WorldWideScience

Sample records for heavy dense materials

  1. Dense, finely, grained composite materials

    Science.gov (United States)

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  2. A High-Energy, Ultrashort-Pulse X-Ray System for the Dynamic Study of Heavy, Dense Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, David Jeremy [Univ. of California, Davis, CA (United States)

    2004-01-01

    Thomson-scattering based x-ray radiation sources, in which a laser beam is scattered off a relativistic electron beam resulting in a high-energy x-ray beam, are currently being developed by several groups around the world to enable studies of dynamic material properties which require temporal resolution on the order of tens of femtoseconds to tens of picoseconds. These sources offer pulses that are shorter than available from synchrotrons, more tunable than available from so-called Ka sources, and more penetrating and more directly probing than ultrafast lasers. Furthermore, Thomson-scattering sources can scale directly up to x-ray energies in the few MeV range, providing peak brightnesses far exceeding any other sources in this regime. This dissertation presents the development effort of one such source at Lawrence Livermore National Laboratory, the Picosecond Laser-Electron InterAction for the Dynamic Evaluation of Structures (PLEIADES) project, designed to target energies from 30 keV to 200 keV, with a peak brightness on the order of 1018 photons • s-1 • mm-2 • mrad-2 • 0.01% bandwidth-1. A 10 TW Ti:Sapphire based laser system provides the photons for the interaction, and a 100 MeV accelerator with a 1.6 cell S-Band photoinjector at the front end provides the electron beam. The details of both these systems are presented, as is the initial x-ray production and characterization, validating the theory of Thomson scattering. In addition to the systems used to enable PLEIADES, two alternative systems are discussed. An 8.5 GHz X-Band photoinjector, capable of sustaining higher accelerating gradients and producing lower emittance electron beams in a smaller space than the S-Band gun, is presented, and the initial operation and commissioning of this gun is presented. Also, a hybrid chirped-pulse amplification system is presented as an alternative to the standard regenerative amplifier technology in high

  3. Heavy meson production in hot dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Nieves, JM; Oset, E; Vacas, MJV

    2010-01-01

    The properties of charmed mesons in dense matter are studied using a unitary coupled-channel approach in the nuclear medium which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense nuclear

  4. Quantum critical behavior in heavy electron materials.

    Science.gov (United States)

    Yang, Yi-feng; Pines, David

    2014-06-10

    Quantum critical behavior in heavy electron materials is typically brought about by changes in pressure or magnetic field. In this paper, we develop a simple unified model for the combined influence of pressure and magnetic field on the effectiveness of the hybridization that plays a central role in the two-fluid description of heavy electron emergence. We show that it leads to quantum critical and delocalization lines that accord well with those measured for CeCoIn5, yields a quantitative explanation of the field and pressure-induced changes in antiferromagnetic ordering and quantum critical behavior measured for YbRh2Si2, and provides a valuable framework for describing the role of magnetic fields in bringing about quantum critical behavior in other heavy electron materials.

  5. Tackling the sign problem with a moment expansion and application to Heavy dense QCD

    CERN Document Server

    Garron, Nicolas

    2016-01-01

    Heavy-Dense QCD (HDQCD) is a popular theory to investigate the sign problem in quantum field theory. Besides its physical applications, HDQCD is relatively easy to implement numerically: the fermionic degrees of freedom are integrated out, and the fermion determinant factorises into local ones. The theory has a sign problem, the severeness of which depends on the value of the chemical potential, which makes this theory ideal to test the reach of new algorithms. We use the LLR approach to obtain the probability distribution of the phase of the fermion determinant. Our goal is the calculation of the phase factor expectation value, which appears as Fourier transform of this probability distribution. We here propose a new and systematic moment expansion for this phase factor. We compare the answer from the moment expansion order by order with the exact answer. We find that this expansion converge quickly and works very well in the strong sign problem region.

  6. Calculation of ruin probabilities for a dense class of heavy tailed distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis; Samorodnitsky, Gennady

    2015-01-01

    In this paper, we propose a class of infinite-dimensional phase-type distributions with finitely many parameters as models for heavy tailed distributions. The class of finite-dimensional phase-type distributions is dense in the class of distributions on the positive reals and may hence approximat...... any such distribution. We prove that formulas from renewal theory, and with a particular attention to ruin probabilities, which are true for common phase-type distributions also hold true for the infinite-dimensional case. We provide algorithms for calculating functionals of interest...... of distributions with a slowly varying tail. An example from risk theory, comparing ruin probabilities for a classical risk process with Pareto distributed claim sizes, is presented and exact known ruin probabilities for the Pareto case are compared to the ones obtained by approximating by an infinite...

  7. Heavy oils processing materials requirements crude processing

    Energy Technology Data Exchange (ETDEWEB)

    Sloley, Andrew W. [CH2M Hill, Englewood, CO (United States)

    2012-07-01

    Over time, recommended best practices for crude unit materials selection have evolved to accommodate new operating requirements, feed qualities, and product qualities. The shift to heavier oil processing is one of the major changes in crude feed quality occurring over the last 20 years. The three major types of crude unit corrosion include sulfidation attack, naphthenic acid attack, and corrosion resulting from hydrolyzable chlorides. Heavy oils processing makes all three areas worse. Heavy oils have higher sulfur content; higher naphthenic acid content; and are more difficult to desalt, leading to higher chloride corrosion rates. Materials selection involves two major criteria, meeting required safety standards, and optimizing economics of the overall plant. Proper materials selection is only one component of a plant integrity approach. Materials selection cannot eliminate all corrosion. Proper materials selection requires appropriate support from other elements of an integrity protection program. The elements of integrity preservation include: materials selection (type and corrosion allowance); management limits on operating conditions allowed; feed quality control; chemical additives for corrosion reduction; and preventive maintenance and inspection (PMI). The following discussion must be taken in the context of the application of required supporting work in all the other areas. Within that context, specific materials recommendations are made to minimize corrosion due to the most common causes in the crude unit. (author)

  8. Probing Properties of Hot and Dense QCD Matter with Heavy Flavor in the PHENIX Experiment at RHIC

    CERN Document Server

    Nouicer, Rachid

    2015-01-01

    Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quark-antiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons have been observed in Au+Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured ${J/\\psi}$ production at $\\sqrt{s_{nn}}$ = 200 GeV in p+p, d+Au, Cu+Cu and Au+Au collisions, both at mid- and forward-rapidities, and additionally Cu+Au and U+U at forward-rapiditi...

  9. Material Removes Heavy Metal Ions From Water

    Science.gov (United States)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  10. Lightweight Composite Materials for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  11. Casting fine grained, fully dense, strong inorganic materials

    Science.gov (United States)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  12. Short intense ion pulses for materials and warm dense matter research

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Peter A., E-mail: PASeidl@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Persaud, Arun; Waldron, William L. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Barnard, John J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Davidson, Ronald C. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Friedman, Alex [Lawrence Livermore National Laboratory, Livermore, CA (United States); Gilson, Erik P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Greenway, Wayne G. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Grote, David P. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2015-11-11

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10{sup 10} ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li{sup +} ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  13. Probing properties of hot and dense QCD matter with heavy flavor in the PHENIX experiment at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2015-01-01

    Full Text Available Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quarkantiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons have been observed in Au + Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured J/ψ production at 200 GeV in p + p, d + Au, Cu + Cu and Au + Au collisions, both at mid- and forward-rapidities, and additionally Cu + Au and U + U at forward-rapidities. In the most energetic collisions, more suppression is observed at forward rapidity than at central rapidity. This can be interpreted either as a sign of quark recombination, or as a hint of additional cold nuclear matter effects. The centrality dependence of nuclear modification factor, RAA(pT, for J/ψ in U + U collisions at √sNN = 193 GeV shows a similar trend to the lighter systems, Au + Au and Cu + Cu, at similar energy 200 GeV.

  14. Processes for making dense, spherical active materials for lithium-ion cells

    Science.gov (United States)

    Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  15. Dense velocity reconstruction from tomographic PTV with material derivatives

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Scarano, F.

    2016-01-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The

  16. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review.

    Science.gov (United States)

    Guo, Bin; Liu, Bo; Yang, Jian; Zhang, Shengen

    2017-05-15

    Safe disposal of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to achieve this task. Cementitious material treatments and thermal treatments are two types of attractive immobilization treatments due to that the heavy metals could be encapsulated in their dense and durable wasteforms. This paper discusses the heavy metal immobilization mechanisms of these methods in detail. Physical encapsulation and chemical stabilization are two fundamental mechanisms that occur simultaneously during the immobilization processes. After immobilization treatments, the wasteforms build up a low permeable barrier for the contaminations. This reduces the exposed surface of wastes. Chemical stabilization occurs when the heavy metals transform into more stable and less soluble metal bearing phases. The heavy metal bearing phases in the wasteforms are also reviewed in this paper. If the heavy metals are incorporated into more stable and less soluble metal bearing phases, the potential hazards of heavy metals will be lower. Thus, converting heavy metals into more stable phases during immobilization processes should be a common way to enhance the immobilization effect of these immobilization methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dense velocity reconstruction from tomographic PTV with material derivatives

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio

    2016-09-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The constraint to the measured temporal derivative of the PTV particle tracks improves the consistency of the reconstructed velocity field. The method is christened as pouring time into space, as it leverages temporal information to increase the spatial resolution of volumetric PTV measurements. This approach becomes relevant in cases where the spatial resolution is limited by the seeding concentration. The method solves an optimization problem to find the vorticity and velocity fields that minimize a cost function, which includes next to instantaneous velocity, also the velocity material derivative. The velocity and its material derivative are related through the vorticity transport equation, and the cost function is minimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The procedure is assessed numerically with a simulated PTV experiment in a turbulent boundary layer from a direct numerical simulation (DNS). The experimental validation considers a tomographic particle image velocimetry (PIV) experiment in a similar turbulent boundary layer and the additional case of a jet flow. The proposed technique (`vortex-in-cell plus', VIC+) is compared to tomographic PIV analysis (3D iterative cross-correlation), PTV interpolation methods (linear and adaptive Gaussian windowing) and to vortex-in-cell (VIC) interpolation without the material derivative. A visible increase in resolved details in the turbulent structures is obtained with the VIC+ approach, both in numerical simulations and experiments. This results in a more accurate determination of the turbulent stresses distribution in turbulent boundary layer investigations. Data from a jet

  18. Formalism of compound particles for simulation of the heavy ions in a stationary nonequilibrium warm dense matter

    Science.gov (United States)

    Moldabekov, Zh A.; Ramazanov, T. S.; Gabdullin, M. T.; Tikhonov, A.; Baigarin, K.; Kaikanov, M.

    2017-10-01

    The screened interaction potential between two compound particles, compound particle and charged particle (ion or electron) in multipole approximation for simulation of nonequilibrium warm dense matter are discussed. The density and temperature range has been considered at which the formalism of compound particles can be used. It is proposed that the presented screened potential can be useful for the simulation of the heavy ions in the presence of streaming electrons. Discussions about the implication of a compound particle picture for consideration of the dynamics of the beam of the charged particles in plasmas are given. The proposed model of interaction between heavy ions consists of dipole terms and the short range repulsion due to the Pauli exclusion principle.

  19. Two-flavor lattice QCD with a finite density of heavy quarks: heavy-dense limit and “particle-hole” symmetry

    CERN Document Server

    Rindlisbacher, Tobias

    2016-01-01

    We investigate the properties of the half-filling point in lattice QCD (LQCD), in particular the disappearance of the sign problem and the emergence of an apparent particle-hole symmetry, and try to understand where these properties come from by studying the heavy-dense fermion determinant and the corresponding strong-coupling partition function (which can be integrated analytically). We then add in a first step an effective Polyakov loop gauge action (which reproduces the leading terms in the character expansion of the Wilson gauge action) to the heavy-dense partition function and try to analyze how some of the properties of the half-filling point change when leaving the strong coupling limit. In a second step, we take also the leading nearest-neighbor fermion hopping terms into account (including gauge interactions in the fundamental representation) and mention how the method could be improved further to incorporate the full set of nearest-neighbor fermion hoppings. Using our mean-field method, we also obta...

  20. Solenoid transport of a heavy ion beam for warm dense matterstudies and inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Julien

    2006-10-01

    From February to July 2006, I have been doing research as a guest at Lawrence Berkeley National Laboratory (LBNL), in the Heavy Ion Fusion group. This internship, which counts as one semester in my master's program in France, I was very pleased to do it in a field that I consider has the beauty of fundamental physics, and at the same time the special appeal of a quest for a long-term and environmentally-respectful energy source. During my stay at LBNL, I have been involved in three projects, all of them related to Neutralized Drift Compression Experiment (NDCX). The first one, experimental and analytical, has consisted in measuring the effects of the eddy currents induced by the pulsed magnets in the conducting plates of the source and diagnostic chambers of the Solenoid Transport Experiment (STX, which is a subset of NDCX). We have modeled the effect and run finite-element simulations that have reproduced the perturbation to the field. Then, we have modified WARP, the Particle-In-Cell code used to model the whole experiment, in order to import realistic fields including the eddy current effects and some details of each magnet. The second project has been to take part in a campaign of WARP simulations of the same experiment to understand the leakage of electrons that was observed in the experiment as a consequence to some diagnostics and the failure of the electrostatic electron trap. The simulations have shown qualitative agreement with the measured phenomena, but are still in progress. The third project, rather theoretical, has been related to the upcoming target experiment of a thin aluminum foil heated by a beam to the 1-eV range. At the beginning I helped by analyzing simulations of the hydrodynamic expansion and cooling of the heated material. But, progressively, my work turned into making estimates for the nature of the liquid/vapor two-phase flow. In particular, I have been working on criteria and models to predict the formation of droplets, their size

  1. Time-evolution of dense hadronic matter in high energy heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Otuka, Naohiko; Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan). Dept. of Physics; Nara, Yasushi; Maruyama, Tomoyuki; Niita, Koji

    1997-05-01

    Time evolution of hadronic resonance matter in ultrarelativistic nucleus-nucleus collisions are studied in the framework of cascade models. We investigate the role of higher baryonic resonances during the time evolution of hot and dense hadronic matter at AGS energies. Although final hadronic spectrum can reproduced well with and without higher baryonic resonances, the inclusion of higher resonances is shown to prevent the temperature from going beyond 200 MeV. (author)

  2. Strength degradation and failure limits of dense and porous ceramic membrane materials

    DEFF Research Database (Denmark)

    Pećanac, G.; Foghmoes, Søren Preben Vagn; Lipińska-Chwałek, M.

    2013-01-01

    Thin dense membrane layers, mechanically supported by porous substrates, are considered as the most efficient designs for oxygen supply units used in Oxy-fuel processes and membrane reactors. Based on the favorable permeation properties and chemical stability, several materials were suggested...

  3. Rheology of cohesive granular materials across multiple dense-flow regimes.

    Science.gov (United States)

    Gu, Yile; Chialvo, Sebastian; Sundaresan, Sankaran

    2014-09-01

    We investigate the dense-flow rheology of cohesive granular materials through discrete element simulations of homogeneous, simple shear flows of frictional, cohesive, spherical particles. Dense shear flows of noncohesive granular materials exhibit three regimes: quasistatic, inertial, and intermediate, which persist for cohesive materials as well. It is found that cohesion results in bifurcation of the inertial regime into two regimes: (a) a new rate-independent regime and (b) an inertial regime. Transition from rate-independent cohesive regime to inertial regime occurs when the kinetic energy supplied by shearing is sufficient to overcome the cohesive energy. Simulations reveal that inhomogeneous shear band forms in the vicinity of this transition, which is more pronounced at lower particle volume fractions. We propose a rheological model for cohesive systems that captures the simulation results across all four regimes.

  4. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Elvira

    2008-02-15

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  5. Heavy Equipment Operator Instructional Materials. Basic Core. Volume I.

    Science.gov (United States)

    Hendrix, Laborn J.; Sawatzky, Joyce

    Developed through close coordination between contractors, construction workers, and vocational educators, this instructor's manual is designed to help heavy equipment instructors present materials in a systematic format. The instructional materials in the manual are written in terms of student performance, using measurable behavioral objectives.…

  6. Heavy Equipment Operator: General Equipment Operator. Instructional Materials.

    Science.gov (United States)

    Hendrix, Laborn J.; Sawatzky, Joyce

    Developed through close coordination between contractors, construction workers, and vocational educators, this instructor's manual is designed to help heavy equipment instructors present materials in a systematic format. The instructional materials in the manual are written in terms of student performance, using measurable behavioral objectives.…

  7. Neutral Kaon System in Dense Matter and Heavy-Ion Collisions

    CERN Document Server

    Amelino-Camelia, G; Amelino-Camelia, Giovanni; Kapusta, Joseph

    1999-01-01

    Above a critical matter density the propagating modes of the neutral kaon system are essentially eigenstates of strangeness, but below it they are almost complete eigenstates of CP. We estimate the real and imaginary parts of the energies of these modes and their mixing at all densities up to nuclear matter density $2\\times 10^{14}$ g/cm$^3$. In a heavy ion collision the strong interactions create eigenstates of strangeness, and these propagate adiabatically until the density has fallen to the critical value, whereupon the system undergoes a sudden transition to (near) eigenstates of CP. We estimate the critical density to be 20 g/cm$^3$, and that this density will be reached about $2\\times 10^5$ fm/c after the end of the collision.

  8. Properties of hot and dense matter created in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Arsene, Ionut Cristian

    2009-07-01

    In this thesis we tried to characterize a few aspects of the rich field of relativistic heavy ion collisions at intermediate and high energies. In chapter 2 we used two different microscopic string models, UrQMD and QGSM, to study the formation and evolution of the locally equilibrated matter in the central zone of heavy ion collisions at energies spanning from sq root sNN approx 4 GeV up to 17.3 GeV. The calculations were performed both in the cubic central cell of fixed volume V = 5 centre dot 5 centre dot 5 fm3 and for the instantly expanding volume of homogeneous energy density. To decide whether or not equilibrium is reached we used a traditional approach based on the fulfillment of the conditions of kinetic, thermal and chemical equilibrium. Both models favor the formation of equilibrated matter for a period of about 10 fm/c in which the matter expands isentropically with constant entropy per baryon. The square of the speed of sound c{sub s}2 has been found to vary in UrQMD from 0.13 at AGS to 0.15 at SPS energies and in QGSM from 0.11 at AGS to 0.15 at SPS. In both models the rise in c{sub s}2 slows down at sq rootsNN approx 9 GeV. Chapter 3 describes the HYDJET++ model as a superposition of the soft, hydrotype state and the hard state resulting from multi-parton fragmentation. Both states are treated independently. The hard part is an NN collision generator called PYQUEN which modifies the 'standard' jet event obtained with the PYTHIA generator and includes radiative and collisional energy loss for partons. Initial state effects like shadowing are included also. The soft part is the thermal hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parametrization of relativistic hydrodynamics. We found that this model gives a good description of soft observables at top RHIC energy, like the p{sub T} spectrum, elliptic flow and HBT correlations. The hard part of the model describes well the high-p{sub T

  9. Heavy ion linear accelerator for radiation damage studies of materials

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  10. Heavy ion linear accelerator for radiation damage studies of materials

    Science.gov (United States)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  11. Extracellular Matrix-Based Biohybrid Materials for Engineering Compliant, Matrix-Dense Tissues.

    Science.gov (United States)

    Bracaglia, Laura G; Fisher, John P

    2015-11-18

    An ideal tissue engineering scaffold should not only promote, but take an active role in, constructive remodeling and formation of site appropriate tissue. Extracellular matrix (ECM)-derived proteins provide unmatched cellular recognition, and therefore influence cellular response towards predicted remodeling behaviors. Materials built with only these proteins, however, can degrade rapidly or begin too weak to substitute for compliant, matrix-dense tissues. The focus of this Progress Report is on biohybrid materials that incorporate polymer components with ECM-derived proteins, to produce a substrate with desired mechanical and degradation properties, as well as actively guide tissue remodeling. Materials are described through four fabrication methods: 1) polymer and ECM-protein fibers woven together, 2) polymer and ECM proteins combined in a bilayer, 3) cell-built ECM on polymer scaffold, and 4) ECM proteins and polymers combined in a single hydrogel. Scaffolds from each fabrication method can achieve characteristics suitable for different types of tissue. In vivo testing has shown progressive remodeling in injury models, and suggests ECM-based biohybrid materials promote a prohealing immune response over single component alternatives. The prohealing immune response is associated with lasting success and long term host maintenance of the implant. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Activation of accelerator construction materials by heavy ions

    Science.gov (United States)

    Katrík, P.; Mustafin, E.; Hoffmann, D. H. H.; Pavlovič, M.; Strašík, I.

    2015-12-01

    Activation data for an aluminum target irradiated by 200 MeV/u 238U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  13. Activation of accelerator construction materials by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Katrík, P., E-mail: p.katrik@gsi.de [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany); Mustafin, E. [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany); Hoffmann, D.H.H. [TU Darmstadt, Schlossgartenstraße 9, D-64289 (Germany); Pavlovič, M. [FEI STU Bratislava, Ilkovičova 3, SK-81219 (Slovakia); Strašík, I. [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany)

    2015-12-15

    Activation data for an aluminum target irradiated by 200 MeV/u {sup 238}U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  14. Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gribkov, V.A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Demina, E.V.; Pimenov, V.N.; Maslyaev, S.A. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Bondarenko, G.G. [National Research University Higher School of Economics (HSE), Moscow (Russian Federation); Vilemova, M.; Matejicek, J. [Institute of Plasma Physics of the CAS, Prague (Czech Republic)

    2016-12-15

    Highlights: • Materials perspective for use in mainstream nuclear fusion facilities were studied. • Powerful streams of hot plasma and fast ions were used to induce irradiation. • High temporal, spatial, angular and spectral resolution available in experiments. • Results of irradiation were investigated by number of analysis techniques. - Abstract: A process of irradiating and ablating solid-state targets with hot plasma and fast ion streams in two Dense Plasma Focus (DPF) devices – PF-6 and PF-1000 was examined by applying a number of diagnostics of nanosecond time resolution. Materials perspective for use in chambers of the mainstream nuclear fusion facilities (mainly with inertial plasma confinement like NIF and Z-machine), intended both for the first wall and for constructions, have been irradiated in these simulators. Optical microscopy, SEM, Atomic Emission Spectroscopy, images in secondary electrons and in characteristic X-ray luminescence of different elements, and X-ray elemental analysis, gave results on damageability for a number of materials including low-activated ferritic and austenitic stainless steels, β-alloy of Ti, as well as two types of W and a composite on its base. With an increase of the number of shots irradiating the surface, its morphology changes from weakly pronounced wave-like structures or ridges to strongly developed ones. At later stages, due to the action of the secondary plasma produced near the target materials they melted, yielding both blisters and a fracturing pattern: first along the grain and then “in-between” the grains creating an intergranular net of microcracks. At the highest values of power flux densities multiple bubbles appeared. Furthermore, in this last case the cracks were developed because of microstresses at the solidification of melt. Presence of deuterium within the irradiated ferritic steel surface nanolayers is explained by capture of deuterons in lattice defects of the types of impurity atoms

  15. Polyazulene based materials for heavy metal ions detection

    Science.gov (United States)

    Oprisanu, A.; Ungureanu, E. M.; Isopescu, R.; Birzan, L.; Mihai, M.; Vasiliu, C.

    2017-06-01

    Azulene is a special monomer used to functionalize electrodes, due to its spontaneous electron drift from the seven-membered ring to the five-membered ring. The seven-membered ring of the molecule may act as electron acceptor, while the five-membered ring - as electron donor. This leads to very attractive properties for the synthesis of functional advanced materials like: materials with nonlinear optical and photorefractive properties, cathode materials for lithium batteries, or light emitting diodes based on organic materials. Azulene derivatives have been used rarely to the metal ions electroanalysis. Our study concerns the synthesis and electrochemical characterization of a new azulene based monomer 4-(azulen-1-yl)-2,6-bis((E)-2-(thiophen-3-yl)vinyl)pyridine (L). L has been used to obtain modified electrodes by electrochemical polymerization. PolyL films modified electrodes have been characterized by cyclic voltammetry in ferrocene solutions. The complexing properties of polyL based functional materials have been investigated towards heavy metals (Pb, Cd Hg, Cu) by preconcentration - anodic stripping technique in order to analyze the content of these cations from water samples.

  16. Dense poplar plantations as the raw material for the production of energy

    Directory of Open Access Journals (Sweden)

    Klašnja Bojana

    2006-01-01

    Full Text Available The higher heating value of wood and bark was determined for several poplar (Populus spp clones. The study included the juvenile one year old plants of the following clones: P.×euramericana cl. ostia, P. nigra cl.53/86, P. deltoides cl. PE 19/66, P.×euramericana cl. I-214, P. deltoides cl. S6-7 and P.×euramericana cv. robusta. By using FVI which takes into account ash content, wood bulk density, and moisture content, it was determined that poplar wood can be a significant energy raw material, primarily thanks to its short rotation cycle and a very high wood volume increment. Significant differences were determined in the values of wood basic density which affect the higher heating value of the study poplar clones, and consequently the yield (weight of biomass produced per unit area of dense plantations. This is reflected also on the estimated amount of energy that can be produced by the combustion of biomass of the whole one year old plants.

  17. Content of amino acids in dense extracts from raw material of Echium vulgare L.

    Directory of Open Access Journals (Sweden)

    V. V. Mashtaler

    2013-08-01

    Full Text Available Echium vulgare L. of Boraginaceae family is a biennial rigidly pubescent plant with a spindle-shaped root, which is rather widespread in Ukraine. Above-ground and underground part of the plant is used in folk medicine as a blood purifying agent and anticonvulsant, herb decoctions – as expectorant and calming agent for cough of various etiology. Owing to shikonin and its ethers presence, extracts from Echium vulgare L. have high antibacterial activity and stable fungistatic effect against yeast fungi. In addition, these substances also exibit anti-inflammatory, antioxidant, and regenerative activity. Echium vulgare L., as most representatives of Boraginaceae, is not sufficiently studied. Continuing to study this species, we have determined amino acid composition of its aqueous extracts. This group of biologically active substances is present in easy-to-digest complexes and in biologically available concentrations; it demonstrates a number of biological actions, such as hepatoprotective, lipotropic, cardiotropic, regenerative, wound-healing, calming, etc. The objective of our work was to study qualitative composition and quantitative content of amino acids in dense extracts obtained from roots and herb of Echium vulgare L. Objects of our study were dense extracts obtained from roots and herb of Echium vulgare L. Roots were harvested in autumn, at the end of vegetation period (October – November 2009; herb was collected during the phase of mass flowering (June 2009 in Kharkov region. Well-known methods were used to obtain dense extracts (extraction agent: purified water. Output of root dense extract was 22,7%, and herb dense extract was 23,5%. Amino acid composition of dense extracts was studied with amino acid analyzer AAA-339 (Czech Republic after hydrolysis with hydrochloric acid. There have been identified 16 amino acids, 7 of which are essential, 3 semiessential ones and the rest – nonessential amino acids. Qualitative composition and

  18. Adsorption of heavy metals in waste water using biological materials

    Directory of Open Access Journals (Sweden)

    Candelaria Tejada-Tovar

    2015-01-01

    Full Text Available Biosorption is a process that allows active or passive uptake of metal ions due to the property that different living or dead biomass have to bind and accumulate these pollutants by different mechanisms. The application of low-cost materials obtained from different biomass from microbial flora, agro-industrial waste and algae has been investigated to replace the use of conventional methods for the removal of contaminants such as heavy metals. Some of the metals of greatest impact to the environment due to its high toxicity and difficult to remove are chromium, nickel, cadmium, lead, and mercury. In this paper, an overview of adsorption as an alternative process for the removal of contaminants in solution and biomass commonly used in these processes, as well as some of the modifications made to improve the efficiency of adsorption of these materials is presented. It was concluded that the use of adsorption in the removal of pollutants in aqueous solution using waste biomass is applicable to these decontamination processes avoiding subsequent problems such as the generation of chemical sludge, and generating an alternative to use materials considered as waste. It is further identified that such factors as the pH of the solution, particle size, temperature, and concentration of metal effect on the process.

  19. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, David P.; Browning, James F.

    1999-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  20. System for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, David P.; Browning, James F.

    1998-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  1. Extended First-Principles Molecular Dynamics Method From Cold Materials to Hot Dense Plasmas

    CERN Document Server

    Zhang, Shen; Kang, Wei; Zhang, Ping; He, Xian-Tu

    2016-01-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically, and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of elec- tronic structures. This gives an edge to the extended method in the calculation of the lowering of ionization potential, X-ray absorption/emission spectra, opacity, and high-Z dense plasmas, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  2. Evolution of the effective moduli of an anisotropic, dense, granular material

    NARCIS (Netherlands)

    La Ragione, L.; Magnanimo, Vanessa

    2012-01-01

    We analyze the behavior of a dense granular aggregate made by identical, elastic spheres, uni-axially compressed at constant pressure. Our goal is to predict the evolution of the effective moduli along the loading path when small perturbations are applied to stressed states. The analytical model is

  3. Fast six-channel pyrometer for warm-dense-matter experiments with intense heavy-ion beams

    OpenAIRE

    Ni, P.A.

    2008-01-01

    This paper describes a fast multi-channel radiation pyrometer that was developed for warmdense-matter experiments with intense heavy ion beams at Gesellschaft fur Schwerionenforschung mbH (GSI). The pyrometer is capable of measuring of brightness temperatures from 2000 K to 50000 K, at 6 wavelengths in visible and near-infrared parts of spectrum, with 5 nanosecond temporal resolution and several micrometers spatial resolution. The pyrometer's spectral discrimination technique is based on inte...

  4. Fast six-channel pyrometer for warm-dense-matter experiments with intense heavy-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Ni, P.A.; Kulish, M.I.; Mintsev, V.; Nikolaev, D.N.; Ternovoi, V.Ya.; Hoffmann, D.H.H.; Udrea, S.; Tahir, N.A.; Varentsov, D.; Hug, A.

    2008-12-01

    This paper describes a fast multi-channel radiation pyrometer that was developed for warmdense-matter experiments with intense heavy ion beams at Gesellschaft fur Schwerionenforschung mbH (GSI). The pyrometer is capable of measuring of brightness temperatures from 2000 K to 50000 K, at 6 wavelengths in visible and near-infrared parts of spectrum, with 5 nanosecond temporal resolution and several micrometers spatial resolution. The pyrometer's spectral discrimination technique is based on interference filters, which act as filters and mirrors to allow for simultaneous spectral discrimination of the same ray at multiple wavelengths.

  5. Concluding Remarks: Connecting Relativistic Heavy Ion Collisions and Neutron Star Mergers by the Equation of State of Dense Hadron- and Quark Matter as signalled by Gravitational Waves

    Science.gov (United States)

    Hanauske, Matthias; Steinheimer, Jan; Bovard, Luke; Mukherjee, Ayon; Schramm, Stefan; Takami, Kentaro; Papenfort, Jens; Wechselberger, Natascha; Rezzolla, Luciano; Stöcker, Horst

    2017-07-01

    The underlying open questions in the fields of general relativistic astrophysics and elementary particle and nuclear physics are strongly connected and their results are interdependent. Although the physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge of their first detection, it is important to understand the main characteristics of the underlying merging system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark phase transition in the interior region of the HMNS and its conjunction with the spectral properties of the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion collisions.

  6. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....

  7. Transparency and spontaneous emission in a densely doped photonic band gap material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)

    2006-12-28

    The susceptibility has been calculated for a photonic crystal in the presence of spontaneous cancellation and dipole-dipole interaction. The crystal is densely doped with an ensemble of four-level nano-particles in Y-type configuration. Probe and a pump laser fields are applied to manipulate the absorption coefficient of the system. The expression of the susceptibility has been calculated in the linear response regime of the probe field but nonlinear terms are included for the pump field. It is found that in the presence of spontaneous emission cancellation there is an increase in the height of the two absorption peaks however the phenomenon of electromagnetically induced transparency (EIT) is not affected. On the other hand, there is a change in the height and location of the two peaks in the presence of dipole-dipole interactions. For certain values the particle density of the system can be switched from the EIT state to the non-EIT state. It is also found that when the resonance energies for two spontaneous emission channels lie close to the band edge, the EIT phenomenon disappears.

  8. Conduction and Narrow Escape in Dense, Disordered, Particulate-based Heterogeneous Materials

    Science.gov (United States)

    Lechman, Jeremy

    For optimal and reliable performance, many technological devices rely on complex, disordered heterogeneous or composite materials and their associated manufacturing processes. Examples include many powder and particulate-based materials found in phyrotechnic devices for car airbags, electrodes in energy storage devices, and various advanced composite materials. Due to their technological importance and complex structure, these materials have been the subject of much research in a number of fields. Moreover, the advent of new manufacturing techniques based on powder bed and particulate process routes, the potential of functional nano-structured materials, and the additional recognition of persistent shortcomings in predicting reliable performance of high consequence applications; leading to ballooning costs of fielding and maintaining advanced technologies, should motivate renewed efforts in understanding, predicting and controlling these materials' fabrication and behavior. Our particular effort seeks to understand the link between the top-down control presented in specific non-equilibrium processes routes (i.e., manufacturing processes) and the variability and uncertainty of the end product performance. Our ultimate aim is to quantify the variability inherent in these constrained dynamical or random processes and to use it to optimize and predict resulting material properties/performance and to inform component design with precise margins. In fact, this raises a set of deep and broad-ranging issues that have been recognized and as touching the core of a major research challenge at Sandia National Laboratories. In this talk, we will give an overview of recent efforts to address aspects of this vision. In particular the case of conductive properties of packed particulate materials will be highlighted. Combining a number of existing approaches we will discuss new insights and potential directions for further development toward the stated goal. Sandia National

  9. [Preparation and characterization of Radix Salvia reference material for heavy metals under GAP control].

    Science.gov (United States)

    Huang, Zhi-yong; Zhuang, Zhi-xia; Wang, Xiao-ru; Lee, Frank S

    2003-09-01

    To prepare and characterize the heavy metal reference material of radix salvia planted in Zhongjiang, Sichuan province under the good agricultural procedure (GAP). After being prepared, the reference material was digested with 65% HNO3 and H2O2 by microwave-assisted oven systems, and the heavy metals in Radix salvia reference material were accurately determined by inductively coupled plasma mass spectrometry (ICP-MS). The measuring method was validated by running certificated reference materials, including bush twigs and leaves (GBW07602) and tea twigs and leaves (GBW07605) under the same conditions. The recoveries of the elements mostly ranged from 90% to 110%, and the RSD was within 5%. The measurement of radix salvia reference material was carried out by different laboratories with ICP-MS and by several time intervals in one year for the stability. The results showed that the concentration of the heavy metals provided were accurate and the reference material was stable. The reference material is suitable to be the criterions of heavy metals for radix salvia in the qualities controlling, and is also suitable to be the criterion of poisonous heavy metals of other herbs in the administration of GAP.

  10. Multiscale Phenomena in the Solid-Liquid Transition State of a Granular Material: Analysis and Modelling of Dense Granular Materials

    Science.gov (United States)

    2011-09-26

    of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education , Research and Engineering: The number of undergraduates...granular materials and it is an important advance to the development of micropolar continua .” (Impact factor 1.330) [13] * Tordesillas, A, Walker...complexity of granular materials with Vector Calculus” Australasian Journal of Engineering Education 15 (2) pp 85-94. ISSN 1324-5821. I take a colleague

  11. Silane Modification of Cellulose Acetate Dense Films as Materials for Acid Gas Removal

    KAUST Repository

    Achoundong, Carine S. K.

    2013-07-23

    The modification of cellulose acetate (CA) films via grafting of vinyltrimethoxysilane (VTMS) to -OH groups, with subsequent condensation of hydrolyzed methoxy groups on the silane to form a polymer network is presented. The technique is referred to as GCV-modification. The modified material maintains similar H2S/CH4 and CO2/CH 4 selectivities compared to the unmodified material; however the pure CO2 and H2S permeabilities are 139 and 165 barrers, respectively, which are more than an order of magnitude higher than the neat polymer. The membranes were tested at feed pressures of up to 700 psia in a ternary 20 vol. %H2S/20 vol. % CO2/60 vol. % CH 4 mixture. Even under aggressive feed conditions, GCV-modified CA showed comparable selectivities and significantly higher permeabilities. Furthermore, GCV-modified membrane had a lower Tg, lower crystallinity, and higher flexibility than neat CA. The higher flexibility is due to the vinyl substituent provided by VTMS, thereby reducing brittleness, which could be helpful in an asymmetric membrane structure. © 2013 American Chemical Society.

  12. Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Q., E-mail: qji@lbl.gov; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Persaud, A.; Schenkel, T. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Friedman, A.; Grote, D. P.; Barnard, J. J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-02-15

    The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ∼1 eV using intense, short pulses (∼1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He{sup +} ions leads to more uniform energy deposition of the target material than Li{sup +} ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li{sup +} ions from a hot plate type ion source. He{sup +} beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.

  13. Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials

    Directory of Open Access Journals (Sweden)

    Daniele Ziegler

    2016-06-01

    Full Text Available This paper assesses the feasibility of two industrial wastes, fly ash (FA and rice husk ash (RHA, as raw materials for the production of geopolymeric pastes. Three typologies of samples were thus produced: (i halloysite activated with potassium hydroxide and nanosilica, used as the reference sample (HL-S; (ii halloysite activated with rice husk ash dissolved into KOH solution (HL-R; (iii FA activated with the alkaline solution realized with the rice husk ash (FA-R. Dense and porous samples were produced and characterized in terms of mechanical properties and environmental impact. The flexural and compressive strength of HL-R reached about 9 and 43 MPa, respectively. On the contrary, the compressive strength of FA-R is significantly lower than the HL-R one, in spite of a comparable flexural strength being reached. However, when porous samples are concerned, FA-R shows comparable or even higher strength than HL-R. Thus, the current results show that RHA is a valuable alternative to silica nanopowder to prepare the activator solution, to be used either with calcined clay and fly ash feedstock materials. Finally, a preliminary evaluation of the global warming potential (GWP was performed for the three investigated formulations. With the mix containing FA and RHA-based silica solution, a reduction of about 90% of GWP was achieved with respect to the values obtained for the reference formulation.

  14. Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1999-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  15. Design of a gap-adjustable inkjet printing system for dense and high-temperature-melting materials

    Science.gov (United States)

    Lee, Taik-Min; Jo, Jeong-Dai; Kim, Hyun-Sub; Ham, Young-Bok; Yoon, So-Nam; Kim, Kwang-Young

    2005-01-01

    Inkjet printing technology has begun to get into the spotlight in many ways due to the superior price competitiveness to existent semi-conductor process. This paper will introduce a newly devised gap adjustable inkjet printing system for dense and high-temperature-melting materials such as metal paste. The design on the gap adjustable inkjet printing system is discussed in detail for precise control of the size and spacing of the injected metal droplets. Analytic optimization and effects of design parameters are examined and computational work using the axis-symmetric, incompressible, multiphase equations is carried out to predict characteristics of the metal paste jetting and to design optimal micro nozzle prototype. From this analysis, droplet trajectory visualization and velocity vector of ejected droplet have been investigated to characterize the relationship between inlet condition and nozzle profile. Finally, the designed gap adjustable inkjet printing system is fabricated and its peformances are tested according to the change of various gap distances and the droplet characteristics are measured in the view point of precise droplet controllability and productivity.

  16. Material and heavy metal balance in a recycling facility for home electrical appliances.

    Science.gov (United States)

    Matsuto, T; Jung, C H; Tanaka, N

    2004-01-01

    Collection and recycling of home electrical appliances was started in Japan in 2001 under a new recycling law. The law is aimed at promoting material recycling and at reducing the amount of waste to be landfilled. End of life products are processed by manual disassembly, shredding, and separation in 38 recycling facilities. The authors conducted a questionnaire survey and interviewed at some facilities to obtain information on process flow and material balance. By using the detailed records offered by one facility and by estimating the composition of recovered components, the material balance in the facilities was determined for four typical recycling processes. The heavy metal content of the recovered components was analyzed, then metal flow in the process was determined for each scenario. As a result, it was concluded that emissions to the environment of most heavy metals have been substantially reduced by the new recycling system, while a modest improvement in the rate of material recovery has been achieved.

  17. A FTIR characterization of a haemocompatible material obtained by swift heavy ion radiation grafting

    Energy Technology Data Exchange (ETDEWEB)

    Dapoz, S.; Betz, N.; Le Moel, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l`Etat Condense, les Atomes et les Molecules

    1996-01-01

    In order to prepare materials destined to be used as vascular prothesis, a radiation grafting of styrene, induced by swift heavy ions in polyvinylidene fluoride films, was performed. A substitution of the grafted polystyrene with sulfonate and aspartic acid sulfamide groups, which confers to the polymer anticoagulant properties, was achieved. The material was characterized by Fourier Transform Infrared spectroscopy at each step of the synthesis. (authors). 5 refs., 2 figs.

  18. Heavy vehicle propulsion system materials program semiannual progress report for April 1999 through September 1999

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    2000-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

  19. Material Compressing Test of the High Polymer Part Used in Draft Gear of Heavy Load Locomotive

    Directory of Open Access Journals (Sweden)

    Wei Yangang

    2016-01-01

    Full Text Available According to the actual load cases of heavy load locomotive, the material compressing tests of the high polymer parts used in the locomotive are researched. The relationship between stress and strain during the material compressing are acquired by means of comparing the many results of the material compressing tests under different test condition. The relationship between stress and strain during the material compressing is nonlinear in large range of strain, but the relationship is approximately linear in small range of strain. The material of the high polymer made in China and the material of the high polymer imported are compared through the tests. The results show that the compressing property of the material of the high polymer made in China and the material of the high polymer imported are almost same. The research offers the foundation to study the structure elasticity of the draft gear.

