine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Xu, Shan; Wang, Xin; Li, Yue-Xue; Jin, Qiong-Hua [Department of Chemistry, Capital Normal University, Beijing (China); Liu, Min [The College of Materials Science and Engineering, Beijing University of Technology (China); Xin, Xiu-Lan [School of Food and Chemical Engineering, Beijing Technology and Business University (China)

    2017-07-03

    Seven lanthanide complexes [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}] (1-3) (OPPh{sub 3} = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}) (4), [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}]{sub 2} (5-7) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh{sub 3} ligand in the air. These complexes were characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1-4 are mononuclear complexes formed by OPPh{sub 3} ligands and nitrates. The asymmetric units of complexes 5-7 consist of two crystallographic-separate molecules. Complex 1 is self-assembled to construct a 2D layer-structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain-like structure that was assembled by OPPh{sub 3} ligands and nitrate ions through C-H..O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb{sup 3+} (λ{sub em} = 480, 574 nm) and Eu{sup 3+} (λ{sub em} = 552, 593, 619, 668 nm). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.

    Science.gov (United States)

    Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji

    2015-05-21

    Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.

  1. Lanthanide ions doped Y2Sn2O7 nano-particles: low temperature synthesis and photoluminescence study

    International Nuclear Information System (INIS)

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2008-01-01

    During the past decade, pyrochlore-type oxides (A 2 B 2 O 7 ) have emerged as important host matrices for lanthanide doped luminescent materials due to their higher thermal stability. Up to now, conventional solid-state reaction is the most commonly used synthetic method for preparation, of rare-earth pyrochlore oxides. This synthesis route employs a solid-state reaction of metal-oxide with appropriate rare-earth oxides at high temperature (>1200 deg C) for a long time (several days). However, in present work, Y 2 Sn 2 O 7 nanoparticles co-doped with lanthanide ions Tb 3+ and Ce 3+ were prepared based on the urea hydrolysis of Y 3+ , Sn 4+ , and Ln 3+ in ethylene glycol medium at 150 deg C followed by heating at 500, 700 and 900 deg C

  2. Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions

    International Nuclear Information System (INIS)

    Kahn, Myrtil L.; Zhang, Z. John

    2001-01-01

    Lanthanide ions have been doped into cobalt spinel ferrites using an oil-in-water micellar method to form CoLn 0.12 Fe 1.88 O 4 nanoparticles with Ln=Ce, Sm, Eu, Gd, Dy, or Er. Doping with lanthanide ions (Ln III ) modulates the magnetic properties of cobalt spinel ferrite nanoparticles. In particular cases of Gd 3+ or Dy 3+ ions, a dramatic increase in the blocking temperature and coercivity is observed. Indeed, the introduction of only 4% of Gd 3+ ions increases the blocking temperature ∼100 K and the coercivity 60%. Initial studies on the magnetic properties of these doped nanoparticles clearly demonstrate that the relationship between the modulation of magnetic properties and the nature of doped Ln III ions is interesting but very complex. [copyright] 2001 American Institute of Physics

  3. ICP-MS Analysis of Lanthanide-Doped Nanoparticles as a Non-Radiative, Multiplex Approach to Quantify Biodistribution and Blood Clearance

    Science.gov (United States)

    Crayton, Samuel H.; Elias, Andrew; Al-Zaki, Ajlan; Cheng, Zhiliang; Tsourkas, Andrew

    2011-01-01

    Recent advances in material science and chemistry have led to the development of nanoparticles with diverse physicochemical properties, e.g. size, charge, shape, and surface chemistry. Evaluating which physicochemical properties are best for imaging and therapeutic studies is challenging not only because of the multitude of samples to evaluate, but also because of the large experimental variability associated with in vivo studies (e.g. differences in tumor size, injected dose, subject weight, etc.). To address this issue, we have developed a lanthanide-doped nanoparticle system and analytical method that allows for the quantitative comparison of multiple nanoparticle compositions simultaneously. Specifically, superparamagnetic iron oxide (SPIO) with a range of different sizes and charges were synthesized, each with a unique lanthanide dopant. Following the simultaneous injection of the various SPIO compositions into tumor-bearing mice, inductively coupled plasma mass spectroscopy (ICP-MS) was used to quantitatively and orthogonally assess the concentration of each SPIO composition in serial blood samples and the resected tumor and organs. The method proved generalizable to other nanoparticle platforms, including dendrimers, liposomes, and polymersomes. This approach provides a simple, cost-effective, and non-radiative method to quantitatively compare tumor localization, biodistribution, and blood clearance of more than 10 nanoparticle compositions simultaneously, removing subject-to-subject variability. PMID:22100983

  4. Predictive thermodynamic models for liquid--liquid extraction of single, binary and ternary lanthanides and actinides

    International Nuclear Information System (INIS)

    Hoh, Y.C.