  20. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  1. Dense Breasts

    Science.gov (United States)

    ... also appear white on mammography, they can be hidden by or within dense breast tissue. Other imaging ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  2. Adsorption of mixtures of nutrients and heavy metals in simulated urban stormwater by different filter materials.

    Science.gov (United States)

    Reddy, Krishna R; Xie, Tao; Dastgheibi, Sara

    2014-01-01

    In recent years, several best management practices have been developed for the removal of different types of pollutants from stormwater runoff that lead to effective stormwater management. Filter materials that remove a wide range of contaminants have great potential for extensive use in filtration systems. In this study, four filter materials (calcite, zeolite, sand, and iron filings) were investigated for their adsorption and efficiency in the removal of nutrients and heavy metals when they exist individually versus when they co-exist. Laboratory batch experiments were conducted separately under individual and mixed contaminants conditions at different initial concentrations. Adsorption capacities varied under the individual and mixed contaminant conditions due to different removal mechanisms. Most filter materials showed lower removal efficiency under mixed contaminant conditions. In general, iron filings were found effective in the removal of nutrients and heavy metals simultaneously to the maximum levels. Freundlich and Langmuir isotherms were used to model the batch adsorption results and the former better fitted the experimental results. Overall, the results indicate that the filter materials used in this study have the potential to be effective media for the treatment of nutrients and heavy metals commonly found in urban stormwater runoff.

  3. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.

  4. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for October 1998 Through March 1999

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.D.

    1999-06-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and

  5. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Fleutot, Benoit, E-mail: benoit.fleutot@u-picardie.fr [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France); Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France)

    2017-04-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12} (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li{sub 3}PO{sub 4} coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li{sub 3}PO{sub 4} coated Li{sub 4}Ti{sub 5}O{sub 12} is improved at high C-rate by the surface modification (improvement of 30 mAh g{sup −1} at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  6. Evaluation of base materials of TL slab dosimeter for heavy-ion radiotherapy

    Science.gov (United States)

    Koba, Yusuke; Shinsho, Kiyomitsu; Tamatsu, Satoshi; Fukuda, Shigekazu; Wakabayashi, Genichiro

    2014-01-01

    In order to measure a three-dimensional dose distribution in X-ray radiotherapy, we developed TL slab dosimeter with new TL phosphor Li3B7O12(Cu), which has Zeff = 7.42 and a density of 1.01 g/cm3 and synthetic resin as binder [ 1]. We can measure a three-dimensional dose distribution easily and reliably using this detector. This detector showed a promising tool for QA/QC in advanced X-ray radiotherapies such as IMRT, etc. In heavy-ion radiotherapies which shape precipitous dose distributions, it is also necessary to measure three-dimensional dose distribution easily. To use TL slab dosimeter in heavy-ion dosimetry, it is essential to measure its LET dependence sufficiently. And it is necessary to evaluate the dosimetric water equivalence of this dosimeter for heavy ions. Previous studies showed that the relative TL efficiency of this TL phosphor decreased to ∼20% at the Bragg-peak of carbon 290 MeV/u beams and the stopping-power ratio of this dosimeter to water for carbon ions was 0.87 [ 2]. These results were not good for application in heavy-ion radiotherapy. It was often reported that there is a relationship between the glow curve shape of general TLDs (such as LiF and BeO) and LET. Using this relationship of glow curve and LET, the relative TL efficiency can be corrected and we could apply TLDs to dose measurement in heavy-ion radiotherapies. In this study, in order to develop better TL slab dosimeter for heavy-ion radiotherapy using TL phosphors with the above characteristics, we evaluated the dosimetric water equivalence of several base materials for TL slab dosimeter. We chose several kinds of ceramics with heating resistance as the base material; ISOPLATON E3, P1, M2, A98 S1 and Machinable Ceramics, TBS N64, N66, N1, N3 (ISOLITE Co., Ltd). We focused attention on stopping power, scattering power and nuclear cross-section of these materials for heavy ions. We calculated these interactions using the Bethe formula, the Gottschalk formula and the Sihver

  7. High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines

    Science.gov (United States)

    Dellacorte, C.; Wood, J. C.

    1994-01-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature Stirling engines, sidewall seals of rotary engines, and various exhaust valve and exhaust component applications. This paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis on heavy duty and advanced heat engines.

  8. Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials

    Science.gov (United States)

    Barghouty, Abdulmasser F.; Adams, James H., Jr.

    2008-01-01

    At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.

  9. Olive mill solid residues as heavy metal sorbent material: a preliminary study.

    Science.gov (United States)

    Pagnanelli, Francesca; Toro, Luigi; Vegliò, Francesco

    2002-01-01

    Biosorption of heavy metals is an innovative and alternative technology to remove these pollutants from aqueous solutions using inactive and dead biomasses such as agricultural and industrial wastes, algae and bacteria. In this study olive mill solid residue was used as heavy metal adsorbent material for its wide availability as agricultural waste and also for its cellulosic matrix, rich of potential metal binding active sites. Preliminary studies concerned with the removal of different heavy metals (Hg, Pb, Cu, Zn and Cd), the effect of pre-treatments by water and n-hexane and the regeneration possibility. Olive mill solid residue resulted able to remove heavy metals from aqueous solutions with an affinity series reflecting the hydrolytic properties of the metallic ions, but also a particular affinity for copper. It can be supposed that biosorption phenomenon occur by a general ion exchange mechanism combined with a specific complexation reaction for copper ions. Water pre-treatment is sufficient to reduce COD release in the effluent according to the law limit, while n-hexane pre-treatment strongly reduces also the adsorption properties of this material. Experimental isotherms obtained under different operating conditions were fitted using a non linear regression method for the estimation of the Langmuir parameters. Moreover a simple Scatchard plot analysis was performed for a preliminary investigation of the active sites, showing the presence of two different site affinities depending on the metal concentration, according to the previous hypothesis of two kinds of uptake mechanisms for copper biosorption. Regeneration tests gave good results in terms of yield of regeneration and also concentration ratios.

  10. Heavy Vehicle Propulsion System Materials Program semiannual progress report for October 1996 through March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designers; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) cost effective high performance materials and processing; (2) advanced manufacturing technology; (3) testing and characterization; and (4) materials and testing standards.

  11. {pi}{pi}-correlations in hot and dense matter; {pi}{pi}-Korrelationen in heisser und dichter Materie

    Energy Technology Data Exchange (ETDEWEB)

    Isselhorst, C.

    2006-07-01

    Properties of the {pi}{pi}-interactions in hot and dense matter are studied within a nonperturbative and symmetry conserving approach. The pion and its chiral partner, the {sigma}-meson, are described within the linear {sigma} model and special attention is given to the conservation of the underlying chiral symmetry. The first part deals with the properties of pion and {sigma} in the vacuum, the further being the ''Goldstone''-boson of the theory, while the latter is a broad resonance. The results in the vacuum are tested against experimental results like {pi}{pi}-phase shifts as well as the mass and the width of the {sigma}-meson. Besides the propagator of the {sigma}-meson, the preservation of the chiral symmetry is explicitly examined and chiral Ward identities for the n-point functions of the theory are fulfilled. Furthermore the {pi}{pi}-scattering matrix is calculated and shown to be consistent with predictions from chiral perturbation theory. In the second part of this work the model is extended to finite temperature with special emphasis on the chiral phase transition. The transition temperature and the critical exponent {beta} are determined, and the influence of the temperature on the propagator of the s-meson as well as on the {pi}{pi}-scattering matrix is examined. The third part deals with the properties of pion and {sigma} in dense matter. Additional couplings like the ones to particle-hole excitations and short range repulsion have to be included to ensure stability at nuclear matter density. At zero three momentum one observes a strong downward shift of the {sigma}-mass accompanied by an accumulation of strength near the two-pion threshhold in the spectral function. Taking into account a finite three momentum for the {pi}{pi}-pair, respectively the {sigma}-meson, one observes a weakening of the aforementioned effect. Having thus developed a model for the {pi}{pi}-interaction at finite temperature and density, we try to describe

  12. Strange hadrons and antiprotons as probes of hot and dense nuclear matter in relativistic heavy-ion collisions; Seltsame Hadronen und Antiprotonen als Proben heisser und dichter Kernmaterie in relativistischen Schwerionenkollisionen

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Henry

    2010-09-15

    Strange particles play an important role as probes of relativistic heavy-ion collisions where hot and dense matter is studied. The focus of this thesis is on the production of strange particles within a transport model of Boltzmann-Uehling-Uhlenbeck (BUU) type. Current data of the HADES Collaboration concerning K{sup {+-}} and {phi} spectra provide the appropriate experimental framework. Moreover, the double-strange hyperon {xi}{sup -} is analyzed below the free NN production threshold. Hadron multiplicities, transversemomentum and rapidity spectra are compared with recent experimental data. Further important issues are in-medium mass shifts, the nuclear equation of state as well as the mean field of nucleons. Besides the study of AA collisions a comparison with recent ANKE data regarding the {phi} yield in pA collisions is done. Transparency ratios are determined and primarily investigated for absorption of {phi} mesons by means of the BUU transport code. Thereby, secondary {phi} production channels, isospin asymmetry and detector acceptance are important issues. A systematic analysis is presented for different system sizes. The momentum integrated Boltzmann equations describe dense nuclear matter on a hadronic level appearing in the Big Bang as well as in little bangs, in the context of kinetic off-equilibrium dynamics. This theory is applied to antiprotons and numerically calculated under consideration of various expansion models. Here, the evolution of proton- and antiproton densities till freeze-out is analyzed for ultra-relativistic heavy-ion collisions within a hadrochemic resonance gas model acting as a possible ansatz for solving the ''antiproton puzzle''. Furthermore, baryonic matter and antimatter is investigated in the early universe and the adiabatic path of cosmic matter is sketched in the QCD phase diagram. (orig.)

  13. Prospects for the study of the properties of dense nuclear matter at the NICA heavy-ion complex at JINR (Dubna)

    Science.gov (United States)

    Kolesnikov, V. I.

    2017-06-01

    The NICA (Nuclotron-based Ion Collider fAcility) project is aimed in the construction at JINR (Dubna) a modern accelerator complex equipped with three detectors: the MultiPurpose Detector (MPD) and the Spin Physics Detector (SPD) at the NICA collider, as well as a fixed target experiment BM&N which will be use extracted beams from the Nuclotron accelerator. In this report, an overview of the main physics objectives of the NICA heavy-ion program will be given and the recent progress in the NICA construction (both accelerator complex and detectors) will be described.

  14. On the supply of heavy planetary material to the magnetotail of Mercury

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    2013-10-01

    Full Text Available We examine the transport of low-energy heavy ions of planetary origin (O+, Na+, Ca+ in the magnetosphere of Mercury. We show that, in contrast to Earth, these ions are abruptly energized after ejection into the magnetosphere due to enhanced curvature-related parallel acceleration. Regardless of their mass-to-charge ratio, the parallel speed of these ions is rapidly raised up to ~ 2 VE × B (denoting by VE × B the magnitude of the local E × B drift speed, in a like manner to Fermi-type acceleration by a moving magnetic mirror. This parallel energization is such that ions with very low initial energies (a few tenths of eVs can overcome gravity and, regardless of species or convection rate, are transported over comparable distances into the nightside magnetosphere. The region of space where these ions reach the magnetotail is found to extend over altitudes similar to those where enhanced densities are noticeable in the MESSENGER data, viz., from ~ 1000 km up to ~ 6000 km in the pre-midnight sector. The observed density enhancements may thus follow from E × B related focusing of planetary material of dayside origin into the magnetotail. Due to the planetary magnetic field offset, an asymmetry is found between drift paths anchored in the Northern and Southern hemispheres, which puts forward a predominant role of heavy material originating in the Northern Hemisphere in populating the innermost region of Mercury's magnetotail.

  15. Mass accumulation rate of detrital materials in Lake Suigetsu as a potential proxy for heavy precipitation: a comparison of the observational precipitation and sedimentary record

    Science.gov (United States)

    Suzuki, Yoshiaki; Tada, Ryuji; Yamada, Kazuyoshi; Irino, Tomohisa; Nagashima, Kana; Nakagawa, Takeshi; Omori, Takayuki

    2016-02-01

    In the densely populated region of East Asia, it is important to know the mechanism, scale, and frequency of heavy precipitation brought about during the monsoons and typhoons. However, observational data, which cover only several decades, are insufficient to examine the long-term trend of extreme precipitation and its background mechanism. In humid areas, the transport flux of a suspended detrital material through a river system is known to have an empirical power relationship with precipitation. Thus, the sedimentation flux of a fine detrital material could potentially be used as a proxy for reconstructing past heavy precipitation events. To test the idea that the sedimentation flux of detrital materials records past heavy precipitation events (e.g., typhoons), we focused on the detrital flux estimated from the annually laminated sediment of Lake Suigetsu, central Japan, which is capable of accurately correlating the age of detrital flux with the precipitation record. We first established a precise age model (error within ±1 year in average) beginning in 1920 A.D. on the basis of varve counting fine-tuned by correlation between event layers with historical floods. The flux of the detrital material (g/cm2/year) was estimated on the basis of Al2O3 content (wt%), dry bulk density (g/cm3), and sedimentation rate (cm/year) calculated from the age model. The detrital flux of background sedimentation showed a weak positive correlation with annual and monthly (June and September) precipitation excluding heavy precipitation that exceeded 100 mm/day. Furthermore, the thickness of instantaneous event layers, which corresponds to several maxima of detrital flux and is correlated with floods that occurred mainly during typhoons, showed a positive relationship with the total amount of precipitation that caused a flood event. This result suggests that the detrital flux maxima (deposition of event layers) record past extreme precipitation events that were likely associated with

  16. A Linkage Between Parent Materials of Soil and Potential Risk of Heavy Metals in Yunnan province, China

    Science.gov (United States)

    Cheng, X.

    2015-12-01

    A large area exceeding soil quality standards for heavy metals in South western China has been identified previously reported on a nationwide survey of soil pollution, yet the ecological risk of heavy metal in soil is unknown or uncertainty.To assess thoroughly the ecological risk in this region, seven soil profiles with a depth of 2m on the different parent materials of soil were conducted in Yunnan province, China, and the level of total concentrations and the fraction of water soluble, ion exchangeable, carbonates, humic acid, iron and manganese oxides and organic matter of As, Cd, Hg and Pb was investigated in soil profiles. The results indicate that parent materials of soil critically influenced the ecological risk of heavy metal.The fraction of water soluble and ion exchangeable of Cd and Hg in alluvial material and in terrigenous clastic rocks showed 2-6 times higher than those in carbonate rock; As and Pb has almost same fraction of water soluble and ion exchangeable in three parent materials of soil.The findings suggest that parent materials of soil play a critical role in ecological risk of heavy metal.Thus, more studies are needed to better understand a linkage between the parent materials of soil, different soil-forming processes and the potential risk of heavy metals under various geographic conditions, which is the key for the evaluating soil quality and food safety. Those soils with high concentration of Cd and Hg originated alluvial material and terrigenous clastic rocks need to be continuously monitored before determining a cost-effective remediation technology. Keywords: Heavy metals; Ecological risk;Parent materials of soil;China

  17. Phosphorescence Tuning through Heavy Atom Placement in Unsymmetrical Difluoroboron β-Diketonate Materials.

    Science.gov (United States)

    Liu, Tiandong; Zhang, Guoqing; Evans, Ruffin E; Trindle, Carl O; Altun, Zikri; DeRosa, Christopher A; Wang, Fang; Zhuang, Meng; Fraser, Cassandra L

    2018-02-06

    Difluoroboron β-diketonates (BF 2 bdks) show both fluorescence (F) and room-temperature phosphorescence (RTP) when confined to a rigid matrix, such as poly(lactic acid). These materials have been utilized as optical oxygen sensors (e.g., in tumors, wounds, and cells). Spectral features include charge transfer (CT) from the major aromatic donor to the dioxaborine acceptor. A series of naphthyl-phenyl dyes (BF 2 nbm) (1-6) were prepared to test heavy-atom placement effects. The BF 2 nbm dye (1) was substituted with Br on naphthyl (2), phenyl (3), or both rings (4) to tailor the fluorescence/phosphorescence ratio and RTP lifetime-important features for designing O 2 sensing dyes by means of the heavy atom effect. Computational studies identify the naphthyl ring as the major donor. Thus, Br substitution on the naphthyl ring produced greater effects on the optical properties, such as increased RTP intensity and decreased RTP lifetime compared to phenyl substitution. However, for electron-donating piperidyl-phenyl dyes (5), the phenyl aromatic is the major donor. As a result, Br substitution on the naphthyl ring (6) did not alter the optical properties significantly. Experimental data and computational modeling show the importance of Br position. The S 1 and T 1 states are described by two singly occupied MOs (SOMOs). When both of these SOMOs have substantial amplitude on the heavy atom, passage from S 1 to T 1 and emission from T 1 to S 0 are both favored. This shortens the excited-state lifetimes and enhances phosphorescence. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro [eds.

    2000-01-01

    The tandem accelerator established at Japan Atomic Energy Research Institute (JAERI) in 1982 has been one of the most prominent electrostatic accelerators in the world. The accelerator has been serving for many researches planned by not only JAERI staff but also researchers of universities and national institutes. After the completion of the tandem booster in 1993, four times higher beam energy became available. These two facilities, the tandem accelerator and the booster, made great strides in heavy ion physics and a lot of achievements have been accumulated until now. The research departments of JAERI were reformed in 1998, and the accelerators section came under the Department of Materials Science. On this reform of the research system, the symposium 'Heavy Ion Science in Tandem Energy Region' was held in cooperation with nuclear and solid state physicists although there has been no such symposium for many years. The symposium was expected to stimulate novel development in both nuclear and solid state physics, and also interdisciplinary physics between nuclear and solid state physics. The 68 papers are indexed individually. (J.P.N.)

  19. Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials.

    Science.gov (United States)

    Sachdev, Subir; Metlitski, Max A; Punk, Matthias

    2012-07-25

    The critical theory of the onset of antiferromagnetism in metals, with concomitant Fermi surface reconstruction, has recently been shown to be strongly coupled in two spatial dimensions. The onset of unconventional superconductivity near this critical point is reviewed: it involves a subtle interplay between the breakdown of fermionic quasiparticle excitations on the Fermi surface and the strong pairing glue provided by the antiferromagnetic fluctuations. The net result is a logarithm-squared enhancement of the pairing vertex for generic Fermi surfaces, with a universal dimensionless coefficient independent of the strength of interactions, which is expected to lead to superconductivity at the scale of the Fermi energy. We also discuss the possibility that the antiferromagnetic critical point can be replaced by an intermediate 'fractionalized Fermi liquid' phase, in which there is Fermi surface reconstruction but no long-range antiferromagnetic order. We discuss the relevance of this phase to the underdoped cuprates and the heavy fermion materials.

  20. Heavy ion track-structure calculations for radial dose in arbitrary materials

    Science.gov (United States)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Dubey, Rajendra R.

    1995-01-01

    The delta-ray theory of track structure is compared with experimental data for the radial dose from heavy ion irradiation. The effects of electron transmission and the angular dependence of secondary electron ejection are included in the calculations. Several empirical formulas for electron range and energy are compared in a wide variety of materials in order to extend the application of the track-structure theory. The model of Rudd for the secondary electron-spectrum in proton collisions, which is based on a modified classical kinematics binary encounter model at high energies and a molecular promotion model at low energies, is employed. For heavier projectiles, the secondary electron spectrum is found by scaling the effective charge. Radial dose calculations for carbon, water, silicon, and gold are discussed. The theoretical data agreed well with the experimental data.

  1. Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials.

    Science.gov (United States)

    Koukouzas, Nikolaos; Vasilatos, Charalampos; Itskos, Grigorios; Mitsis, Ioannis; Moutsatsou, Angeliki

    2010-01-15

    Polish bituminous (PB) and South African (SA) coal fly ash (FA) samples, derived from pilot-scale circulated fluidized bed (CFB) combustion facilities, were utilized as raw materials for the synthesis of zeolitic products. The two FAs underwent a hydrothermal activation with 1M NaOH solution. Two different FA/NaOH solution/ratios (50, 100g/L) were applied for each sample and several zeolitic materials were formed. The experimental products were characterized by means of X-ray diffraction (XRD) and energy dispersive X-ray coupled-scanning electron microscope (EDX/SEM), while X-ray fluorescence (XRF) was applied for the determination of their chemical composition. The zeolitic products were also evaluated in terms of their cation exchange capacity (CEC), specific surface area (SSA), specific gravity (SG), particle size distribution (PSD), pH and the range of their micro- and macroporosity. Afterwards the hybrid materials were tested for their ability of adsorbing Cr, Pb, Ni, Cu, Cd and Zn from contaminated liquids. Main parameters for the precipitation of the heavy metals, as it was concluded from the experimental results, are the mineralogical composition of the initial fly ashes, as well as the type and the amount of the produced zeolite and specifically the mechanism by which the metals ions are hold on the substrate.

  2. A vision-based material tracking system for heavy plate rolling mills

    Science.gov (United States)

    Tratnig, Mark; Reisinger, Johann; Hlobil, Helmut

    2007-01-01

    A modern heavy plate rolling mill can process more than 20 slabs and plates simultaneously. To avoid material confusions during a compact occupancy and the permanent discharging and re-entering of parts, one must know the identity and position of each part at every moment. One possibility to determine the identity and position of each slab and plate is the application of a comprehensive visual-based tracking system. Compared to a tracking system that calculates the position of a plate based on the diameter and the turns of the transport rolls, a visual system is not corrupted by a position- and material dependent transmission slip. In this paper we therefore present a vision-based material tracking system for the 2-dimensional tracking of glowing material in harsh environment. It covers the production area from the plant's descaler to the pre-stand of the rolling mill and consists of four independent, synchronized overlapping cameras. The paper first presents the conceptual design of the tracking system - and continues then with the camera calibration, the determination of pixel contours, the data segmentation and the fitting & modelling of the objects bodies. In a next step, the work will then show the testing setup. It will be described how the material tracking system was implemented into the control system of the rolling mill and how the delivered tracking data was checked on its correctness. Finally, the paper presents some results. It will be shown that the position of some moving plates was estimated with a precision of approx. 0.5m. The results will be analyzed and it will be explained where the inaccuracies come from and how they eventually can be removed. The paper ends with a conclusion and an outlook on future work.

  3. MODAL ANALYSIS OF HEAVY VEHICLE TRUCK TRANSMISSION GEARBOX HOUSING MADE FROM DIFFERENT MATERIALS

    Directory of Open Access Journals (Sweden)

    ASHWANI KUMAR

    2016-02-01

    Full Text Available Heavy vehicle truck transmission gearbox housing is subjected to load fluctuations, harmonic excitation, gear meshing excitation, gear defects, varying speed and torque conditions. Transmission errors and internal excitations are the root cause of vibration and noise. The main objective of this research work is weight calculation and modal analysis of gearbox housing. For weight calculation four different materials have been selected, apart from weight calculation the material mechanical properties influence on natural frequency and mode shape of transmission gearbox housing was also simulated using modal analysis. Grey cast iron FG260, Grey cast iron HT200, structural steel and Al alloys are the four materials used for the weight calculation process. Zero displacement constraint based boundary condition was applied for simulation. FEA based numerical simulation method was used to find the natural frequency, mode shapes and weight calculation of housing. The FEA simulation results show that the natural frequency of all materials varies (1669-4655 Hz. In weight calculation the weight of Al alloys housing is minimum (21.102 kg.The housing weight of Grey cast iron HT200 and FG260 is same, 54.85 kg. The density of structural steel is high, which increases the weight of housing as 59.80 kg. The modal analysis results show the lateral vibration, axial bending vibration, torsional vibration, and axial bending with torsional vibration. The vibration signature patterns for first twenty modes were studied for four different materials. Solid Edge and Pro-E software have good feature suited for complex geometric modeling. FEA based software Ansys 14.5 is used for modal analysis. The result of this research work has been verified with experimental result available in literature.

  4. Heavy vehicle propulsion system materials program semi-annual progress report for October 1997 through March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1998-06-01

    The purpose of the Heavy Vehicle Propulsion System materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  5. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Directory of Open Access Journals (Sweden)

    Landrou Gnanli

    2017-01-01

    Full Text Available In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  6. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Science.gov (United States)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  7. Heavy Metal Uptake, Translocation, and Bioaccumulation Studies of Triticum aestivum Cultivated in Contaminated Dredged Materials

    Directory of Open Access Journals (Sweden)

    Gregorio Begonia

    2005-08-01

    Full Text Available Phytoremediation is a technology that uses vegetation to remediate contaminants from water, soil, and sediments. Unlike traditional remediation techniques such as soil washing or vitrification, phytoremediation offers a technology that is solar-driven, aesthetically pleasing, and cost effective. Recent studies indicate that winter wheat (Triticum aestivum L. is a potential accumulator for heavy metals such as lead (Pb and cadmium (Cd in hydroponic systems. Based on these findings, a laboratory study was conducted with the primary objective of determining the phytoaccumulation capability of this plant species for heavy metals from contaminated dredged materials (DMs originating from two confined disposal facilities (CDF. The United States Army Corps of Engineers (USACE manages several hundred million cubic meters of DMs each year, and 5 to 10 % of these DMs require special handling because they are contaminated with hazardous substances that can move from the substrates into food webs causing unacceptable risk outside CDFs. Phytoremediation may offer an alternative to decrease this risk. Chemical analyses by USACE personnel identified 17 metals in various DMs, but in this present study, only zinc (Zn and Cd were investigated. Pre-germinated seeds of the test plants were planted under laboratory conditions in pots containing the various DMs and reference soil. Four weeks after planting, plants were harvested and separated into roots and shoots for biomass production and tissue metal concentrations analyses. Results showed that T. aestivum plants have the capacity to tolerate and grow in multiple-metal contaminated DMs with the potential of accumulating various amounts of Zn and Cd. Root and shoot biomass of T. aestivum were not significantly affected by the DMs on which the plants were grown suggesting that this plant species can grow just as well on DMs contaminated by various metals as in the reference soil. No significant differences in the Zn

  8. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials.

    Science.gov (United States)

    Shumaker, Ketia L; Begonia, Gregorio

    2005-08-01

    Phytoremediation is a technology that uses vegetation to remediate contaminants from water, soil, and sediments. Unlike traditional remediation techniques such as soil washing or vitrification, phytoremediation offers a technology that is solar-driven, aesthetically pleasing, and cost effective. Recent studies indicate that winter wheat (Triticum aestivum L.) is a potential accumulator for heavy metals such as lead (Pb) and cadmium (Cd) in hydroponic systems. Based on these findings, a laboratory study was conducted with the primary objective of determining the phytoaccumulation capability of this plant species for heavy metals from contaminated dredged materials (DMs) originating from two confined disposal facilities (CDF). The United States Army Corps of Engineers (USACE) manages several hundred million cubic meters of DMs each year, and 5 to 10 % of these DMs require special handling because they are contaminated with hazardous substances that can move from the substrates into food webs causing unacceptable risk outside CDFs. Phytoremediation may offer an alternative to decrease this risk. Chemical analyses by USACE personnel identified 17 metals in various DMs, but in this present study, only zinc (Zn) and Cd were investigated. Pre-germinated seeds of the test plants were planted under laboratory conditions in pots containing the various DMs and reference soil. Four weeks after planting, plants were harvested and separated into roots and shoots for biomass production and tissue metal concentrations analyses. Results showed that T. aestivum plants have the capacity to tolerate and grow in multiple-metal contaminated DMs with the potential of accumulating various amounts of Zn and Cd. Root and shoot biomass of T. aestivum were not significantly affected by the DMs on which the plants were grown suggesting that this plant species can grow just as well on DMs contaminated by various metals as in the reference soil. No significant differences in the Zn tissue

  9. Investigating the Heavy Metal Adsorption of Mesoporous Silica Materials Prepared by Microwave Synthesis

    Science.gov (United States)

    Zhu, Wenjie; Wang, Jingxuan; Wu, Di; Li, Xitong; Luo, Yongming; Han, Caiyun; Ma, Wenhui; He, Sufang

    2017-05-01

    Mesoporous silica materials (MSMs) of the MCM-41 type were rapidly synthesized by microwave heating using silica fume as silica source and evaluated as adsorbents for the removal of Cu2+, Pb2+, and Cd2+ from aqueous solutions. The effects of microwave heating times on the pore structure of the resulting MSMs were investigated as well as the effects of different acids which were employed to adjust the solution pH during the synthesis. The obtained MCM-41 samples were characterized by nitrogen adsorption-desorption analyses, X-ray powder diffraction, and transmission electron microscopy. The results indicated that microwave heating method can significantly reduce the synthesis time of MCM-41 to 40 min. The MCM-41 prepared using citric acid (c-MCM-41(40)) possessed more ordered hexagonal mesostructure, higher pore volume, and pore diameter. We also explored the ability of c-MCM-41(40) for removing heavy metal ions (Cu2+, Pb2+, and Cd2+) from aqueous solution and evaluated the influence of pH on its adsorption capacity. In addition, the adsorption isotherms were fitted by Langmuir and Freundlich models, and the adsorption kinetics were assessed using pseudo-first-order and pseudo-second-order models. The intraparticle diffusion model was studied to understand the adsorption process and mechanism. The results confirmed that the as-synthesized adsorbent could efficiently remove the heavy metal ions from aqueous solution at pH range of 5-7. The adsorption isotherms obeyed the Langmuir model, and the maximum adsorption capacities of the adsorbent for Cu2+, Pb2+, and Cd2+ were 36.3, 58.5, and 32.3 mg/g, respectively. The kinetic data were well fitted to the pseudo-second-order model, and the results of intraparticle diffusion model showed complex chemical reaction might be involved during adsorption process.

  10. Stormwater filtration of toxic heavy metal ions using lignocellulosic materials selection process, fiberization, chemical modification, and mat formation

    Science.gov (United States)

    James S. Han

    1999-01-01

    Lignocellulosic materials were evaluated for their effectiveness in filtering toxic heavy metals from stormwater. Kenaf, alfalfa, juniper, and aspen fibers were used as models to evaluate the effectiveness and limitations of chemical modification and the extent of fiber degradation. Individual and mixed aqueous solutions of nickel, copper, zinc, and cadmium in various...

  11. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks

    DEFF Research Database (Denmark)

    Belmonte, Louise Josefine; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2016-01-01

    In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid...

  12. Moderate Temperature Dense Phase Hydrogen Storage Materials within the US Department of Energy (DOE H2 Storage Program: Trends toward Future Development

    Directory of Open Access Journals (Sweden)

    Scott McWhorter

    2012-05-01

    Full Text Available Hydrogen has many positive attributes that make it a viable choice to augment the current portfolio of combustion-based fuels, especially when considering reducing pollution and greenhouse gas (GHG emissions. However, conventional methods of storing H2 via high-pressure or liquid H2 do not provide long-term economic solutions for many applications, especially emerging applications such as man-portable or stationary power. Hydrogen storage in materials has the potential to meet the performance and cost demands, however, further developments are needed to address the thermodynamics and kinetics of H2 uptake and release. Therefore, the US Department of Energy (DOE initiated three Centers of Excellence focused on developing H2 storage materials that could meet the stringent performance requirements for on-board vehicular applications. In this review, we have summarized the developments that occurred as a result of the efforts of the Metal Hydride and Chemical Hydrogen Storage Centers of Excellence on materials that bind hydrogen through ionic and covalent linkages and thus could provide moderate temperature, dense phase H2 storage options for a wide range of emerging Proton Exchange Membrane Fuel Cell (PEM FC applications.

  13. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China.

    Science.gov (United States)

    Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong

    2017-03-14

    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10-4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China's mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level.

  14. TiO2/bone composite materials for the separation of heavy metal impurities from waste water solutions

    Science.gov (United States)

    Dakroury, G.; Labib, Sh.; Abou El-Nour, F. H.

    2012-09-01

    Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700-1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.

  15. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    Science.gov (United States)

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The coarsening effect of SA508-3 steel used as heavy forgings material

    Directory of Open Access Journals (Sweden)

    Dingqian Dong

    2015-01-01

    Full Text Available SA508Gr.3 steel is popularly used to produce core unit of nuclear power reactors due to its outstanding ability of anti-neutron irradiation and good fracture toughness. The forging process takes important role in manufacturing to refine the grain size and improve the material properties. But due to their huge size, heavy forgings cannot be cooled down quickly, and the refined grains usually have long time to grow in high temperature conditions. If the forging process is not adequately scheduled or implemented, very large grains up to millimetres in size may be found in this steel and cannot be eliminated in the subsequent heat treatment. To fix the condition which may causes the coarsening of the steel, hot upsetting experiments in the industrial production environment were performed under different working conditions and the corresponding grain sizes were measured and analysed. The observation showed that the grain will abnormally grow if the deformation is less than a critical value. The strain energy takes a critical role in the grain evolution. If dynamic recrystallization consumes the strain energy as much as possible, the normal grains will be obtained. While if not, the stored strain energy will promote abnormal growth of the grains.

  17. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks

    DEFF Research Database (Denmark)

    Belmonte, Louise Josefine; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2016-01-01

    particulate waste materials, were fired and material properties and heavy metal leaching tests were conducted before and after firing. Remediation techniques (washing in distilled water and electrodialytical treatment) applied to the fly ash reduced leaching before firing. The mine tailings and bottom ash......In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid...... waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different...

  18. Cysteine-grafted nonwoven geotextile: a new and efficient material for heavy metals sorption--Part B.

    Science.gov (United States)

    Vandenbossche, M; Vezin, H; Touati, N; Jimenez, M; Casetta, M; Traisnel, M

    2014-10-01

    The development of a new material designed to trap heavy metals from sediments or wastewater, based on a polypropylene non-woven covalently grafted with cysteine, has been reported in a previous paper (Part A). The non-woven was first functionalized with acrylic acid (AA) which is used as spacer, and then cysteine was immobilized on the substrate through covalent coupling in order to obtain the so-called PP-g-AA-cysteine. Some preliminary heavy metals adsorption tests gave interesting results: at 20 °C for 24 h and in a 1000 mg/L heavy metals solution, PP-g-AA-cysteine adsorbs 95 mg Cu/g PP (CuSO4 solution), 104 mg Cu/g PP (Cu(NO3)2 solution), 135 mg Pb/g PP (Pb(NO3)2 solution) and 21 mg Cr/g PP (Cr(NO3)3 solution). In this second part of the work, heavy metals sorption tests were carried out with Cu (II), Pb (II), and Cr (III) separately, in order to determine the sorption capacity of this new sorbent as a function of (i) the heavy metals concentration in the solution, (ii) the contact time with the solution, (iii) the pH and (iv) the ionic strength of the solution containing heavy metals. Moreover, the sorption capacity of PP-g-AA-Cysteine was studied using a polluted solution consisting of a mixture of these different heavy metals. An Electron Paramagnetic Resonance study was finally carried out in order to determine the coordination geometry in the environment of the copper trapped by the PP-g-AA-cysteine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach

    Directory of Open Access Journals (Sweden)

    Salmah B. Karman

    2015-01-01

    Full Text Available Heavy metal wastewater poses a threat to human life and causes significant environmental problems. Bioremediation provides a sustainable waste management technique that uses organisms to remove heavy metals from contaminated water through a variety of different processes. Biosorption involves the use of biomass, such as plant extracts and microorganisms (bacteria, fungi, algae, yeast, and represents a low-cost and environmentally friendly method of bioremediation and resource management. Biosorption-based biosynthesis is proposed as a means of removing heavy metals from wastewaters and soils as it aids the development of heavy metal nanoparticles that may have an application within the technology industry. Phytomining provides a further green method of managing the metal content of wastewater. These approaches represent a viable means of removing toxic chemicals from the effluent produced during the process of manufacturing, and the bioremediation process, furthermore, has the potential to save metal resources from depletion. Biomimetic resource management comprises bioremediation, biosorption, biosynthesis, phytomining, and further methods that provide innovative ways of interpreting waste and pollutants as raw materials for research and industry, inspired by materials, structures, and processes in living nature.

  20. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks.

    Science.gov (United States)

    Belmonte, Louise Josefine; Ottosen, Lisbeth M; Kirkelund, Gunvor Marie; Jensen, Pernille Erland; Vestbø, Andreas Peter

    2016-11-10

    In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different particulate waste materials, were fired and material properties and heavy metal leaching tests were conducted before and after firing. Remediation techniques (washing in distilled water and electrodialytical treatment) applied to the fly ash reduced leaching before firing. The mine tailings and bottom ash brick discs obtained satisfactory densities (1669-2007 kg/m3) and open porosities (27.9-39.9%). In contrast, the fly ash brick discs had low densities (1313-1578 kg/m3) and high open porosities (42.1-51. %). However, leaching tests on crushed brick discs revealed that heavy metals generally became more available after firing for all the investigated materials and that further optimisation is therefore necessary prior to incorporation in bricks.

  1. Adsorption materials for removal of heavy metals and petroleum hydrocarbons from contaminated leachates

    Energy Technology Data Exchange (ETDEWEB)

    Kalmykova, Y.; Steenari, B.M. [Chalmers Univ. of Technology, Environmental Inorganic Chemistry, Goeteborg (Sweden); Stromvall, A.M. [Chalmers Univ. of Technology, Water Environment Transport, Department of Civil and Environmental Engineering, SE Goteborg (Sweden)

    2005-07-01

    Adsorption function and capacities, for heavy metals and selected hydrocarbons, of several low-cost and alternative bio-sorption materials have been investigated. The materials studied were residual products from the forest industry (saw dust, pine bark and fiber ash) and natural materials (peat moss, shrimp shells and seaweed). Batch tests and column experiments were carried out with both artificial solutions and highly contaminated leachate from an industrial landfill. Fiber ashes and peat showed the highest sorption capacity for metals among the materials studied in comparative batch tests. In these tests, artificial single metal solutions in concentration ranges of 1?10 mg/l, and liquid to solid ratios of 20 and 200 were used. The fiber ash removed lead by 99%, copper by 100%, zinc by 99% and chromium by 82%. Peat removed lead by 98%, copper by 94%, zinc by 73% and chromium by 88%. Metal removal from the landfill leachates was also studied in batch tests, where lead was reduced by ash and peat by 99% and 96% respectively, copper by 100% and 92%, zinc by 95% and 33%, cadmium by 88% and 40%. A net release of Al, Cr, Ca, Ba and K from ash was observed, whereas the peat removed chromium by 66% and aluminium by 85%. The lower performance of the adsorbents for complex solutions as real leachates, suggests competitive sorption of ions although the mechanisms of sorption are not yet fully understood. In initial batch studies for organic pollutants, the adsorption for diesel oil by ash and peat was 98% and 97% respectively, 97% and 92 % for the n-alkane C16, and 91% for n-C{sub 12} for both materials. Bark adsorbed diesel oil by 83%, and the lower value could be explained by the larger particle size of the bark. Several column tests with peat, a peat-ash mixture and bark have been carried out to investigate the adsorbents' behavior and sorption capacity under flowing conditions. Both simulated contaminated groundwater and real landfill leachates were used as

  2. Solidification/stabilization of ASR fly ash using Thiomer material: Optimization of compressive strength and heavy metals leaching.

    Science.gov (United States)

    Baek, Jin Woong; Choi, Angelo Earvin Sy; Park, Hung Suck

    2017-12-01

    Optimization studies of a novel and eco-friendly construction material, Thiomer, was investigated in the solidification/stabilization of automobile shredded residue (ASR) fly ash. A D-optimal mixture design was used to evaluate and optimize maximum compressive strength and heavy metals leaching by varying Thiomer (20-40wt%), ASR fly ash (30-50wt%) and sand (20-40wt%). The analysis of variance was utilized to determine the level of significance of each process parameters and interactions. The microstructure of the solidified materials was taken from a field emission-scanning electron microscopy and energy dispersive X-ray spectroscopy that confirmed successful Thiomer solidified ASR fly ash due to reduced pores and gaps in comparison with an untreated ASR fly ash. The X-ray diffraction detected the enclosed materials on the ASR fly ash primarily contained sulfur associated crystalline complexes. Results indicated the optimal conditions of 30wt% Thiomer, 30wt% ASR fly ash and 40wt% sand reached a compressive strength of 54.9MPa. For the optimum results in heavy metals leaching, 0.0078mg/LPb, 0.0260mg/L Cr, 0.0007mg/LCd, 0.0020mg/L Cu, 0.1027mg/L Fe, 0.0046mg/L Ni and 0.0920mg/L Zn were leached out, being environmentally safe due to being substantially lower than the Korean standard leaching requirements. The results also showed that Thiomer has superiority over the commonly used Portland cement asa binding material which confirmed its potential usage as an innovative approach to simultaneously synthesize durable concrete and satisfactorily pass strict environmental regulations by heavy metals leaching. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Physical processes taking place in dense plasma focus devices at the interaction of hot plasma and fast ion streams with materials under test

    Science.gov (United States)

    Gribkov, V. A.

    2015-06-01

    The dense plasma focus (DPF) device represents a source of powerful streams of penetrating radiations (hot plasma, fast electron and ion beams, x-rays and neutrons) of ns-scale pulse durations. Power flux densities of the radiation types may reach in certain cases the values up to 1013 W cm  -  2. They are widely used at present time in more than 30 labs in the world in the field of radiation material science. Areas of their implementations are testing of the materials perspective for use in modern fusion reactors (FR) of both types, modification of surface layers with an aim of improvements their properties, production of some nanostructures on their surface, and so on. To use a DPF correctly in these applications it is important to understand the mechanisms of generation of the above-mentioned radiations, their dynamics inside and outside of the pinch and processes of interaction of these streams with targets. In this paper, the most important issues on the above matter we discuss in relation to the cumulative hot plasma stream and the beam of fast ions with illustration of experimental results obtained at four DPF devices ranged in the limits of bank energies from 1 kJ to 1 MJ. Among them mechanisms of a jet formation, a current abruption phenomenon, a super-Alfven ion beam propagation inside and outside of DPF plasma, generation of secondary plasma and formation of shock waves in plasma and inside a solid-state target, etc. Nanosecond time-resolved techniques (electric probes, laser interferometry, frame self-luminescent imaging, x-ray/neutron probes, etc) give an opportunity to investigate the above-mentioned events and to observe the process of interaction of the radiation types with targets. After irradiation, we analyzed the specimens by contemporary instrumentation: optical and scanning electron microscopy, local x-ray spectral and structure analysis, atomic force microscopy, the portable x-ray diffractometer that combines x-ray single

  4. Subsecond annealing of advanced materials annealing by lasers, flash lamps and swift heavy ions

    CERN Document Server

    Skorupa, Wolfgang

    2014-01-01

    This book examines thermal processing of elemental semiconductors and materials including nanostructures with novel optoelectronic, magnetic, and superconducting properties. Covers compound semiconductors, dielectric composites and organic materials.

  5. Removal of radioactive materials and heavy metals from water using magnetic resin

    Science.gov (United States)

    Kochen, Robert L.; Navratil, James D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  6. Production of a New Emulsifier Material for the Formation Heavy Hydrocarbon/Water Emulsion

    Directory of Open Access Journals (Sweden)

    Afshin Farahbakhsh

    2011-04-01

    Full Text Available Emulsifiers are a unique class of compounds that have proved to have a variety of potential applications in formation of hydrocarbon in water emulsion, in enhancement of oil recovery and in the reduction of heavy oil viscosity. In this paper, a bio emulsifier was synthesized by a strain of Bacillus licheniformis and was separated by an autoclave and centrifugal process; the purification of bio emulsifier and the increase quality of product was done by adding sulfuric acid (H2SO4 (98% to the solution and centrifuging this compound again. This bio emulsifier has the property of emulsification to a wide range of heavy hydrocarbon to form a stable hydrocarbon-water emulsion. This bio emulsifier could reduce Iranian Nuroze high viscosity oil of about 10000 cP down to 250 cP. This means about 97% decreases in the viscosity. The emulsion stable this condition for 48 hr and the viscosity slowly increases to 4000cp until 192 hr. The stability of the oil in water emulsion during 48hr allows the heavy oil to be transported practically over lengthy distances or remain stable for long periods of time prior to utilization.

  7. Deterioration Models for Cement Bound Materials in Structural Design and Evaluation of Heavy Duty Pavements

    DEFF Research Database (Denmark)

    Skar, Asmus; Holst, Mogens Løvendorf

    Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design of such ......Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design...... of such pavements are today based on Mechanistic-Empirical (M-E) methods. The M-E method is appropriate for many situations, in other situations it may lead to overdesign, or maybe worse, underdesign. The method has limited capabilities and cannot account for signicant factors affecting the pavement response...... number of model parameters. In order to move a step towards more generalised structural design methods for analysis of heavy duty pavements, this study aims at developing a mechanistic approach based on constitutive models. A simple framework for engineering application is sought; creating a rational...

  8. Immobilization of heavy metals arising sludge galvanic, in glass ceramic material; Imobilizacao de metais pesados oriundos de lodo galvanico em material vitreo

    Energy Technology Data Exchange (ETDEWEB)

    Felisberto, R., E-mail: regina.felisberto@poa.ifrs.edu.br [Instituto Federal do Rio Grande do Sul (IFRS), Porto Alegre, RS (Brazil); Santos, M.C.; Basegio, T.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (PPGEM/UFRGS), Porto Alegre, RS (Brazil)

    2016-07-01

    The use of galvanic sludge in the glass-ceramic formulation for immobilizing environmentally harmful materials is consolidated in more developed countries as raw material in the formulation of new materials. In this work, we have used galvanic sludge provided by a metallurgical company located in Vale dos Sinos, RS. The sludge was dried at 105°C and mixed with soda-lime glass in proportions of 1, 5, 10 and 20%, relative to the glass mass. Its composition was determined by FRX, and evaluated for leaching (NBR 10005) and solubilization (NBR 10006). The specimens (CPs) were burned at temperatures 750, 800 and 850°C, also submitted to the tests. The sludge, Class I - dangerous, presented Se content greater than provisions of NBR 10004. It was possible to immobilize the heavy metals at a temperature of 850°C for specimens of the F1 formulation, having been thus classified as Class II B Inert Residue. (author)

  9. Mathematical modeling of the emission of heavy metals into water bodies from building materials derived from production waste

    Directory of Open Access Journals (Sweden)

    Pugin Konstantin Georgievich

    2016-01-01

    Full Text Available At the present time industrial waste is considered to be an alternative to primary natural resources when producing construction materials and products. The use of industrial waste in the construction branch allows reducing ecological load on the environment and population as a result of reducing the amount of unrecyclable waste and reducing the use of primary natural resources. Though when involving waste products as raw material in the preparation of building materials there occur environmental risks of anthropogenic impact increase on the environment. These risks are related to possible emission of heavy metals from construction materials in use. The article describes a tool which allows predicting this issue, depending on the acidity of the medium, the residence time of the material in the environment. The experimental data obtained in determining the migration activity of metals from cement concretes to aqueous solutions served as the basis for the mathematical model. The proposed model allows us to make a prediction of anthropogenic impact on the environment and commensurate this impact with the possibility of assimilation of the environment area where the building materials are applied. This will allow conducting an effective assessment of the created and applied technologies of waste disposal, taking into account the operating conditions of the materials produced.

  10. Cysteine-grafted nonwoven geotextile: a new and efficient material for heavy metals sorption--part A.

    Science.gov (United States)

    Vandenbossche, M; Casetta, M; Jimenez, M; Bellayer, S; Traisnel, M

    2014-01-01

    Cysteine is an interesting biomolecule in the heavy metals trapping field, thanks to its amino, thiol and carboxylic groups. This amino acid is indeed present in some natural chelating agents: glutathione, phytochelatins and metallothioneins. However, cysteine has never been used in remediation processes. When immobilized on a polypropylene nonwoven (PP) geotextile, an innovative and eco-friendly material is obtained, with potential use in drainage and filtration of wastewaters and sediments. PP was first functionalized with acrylic acid using a low pressure cold plasma process to bring reactive carboxylic functions onto the surface (PP-g-AA). Cysteine was then covalently grafted on this modified PP. The cysteine grafting on PP-g-AA was optimized using response surface methodology, which allowed concluding that the best conditions of immersion without heating consist in: a solution containing 0.229 mol/L of cysteine for 28 h. The materials were characterized by Scanning Electron Microscopy, InfraRed Spectroscopy and X-ray Photoelectron Spectroscopy: evidence of covalent cysteine grafting was given. Preliminary sorption tests at 20 °C and pH = 4.5 with artificially polluted solutions give promising results for divalent heavy metal ions: 95 mg Cu (II) (CuSO4 solution), 104 mg Cu (II) and 135 mg Pb(II) (with NO3(-) counter-ion) per gram of PP are trapped. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Heavy Duty and Industrial Alternative Fuel Applications. Forklift and Material Handling. Alternative Fuels Training.

    Science.gov (United States)

    Eckert, Doug; Casto, Lori

    This training manual is designed to lay the foundation for trainers and technicians by showing the steps to achieve and maintain good indoor air quality through use of cleaner-burning forklifts and materials handlers. The first part of the manual consists of nine units that provide informational material and diagrams on these topics: comparison of…

  12. Investigating the Heavy Metal Adsorption of Mesoporous Silica Materials Prepared by Microwave Synthesis

    National Research Council Canada - National Science Library

    Wenjie Zhu; Jingxuan Wang; Di Wu; Xitong Li; Yongming Luo; Caiyun Han; Wenhui Ma; Sufang He

    2017-01-01

    Mesoporous silica materials (MSMs) of the MCM-41 type were rapidly synthesized by microwave heating using silica fume as silica source and evaluated as adsorbents for the removal of Cu2+, Pb2+, and Cd2...

  13. Warm Dense Matter: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities

  14. A functionalized phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild process for heavy metal uptake

    Energy Technology Data Exchange (ETDEWEB)

    Daikopoulos, Chris [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, Athanasios B. [Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, Athens 15310 (Greece); Georgiou, Yiannis [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Deligiannakis, Yiannis, E-mail: ideligia@cc.uoi.gr [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Zboril, Radek [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University, Olomouc 77146 (Czech Republic); Karakassides, Michael A. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece)

    2014-04-01

    Highlights: • Novel phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild xerogel process. • Surface Complexation Modeling reveals that PSLM bears 2 types of functional groups able to bind heavy metal. • Maximum metal uptake capacities were found 2.72 mmol g{sup −1} for Cu{sup 2+}, 1.67 mmol g{sup −1} for Pb{sup 2+} and 1.00 mmol g{sup −1} for Cd{sup 2+} at pH 7. • EPR spectroscopy reveals local coordination environment for Cu{sup 2+} ions. - Abstract: A phosphonate-rich organosilica layered hybrid material (PSLM) made of 3-(trihydroxysilyl)propyl methylphosphonate, monosodium salt, as the single silica source, has been obtained from its aqueous solution through a xerogel process and mild thermal aging. The method is simple, affording bulk quantities of powdered PSLM in a single-step. The hybrid is stable in water and possesses a high content of phosphonate groups fixed on the solid matrix. In addition, PSLM shows good thermal stability, which exceeds 300 °C in air. The material was characterized using SEM, TEM, XRD, FT-IR and TGA techniques. Potentiometric titrations show that PSLM bears high-surface density of phosphonate groups (3 mmol g{sup −1}). As a result, the material displays high metal uptake capacity for heavy metal ions such as Cu{sup 2+} (2.72 mmol g{sup −1}), Pb{sup 2+} (1.67 mmol g{sup −1}) and Cd{sup 2+} (1.00 mmol g{sup −1}) at neutral pH values e.g. the pH of natural waters. Detailed theoretical modeling using a Surface Complexation Model combined with Electron Paramagnetic Resonance (EPR) spectroscopy shows that the surface distribution of surface bound Cu{sup 2+} ions is rather homogeneous e.g. copper-binding phosphonate sites are arranged in average distances 5–8 Å.

  15. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    Science.gov (United States)

    Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-05-01

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .

  16. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hui; Chen, Ting [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Liu, Xiuyu [Shandong Academy of Sciences, Jinan 250114 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-10

    Highlights: • Three-dimensional graphene-MWCNTs nanocomposites were prepared. • Graphene-MWCNTs based electrochemical sensor was used to detect heavy metal ions for the first time. • The proposed sensor was certified capable for real sample with satisfactory results. - Abstract: A green and facile method was developed to prepare a novel hybrid nanocomposite that consisted of one-dimensional multi-walled carbon nanotubes (MWCNTs) and two-dimensional graphene oxide (GO) sheets. The as-prepared three-dimensional GO–MWCNTs hybrid nanocomposites exhibit excellent water-solubility owing to the high hydrophilicity of GO components; meanwhile, a certain amount of MWCNTs loaded on the surface of GO sheets through π–π interaction seem to be “dissolved” in water. Moreover, the graphene(G)-MWCNTs nanocomposites with excellent conductivity were obtained conveniently by the direct electrochemical reduction of GO–MWCNTs nanocomposites. Seeing that there is a good synergistic effect between MWCNTs and graphene components in enhancing preconcentration efficiency of metal ions and accelerating electron transfer rate at G-MWCNTs/electrolyte interface, the G-MWCNTs nanocomposites possess fast, simultaneous and sensitive detection performance for trace amounts of heavy metal ions. The electrochemical results demonstrate that the G-MWCNTs nanocomposites can act as a kind of practical sensing material to simultaneously determine Pb{sup 2+} and Cd{sup 2+} ions in terms of anodic stripping voltammetry (ASV). The linear calibration plots for Pb{sup 2+} and Cd{sup 2+} ranged from 0.5 μg L{sup −1} to 30 μg L{sup −1}. The detection limits were determined to be 0.2 μg L{sup −1} (S/N = 3) for Pb{sup 2+} and 0.1 μg L{sup −1} (S/N = 3) for Cd{sup 2+} in the case of a deposition time of 180 s. It is worth mentioning that the G-MWCNTs modified electrodes were successfully applied to the simultaneous detection of Cd{sup 2+} and Pb{sup 2+} ions in real electroplating

  17. Feasibility of using low-cost, byproduct materials as sorbents to remove heavy metals from aqueous solutions.

    Science.gov (United States)

    Doumer, Marta E; Vidal, Miquel; Mangrich, Antonio S; Rigol, Anna

    2018-02-22

    This work investigates the sorption of heavy metals by low-cost, byproducts such as charcoal fines (CF), waste green sand, and rice husk ash, in order to examine the feasibility of their use as alternative filter materials for metal-contaminated waters. The sorption of Cd, Cu, Pb, and Zn was investigated in batch experiments and sorption isotherms were constructed. The three byproducts showed high metal removal efficiencies (>95%, regardless of the metal concentration tested). The highest metal sorption distribution coefficients were obtained for CF, with maximum values within the 10 5 -10 6  L kg -1 range for all the target metals. The sorption isotherms were satisfactorily fitted using the Freundlich equation and a linear model, the latter only being valid for initial metal concentrations lower than 0.4 mmol L -1 . Sorption reversibility was very low, with desorption yields lower than 2% and desorption distribution coefficients often higher than 10 6  L kg -1 . The values of the sorption and desorption parameters indicated that the use of these materials, especially CF, could constitute a low-cost alternative for the remediation of contaminated waters.

  18. The Development of a Pin-on-Twin Scuffing Test to Evaluate Materials for Heavy Duty Diesel Fuel Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Truhan, John J. [Caterpillar Inc.; Ott, Ronald D [ORNL

    2007-01-01

    In order to meet stricter emissions requirements, advanced heavy-duty diesel fuel injection systems will be required to operate at higher pressures and temperatures and in fuels that have poorer lubricity. Scuffing, as a mode of failure, severely limits injector life, and new materials and processes are required to resist scuffing in these more stringent operating conditions. Consequently, there is a need to test the ability of candidate fuel system materials to resist scuffing in fuel-lubricated environments. This paper describes a pin-on-twin reciprocating wear test in which a cylindrical specimen slides, under load, across two fixed, parallel cylindrical specimens that are perpendicular to the axis of the upper sliding specimen. Cylinders of annealed AISI 52100 were tested dry and lubricated by Jet A fuel and on-highway no. 2 diesel fuel. The friction force was found to give a reliable real-time determination of the onset of scuffing as verified by the morphology of the wear scar. The scar width and surface roughness profiles either did not reliably detect the onset or were difficult to carry out with this geometry.

  19. Comparison of the time behavior in the separation of light and heavy materials in X-ray backscattered method as a diagnostic tool in inspection

    Energy Technology Data Exchange (ETDEWEB)

    Faezeh, Rahmani, E-mail: FRahmani@kntu.ac.ir [Department of Physics, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Sepideh Sadat, Azimi [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Esmaiel, Bayat; Vahid, Dost Mohammadi [Nuclear Science and Technology Research Institute (NSTR), Tehran (Iran, Islamic Republic of)

    2016-03-11

    X-ray backscattered method based on Compton backscattering is used in the inspection field. In contrast to transmission method, source and detectors are positioned on one side of the target, so in the situation that transmission inspection is difficult, X-ray backscattered method can be provided suitable data in the inspection field. Also, detection of hidden explosives and narcotic materials are very difficult or impossible in transmission methods. High intensity backscattered beam from light materials (low-Z), such as explosives and narcotics, in comparison to the heavy materials (high-Z), made this method as the strong technique in inspection. X-ray and gamma photons scattered by the light material (such as PE and PTFE) as well as heavy material (such as Fe and Cu) were studied using MCNPX2.6 Monte Carlo code. The results showed that rise time of pulse from light materials are slower than that of from heavy materials due to multi scattering of low energy photons in the light ones, so time expansion would occur in signals from light elements. If measurement is possible, the difference in time behavior can be used as a novel method in complementary diagnostic tool beside the use of pulse height in X-ray backscattered method.

  20. Geophagic clay materials from Nigeria: a potential source of heavy metals and human health implications in mostly women and children who practice it.

    Science.gov (United States)

    Lar, U A; Agene, J I; Umar, A I

    2015-04-01

    Geophagy is a common practice among certain cultural groups especially women in some rural communities in Nigeria. The safety of eating such clays in terms of their heavy metal composition has not been ascertained, neither is the link between them and disease conditions established in geophagists. The analysis of field survey data reveals that the majority (about 90 %) of the women did not go beyond secondary school education. The geology of an area has a direct influence on the chemical composition of the soils. Therefore, this research was carried out to determine the mineralogical and the heavy metal content of some geophagic clay materials from Nigeria. All the geophagic clay materials are hydrated silicates of either Al, (Na and Ca), (Al and Mg), or/and (Mg and Fe). The concentration levels of Na, Al, Ca, Fe, Mg, Cu, and Zn are tolerable and apparently could serve as a veritable source of mineral nutrients deficient in the human body. An assessment of the level of contamination of heavy metals on the basis of the index of geo-accumulation (I(geo)) shows that Cr, Cu, Zn, Co, and Ni (all with I(geo) 5), and are moderately to strongly contaminated by Pb and Sb (I (geo) = 2-3). In terms of health risk assessment, the presence of heavy metals such as As, Cd, Pb, Se, and Sb with a health risk index (HRI) >1, renders the geophagic clays unsafe for human consumption. Similarly, Al, Fe, and Na are in excess in the clay (HRI ⋙ 1) posing serious human health risks. Thus, the ingestion of geophagic clay materials by pregnant women and children when it contains heavy metals like Pb, As, Cd, Se, and Sb poses the risk of some medical disorders and should therefore be considered a public health problem. Since geophagic practice will persist despite civilization, we advocate finding ways of reducing heavy metal pollutants in geophagic clays through suitable remediation technology.

  1. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  2. Is dense codeswitching complex?

    NARCIS (Netherlands)

    Dorleijn, M.

    2016-01-01

    In this paper the question is raised to what extent dense code switching can be considered complex. Psycholinguistic experiments indicate that code switching involves cognitive costs, both in production and comprehension, a conclusion that could indicate that code switching is indeed complex. In

  3. Comparison of space-time evolutions of hot, dense matter in $\\sqrt{s_{NN}}$ =17 and 130 GeV relativistic heavy ion collisions based on a hydrodynamical model

    CERN Document Server

    Morita, K; Nonaka, C; Hirano, T; 10.1103/PhysRevC.66.054904

    2002-01-01

    Based on a hydrodynamical model, we compare 130 GeV/nucleon Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and 17 GeV /nucleon Pb+Pb collisions at the Super Proton Synchrotron (SPS). The model well reproduces the single-particle distributions of both the RHIC and SPS. The numerical solution indicates that a huge amount of collision energy in the RHIC is mainly used to produce a large extent of hot fluid rather than to make a high temperature matter; the longitudinal extent of the hot fluid in the RHIC is much larger than that of the SPS and the initial energy density of the fluid is only 5% higher than the one in the SPS. The solution well describes the HBT radii at the SPS energy but shows some deviations from the ones at the RHIC. (41 refs).

  4. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  5. Generation of warm dense matter and strongly coupled plasmas using the High Radiation on Materials facility at the CERN Super Proton Synchrotron

    CERN Document Server

    Tahir, N A; Brugger, M; Assmann, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Udrea, S; Hoffmann, D H H; Fortov, V E; Deutsch, C

    2009-01-01

    A dedicated facility named High Radiation on Materials (HiRadMat) is being constructed at CERN to study the interaction of the 450 GeV protons generated by the Super Proton Synchrotron (SPS) with fixed solid targets of different materials. The main purpose of these future experiments is to study the generation and propagation of thermal shock waves in the target in order to assess the damage caused to the equipment, including collimators and absorbers, in case of an accident involving an uncontrolled release of the entire beam at a given point. Detailed numerical simulations of the beam-target interaction of several cases of interest have been carried out. In this paper we present simulations of the thermodynamic and the hydrodynamic response of a solid tungsten cylindrical target that is facially irradiated with the SPS beam with nominal parameters. These calculations have been carried out in two steps. First, the energy loss of the protons is calculated in the solid target using the FLUKA code (Fasso et al....

  6. Relaxation phenomena in dense glassy polymer membranes

    NARCIS (Netherlands)

    Bouma, R.H.B.; Bouma, Richard Hendrik Bouke

    1995-01-01

    Dense polymeric films can be used as permeation-selective barriers which change the composition of a fluid by differences in solubility and/or diffusivity of fluid components in the membrane material. In general glassy polymers show rather high selectivities, but usually in combination with low

  7. Dense Axion Stars.

    Science.gov (United States)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  8. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  9. Investigation of Thermal Processes in Two-Layer Materials Exposed to High-Energy Heavy Ions in the Framework of a Thermal Peak Model with Constant Thermal Parameters

    CERN Document Server

    Amirkhanov, I V; Muzafarov, D Z; Puzynin, I V; Puzynina, T P; Sarker, N R; Sarhadov, I; Sharipov, Z A

    2005-01-01

    A system of equations for temperatures of electronic gas and lattice around and along a trajectory of a 710-MeV heavy ion of bismuth $^{209}$Bi in a two-layer material Ni(2 $\\mu $m)/W at constant thermal parameters is solved numerically in an axial-symmetric cylindrical system of coordinates. On the basis of the obtained dependences of lattice temperature on radius around the ion trajectory and depth, one can make a conclusion that the ionization energy losses of bismuth ion in the target material are sufficient for melting. The sizes of regions with maximum radius and depth in the target material, where the phase transformations can take place, are estimated.

  10. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools.

    Science.gov (United States)

    He, Jinsong; Chen, J Paul

    2014-05-01

    Heavy metals contamination has become a global issue of concern due to their higher toxicities, nature of non-biodegradability, high capabilities in bioaccumulation in human body and food chain, and carcinogenicities to humans. A series of researches demonstrate that biosorption is a promising technology for removal of heavy metals from aqueous solutions. Algae serve as good biosorbents due to their abundance in seawater and fresh water, cost-effectiveness, reusability and high metal sorption capacities. This article provides a comprehensive review of recent findings on performances, applications and chemistry of algae (e.g., brown, green and red algae, modified algae and the derivatives) for sequestration of heavy metals. Biosorption kinetics and equilibrium models are reviewed. The mechanisms for biosorption are presented. Biosorption is a complicated process involving ion-exchange, complexation and coordination. Finally the theoretical simulation tools for biosorption equilibrium and kinetics are presented so that the readers can use them for further studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. In situ synthesis and properties of reduced graphene oxide/Bi nanocomposites: as an electroactive material for analysis of heavy metals.

    Science.gov (United States)

    Sahoo, P K; Panigrahy, Bharati; Sahoo, S; Satpati, A K; Li, Dan; Bahadur, D

    2013-05-15

    An in situ modified Hummers method (without the use of any surfactants) has been used for the deposition of bismuth (Bi) nanoparticles onto the surface of reduced graphene oxide (RGO) sheets. The as-synthesized nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), thermogravimetry (TG) and differential scanning calorimetry (DSC). The morphology of the RGO/Bi nanocomposites provides a better choice as an electrode material for detection of heavy metal ions due to its better functional properties over the Bi film electrode. Trace analysis of heavy metal ions like Cd(+2), Pb(+2), Cu(+2) and Zn(+2) in water is carried out by stripping voltammetric analysis using RGO/Bi nanocomposite as an electrode material. The sensitivity and detection limit of the electrode were quantitatively estimated from the analysis. The three sigma detection limits at different deposition potential for Cd(2+), Pb(2+), Zn(2+) and Cu(2+) were obtained as 2.8, 0.55, 17 and 26μgL(-1), respectively. Copper detection using Bi-film electrode was a major challenge, which has been resolved using the RGO/Bi nanocomposite electrode. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials; Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Markus

    2008-02-22

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  13. Dense MCA Sign

    Directory of Open Access Journals (Sweden)

    Richard J Chen

    2017-07-01

    Full Text Available History of present illness: A 77-year-old female presented to the emergency department after being found down at home, last seen normal 7 ½ hours prior to arrival. Patient had a history of hypertension, congestive heart failure, atrial fibrillation and breast cancer status post chemotherapy/radiation and lumpectomy. Physical exam showed right gaze preference, left facial droop and tongue deviation and flaccid left hemiplegia. Significant findings: A non-contrast computed tomography (CT scan showed a hyperdensity along the right middle cerebral artery (MCA consistent with acute thrombus. The red arrow highlights the hyperdensity in the annotated image. Discussion: The dense MCA sign can serve as an important tool in the diagnosis of acute stroke. It typically appears before other signs of infarct are apparent on CT imaging, and identifies an intracranial large artery occlusion and corresponding infarct, in the correct clinical setting.1 Calcifications in the same area of the brain could be mistaken for an MCA sign, but this sign carries a high specificity (95% and lower sensitivity (52% for arterial obstruction in ischemic stroke.2 Early identification allows for a wider array of treatment options for a patient with an ischemic stroke, including intra-venous or intra-arterial thrombolysis and mechanical thrombectomy. This patient was subsequently taken for mechanical thrombectomy. Mechanical thrombectomy was chosen for this patient because the resources were available, and recent clinical trials have shown that newer types of mechanical thrombectomy have a positive functional outcome in patients with an ischemic stroke from an intracranial large artery occlusion, as compared to intravenous tissue plasminogen activator (tPa alone.3,4,5,6 In facilities lacking the capability for mechanical thrombectomy, treatment considerations include rapid transfer to a facility with capability, or proceeding with intravenous tPa. After intervention, this

  14. Charmonium propagation through a dense medium

    Directory of Open Access Journals (Sweden)

    Kopeliovich B.Z.

    2015-01-01

    Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.

  15. Changes in dissolved organic material determine exposure of stream benthic communities to UV-B radiation and heavy metals: Implications for climate change

    Science.gov (United States)

    Clements, W.H.; Brooks, M.L.; Kashian, D.R.; Zuellig, R.E.

    2008-01-01

    Changes in regional climate in the Rocky Mountains over the next 100 years are expected to have significant effects on biogeochemical cycles and hydrological processes. In particular, decreased discharge and lower stream depth during summer when ultraviolet radiation (UVR) is the highest combined with greater photo-oxidation of dissolved organic materials (DOM) will significantly increase exposure of benthic communities to UVR. Communities in many Rocky Mountain streams are simultaneously exposed to elevated metals from abandoned mines, the toxicity and bioavailability of which are also determined by DOM. We integrated field surveys of 19 streams (21 sites) along a gradient of metal contamination with microcosm and field experiments conducted in Colorado, USA, and New Zealand to investigate the influence of DOM on bioavailability of heavy metals and exposure of benthic communities to UVR. Spatial and seasonal variation in DOM were closely related to stream discharge and significantly influenced heavy metal uptake in benthic organisms. Qualitative and quantitative changes in DOM resulting from exposure to sunlight increased UV-B (290-320nm) penetration and toxicity of heavy metals. Results of microcosm experiments showed that benthic communities from a metal-polluted stream were tolerant of metals, but were more sensitive to UV-B than communities from a reference stream. We speculate that the greater sensitivity of these communities to UV-B resulted from costs associated with metal tolerance. Exclusion of UVR from 12 separate Colorado streams and from outdoor stream microcosms in New Zealand increased the abundance of benthic organisms (mayflies, stoneflies, and caddisflies) by 18% and 54%, respectively. Our findings demonstrate the importance of considering changes in regional climate and UV-B exposure when assessing the effects of local anthropogenic stressors. ?? Journal compilation ?? 2008 Blackwell Publishing.

  16. Unified approach to dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung-Yoon [CSSM, University of Adelaide, Adelaide 5005 (Australia); Lee, Hee-Jung [Departament de Fisica Teorica and Institut de Fisica Corpuscular Universitat de Valencia and Consejo Superior de Investigaciones Cientificas, E-46100 Burjassot (Valencia) (Spain); Vento, Vicente [Departament de Fisica Teorica and Institut de Fisica Corpuscular Universitat de Valencia and Consejo Superior de Investigaciones Cientificas, E-46100 Burjassot (Valencia) (Spain); Kim, Joon-Il [Department of Physics, Seoul National University, Seoul 151-742 (Korea, Republic of); Min, Dong-Pil [Department of Physics, Seoul National University, Seoul 151-742 (Korea, Republic of); Rho, Mannque [Department of Physics, Hanyang University, Seoul 133-791, Korea, and Service de Physique Theorique, CE Saclay, 91191 Gif-sur-Yvette (France)

    2005-04-15

    We apply the Skyrme model to dense hadronic matter, which provides a unified approach to high density, valid in the large N {sub c} limit. In our picture, dense hadronic matter is described by the classical soliton configuration with minimum energy for the given baryon number density. By incorporating the meson fluctuations on such ground state we obtain an effective Lagrangian for meson dynamics in a dense medium. Our starting point has been the Skyrme model defined in terms of pions, thereafter we have extended and improved the model by incorporating other degrees of freedom such as dilaton, kaons and vector mesons.

  17. The chemistry of suspended particulate material in a highly contaminated embayment of Port Jackson (Australia) under quiescent, high-wind and heavy-rainfall conditions

    Science.gov (United States)

    Birch, Gavin; O'Hea, Laura

    2007-11-01

    This study investigated physico-chemical characteristics of the water column and chemistry of suspended particulate material (SPM) under quiescent, high-wind and high-wind/heavy-rainfall conditions in Homebush Bay, a highly contaminated embayment of Port Jackson (Australia) to distinguish source and possible adverse effects to benthic and pelagic animals. Mean concentrations in surficial sediment were chemistry indicated these metals had multiple sources, i.e. the estuary, stormwater and industry. Mean total suspended solids (TSS) were 7, 17 and 20 mg L-1 during quiescent, high-rainfall and heavy rainfall/high wind conditions, respectively, whereas SPM Cd, Co, Cr, Cu, Ni, Pb and Zn concentrations varied between 13-25, 166-259, 127-198, 38-82, 236-305 and 605-865 μg g-1, respectively under these conditions. TSS and total water metal concentrations were lowest during quiescent conditions. High TSS and metal loads in surface water characterised high-rainfall events. Wind-induced resuspension contributed the greatest mass of SPM and metals to the water column. Benthic animals may be adversely affected by Pb and Zn in sediment. Total water Cu and Zn concentrations may pose a risk to filter-feeding animals in the water column due to resuspension of contaminated sediment.

  18. Identifying Sources and Assessing Potential Risk of Exposure to Heavy Metals and Hazardous Materials in Mining Areas: The Case Study of Panasqueira Mine (Central Portugal as an Example

    Directory of Open Access Journals (Sweden)

    Carla Candeias

    2014-09-01

    Full Text Available The Sn-W Panasqueira mine, in activity since the mid-1890s, is one of the most important economic deposits in the world. Arsenopyrite is the main mineral present as well as rejected waste sulphide. The long history is testified by the presence of a huge amount of tailings, which release considerable quantities of heavy metal(loids into the environment. This work assesses soil contamination and evaluates the ecological and human health risks due to exposure to hazardous materials. The metal assemblage identified in soil (Ag-As-Bi-Cd-Cu-W-Zn; potentially toxic elements (PTEs reflects the influence of the tailings, due to several agents including aerial dispersion. PTEs and pH display a positive correlation confirming that heavy metal mobility is directly related to pH and, therefore, affects their availability. The estimated contamination factor classified 92.6% of soil samples as moderately to ultra-highly polluted. The spatial distribution of the potential ecological risk index classified the topsoil as being of a very high ecological risk, consistent with wind direction. Non-carcinogenic hazard of topsoil, for children (1–6 years, showed that for As the non-carcinogenic hazard represents a high health risk. The carcinogenic risks, both for children and adult alike, reveal a very high cancer risk mostly due to As ingestion.

  19. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X......-ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation...

  20. Heavy Chain Diseases

    Science.gov (United States)

    ... heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy chain ... disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy chain ...

  1. Densely crosslinked polycarbosiloxanes .1. Synthesis

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    Novel densely crosslinked polycarbosiloxanes were obtained by using functional branched prepolymers. Two types of soluble prepolymers were prepared from di- and trifunctional alkoxysilane monomers via cohydrolysis/condensation and for both final crosslinking occurred via hydrosilylation. The

  2. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Sanjay

    2013-09-06

    It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as key input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.

  3. Dense deposit disease in a child with febrile sore throat

    Directory of Open Access Journals (Sweden)

    Giovanni Conti

    2017-01-01

    Full Text Available Dense deposit disease or membranoproliferative glomerulonephritis type II is a rare glomerulopathy characterized on renal biopsy by deposition of abnormal electron-dense material in the glomerular basement membrane. The pathophysiologic basis is uncontrolled systemic activation of the alternate pathway of the complement cascade. C3 nephritic factor, an autoantibody directed against the C3 convertase of the alternate pathway, plays a key role. In some patients, complement gene mutations have been identified. We report the case of a child who had persistent microscopic hematuria, proteinuria, and hypocomplementemia C3 for over 2 months. Renal biopsy confirmed the diagnosis of dense deposit disease.

  4. Dense deposit disease in a child with febrile sore throat.

    Science.gov (United States)

    Conti, Giovanni; De Vivo, Dominique; Vitale, Agata; Fede, Carmelo; Santoro, Domenico

    2017-01-01

    Dense deposit disease or membranoproliferative glomerulonephritis type II is a rare glomerulopathy characterized on renal biopsy by deposition of abnormal electron-dense material in the glomerular basement membrane. The pathophysiologic basis is uncontrolled systemic activation of the alternate pathway of the complement cascade. C3 nephritic factor, an autoantibody directed against the C3 convertase of the alternate pathway, plays a key role. In some patients, complement gene mutations have been identified. We report the case of a child who had persistent microscopic hematuria, proteinuria, and hypocomplementemia C3 for over 2 months. Renal biopsy confirmed the diagnosis of dense deposit disease.

  5. Synergistic adsorption of heavy metal ions and organic pollutants by supramolecular polysaccharide composite materials from cellulose, chitosan and crown ether

    Science.gov (United States)

    Mututuvari, Tamutsiwa M.; Tran, Chieu D.

    2013-01-01

    We have developed a simple one-step method to synthesize novel supramolecular polysaccharide composites from cellulose (CEL), chitosan (CS) and benzo-15-crown 5 (B15C5). Butylmethylimidazolium chloride [BMIm+Cl−], an ionic liquid (IL), was used as a sole solvent for dissolution and preparation of the composites. Since majority of [BMIm+Cl−] used was recovered for reuse, the method is recyclable. The [CEL/CS + B15C5] composites obtained retain properties of their components, namely superior mechanical strength (from CEL), excellent adsorption capability for heavy metal ions and organic pollutants (from B15C5 and CS). More importantly, the [CEL/CS + B15C5] composites exhibit truly supramolecular properties. By itself CS, CEL and B15C5 can effectively adsorb Cd2+, Zn2+ and 2,4,5-trichlorophenol. However, adsorption capability of the composite was substantially and synergistically enhanced by adding B15C5 to either CEL and/or CS. That is, the adsorption capacity (qe values) for Cd2+ and Zn2+ by [CS + B15C5], [CEL + B15C5] and [CEL + CS + B15C5] composites are much higher than combined qe values of individual CS, CEL and B15C5 composites. It seems that B15C5 synergistically interact with CS (or CEL) to form more stable complexes with Cd2+ (or Zn2+), and as a consequence, the [CS + B15C5] (or the [CEL + B15C5]) composite can adsorb relatively larger amount Cd2+ (or Zn2+). Moreover, the pollutants adsorbed on the composites can be quantitatively desorbed to enable the [CS + CEL + B15C5] composites to be reused with similar adsorption efficiency. PMID:24333678

  6. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash.

    Science.gov (United States)

    Querol, Xavier; Alastuey, Andrés; Moreno, Natàlia; Alvarez-Ayuso, Esther; García-Sánchez, Antonio; Cama, Jordi; Ayora, Carles; Simón, Mariano

    2006-01-01

    The use of zeolitic material synthesized from coal fly ash for the immobilization of pollutants in contaminated soils was investigated in experimental plots in the Guadiamar Valley (SW Spain). This area was affected by a pyrite slurry spill in April 1998. Although reclamation activities were completed in a few months, residual pyrite slurry mixed with soil accounted for relatively high leachable levels of trace elements such as Zn, Pb, As, Cu, Sb, Co, Tl and Cd. Phytoremediation strategies were adopted for the final recovery of the polluted soils. The immobilization of metals had previously been undertaken to avoid leaching processes and the consequent groundwater pollution. To this end, 1100 kg of high NaP1 (Na6[(AlO2)6(SiO2)10] .15H2O) zeolitic material was synthesized using fly ash from the Teruel power plant (NE Spain), in a 10 m3 reactor. This zeolitic material was manually applied using different doses (10000-25000 kg per hectare), into the 25 cm topsoil. Another plot (control) was maintained without zeolite. Sampling was carried out 1 and 2 years after the zeolite addition. The results show that the zeolitic material considerably decreases the leaching of Cd, Co, Cu, Ni, and Zn. The sorption of metals in soil clay minerals (illite) proved to be the main cause contributing to the immobilization of these pollutants. This sorption could be a consequence of the rise in pH from 3.3 to 7.6 owing to the alkalinity of the zeolitic material added (caused by traces of free lime in the fly ash, or residual NaOH from synthesis).

  7. Dense Aluminum Plasma Equation of State Measurements

    Science.gov (United States)

    Workman, J.; Tierney, T.; Kyrala Benage, G., Jr.

    1997-11-01

    Knowledge of the equation of state for any material is essential to a full understanding of its intrinsic and dynamic properties. Accurate experimental measurements of the equation of state for strongly coupled plasmas (Γ >= 1), relevant to astrophysical, geologic and ICF applications, have been extremely difficult. We present preliminary results on a novel method for off-Hugoniot measurements of the equation of state for dense plasmas (3 Marx pulsed power device to create plasma densities of up to one-tenth solid and temperatures of a few eV from a 200 μm diameter aluminum wire. Density and temperature profiles of the dense aluminum plasma are determined using laser-produced temporally- and spatially-resolved x-ray backlighters and optical streak records. Simulations indicate that the use of a laser-generated shock wave in the dense plasma can provide megabar pressures at 10 eV temperatures with ion densities of up to 10 times the initial density. Future experiments will concentrate on the use of this laser-generated shock to determine the equation of state through accurate density and shock-speed measurements.

  8. Obtaining and some properties of dense corundum-zirconium ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Baranova, T.F.; Grishina, N.E.; Prokhorova, G.N.

    1983-11-01

    A dense pressed and cast corundum-zirconium ceramics is developed. The material is produced at relatively low calcination temperatures (1580 deg C). Cermics has a high compression strength (450 and 320 MPa at 950 and 1050 deg C, respectively) and it can be used as a structural material for small-size stamp insertions.

  9. Review of recent heavy flavor measurements in STAR

    Directory of Open Access Journals (Sweden)

    Lomnitz Michael R.

    2017-01-01

    Full Text Available Heavy-ion collisions at RHIC provide a unique environment to study the behavior of nuclear matter under extreme conditions. In particular, heavy quarks, which are produced during the early stages of a collision, provide an exceptional probe in understanding the hot and dense medium created in such collisions. The Heavy Flavor Tracker and Muon Telescope Detector at the STAR experiment at RHIC have been successfully installed since early 2014 and have significantly improved the experimental capabilities in measuring both open and hidden heavy flavor hadrons in heavy-ion collisions. We present an overview of recent heavy flavor results obtained at STAR using these two dedicated detectors.

  10. Heavy Metal Tolerance, Biosorption And Bioaccumulation By Some ...

    African Journals Online (AJOL)

    Transmission electron microscopy (TEM) was used to study the interaction between heavy metal ions and P. typicum cells. At ultrastructural level, an electron dense layers were detected on the algal cell surfaces when exposed to Cd , Hg, and Pb. At the same time, dark spherical electron dense bodies were accumulated in ...

  11. Dense Crowds of Virtual Humans

    NARCIS (Netherlands)

    Stüvel, S.A.

    2016-01-01

    This thesis presents a novel crowd simulation method `Torso Crowds', aimed at the simulation of dense crowds. The method is based on the results of user studies and a motion capture experiment, which are also described in this thesis. Torso Crowds introduces a capsule shape to represent people in

  12. The impact of three dimensional MHD instabilities on the generation of warm dense matter using a MA-class linear transformer driver

    Science.gov (United States)

    Gourdain, P.-A.; Seyler, C. E.

    2017-09-01

    Warm dense matter is difficult to generate since it corresponds to a state of matter which pressure is order of magnitude larger than can be handled by natural materials. A diamond anvil can be used to pressurize matter up to one Gbar, this matter is at high density but at room temperature. High power lasers and heavy ion beams can generate warm dense matter on time scales where measuring quasi-static transport coefficients such as viscosity or heat conduction proves difficult since both experimental techniques relies on inertial confinement. We present here a third method to generate warm dense matter. It uses a pulsed-power driver which current rise time is substantially shortened by using a plasma opening switch, limiting the development of electrothermal instabilities. The switch relies on the implosion of a gas puff Z-pinch which carries most of the discharge current until the pinch reaches the sample. After that, the sample is compressed until it reaches the warm dense matter regime. Three-dimensional magnetohydrodynamics computations show that if the density of the gas is low enough no detectable instabilities (e.g. kinks and sausages modes) impede the remainder of the implosion.