    1977-03-01

    Chemically based thermodynamic models to predict the distribution coefficients and the separation factors for the liquid--liquid extraction of lanthanides-organophosphorus compounds were developed by assuming that the quotient of the activity coefficients of each species varies slightly with its concentrations, by using aqueous lanthanide or actinide complexes stoichiometric stability constants expressed as its degrees of formation, by making use of the extraction mechanism and the equilibrium constant for the extraction reaction. For a single component system, the thermodynamic model equations which predict the distribution coefficients, are dependent on the free organic concentration, the equilibrated ligand and hydrogen ion concentrations, the degree of formation, and on the extraction mechanism. For a binary component system, the thermodynamic model equation which predicts the separation factors is the same for all cases. This model equation is dependent on the degrees of formation of each species in their binary system and can be used in a ternary component system to predict the separation factors for the solutes relative to each other

  5. Thermodynamics of complexation of lanthanides and some of transition metal ions by 5,5-dimethyl-cyclohexane-2-(2-hydroxyphenyl)-hydrazono-1,3-dione (DCPHD) and its derivatives

    International Nuclear Information System (INIS)

    Ramadan, A.A.T.; Abdel-Moez, M.S.; El-Shetary, B.A.; Seleim, H.S.

    1993-01-01

    Equilibrium between DCPHD, DC-4-Cl-PHD, and DC-4-Me-PHD and protons, transition, and lanthanide ions have been investigated at 30 o C by means of potentiometric titration in 75%(v/v) methanol-water mixture containing 0.10M KNO 3 as a constant ionic medium. Thermodynamic parameters(ΔG,ΔH and ΔS) referring to the formation of species HL - ,L -- ,ML +n-2 and ML 2 +n-4 (L -- denotes the ligand anion) have been determined in solutions. The solvent effects on the thermodynamic parameters of the complex formation are discussed in terms of differences in the donor ability of methanol and water solvents. The plots of thermodynamic parameters versus ionic potential (Z 2 /r) of the lanthanide elements is not linear as expected from ionic theory. The obtained curve can be resolved in an initial group (the lighter lanthanides), an intermediate group (Sm-Dy), and a final group (the heavier ones, Tb-Lu). This behavior was explained in terms of differences in the dehydration of lighter lanthanide(III) from that of heavier ones

  6. Bis(2-ethylhexyl)-N,N-diethylcarbamoylmethyl phosphonate as a synergist in the extraction of trivalent lanthanides by 1-phenyl-3-methyl-4-trifluoroacetyl-pyrazolone-5

    International Nuclear Information System (INIS)

    Luxmi Varma, R.; Sujatha, S.; Reddy, M.L.P.; Prasada Rao, T.; Iyer, C.S.P.; Damodaran, A.D.

    1996-01-01

    Synergism in the extraction of trivalent lanthanides such as Nd. Eu and Lu has been investigated using mixtures of 1-phenyl-3-methyl-4-trifluoroacetyl-pyrazolone-5 (HPMTFP) and bis(2-ethylhexyl)-N,N-diethylcarbamoylmethyl phosphonate (CMP) in chloroform. Lanthanides are found to be extracted from 0.01 mol/dm 3 chloroacetate medium with HPMTFP as Ln(PMTFP) 3 or Ln(PMTFP) 3 . CMP in the absence or presence of CMP, respectively. The equilibrium constants of these synergistic species do not increase monotonically with atomic number but have a maximum at Eu. The addition of a synergist, CMP to the metal chelate system not only enhances the extraction efficiency but also improves the selectivities among these trivalent lanthanides. The IR results indicate that CMP acts as a bidentate ligand in these mixed-ligand systems. (orig.)

  7. Heavy-ion targets

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.

    1985-01-01

    This chapter examines the characteristics of targets required in heavy-ion accelerator physics experiments. The effects of target parameters on heavy-ion experimental results are reviewed. The target fabrication and characterization techniques used to minimize experimental problems during heavy-ion bombardment are described. Topics considered include target thickness and uniformity, target lifetime, target purity, substrate materials, Doppler shift effects, metal preparations, and target preparation methods

  8. Luminescent hybrid materials functionalized with lanthanide ethylenodiaminotetraacetate complexes containing β-diketonate as antenna ligands

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Franklin P.; Costa, Israel F.; Espínola, José Geraldo P.; Faustino, Wagner M.; Moura, Jandeilson L. [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Brito, Hermi F.; Paolini, Tiago B. [Departamento de Química Fundamental-Instituto de Química da Universidade de São Paulo, 05508-900 São Paulo, SP (Brazil); Felinto, Maria Cláudia F.C. [Instituto de Pesquisas energéticas e Nucleares-IPEN, 05508-900 São Paulo, SP (Brazil); Teotonio, Ercules E.S., E-mail: teotonioees@quimica.ufpb.br [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil)