  13. Thermodynamic aspects of heavy metal volatility during utilisation of the energetic and material fraction of waste materials; Schwermetallfluechtigkeit bei der energetischen und stofflichen Verwertung von Abfaellen aus der Sicht der Thermodynamik

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, B.; Starke, A. [TU Bergakademie Freiberg (Germany). Inst. IEC

    1998-09-01

    Co-combustion plants, in which fuel is partly substituted by waste materials, are subject to the 17th BImSchV (Nuisance Control Ordinance) provided that the thermal fraction of 25% is not exceeded. Emission limits are calculated proportionately on the basis of limiting values for emissions from coal power stations (13th BImSchV) and waste incinerators (17th BImSchV). Compared to coal, waste has higher concentrations of heavy metals and halogens, which results in enhanced emissions of heavy metal compounds and chlorides with the flue gas and gasification gas. Plant operators intending to opt for co-combustion must check if the existing flue gas purification system is efficient enough to meet the specifications of the 17th BImSchV. In general, thermodynamic modelling is the most common method of evaluation and optimisation for high-temperature processes of this kind. (orig./SR) [Deutsch] Da bei der Mitverbrennung ein Teil des Brennstoffes durch den Reststoff substituiert wird, unterliegen diese Anlagen der Anteilsregelung nach 17. BImSchV, sofern ein thermischer Anteil von 25% nicht ueberschritten wird. Emissionsgrenzwerte werden anteilig aus den z.B. fuer Kohlekraftwerke gueltigen Grenzwerten nach TA Luft oder 13. BImSchV und denen fuer Abfaelle u.ae. nach 17 BImSchV ermittelt. Der hier betrachtete Reststoff Muell beinhaltet im Vergleich zur Kohle hohe Konzentrationen an Schwermetallen und Halogenen. Dies laesst eine erhoehte Emission von Schwermetallverbindungen und Chloriden mit dem Rauchgas bzw. Vergasungsgas erwarten. Es muss in jedem Fall ueberprueft werden, ob die vorhandene Rauchgasreinigung ausreicht, wenn bei der Mitverbrennung/-vergasung die Emissionsgrenzwerte der 17. BImSchV zur Anwendung kommen. Als Bewertungs- und Optimierungsmethode fuer derartige Hochtemperaturprozesse setzt sich die thermodynamische Modellierung zunehmend durch. (orig./SR)

  14. Dilute and dense axion stars

    Science.gov (United States)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  15. Distribution and Mobility of Heavy Metal Materials in Settling Ponds Post Laterite Nickel Mining (A Case Study: North Motui Konawe, Southeast Sulawesi

    Directory of Open Access Journals (Sweden)

    Muhammad Chaerul

    2015-06-01

    Full Text Available The formation of waste matter sedimentation in settling ponds, along with accumulation of heavy metals, such as Nickel (Ni, Chrome (Cr3+ and Cr6+, manganese (Mn and Cobalt (Co and elements or compounds in laterite soil. These heavy metals will concentrate in different environmental geochemistry, which are laterite sediment layers pre- and post-mining. The purposes of this study are to identify changes of heavy metal distribution in settling ponds and analyze heavy metal mobility in settling ponds. The research methods were qualitative and quantitative methods. Laboratory research used AAS (Atomic Absorption Spectrophotometer which was studied, analyzed, and synthesized comprehensively. Data processing technique used SPSS v.21 software and Principal Component Analysis (PCA method. The result showed that distribution of heavy metals Fe and Cr relatively strengthened constantly. The graphs of Fe and Cr were interpreted as similar mobility and mechanism of transportation os elements which can form chemical compounds. Meanwhile, metals Ni and Co had similar graph which was relatively flat constantly. This was interpreted as similar mobility of heavy metals in settling ponds. The mobility of heavy metals Fe and Cr were mostly concentrated to form ferrochrome compound in the sediment of settling ponds compared with Ni with its low mobility and Co with its very low mobility.

  16. Modeling warm dense matter experiments using the 3D ALE-AMR code and the move toward exascale computing

    Directory of Open Access Journals (Sweden)

    Koniges Alice

    2013-11-01

    Full Text Available The Neutralized Drift Compression Experiment II (NDCX II is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE hydrodynamics with Adaptive Mesh Refinement (AMR, has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. We also briefly discuss the effects of the move to exascale computing and related computational changes on general modeling codes in fusion.

  17. The physics of hot and dense quark-gluon matter

    Energy Technology Data Exchange (ETDEWEB)

    Kharzeev, Dmitri E. [Stony Brook Univ., NY (United States)

    2012-05-10

    This technical report describes the work done under the DOE grant DE-FG-88ER41723 (final award number DE-SC0005645), "The physics of hot and dense quark-gluon matter", during the year of 12/01/2010 through 11/30/2011. As planned in the proposal, the performed research focused along two main thrusts: 1) topological effects in hot quark-gluon matter and 2) phenomenology of relativistic heavy ion collisions. The results of research are presented in 12 papers published in reputable refereed journals (Physical Review Letters, Physical Review, Physics Letters and Nuclear Physics). All of the performed research is directly related to the experimental programs of DOE, especially at the Relativistic Heavy Ion Collider. Much of it also has broader interdisciplinary implications - for example, the work on the non-dissipative chiral magnetic current is directly relevant for quantum computing. The attached report describes the performed work in detail.

  18. Numerical Simulation of Cold Dense Plasma Sputtering with VORPAL

    Science.gov (United States)

    Zhou, Chuandong; Stoltz, Peter; Veitzer, Seth

    2009-10-01

    Sputtering is an evaporation process that physically removes atoms from a solid target material. This process takes place under bombardment of the target surface by energetic ions. Sputtering is widely applied in material processing and coating, such as etching and thin film deposition. Numerical simulation of sputtering process requires both accurate models of nuclear stopping in materials, particle dynamics and consistent electromagnetic fields. The particle in cell code VORPAL can simulate cold dense plasma under many different electromagnetic configurations. The dynamics of both incident particles and sputtered neutral atoms are simulated in VORPAL, and the sputtering yield is calculated from a standalone numerical library for a variety of materials that are commonly used in industrial applications. Numerical simulation of the spatial distribution of sputtering resulting from a cold dense plasma under externally applied magnetic field and self-consistent electric field is presented.

  19. Probing Cold Dense Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  20. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  1. Heavy metal

    African Journals Online (AJOL)

    niloticus after exposure to sublethal concentrations of heavy metals such as copper, lead and zinc for a 12-week period, using static renewable toxicity tests. The concentrations of the metals accumulated in the tissue of exposed fish were about 3-5 times higher than the concentrations detected in control fish.

  2. Menorrhagia (Heavy Menstrual Bleeding)

    Science.gov (United States)

    Menorrhagia (heavy menstrual bleeding) Overview Menorrhagia is the medical term for menstrual periods with abnormally heavy or prolonged bleeding. Although heavy menstrual bleeding is a common concern, ...

  3. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    Science.gov (United States)

    Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Offner, Stella S. R.; Matzner, Christopher D.; Myers, Philip C.; Di Francesco, James; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Chen, How-Huan; Chun-Yuan Chen, Michael; Keown, Jared; Punanova, Anna; Seo, Young Min; Shirley, Yancy; Ginsburg, Adam; Hall, Christine; Singh, Ayushi; Arce, Héctor G.; Goodman, Alyssa A.; Martin, Peter; Redaelli, Elena

    2017-09-01

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.

  4. Kinetic characteristics of the pyrolysis of heavy crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Samoylov, A.S.; Kurochkin, A.P.; Pul' kina, M.K.; Berdova, N.N.

    1980-11-01

    Pyrolysis of heavy crude oil yields gaseous, liquid and solid products whose chemical composition and value are analyzed on the basis of Arlanskaya Petroleum and directly distilled Arlanskaya mazut. Tests were conducted on laboratory equipment with a solid heater in a dense immobile layer in the temperature range of 660-905/sup 0/C for 0.08 - 0.2 seconds, and with a falling gas suspension method at temperatures of 680-805/sup 0/C for 0.7-2.4 seconds. Ideal features of equipment and the course of the tests are described. The length of reaction time was found to be a key factor in benzene yield, with best results at about 1 second. Temperature increases brought reduced ethylene yields, as well as decreased quantities of paraffin and naphthene hydrocarbons. The distribution of sulphurous compounds depended on the composition of the original raw material.

  5. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent.

    Science.gov (United States)

    Suzuki, Yoshihiro; Kametani, Takuji; Maruyama, Toshiroh

    2005-05-01

    The growth of dense green seaweed mats of Ulva spp. is an increasing problem in estuaries and coasts worldwide. The enormous amount of Ulva biomass thus becomes a troublesome waste disposal problem. On the other hand, it has been revealed that nonliving seaweed biomass, particularly brown seaweeds, has a high capacity for assimilating heavy metals. In this study, the possibility of using Ulva seaweed biomass as a biosorbent for the removal of heavy metals was examined. After processing, the biomass material was very easy to separate from the aqueous solution using a mesh. The sorption capacity of Cd on Ulva biomass increased upon pretreatment with alkali solution. The outstanding function of the biosorbent was demonstrated at around pH 8. On the basis of the Langmuir isotherms of Cd, Zn and Cu using the alkali-pretreated biomass, the parameters q(m) and b were determined to be within the narrow range of 60-90 mg/g and 0.03-0.04 L/mg, respectively, for each metal. Given the q(m) and b values, Ulva seaweed is a good biosorbent material for removing heavy metals. In an experiment using artificial wastewater containing Cd, Zn, Cu, Cr and Ni, it was possible to remove each metal simultaneously using Ulva biomass. Adsorption by Ulva biomass is effective for the removal of heavy metals from wastewater.

  6. Modified composites based on mesostructured iron oxyhydroxide and synthetic minerals: a potential material for the treatment of various toxic heavy metals and its toxicity.

    Science.gov (United States)

    Chung, Seung-Gun; Ryu, Jae-Chun; Song, Mi-Kyung; An, Byungryul; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo

    2014-02-28

    The composites of mesostructured iron oxyhydroxide and/or commercial synthetic zeolite were investigated for use in the removal of toxic heavy metals, such as cadmium, copper, lead and arsenic, from aqueous solution. Four types of adsorbents, dried alginate beads (DABs), synthetic-zeolite impregnated beads (SZIBs), meso-iron-oxyhydroxide impregnated beads (MIOIBs) and synthetic-zeolite/meso-iron-oxyhydroxide composite beads (SZMIOIBs), were prepared for heavy metal adsorption tests. Laboratory experiments were conducted to investigate the removal efficiencies of cations and anions of heavy metals and the possibility of regenerating the adsorbents. Among these adsorbents, the MIOIBs can simultaneously remove cations and anions of heavy metals; they have high adsorption capacities for lead (60.1mgg(-1)) and arsenic (71.9mgg(-1)) compared with other adsorbents, such as DABs (158.1 and 0.0mgg(-1)), SZIB (42.9 and 0.0mgg(-1)) and SZMIOIB (54.0 and 5.9mgg(-1)) for lead and arsenic, respectively. Additionally, the removal efficiency was consistent at approximately 90%, notwithstanding repetitive regeneration. The characteristics of meso-iron-oxyhydroxide powder were confirmed by X-ray diffraction, Brunauer-Emmett-Teller and transmission electron microscopy. We also performed a comparative toxicity study that indicated that much lower concentrations of the powdered form of mesostructured iron oxyhydroxide had stronger cytotoxicity than the granular form. These results suggest that the granular form of meso iron oxyhydroxide is a more useful and safer adsorbent for heavy metal treatment than the powdered form. This research provides promising results for the application of MIOIBs as an adsorbent for various heavy metals from wastewater and sewage. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. DPIS for warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  8. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  9. Heavy-flavour hadrons as probes of strongly-interacting matter: highlights from ALICE

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    In Pb-Pb collisions the heavy-flavour nuclear modification factor together with the elliptic-flow measurements allow one to study the heavy-quark transport properties in the hot and dense medium. The production of heavy quarks in heavy-ion collisions is furthermore also affected by the presence of cold nuclear matter in the initial state. The study of p-Pb collisions is instrument...

  10. Quarkonia and heavy-flavour results from ALICE

    CERN Document Server

    INSPIRE-00247151

    2015-01-01

    Quarkonia and heavy flavour are important probes of the hot and dense QCD medium formed in high-energy heavy-ion collisions, through the modification of their yields and kinematical distributions. Measurements of their production in proton-nucleus collisions are crucial for the interpretation of heavy-ion results, as they allow one to study cold nuclear matter effects. Quarkonia and heavy-flavour production in Pb-Pb collisions at the LHC is measured in ALICE at both forward and mid-rapidity, by exploiting several experimental techniques. The main results obtained in Pb-Pb and p-Pb collisions are presented

  11. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Filter-Dense Multicolor Microscopy.

    Directory of Open Access Journals (Sweden)

    Siavash Kijani

    Full Text Available Immunofluorescence microscopy is a unique method to reveal the spatial location of proteins in tissues and cells. By combining antibodies that are labeled with different fluorochromes, the location of several proteins can simultaneously be visualized in one sample. However, because of the risk of bleed-through signals between fluorochromes, standard multicolor microscopy is restricted to a maximum of four fluorescence channels, including one for nuclei staining. This is not always enough to address common scientific questions. In particular, the use of a rapidly increasing number of marker proteins to classify functionally distinct cell populations and diseased tissues emphasizes the need for more complex multistainings. Hence, multicolor microscopy should ideally offer more channels to meet the current needs in biomedical science. Here we present an enhanced multi-fluorescence setup, which we call Filter-Dense Multicolor Microscopy (FDMM. FDMM is based on condensed filter sets that are more specific for each fluorochrome and allow a more economic use of the light spectrum. FDMM allows at least six independent fluorescence channels and can be applied to any standard fluorescence microscope without changing any operative procedures for the user. In the present study, we demonstrate an FDMM setup of six channels that includes the most commonly used fluorochromes for histology. We show that the FDMM setup is specific and robust, and we apply the technique on typical biological questions that require more than four fluorescence microscope channels.

  13. Two views on the Bjorken scenario for ultra-relativistic heavy-ion collisions

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    The sketch describes the Bjorken scenario foreseen for the collision of ultra-relativistic heavy-ions, leading to the creation of strongly-interacting hot and dense deconfined matter, the so-called Quark-Gluon Plasma (QGP).

  14. Phase diagram of vertically vibrated dense suspensions

    NARCIS (Netherlands)

    von Kann, S.; Snoeijer, Jacobus Hendrikus; van der Meer, Roger M.

    2014-01-01

    When a hole is created in a layer of a dense, vertically vibrated suspension, phenomena are known to occur that defy the natural tendency of gravity to close the hole. Here, an overview is presented of the different patterns that we observed in a variety of dense particulate suspensions.

  15. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges...

  16. Finding dense locations in indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2014-01-01

    Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based model...

  17. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  18. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  19. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunjiang, E-mail: zhaocj_nercita@163.com [National Engineering Research Center for Information Technology in Agriculture, Beijing 100097 (China); Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097 (China); Key Laboratory for Information Technologies in Agriculture, Ministry of Agriculture, Beijing100097 (China); Wu, Huarui, E-mail: wuhrnercita@163.com [National Engineering Research Center for Information Technology in Agriculture, Beijing 100097 (China); Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097 (China); Key Laboratory for Information Technologies in Agriculture, Ministry of Agriculture, Beijing100097 (China)

    2017-03-31

    Highlights: • PNG can be acted as micro-sensor for monitoring heavy metal in agriculture. • The most favorable adsorption site of Pd atom or cluster on PNG is the vacancy site. • The Pd atom or cluster enhance the reactivity of PNG toward Hg and AsH{sub 3} adsorption. • The efficiency of a sorbent can be tuned by tailoring the ε{sub d} of adsorbed metals. - Abstract: Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pd{sub n} (n = 1–6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH{sub 3} adsorption on PNG. The adsorption ability of Hg on Pd{sub n} decorated PNG is found to be related to the d-band center (ε{sub d}) of the Pd{sub n}, in which the closer ε{sub d} of Pd{sub n} to the Fermi level, the higher adsorption strength for Hg on Pd{sub n} decorated PNG. Moreover, the charge transfer between Pd{sub n} and arsenic may constitute arsenic adsorption on Pd{sub n} decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring ε{sub d} of adsorbed metals.

  20. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  1. Latest Heavy Flavor Results from the PHENIX Experiment at RHIC

    Science.gov (United States)

    Lebedev, Alexandre

    2016-08-01

    Heavy quark production can be used as a stringent test of perturbative QCD in proton-proton collisions, and is a valuable reference for the study of heavy ion collisions. In nucleus-nucleus collisions, the measurement of heavy quark production provides a powerful tool for studying the properties of hot and dense matter created in these collisions. The PHENIX experiment has studied many important observables related to heavy flavor via leptonic measurements. Such observables include the invariant yield and azimuthal anisotropy of electrons from non-photonic sources and prompt single muons, both of which are dominated by decays of D and B mesons. Complimentary to single lepton measurements, PHENIX has measured invariant yield, flow, and polarization of various quarkonia states. Such measurements provide additional insight into heavy flavor production mechanisms. The most recent PHENIX heavy flavor results will be presented, and compared to various theoretical model predictions.

  2. Effective Field Theories for Hot and Dense Matter

    Directory of Open Access Journals (Sweden)

    Blaschke D.

    2010-10-01

    Full Text Available The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian fluctuations. Special emphasis is devoted to the discussion of the Mott effect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1 the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2 the Schrodinger equation for heavy-quarkonia [4], and (2 Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to finite temperatures. The effect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to effects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description.

  3. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Asozu, T.; Sataka, M. [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, {sup 132}Xe{sup 11+} and {sup 12}C{sup +}). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  4. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Science.gov (United States)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  5. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland

    Science.gov (United States)

    Zhao, Chunjiang; Wu, Huarui

    2017-03-01

    Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pdn (n = 1-6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH3 adsorption on PNG. The adsorption ability of Hg on Pdn decorated PNG is found to be related to the d-band center (εd) of the Pdn, in which the closer εd of Pdn to the Fermi level, the higher adsorption strength for Hg on Pdn decorated PNG. Moreover, the charge transfer between Pdn and arsenic may constitute arsenic adsorption on Pdn decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring εd of adsorbed metals.

  6. Effect of heavy ion irradiation and α+β phase heat treatment on oxide of Zr-2.5Nb pressure tube material

    Science.gov (United States)

    Choudhuri, Gargi; Mukherjee, P.; Gayathri, N.; Kain, V.; Kiran Kumar, M.; Srivastava, D.; Basu, S.; Mukherjee, D.; Dey, G. K.

    2017-06-01

    Effect of heavy-ion irradiation on the crystalline phase transformation of oxide of Zr-2.5Nb alloys has been studied. The steam-autoclaved oxide of pressure tube is irradiated with 306 KeV Ar+9 ions at a dose of 3 × 1019 Ar+9/m2. The damage profile has been estimated using ;Stopping and Range of Ions in Matter; computer program. The variation of the crystal structure along the depth of the irradiated oxide have been characterized non-destructively by Grazing Incidence X-ray Diffraction technique and compared with unirradiated-oxide. The effect of different base metal microstructures on the characteristic of oxide has also been studied. Base metal microstructure as well as the cross-sectional oxide have been characterized using transmission electron microscope. Heavy ion irradiation can significantly alter the distribution of phases in the oxide of the alloy. The difference in chemical state of alloying element has also been found between unirradiated-oxide with that of irradiated-oxide using X-ray photo electron spectroscopy. Chemical state of Nb in steam autoclaved oxide is also altered when the base metal is α + β heat treated.

  7. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  8. Dissipationless Hall current in dense quark matter in a magnetic field

    Directory of Open Access Journals (Sweden)

    E.J. Ferrer

    2017-06-01

    Full Text Available We show the realization of axion electrodynamics within the Dual Chiral Density Wave phase of dense quark matter in the presence of a magnetic field. The system exhibits an anomalous dissipationless Hall current perpendicular to the magnetic field and an anomalous electric charge density. Connection to topological insulators and 3D optical lattices, as well as possible implications for heavy-ion collisions and neutron stars are outlined.

  9. Dissipationless Hall current in dense quark matter in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, E.J., E-mail: Efrain.Ferrer@csi.cuny.edu; Incera, V. de la

    2017-06-10

    We show the realization of axion electrodynamics within the Dual Chiral Density Wave phase of dense quark matter in the presence of a magnetic field. The system exhibits an anomalous dissipationless Hall current perpendicular to the magnetic field and an anomalous electric charge density. Connection to topological insulators and 3D optical lattices, as well as possible implications for heavy-ion collisions and neutron stars are outlined.

  10. Propagation Of Dense Plasma Jets

    Science.gov (United States)

    Turchi, Peter J.; Davis, John F.

    1988-05-01

    A variety of schemes have been proposed over the last two decades for delivering lethal amounts of energy and/or momentum to targets such as missiles and high speed aircraft. Techniques have ranged from high energy lasers and high voltage charged-particle accelerators to less exotic but still challenging devices such as electromagnetic railguns. One class of technology involves the use of high speed plasmas. The primary attraction of such technology is the possibility of utilizing relatively compact accelerators and electrical power systems that could allow highly mobile and agile operation from rocket or aircraft platforms, or in special ordnance. Three years ago, R & D Associates examined the possibility of plasma propagation for military applications and concluded that the only viable approach consisted of long dense plasma jets, contained in radial equilibrium by the atmosphere, while propagating at speeds of about 10 km/s. Without atmospheric confinement the plasma density would diminish too rapidly for adequate range and lethality. Propagation of atmospherically-confined jets at speeds much greater than 10 km/s required significant increases in power levels and/or operating altitudes to achieve useful ranges. The present research effort has been developing the experimental conditions necessary to achieve reasonable comparison with theoretical predictions for plasma jet propagation in the atmosphere. Time-resolved measurements have been made of high speed argon plasma jets penetrating a helium background (simulating xenon jets propagating into air). Basic radial confinement of the jet has been observed by photography and spectroscopy and structures in the flow field resemble those predicted by numerical calculations. Results from our successful initial experiments have been used to design improved diagnostic procedures and arcjet source characteristics for further experiments. In experiments with a modified arcjet source, radial confinement of the jet is again

  11. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    Energy Technology Data Exchange (ETDEWEB)

    Korostiy, S.

    2007-01-15

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of {sup 48}Ca{sup 6+}-{sup 48}Ca{sup 10+} and {sup 26}Mg{sup 5+} ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K{sub {alpha}} spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  12. Tissue composition of mammographically dense and non-dense breast tissue.

    Science.gov (United States)

    Ghosh, Karthik; Brandt, Kathleen R; Reynolds, Carol; Scott, Christopher G; Pankratz, V S; Riehle, Darren L; Lingle, Wilma L; Odogwu, Tonye; Radisky, Derek C; Visscher, Daniel W; Ingle, James N; Hartmann, Lynn C; Vachon, Celine M

    2012-01-01

    Mammographic density is a strong risk factor for breast cancer but its underlying biology in healthy women is not well-defined. Using a novel collection of core biopsies from mammographically dense versus non-dense regions of the breasts of healthy women, we examined histologic and molecular differences between these two tissue types. Eligible participants were 40 + years, had a screening mammogram and no prior breast cancer or current endocrine therapy. Mammograms were used to identify dense and non-dense regions and ultrasound-guided core biopsies were performed to obtain tissue from these regions. Quantitative assessment of epithelium, stroma, and fat was performed on dense and non-dense cores. Molecular markers including Ki-67, estrogen receptor (ER) and progesterone receptor (PR) were also assessed for participants who had >0% epithelial area in both dense and non-dense tissue. Signed rank test was used to assess within woman differences in epithelium, stroma and fat between dense and non-dense tissue. Differences in molecular markers (Ki-67, ER, and PR) were analyzed using generalized linear models, adjusting for total epithelial area. Fifty-nine women, mean age 51 years (range: 40-82), were eligible for analyses. Dense tissue was comprised of greater mean areas of epithelium and stroma (1.1 and 9.2 mm(2) more, respectively) but less fat (6.0 mm(2) less) than non-dense tissue. There were no statistically significant differences in relative expression of Ki-67 (P = 0.82), ER (P = 0.09), or PR (P = 0.96) between dense and non-dense tissue. Consistent with prior reports, we found that mammographically dense areas of the breast differ histologically from non-dense areas, reflected in greater proportions of epithelium and stroma and lesser proportions of fat in the dense compared to non-dense breast tissue. Studies of both epithelial and stromal components are important in understanding the association between mammographic density and breast cancer risk.

  13. Modeling Warm Dense Matter Experiments using the 3D ALE-AMR Code and the Move Toward Exascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Koniges, A; Eder, E; Liu, W; Barnard, J; Friedman, A; Logan, G; Fisher, A; Masers, N; Bertozzi, A

    2011-11-04

    The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM) regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR), has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion) of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. The ALE-AMR code does not have any export control restrictions and is currently running at the National Energy Research Scientific Computing Center (NERSC) at LBNL and has been shown to scale well to thousands of CPUs. New surface tension models that are being implemented and applied to WDM experiments. Some of the approaches use a diffuse interface surface tension model that is based on the advective Cahn-Hilliard equations, which allows for droplet breakup in divergent velocity fields without the need for imposed perturbations. Other methods require seeding or other methods for droplet breakup. We also briefly discuss the effects of the move to exascale computing and related

  14. Heavy flavour in ALICE

    CERN Document Server

    Pillot, Philippe

    2008-01-01

    Open heavy flavours and heavy quarkonium states are expected to provide essential informa- tion on the properties of the strongly interacting system fo rmed in the early stages of heavy-ion collisions at very high energy density. Such probes are espe cially promising at LHC energies where heavy quarks (both c and b) are copiously produced. The ALICE detector shall measure the production of open heavy flavours and heavy quarkonium st ates in both proton-proton and heavy-ion collisions at the LHC. The expected performances of ALICE for heavy flavour physics is discussed based on the results of simulation studies on a s election of benchmark channels

  15. Dynamical theory of dense groups of galaxies

    Science.gov (United States)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  16. Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials.

    Science.gov (United States)

    Al-Hwaiti, Mohammad; Al-Khashman, Omar

    2015-04-01

    Phosphogypsum (PG) is a waste produced by the phosphate fertilizer industry that has relatively high concentrations of some heavy metals (e.g., Cd, Cr, Cu, Pb, V, and Zn). The present study was conducted to investigate heavy metal contamination in soils and vegetables (tomatoes and green peppers) and to evaluate the possible health risks associated with the consumption of vegetables grown in PG-amended soils. The enrichment factor values indicated that Pb, Cr, Cu, Ni, Zn, and V were depleted to minimally enriched, and Cd was moderately enriched. The pollution load index values indicated that the PG-amended soils were strongly polluted with Cd, moderately polluted with Cr and Ni, and slightly polluted with Pb, Cu, Zn and V. The geo-accumulation index values indicated that the PG-amended soils were uncontaminated with Pb, Cr, Cu, Ni, Zn, V, and moderately contaminated with Cd. The trace metal transfer for Cd, Cr, Pb, and Zn concentrations was below what are considered as acceptable limits (factor values decreased in order of Zn > Pb > Cd > Cr. The biological absorption coefficients in plants are, in order of highest to lowest, Pb > Zn > Cd > Cr, which suggests that Pb is more bioavailable to plants than Cd, Cr, and Zn. Furthermore, this study highlights that both adults and children consuming vegetables (e.g., tomatoes and green peppers) grown in PG-amended soils ingest significant amounts of the metals studied. However, the daily intake of metals (DIM) and the health risk index (HRI) values are grown in PG-amended soils. However, while DIM and HRI values suggest that the consumption of plants grown in PG-amended soils is nearly free of risks, there are other sources of metal exposures such as dust inhalation, dermal contact, and ingestion (for children) of metal-contaminated soils, which were not included in this study.

  17. Studies of Heavy Flavored Jets with CMS

    CERN Document Server

    Jung, Kurt

    2017-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the mass and flavor of the initiating parton. Thus, measurements of jet quenching with identified partons place powerful constraints on the thermodynamic and transport properties of the hot and dense medium. We present recent results of heavy flavor jet spectra and nuclear modification factors of jets associated to charm and bottom quarks in both pPb and PbPb collisions. New measurements to be presented include the dijet asymmetry of pairs of b-jets in PbPb collisions and a finalized c-jet measurement in pPb collisions based on new data collected during the 2015 heavy-ion run period at the LHC.

  18. Studies of heavy flavored jets with CMS

    CERN Document Server

    Jung, Kurt

    2017-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the mass and flavor of the initiating parton. Thus, measurements of jet quenching with identified partons place powerful constraints on the thermodynamic and transport properties of the hot and dense medium. We present recent results of heavy flavor jet spectra and nuclear modification factors of jets associated to charm and bottom quarks in both pPb and PbPb collisions. New measurements to be presented include the dijet asymmetry of pairs of b-jets in PbPb collisions and a finalized c-jet measurement in pPb collisions based on new data collected during the 2015 heavy-ion run period at the LHC.

  19. Jet-like correlations of heavy-flavor particles – from RHIC to LHC

    NARCIS (Netherlands)

    Mischke, A.

    2011-01-01

    Measurements at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory have revealed strong modification of the jet structure in high-energy heavy-ion collisions, which can be attributed to the interaction of hard scattered partons with the hot and dense QCD matter. The study

  20. Why are dense planetary rings only found between 8 and 20 AU?

    OpenAIRE

    Hedman, M. M.

    2015-01-01

    The recent discovery of dense rings around the Centaur Chariklo (and possibly Chiron) reveals that complete dense planetary rings are not only found around Saturn and Uranus, but also around small bodies orbiting in the vicinity of those giant planets. This report examines whether there could be a physical process that would make rings more likely to form or persist in this particular part of the outer Solar System. Specifically, the ring material orbiting Saturn and Uranus appears to be much...

  1. Transformation of LEV-type zeolite into less dense CHA-type zeolite

    OpenAIRE

    Goto, Ikuhiro; Itakura, Masaya; SHIBATA, SYOHEI; Honda, Koutaro; Ide, Yusuke; Sadakane, Masahiro; Sano, Tsuneji

    2012-01-01

    Hydrothermal conversion of LEV-type zeolite into CHA-type zeolite occurred in the absence of both an organic structure-directing agent and a seed crystal. The LEV-CHA transformation proceeds from a more dense zeolite (LEV) to a less dense one (CHA). When amorphous aluminosilicate hydrogels were used as starting materials, the CHA-type zeolite was not obtained under the present hydrothermal synthesis conditions. From the fact that the LEV-CHA transformation proceeded at lower alkalinity condit...

  2. Mitigation and propagation of sound generated by heavy weapons

    NARCIS (Netherlands)

    Berg, F. van den; Eerden, F.J.M. van der

    2011-01-01

    Much environmental research is performed on predicting the noise impact of heavy weapons or explosives, as the shock waves can propagate over large distances. In the densely populated area of the Netherlands this is of particular interest for the Ministry of Defense. In one research program the

  3. Latest Results of Open Heavy Flavor and Quarkonia from the PHENIX Experiment at RHIC

    Science.gov (United States)

    Nouicer, Rachid; PHENIX Collaboration

    2017-01-01

    The PHENIX Collaboration carries out a comprehensive physics program which studies heavy flavor production in relativistic heavy ion collisions at RHIC. The discovery at RHIC of large high-p T suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au+Au collisions at GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the PHENIX has installed a silicon vertex tracker both in central rapidity (VTX) and in forward rapidity (FVTX) regions, and has collected large data samples. These two silicon trackers enhance the capability of heavy flavor measurements via precision tracking. This paper summarizes some of the latest PHENIX results concerning open heavy flavor and quarkonia production as a function of rapidity, energy and system size.

  4. Frontiers of the Physics of Dense Plasmas and Planetary Interiors: Experiment, Theory, Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, J J; Glenzer, S H; Koenig, M; Brambrink, E; Militzer, B; Saumon, D; Valencia, D

    2008-09-12

    We review recent developments of dynamic x-ray characterization experiments of dense matter, with particular emphasis on conditions relevant to interiors of terrestrial and gas giant planets. These studies include characterization of compressed states of matter in light elements by x-ray scattering and imaging of shocked iron by radiography. We examine several applications of this work. These include the structure of massive 'Super Earth' terrestrial planets around other stars, the 40 known extrasolar gas giants with measured masses and radii, and Jupiter itself, which serves as our benchmark for giant planets. We are now in an era of dramatic improvement in our knowledge of the physics of materials at high density. For light elements, this theoretical and experimental work has many applications, including internal confinement fusion as well as the interiors of gas giant planets. For heavy elements, experiments on silicates and iron at high pressure are helping to better understand the Earth, as well as terrestrial planets as a class of objects. In particular, the discovery of rocky and gaseous planets in other planetary systems has opened our imaginations to planets not found in our own solar system. While the fields of experiments of matter at high densities, first principles calculations of equations of state (EOS), planetary science, and astronomy do progress independently of each other, it is important for there to be communication between fields. For instance, in the realm of planets, physicists can learn of key problems that exist in the area of planetary structure, and how advances in our understanding of input physics could shed new light in this area. Astronomers and planetary scientists can learn where breakthroughs in physics of materials under extreme conditions are occurring, and be ready to apply these findings within their fields.

  5. DN Hard Materials Laser Assisted Formation of Dense Phases

    Science.gov (United States)

    1991-01-14

    a and 0 carbynes, chaoite, lonsdaleite , and dia- of the experimental set-up is shown in Fig. 1. The mond. The separation of the transformed high-pres...crystalline and con- tained graphite, chaoite, and diamond particles. No a or 0 carbynes or lonsdaleite particles were ob- served in the TEM study. Again...Fedoseev et a.[ 13] pointed out that the presence of lonsdaleite was not Fig. I. Schematic diagram of the experimental set-up. unambiguously

  6. Rheology of dense suspensions of non colloidal particles

    Directory of Open Access Journals (Sweden)

    Guazzelli Élisabeth

    2017-01-01

    Full Text Available Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing and in natural phenomena (e.g. flows of slurries, debris, and lava. Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers or non-Newtonian fluids that we will also address.

  7. Rheology of dense suspensions of non colloidal particles

    Science.gov (United States)

    Guazzelli, Élisabeth

    2017-06-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.

  8. An attempt to apply the inelastic thermal spike model to surface modifications of CaF2induced by highly charged ions: comparison to swift heavy ions effects and extension to some others material.

    Science.gov (United States)

    Dufour, C; Khomrenkov, V; Wang, Y Y; Wang, Z G; Aumayr, F; Toulemonde, M

    2017-03-08

    Surface damage appears on materials irradiated by highly charged ions (HCI). Since a direct link has been found between surface damage created by HCI with the one created by swift heavy ions (SHI), the inelastic thermal spike model (i-TS model) developed to explain track creation resulting from the electron excitation induced by SHI can also be applied to describe the response of materials under HCI which transfers its potential energy to electrons of the target. An experimental description of the appearance of the hillock-like nanoscale protrusions induced by SHI at the surface of CaF 2 is presented in comparison with track formation in bulk which shows that the only parameter on which we can be confident is the electronic energy loss threshold. Track size and electronic energy loss threshold resulting from SHI irradiation of CaF 2 is described by the i-TS model in a 2D geometry. Based on this description the i-TS model is extended to three dimensions to describe the potential threshold of appearance of protrusions by HCI in CaF 2 and to other crystalline materials (LiF, crystalline SiO 2 , mica, LiNbO 3 , SrTiO 3 , ZnO, TiO 2 , HOPG). The strength of the electron-phonon coupling and the depth in which the potential energy is deposited near the surface combined with the energy necessary to melt the material defines the classification of the material sensitivity. As done for SHI, the band gap of the material may play an important role in the determination of the depth in which the potential energy is deposited. Moreover larger is the initial potential energy and larger is the depth in which it is deposited.

  9. An attempt to apply the inelastic thermal spike model to surface modifications of CaF2 induced by highly charged ions: comparison to swift heavy ions effects and extension to some others material

    Science.gov (United States)

    Dufour, C.; Khomrenkov, V.; Wang, Y. Y.; Wang, Z. G.; Aumayr, F.; Toulemonde, M.

    2017-03-01

    Surface damage appears on materials irradiated by highly charged ions (HCI). Since a direct link has been found between surface damage created by HCI with the one created by swift heavy ions (SHI), the inelastic thermal spike model (i-TS model) developed to explain track creation resulting from the electron excitation induced by SHI can also be applied to describe the response of materials under HCI which transfers its potential energy to electrons of the target. An experimental description of the appearance of the hillock-like nanoscale protrusions induced by SHI at the surface of CaF2 is presented in comparison with track formation in bulk which shows that the only parameter on which we can be confident is the electronic energy loss threshold. Track size and electronic energy loss threshold resulting from SHI irradiation of CaF2 is described by the i-TS model in a 2D geometry. Based on this description the i-TS model is extended to three dimensions to describe the potential threshold of appearance of protrusions by HCI in CaF2 and to other crystalline materials (LiF, crystalline SiO2, mica, LiNbO3, SrTiO3, ZnO, TiO2, HOPG). The strength of the electron-phonon coupling and the depth in which the potential energy is deposited near the surface combined with the energy necessary to melt the material defines the classification of the material sensitivity. As done for SHI, the band gap of the material may play an important role in the determination of the depth in which the potential energy is deposited. Moreover larger is the initial potential energy and larger is the depth in which it is deposited.

  10. Experimental overview on heavy-flavor production

    Science.gov (United States)

    Grelli, Alessandro

    2017-04-01

    Hadrons containing heavy-flavors are unique probes of the properties of the hot and dense QCD medium produced in heavy-ion collisions. Due to their large masses, heavy quarks are produced at the initial stage of the collision, almost exclusively via hard partonic scattering processes. Therefore, they are expected to experience the full collision history propagating through and interacting with the QCD medium. The parton energy loss, which is sensitive to the transport coefficients of the produced medium, can be studied experimentally by measuring the nuclear modification factor which accounts for the modification of the heavy-flavored hadron yield in Pb-Pb collisions with respect to pp collisions. In semi-central Pb-Pb collisions, the degree of thermalization of charm quarks in the QCD medium can be accessed via the measurement of the heavy flavor elliptic flow v2 at low pT. Furthermore, the measurement of heavy-flavors production in pp collisions allows testing the perturbative QCD calculations. The PHENIX and STAR Collaborations at the Relativistic Heavy-Ion Collider and ALICE, CMS and ATLAS Collaborations at the Large Hadron Collider have measured the production of charmonium and bottonium states as well as open heavy flavor hadrons via their hadronic and semi-leptonic decays at mid-rapidity and in the semi-muonic decay channel at forward rapidity in pp, p-A and A-A collisions in an energy domain that ranges from \\sqrt{s} = 0.2 TeV to \\sqrt{s} = 13 TeV in pp collisions and from \\sqrt{{s}{{NN}}} = 0.2 TeV to \\sqrt{{s}{{NN}}} = 5.02 TeV in A-A collisions. In this contribution the latest experimental results will be reviewed.

  11. Warm, Dense Plasma Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E; Degroot, J S

    2000-07-18

    We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

  12. Asymmetric dense matter in holographic QCD

    Directory of Open Access Journals (Sweden)

    Shin Ik Jae

    2012-02-01

    Full Text Available We study asymmetric dense matter in holographic QCD.We construct asymmetric dense matter by considering two quark flavor branes with dierent quark masses in a D4/D6/D6 model. To calculate the symmetry energy in nuclear matter, we consider two quarks with equal masses and observe that the symmetry energy increases with the total charge showing the stiff dependence. This behavior is universal in the sense that the result is independent of parameters in the model. We also study strange (or hyperon matter with one light and one intermediate mass quarks. In addition to the vacuum properties of asymmetric matter, we calculate meson masses in asymmetric dense matter and discuss our results in the light of in-medium kaon masses.

  13. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Timothy L. Ward

    2002-07-01

    Mixed-conducting ceramics have the ability to conduct oxygen with perfect selectivity at elevated temperatures, making them extremely attractive as membrane materials for oxygen separation and membrane reactor applications. While the conductivity of these materials can be quite high at elevated temperatures (typically 800-1000 C), much higher oxygen fluxes, or, alternatively, equivalent fluxes at lower temperatures, could be provided by supported thin or thick film membrane layers. Based on that motivation, the objective of this project was to explore the use of ultrafine aerosol-derived powder of a mixed-conducting ceramic material for fabrication of supported thick-film dense membranes. The project focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} (SCFO) because of the desirable permeability and stability of that material, as reported in the literature. Appropriate conditions to produce the submicron SrCo{sub 0.5}FeO{sub x} powder using aerosol pyrolysis were determined. Porous supports of the same composition were produced by partial sintering of a commercially obtained powder that possessed significantly larger particle size than the aerosol-derived powder. The effects of sintering conditions (temperature, atmosphere) on the porosity and microstructure of the porous discs were studied, and a standard support fabrication procedure was adopted. Subsequently, a variety of paste and slurry formulations were explored utilizing the aerosol-derived SCFO powder. These formulations were applied to the porous SCFO support by a doctor blade or spin coating procedure. Sintering of the supported membrane layer was then conducted, and additional layers were deposited and sintered in some cases. The primary characterization methods were X-ray diffraction and scanning electron microscopy, and room-temperature nitrogen permeation was used to assess defect status of the membranes.We found that non-aqueous paste/slurry formulations incorporating

  14. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kevin Peter [Univ. of Rochester, NY (United States)

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR, HSR) were isolated from rabbit leg muscle. They were then diluted and washed with sucrose or KCl and referred to as sucrose or KCl washed vesicles. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes where as the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material. The LSR consists of predominantly Ca2+ + Mg2+ ATPase (80 to 90%), a small amount of the high affinity Ca binding protein (5%), and a 5000 dalton proteolipid. The sucrose HSR vesicles contain the Ca2+ + Mg2+ ATPase (50%), Calsequestrin (25%), high affinity Ca binding protein (5%), one extrinsic 34,000 dalton protein (3%), one intrinsic 30,000 dalton protein (3%), a 9000 dalton proteolipid, and a 5000 dalton proteolipid. The sucrose--washed HSR vesicles contain greater than three times the calcium content of the sucrose washed LSR vesicles where as the KCl--washed vesicles contain less than 15 nmoles Ca2+ mg of protein each. The light and heavy sarcoplasmic reticulum vesicles were both able to accumulate calcium in the presence of ATP. Exchange of methanesulfonate for chloride resulted in the release of calcium from both the light and heavy SR vesicles. Sucrose causes a slight inhibition of chloride--induced calcium release from the heavy SR vesicles but it greatly reduces the release of calcium from the light SR vesicles. Sodium dantrolene (20 uM) has no effect on the release of calcium from the light SR vesicles but it inhibits the release of calcium from the heavy SR vesicles. The results indicate that the chloride--induced release of calcium may be acting by two mechanisms, osmotic swelling and depolarization.

  15. Synthesis and characterization of a new material based on porous silica-Chemically immobilized C,N-pyridylpyrazole for heavy metals adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Radi, Smaail [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Departement de Chimie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco)], E-mail: radi_smaail@yahoo.fr; Attayibat, Ahmed [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Departement de Chimie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco); Lekchiri, Yahya [Laboratoire de Biochimie, Departement de Biologie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco); Ramdani, Abdelkrim [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Departement de Chimie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco); Bacquet, Maryse [Laboratoire de Chimie Macromoleculaire, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq (France)

    2008-10-15

    The immobilization of C,N-pyridylpyrazole on the surface of epoxy group containing silica gel phase for the formation of a newly synthesized material based on porous silica-bound C,N-pyridylpyrazole (SGPP) is described. The surface modification was characterized by {sup 13}C NMR of solid sample, elemental analysis and infrared spectra and was studied and evaluated by determination of the surface area using the BET equation, the adsorption and desorption capability using the isotherm of nitrogen and BJH pore sizes, respectively. The new material exhibits good thermal stability determined by thermogravimetry curves. The synthesized material was utilised in column and batch methods for separation and trace extraction of (Hg{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, K{sup +}, Na{sup +} and Li{sup +}) and compared to results of classical liquid-liquid extraction with the unbound C,N-pyridylpyrazole compound. The grafting at the surface of silica does not affect complexing properties of the ligand and the material exhibits a high selectivity toward Hg(II)

  16. Measurement of electrons from heavy-flavour decays in Pb-Pb collisions at SNN = 2.76 TeV with ALICE

    NARCIS (Netherlands)

    Thomas, Deepa

    2014-01-01

    The measurement of heavy-flavour (charm and beauty) production in ultra-relativistic heavy-ion collisions provides an important contribution to the study of the properties of the hot and dense medium created in such collisions. One approach to measure heavy-flavour production is via electrons from

  17. Controlled Dense Coding with the W State

    Science.gov (United States)

    Yang, Xue; Bai, Ming-qiang; Mo, Zhi-wen

    2017-11-01

    The average amount of information is an important factor in implementing dense coding. Based on this, we propose two schemes for controlled dense coding by using the three-qubit entangled W state as the quantum channel in this paper. In these schemes, the controller (Charlie) can adjust the local measurement angle 𝜃 to modulate the entanglement, and consequently the average amount of information transmitted from the sender (Alice) to the receiver (Bob). Although the results for the average amounts of information are the same from the different two schemes, the second scheme has advantage over the first scheme.

  18. Accelerating Dense Linear Algebra on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    GPUs have already become an integral part of high performance scientific computing, since they offer dedicated parallel hardware that can potentially accelerate the execution of many scientific applications. In this talk, I will consider the automatic performance acceleration of dense vector...... and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...... architecture). Most of the techniques I discuss for accelerating dense linear algebra are applicable to memory-bound GPU algorithms in general....

  19. Physical Modelling of Proton and Heavy Ion Radiation using Geant4

    Directory of Open Access Journals (Sweden)

    Douglass M.

    2012-10-01

    Full Text Available Protons and heavy ion particles are considered to be ideal particles for use in external beam radiotherapy due to superior properties of the dose distribution that results when these particles are incident externally and due to their relative biological effectiveness. While significant research has been performed into the properties and physical dose characteristics of heavy ions, the nuclear reactions (direct and fragmentation undergone by He4, C12 and Ne20 nuclei used in radiotherapy in materials other than water is still largely unexplored. In the current project, input code was developed for the Monte Carlo toolkit Geant 4 version 9.3 to simulate the transport of several mono-energetic heavy ions through water. The relative dose contributions from secondary particles and nuclear fragments originating from the primary particles were investigated for each ion in both water and dense bone (ICRU media. The results indicated that the relative contribution to the total physical dose from nuclear fragments increased with both increasing particle mass and with increasing medium density. In the case of 150 MeV protons, secondary particles were shown to contribute less than 0.5% of the peak dose and as high as 25% when using 10570 MeV neon ions in bone. When water was substituted for a bone medium, the contributions from fragments increased by more than 6% for C12 and Ne20.

  20. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  1. Heavy flavored jet modification in CMS

    CERN Document Server

    AUTHOR|(CDS)2084335

    2015-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy-flavor-tagged jets (from charm and bottom quarks) in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. In this talk, we present the heavy flavor jet spectra and measurements of the nuclear modification factors in both PbPb and pPb as a function of transverse momentum and pseudorapidity, using the high statistics pp, pPb and PbPb data taken in 2011 and 2013. Finally, we also will present a proposal for c-jet tagging methodology to be used for the upcoming hi...

  2. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, Jan-Erik; Andrews, David; Futaana, Yoshifumi; Masters, Adam; Thomas, Nicolas; De Sanctis, Maria Cristina; Herique, Alain; Retherford, Kurt; Tortora, Paolo; Trigo-Rodriguez, Joseph; Ivchenko, Nickolay; Simon, Sven

    2017-04-01

    We propose a spacecraft mission (Heavy Metal) to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×10(19) kg make it one of the largest and densest of asteroids, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. The M5 mission Heavy Metal will investigate if (16) Psyche is the exposed metallic core of a planetesimal, formed early enough to melt and differentiate. High-resolution mapping of the surface in optical, IR, UV and radar wavebands, along with the determination of the shape and gravity field will be used to address the formation and subsequent evolution of (16) Psyche, determining the origin of metallic asteroids. It is conceivable that a cataclysmic collision with a second body led to the ejection of all or part of the differentiated core of the parent body. Measurements at (16) Psyche therefore provide a possibility to directly examine an iron-rich planetary core, similar to that expected at the center of all the major planets including Earth. A short-lived dynamo producing a magnetic field early in the life of (16) Psyche could have led to a remnant field (of tens of micro Tesla) being preserved in the body today. (16) Psyche is embedded in the variable flow of the solar wind. Whereas planetary magnetospheres and induced magnetospheres are the result of intense dynamo fields and dense conductive ionospheres presenting obstacles to the solar wind, (16) Psyche may show an entirely new 'class' of interaction as a consequence of its lack of a significant atmosphere, the extremely high bulk electrical conductivity of the asteroid, and the possible presence of intense magnetic fields retained in iron-rich material. The small characteristic scale of (16) Psyche ( 200 km) firmly places any solar wind interaction in the "sub-MHD" scale, in which kinetic

  3. Dense ceramic membranes for methane conversion

    NARCIS (Netherlands)

    Bouwmeester, Henricus J.M.

    2003-01-01

    Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700 °C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor,

  4. Electromagnetic probes in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    van Hees H.

    2015-01-01

    Full Text Available Due to their penetrating nature, electromagnetic probes, i.e., lepton-antilepton pairs (dileptons and photons are unique tools to gain insight into the nature of the hot and dense medium of strongly-interacting particles created in relativistic heavy-ion collisions, including hints to the nature of the restoration of chiral symmetry of QCD. Of particular interest are the spectral properties of the electromagnetic current-correlation function of these particles within the dense and/or hot medium. The related theoretical investigations of the in-medium properties of the involved particles in both the partonic and hadronic part of the QCD phase diagram underline the importance of a proper understanding of the properties of various hadron resonances in the medium.

  5. Application of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2016-06-01

    Full Text Available Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD, scanning electron microscopy (SEM and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong pore size distribution peaks with average of 37.8 Å and pore volume of 0.41 cm3/g and the (Brunauer–Emmett–TellerBET specific surface area of 365 m2/g. Hydrothermal and non-hydrothermal spherical TiO2 nanoporous have been used as adsorbent to study of the adsorption behavior of Pb(II, Co(II and Ni(II ions from aqueous system in a batch system. Effect of equilibrium time on adsorption Pb(II, Co(II and Ni(II ions on these adsorbent was studied The results show that the shaking time 0.5 to 10h has no serious effect on the percentage of ions removal, and the adsorption is fast in all cases. The maximum uptake capacities of Hydrothermal and non-hydrothermal spherical TiO2 nanoporous was calculated. Both hydrothermal and non-hydrothermal TiO2 nanoporous materials were found to have very good potential as new adsorbents in removal of these ions. In batch systems the maximum uptake capacities of Pb(II, Ni(II and Co(II on the hydrothermal and non-hydrothermal TiO2 nanoporous materials was Co(II > Pb(II > Ni(II and Co(II > Ni(II > Pb(II, respectively.

  6. Characterization of damaging in apatitic materials irradiated with heavy ions and thermally annealed; Caracterisation de l'endommagement de materiaux apatitiques irradies aux ions lourds et recuits thermiquement

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, R

    2004-12-15

    Some minerals belonging to the family of apatite are seen to be potential candidates for use as conditioning matrices or transmutation targets for high level nuclear waste management. Indeed, studies of natural nuclear reactors (Oklo) highlighted the strong ability of these minerals to anneal irradiation damage. In order to determine the global behaviour of these materials, we performed a fundamental study on the evolution of irradiation damage induced by various heavy ions in two apatites: a natural phospho-calcic fluor-apatite from Durango and a synthetic sintered mono-silicated fluor-apatite, called britholite. The damage in these materials was measured by using channelling R.B.S. and X-ray diffraction respectively and by determining an amorphization effective radius Re. The results revealed a similar behaviour for both apatites according to the electronic energy deposit at the entrance of the material. In addition, the effect of an isothermal annealing at 300 C was quantified on a mono-silicated britholite previously irradiated with Kr ions. We highlighted in this case the return of the lattice parameters to their initial values, followed by a partial and slow rebuilding of the crystalline lattice versus the annealing time. Finally, we followed the changes in the morphology of etch pits in the Durango fluor-apatite after acid dissolution as a function of the energy deposit by the ions. We showed that the influence of crystallography leads quickly to opening angles close to 30 degrees. The calculation of etching velocities within the irradiated material highlighted that there is a range of deposit energy where the velocity ratio increases strongly before becoming constant. (author)

  7. Chemical Dense Gas Modeling in Cities

    Science.gov (United States)

    Brown, M. J.; Williams, M. D.; Nelson, M. A.; Streit, G. E.

    2007-12-01

    Many industrial facilities have on-site storage of chemicals and are within a few kilometers of residential population. Chemicals are transported around the country via trains and trucks and often go through populated areas on their journey. Many of the chemicals, like chlorine and phosgene, are toxic and when released into the air are heavier-than-air dense gases that hug the ground and result in high airborne concentrations at breathing level. There is considerable concern about the vulnerability of these stored and transported chemicals to terrorist attack and the impact a release could have on highly-populated urban areas. There is the possibility that the impacts of a dense gas release within a city would be exacerbated since the buildings might act to trap the toxic cloud at street level and channel it over a large area down side streets. However, no one is quite sure what will happen for a release in cities since there is a dearth of experimental data. There are a number of fast-running dense gas models used in the air pollution and emergency response community, but there are none that account for the complex flow fields and turbulence generated by buildings. As part of this presentation, we will discuss current knowledge regarding dense gas releases around buildings and other obstacles. We will present information from wind tunnel and field experiments, as well as computational fluid dynamics modeling. We will also discuss new fast response modeling efforts which are trying to account for dense gas transport and dispersion in cities.

  8. A heavy load for heavy ions

    CERN Multimedia

    2003-01-01

    On 25 September, the two large coils for the dipole magnet of ALICE, the LHC experiment dedicated to heavy ions, arrived at Point 2 on two heavy load trucks after a 1200 km journey from their assembly in Vannes, France.

  9. Open heavy flavor and quarkonia measurements in heavy-ion collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Bielcik Jaroslav

    2014-04-01

    Full Text Available The properties of the hot and dense nuclear matter produced at RHIC in heavy-ion collisions can be investigated in multiple ways by heavy flavor production. The STAR and PHENIX experiments have excellent capability to study both open heavy flavor and quarkonia. Heavy quarks are produced in early stage of the collisions and the mechanisms of their interaction with nuclear matter are not yet well understood. The open heavy flavor hadrons can be studied using electrons from their semileptonic decays or via direct reconstruction through their hadronic decay channels. The heavy quarkonia production is expected to be sequentially suppressed depending on the temperature of the produced nuclear matter. However, cold nuclear matter effects play an important role and have to be well understood. In this paper we report recent results from the RHIC heavyion program on non-photonic electrons, direct reconstruction of charm mesons, J/ψ as well as ϒ in p+p, d+Au and Au+Au collisions at √sNN = 200 GeV.

  10. The bioaccumulation of heavy metals in barley (Hordeum vulgare L cultivated on fly ash dump mixed with compost and natural zeolite materials

    Directory of Open Access Journals (Sweden)

    Smaranda Mâșu

    2012-10-01

    Full Text Available The physic-chemical characteristics of the upper layers of fly ash dumps are very important when phytostabilizationplant selection is carried out. Plants with topsoil well developed roots, like cereals are used to stabilize fly ash dumpsin order to eliminate the deflation, erosion, etc. These plant species could be used in thephytostabilization/phytoextraction variant taking into account their metal hyper accumulation capacity, and also inphytostabilization variant by adequate topsoil treatments when a decrease mobility of metals from soil to plants isachieved and thus a less toxic crop is obtained. This study presents a comparative analysis of the metalbioaccumulation degree in plant tissues (grain and straw of barley cultivated on fly ash variants treated withdifferent quantities of compost in the absence/presence of natural zeolite materials, indigenous volcanic tuff. Theaddition of plant debris and sewage sludge compost mixed with natural zeolite materials has lowered thebioaccumulation of Cr with 49%, of Cu with 29%, Fe with more than 77.5%, in grains and straw when compared tountreated fly ash. Barley plants does not allow for Pb and Ni transfer from the fly ash in the aerial part of tissue.

  11. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    Science.gov (United States)

    Qiao, Bin; Shen, X. F.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-10-01

    Among various laser-driven acceleration schemes, radiation pressure acceleration (RPA) is regarded as one of the most promising schemes to obtain high-quality ion beams. Although RPA is very attractive in principle, it is difficult to be achieved experimentally. One of the most important reasons is the dramatic growth of the multi-dimensional Rayleigh-Taylor-like (RT) instabilities. In this talk, we report a novel method to achieve stable RPA of ions from laser-irradiated ultrathin foils, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as electron loss induced by the RT and other instabilities are significantly offset and suppressed so that stable acceleration of ions are maintained. Supported by the NSAF, Grant No. U1630246; the NNSF China Grants No. 11575298; and the National Key Program of S&T Research and Development, Grant No. 2016YFA0401100.

  12. Phosphate Ca{sub 1/4}Sr{sub 1/4}Zr{sub 2}(PO{sub 4}){sub 3} of the NaZr{sub 2}(PO{sub 4}){sub 3} structure type: Synthesis of a dense ceramic material and its radiation testing

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, A.I., E-mail: albina.orlova@inbox.ru [N.I. Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, 603950 Nizhny Novgorod (Russian Federation); Volgutov, V.Yu.; Mikhailov, D.A.; Bykov, D.M. [N.I. Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, 603950 Nizhny Novgorod (Russian Federation); Skuratov, V.A. [Joint Institute for Nuclear Research, Joliot-Curie St. 6, 141980 Dubna (Russian Federation); Chuvil’deev, V.N.; Nokhrin, A.V.; Boldin, M.S.; Sakharov, N.V. [Physico-Technical Research Institute of the State University of Nizhny Novgorod, Gagarina Ave. 23, b. 3, 603950 Nizhny Novgorod (Russian Federation)

    2014-03-15

    Highlights: •High density ceramics with NZP structure were prepared by Spark Plasma Sintering. •Ceramic materials were irradiated in cyclotron by Xe ions with fluences 6 × 10{sup 10} to 1 × 10{sup 13} ions/cm{sup 2}. •The conditions of transformation from metamict to crystalline state have been found. -- Abstract: The powder of phosphate Ca{sub 1/4}Sr{sub 1/4}Zr{sub 2}(PO{sub 4}){sub 3} was synthesized by sol–gel processes in the presence of citric acid and ethylene glycol. Ceramic samples were prepared from this powder by Spark Plasma Sintering (SPS), their relative densities were found to be 99.5 ± 0.3% after the isothermal treatment at 860 °S for 3 min. Sintered disc-shaped ceramic samples (d = 10 mm, h = 4 mm) were bombarded at 300 K by 167 MeV Xe{sup 26+} ions with fluences ranging from 6 ⋅ 10{sup 10} to 1 ⋅ 10{sup 13} ions/cm{sup 2}. It was found that exposure to the highest fluence (10{sup 13} ion/cm{sup 2}) led to a complete amorphization of the irradiated layer. The observed phase transition is ascribed to the formation of amorphous latent tracks via dense electronic excitations. Postradiation heat treatment revealed that the transformation from metamict to crystalline form took place after annealing at T = 200, 300, 400, 500, 600 and 800 °S and t = 3, 13, 11, 5, 17 and 15 h, respectively.

  13. Heavy Menstrual Bleeding

    Science.gov (United States)

    ... can cause heavy bleeding. • Medications—Blood thinners and aspirin can cause heavy menstrual bleeding. The copper intrauterine ... on the ovaries, fallopian tubes, and other pelvic structures. Endometrium: The lining of the uterus. Fibroids: Growths, ...

  14. Avaliação da integridade e da retenção de metais pesados em materiais estabilizados por solidificação Assessment of integrity and retention of heavy metals in materials stabilized by solidification

    Directory of Open Access Journals (Sweden)

    André Luiz Fiquene de Brito

    2009-03-01

    Full Text Available A quantidade de resíduos sólidos industriais tem aumentado significativamente em decorrência da industrialização, e o seu gerenciamento adequado é necessário para reduzir o impacto ao meio ambiente e aos ecossistemas. Neste trabalho, foram avaliadas a integridade e a retenção de metais pesados em materiais estabilizados por solidificação. Foi adotado o planejamento completamente aleatorizado com um único fator, ou seja, foram comparadas as médias de quatro tratamentos (A, B, C e D com 0, 40, 50 e 60% respectivamente de contaminantes e três repetições. Cimento Portland comum, bentonita sódica e hidróxido de cálcio foram usados para estabilizar por solidificação o resíduo sólido sintético contendo óxido de Cd2+, Pb2+ e Cu2+. Pode-se concluir que os tratamentos influenciaram no resultado de lixiviação do cádmio, chumbo e cobre. Os tratamentos mostraram que as concentrações do extrato solubilizado e lixiviado aumentam em função da quantidade de cádmio, chumbo e cobre adicionada. O maior valor encontrado foi para o material proveniente do tratamento D, que apresentou lixiviação igual a 32,815 mg.kg-1 para o cádmio e 29,769 mg.kg-1 para o chumbo. Para os ensaios de integridade/durabilidade, constatou-se que o aumento da absorção de água fez com que a resistência à compressão diminuísse. O uso de cimento, de hidróxido de cálcio e de bentonita sódica se mostrou ideal para retenção de metais pesados, evitando a sua lixiviação e a solubilização para o meio ambiente.As the quantity of hazardous industrial wastes increases significantly owing to rapid industrialization, its appropriate management is required to reduce adverse impacts on humans and ecosystems. This work evaluated the integrity and retention of heavy metals in materials stabilized by solidification. It was adopted a completely randomized design with a single factor, that is, the averages of four treatments were compared (A, B, C and D with 0

  15. Current and Perspective Applications of Dense Plasma Focus Devices

    Science.gov (United States)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  16. Topological groups with dense compactly generated subgroups

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujita

    2002-04-01

    Full Text Available A topological group G is: (i compactly generated if it contains a compact subset algebraically generating G, (ii -compact if G is a union of countably many compact subsets, (iii 0-bounded if arbitrary neighborhood U of the identity element of G has countably many translates xU that cover G, and (iv finitely generated modulo open sets if for every non-empty open subset U of G there exists a finite set F such that F  U algebraically generates G. We prove that: (1 a topological group containing a dense compactly generated subgroup is both 0-bounded and finitely generated modulo open sets, (2 an almost metrizable topological group has a dense compactly generated subgroup if and only if it is both 0-bounded and finitely generated modulo open sets, and (3 an almost metrizable topological group is compactly generated if and only if it is -compact and finitely generated modulo open sets.

  17. Dense deposit disease and C3 glomerulopathy.

    Science.gov (United States)

    Barbour, Thomas D; Pickering, Matthew C; Terence Cook, H

    2013-11-01

    C3 glomerulopathy refers to those renal lesions characterized histologically by predominant C3 accumulation within the glomerulus, and pathogenetically by aberrant regulation of the alternative pathway of complement. Dense deposit disease is distinguished from other forms of C3 glomerulopathy by its characteristic appearance on electron microscopy. The extent to which dense deposit disease also differs from other forms of C3 glomerulopathy in terms of clinical features, natural history, and outcomes of treatment including renal transplantation is less clear. We discuss the pathophysiology of C3 glomerulopathy, with evidence for alternative pathway dysregulation obtained from affected individuals and complement factor H (Cfh)-deficient animal models. Recent linkage studies in familial C3 glomerulopathy have shown genomic rearrangements in the Cfh-related genes, for which the novel pathophysiologic concept of Cfh deregulation has been proposed. © 2013 Elsevier Inc. All rights reserved.

  18. The kinetic chemistry of dense interstellar clouds

    Science.gov (United States)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  19. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  20. Particle identification system based on dense aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Beloborodov, K.I., E-mail: K.I.Beloborodov@inp.nsk.su [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, 5, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Golubev, V.B. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Gulevich, V.V. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Martin, K.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Serednyakov, S.I. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); and others

    2013-12-21

    A threshold Cherenkov counter based on dense aerogel with refraction index n=1.13 is described. This counter is used for kaon identification at momenta below 1 GeV/c in the SND detector, which takes data at the VEPP-2000 e{sup +}e{sup −} collider. The results of measurements of the counter efficiency using electrons, muons, pions, and kaons produced in e{sup +}e{sup −} annihilation are presented.

  1. Dense medium cyclone control - a reconsideration

    Energy Technology Data Exchange (ETDEWEB)

    Firth, B.A. [CSIRO Energy Technology, Kenmore, Qld (Australia)

    2009-05-15

    The current process management and control of dense medium cyclones is based on the measurement of feed medium density and pressure. This paper considers the relationships between the controlling factors and the relative density of separation and Ep. These relationships have been developed from the analysis of over 20 data sets on modern large cyclones in which important factors such as overflow and underflow densities, feed solids flow rate, medium to coal ratio, and loading to the spigot were recorded.

  2. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Dense planetary rings and the viscous overstability

    Science.gov (United States)

    Latter, Henrik N.; Ogilvie, Gordon I.

    2008-06-01

    This paper examines the onset of the viscous overstability in dense particulate rings. First, we formulate a dense gas kinetic theory that is applicable to the saturnian system. Our model is essentially that of Araki and Tremaine [Araki, S., Tremaine, S., 1986. Icarus 65, 83-109], which we show can be both simplified and generalised. Second, we put this model to work computing the equilibrium properties of dense planetary rings, which we subsequently compare with the results of N-body simulations, namely those of Salo [Salo, H., 1991. Icarus 90, 254-270]. Finally, we present the linear stability analyses of these equilibrium states, and derive criteria for the onset of viscous overstability in the self-gravitating and non-self-gravitating cases. These are framed in terms of particle size, orbital frequency, optical depth, and the parameters of the collision law. Our results compare favourably with the simulations of Salo et al. [Salo, H., Schmidt, J., Spahn, F., 2001. Icarus 153, 295-315]. The accuracy and practicality of the continuum model we develop encourages its general use in future investigations of nonlinear phenomena.

  4. CFD modeling of dense medium cyclone

    Energy Technology Data Exchange (ETDEWEB)

    Rajamani, R.K.; Delgadillo, J.; Kodukula, U.B.; Alkac, D. [University of Utah, Salt Lake City, UT (United States)

    2010-07-01

    A number of empirical models are in existence for the dense medium cyclone (DMC) and in recent years this subject has been broached with computational fluid dynamics (CFD). The dense medium presents a centrifugal field within the cyclone body. The coal particles separate in this field due to various forces acting on them. Hence, CFD is ideally suited for the modeling of the DMC. The Large Eddy Simulation (LES) method for resolving the turbulence was used in the CFD simulation of a 76mm dense medium cyclone. In particular, the magnetite was modeled as three granular fluids. In the simulation the diameter of the vortex finder and spigot are varied to compare with the experimental data of P. A. Verghese and T. C. Rao. The results obtained using LES turbulence model is found to be accurate in terms of the cut density and the slope of the distribution curves. Thus, the three granular fluid modeling of the magnetite stream is a computationally simpler method for the analysis of DMC.

  5. Ion Transport in Solid and Warm Dense Targets

    Science.gov (United States)

    Beg, F. N.; Qiao, B.; McGuffey, C.; Kim, J.; Wei, M.-S.; Stephens, R. B.

    2013-10-01

    High intensity proton/ion beam transport and energy deposition in solids and Warm Dense Matter (WDM) is not well understood even though it is important to several applications including heavy ion fusion and laser-produced ion beam driven fast ignition fusion. Ion stopping power models have been developed for the relevant regimes but thus far lack experimental validation. One of the challenges to understand ion beam transport and energy deposition in solid density cold matter and WDM is self-consistently accounting for the matter's response to the intense beam (heating, ionization, strong return currents and self-generated electric and magnetic fields) and in turn the beam's response to the matter (temperature gradients, current-driven fields). In this presentation, ion stopping-power module implemented in the hybrid particle-in-cell code LSP and its applications in modeling intense proton beam transport and heating in solids and WDM targets will be discussed. In addition, relevance of this work to the Matter in Extreme Condition end station with the unique capability of the combined high flux hard x-ray pulse and the high intensity short pulse optical laser at the Linac Coherent Light Source (LCLS) will be presented. This work was partially supported by the DOE/NNSA National Laser User Facility program, Grant DE-NA0002034.

  6. Bonding and structure in dense multi-component molecular mixtures.

    Science.gov (United States)

    Meyer, Edmund R; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D; Collins, Lee A

    2015-10-28

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. A basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  7. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  8. FttC-Based Fronthaul for 5G Dense/Ultra-Dense Access Network: Performance and Costs in Realistic Scenarios

    OpenAIRE

    Franco Mazzenga; Romeo Giuliano; Francesco Vatalaro

    2017-01-01

    One distinctive feature of the next 5G systems is the presence of a dense/ultra-dense wireless access network with a large number of access points (or nodes) at short distances from each other. Dense/ultra-dense access networks allow for providing very high transmission capacity to terminals. However, the deployment of dense/ultra-dense networks is slowed down by the cost of the fiber-based infrastructure required to connect radio nodes to the central processing units and then to the core net...

  9. Variational Theory of Hot Dense Matter

    Science.gov (United States)

    Mukherjee, Abhishek

    2009-01-01

    We develop a variational theory of hot nuclear matter in neutron stars and supernovae. It can also be used to study charged, hot nuclear matter which may be produced in heavy-ion collisions. This theory is a generalization of the variational theory of cold nuclear and neutron star matter based on realistic models of nuclear forces and pair…

  10. Constraints on the equation of state of cold dense matter from nuclear physics and astrophysics

    Directory of Open Access Journals (Sweden)

    Fantina A. F.

    2014-03-01

    Full Text Available The Brussels-Montreal equations of state of cold dense nuclear matter that have been recently developed are tested against various constraints coming from both nuclear physics and astrophysics. The nuclear physics constraints include the analysis of nuclear flow and kaon production in heavy-ion collision experiments, as well as recent microscopic many-body calculations of infinite homogeneous neutron matter. Astrophysical observations, especially recent neutron-star mass measurements, provide valuable constraints on the high-density part of the equation of state that is not accessible in laboratory experiments.

  11. Dense plasma driven ultrafast formation of FePt organization on ...

    Indian Academy of Sciences (India)

    69

    be used to process the sample placed down the anode stream. The details of ions/plasma processing in plasma focus device can be found in review paper by Rawat [22]. The energetic ions and hot dense decaying plasma interacts with the exposed material surface and change its properties by means of transient thermal ...

  12. Effect of mechanical cycling on the flexural strength of densely sintered ceramics

    NARCIS (Netherlands)

    Itinoche, Koiti Marco; Ozcan, Mudu; Bottino, Marco Antonio; Oyafuso, Denise

    2006-01-01

    Objectives. The aim of this study was to evaluate the effect of mechanical cycling on the biaxial flexural strength of two densely sintered ceramic materials. Methods. Disc shaped zirconia (In-Ceram Zirconia) and high alumina (Procera AllCeram) ceramic specimens (diameter: 15 min and thickness: 1.2

  13. Study of Heavy Flavours from Muons Measured with the ALICE Detector in Proton-Proton and Heavy-Ion Collisions at the CERN-LHC

    CERN Document Server

    Zhang, X; Zhou, D; Crochet, P

    Ultra-relativistic heavy-ion collisions aim at investigating the properties ofstrongly-interacting matter at extreme conditions of temperature and energy density. According to quantum chromodynamics (QCD) calculations, under such conditions, the formation of a deconfined medium, the Quark-Gluon Plasma (QGP), is expected. Amongst the most important probes of the properties of the QGP, heavy quarks are of particular interest since they are expected to be produced in hard scattering processes during the early stage of the collision and subsequently interact with the hot and dense medium. Therefore, the measurement of quarkonium states and open heavy flavours should provide essential information on the properties of the system formed at the early stage of heavy-ion collisions. Indeed, open heavy flavours are expected to be sensitive to the energy density through the mechanism of in-medium energy loss of heavy quarks, while quarkonium production should be sensitive to the initial temperature of the system through ...

  14. CePtSi: A new heavy-fermion compound

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.H.; Shelton, R.N.

    1987-04-01

    We find that CePtSi is a new heavy-fermion and coherent dense Kondo-lattice compound with no magnetic or superconducting transition above 70 mK. Measurements of the magnetic contribution to the electrical resistivity, static magnetic susceptibility, and low-temperature heat capacity of CePtSi are reported. This compound has a large value of the low-temperature magnetic susceptibility (chi(2.4 K) = 24.9 x 10/sup -3/ cm/sup 3//mol) and, characteristic of heavy-fermion compounds, an enormous coefficient of the electronic specific heat, ..gamma..approx.800 mJ/molX sup 2: .

  15. Leeuwpan fine coal dense medium plant

    CSIR Research Space (South Africa)

    Lundt, M

    2010-11-01

    Full Text Available as shown in Figure 5. When the circulating medium density is increased, the density of the feed to both the primary and secondary cyclones is increased, and relatively small increases in the circulating medium density causes fairly large increases... availability to treat the higher grade coal (the bottom layer of coal) from the no. 2 Seam for a local and export metallurgical market. Following the path of evolution, in 2007, Leeuwpan commissioned the first double stage ultra-fines dense medium cyclone...

  16. Gravity-driven dense granular flows

    Energy Technology Data Exchange (ETDEWEB)

    ERTAS,DENIZ; GREST,GARY S.; HALSEY,THOMAS C.; DEVINE,DOV; SILBERT,LEONARDO E.

    2000-03-29

    The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.

  17. Superfluid phase transitions in dense neutron matter.

    Science.gov (United States)

    Khodel, V A; Clark, J W; Zverev, M V

    2001-07-16

    The phase transitions in a realistic system with triplet pairing, dense neutron matter, have been investigated. The spectrum of phases of the 3P2-3F2 model, which adequately describes pairing in this system, is analytically constructed with the aid of a separation method for solving BCS gap equations in states of arbitrary angular momentum. In addition to solutions involving a single value of the magnetic quantum number (and its negative), there exist ten real multicomponent solutions. Five of the corresponding angle-dependent order parameters have nodes, and five do not. In contrast to the case of superfluid 3He, transitions occur between phases with nodeless order parameters.

  18. Graph Quasicontinuous Functions and Densely Continuous Forms

    Directory of Open Access Journals (Sweden)

    Lubica Hola

    2017-07-01

    Full Text Available Let $X, Y$ be topological spaces. A function $f: X \\to Y$ is said to be graph quasicontinuous if there is a quasicontinuous function $g: X \\to Y$ with the graph of $g$ contained in the closure of the graph of $f$. There is a close relation between the notions of graph quasicontinuous functions and minimal usco maps as well as the notions of graph quasicontinuous functions and densely continuous forms. Every function with values in a compact Hausdorff space is graph quasicontinuous; more generally every locally compact function is graph quasicontinuous.

  19. Phase boundary of hot dense fluid hydrogen.

    Science.gov (United States)

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-11-09

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations.

  20. Heavy quark masses

    Science.gov (United States)

    Testa, Massimo

    1990-01-01

    In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.

  1. The Transition from Diffuse to Dense Gas in Herschel Dust Emission Maps

    Science.gov (United States)

    Goldsmith, Paul

    has many advantages over previous studies, where information about dense cores and their environment was pieced together using a variety of methods an instruments. Now, the Herschel maps permit for the first time to characterize both molecular clouds and their cores in one shot in a single data set. We use these data to answer a variety of simple yet very important questions. First, we study whether dense cores have sharp boundaries. If such boundaries exist, they would indicate that dense cores have an individual identity well-separate from the near-fractal cloud structure on larger spatial scales. Second, we will --- in very approximate sense --- derive global density gradients for molecular clouds from radii <0.1pc to 5pc and larger. These "synoptic" density gradients provide a useful quantitative description of the relation between cloud material at very different spatial scales. Also, these measurements can be compared to synoptic density gradients derived in the same fashion for theoretical cloud models. Third, we study how dense cores are nested into the "clumps" forming molecular clouds, i.e., we study whether the most massive dense cores in a cloud (<0.1pc) reside in the most massive regions identified on lager spatial scale (1pc and larger). This will show how the properties of dense cores are influenced by their environment. Our study will derive unique constraints to cloud structure. But our small sample forbids to make strong statements. This pilot study does thus prepare future larger efforts. Our entire project builds on data reduction and analysis methods which our team has used in the past. This guarantees a swift completion of the project with predictable efficiency. We present pilot studies that demonstrate that the data and analysis methods are suited to tackle the science goals. This project is thus guaranteed to return significant results.

  2. Production of heavy water

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Larry S.; Brown, Sam W.; Phillips, Michael R.

    2017-06-06

    Disclosed are methods and apparatuses for producing heavy water. In one embodiment, a catalyst is treated with high purity air or a mixture of gaseous nitrogen and oxygen with gaseous deuterium all together flowing over the catalyst to produce the heavy water. In an alternate embodiment, the deuterium is combusted to form the heavy water. In an alternate embodiment, gaseous deuterium and gaseous oxygen is flowed into a fuel cell to produce the heavy water. In various embodiments, the deuterium may be produced by a thermal decomposition and distillation process that involves heating solid lithium deuteride to form liquid lithium deuteride and then extracting the gaseous deuterium from the liquid lithium deuteride.

  3. Warm dense mater: another application for pulsed power hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Reinovsky, Robert Emil [Los Alamos National Laboratory

    2009-01-01

    Pulsed Power Hydrodynamics (PPH) is an application of low-impedance pulsed power, and high magnetic field technology to the study of advanced hydrodynamic problems, instabilities, turbulence, and material properties. PPH can potentially be applied to the study of the properties of warm dense matter (WDM) as well. Exploration of the properties of warm dense matter such as equation of state, viscosity, conductivity is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to slightly above solid density) and modest temperatures ({approx}1-10 eV). Conditions characteristic of WDM are difficult to obtain, and even more difficult to diagnose. One approach to producing WDM uses laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers are applying these techniques. Pulsed power hydrodynamic techniques, such as large convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through multiple shock compression and heating of normal density material between a massive, high density, energetic liner and a high density central 'anvil' are possible ways to reach relevant conditions. Another avenue to WDM conditions is through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. In this paper we will examine the challenges to pulsed power technology and to pulsed power systems presented by the opportunity to explore this interesting region of parameter space.

  4. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  5. Wireless Fractal Ultra-Dense Cellular Networks

    Science.gov (United States)

    Hao, Yixue; Chen, Min; Hu, Long; Song, Jeungeun; Volk, Mojca; Humar, Iztok

    2017-01-01

    With the ever-growing number of mobile devices, there is an explosive expansion in mobile data services. This represents a challenge for the traditional cellular network architecture to cope with the massive wireless traffic generated by mobile media applications. To meet this challenge, research is currently focused on the introduction of a small cell base station (BS) due to its low transmit power consumption and flexibility of deployment. However, due to a complex deployment environment and low transmit power of small cell BSs, the coverage boundary of small cell BSs will not have a traditional regular shape. Therefore, in this paper, we discuss the coverage boundary of an ultra-dense small cell network and give its main features: aeolotropy of path loss fading and fractal coverage boundary. Simple performance analysis is given, including coverage probability and transmission rate, etc., based on stochastic geometry theory and fractal theory. Finally, we present an application scene and discuss challenges in the ultra-dense small cell network. PMID:28417927

  6. Solids flow rate measurement in dense slurries

    Energy Technology Data Exchange (ETDEWEB)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  7. Quantum molecular dynamics simulations of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I. [Los Alamos National Lab., Albuquerque, NM (United States)

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.

  8. Redesigning Triangular Dense Matrix Computations on GPUs

    KAUST Repository

    Charara, Ali

    2016-08-09

    A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels fail to achieve the percentage of the theoretical peak performance on GPUs that one would expect when running kernels with similar surface-to-volume ratio on hardware accelerators, i.e., the standard matrix-matrix multiplication (GEMM). The authors propose adopting a recursive formulation, which enriches the TRMM and TRSM inner structures with GEMM calls and, therefore, reduces memory traffic while increasing the level of concurrency. The new implementation enables efficient use of the GPU memory hierarchy and mitigates the latency overhead, to run at the speed of the higher cache levels. Performance comparisons show up to eightfold and twofold speedups for large dense matrix sizes, against the existing state-of-the-art TRMM and TRSM implementations from NVIDIA cuBLAS, respectively, across various GPU generations. Once integrated into high-level Cholesky-based dense linear algebra algorithms, the performance impact on the overall applications demonstrates up to fourfold and twofold speedups, against the equivalent native implementations, linked with cuBLAS TRMM and TRSM kernels, respectively. The new TRMM/TRSM kernel implementations are part of the open-source KBLAS software library (http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the NVIDIA cuBLAS library in the upcoming v8.0 release.

  9. Wireless Fractal Ultra-Dense Cellular Networks.

    Science.gov (United States)

    Hao, Yixue; Chen, Min; Hu, Long; Song, Jeungeun; Volk, Mojca; Humar, Iztok

    2017-04-12

    With the ever-growing number of mobile devices, there is an explosive expansion in mobile data services. This represents a challenge for the traditional cellular network architecture to cope with the massive wireless traffic generated by mobile media applications. To meet this challenge, research is currently focused on the introduction of a small cell base station (BS) due to its low transmit power consumption and flexibility of deployment. However, due to a complex deployment environment and low transmit power of small cell BSs, the coverage boundary of small cell BSs will not have a traditional regular shape. Therefore, in this paper, we discuss the coverage boundary of an ultra-dense small cell network and give its main features: aeolotropy of path loss fading and fractal coverage boundary. Simple performance analysis is given, including coverage probability and transmission rate, etc., based on stochastic geometry theory and fractal theory. Finally, we present an application scene and discuss challenges in the ultra-dense small cell network.

  10. Influence of manganese doping into HA powders on the properties of its dense bodies.

    Science.gov (United States)

    Natasha, A N; Sopyan, I; Mel, M; Ramesh, S

    2008-07-01

    The effect of Manganese (Mn) addition on the Vickers hardness and relative density of nanocrystalline hydroxyapatite (HA) dense bodies were studied. The starting Mn doped HA powders was synthesized via sol-gel method with Mn concentration varies from 2 mol% up to 15 mol% Mn. The Mn doped HA disc samples were prepared by uniaxial pressing at 200MPa and subsequently sintered at 1300 degrees C. Characterization was carried out where appropriate to determine the phases present, bulk density, Vickers hardness of the various content of Mn doped HA dense bodies. The addition of Mn was observed to influence the color appearance of the powders and dense bodies as well. Higher Mn concentration resulted in dark grey powders. It was also found that the hardness and relative density of the material increased as the Mn content increased and influenced by the crystallinity of the prepared Mn doped HA powders.

  11. Determination of heavy metals in the ambient atmosphere.

    Science.gov (United States)

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2017-01-01

    Heavy metal determination in ambient air is an important task for environmental researchers because of their toxicity to human beings. Some heavy metals (hexavalent chromium (Cr), arsenic (As), cadmium (Cd) and nickel (Ni)) have been listed as carcinogens. Furthermore, heavy metals in the atmosphere can accumulate in various plants and animals and enter humans through the food chain. This article reviews the determination of heavy metals in the atmosphere in different areas of the world since 2006. The results showed that most researchers concentrated on toxic metals, such as Cr, Cd, Ni, As and lead. A few studies used plant materials as bio-monitors for the atmospheric levels of heavy metals. Some researchers found higher concentrations of heavy metals surrounding industrial areas compared with residential and/or commercial areas. Most studies reported the major sources of the particulate matter and heavy metals in the atmosphere to be industrial emissions, vehicular emissions and secondary aerosols.

  12. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement

    OpenAIRE

    Dahms, Sven O.; Kuester, Miriam; Streb, Carsten; Roth, Christian; Str?ter, Norbert; Than, Manuel E

    2013-01-01

    Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated tha...