    2016-02-15

    Three organic–inorganic hybrid materials based on silica gel functionalized with (3-aminopropyl)trimethoxysilane (APTS), [3-(2-aminoetilamino)-propil]-trimetoxissilano (DAPTS) and 3-[2-(2-aminoetilamino)etilamino] propiltrimetoxysilane (TAPTS) and subsequently modified with EDTA derivative were prepared by nonhomogeneous route and were then characterized. The resulting materials named SilXN-EDTA (X=1 for APTS, 2 for DAPTS and 3 for TAPTS) were used to obtain new lanthanide Ln{sup 3+}-β-diketonate (Ln{sup 3+}=Eu{sup 3+}, Gd{sup 3+} and Tb{sup 3+}) complexes covalently linked to the functionalized silica gel surfaces (named SilXN-EDTALn-dik, dik=tta, dbm, bzac and acac). The photophysical properties of the new luminescent materials were investigated and compared with those with similar system presenting water molecules coordinated to the lanthanide ions, SilXN-EDTALn-H{sub 2}O. The SilXN-EDTAEu-dik and SilXN-EDTATb-dik systems displayed characteristic red and green luminescence when excited by UV radiation. Furthermore, the quantitative results showed that the emission quantum efficiency (η), experimental intensity parameters Ω{sub 2} and Ω{sub 4}, and Einstein's emission coefficient (A{sub 0J}) of the SilXN-EDTAEu-dik materials were largely dependent on the ligands. Based on the luminescence data, the most efficient intramolecular energy transfer processes were found to the SilXN-EDTAEu-dik (dik: tta and dbm) and SilXN-EDTATb-acac materials, which exhibited more pure emission colors. These materials are promising red and green phosphors, respectively. - Highlights: • New highly luminescent hybrid materials containing lanthanide-EDTA complexes. • The effect of three silylanting agent on the adsorption and luminescent properties has been studied. • The luminescence sensitizing by different β-diketonate ligands have been investigated.

  9. Heavy ion physics

    International Nuclear Information System (INIS)

    Kalpakchieva, R.; Cherepanov, E.A.

    1993-01-01

    The international school-seminar on heavy ion physics had been organized in Dubna in may of 1993. The scientific program of reports covers the following main topics: synthesis and properties of heavy nuclei; synthesis and investigation of properties of exotic nuclei; experiments with radioactive nuclear beams; interaction between complex nuclei at low and intermediate energies. It also includes reports on laser spectroscopy and exotic nuclear beams, on some application of heavy ion beams for the problems of solid state physics, on construction of multidetector facilities and on developing of heavy ion accelerator complexes. Short communication

  10. Amides with nitrogenous heterocyclic substituent, their manufacturing process and their use to draw out selectively Actinium series (III) and to separate them in particular from Lanthanides (III)

    International Nuclear Information System (INIS)

    Cuillerdier, C.; Musikas, C.

    1993-01-01

    Present invention is concerned with new amides with nitrogenous heterocyclic substituent utilizable to separate trivalent actinium series from trivalent lanthanides. In these molecules, it is possible to obtain particularly covalent liaison which has more affinity with 5f series, that is to say actinium series; included a manufacturing process for these amides with nitrogenous heterocyclic substituent

  11. Syntheses, structures and luminescence properties of lanthanide coordination polymers with helical character

    International Nuclear Information System (INIS)

    Zhou Ruisha; Cui Xiaobing; Song Jiangfeng; Xu Xiaoyu; Xu Jiqing; Wang Tiegang

    2008-01-01

    A series of lanthanide coordination polymers, (Him) n [Ln(ip) 2 (H 2 O)] n [Ln=La(1), Pr(2), Nd(3) and Dy(4), H 2 ip=isophthalic acid, im=imidazole] and [Y 2 (ip) 3 (H 2 O) 2 ] n .nH 2 O (5), have been synthesized and characterized by elemental analyses, infrared (IR), ultraviolet-visible-near infrared (UV-Vis-NIR) and single-crystal X-ray diffraction analyses. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 features a 2-D network making of two different kinds of quadruple-helical chains. Compounds 2 and 3 present the characteristic emissions of Pr(III) and Nd(III) ions in NIR region, respectively. Compound 4 shows sensitized luminescence of Dy(III) ions in visible region. - Graphical abstract: A series of lanthanide coodination polymers, (Him) n [Ln(ip) 2 (H 2 O)] n [Ln=La(1), Pr(2), Nd(3) and Dy(4)] and [Y 2 (ip) 3 (H 2 O) 2 ] n .nH 2 O (5), have been reported. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 displays a 2-D network making of two kinds of quadruple-helical chains. Display Omitted

  12. Fuel reprocessing of the fast molten salt reactor: actinides et lanthanides extraction

    International Nuclear Information System (INIS)

    Jaskierowicz, S.

    2012-01-01

    The fuel reprocessing of the molten salt reactor (Gen IV concept) is a multi-steps process in which actinides and lanthanides extraction is performed by a reductive extraction technique. The development of an analytic model has showed that the contact between the liquid fuel LiF-ThF 4 and a metallic phase constituted of Bi-Li provide firstly a selective and quantitative extraction of actinides and secondly a quantitative extraction of lanthanides. The control of this process implies the knowledge of saline phase properties. Studies of the physico-chemical properties of fluoride salts lead to develop a technique based on potentiometric measurements to evaluate the fluoro-acidity of the salts. An acidity scale was established in order to classify the different fluoride salts considered. Another electrochemical method was also developed in order to determine the solvation properties of solutes in fluoride F- environment (and particularly ThF 4 by F-) in reductive extraction technique, a metallic phase is also involved. A method to prepare this phase was developed by electro-reduction of lithium on a bismuth liquid cathode in LiCl-LiF melt. This technique allows to accurately control the molar fraction of lithium introduced into the liquid bismuth, which is a main parameter to obtain an efficient extraction. (author)

  13. Photon parameters for gamma-rays sensing properties of some oxide of lanthanides

    Science.gov (United States)

    Issa, Shams A. M.; Sayyed, M. I.; Zaid, M. H. M.; Matori, K. A.

    2018-06-01

    In the present research work, the mass attenuation coefficients (μm) representing the interaction of gamma photons with some oxide of lanthanides (Lu2O3Yb2O3, Er2O3, Sm2O3, Dy2O3, Eu2O3, Nd2O3, Pr6O11, La2O3 and Ce2O3) were investigated using WinXCom software in the wide energy range of 1 keV-100 GeV. The calculated values of μm afterwards were used to evaluate some gamma rays sensing properties as effective atomic effective atomic numbers (Zeff), effective electron densities (Nel), half value layer (HVL) and mean free path (MFP). The computed data observes that, the Lu2O3 shown excellent γ-rays sensing response in the broad energy range. At the absorption edges of the high elements present in the lanthanide compounds, more than a single value of Zeff were found due to the non-uniform variation of μm. Comparisons with experiments wherever possible have been achieved for the calculated μm and Zeff values. The calculated properties are beneficial expanded use of designing in radiation shielding, gas sensors, glass coloring agent and in electronic sensing devices.

  14. Extraction of actinide and lanthanide complexonates in two-phase aqueous system potassium carbonate-polyethylene glycol-water

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.; Myasoedov, B.F.

    1988-01-01

    Extraction system on the basis of polyethylene glycol for the concentration, isolation and separation of actinides is suggested. Extraction of actinides and lanthanides in two-phase aqueous system: potassium carbonate - polyethylene glycol - water in the presence of different complexones is investigated. Trivalent actinides are extracted quantitatively by polyethylene glycol from potassium carbonate solutions in the system with xylenol orange and alizarin-complexone. Under the conditions uranium (6) and plutonium (4) are extracted into the phase, enriched by polyethylene glycol, quite insignificantly, which permits to separate them from trivalent actinides with the separation factor of 10 2 - 10 3 . For actinide and lanthanide separation two complexones were introduced into the system, one of them being extractant, the other one - camouflaging reactant. The best results are obtained for the mixture of xylenol orange and hydroxyethylenediphosphonic acid. Separation coefficients for americium and europium constitute 4.5 - 5.6

  15. COMPLEXES POLYMETALLIQUES DE LANTHANIDES (III) POUR LE DEVELOPPEMENT DE NOUVEAUX MATERIAUX LUMINESCENTS

    OpenAIRE

    Marchal , Claire

    2008-01-01

    The incorporation of f elements in highly organized polymetallic complexes is of great interest in supramolecularchemistry and allows the combination of their nanoscopic size with the magnetic or optical properties of the metal ions. However due to the difficulty in controlling the coordination environment of these ions, the assembly of lanthanide-based polynuclear architectures has lagged behind that of other systems. These factors make the rational design for the construction of supramolecu...

  16. Actinides-lanthanides (neodymium) separation by electrolytical extraction in molten fluoride media; Separation actinides-lanthanides (neodyne) par extraction electrolytique en milieux fluorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, C