  13. A high repetition rate laser-heavy water based neutron source

    Science.gov (United States)

    Hah, Jungmoo; He, Zhaohan; Nees, John; Krushelnick, Karl; Thomas, Alexander; CenterUltrafast Optical Science Team

    2015-11-01

    Neutrons have numerous applications in diverse areas, such as medicine, security, and material science. For example, sources of MeV neutrons may be used for active interrogation for nuclear security applications. Recently, alternative ways to generate neutron flux have been studied. Among them, ultrashort laser pulse interactions with dense plasma have attracted significant attention as compact, pulse sources of neutrons. To generate neutrons using a laser through fusion reactions, thin solid density targets have been used in a pitcher-catcher arrangement, using deuterated plastic for example. However, the use of solid targets is limited for high-repetition rate operation due to the need to refresh the target for every laser shot. Here, we use a free flowing heavy water target with a high repetition rate (500 Hz) laser without a catcher. From the interaction between a 10 micron scale diameter heavy water stream with the Lambda-cubed laser system at the Univ. of Michigan (12mJ, 800nm, 35fs), deuterons collide with each other resulting in D-D fusion reactions generating 2.45 MeV neutrons. Under best conditions a time average of ~ 105 n/s of neutrons are generated.

  14. Application of clay minerals from Cayo Guan, Cuba, as sorbents of heavy metals and ceramic raw materials; Aplicaciones de los minerales arcillosos de Cayo Guan, Cuba, como adsorbentes de metales pesados y materia prima ceramica

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, D.; Barba, F.; Callejas, P.; Recio, P.

    2012-11-01

    It has been studied by Analysis Heating Microscope Optical the behaviour of some kaolinitic clays from a reservoir of Cayo Guan rich in iron oxides and low silica content proving to be a refractory materials whose softening appears after 1500 degree centigrade. It has obtained the workability diagram of the different clay minerals calculating the plasticity by the method of Casagrande spoon; only one of the samples is in the area suitable for extrusion. Vitrification diagrams report that the capacity of water absorption is <0.6 % when the temperature of 1400 degree centigrade is achieved. We have designed a program to calculate compositions of porcelain stoneware prepared from these modified clays adding low-cost raw materials that facilitate the formation of glassy phase ((potassium feldspar and glass cullet) and/or increase the silica (sand and diatomaceous earth used as filters in the brewing industry). With one of these compositions, prepared in the laboratory (60 % of clay, 30 % feldspar and 10 % of diatomaceous earth), calcined at 1250 degree centigrade with a heating rate of 15 degree centigrade/min, the results were: water absorption 0.8 %, and linear shrinkage 21 % without any deformation observed. These clays have been treated with acid to eliminate its high iron content and study its application as an sorbent of heavy metals as Cd{sup 2}+, Cr{sup 3}+. The results of the immobilization of these elements have been compared with those obtained with thermally activated vermiculite at 800 degree centigrade, showing that the treated samples show sorption of both cadmium and chromium below the vermiculite, but the non-treated ones are suitable to remove chromium; this is because these clays do not contain in its composition exchangeable ions (Ca{sup {sub 2}} +, Mg{sup 2} +, Na{sup +}, K{sup +}), and even if they are chemically activated only the presence of Fe ions is which produces form bindings (Cr{sub x}.Fe{sub 1}-x) (OH){sub 3} which favor Cr sorption

  15. Superconductivity in dense Mg1–xMxB2 (M = Zr, Nb, Mo; x = 0⋅05 ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Dense compacts of superconducting MgB2 material have been produced by sintering under 3 GPa pressure and 900°C using a cubic anvil apparatus. The starting material was produced by the powder in tube. (PIT) method at low pressure and in argon atmosphere. The effect of substitution of Mg sites with non-.

  16. Superconductivity in dense Mg1–xMxB2 (M= Zr, Nb, Mo; x= 0⋅ 05 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 3. Superconductivity in dense Mg1–MB2 (M = Zr, Nb, Mo; = 0.05) materials sintered under pressure. S Kalavathi C Divakar. Superconductors Volume 28 Issue 3 June 2005 pp 249-252 ...

  17. Frontiers and challenges in warm dense matter

    CERN Document Server

    Desjarlais, Michael; Redmer, Ronald; Trickey, Samuel

    2014-01-01

    Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent...

  18. Superfluid Phase Transitions in Dense Neutron Matter

    Energy Technology Data Exchange (ETDEWEB)

    Khodel, V. A.; Clark, J. W.; Zverev, M. V.

    2001-07-16

    The phase transitions in a realistic system with triplet pairing, dense neutron matter, have been investigated. The spectrum of phases of the P{sub 2}{sup 3}- F{sub 2}{sup 3} model, which adequately describes pairing in this system, is analytically constructed with the aid of a separation method for solving BCS gap equations in states of arbitrary angular momentum. In addition to solutions involving a single value of the magnetic quantum number (and its negative), there exist ten real multicomponent solutions. Five of the corresponding angle-dependent order parameters have nodes, and five do not. In contrast to the case of superfluid {sup 3}He , transitions occur between phases with nodeless order parameters.

  19. Binary Black Holes from Dense Star Clusters

    Science.gov (United States)

    Rodriguez, Carl

    2017-01-01

    The recent detections of gravitational waves from merging binary black holes have the potential to revolutionize our understanding of compact object astrophysics. But to fully utilize this new window into the universe, we must compare these observations to detailed models of binary black hole formation throughout cosmic time. In this talk, I will review our current understanding of cluster dynamics, describing how binary black holes can be formed through gravitational interactions in dense stellar environments, such as globular clusters and galactic nuclei. I will review the properties and merger rates of binary black holes from the dynamical formation channel. Finally, I will describe how the spins of a binary black hole are determined by its formation history, and how we can use this to discriminate between dynamically-formed binaries and those formed from isolated evolution in galactic fields.

  20. Properties of industrial dense gas plumes

    Science.gov (United States)

    Shaver, E. M.; Forney, L. J.

    Hazardous gases and vapors are often discharged into the atmosphere from industrial plants during catastrophic events (e.g. Union Carbide incident in Bhopal, India). In many cases the discharged components are more dense than air and settle to the ground surface downstream from the stack exit. In the present paper, the buoyant plume model of Hoult, Fay and Forney (1969, J. Air Pollut. Control Ass. 19, 585-590.) has been altered to predict the properties of hazardous discharges. In particular, the plume impingement point, radius and concentration are predicted for typical stack exit conditions, wind speeds and temperature profiles. Asymptotic expressions for plume properties at the impingement point are also derived for a constant crosswind and neutral temperature profile. These formulae are shown to be useful for all conditions.

  1. Anisotropic hydrodynamic function of dense confined colloids

    Science.gov (United States)

    Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2017-06-01

    Dense colloidal dispersions exhibit complex wave-vector-dependent diffusion, which is controlled by both direct particle interactions and indirect nonadditive hydrodynamic interactions mediated by the solvent. In bulk the hydrodynamic interactions are probed routinely, but in confined geometries their studies have been hitherto hindered by additional complications due to confining walls. Here we solve this issue by combining high-energy x-ray photon correlation spectroscopy and small-angle x-ray-scattering experiments on colloid-filled microfluidic channels to yield the confined fluid's hydrodynamic function in the short-time limit. Most importantly, we find the confined fluid to exhibit a strongly anisotropic hydrodynamic function, similar to its anisotropic structure factor. This observation is important in order to guide future theoretical research.

  2. Classification of mammographic patterns: beyond fraction of dense tissue

    Science.gov (United States)

    Judy, Philip F.; Nawfel, Richard; Jacobson, Francine L.; Smith, Darrel N.; Seltzer, Steven E.

    1999-05-01

    Women with mammograms that radiologists classify as dense have been found to have an increased risk of breast cancer. The purpose to this investigation was to determine whether human readers are willing and able to make reliable comparisons of five attributes of pairs of mammograms matched by a quantitative estimate of the fraction of dense tissue (FDT). Forty pairs of CC projections were digitized and presented using a computer workstation. The 40 pairs of mammograms had the same FDT as measured by a visual threshold procedure. Each breast image was from a different woman. The difference in the following 5 attributes were rated: (1) fraction of dense tissue, (2) fraction of homogeneous of the dense tissue, (3) fraction of ductal dense tissue, (4) prominence of scalloping of dense tissue, and (5) prominence of subareolar structures. The rating were replicated to evaluate their reliability. Spearman rank-order correlations of replicated measurements ranged from 0.89 to 0.65 (p was less than 0.0001). Homogeneous dense tissue ratings were negatively correlated with ductal dense tissue ratings (-0.59, p equals 0.0001). The prominence of scalloping rating was not significantly correlated with other attributes. The ratings of the attributes, except scalloping, were significantly correlated to differences mean gray level of breast parenchyma. Readers can make reliable judgments regarding the differences in attributes of mammograms that are matched by FDT. The negative correlation between the homogeneous dense and the ductal dense tissue ratings suggest that homogeneous dense and ductal dense tissues contend for perceived dense breast area. The absence of correlation between scalloping and other image attributes suggests further investigation of scalloping as an independent, breast-cancer risk factor is warranted.

  3. Embedded binaries and their dense cores

    Science.gov (United States)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  4. Dense gas dispersion in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-09-01

    Dense gas dispersion is characterized by buoyancy induced gravity currents and reduction of the vertical mixing. Liquefied gas releases from industrial accidents are cold because of the heat of evaporation which determines the density for a given concentration and physical properties. The temperature deficit is moderated by the heat flux from the ground, and this convection is an additional source of turbulence which affects the mixing. A simple model as the soil heat flux is used to estimate the ability of the ground to sustain the heat flux during release. The initial enthalpy, release rate, initial entrainment and momentum are discussed for generic source types and the interaction with obstacles is considered. In the MTH project BA experiments source with and without momentum were applied. The continuously released propane gas passed a two-dimensional removable obstacle perpendicular to the wind direction. Ground-level gas concentrations and vertical profiles of concentration, temperature, wind speed and turbulence were measured in front of and behind the obstacle. Ultrasonic anemometers providing fast velocity and concentration signals were mounted at three levels on the masts. The observed turbulence was influenced by the stability and the initial momentum of the jet releases. Additional information were taken from the `Dessert tortoise` ammonia jet releases, from the `Fladis` experiment with transition from dense to passive dispersion, and from the `Thorney Island` continuous releases of isothermal freon mixtures. The heat flux was found to moderate the negative buoyancy in both the propane and ammonia experiments. The heat flux measurements are compared to an estimate by analogy with surface layer theory. (au) 41 tabs., 146 ills., 189 refs.

  5. Evaluation of dense collagen matrices as medicated wound dressing for the treatment of cutaneous chronic wounds.

    Science.gov (United States)

    Helary, Christophe; Abed, Aicha; Mosser, Gervaise; Louedec, Liliane; Letourneur, Didier; Coradin, Thibaud; Giraud-Guille, Marie Madeleine; Meddahi-Pellé, Anne

    2015-02-01

    Cutaneous chronic wounds are characterized by an impaired wound healing which may lead to infection and amputation. When current treatments are not effective enough, the application of wound dressings is required. To date, no ideal biomaterial is available. In this study, highly dense collagen matrices have been evaluated as novel medicated wound dressings for the treatment of chronic wounds. For this purpose, the structure, mechanical properties, swelling ability and in vivo stability of matrices concentrated from 5 to 40 mg mL(-1) were tested. The matrix stiffness increased with the collagen concentration and was associated with the fibril density and thickness. Increased collagen concentration also enhanced the material resistance against accelerated digestion by collagenase. After subcutaneous implantation in rats, dense collagen matrices exhibited high stability without any degradation after 15 days. The absence of macrophages and neutrophils evidenced their biocompatibility. Subsequently, dense matrices at 40 mg mL(-1) were evaluated as drug delivery system for ampicillin release. More concentrated matrices exhibited the best swelling abilities and could absorb 20 times their dry weight in water, allowing for an efficient antibiotic loading from their dried form. They released efficient doses of antibiotics that inhibited the bacterial growth of Staphylococcus Aureus over 3 days. In parallel, they show no cytotoxicity towards human fibroblasts. These results show that dense collagen matrices are promising materials to develop medicated wound dressings for the treatment of chronic wounds.

  6. Consequences of the Solar System passage through dense interstellar clouds

    Directory of Open Access Journals (Sweden)

    A. G. Yeghikyan

    2003-06-01

    Full Text Available Several consequences of the passage of the solar system through dense interstellar molecular clouds are discussed. These clouds, dense (more than 100 cm-3, cold (10–50 K and extended (larger than 1 pc, are characterized by a gas-to-dust mass ratio of about 100, by a specific power grain size spectrum (grain radii usually cover the range 0.001–3 micron and by an average dust-to-gas number density ratio of about 10-12. Frequently these clouds contain small-scale (10–100 AU condensations with gas concentrations ranging up to 10 5 cm-3. At their casual passage over the solar system they exert pressures very much enhanced with respect to today’s standards. Under these conditions it will occur that the Earth is exposed directly to the interstellar flow. It is shown first that even close to the Sun, at 1 AU, the cloud’s matter is only partly ionized and should mainly interact with the solar wind by charge exchange processes. Dust particles of the cloud serve as a source of neutrals, generated by the solar UV irradiation of dust grains, causing the evaporation of icy materials. The release of neutral atoms from dust grains is then followed by strong influences on the solar wind plasma flow. The behavior of the neutral gas inflow parameters is investigated by a 2-D hydrodynamic approach to model the interaction processes. Because of a reduction of the heliospheric dimension down to 1 AU, direct influence of the cloud’s matter to the terrestrial environment and atmosphere could be envisaged.Key words. Interplanetary physics (heliopause and solar wind termination; interplanetary dust; interstellar gas

  7. X-ray fluorescence spectroscopic determination of heavy metals and ...

    African Journals Online (AJOL)

    Purpose: To determine the heavy metal and trace element composition of the powdered aerial parts of Origanum sipyleum L. and its water extract. Methods: The heavy metal and trace elements content of the powdered plant material and 2 % aqueous extract were evaluated by x-ray fluorescence spectroscopy with silicon ...

  8. X-ray fluorescence spectroscopic determination of heavy metals and ...

    African Journals Online (AJOL)

    Purpose: To determine the heavy metal and trace element composition of the powdered aerial parts of. Origanum sipyleum L. and its water extract. Methods: The heavy metal and trace elements content of the powdered plant material and 2 % aqueous extract were evaluated by x-ray fluorescence spectroscopy with silicon ...

  9. Utilization of Plant Refuses as Component of Heavy Metal Ion ...

    African Journals Online (AJOL)

    Waste materials like fruit and vegetable refuses were utilized as component of sensors capable of detecting heavy metals like lead ions and mercury ions by electrochemical method. The ability of the fabricated sensors to detect the presence of heavy metals was analyzed using electrochemical methods like cyclic ...

  10. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the ...

  11. Dynamics of light, intermediate, heavy and superheavy nuclear ...

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... Dynamics of light, intermediate, heavy and superheavy nuclear systems formed in heavy-ion collisions. Manoj K Sharma Gurvinder Kaur. Volume 82 Issue 5 May ... Author Affiliations. Manoj K Sharma1 Gurvinder Kaur1. School of Physics and Materials Science, Thapar University, Patiala 147 004, India ...

  12. Ultrarelativistic heavy ion collisions: the first billion seconds

    Energy Technology Data Exchange (ETDEWEB)

    Baym, Gordon

    2016-12-15

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter – the quark-gluon plasma primarily – and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  13. Experimental analysis of dense multipath components in an industrial environment

    OpenAIRE

    Tanghe, Emmeric; Gaillot, Davy P.; Liénard, Martine; Martens, Luc; Joseph, Wout

    2014-01-01

    This work presents an analysis of dense multipath components (DMC) in an industrial workshop. Radio channel sounding was performed with a vector network analyzer and virtual antenna arrays. The specular and dense multipath components were estimated with the RiMAX algorithm. The DMC covariance structure of the RiMAX data model was validated. Two DMC parameters were studied: the distribution of radio channel power between specular and dense multipath, and the DMC reverberation time. The DMC pow...

  14. Heavy-Duty Rescue Straps For Coveralls

    Science.gov (United States)

    Waddell, Henry M.

    1988-01-01

    New type of strap on coveralls helps rescuers lift victims of industrial accidents. Made of heavy twill. New material, 1 in. wide and has breaking strength of 600 lb, sewn to coveralls with polyester thread in box "X" stitching. Reinforcing nylon webbing, 1 3/4 in. wide sewn with strap at attachment points.

  15. Magnetic fluctuations in heavy-fermion metals

    DEFF Research Database (Denmark)

    Mason, T.E.; Petersen, T.; Aeppli, G.

    1995-01-01

    Elastic and inelastic neutron scattering have been used to study the antiferromagnetic ordering and magnetic excitations of the U heavy-fermion superconductors UPd2Al3 and URu2Si2 above and below T-N. While both materials exhibit the coexistence of superconductivity and antiferromagnetic order, t...

  16. Breast cancer screening in Korean woman with dense breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-11-15

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.

  17. Superfluid response in heavy fermion superconductors

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  18. Remediation of biochar on heavy metal polluted soils

    Science.gov (United States)

    Wang, Shuguang; Xu, Yan; Norbu, Namkha; Wang, Zhan

    2018-01-01

    Unreasonable mining and smelting of mineral resources, solid waste disposal, sewage irrigation, utilization of pesticides and fertilizers would result in a large number of heavy metal pollutants into the water and soil environment, causing serious damage to public health and ecological safety. In recent years, a majority of scholars tried to use biochar to absorb heavy metal pollutants, which has some advantages of extensive raw material sources, low-cost and high environmental stability. This paper reviewed the definition, properties of biochar, the mechanism of heavy metal sorption by biochar and some related problems and prospects, to provide some technical support for the application of biochar into heavy metal polluted soils.

  19. Open Heavy Flavor and Quarkonia Results at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2017-01-01

    Full Text Available RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at SNN=200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1 PHENIX Collaboration installed silicon vertex tracker (VTX at mid-rapidity region and forward silicon vertex tracker (FVTX at the forward rapidity region, and (2 STAR Collaboration installed the heavy flavor tracker (HFT and the muon telescope detector (MTD both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S and ψ(2S production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at SNN=200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ(2S/ψ(1S ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and ϒ measurements in the di-muon decay channel in Au + Au collisions at SNN=200 GeV at mid-rapidity at RHIC. We observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.

  20. Heavy Flavour Production

    OpenAIRE

    Nason, P; Ridolfi, G.; Frixione, S.

    1995-01-01

    We review the status of heavy flavour production in QCD. Comparison of experimental and theoretical results for top and bottom production are given. Selected topics in charm production are also discussed.

  1. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  2. Heavy Quarks: Summary Report

    CERN Document Server

    Baines, J.; Behnke, O.; Bracinik, J.; Cacciari, M.; Corradi, M.; Dainese, A.; Diglio, S.; Eskola, K.J.; Eynck, T.O.; Geiser, A.; Grindhammer, G.; Jung, H.; Kniehl, B.A.; Kolhinen, V.J.; Kretzer, S.; Kutak, K.; Laenen, Eric; Lagouri, Th.; Lipatov, A.V.; Maltoni, F.; Martin, A.D.; Meyer, A.; Morsch, A.; Motyka, L.; Peters, K.; Petrucci, F.; Piskounova, O.I.; Ranieri, R.; Ruiz, H.; Ryskin, M.G.; Schienbein, I.; Smith, J.; Smizanska, M.; Spiesberger, H.; Tonazzo, A.; Uwer, U.; Verducci, M.; Vogt, R.; Weiser, C.; Zotov, N.P.; Lagouri, Th.

    2006-01-01

    The present status of the heavy-quark production theory is critically reviewed in the first contribution. The second contribution summarises the present heavy flavour data from HERA and gives an outlook of what can be expected from HERA-II. The potential of the LHC experiments for charm and beauty physics is reviewed in the 3rd contribution. Then the relevance of saturation and small-x effects to heavy quark production at HERA and at the LHC are discussed. The non-perturbative aspects of heavy-quark fragmentation and their relevance to HERA and LHC are discussed in the next contribution. Finally, a comparison of different theoretical predictions for HERA and LHC based on different approaches is presented.

  3. Jet and Leading Hadron Production in High-energy Heavy-ionCollisions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-Nian

    2005-11-01

    Jet tomography has become a powerful tool for the study ofproperties of dense matter in high-energy heavy-ion collisions. I willdiscuss recent progresses in the phenomenological study of jet quenching,including momentum, colliding energy and nuclear size dependence ofsingle hadron suppression, modification of dihadron correlations and thesoft hadron distribution associatedwith a quenched jet.

  4. Dense colloidal fluids form denser amorphous sediments.

    Science.gov (United States)

    Liber, Shir R; Borohovich, Shai; Butenko, Alexander V; Schofield, Andrew B; Sloutskin, Eli

    2013-04-09

    We relate, by simple analytical centrifugation experiments, the density of colloidal fluids with the nature of their randomly packed solid sediments. We demonstrate that the most dilute fluids of colloidal hard spheres form loosely packed sediments, where the volume fraction of the particles approaches in frictional systems the random loose packing limit, ϕRLP = 0.55. The dense fluids of the same spheres form denser sediments, approaching the so-called random close packing limit, ϕRCP = 0.64. Our experiments, where particle sedimentation in a centrifuge is sufficiently rapid to avoid crystallization, demonstrate that the density of the sediments varies monotonically with the volume fraction of the initial suspension. We reproduce our experimental data by simple computer simulations, where structural reorganizations are prohibited, such that the rate of sedimentation is irrelevant. This suggests that in colloidal systems, where viscous forces dominate, the structure of randomly close-packed and randomly loose-packed sediments is determined by the well-known structure of the initial fluids of simple hard spheres, provided that the crystallization is fully suppressed.

  5. Thermochemistry of dense hydrous magnesium silicates

    Science.gov (United States)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  6. Improved models of dense anharmonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rosenau, P., E-mail: rosenau@post.tau.ac.il; Zilburg, A.

    2017-01-15

    We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE. - Highlights: • An improved PDE model of a Newtonian lattice renders compacton solutions. • Compactons are classical solutions of the improved model and hence amenable to standard analysis. • An alternative well posed model enables to study head on interactions of lattices' solitary waves. • Well posed modeling of Hertz potential.

  7. Order and instabilities in dense bacterial colonies

    Science.gov (United States)

    Tsimring, Lev

    2012-02-01

    The structure of cell colonies is governed by the interplay of many physical and biological factors, ranging from properties of surrounding media to cell-cell communication and gene expression in individual cells. The biomechanical interactions arising from the growth and division of individual cells in confined environments are ubiquitous, yet little work has focused on this fundamental aspect of colony formation. By combining experimental observations of growing monolayers of non-motile strain of bacteria Escherichia coli in a shallow microfluidic chemostat with discrete-element simulations and continuous theory, we demonstrate that expansion of a dense colony leads to rapid orientational alignment of rod-like cells. However, in larger colonies, anisotropic compression may lead to buckling instability which breaks perfect nematic order. Furthermore, we found that in shallow cavities feedback between cell growth and mobility in a confined environment leads to a novel cell streaming instability. Joint work with W. Mather, D. Volfson, O. Mondrag'on-Palomino, T. Danino, S. Cookson, and J. Hasty (UCSD) and D. Boyer, S. Orozco-Fuentes (UNAM, Mexico).

  8. Elemental nitrogen partitioning in dense interstellar clouds.

    Science.gov (United States)

    Daranlot, Julien; Hincelin, Ugo; Bergeat, Astrid; Costes, Michel; Loison, Jean-Christophe; Wakelam, Valentine; Hickson, Kevin M

    2012-06-26

    Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N(2), with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N(2) is difficult to detect spectroscopically through infrared or millimeter-wavelength transitions. Therefore, its abundance is often inferred indirectly through its reaction product N(2)H(+). Two main formation mechanisms, each involving two radical-radical reactions, are the source of N(2) in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction, down to 56 K. The measured rate constants for this reaction, and those recently determined for two other reactions implicated in N(2) formation, are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N(2) depends on the competition between its gas-phase formation and the depletion of atomic nitrogen onto grains. As the reactions controlling N(2) formation are inefficient, we argue that N(2) does not represent the main reservoir species for interstellar nitrogen. Instead, elevated abundances of more labile forms of nitrogen such as NH(3) should be present on interstellar ices, promoting the eventual formation of nitrogen-bearing organic molecules.

  9. Load Designs For MJ Dense Plasma Foci

    Science.gov (United States)

    Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.

    2017-10-01

    Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  10. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  11. Casimir Friction between Dense Polarizable Media

    Directory of Open Access Journals (Sweden)

    Johan S. Høye

    2013-07-01

    Full Text Available The present paper—a continuation of our recent series of papers on Casimir friction for a pair of particles at low relative particle velocity—extends the analysis, so as to include dense media. The situation becomes, in this case, more complex, due to induced dipolar correlations, both within planes and between planes. We show that the structure of the problem can be simplified by regarding the two half-planes as a generalized version of a pair of particles. It turns out that macroscopic parameters, such as permittivity, suffice to describe the friction, also in the finite density case. The expression for the friction force per unit surface area becomes mathematically well-defined and finite at finite temperature. We give numerical estimates and compare them with those obtained earlier by Pendry (1997 and by Volokitin and Persson (2007. We also show in an appendix how the statistical methods that we are using correspond to the field theoretical methods more commonly in use.

  12. Matching Cost Filtering for Dense Stereo Correspondence

    Directory of Open Access Journals (Sweden)

    Yimin Lin

    2013-01-01

    Full Text Available Dense stereo correspondence enabling reconstruction of depth information in a scene is of great importance in the field of computer vision. Recently, some local solutions based on matching cost filtering with an edge-preserving filter have been proved to be capable of achieving more accuracy than global approaches. Unfortunately, the computational complexity of these algorithms is quadratically related to the window size used to aggregate the matching costs. The recent trend has been to pursue higher accuracy with greater efficiency in execution. Therefore, this paper proposes a new cost-aggregation module to compute the matching responses for all the image pixels at a set of sampling points generated by a hierarchical clustering algorithm. The complexity of this implementation is linear both in the number of image pixels and the number of clusters. Experimental results demonstrate that the proposed algorithm outperforms state-of-the-art local methods in terms of both accuracy and speed. Moreover, performance tests indicate that parameters such as the height of the hierarchical binary tree and the spatial and range standard deviations have a significant influence on time consumption and the accuracy of disparity maps.

  13. Sample Management System for Heavy Ion Irradiation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A robotic sample management device and system for the exposure of biological and material specimens to heavy ion beams of the NASA Space Radiation Laboratory (NSRL)...

  14. Actinide targets for the synthesis of super-heavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.B., E-mail: robertojb@ornl.gov; Alexander, C.W.; Boll, R.A.; Burns, J.D.; Ezold, J.G.; Felker, L.K.; Hogle, S.L.; Rykaczewski, K.P.

    2015-12-15

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of {sup 48}Ca beams on actinide targets. These target materials, including {sup 242}Pu, {sup 244}Pu, {sup 243}Am, {sup 245}Cm, {sup 248}Cm, {sup 249}Cf, and {sup 249}Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including {sup 249}Bk, {sup 251}Cf, and {sup 254}Es are described.

  15. Open heavy flavor measurements in d+Au collisions at PHENIX experiment

    Directory of Open Access Journals (Sweden)

    Lim Sanghoon

    2014-04-01

    Full Text Available The heavy quarks produced in the early stage of heavy-ion collisions are very effective probes of the dense partonic medium produced at RHIC. PHENIX has the ability to measure heavy quark production through single electrons in the central arm spectrometers (|η| < 0.35 and single muons in the forward (backward muon spectrometers (1.2 < |η| < 2.2. As these single leptons are from open heavy-flavor meson semi-leptonic decays, initial state cold nuclear matter effects on heavy quark production can be probed by measuring the single leptons in d+Au collisions. PHENIX have observed a large enhancement of heavy-flavor electrons in d+Au collisions at mid-rapidity, which indicates strong CNM effects on heavy quark production, in contrast to the suppression observed in Au+Au collisions. Measurement of single muons from open heavy flavor in d+Au collisions at forward (backward rapidity provide detailed look into rapidity dependent CNM effects as well as the low (high x parton distribution function within Au nucleus. We discuss recent PHENIX heavy flavor measurements and how they expand our understanding of CNM effects and contribute to the interpretation of other results in heavy-ion collisions.

  16. RADIATION SHIELDING PROPERTIES OF HEAVY AGGREGATES

    OpenAIRE

    AKKURT, Iskender; KILIÇARSLAN, Şemsettin; BASYIGIT, Celalettin; günoglu, kadir; MAVİ, Betül; Akkaş, Ayşe

    2011-01-01

    In the production of concrete besides sand, gravel, crushed stone agrega is the main materials. It occupies about 60-75% of concrete in volume. If the specific gravity of agrega is higher than 4000 kg/m3, it is known as heavy agrega and in order to produce heavyweight concrete heavy agrega should be used in concrete mixture. This study, the radiation absorption properties of concrete in determining who was to see how they affect the properties of barite absorption rate changes. In this study,...

  17. Deep-sea benthic ecosystem collapse and recovery after an intense Dense Shelf Water Cascading event

    OpenAIRE

    Pusceddu, A.; Mea, M.; M. Canals; Heussner, S; Durrieu de Madron, X.; Sanchez-Vidal, A.; Bianchelli, S.; Corinaldesi, C.; Dell'Anno, A.; Thomsen, L.; Danovaro, R.

    2012-01-01

    Submarine canyons of several regions of the world are preferential conduits for Dense Shelf Water Cascading (DSWC), which quickly modify physical and chemical conditions while transporting large amounts of material towards the adjacent deep margin. Observations conducted during the last 15 yr in the Cap de Creus Canyon (Gulf of Lion, NW Mediterranean Sea) reported several intense events of DSWC. Their effects on the deep-sea biodiversity and ecosystem functioning are almost unknown. To in...

  18. O(minus 2) grain boundary diffusion and grain growth in pure dense MgO

    Science.gov (United States)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.

  19. Hard Probes in Heavy-Ion Physics

    CERN Document Server

    Renk, Thorsten

    2012-01-01

    The aim of ultrarelativistic heavy ion physics is to study collectivity and thermodynamics of Quantum Chromodynamics (QCD) by creating a transient small volume of matter with extreme density and temperature. There is experimental evidence that most of the particles created in such a collision form indeed a thermalized system characterized by collective response to pressure gradients. However, a numerically small subset of high transverse momentum ($P_T$) processes takes place independent of the bulk, with the outgoing partons subsequently propagating through the bulk medium. Understanding the modification of such 'hard probes' by the bulk medium is an important part of the efforts to determine the properties of hot and dense QCD matter. In this paper, current developments are reviewed.

  20. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    Science.gov (United States)

    Krzyżak, Jacek; Pogrzeba, Marta; Rusinowski, Szymon; Clifton-Brown, John; McCalmont, Jon Paul; Kiesel, Andreas; Mangold, Anja; Mos, Michal

    2017-09-01

    When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2) `time-zero' soil samples were taken to determine initial levels of total (aqua regia) and bioavailable (CaCl2 extraction) concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest) and winter (March, brown harvest) to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  1. Dense chlorinated solvents and other DNAPLs in groundwater

    DEFF Research Database (Denmark)

    Broholm, K.

    1996-01-01

    Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996......Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996...

  2. Finding dense locations in symbolic indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2017-01-01

    Finding the dense locations in large indoor spaces is very useful for many applications such as overloaded area detection, security control, crowd management, indoor navigation, and so on. Indoor tracking data can be enormous and are not immediately ready for finding dense locations. This paper p...

  3. Dense fibrillar collagen is a master activator of invadopodia

    OpenAIRE

    Artym, Vira V.

    2015-01-01

    Tumor stroma is characterized by abnormal accumulation of dense fibrillar collagen, which promotes tumor progression and metastasis. However, the effect of desmoplastic collagen on cells has been unclear. Our recent findings demonstrate that dense fibrillar collagen activates a novel phosphosignaling mechanism for robust induction of invadopodia in tumor cells and normal fibroblasts.

  4. Dense fibrillar collagen is a master activator of invadopodia.

    Science.gov (United States)

    Artym, Vira V

    2016-05-01

    Tumor stroma is characterized by abnormal accumulation of dense fibrillar collagen, which promotes tumor progression and metastasis. However, the effect of desmoplastic collagen on cells has been unclear. Our recent findings demonstrate that dense fibrillar collagen activates a novel phosphosignaling mechanism for robust induction of invadopodia in tumor cells and normal fibroblasts.

  5. Dry processing versus dense medium processing for preparing thermal coal

    CSIR Research Space (South Africa)

    De Korte, GJ

    2013-10-01

    Full Text Available of the final product. The separation efficiency of dry processes is, however, not nearly as good as that of dense medium and, as a result, it is difficult to effectively beneficiate coals with a high near-dense content. The product yield obtained from some raw...

  6. Experimental Highlights: Heavy Quark Physics in Heavy-Ion Collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2017-01-01

    Full Text Available The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √sNN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1 PHENIX Collaboration installed silicon vertex tracker (VTX at midrapidity region and forward silicon vertex tracker (FVTX at the forward rapidity region, and (2 STAR Collaboration installed the heavy flavor tracker (HFT and the muon telescope detector (MTD both at the mid-rapidity region. The PHENIX experiments established measurements of ψ (1S and ψ (2S production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √sNN = 200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ (2S /ψ (1S ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ (2S is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ ψ measurements in the di-muon decay channel in Au + Au at √sNN = 200 GeV at mid-rapidity. We observe a clear J/ψ RAA suppression and qualitatively well described by transport models, including dissociation and regeneration simultaneously.

  7. Experimental Highlights: Heavy Quark Physics in Heavy-Ion Collisions at RHIC

    Science.gov (United States)

    Nouicer, Rachid

    2017-03-01

    The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √sNN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at midrapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and the muon telescope detector (MTD) both at the mid-rapidity region. The PHENIX experiments established measurements of ψ (1S ) and ψ (2S ) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √sNN = 200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ (2S )/ψ (1S ) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ (2S ) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ ψ measurements in the di-muon decay channel in Au + Au at √sNN = 200 GeV at mid-rapidity. We observe a clear J/ψ RAA suppression and qualitatively well described by transport models, including dissociation and regeneration simultaneously.

  8. Eculizumab in Pediatric Dense Deposit Disease.

    Science.gov (United States)

    Oosterveld, Michiel J S; Garrelfs, Mark R; Hoppe, Bernd; Florquin, Sandrine; Roelofs, Joris J T H; van den Heuvel, L P; Amann, Kerstin; Davin, Jean-Claude; Bouts, Antonia H M; Schriemer, Pietrik J; Groothoff, Jaap W

    2015-10-07

    Dense deposit disease (DDD), a subtype of C3 glomerulopathy, is a rare disease affecting mostly children. Treatment options are limited. Debate exists whether eculizumab, a monoclonal antibody against complement factor C5, is effective in DDD. Reported data are scarce, especially in children. The authors analyzed clinical and histologic data of five pediatric patients with a native kidney biopsy diagnosis of DDD. Patients received eculizumab as therapy of last resort for severe nephritic or nephrotic syndrome with alternative pathway complement activation; this therapy was given only when the patients had not or only marginally responded to immunosuppressive therapy. Outcome measures were kidney function, proteinuria, and urine analysis. In all, seven disease episodes were treated with eculizumab (six episodes of severe nephritic syndrome [two of which required dialysis] and one nephrotic syndrome episode). Median age at treatment start was 8.4 (range, 5.9-13) years. For three treatment episodes, eculizumab was the sole immunosuppressive treatment. In all patients, both proteinuria and renal function improved significantly within 12 weeks of treatment (median urinary protein-to-creatinine ratio of 8.5 [range, 2.2-17] versus 1.1 [range, 0.2-2.0] g/g, P<0.005, and eGFR of 58 [range, 17-114] versus 77 [range, 50-129] ml/min per 1.73 m(2), P<0.01). A striking finding was the disappearance of leukocyturia within 1 week after the first eculizumab dose in all five episodes with leukocyturia at treatment initiation. In this case series of pediatric patients with DDD, eculizumab treatment was associated with reduction in proteinuria and increase in eGFR. Leukocyturia resolved within 1 week of initiation of eculizumab treatment. These results underscore the need for a randomized trial of eculizumab in DDD. Copyright © 2015 by the American Society of Nephrology.

  9. Methods for natural gas and heavy hydrocarbon co-conversion

    Science.gov (United States)

    Kong, Peter C [Idaho Falls, ID; Nelson, Lee O [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID

    2009-02-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  10. Recent U.S. advances in ion-beam-driven high energy densityphysics and heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy,P.K.; Seidl, P.A.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, Qin H.; Sefkow, A.B.; Startsev,E.A.; Welch, D.; Olson, C.

    2006-07-05

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport; and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by > 50 X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. They are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy.

  11. FttC-Based Fronthaul for 5G Dense/Ultra-Dense Access Network: Performance and Costs in Realistic Scenarios

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-10-01

    Full Text Available One distinctive feature of the next 5G systems is the presence of a dense/ultra-dense wireless access network with a large number of access points (or nodes at short distances from each other. Dense/ultra-dense access networks allow for providing very high transmission capacity to terminals. However, the deployment of dense/ultra-dense networks is slowed down by the cost of the fiber-based infrastructure required to connect radio nodes to the central processing units and then to the core network. In this paper, we investigate the possibility for existing FttC access networks to provide fronthaul capabilities for dense/ultra-dense 5G wireless networks. The analysis is realistic in that it is carried out considering an actual access network scenario, i.e., the Italian FttC deployment. It is assumed that access nodes are connected to the Cabinets and to the corresponding distributors by a number of copper pairs. Different types of cities grouped in terms of population have been considered. Results focus on fronthaul transport capacity provided by the FttC network and have been expressed in terms of the available fronthaul bit rate per node and of the achievable coverage.

  12. SNhunt151: an explosive event inside a dense cocoon

    Science.gov (United States)

    Elias-Rosa, N.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Terreran, G.; Morales-Garoffolo, A.; Howerton, S. C.; Valenti, S.; Kankare, E.; Drake, A. J.; Djorgovski, S. G.; Tomasella, L.; Tartaglia, L.; Kangas, T.; Ochner, P.; Filippenko, A. V.; Ciabattari, F.; Geier, S.; Howell, D. A.; Isern, J.; Leonini, S.; Pignata, G.; Turatto, M.

    2018-01-01

    SNhunt151 was initially classified as a supernova (SN) impostor (nonterminal outburst of a massive star). It exhibited a slow increase in luminosity, lasting about 450 d, followed by a major brightening that reaches MV ≈ -18 mag. No source is detected to MV ≳ -13 mag in archival images at the position of SNhunt151 before the slow rise. Low-to-mid-resolution optical spectra obtained during the pronounced brightening show very little evolution, being dominated at all times by multicomponent Balmer emission lines, a signature of interaction between the material ejected in the new outburst and the pre-existing circumstellar medium. We also analyzed mid-infrared images from the Spitzer Space Telescope, detecting a source at the transient position in 2014 and 2015. Overall, SNhunt151 is spectroscopically a Type IIn SN, somewhat similar to SN 2009ip. However, there are also some differences, such as a slow pre-discovery rise, a relatively broad light-curve peak showing a longer rise time (˜50 d) and a slower decline, along with a negligible change in the temperature around the peak (T ≤ 104 K). We suggest that SNhunt151 is the result of an outburst, or a SN explosion, within a dense circumstellar nebula, similar to those embedding some luminous blue variables like η Carinae and originating from past mass-loss events.

  13. Thermal Analysis for the Dense Granular Target of CIADS

    Directory of Open Access Journals (Sweden)

    Kang Chen

    2016-01-01

    Full Text Available For the China Initiative Accelerator Driven System (CIADS, the energy of the protons is 250 MeV, and the current intensity will reach 10 milliamperes. A new concept of a dense granular spallation target is proposed for which the tungsten granules are chosen as the target material. After being bombarded with the accelerated protons from the accelerator, the tungsten granules with high-temperature flow out of the subcritical reactor and the heat is removed by the heat exchanger. One key issue of the target is to remove the 2.5 MW heat deposition safely. Another one is the heat exchange between the target and the subcritical reactor. Based on the model of effective thermal conductivity, a new thermal code is developed in Matlab. The new code is used to calculate the temperature field of the target area near active zone and it is partly verified by commercial CFD code Fluent. The result shows that the peak temperature of the target zone is nearly 740°C and the reactor and the target are proved to be uncoupled in thermal process.

  14. The CO Transition from Diffuse Molecular Gas to Dense Clouds

    Science.gov (United States)

    Rice, Johnathan S.; Federman, Steven

    2017-06-01

    The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. Our optical observations of CH, CH^{+}, and CN absorption from McDonald Observatory and the European Southern Observatory are useful tracers of this gas and provide the velocity structure needed for analyzing lower resolution ultraviolet observations of CO and H_{2} absorption from Far Ultraviolet Spectroscopic Explorer. We explore the changing environment between diffuse and dense gas by using the column densities and excitation temperatures from CO and H_{2} to determine the gas density. The resulting gas densities from this method are compared to densities inferred from other methods such as C_{2} and CN chemistry. The densities allow us to interpret the trends from the combined set of tracers. Groupings of sight lines, such as those toward h and χ Persei or Chameleon provide a chance for further characterization of the environment. The Chameleon region in particular helps illuminate CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Expanding this analysis to include emission data from the GOT C+ survey allows the further characterization of neutral diffuse gas, including CO-dark gas.

  15. Nanoengineering of bioactive glasses: hollow and dense nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Gisela M., E-mail: gisela.luz@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt [University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 3B' s Research Group, Biomaterials, Biodegradables and Biomimetics (Portugal)

    2013-02-15

    The possibility of engineering bioactive glass (BG) nanoparticles into suitable sizes and shapes represents a significant achievement regarding the development of new osteoconductive biomaterials for therapeutic strategies to replace or regenerate damaged mineralised tissues. Herein we report the structural and chemical evolution of sol-gel derived BG nanoparticles for both the binary (SiO{sub 2}:CaO (mol%) = 70:30) and ternary (SiO{sub 2}:CaO:P{sub 2}O{sub 5} (mol%) = 55:40:5) formulations, in order to understand how the particles formation can be directed. Hollow BG nanospheres were obtained through Ostwald ripening. The presence of a non ionic surfactant, poly(ethylene glycol) (PEG), allowed the formation of dense BG nanospheres with controllable diameters depending on the molecular weight of PEG. A deep insight into the genesis of BG nanoparticles formation is essential to design BG based materials with controlled compositions, morphologies and sizes at the nanoscale, in order to improve their performance in orthopaedic applications including bone tissue engineering.

  16. Heavy-Load Lifting

    DEFF Research Database (Denmark)

    Bloomquist, Kira; Oturai, Peter; Steele, Megan L

    2017-01-01

    PURPOSE: Despite a paucity of evidence, prevention guidelines typically advise avoidance of heavy lifting in an effort to protect against breast cancer-related lymphedema. This study compared acute responses in arm swelling and related symptoms after low- and heavy-load resistance exercise among...... women at risk of lymphedema while receiving adjuvant taxane-based chemotherapy. METHODS: This is a randomized, cross-over equivalence trial. Women receiving adjuvant taxane-based chemotherapy for breast cancer who had undergone axillary lymph node dissection (n=21) participated in low- (60-65% 1...... repetition maximum (RM), two sets of 15-20 repetitions) and heavy-load (85-90% 1RM, three sets of 5-8 repetition) upper-extremity resistance exercise separated by a one-week wash-out period. Swelling was determined by bioimpedance spectroscopy and dual energy x-ray absorptiometry, with breast cancer...

  17. Very heavy dark Skyrmions

    Science.gov (United States)

    Dick, Rainer

    2017-12-01

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ -ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter.

  18. Modelling compressible dense and dilute two-phase flows

    Science.gov (United States)

    Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin

    2017-06-01

    Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various

  19. The Heavy-Ion Physics Programme with the ATLAS Detector

    CERN Document Server

    Rosselet, L

    2008-01-01

    The CERN LHC will collide lead ions at $\\sqrt{s}=5.5$ TeV per nucleon pair and will provide crucial information about the formation of a quark--gluon plasma at the highest temperatures and densities ever created in the laboratory. We report on an updated evaluation of the ATLAS potential to study heavy--ion physics. The ATLAS detector will perform especially well for high $p_T$ phenomena even in the presence of the high--multiplicity soft background expected from lead-lead collisions, and most of the detector subsystems retain their nearly full capability. ATLAS will study a full range of observables which characterize the hot and dense medium formed in heavy--ion collisions. In addition to global measurements such as particle multiplicities and collective flow, heavy--quarkonia suppression, jet quenching and the modification of jets passing in the dense medium will be accessible. ATLAS will also study forward physics and ultraperipheral collisions using Zero Degree Calorimeters.

  20. The Heavy-Ion Physics Programme with the ATLAS Detector

    CERN Document Server

    Rosselet, L

    2008-01-01

    The CERN LHC will collide lead ions at sqrt(s)=5.5 TeV per nucleon pair and will provide crucial information about the formation of a quark gluon plasma at the highest temperatures and densities ever created in the laboratory. We report on an updated evaluation of the ATLAS potential to study heavy-ion physics. The ATLAS detector will perform especially well for high pT phenomena even in the presence of the high-multiplicity soft background expected from lead-lead collisions, and most of the detector subsystems retain their nearly full capability. ATLAS will study a full range of observables which characterize the hot and dense medium formed in heavy-ion collisions. In addition to global measurements such as particle multiplicities and collective flow, heavy-quarkonia suppression, jet quenching and the modification of jets passing in the dense medium will be accessible to ATLAS. ATLAS will also study forward physics and ultraperipheral collisions using Zero Degree Calorimeters.

  1. Heavy exotic molecules

    Science.gov (United States)

    Liu, Yizhuang; Zahed, Ismail

    We briefly review the formation of pion-mediated heavy-light exotic molecules with both charm and bottom, under the general structures of chiral and heavy quark symmetries. The charm isosinglet exotic molecules with JPC = 1++ binds, which we identify as the reported neutral X(3872). The bottom isotriplet exotic with JPC = 1+1 binds, and is identified as a mixed state of the reported charged exotics Zb+(10610) and Zb-(10650). The bound bottom isosinglet molecule with JPC = 1++ is a possible neutral Xb(10532) to be observed.

  2. ALICE measurements of heavy-flavour production at the LHC

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The measurement of open charm and beauty production in Pb-Pb collisions at the LHC gives access to the mechanisms of heavy-quark transport and energy loss in hot and dense QCD matter. The ALICE apparatus allows us to measure heavy flavour particles over a wide acceptance, using hadronic and electronic final states at central rapidity and muonic final states at forward rapidity, in both cases with coverage down to low transverse momentum. These measurements, in pp collisions, besides constituting the reference for the heavy-ion studies, provide acceptance-wise unique information on heavy-quark production at LHC energies. After presenting results for pp collisions at centre-of-mass energies of 2.76 and 7 TeV, we focus on the observation of the suppression of heavy-flavour production in central Pb-Pb collisions and of the azimuthal anisotropy of charmed hadrons in semi-central collisions at 2.76 TeV.

  3. FONLL calculations for heavy quark production in nuclear collisions

    CERN Document Server

    Niel, Elisabeth Maria

    2017-01-01

    The ALICE detector at the LHC has been designed to study the collisions of heavy nuclei at energies much higher then the previous dedicated experiments at the Relativistic Heavy-Ion Collider (RHIC) of the Brookhaven National Laboratory. Colliding heavy nuclei allows to reproduce the hot and dense plasma of quarks and gluons (QGP) existing right after the Big Bang and hence study the very first instants of universe’s existence. In heavy ions collisions, heavy flavours, such as beauty and charm quark, are fundamental probes for the quark gluon plasma properties. That is because they experience the entire evolution of the system since they are produced at the very beginning. They are indeed a very powerful tool to test field theories such as Quantum Chromodynamics (QCD). Theoretical models predict that a fast parton(quark or gluon) looses energy while traversing a medium composed of colour charges. This phenomenon is called "jet quenching", it can be used to describe the QGP. It was first observed at RHIC by m...

  4. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Seshadhri, Comandur [The Ohio State Univ., Columbus, OH (United States); Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sariyuce, Ahmet Erdem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States)

    2014-11-01

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.

  5. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    that the CH-stars all belong to binary systems and that they therefore have a companion star [5]. That companion is now a white dwarf star and was therefore at some earlier moment an AGB star ! During its AGB-phase, the companion star expelled much of its material, eventually producing the "planetary nebula" phenomenon, referred to above. In this process, a lot of its material, enriched with heavy elements produced by the "s-process" during the AGB phase, was deposited in the atmosphere of the CH-star that is now observed. The former AGB-star, now a slowly cooling, dim white-dwarf star, still orbits the CH-star. For this reason, the atmospheric composition of a CH-star actually carries the signature of the nucleosynthesis that took place deep inside the companion AGB star at an earlier epoch. Spectroscopic observations of CH-stars thus provide the opportunity to probe the predicted s-process in low-metallicity stars. Three stars with Lead ESO PR Photo 26b/01 ESO PR Photo 26b/01 [Preview - JPEG: 400 x 371 pix - 95k] [Normal - JPEG: 800 x 741 pix - 240k] Caption : A high-resolution spectrum of the CH-star HD 196944, obtained with the CES instrument on the ESO 3.6-m telescope in September 2000. The observed spectrum (dots) shows many absorption lines from elements that are usually seen in stars. The red line shows a model in which elements (in particular those produced by the s-process) are present in normal quantities, compared to Iron. The blue line instead shows a model where s-processing has occured. It is obvious that the red line does not fit, only the blue line reproduces the observed absorption line at wavelength 405.781 nm caused by Lead (Pb) atoms in the atmosphere of this star. A subsequent, detailed analysis demonstrated that HD 196944 is a true "Lead star". Technical information about this photo is available below. A necessary condition for these observations to succeed is a very high spectral resolution in order to detect the spectral line of Lead (Pb), in

  6. INVITED ARTICLE: Towards dense, realistic granular media in 2D

    Science.gov (United States)

    Luding, Stefan

    2009-12-01

    The development of an applicable theory for granular matter—with both qualitative and quantitative value—is a challenging prospect, given the multitude of states, phases and (industrial) situations it has to cover. Given the general balance equations for mass, momentum and energy, the limiting case of dilute and almost elastic granular gases, where kinetic theory works perfectly well, is the starting point. In most systems, low density co-exists with very high density, where the latter is an open problem for kinetic theory. Furthermore, many additional nonlinear phenomena and material properties are important in realistic granular media, involving, e.g.: (i) multi-particle interactions and elasticity (ii) strong dissipation, (iii) friction, (iv) long-range forces and wet contacts, (v) wide particle size distributions and (vi) various particle shapes. Note that, while some of these issues are more relevant for high density, others are important for both low and high densities; some of them can be dealt with by means of kinetic theory, some cannot. This paper is a review of recent progress towards more realistic models for dense granular media in 2D, even though most of the observations, conclusions and corrections given are qualitatively true also in 3D. Starting from an elastic, frictionless and monodisperse hard sphere gas, the (continuum) balance equations of mass, momentum and energy are given. The equation of state, the (Navier-Stokes level) transport coefficients and the energy-density dissipation rate are considered. Several corrections are applied to those constitutive material laws—one by one—in order to account for the realistic physical effects and properties listed above.

  7. Human Factors Issues in the Design of Super-Dense Operations Airspace

    Science.gov (United States)

    Smith, P.J.; Spencer, A.L.; Evans, M.; Andre, A.D.; Krozel, J.

    2009-01-01

    A knowledge acquisition study was completed focusing on two questions: 1. What is a concept of operation for the design and use of Super-Dense Operations (SDO) airspace within the next 10 years? 2. What are the human factors issues that need to be addressed in order to enable this concept of operation? To address these questions, a series of structured interviews were conducted with four FAA specialists with significant experience as controllers, traffic managers and airspace designers and with one experienced commercial pilot. The operational concept developed based on the expertise of these individuals has similarities to proposals under the FAA's "Big Airspace" project, making heavy use of advanced Area navigation (RNAV) routes, but goes beyond the current state of that concept by making explicit a number of foundational assumptions, and by proposing a system design to deal with convective weather.

  8. Novel methods and expected run II performance of ATLAS track reconstruction in dense environments

    CERN Document Server

    Jansky, Roland Wolfgang; The ATLAS collaboration

    2015-01-01

    Detailed understanding and optimal track reconstruction performance of ATLAS in the core of high pT objects is paramount for a number of techniques such as jet energy and mass calibration, jet flavour tagging, and hadronic tau identification as well as measurements of physics quantities like jet fragmentation functions. These dense environments are characterized by charged particle separations on the order of the granularity of ATLAS’s inner detector. With the insertion of a new innermost layer in this tracking detector, which allows measurements closer to the interaction point, and an increase in the centre of mass energy, these difficult environments will become even more relevant in Run II, such as in searches for heavy resonances. Novel algorithmic developments to the ATLAS track reconstruction software targeting these topologies as well as the expected improved performance will be presented.

  9. LPM Interference and Cherenkov-like Gluon Bremsstrahlung in DenseMatter

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, Abhijit; Wang, Xin-Nian

    2005-07-26

    Gluon bremsstrahlung induced by multiple parton scattering in a finite dense medium has a unique angular distribution with respect to the initial parton direction. A dead-cone structure with an opening angle; theta2{sub 0}; approx 2(1-z)/(zLE) for gluons with fractional energy z arises from the Landau-Pomeran chuck-Migdal (LPM) interference. In a medium where the gluon's dielectric constant is; epsilon>1, the LPM interference pattern is shown to become Cherenkov-like with an increased opening angle determined by the dielectric constant$/cos2/theta{sub c}=z+(1-z)//epsilon$. For a large dielectric constant/epsilon; gg 1+2/z2LE, the corresponding total radiative parton energy loss is about twice that from normal gluon bremsstrahlung. Implications of this Cherenkov-like gluon bremsstrahlung to the jet correlation pattern in high-energy heavy-ion collisions is discussed.

  10. Understanding and manipulating coalescence in dense emulsions

    NARCIS (Netherlands)

    Feng, H.

    2013-01-01

    Coatings and paints play a significant role in daily life; they prolong the lifetime of materials by offering protection against, for example, corrosion, weathering or fouling, and literally add color to our lives. Due to their widespread use, their environmental consequences have become focus of

  11. The effect of nanometric zirconia particle additives on microstructure and mechanical properties of dense alumina

    Directory of Open Access Journals (Sweden)

    Lukasz Zych

    2009-09-01

    Full Text Available Zirconia additives have favourable influence on mechanical properties of dense alumina polycrystals. It results from the martensitic transformation of tetragonal zirconia particles into monoclinic symmetry at the crack tip propagating through a material. Usually applied zirconia particles were of sub-micrometer or micrometer sizes. In the present work nanometric zirconia particles prepared by hydrothermal crystallization technique were introduced into the alumina matrix. Both, zirconia and alumina powders were homogenized in an aqueous suspension of pH selected on the basis of the zeta (ξ potential measurements. It was found that this factor influences greatly strength of the resulting powder agglomerates and hence mechanical properties of the sintered material.

  12. Recent heavy-flavour results from ATLAS

    CERN Document Server

    Chen, Jing; The ATLAS collaboration

    2017-01-01

    The ATLAS heavy-ion program utilizes heavy-flavor hadrons to probe the hot, dense matter formed at the LHC. Quarkonia measurements have been performed in pp, p+Pb and Pb+Pb systems to study medium effects. The Pb+Pb results show a strong suppression in more central events. Proton-lead interactions show little modification of the 1S charmonium state, but seem to indicate a centrality dependence of the 2S state. Upsilons have been studied in p+Pb and found to show only a modest suppression, and little centrality dependence. Inclusive muons with $p_T$ above 4GeV have been studied to provide insight on open-flavor production, and are found to be strongly suppressed in Pb+Pb collisions with a substantial and significant elliptic flow signal. Muon-hadron correlations have also been studied in the 2016 8 TeV p+Pb data. They show clear indications of a ridge effect, suggesting that similar mechanisms may be relevant for both the smaller and larger systems.

  13. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review

    National Research Council Canada - National Science Library

    Samiey, Babak; Cheng, Chil-Hung; Wu, Jiangning

    2014-01-01

    .... Lastly, the adsorption characteristics of heavy metals of these materials, including different kinds of functional groups, selectivity of them for heavy metals, effect of pH and synthesis conditions...

  14. Dense Plasma Focus-Based Nanofabrication of III–V Semiconductors: Unique Features and Recent Advances

    Directory of Open Access Journals (Sweden)

    Onkar Mangla

    2015-12-01

    Full Text Available The hot and dense plasma formed in modified dense plasma focus (DPF device has been used worldwide for the nanofabrication of several materials. In this paper, we summarize the fabrication of III–V semiconductor nanostructures using the high fluence material ions produced by hot, dense and extremely non-equilibrium plasma generated in a modified DPF device. In addition, we present the recent results on the fabrication of porous nano-gallium arsenide (GaAs. The details of morphological, structural and optical properties of the fabricated nano-GaAs are provided. The effect of rapid thermal annealing on the above properties of porous nano-GaAs is studied. The study reveals that it is possible to tailor the size of pores with annealing temperature. The optical properties of these porous nano-GaAs also confirm the possibility to tailor the pore sizes upon annealing. Possible applications of the fabricated and subsequently annealed porous nano-GaAs in transmission-type photo-cathodes and visible optoelectronic devices are discussed. These results suggest that the modified DPF is an effective tool for nanofabrication of continuous and porous III–V semiconductor nanomaterials. Further opportunities for using the modified DPF device for the fabrication of novel nanostructures are discussed as well.

  15. Impact of Protostellar Outflows on Turbulence and Star Formation Efficiency in Magnetized Dense Cores

    Science.gov (United States)

    Offner, Stella S. R.; Chaban, Jonah

    2017-10-01

    The star-forming efficiency of dense gas is thought to be set within cores by outflow and radiative feedback. We use magnetohydrodynamic simulations to investigate the relation between protostellar outflow evolution, turbulence, and star formation efficiency. We model the collapse and evolution of isolated dense cores for ≳0.5 Myr including the effects of turbulence, radiation transfer, and both radiation and outflow feedback from forming protostars. We show that outflows drive and maintain turbulence in the core environment even with strong initial fields. The star formation efficiency decreases with increasing field strength, and the final efficiencies are 15%-40%. The Stage 0 lifetime, during which the protostellar mass is lower than that of the dense envelope, increases proportionally with the initial magnetic field strength and ranges from ˜ 0.1 {to} 0.4 {Myr}. The average accretion rate is well represented by a tapered turbulent core model, which is a function of the final protostellar mass and is independent of the magnetic field strength. By tagging material launched in the outflow, we demonstrate that the outflow entrains about three times the actual launched gas mass, a ratio that remains roughly constant in time regardless of the initial magnetic field strength. However, turbulent driving increases for stronger fields since momentum is more efficiently imparted to non-outflow material. The protostellar outflow momentum is highest during the first 0.1 Myr and declines thereafter by a factor of ≳ 10 as the accretion rate diminishes.

  16. Bioaccumulation of Heavy Metals

    African Journals Online (AJOL)

    komla

    acute toxicity and sublethal chronic action the devastating effects that the accumulation - ... surrounding waters. The results showed a programmes of heavy metals in aquatic strong and positive correlation (r = 0.97) ecosystems. between amounts of metals in the aquatic ...... Chemical composition of agricultural waste.

  17. Heavy chain only antibodies

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moein; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud

    2013-01-01

    Unlike conventional antibodies, heavy chain only antibodies derived from camel contain a single variable domain (VHH) and two constant domains (CH2 and CH3). Cloned and isolated VHHs possess unique properties that enable them to excel conventional therapeutic antibodies and their smaller antigen...

  18. Heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  19. Observations of The Dense Storfjord Plume Using A Ctd-mounted Adp

    Science.gov (United States)

    Fer, I.; Skogseth, R.; Haugan, P. M.

    Observations were made of the outflow of the dense bottom water plume from Stor- fjord (110 km long and 190 m deep at maximum depth) in the Svalbard Archipelago, using a CTD mounted ADP at densely spaced hydrographic stations during May 28 - June 2, 2001. Due to heavy ice inside the fjord, measurements were made from about 70 km downstream of a 115 m deep sill (7645 N) and onward. The dense bottom water generated by strong winter cooling, enhanced ice formation, and the consequent brine rejection drains into and fills the depressions of the fjord and cascades following the bathymetry. Data acquired by ADP allow for examination of the velocity structure associated with the plume as close as 1 m to the bottom with 1 m resolution in the vertical. The plume water was observed to have salinities within 34.9 - 35.1 psu with temperatures close to the freezing point temperature. The plume has a thickness of 51 +/- 20 m, and a density difference of 0.14 +/- 0.03 kg m-3 from the ambient wa- ters. The velocity profiles yield the most well-defined two-layered structure near the sloping sides with a mean plume speed of 0.15 +/- 0.04 m s-1, relative to the ambient waters. Mean overall Richardson number, estimated using these profiles, are within the range of 2 to 4. The plume is less distinct with respect to the velocity profile when it reaches the plane, Storfjordrenna, after cascading about 50 m in vertical. The width of the plume increases from about 8 km to 25 km along its path of 105 km leading to an entrainment rate of 5x10-4, when the plume thickness and speed are assumed constant. The values compare well with those obtained from moorings in the same region in the past, as well as those obtained from laboratory experiments of turbulent gravity currents flowing down a slope.

  20. Engineered circuit QED with dense resonant modes

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Daniel; Wilhelm, Frank [Universitaet des Saarlandes, Saarbruecken (Germany)

    2013-07-01

    Meta-materials are systems engineered at a wavelength smaller than the radiation considered but larger than the atomic scale; they gain their properties from their structure. Of notable interest are left-handed meta-materials. They exhibit negative permittivity and permeability. On chip quantum optics routinely use right-handed transmission lines, made of a microwave strip-line, as information mediators. In this work, we discuss the properties of a left-handed/right-handed hybrid transmission line. The resulting mode structure presents a mode pile-up at a lower cut-off frequency. Placing a qubit near the hybrid line results in strong to ultra-strong coupling to a quasi-continuum of modes. This system generates strongly entangled multi-mode states and also serves as quantum simulator for a spin-boson model with a sub-sub-ohmic density of states.

  1. Biotechnology of humified materials obtained from vermicomposts ...

    African Journals Online (AJOL)

    PERSON

    2013-02-13

    physiological mechanisms, growth and development. Humified materials exhibit structural characteristics that allow interactions with heavy metal cations dissolved in aqueous environments. Due to their high availability,.

  2. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J.J.; Armijo, J.; Bailey, D.S.; Friedman, A.; Bieniosek, F.M.; Henestroza, E.; Kaganovich, I.; Leung, P.T.; Logan, B.G.; Marinak, M.M.; More, R.M.; Ng, S.F.; Penn, G.E.; Perkins, L.J.; Veitzer, S.; Wurtele, J.S.; Yu, S.S.; Zylstra, A.B.

    2008-08-01

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  3. Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J J; Armijo, J; Bailey, D S; Friedman, A; Bieniosek, F M; Henestroza, E; Kaganovich, I; Leung, P T; Logan, B G; Marinak, M M; More, R M; Ng, S F; Penn, G E; Perkins, L J; Veitzer, S; Wurtele, J S; Yu, S S; Zylstra, A B

    2008-08-12

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  4. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a

  5. Exploring interspace: open space opportunities in dense urban areas

    Science.gov (United States)

    Paul H. Gobster; Kathleen E. Dickhut

    1995-01-01

    Using ideas from landscape ecology, this paper explores how small open spaces can aid urban forestry efforts in dense urban areas. A case study in Chicago illustrates the physical and social lessons learned in dealing with these spaces.

  6. Densely crosslinked polycarbosiloxanes .2. Thermal and mechanical properties

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Stenekes, R.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    The thermal and mechanical properties of two densely crosslinked polycarbosiloxane systems were investigated in relation to the molecular structure. The networks were prepared from functional branched prepolymers and crosslinked via a hydrosilylation curing reaction. The prepolymers having only

  7. Automated Motion Estimation for 2D Cine DENSE MRI

    Science.gov (United States)

    Gilliam, Andrew D.; Epstein, Frederick H.

    2013-01-01

    Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669

  8. Simulation of Radiowave Propagation in a Dense Urban Environment

    National Research Council Canada - National Science Library

    Chung, Chris V

    2007-01-01

    One objective of this thesis was to investigate the effect of details, such as the windows of high-rise buildings, on the radio wave propagation in the dense urban environment through modeling and simulations...

  9. A Sparse Multi-Scale Algorithm for Dense Optimal Transport

    OpenAIRE

    Schmitzer, Bernhard

    2015-01-01

    International audience; Discrete optimal transport solvers do not scale well on dense large problems since they do not explicitly exploit the geometric structure of the cost function. In analogy to continuous optimal transport, we provide a framework to verify global optimality of a discrete transport plan locally. This allows the construction of an algorithm to solve large dense problems by considering a sequence of sparse problems instead. The algorithm lends itself to being combined with a...

  10. Neutrinos and Nucleosynthesis in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, George [Univ. of California, San Diego, CA (United States)

    2016-01-14

    The Topical Collaboration for Neutrinos and Nucleosynthesis in Hot and Dense matter brought together researchers from a variety of nuclear science specialties and a number of institutions to address nuclear physics and neutrino physics problems associated with dense matter and the origin of the elements. See attached final technical reports for (1) the UCSD award and (2) a copy of the report for the whole TC

  11. Relating quantum discord with the quantum dense coding capacity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song; Zhang, Chi [China University of Mining and Technology, School of Sciences (China); Ye, Bin [China University of Mining and Technology, School of Information and Electrical Engineering (China)

    2015-01-15

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  12. Object detection in surveillance video from dense trajectories

    OpenAIRE

    Zhai, Mengyao

    2015-01-01

    Detecting objects such as humans or vehicles is a central problem in surveillance video. Myriad standard approaches exist for this problem. At their core, approaches consider either the appearance of people, patterns of their motion, or differences from the background. In this paper we build on dense trajectories, a state-of-the-art approach for describing spatio-temporal patterns in video sequences. We demonstrate an application of dense trajectories to object detection in surveillance video...

  13. Increased dense erythrocytes in flame-burned patients.

    Science.gov (United States)

    Saavedra, Arturo P; Warth, James A; Burke, John F; Norton, Kathryn J; Gelfand, Jeffrey A

    2013-01-01

    We have studied dense erythrocytes separated on Arabinogalactan (Stractan) ultracentrifuged gradients in flame-burned patients and in normal individuals. In each case, the percentage of erythrocytes in the densest layers was increased when compared to age and sex matched controls. Using an in vitro system, we showed that as human whole blood is warmed to 48.6°C, the number of dense erythrocytes increases. In addition, the reduced glutathionine (GSH) content of the densest red blood cells is decreased compared to those in lighter fractions on the same gradient or to dense erythrocytes separated from blood incubated at room temperature. These dense red cells were largely composed of spherocytes and spheroechynocytes, two forms of erythrocytes which have been shown by others to have markedly abnormal flow characteristics in vitro. We have demonstrated that in vivo dense erythrocytes can be generated in the setting of flame burns. Thus, the underlying reason may be oxidant injury as represented by the reduced level of GSH that we found in association with the generation of dense erythrocytes.

  14. Pyrolized biochar for heavy metal adsorption

    Science.gov (United States)

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  15. Probing transverse momentum broadening in heavy ion collisions

    Directory of Open Access Journals (Sweden)

    A.H. Mueller

    2016-12-01

    Full Text Available We study the dijet azimuthal de-correlation in relativistic heavy ion collisions as an important probe of the transverse momentum broadening effects of a high energy jet traversing the quark–gluon plasma. We take into account both the soft gluon radiation in vacuum associated with the Sudakov logarithms and the jet PT-broadening effects in the QCD medium. We find that the Sudakov effects are dominant at the LHC, while the medium effects can play an important role at RHIC energies. This explains why the LHC experiments have not yet observed sizable PT-broadening effects in the measurement of dijet azimuthal correlations in heavy ion collisions. Future investigations at RHIC will provide a unique opportunity to study the PT-broadening effects and help to pin down the underlying mechanism for jet energy loss in a hot and dense medium.

  16. Overview of Heavy-Flavored Jets at CMS

    CERN Document Server

    Jung, Kurt

    2017-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the mass and flavor of the initiating parton. Thus, measurements of jet quenching with identified partons place powerful constraints on the thermodynamic and transport properties of the hot and dense medium. Furthermore, recent results that constrain the jet production mechanism will shed additional light on the contributions of leading and next-to-leading order heavy flavor jet production with regard to the global energy loss picture. To this end, we present recent results measuring spectra and nuclear modification factors of jets associated to charm and bottom quarks in both pPb and PbPb collisions, as well as measurements of dijet asymmetry of pairs of b-jets in PbPb collisions.

  17. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian

    2013-02-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  18. A constitutive model for simple shear of dense frictional suspensions

    Science.gov (United States)

    Singh, Abhinendra; Mari, Romain; Denn, Morton M.; Morris, Jeffrey F.

    2018-03-01

    Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction $\\phi$ increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of $\\phi$. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters $(\\phi,\\tilde{\\sigma}$, and $\\mu)$, with $\\tilde{\\sigma} = \\sigma/\\sigma_0$ the dimensionless shear stress and $\\mu$ the coefficient of interparticle friction: the dimensional stress is $\\sigma$, and $\\sigma_0 \\propto F_0/ a^2$, where $F_0$ is the magnitude of repulsive force at contact and $a$ is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{\\bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or \\textquotedblleft jamming\\textquotedblright\\ points at volume fraction $\\phi_{\\rm J}^0 = \\phi_{\\rm rcp}$ (random close packing) for the low-stress lubricated state, and at $\\phi_{\\rm J} (\\mu) < \\phi_{\\rm J}^0$ for any nonzero $\\mu$ in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.

  19. Characterization of lesions in dense breasts: Does tomosynthesis help?

    Directory of Open Access Journals (Sweden)

    Krithika Rangarajan

    2016-01-01

    Full Text Available Context: Mammography in dense breasts is challenging due to lesion obscuration by tissue overlap. Does tomosynthesis offers a solution? Aims: To study the impact of digital breast tomosynthesis (DBT in characterizing lesions in breasts of different mammographic densities. Settings and Design: Prospective blinded study comparing mammography in two views with Mammography + Tomosynthesis. Methods and Material: Tomosynthesis was performed in 199 patients who were assigned Breast imaging reporting and data system (BIRADS categories 0, 3, 4, or 5 on two-dimensional (2D mammogram. Mammograms were first categorized into one of 4 mammographic breast densities in accordance with the American College of Radiology (ACR. Three radiologists independently analyzed these images and assigned a BIRADS category first based on 2D mammogram alone, and then assigned a fresh BIRADS category after taking mammography and tomosynthesis into consideration. A composite gold-standard was used in the study (histopathology, ultrasound, follow-up mammogram, magnetic resonance imaging. Each lesion was categorized into 3 groups—superior categorization with DBT, no change in BIRADS, or inferior BIRADS category based on comparison with the gold-standard. The percentage of lesions in each group was calculated for different breast densities. Results: There were 260 lesions (ages 28–85. Overall, superior categorization was seen in 21.2% of our readings on addition of DBT to mammography. DBT was most useful in ACR Densities 3 and 4 breasts where it led to more appropriate categorization in 27 and 42% of lesions, respectively. DBT also increased diagnostic confidence in 54.5 and 63.6% of lesions in ACR Densities 3 and 4, respectively. Conclusions: In a diagnostic setting, the utility of tomosynthesis increases with increasing breast density. This helps in identifying the sub category of patients where DBT can actually change management.

  20. Customizable Biopolymers for Heavy Metal Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred [University of California, Department of Chemical and Environmental Engineering (United States)], E-mail: wilfred@engr.ucr.edu

    2005-10-15

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted.

  1. Detecting heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.

    1983-01-01

    In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10/sup 32/ cm/sup -2/ sec/sup -1/. Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system. (WHK)

  2. Utah Heavy Oil Program

    Energy Technology Data Exchange (ETDEWEB)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  3. Combined effects of antimony and sodium diethyldithiocarbamate on soil microbial activity and speciation change of heavy metals. Implications for contaminated lands hazardous material pollution in nonferrous metal mining areas.

    Science.gov (United States)

    Zhu, Xiaozhe; Yao, Jun; Wang, Fei; Yuan, Zhimin; Liu, Jianli; Jordan, Gyozo; Knudsen, Tatjana Šolević; Avdalović, Jelena

    2018-05-05

    The combined effects of antimony (Sb) and sodium diethyldithiocarbamate (DDTC), a common organic flotation reagent, on soil microbial activity and speciation changes of heavy metals were investigated for the first time. The results showed that the exchangeable fraction of Sb was transformed to a stable residual fraction during the incubation period, and the addition of DDTC promoted the transformation compared with single Sb pollution, probably because DDTC can react with heavy metals to form a complex. In addition, the presence of DDTC and Sb inhibited the soil microbial activity to varying degrees. The growth rate constant k of different interaction systems was in the following order on the 28th day: control group ≥ single DDTC pollution > combined pollution > single Sb pollution. A correlation analysis showed that the concentration of exchangeable Sb was the primary factor that affected the toxic reaction under combined pollution conditions, and it significantly affected the characteristics of the soil microorganisms. All the observations provide useful information for a better understanding of the toxic effects and potential risks of combined Sb and DDTC pollution in antimony mining areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Composition and method for removing photoresist materials from electronic components

    Science.gov (United States)

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M.

    2005-01-25

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  5. Geopolymer as an adsorbent of heavy metal: A review

    Science.gov (United States)

    Ariffin, Nurliyana; Abdullah, Mohamad Mustafa Al Bakri; Zainol, Remy Rozainy Mohd Arif; Murshed, Mohd Fared

    2017-09-01

    This paper reviews about geopolymer based adsorbent focusing in the removal of heavy metal. The reviews include fundamental and types of material used in the formation of adsorbents. Geopolymer based adsorbent got attention recently due to its unique three-dimensional network structure, with fixed size pores and paths that allow certain heavy metal to pass through. Most materials that applied as adsorbent such as fly ash, metakaolin, kaolin and dolomite. A lot of sludge nowadays only dumped in the landfill which can be used as one of new materials as geopolymer based adsorbent.

  6. Heavy oil markets and investments

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Jackie [CERA North America (United States)

    2011-07-01

    With the depletion of traditional energy resources and the rising demand for energy, the exploitation of heavy oil resources is increasing. The aim of this paper is to present the heavy oil sector and to show which are the factors influencing heavy oil growth and production. A large part of heavy oil reserves lies in the Americas, with about 45% of the world's reserves in Latin America and over 35% in North America. The development of the heavy oil sector is dependent on economic, technological and environmental factors; greenhouse gas policies have important impacts on the development of the heavy oil industry as well as downstream market access. This presentation highlighted the great potential that North and South America have in terms of heavy oil but that the development of this sector will depend on several factors.

  7. Open heavy flavor measurements in $d$$+$Au collisions at PHENIX experiment

    CERN Document Server

    ,

    2014-01-01

    The heavy quarks produced in the early stage of heavy-ion collisions are very effective probes of the dense partonic medium produced at RHIC. PHENIX has the ability to measure heavy quark production through single electrons in the central arm spectrometers ($|\\eta|<0.35$) and single muons in the forward (backward) muon spectrometers ($1.2<|\\eta|<2.2$). As these single leptons are from open heavy-flavor meson semi-leptonic decays, initial state cold nuclear matter effects on heavy quark production can be probed by measuring the single leptons in $d$$+$Au collisions. PHENIX have observed a large enhancement of heavy-flavor electrons in $d$$+$Au collisions at mid-rapidity, which indicates strong CNM effects on heavy quark production, in contrast to the suppression observed in Au$+$Au collisions. Measurement of single muons from open heavy flavor in $d$$+$Au collisions at forward (backward) rapidity provide detailed look into rapidity dependent CNM effects as well as the low (high) $x$ parton distributio...

  8. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Tapia Araya, Sebastian; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in heavy-ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions , cold nuclear effects may also affect quarkonia production . Therefore, a full assessment requires detailed studies on the effects present in both A-A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt J/psi and psi(2S) productions as well as Upsilon production via the di-muon decay final states. The results are of the various measurements are discussed.

  9. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Kremer, Jakub Andrzej; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in heavy-ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions, cold nuclear effects may also affect quarkonia production. Therefore, a full assessment requires detailed studies on the effects present in both A-A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt J/psi and psi(2S) productions as well as Upsilon production via the di-muon decay final states. The results of the various measurements are discussed

  10. Ultrabright x-ray laser scattering for dynamic warm dense matter physics

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, L. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of California, Berkeley, CA (United States); Lee, H. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Doppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Galtier, E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nagler, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Heimann, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fortmann, C. [QuantumWise A/S, Koebenhavn (Denmark); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mao, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Millot, M. [Univ. of California, Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Turnbull, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapman, D. A. [AWE plc, Reading (United Kingdom); Univ. of Warwick, Coventry (United Kingdom); Gericke, D. O. [AWE plc, Reading (United Kingdom); Vorberger, J. [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); White, T. [Univ. of Oxford, Oxford (United Kingdom); Gregori, G. [Univ. of Oxford, Oxford (United Kingdom); Wei, M. [General Atomics, San Diego, CA (United States); Barbrel, B. [Univ. of California, Berkeley, CA (United States); Falcone, R. W. [Univ. of California, Berkeley, CA (United States); Kao, C. -C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nuhn, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Welch, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Zastrau, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Friedrich-Schiller-Univ., Jena (Germany); Neumayer, P. [GSI Helmhltzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Hastings, J. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-03-23

    In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions). Here, we apply record peak brightness X-rays at the Linac Coherent Light Source to resolve ionic interactions at atomic (ångström) scale lengths and to determine their physical properties. Our in situ measurements characterize the compressed lattice and resolve the transition to warm dense matter, demonstrating that short-range repulsion between ions must be accounted for to obtain accurate structure factor and equation of state data. Additionally, the unique properties of the X-ray laser provide plasmon spectra that yield the temperature and density with unprecedented precision at micrometre-scale resolution in dynamic compression experiments.

  11. Calculating Fragmentation Functions in Heavy Ion Physics Simulations

    Science.gov (United States)

    Hughes, Charles; Aukerman, Alex; Krobatsch, Thomas; Matyja, Adam; Nattrass, Christine; Neuhaus, James; Sorensen, Soren; Witt, William

    2017-09-01

    A hot dense liquid of quarks and gluons called a Quark Gluon Plasma (QGP) is formed in high energy nuclear collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. The high energy partons which scatter during these collisions can serve as probes for measuring QGP bulk properties. The details of how partons lose energy to the QGP medium as they traverse it can be used to constrain models of their energy loss. Specifically, measurements of fragmentation functions in the QGP medium can provide experimental constraints on theoretical parton energy loss mechanisms. However, the high background in heavy ion collisions limits the precision of these measurements. We investigate methods for measuring fragmentation functions in a simple model in order to assess their feasibility. We generate a data-driven heavy ion background based on measurements of charged hadron transverse momentum spectra, charged hadron azimuthal flow, and charged hadron rapidity spectra. We then calculate fragmentation functions in this heavy ion background and compare to calculations in proton-proton simulations. We present the current status of these studies.

  12. Application of a Dense Gas Technique for Sterilizing Soft Biomaterials

    Science.gov (United States)

    Karajanagi, Sandeep S.; Yoganathan, Roshan; Mammucari, Raffaella; Park, Hyoungshin; Cox, Julian; Zeitels, Steven M.; Langer, Robert; Foster, Neil R.

    2017-01-01

    Sterilization of soft biomaterials such as hydrogels is challenging because existing methods such as gamma irradiation, steam sterilization, or ethylene oxide sterilization, while effective at achieving high sterility assurance levels (SAL), may compromise their physicochemical properties and biocompatibility. New methods that effectively sterilize soft biomaterials without compromising their properties are therefore required. In this report, a dense-carbon dioxide (CO2)-based technique was used to sterilize soft polyethylene glycol (PEG)-based hydrogels while retaining their structure and physicochemical properties. Conventional sterilization methods such as gamma irradiation and steam sterilization severely compromised the structure of the hydrogels. PEG hydrogels with high water content and low elastic shear modulus (a measure of stiffness) were deliberately inoculated with bacteria and spores and then subjected to dense CO2. The dense CO2-based methods effectively sterilized the hydrogels achieving a SAL of 10−7 without compromising the viscoelastic properties, pH, water-content, and structure of the gels. Furthermore, dense CO2-treated gels were biocompatible and non-toxic when implanted subcutaneously in ferrets. The application of novel dense CO2-based methods to sterilize soft biomaterials has implications in developing safe sterilization methods for soft biomedical implants such as dermal fillers and viscosupplements. PMID:21337339

  13. Heavy-heavy and heavy-light quarks interactions generated by QCD vacuum

    Directory of Open Access Journals (Sweden)

    Musakhanov Mirzayusuf

    2017-01-01

    Full Text Available The QCD vacuum is populated by instantons that correspond to the tunneling processes in the vacuum. This mechanism creates the strong vacuum gluon fields. As result, the QCD vacuum instantons induce very strong interactions between light quarks, initially almost massless. Such a strong interactions bring a large dynamical mass M of the light quarks and bound them to produce almost massless pions in accordance with the spontaneous breaking of the chiral symmetry (SBCS. On the other hand, the QCD vacuum instantons also interact with heavy quarks and responsible for the generation of the heavy-heavy and heavy-light quarks interactions, with a traces of the SBCS. If we take the average instanton size ρ¯=0.33$\\bar \\rho = 0.33$ fm, and the average inter-instanton distance R¯=1$\\bar R = 1$ fm we obtain the dynamical light quark mass to be M = 365 MeV and the instanton media contribution to the heavy quark mass ΔM=70 MeV. These factors define the coupling between heavy-light and heavy-heavy quarks induced by the QCD vacuum instantons. We consider first the instanton effects on the heavy-heavy quarks potential, including its spin-dependent part. We also discuss those effects on the masses of the charmonia and their hyperfine mass splittings. At the second part we discuss the interaction between a heavy and light quarks generated by instantons and it’s effects.

  14. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kevin Peter [Univ. of Rochester, NY (United States)

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR,HSR) were isolated from rabbit leg muscle using a combination of differential centrifugation and isopycnic zonal ultracentrifugation. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes whereas the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material, similar to that seen in the terminal cisternae of the sarcoplasmic reticulum. The sucrose HSR vesicles have an additional morphological feature which appears as membrane projections that resemble the SR feet. The freeze-fracture morphology of either type of SR reveals an asymmetric distribution of intramembraneous particles in the same orientation and distribution as the sarcoplasmic reticulum in vivo. Biochemical studies were made on the content of Ca, Mg, ATPase, and protein of the vesicles and phosphorylation of the vesicles. The biochemical and morphological data indicate that the LSR is derived from the longitudinal sarcoplasmic reticulum and the HSR is derived from the terminal cisternae of the sarcoplasmic reticulum, contains junctional SR membrane and has three unique proteins (calsequestrin, an intrinsic 30,000 dalton protein and a 9000 dalton proteolipid).

  15. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    De Vega, H.J.; Boyanovsky, D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  16. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    DE VEGA,H.J.; BOYANOVSKY,D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  17. Hydrophobization of dense and fine concrete by polysulfide solutions

    Directory of Open Access Journals (Sweden)

    MASSALIMOV Ismail Alexandrovich

    2016-10-01

    Full Text Available The results of research on hydrophobic impregnation of dense concrete with composition «Aquastat» designed for manufacture of road and airfield plates are presented. It was found that after having been treated with waterrepellent agent the concrete sample is resistant to wetting, i.e. it gets hydrophobic properties. At the same time the water absorption of the samples treated for 24 hours at atmospheric pressure is reduced in three times, and soaked for 0.5 hours under vacuum decreases 5.5 times. It was revealed that the hydrophobic properties of fine-grained concrete impregnated with «Aquastat» may be at the same level of those of dense concrete based on coarse filler. Substantially increased hydrophobic properties of dense concrete (more than 5 times allow authors to forecast twice increased service life of road and airfield plates treated by «Aquastat» composition.