    2005-02-15

    The aim of this thesis is to assess the potentialities of pyrochemical processes for futur nuclear fuels and Generation IV reactors (more particularly molten salt reactors). This study concerns the Actinides-Lanthanides and Lanthanides-Solvent separation by electrolytical extraction in molten fluoride media at high temperature. Three elements are selected for this study: neodymium (NdF{sub 3}), uranium (UF{sub 4}) and plutonium (PuF{sub 3}). Firstly, the electrochemical study of these three compounds in molten fluoride media is performed to evaluate the separations. Electrodeposition processes are studied and the values of formal potentials of U(III)/U(0), Pu(III)/Pu(0) and Nd(III)/Nd(0) are obtained in LiF-CaF{sub 2} eutectic mixture. Thermodynamically, the values of potentials differences are enough to separate U-Nd and Pu-Nd with a yield of extraction of 99.99%; this value is just sufficient for the Pu-Nd separation. Concerning the Nd-solvent separation this potential difference is too small. Next, the electrodeposition of solid metals on inert electrodes is performed. This study showed that the uranium and neodymium deposits are unstable in several fluoride media. In addition, the presence of salts in the dendritic metal is observed for the U solid deposits. Finally, a reactive cathode is used to improve these separation results and the shape of the deposits. The experimental results on nickel electrodes showed an improvement of the Pu-Nd separation and the Nd-solvent separation with the depolarisation phenomenon of the metal deposit on the nickel. Moreover, U and Nd metal are stabilized in the alloy which allows the elimination of reactions with the solvent as observed for the solid deposit. The formation of liquids alloys makes also easier the recovery of these three. (author)

  17. Actinides-lanthanides (neodymium) separation by electrolytic extraction in molten fluoride media; Separation actinides-lanthanides (neodyne) par extraction electrolytique en milieux fluorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, C

    2005-02-15

    The aim of this thesis is to assess the potentialities of pyrochemical processes for future nuclear fuels and Generation IV reactors (more particularly molten salt reactors). This study concerns the Actinides-Lanthanides and Lanthanides-Solvent separation by electrolytic extraction in molten fluoride media at high temperature. Three elements are selected for this study: neodymium (NdF{sub 3}), uranium (UF{sub 4}) and plutonium (PuF{sub 3}). Firstly, the electrochemical study of these three compounds in molten fluoride media is performed to evaluate the separations. Electrodeposition processes are studied and the values of formal potentials of U(III)/U(0), Pu(III)/Pu(0) and Nd(III)/Nd(0) are obtained in LiF-CaF{sub 2} eutectic mixture. Thermodynamically, the values of potentials differences are enough to separate U-Nd and Pu-Nd with a yield of extraction of 99.99%; this value is just sufficient for the Pu-Nd separation. Concerning the Nd-solvent separation this potential difference is too small. Next, the electrodeposition of solid metals on inert electrodes is performed. This study showed that the uranium and neodymium deposits are unstable in several fluoride media. In addition, the presence of salts in the dendritic metal is observed for the U solid deposits. Finally, a reactive cathode is used to improve these separation results and the shape of the deposits. The experimental results on nickel electrodes showed an improvement of the Pu-Nd separation and the Nd-solvent separation with the depolarization phenomenon of the metal deposit on the nickel. Moreover, U and Nd metal are stabilized in the alloy which allows the elimination of reactions with the solvent as observed for the solid deposit. The formation of liquids alloys makes also easier the recovery of these three. (author)

  18. Electrolytic production of light lanthanides from molten chloride alloys on a large laboratory scale

    International Nuclear Information System (INIS)

    Szklarski, W.; Bogacz, A.; Strzyzewska, M.

    1979-01-01

    Literature data relating to electrolytic production of rare earth metals are presented. Conditions and results are given of own investigations into the electrolytic process of light lanthanide chloride solutions (LA-Nd) in molten potassium and sodium chlorides conducted on a large laboratory scale using molybdenic, iron, cobaltic and zinc cathodes. Design schemes of employed electrolysers are enclosed. (author)

  19. Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(III) complexes with 2,3-quinoxalinediolate ligands.

    Science.gov (United States)

    Vallejo, Julia; Cano, Joan; Castro, Isabel; Julve, Miguel; Lloret, Francesc; Fabelo, Oscar; Cañadillas-Delgado, Laura; Pardo, Emilio

    2012-08-11

    The coordination chemistry of the 2,3-quinoxalinediolate ligand with different lanthanide(III) ions in basic media in air affords a new family of carbonato-bridged M(2)(III) compounds (M = Pr, Gd and Dy), the Dy(2)(III) analogue exhibiting slow magnetic relaxation behaviour typical of single-molecule magnets.

  20. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  1. Heavy-ion radiography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.; Woodruff, K.H.; MacFarland, E.W.

    1983-01-01

    High energy, heavy-ion beams offer superior discrimination of tissue electron densities at very low radiation doses. This characteristic has potential for diagnostic medical imaging of neoplasms arising in the soft tissues and organs because it can detect smaller inhomogeneities than x rays. Heavy-ion imaging may also increase the accuracy of cancer radiotherapy planning involving use of accelerated charged particles. In the current physics research program of passive heavy-ion imaging, critical modulation transfer function tests are being carried out in heavy-ion projection radiography and heavy-ion computerized tomography. The research goal is to improve the heavy-ion imaging method until it reaches the limits of its theoretical resolution defined by range straggling, multiple scattering, and other factors involved in the beam quality characteristics. Clinical uses of the imaging method include the application of heavy-ion computerized tomography to heavy-ion radiotherapy planning, to the study of brain tumors and other structures of the head, and to low-dose heavy-ion projection mammography, particularly for women with dense breasts where other methods of diagnosis fail. The ions used are primarily 300 to 570 MeV/amu carbon and neon ions accelerated at the Lawrence Berkeley Laboratory Bevalac

  2. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst

    Directory of Open Access Journals (Sweden)

    Viviane P. de Souza

    2016-11-01

    Full Text Available Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  3. Heavy flavours

    CERN Document Server

    Buras, Andrzej J

    1998-01-01

    This volume is a collection of review articles on the most outstanding topics in heavy flavour physics. All the authors have made significant contributions to this field. The book reviews in detail the theoretical structure of heavy flavour physics and confronts the Standard Model and some of its extensions with existing experimental data.This new edition covers new trends and ideas and includes the latest experimental information. Compared to the previous edition interesting new activities are included and some of the key contributions are updated. Particular attention is paid to the discover

  4. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding.

    Science.gov (United States)

    Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde

    2011-06-01

    Liquid-liquid extraction of actinides and lanthanides by use of ionic liquids is reviewed, considering, first, phenomenological aspects, then looking more deeply at the various mechanisms. Future trends in this developing field are presented.

  5. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding

    International Nuclear Information System (INIS)

    Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde

    2011-01-01

    Liquid-liquid extraction of actinides and lanthanides by use of ionic liquids is reviewed, considering, first, phenomenological aspects, then looking more deeply at the various mechanisms. Future trends in this developing field are presented. (orig.)

  6. A novel strategy for phosphopeptide enrichment using lanthanide phosphate co-precipitation.

    Science.gov (United States)

    Mirza, Munazza Raza; Rainer, Matthias; Güzel, Yüksel; Choudhary, Iqbal M; Bonn, Günther K

    2012-08-01

    Reversible phosphorylation of proteins is a common theme in the regulation of important cellular functions such as growth, metabolism, and differentiation. The comprehensive understanding of biological processes requires the characterization of protein phosphorylation at the molecular level. Although, the number of cellular phosphoproteins is relatively high, the phosphorylated residues themselves are generally of low abundance due to the sub-stoichiometric nature. However, low abundance of phosphopeptides and low degree of phosphorylation typically necessitates isolation and concentration of phosphopeptides prior to mass spectrometric analysis. In this study, we used trivalent lanthanide ions (LaCl(3), CeCl(3), EuCl(3), TbCl(3), HoCl(3), ErCl(3), and TmCl(3)) for phosphopeptide enrichment and cleaning-up. Due to their low solubility product, lanthanide ions form stable complexes with the phosphate groups of phosphopeptides and precipitate out of solution. In a further step, non-phosphorylated compounds can easily be removed by simple centrifugation and washing before mass spectrometric analysis using Matrix-assisted laser desorption/ionisation-time of flight. The precipitation method was applied for the isolation of phosphopeptides from standard proteins such as ovalbumin, α-casein, and β-casein. High enrichment of phosphopeptides could also be achieved for real samples such as fresh milk and egg white. The technology presented here represents an excellent and highly selective tool for phosphopeptide recovery; it is easily applicable and shows several advantages as compared with standard approaches such as TiO(2) or IMAC.

  7. Lanthanide-organic frameworks constructed from multi-functional ligands: Syntheses, structures, near-infrared and visible photoluminescence properties

    International Nuclear Information System (INIS)

    Li Xinfa; Xie Zailai; Lin Jingxiang; Cao Rong

    2009-01-01

    A series of multi-functional ligands supported lanthanide-organic frameworks, formulated as [Ln(HL 1 )(H 2 L 2 ) 0.5 (H 4 L 2 ) 0.5 (H 2 O)].(H 2 O) 1.5 .{Ln=La (1), Pr (2), Nd (3), Sm (4), Eu (5); H 3 L 1 =5-Sulfosaclicylic acid; H 4 L 2 =N,N'-piperazine (bis-methylene phosphonic acid)}, have been synthesized by hydrothermal reactions. Single crystal X-ray diffractions and powder XRD patterns confirm they are isostructural. They feature 3D framework structures based on extension of a 'zigzag' inorganic chain by organic linkers. Moreover, the photoluminescence properties of 5 and 3 have been investigated, and they show strong solid-state emissions in the visible and near-infrared (IR) regions at room temperature. - Graphical abstract: Five multi-functional ligands supported 3D lanthanide-organic frameworks have been synthesized and structurally characterized. Compounds 5 and 3 displayed strong solid-state emissions in the visible and near-infrared region at room temperature.

  8. Addition compounds between lanthanide trifluoromethane sulphonates and N,N,N',N' - tetrametilmalonamida (TMMA)

    International Nuclear Information System (INIS)

    Bellis, V.M. de.

    1984-01-01

    The preparation and characterization of the addiction compounds between lanthanide trifluoromethanesulphonates with the N,N,N',N' - tetramethylmodomamide (TMMA) are reported. The characterization of the compounds obtained by microanalytical procedures, infrared spectra, conductance measurements, X-ray powder patterns, absorption spectra of the praseodymium, neodymium, holmium and erbium and the emission spectra of the europium and the europium-doped lanthanum and lutetium adducts were made. (M.J.C.) [pt

  9. Crystallographic and infrared spectroscopic study of bond distances in Ln[Fe(CN)6].4H2O (Ln=lanthanide)

    International Nuclear Information System (INIS)

    Zhou Xianju; Wong, W.-T.; Faucher, Michele D.; Tanner, Peter A.

    2008-01-01

    Along with crystallographic data of Ln[Fe(CN) 6 ].4H 2 O (Ln=lanthanide), the infrared spectra are reassigned to examine bond length trends across the series of Ln. The changes in mean Ln-O, Ln-N, C≡N and Fe-C distances are discussed and the bond natures of Ln-N and Ln-O are studied by bond length linear or quadratic fitting and comparisons with relevant ionic radii. The two different C≡N bond distances have been simulated by the covalo-electrostatic model. - Graphical abstract: Crystallographic and FTIR data for Ln[Fe(CN) 6 ].4H 2 O enable the changes in Ln-O, Ln-N, C≡N and Fe-C distances to be determined and modeled across the lanthanide series

  10. Synthesis, chemistry and catalytic activity of complexes of lanthanide and actinide metals in unusual oxidation states and coordination environments. Progress report, February 1, 1979-January 31, 1980

    International Nuclear Information System (INIS)

    Evans, W.J.

    1979-10-01

    The new synthetic and catalytic reactions involving lanthanide metals which were discovered in the first years of this project have been examined in more detail in the past year. Synthetic and catalytic model systems have been theoretically developed and experimental testing of these hypotheses is in progress. New techniques are being applied to the lanthanide metals to further elucidate the chemistry of these complexes

  11. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    Science.gov (United States)

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018

  12. Luminescence properties of isomeric and tautomeric lanthanide pyridinedicarboxylates

    International Nuclear Information System (INIS)

    Puntus, L.N.; Zolin, V.F.; Babushkina, T.A.; Kutuza, I.B.

    2004-01-01

    The luminescence and PMR spectra of europium salts of six isomers of 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-pyridinedicarboxylic acids (PDA) had been studied. The distribution of the effective charge in the nearest surroundings of the Eu 3+ ion in these salts was evaluated from Stark splittings of electronic transitions. The values of relative integral intensities of electronic transitions 5 D 0 - 7 F J (J=0-4) in the luminescence spectra were reported. Compounds investigated were divided into three subgroups taking into account the details of the structure of the ligands and details of the luminescence spectra. The ligand coordination manners as well as the strength of interaction between lanthanide ion and ligands were confirmed by data of the PMR and IR spectroscopy

  13. Deep desulfurization by amphiphilic lanthanide-containing polyoxometalates in ionic-liquid emulsion systems under mild conditions.

    Science.gov (United States)

    Xu, Junhua; Zhao, Shen; Ji, Yuanchun; Song, Yu-Fei

    2013-01-07

    Amphiphilic lanthanide-containing polyoxometalates (POMs) were prepared by surfactant encapsulation. Investigation of these lanthanide-containing POMs in oxidative desulfurization (ODS) showed that highly efficient deep desulfurization could be achieved in only 14 min with 100% conversion of dibenzothiophene under mild conditions by using (DDA)(9)LaW(10)/[omim]PF(6) (DDA=dimethyldioctadecylammonium, omim=1-octyl-3-methyl-imidazolium) in the presence of H(2) O(2) . Furthermore, deep desulfurization proceeds smoothly in model oil with an S content as low as 50 ppm. A scaled-up experiment in which the volume of model oil was increased from 5 to 1000 mL with S content of 1000 ppm indicated that about 99% sulfur removal can be achieved in 40 mins in an ionic-liquid emulsion system. To the best of our knowledge, the (DDA)(9)LaW(10)/[omim]PF(6) catalyst system with H(2)O(2) as oxidant is one of the most efficient desulfurization systems reported so far. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lanthanide and actinide extractions with cobalt bis(dicarbollide) ion derivatives covalently bonded to diglycolyl diamide platform

    Czech Academy of Sciences Publication Activity Database

    Lučaníková, M.; Selucký, P.; Rais, J.; Grüner, Bohumír; Kvíčalová, Magdalena

    2011-01-01

    Roč. 1, č. 1 (2011), s. 89-95 ISSN 2193-2875 R&D Projects: GA ČR GA104/09/0668; GA MŠk LC523 Institutional research plan: CEZ:AV0Z40320502 Keywords : Dicarbollides derivatives * TODGA * Liquid-liquid extraction * Lanthanides * Actinides Subject RIV: CA - Inorganic Chemistry

  15. Silica-coated upconversion lanthanide nanoparticles: the effect of crystal design on morphology, structure and optical properties

    Czech Academy of Sciences Publication Activity Database

    Kostiv, Uliana; Šlouf, Miroslav; Macková, Hana; Zhigunov, Alexander; Engstová, Hana; Smolková, Katarína; Ježek, Petr; Horák, Daniel

    2015-01-01

    Roč. 6, 03 Dec (2015), s. 2290-2299 ISSN 2190-4286 R&D Projects: GA ČR(CZ) GA15-01897S Institutional support: RVO:61389013 ; RVO:67985823 Keywords : lanthanide * nanoparticles * oleylamine Subject RIV: CD - Macromolecular Chemistry; BO - Biophysics (FGU-C) Impact factor: 2.778, year: 2015

  16. Alpha decay and various problems related to it

    International Nuclear Information System (INIS)

    Katori, Kenji

    1992-01-01

    On the proton-excessive nucleus side of lanthanide and actinide, alpha decay is the main decay mode. In lanthanide region, alpha decay has been measured to the drip line for most even-even nuclei. In the measurement of alpha decay, emitted energy and life are measured, but the measurement of converted alpha width remains in the limited range. In order to obtain the converted alpha width of high accuracy, the nucleus formation in larger quantity on the drip line and the simultaneous measurement with a multiple detector system including gamma ray and beta ray are required. In this paper, three topics related to alpha cluster and alpha decay and the problems that confront at present are discussed. The continuation to exist of alpha cluster structure to heavy nuclei, the analysis of lanthanide nucleus region by the alpha giant resonance model, and the new data on the alpha ray decaying from the mass of 175, 176 and 177 are reported. In lanthanide nucleus region, remarkable interference was not observed between beta-2 and beta-3 modes in the converted alpha width measured between the ground states. The present problems in alpha decay are enumerated. (K.I.)

  17. Lanthanides electrolytic extraction from molten fluoride by alloy formation; Extraction electrochimique des lanthanides des milieux de fluorures fondus par formation d'alliages

    Energy Technology Data Exchange (ETDEWEB)

    Nourry, Ch

    2007-10-15

    This work consisted in studying the electrochemical behaviour of some dissolved lanthanides (Gd, Nd, Sm) in LiF-CaF{sub 2} media on inert and reactive cathodes in the 800-920 C temperature range and then to estimate their possible extraction from the melt by reduction on a reactive electrode (Ni, Cu or Ni/Cu). Using electrochemical methods and SEM micrographs, reduction mechanisms and thermodynamic parameters such as standard potential and activity coefficient were determined for the different species in the melt. The Gibbs energies and the reduction mechanisms were determined for LnNi and LnCu compounds. Finally, extractions have been performed on reactive electrodes with very good extraction rate ({>=} 99.7%). (author)

  18. Effect of the processing parameters on the crystalline structure of lanthanide ortho tantalates

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Kisla P.F.; Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Dept. de Quimica

    2014-08-15

    The influence of the synthesis parameters on the crystalline structures of ortho tantalate ceramics has been investigated. Powder materials were prepared by the solid-state reaction route. X-ray diffraction and Raman scattering measurements were employed to investigate the crystal structure of the produced materials. In this work, we analyzed three different examples in which the temperature and time were decisive on the final crystal structure of LnTaO{sub 4} compounds besides the lanthanide ionic size. Firstly, the thermal evolution for NdTaO{sub 4} samples showed that mixed crystal phases are formed up to 1100 °C, while well-crystallized M-NdTaO{sub 4} (I2/a) materials are obtained in temperatures higher than 1200 °C. Also, the influence of the synthesis time was investigated for the LaTaO{sub 4} ceramics: it was necessary 14 h to obtain samples in the P2{sub 1}/c structure. Finally, two polymorphs could be obtained for the DyTaO{sub 4} ceramics: P2/a and I2/a space groups were obtained at 1300 °C and 1500 °C, respectively. This study indicated that the temperature, time and lanthanide size are directly correlated with the crystalline arrangement of the ortho tantalate materials.(author)

  19. Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts.

    Science.gov (United States)

    Sugimoto, Masumi; Liu, Xin-Ling; Tsunega, Seiji; Nakajima, Erika; Abe, Shunsuke; Nakashima, Takuya; Kawai, Tsuyoshi; Jin, Ren-Hua

    2018-05-02

    Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu 2 O 3 or Tb 2 O 3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO 2 nanofibres (host) through calcination of chiral SiO 2 hybrid nanofibres, trapping Eu 3+ (or Tb 3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu 3+ and 545 nm for Tb 3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    Directory of Open Access Journals (Sweden)

    Aleksandra Delplanque

    Full Text Available Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio probes in Förster Resonance Energy Transfer (FRET where trivalent lanthanide ions (La3+ act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5 modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+ and the acceptor (Cy5 with sensitivity at a nanometre scale.