  18. Spatial and temporal segmented dense trajectories for gesture recognition

    Science.gov (United States)

    Yamada, Kaho; Yoshida, Takeshi; Sumi, Kazuhiko; Habe, Hitoshi; Mitsugami, Ikuhisa

    2017-03-01

    Recently, dense trajectories [1] have been shown to be a successful video representation for action recognition, and have demonstrated state-of-the-art results with a variety of datasets. However, if we apply these trajectories to gesture recognition, recognizing similar and fine-grained motions is problematic. In this paper, we propose a new method in which dense trajectories are calculated in segmented regions around detected human body parts. Spatial segmentation is achieved by body part detection [2]. Temporal segmentation is performed for a fixed number of video frames. The proposed method removes background video noise and can recognize similar and fine-grained motions. Only a few video datasets are available for gesture classification; therefore, we have constructed a new gesture dataset and evaluated the proposed method using this dataset. The experimental results show that the proposed method outperforms the original dense trajectories.

  19. Holographic stereogram using camera array in dense arrangement

    Science.gov (United States)

    Yamamoto, Kenji; Oi, Ryutaro; Senoh, Takanori; Ichihashi, Yasuyuki; Kurita, Taiichiro

    2011-02-01

    Holographic stereograms can display 3D objects by using ray information. To display high quality representations of real 3D objects by using holographic stereograms, relatively dense ray information must be prepared as the 3D object information. One promising method of obtaining this information uses a combination of a camera array and view interpolation which is signal processing technique. However, it is still technically difficult to synthesize ray information without visible error by using view interpolation. Our approach uses a densely arranged camera array to reduce this difficulty. Even though view interpolation is a simple signal processing technique, the synthesized ray information produced by this camera array should be adequate. We designed and manufactured a densely arranged camera array and used it to generate holographic stereograms.

  20. Warm dense matter and Thomson scattering at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faeustlin, Roland Rainer

    2010-05-15

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  1. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    Science.gov (United States)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  2. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    Energy Technology Data Exchange (ETDEWEB)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the “stopping power” of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  3. Measurement Of The Heavy-Ion Collision Event Characteristics With The Atlas Experiment At The Lhc

    Directory of Open Access Journals (Sweden)

    Iwona Grabowska-Bołd

    2015-01-01

    Full Text Available Heavy-ion collisions at extreme energies can reproduce conditionspresent in the early Universe. The new state of very dense and hotmatter of deconfined quarks and gluons, called the Quark GluonPlasma~(QGP, is observed. This state is characterised by very lowviscosity resembling the properties of a perfect fluid. In suchmedium, the density fluctuations can be easily spread. In experimentalpractice, the size of these fluctuations is estimated by measuring theangular correlation of produced particles. The aim of this paper isto present measurements of the azimuthal anisotropy of chargedparticles produced in heavy-ion collisions using the ATLAS detector atthe LHC. Two measurement techniques are presented and compared.

  4. Heavy Bearings Exploitation Energy and Reduction Methods

    Science.gov (United States)

    Szekely, V. G.; Cioară, R.

    2016-11-01

    The global trend of resource conservation so as “not to compromise the ability of future generation's development” is the fundamental basis of the concept of sustainable development. Concordant with this, the energy efficiency of products is increasingly discussed and frequently taken into account in the design stage. In more cases a product is more appreciated and more attractive as the energy consumption and its associated materials are lower. In the production stage, said consumption advantages primarily the manufacturer, particularly through low consumption thereof. In the operational phase, low energy and materials consumption represents an user advantage and it's a major argument in the decision to purchase and use a particular product. Heavy bearings are frequent products used in wind turbines that are producing non-conventional “clean” energy, as windmills. An enhanced energy efficiency bearing contributes to the enhancement of the overall efficiency of the wind turbines. Based on a suitable mathematical model, this paper identifies and recommends courses of action to reduce the operating energy of heavy bearing through the “cage” - which is the subject of a much larger research - with the highest priority. The identified actions may constitute from a set of requirements for the design stage of the heavy bearing predominantly oriented towards innovation-invention.

  5. Fabrication of Dense ZrO2/CNT Composites: Influence of Bead-Milling Treatment

    Science.gov (United States)

    Suárez, Gustavo; Jang, Byung-Koog; Aglietti, Esteban F.; Sakka, Yoshio

    2013-09-01

    Highly concentrated zirconia-carbon nanotube (CNT) water suspensions were prepared using an advanced milling technique. The bead-milling operation parameters were optimized for this system and used to prepare zirconia-stabilized water-based suspensions with different CNT contents. The effects of different milling conditions were studied. The particle dispersion was evaluated by SEM observations on dried suspension. Green's density and SEM observations of compacts were used to follow the colloidal dispersability of the composites. Materials of tetragonal zirconia and CNTs were prepared with a high concentration of CNTs (1, 5, and 10 wt pct CNT). The homogeneous dispersion and distribution of the fibers in the bulk material after slip casting of the suspension were examined. The samples were sintered using spark plasma sintering (SPS) at 1473 K (1200 °C) and finally, fully dense materials were obtained. The mechanical properties were evaluated using the Vickers indentation technique.

  6. Eculizumab for dense deposit disease and C3 glomerulonephritis.

    Science.gov (United States)

    Bomback, Andrew S; Smith, Richard J; Barile, Gaetano R; Zhang, Yuzhou; Heher, Eliot C; Herlitz, Leal; Stokes, M Barry; Markowitz, Glen S; D'Agati, Vivette D; Canetta, Pietro A; Radhakrishnan, Jai; Appel, Gerald B

    2012-05-01

    The principle defect in dense deposit disease and C3 glomerulonephritis is hyperactivity of the alternative complement pathway. Eculizumab, a monoclonal antibody that binds to C5 to prevent formation of the membrane attack complex, may prove beneficial. In this open-label, proof of concept efficacy and safety study, six subjects with dense deposit disease or C3 glomerulonephritis were treated with eculizumab every other week for 1 year. All had proteinuria >1 g/d and/or AKI at enrollment. Subjects underwent biopsy before enrollment and repeat biopsy at the 1-year mark. The subjects included three patients with dense deposit disease (including one patient with recurrent dense deposit disease in allograft) and three patients with C3 glomerulonephritis (including two patients with recurrent C3 glomerulonephritis in allograft). Genetic and complement function testing revealed a mutation in CFH and MCP in one subject each, C3 nephritic factor in three subjects, and elevated levels of serum membrane attack complex in three subjects. After 12 months, two subjects showed significantly reduced serum creatinine, one subject achieved marked reduction in proteinuria, and one subject had stable laboratory parameters but histopathologic improvements. Elevated serum membrane attack complex levels normalized on therapy and paralleled improvements in creatinine and proteinuria. Clinical and histopathologic data suggest a response to eculizumab in some but not all subjects with dense deposit disease and C3 glomerulonephritis. Elevation of serum membrane attack complex before treatment may predict response. Additional research is needed to define the subgroup of dense deposit disease/C3 glomerulonephritis patients in whom eculizumab therapy can be considered.

  7. Interference Management with Successive Cancellation for Dense Small Cell Networks

    DEFF Research Database (Denmark)

    Lopez, Victor Fernandez; Pedersen, Klaus I.; Steiner, Jens

    2016-01-01

    , known as Symbol-Level Interference Cancellation (SLIC), with respect to a baseline Minimum Mean Square Error-Interference Rejection Combining (MMSE-IRC) receiver. The study is carried out on a dense, clusterized small cell network, illustrating to which extent NAICS can overcome the additional......Network-Assisted Interference Cancellation and Suppression (NAICS) receivers have appeared as a promising way to curb inter-cell interference in future dense network deployments. This investigation compares the performance of a NAICS receiver with successive interference cancellation capabilities...

  8. Electromagnetic solitary structures in dense electron-positron-ion magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Masood, W; Hussain, S; Rizvi, H; Mushtaq, A [TPPD, PINSTECH, PO Nilore, Islamabad (Pakistan); Ayub, M, E-mail: waqasmas@gmail.co [Government College University (GCU), Lahore (Pakistan)

    2010-12-15

    The linear and nonlinear propagation characteristics of low-frequency obliquely propagating magnetoacoustic waves in dense electron-positron-ion magnetoplasmas are studied in this paper by using the quantum magnetohydrodynamic (QMHD) model. A quantum Kadomtsev-Petviashvili (KP) equation is derived by using the reductive perturbation technique. The dependence of the fast and slow magnetoacoustic solitary waves on the positron concentration, the obliqueness parameter {theta} and the magnetic field is also investigated. The present investigation may have relevance to dense astrophysical environments where the quantum effects are expected to dominate.

  9. PHENIX recent heavy flavor results

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sanghoon

    2014-06-15

    Cold nuclear matter (CNM) effects provide an important ingredient to interpret the results from heavy-ion collisions. Such effects include nuclear shadowing, intrinsic parton transverse momentum broadening, and initial patron energy loss. The measurement of heavy quark production is a good probe to study the CNM effects particularly on gluons, since heavy quarks are mainly produced via gluon fusions at RHIC energy. The PHENIX experiment has an ability to study the CNM effects by measuring leptons from heavy-flavor decay in a broad kinematic range. Comparisons of the results measured in different rapidity regions allow us to study modification of gluon density function in the Au nucleus depending on parton fractional momentum x. In addition, comparisons to the results from heavy-ion collisions (Au + Au and Cu + Cu) measured by PHENIX provide an insight into the role of CNM effects in such collisions. Recent PHENIX results on heavy quark production are discussed in this presentation.

  10. b-jet tagged nuclear modification factors in heavy ion collisions with CMS

    CERN Document Server

    Jung, Kurt

    2014-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy-flavor-tagged jets in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. In this talk, we present the b-jet spectra and the first measurement of the nuclear modification factors as a function of transverse momentum and pseudorapidity, using the high statistics pp, pPb and PbPb data taken in 2011 and 2013.

  11. Removal of gadolinium nitrate from heavy water

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.

    2000-03-22

    Work was conducted to develop a cost-effective process to purify 181 55-gallon drums containing spent heavy water moderator (D2O) contaminated with high concentrations of gadolinium nitrate, a chemical used as a neutron poison during former nuclear reactor operations at the Savannah River Site (SRS). These drums also contain low level radioactive contamination, including tritium, which complicates treatment options. Presently, the drums of degraded moderator are being stored on site. It was suggested that a process utilizing biological mechanisms could potentially lower the total cost of heavy water purification by allowing the use of smaller equipment with less product loss and a reduction in the quantity of secondary waste materials produced by the current baseline process (ion exchange).

  12. Predictions of x-ray scattering spectra in warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Starrett, Charles E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saumon, Didier [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Souza, Andre N. [Univ. of Michigan, Ann Arbor, MI (United States); Perkins, David J. [Univ. of California, Los Angeles, CA (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-12

    This presentation gives an Introduction to our model of warm dense matter; How x-ray scattering spectra are calculated from it; Comparisons with experiments: Room temperature/pressure beryllium Warm dense beryllium Warm dense aluminum; Predictions for warm dense beryllium and titanium; and, Conclusions.

  13. Distribution of Heavy Metal Pb

    OpenAIRE

    Samawi, Muh. Farid; Tambaru, Rahmadi; Husain, Aida Ala; Burhanuddin, Andi Iqbal

    2014-01-01

    Distribution of Heavy Metal Pb in Benthic Organism and Sediment Bonebatang Island Waters Benthic organisms Bonebatang Island waters consist of branching hard corals, massive hard corals, soft corals, sponges, macroalgae, coralline algae, seagrass and mussels have the potential to accumulate heavy metals Pb from the water column. Results of studies have determined the rate of accumulation of heavy metals Pb some benthic organisms in the Bonebatang Island waters. Branching hard corals have a...

  14. Heavy quark production and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Appel, J.A.

    1993-11-01

    This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation.

  15. Heavy ion therapy: Bevalac epoch

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  16. Heavy-Quark Fragmentation

    CERN Document Server

    Cacciari, M; Cacciari, Matteo; Gardi, Einan

    2003-01-01

    We study perturbative and non-perturbative aspects of heavy-quark fragmentation into hadrons, emphasizing the large-x region, where x is the energy fraction of the detected hadron. We first prove that when the moment index N and the quark mass m get large simultaneously with the ratio (N Lambda/m) fixed, the fragmentation function depends on this ratio alone. This opens up the way to formulate the non-perturbative contribution to the fragmentation function at large N as a shape function of m(1-x) which is convoluted with the Sudakov-resummed perturbative result. We implement this resummation and the parametrization of the corresponding shape function using Dressed Gluon Exponentiation. The Sudakov exponent is calculated in a process independent way from a generalized splitting function which describes the emission probability of an off-shell gluon off a heavy quark. Non-perturbative corrections are parametrized based on the renormalon structure of the Sudakov exponent. They appear in moment space as an expone...

  17. Ultrarelativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, H.G.

    1980-12-01

    Studies with ultrarelativistic heavy ions combine aspects of cosmic ray physics, particle physics, nuclear physics, astrophysics and cosmogenesis. The leading theoretical concerns are the behavior of matter at very high-energy density and flux, the general behavior of space time in collisions, relativistic nuclear theory, and quantum chromodynamics. The field has developed over a period of more than thirty years, since the first observation of heavy nuclei in cosmic rays and the major developments of understanding of high-energy collisions made by Fermi and Landau in the early fifties. In the late sixties the discovery of the parton content of nucleons was rapidly followed by a great extension of high-energy collision phenomenology at the CERN ISR and subsequent confirmation of the QCD theory. In parallel the study of p-nucleus and nucleus-nucleus collisions at very high energies, especially at the CERN PS, Fermilab and the Bevalac, and in cosmic rays demonstrated that studies involving the nucleus opened up a new dimension in studies of the hadronic interaction. It is now at a high level of interest on an international scale, with major new accelerators being proposed to dedicate to this kind of study.

  18. Intense Ion Beam for Warm Dense Matter Physics

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Joshua Eugene [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K+ ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally

  19. Fine coal processing with dense-medium cyclones

    CSIR Research Space (South Africa)

    De Korte, GJ

    2012-10-01

    Full Text Available Dense medium cyclones have been used for many years in a number of countries to beneficiate fine coal. The use of cyclones in this application is, however, not widespread and at present, the process is in use only in South Africa and China...

  20. Subtle Monte Carlo Updates in Dense Molecular Systems

    DEFF Research Database (Denmark)

    Bottaro, Sandro; Boomsma, Wouter; Johansson, Kristoffer E.

    2012-01-01

    a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule...

  1. Force Statistics and Correlations in Dense Granular Packings

    NARCIS (Netherlands)

    Müller, M.K; Luding, Stefan; Pöschel, Thorsten

    2010-01-01

    In dense, static, polydisperse granular media under isotropic pressure, the probability density and the correlations of particle-wall contact forces are studied. Furthermore, the probability density functions of the populations of pressures measured with different sized circular pressure cells are

  2. Directly calculating electrical conductivities of dense hydrogen from molecular dynamics

    Science.gov (United States)

    Ma, Qian; Kang, Dongdong; Dai, Jiayu

    2017-10-01

    The transport properties are important in warm and hot dense matter in which the Coulomb interaction is dominated in the scattering process. Density functional theory (DFT) is considered as an effective method to investigate the transport properties, but the dynamical collisions between particles are missed. Here we use an electron force field (eFF) method based molecular dynamics (MD) to include the electronic quantum effects to investigate the transport properties of warm dense hydrogen. The eFF method can be regarded as the development of wave packets molecular dynamics and it has been successfully used to describe the thermodynamics of hydrogen, Auger process in diamondoids, the equation of states for dense lithium. The most important point of eFF method is assuming that each electron is considered as a Gaussian wave packet controlled by position and size while ions are still charged points. The electrical conductivity is calculated via the correlation of electrical current. The results show that electronic quantum effects are important for the transport properties in warm dense hydrogen such as diffusion coefficient and electrical conductivity, which are much smaller than the results from DFT calculations.

  3. Sparse symmetric preconditioners for dense linear systems in electromagnetism

    NARCIS (Netherlands)

    Carpentieri, Bruno; Duff, Iain S.; Giraud, Luc; Monga Made, M. Magolu

    2004-01-01

    We consider symmetric preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. In particular, we report on the numerical behaviour of the classical incomplete Cholesky factorization as well as some of its recent

  4. Dense and accurate whole-chromosome haplotyping of individual genomes

    NARCIS (Netherlands)

    Porubsky, David; Garg, Shilpa; Sanders, Ashley D.; Korbel, Jan O.; Guryev, Victor; Lansdorp, Peter M.; Marschall, Tobias

    2017-01-01

    The diploid nature of the human genome is neglected in many analyses done today, where a genome is perceived as a set of unphased variants with respect to a reference genome. This lack of haplotype-level analyses can be explained by a lack of methods that can produce dense and accurate

  5. Spaces in which every dense subset is a G δ

    African Journals Online (AJOL)

    A topological space X is called a DG-space if every subset of X is a G-set in its closure. In this paper we study DG-spaces that contains subspaces in which every dense subset is open and spaces in which every subset is a G. We give some new results in these classes of topological spaces.

  6. Dilution in a Dense Bottom Jet in Cross Currents

    DEFF Research Database (Denmark)

    Petersen, O.; Larsen, Torben

    1998-01-01

    A 3-dimensional numerical model describing the dilution in the near field around dense vertical jets in a cross flow is formulated and validated against laboratory experiments. The validation shows that the model reproduces the flow pattern well, though the dilution is underestimated by 20%. The ...

  7. Neutrino-electron scattering in a dense strongly magnetized plasma

    Directory of Open Access Journals (Sweden)

    Kuznetsov Alexander

    2017-01-01

    Full Text Available We investigate the process of neutrino-electron scattering in a dense plasma and magnetic field of arbitrary strength, where electrons can occupy the states corresponding to excited Landau levels. We calculate the total probability of this process, summarized over all initial states of the plasma electrons which is only physically meaningful. Possible astrophysical manifestations of the process are briefly discussed.

  8. Numerical simulation of the fast dense gas Ludwieg tube experiment

    NARCIS (Netherlands)

    Zamfirescu, C.; Guerdone, A.; Collona, P.

    2006-01-01

    The preliminary design of a Ludwieg tube experiment for the verification of the existence of nonclassical rarefaction shock waves in dense vapors is here critically analyzed by means of real gas numerical simulations of the experimental setup. The Flexible Asymmetric Shock Tube (FAST) setup is a

  9. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.

    Science.gov (United States)

    Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ∼6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  10. Dense Descriptors for Optical Flow Estimation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ahmadreza Baghaie

    2017-02-01

    Full Text Available Estimating the displacements of intensity patterns between sequential frames is a very well-studied problem, which is usually referred to as optical flow estimation. The first assumption among many of the methods in the field is the brightness constancy during movements of pixels between frames. This assumption is proven to be not true in general, and therefore, the use of photometric invariant constraints has been studied in the past. One other solution can be sought by use of structural descriptors rather than pixels for estimating the optical flow. Unlike sparse feature detection/description techniques and since the problem of optical flow estimation tries to find a dense flow field, a dense structural representation of individual pixels and their neighbors is computed and then used for matching and optical flow estimation. Here, a comparative study is carried out by extending the framework of SIFT-flow to include more dense descriptors, and comprehensive comparisons are given. Overall, the work can be considered as a baseline for stimulating more interest in the use of dense descriptors for optical flow estimation.

  11. Interaction of ultrarelativistic electron and proton bunches with dense plasmas

    CERN Document Server

    Rukhadze, A A

    2012-01-01

    Here we discuss the possibility of employment of ultrarelativistic electron and proton bunches for generation of high plasma wakefields in dense plasmas due to the Cherenkov resonance plasma-bunch interaction. We estimate the maximum amplitude of such a wake and minimum system length at which the maximum amplitude can be generated at the given bunch parameters.

  12. Dense 3D Map Construction for Indoor Search and Rescue

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Huang, Shoudong; Miró, Jaime Valls

    2007-01-01

    The main contribution of this paper is a new simultaneous localization and mapping  SLAM algorithm for building dense three-dimensional maps using information ac- quired from a range imager and a conventional camera, for robotic search and rescue in unstructured indoor environments. A key challenge...

  13. Influence of Food Packaging on Children's Energy-dense Snack ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Childhood obesity is a major global public health concern. Rates of obese and overweight children have increased in low- and middle-income countries such as Guatemala. This research will study the influence of food packaging on Guatemalan preschool and school-aged children's energy-dense snack (EDS) food ...

  14. A comparative study of fast dense stereo vision algorithms

    NARCIS (Netherlands)

    Sunyoto, H.; Mark, W. van der; Gavrila, D.M.

    2004-01-01

    With recent hardware advances, real-time dense stereo vision becomes increasingly feasible for general-purpose processors. This has important benefits for the intelligent vehicles domain, alleviating object segmentation problems when sensing complex, cluttered traffic scenes. In this paper, we

  15. Rapid haplotype reconstruction in predigrees with dense marker maps

    NARCIS (Netherlands)

    Windig, J.J.; Meuwissen, T.H.E.

    2004-01-01

    Reconstruction of marker phases is not straightforward when parents are untyped. In these cases information from other relatives has to be used. In dense marker maps, however, the space of possible haplotype configurations tends to be too large for procedures such as Monte Carlo Markov chains (MCMC)

  16. Dense Focal Plane Arrays for Pushbroom Satellite Radiometers

    DEFF Research Database (Denmark)

    Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.

    2014-01-01

    Performance of a dense focal plane array feeding an offset toroidal reflector antenna system is studied and discussed in the context of a potential application in multi-beam radiometers for ocean surveillance. We present a preliminary design of the array feed for the 5-m diameter antenna at X-ban...

  17. Predictors of heavy drinking after liver transplantation for alcoholic liver disease in Denmark (1990-2013)

    DEFF Research Database (Denmark)

    Askgaard, Gro; Tolstrup, Janne S.; Gerds, Thomas A.

    2016-01-01

    OBJECTIVE: Heavy drinking following liver transplantation decreases survival. Little is known of predictors of heavy drinking, which should guide clinicians identifying patients at high risk of return to heavy drinking after transplantation. MATERIAL AND METHODS: We calculated the cumulative...... incidence of heavy drinking among patients transplanted for alcoholic liver disease in Denmark 1990-2013. We then analyzed pre-transplant demographic and psychiatric characteristics as predictors of post-transplant heavy drinking. Information was obtained from medical records, from nationwide registries...... and by interview. RESULTS: Among 156 liver-transplanted patients, the cumulative incidence of heavy drinking was 18%, 24% and 27% after 5, 10 and 15 years post-transplant. In univariate analyses of pre-transplant predictors of heavy drinking after transplantation, younger age (p

  18. Ecotoxicology of heavy metals: Liquid-phase extraction by nanosorbents

    Science.gov (United States)

    Burakov, A.; Romantsova, I.; Babkin, A.; Neskoromnaya, E.; Kucherova, A.; Kashevich, Z.

    2015-11-01

    The paper considers the problem of extreme toxicity heavy metal compounds dissolved in wastewater and liquid emissions of industrial enterprises to living organisms and environment as a whole. The possibility of increasing extraction efficiency of heavy metal ions by sorption materials was demonstrated. The porous space of the latter was modified by carbon nanotubes (CNTs) during process of the chemical vapour deposition (CVD) of carbon on metal oxide catalysts. The increasing of the sorption capacity (10-30%) and the sorption rate of nanomodified activated carbons in comparison with standard materials in the example of absorption of Co2+ and Ni2+ ions from aqueous solutions was proven.

  19. Investigation of gas chromatography for the determination of heavy metals, and of chelate gas chromatography for the analysis of trace elements in biological material. Comparison with other methods. Untersuchungen zur gaschromatographischen Bestimmung von Schwermetallen und Anwendung der Chelat-Gaschromatographie auf die Bestimmung von Spurenelementen in Biomatrices im Vergleich mit anderen Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Meierer, H.

    1984-01-01

    The gas chromatographic behaviour of the fluorinated diethyl dithiocarbamate chelates on packed columns was investigated. Special emphasis was put on the investigation of the behaviour of the unstable chelate adsorption or decomposition respectively. Zn-(FDEDTC){sub 2}, which was labelled with radioactive Zn, was chosen as a model substance for the unstable chelates. The investigation results led altogether to an optimized chromatography system, which is suitable for the determination of heavy metal traces in biological materials by means of chelate gas chromatography. For the purpose of demonstration, Ni, Co, Cu and Pb were determined in must, wine and yeast as a function of the fermentation process and after the blue fining of the wine and the results were compared with other analytical methods. (orig./RB).

  20. Heavy-ion tumor therapy: Physical and radiobiological benefits

    Science.gov (United States)

    Schardt, Dieter; Elsässer, Thilo; Schulz-Ertner, Daniela

    2010-01-01

    High-energy beams of charged nuclear particles (protons and heavier ions) offer significant advantages for the treatment of deep-seated local tumors in comparison to conventional megavolt photon therapy. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum (Bragg peak) near the end of range with a sharp fall-off at the distal edge. Taking full advantage of the well-defined range and the small lateral beam spread, modern scanning beam systems allow delivery of the dose with millimeter precision. In addition, projectiles heavier than protons such as carbon ions exhibit an enhanced biological effectiveness in the Bragg peak region caused by the dense ionization of individual particle tracks resulting in reduced cellular repair. This makes them particularly attractive for the treatment of radio-resistant tumors localized near organs at risk. While tumor therapy with protons is a well-established treatment modality with more than 60 000 patients treated worldwide, the application of heavy ions is so far restricted to a few facilities only. Nevertheless, results of clinical phase I-II trials provide evidence that carbon-ion radiotherapy might be beneficial in several tumor entities. This article reviews the progress in heavy-ion therapy, including physical and technical developments, radiobiological studies and models, as well as radiooncological studies. As a result of the promising clinical results obtained with carbon-ion beams in the past ten years at the Heavy Ion Medical Accelerator facility (Japan) and in a pilot project at GSI Darmstadt (Germany), the plans for new clinical centers for heavy-ion or combined proton and heavy-ion therapy have recently received a substantial boost.

  1. LEXUS heavy ion collisions

    CERN Document Server

    Sang Yong Jeon

    1997-01-01

    We use a Glauber-like approach to describe very energetic nucleus- nucleus collisions as a sequence of binary nucleon-nucleon collisions. No free parameters are needed: all the information comes from simple parametrizations of nucleon-nucleon collision data. Produced mesons are assumed not to interact with each other or with the original baryons. Comparisons are made to published experimental measurements of baryon rapidity and transverse momentum distributions, negative hadron rapidity and transverse momentum distributions, average multiplicities of pions, kaons, hyperons, and antihyperons, and zero degree energy distributions for sulfur-sulfur collisions at 200 GeV/c per nucleon and for lead-lead collisions at 158 GeV/c per nucleon. Good agreement is found except that the number of strange particles produced, especially antihyperons, is too small compared with experiment. We call this model LEXUS: Linear EXtrapolation of Ultrarelativistic nucleon-nucleon Scattering to heavy ion collisions. (11 refs).

  2. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    Science.gov (United States)

    Hansen, Stephanie

    2017-10-01

    The burning core of an inertial confinement fusion (ICF) plasma at stagnation is surrounded by a shell of warm, dense matter whose properties are difficult both to model (due to a complex interplay of thermal, degeneracy, and strong coupling effects) and to diagnose (due to low emissivity and high opacity). We demonstrate a promising technique to study the warm dense shells of ICF plasmas based on the fluorescence emission of dopants or impurities in the shell material. This emission, which is driven by x-rays produced in the hot core, exhibits signature changes in response to compression and heating. High-resolution measurements of absorption and fluorescence features can refine our understanding of the electronic structure of material under high compression, improve our models of density-driven phenomena such as ionization potential depression and plasma polarization shifts, and help diagnose shell density, temperature, mass distribution, and residual motion in ICF plasmas at stagnation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This work was supported by the U.S. Department of Energy, Office of Science Early Career Research Program, Office of Fusion Energy Sciences under FWP-14-017426.

  3. Characterization of UV-irradiated dense/porous collagen membranes: morphology, enzymatic degradation, and mechanical properties.

    Science.gov (United States)

    Lee, J E; Park, J C; Hwang, Y S; Kim, J K; Kim, J G; Sub, H

    2001-04-01

    Collagen-based membranous materials of various shapes (gel, film, sponge) are known to be the most promising materials in terms of facilitating the regeneration of dermal defects. In this study, dense and porous collagen membranes were fabricated using air-drying and freeze-drying processes, respectively, and the effect of ultraviolet (UV) radiation on the degree of membrane crosslinking was evaluated by in vitro biodegradation and mechanical testing. A non-irradiated membrane group was used as the negative control and a glutaraldehyde (GA) treated group as the positive control. Scanning electron microscopy showed that, as the freezing temperature decreased to -196 degrees C, the resultant mean pore sizes also decreased; optimal pore size was obtained at a freezing temperature of -70 degrees C. In vitro biodegradation and mechanical testing demonstrated that GA treatment or 4 hours of exposure to UV radiation significantly increased both resistance to collagenase and mechanical strength versus the untreated controls, regardless of the collagen membrane type (dense or porous). Our results suggest that UV treatment is a useful tool for the fabrication of collagen membranes designed to be used as dermal dressings.

  4. Heavy flavor results from CMS

    CERN Document Server

    Ronchese, Paolo

    2017-01-01

    Heavy flavor particles produced in LHC $pp$ collisions at $7, 8,$ and $13~\\mathrm{TeV}$ constitute an excellent opportunity to test the standard model and probe for new physics effects. Recent results by the CMS Collaboration on heavy flavor production and decays are presented.

  5. Heavy snowfall damage Virginia pine

    Science.gov (United States)

    Richard H. Fenton

    1959-01-01

    In the Coastal Plain from Virginia to Pennsylvania, snowstorms heavy enough to damage trees are unusual. Weather Bureau records for the general area show that heavy snowfall - 8 to 25 inches in a single storm - occurs at an average frequency of about once in 7 years.

  6. Heavy flavours: working group summary

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gladilin, Leonid [Moscow State Univ. (Russian Federation). Scobeltsyn Inst. of Nuclear Physics; Tonelli, Diego [Fermi National Accelerator Lab., Batavia, IL (United States)

    2009-07-15

    The talks presented in the working group ''Heavy flavours'' of the DIS 2009 workshop are summarised. New and recently updated results from theory, proton antiproton and heavy ion colliders, as well from HERA and e{sup +}e{sup -} colliders are discussed. (orig.)

  7. Heavy hadrons in nuclear matter

    Science.gov (United States)

    Hosaka, Atsushi; Hyodo, Tetsuo; Sudoh, Kazutaka; Yamaguchi, Yasuhiro; Yasui, Shigehiro

    2017-09-01

    Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy hadrons from many different points of view. We emphasize the importance of the following topics: (i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD vacuum properties and hadron modifications in nuclear medium. We pick up three different groups of heavy hadrons, quarkonia (J / ψ, ϒ), heavy-light mesons (D/ D ¯ , B ¯ / B) and heavy baryons (Λc, Λb). The modifications of those hadrons in nuclear matter provide us with important information to investigate the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not only in infinite nuclear matter, but also in finite-size atomic nuclei with finite baryon numbers, to serve future experiments.

  8. Results of heavy ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  9. Major consequences of an intense dense shelf water cascading event on deep-sea benthic trophic conditions and meiofaunal biodiversity

    OpenAIRE

    Pusceddu, A.; Mea, M.; M. Canals; Heussner, S; Durrieu de Madron, X.; Sanchez-Vidal, A.; Bianchelli, S.; Corinaldesi, C.; Dell'Anno, A.; Thomsen, L.; Danovaro, R.

    2013-01-01

    Numerous submarine canyons around the world are preferential conduits for episodic dense shelf water cascading (DSWC), which quickly modifies physical and chemical ambient conditions while transporting large amounts of material towards the base of slope and basin. Observations conducted during the last 20 yr in the Lacaze-Duthiers and Cap de Creus canyons (Gulf of Lion, NW Mediterranean Sea) report several intense DSWC events. The effects of DSWC on deep-sea ecosystems are almost unknown. To ...

  10. 77 FR 4678 - Nonconformance Penalties for On-Highway Heavy Heavy-Duty Diesel Engines

    Science.gov (United States)

    2012-01-31

    ... AGENCY 40 CFR Part 86 Nonconformance Penalties for On-Highway Heavy Heavy-Duty Diesel Engines AGENCY... nonconformance penalties (NCPs) available to manufacturers of heavy heavy-duty diesel engines in model years 2012... you produce or import new heavy heavy- duty diesel engines which are intended for use in highway...

  11. Heavy Flavour Production at LHC: an overview

    Directory of Open Access Journals (Sweden)

    Eugenio Bruno Giuseppe

    2014-04-01

    Full Text Available An overview of experimental results on the production of heavy flavour (charm and bottom hadrons at LHC is presented. Both the open and hidden heavy flavour sectors are covered, with an emphasis on heavy ion collisions.

  12. Model studies of dense water overflows in the Faroese Channels

    Science.gov (United States)

    Cuthbertson, Alan; Davies, Peter; Stashchuk, Nataliya; Vlasenko, Vasiliy

    2014-01-01

    The overflow of dense water from the Nordic Seas through the Faroese Channel system was investigated through combined laboratory experiments and numerical simulations using the Massachusetts Institute of Technology General Circulation Model. In the experimental study, a scaled, topographic representation of the Faroe-Shetland Channel, Wyville-Thomson Basin and Ridge and Faroe Bank Channel seabed bathymetry was constructed and mounted in a rotating tank. A series of parametric experiments was conducted using dye-tracing and drogue-tracking techniques to investigate deep-water overflow pathways and circulation patterns within the modelled region. In addition, the structure of the outflowing dense bottom water was investigated through density profiling along three cross-channel transects located in the Wyville-Thomson Basin and the converging, up-sloping approach to the Faroe Bank Channel. Results from the dye-tracing studies demonstrate a range of parametric conditions under which dense water overflow across the Wyville-Thomson Ridge is shown to occur, as defined by the Burger number, a non-dimensional length ratio and a dimensionless dense water volume flux parameter specified at the Faroe-Shetland Channel inlet boundary. Drogue-tracking measurements reveal the complex nature of flow paths and circulations generated in the modelled topography, particularly the development of a large anti-cyclonic gyre in the Wyville-Thompson Basin and up-sloping approach to the Faroe Bank Channel, which diverts the dense water outflow from the Faroese shelf towards the Wyville-Thomson Ridge, potentially promoting dense water spillage across the ridge itself. The presence of this circulation is also indicated by associated undulations in density isopycnals across the Wyville-Thomson Basin. Numerical simulations of parametric test cases for the main outflow pathways and density structure in a similarly-scaled Faroese Channels model domain indicate excellent qualitative agreement with

  13. Heavy flavour and quarkonia measurement with ATLAS detector

    CERN Document Server

    Gallus, Petr; The ATLAS collaboration

    2017-01-01

    Charm and bottom quarks provide a powerful tool to study the properties of the hot, dense medium created in heavy ion collisions, and in particular may help differentiate between initial and final state effects in large collision systems. Measurements of open heavy flavour particle and quarkonia production, including their prompt and non-prompt components, and their correlations with light hadrons, build a path to understanding how heavy quarks propagate through the quark-gluon plasma. Additionally, an important component in these studies is the comparison between large and small collision systems. In this talk, ATLAS presents results on measurements of quarkonia production in PbPb collisions at 5.02 TeV, including separated prompt and non-prompt particle yields and a new measurement of the anisotropic flow of the J/Psi. The flow measurement provides information on the stage at which charmonium states are formed during the system evolution, thus giving insights on the effects that modify their production. Add...

  14. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  15. Dense Plasma X-ray Scattering: Methods and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Lee, H J; Davis, P; Doppner, T; Falcone, R W; Fortmann, C; Hammel, B A; Kritcher, A L; Landen, O L; Lee, R W; Munro, D H; Redmer, R; Weber, S

    2009-08-19

    We have developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas. Temperature and density are inferred from inelastic x-ray scattering data whose interpretation is model-independent for low to moderately coupled systems. Specifically, the spectral shape of the non-collective Compton scattering spectrum directly reflects the electron velocity distribution. In partially Fermi degenerate systems that have been investigated experimentally in laser shock-compressed beryllium, the Compton scattering spectrum provides the Fermi energy and hence the electron density. We show that forward scattering spectra that observe collective plasmon oscillations yield densities in agreement with Compton scattering. In addition, electron temperatures inferred from the dispersion of the plasmon feature are consistent with the ion temperature sensitive elastic scattering feature. Hence, theoretical models of the static ion-ion structure factor and consequently the equation of state of dense matter can be directly tested.

  16. The electron-atom interaction in partially ionized dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Omarbakiyeva, Yu A; Ramazanov, T S; Roepke, G [IETP, Al Farabi Kazakh National University, Tole Bi 96a, Almaty 050012 (Kazakhstan)], E-mail: yultuz@physics.kz

    2009-05-29

    The electron-atom interaction is considered in dense partially ionized plasmas. The separable potential is constructed from scattering data using effective radius theory. Parameters of the interaction potential were obtained from phase shifts, scattering length and effective radius. The binding energy of the electron in the H{sup -} ion is determined for the singlet channel on the basis of the reconstructed separable potential. In dense plasmas, the influence of the Pauli exclusion principle on the phase shifts and the binding energy is considered. Due to the Pauli blocking, the binding energy vanishes at the Mott density. At that density the behavior of the phase shifts is drastically changed. This leads to modifications of macroscopic properties such as composition and transport coefficients.

  17. Diagnosis of Choroidal Melanoma in Dense Asteroid Hyalosis.

    Science.gov (United States)

    Motiani, Meghna V; McCannel, Colin A; Almanzor, Robert; McCannel, Tara A

    2017-01-01

    To demonstrate the utility of Optos ultra-wide field imaging in the diagnosis and management of choroidal melanoma in the setting of asteroid hyalosis. Observational case report. A 52-year-old female was referred for evaluation of floaters, photopsias, and blurry vision in the right eye. Clinical examination revealed dense asteroid hyalosis obscuring the fundus, and a limited view of a pigmented choroidal lesion in the nasal periphery. Optos ultra-wide field fluorescein angiography and ultrasonography facilitated the diagnosis of a choroidal melanoma. The patient underwent Iodine-125 brachytherapy for local tumor control and excellent tumor response was confirmed with serial follow-up Optos imaging and ultrasonography. Ultra-wide field fundus fluorescein angiography facilitated the diagnosis of a choroidal melanoma, which was obscured by dense asteroid hyalosis, allowing for local tumor control with brachytherapy. Optos wide-field imaging may be a valuable tool for detecting potentially life-threatening lesions in the setting of asteroid hyalosis.

  18. Dynamic Conductivity and Partial Ionization in Warm, Dense Hydrogen

    Science.gov (United States)

    Zaghoo, M.; Silvera, I. F.

    2017-10-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electron transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in the atomic polarizability, resulting from increased ionization; whereas in the highly degenerate limit, the Ziman weak-scattering model better describes the observed saturation of reflectance. In the highly degenerate region, the inclusion of partial ionization effects provides excellent agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. These results provide a crucial benchmark for ab initio calculations as well as an important guide for future experiments. Research supported by DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  19. Distributed Wi-Fi Interference Coordination for Dense Deployments

    DEFF Research Database (Denmark)

    Abinader, Fuad; Choudhury, Sayantan; Souza Jr., Vicente A.

    2017-01-01

    Unlicensed spectrum is increasingly being used by mobile operators to meet the mobile traffic demand, and Wi-Fi is foreseen as one of the technologies for implementing mobile traffic offloading. However, Wi-Fi efficiency does not scale well as node density increases, and IEEE 802.11ax Task Group...... (TGax) was created in 2014 for developing WiFi technology enhancements in dense deployments. This paper investigates Wi-Fi performance in the presence of Overlapping Basic Subscriber Set (OBSS) Wi-Fi networks in indoor dense deployments. We observe that Wi-Fi could benefit from scheduled operation...... with proper OBSS interference coordination. We propose a novel distributed interference coordination scheme for Wi-Fi scheduled mode operation, and evaluate it through system level simulations. Results indicate that the proposed scheme provides significant improvements over Enhanced Distributed Channel Access...

  20. Equation of state and correlation energy of dense plasmas

    CERN Document Server

    Schlanges, M; DeWitt, H E; Kraeft, W D

    2003-01-01

    In this paper, the method of thermodynamic Green's functions is applied to investigate thermodynamic properties of dense weakly coupled plasmas. First, we present results for the equation of state for fully ionized hydrogen and compare our results with path integral Monte Carlo simulation data. Densities and temperatures are considered where correlations as well as Fermi statistics have to be taken into account. Then, the correlation energy and the mean value of the kinetic energy of dense plasmas are considered. Usually one finds that the kinetic energy is larger than that of an ideal system due to the interaction. However, in agreement with results from quantum simulations, we found, for certain densities and temperatures, a lowering of the kinetic energy.

  1. MADMX: A Novel Strategy for Maximal Dense Motif Extraction

    Science.gov (United States)

    Grossi, Roberto; Pietracaprina, Andrea; Pisanti, Nadia; Pucci, Geppino; Upfal, Eli; Vandin, Fabio

    We develop, analyze and experiment with a new tool, called madmx, which extracts frequent motifs, possibly including don’t care characters, from biological sequences. We introduce density, a simple and flexible measure for bounding the number of don’t cares in a motif, defined as the ratio of solid (i.e., different from don’t care) characters to the total length of the motif. By extracting only maximal dense motifs, madmx reduces the output size and improves performance, while enhancing the quality of the discoveries. The efficiency of our approach relies on a newly defined combining operation, dubbed fusion, which allows for the construction of maximal dense motifs in a bottom-up fashion, while avoiding the generation of nonmaximal ones. We provide experimental evidence of the efficiency and the quality of the motifs returned by madmx.

  2. Reduction of Classical Measurement Noise via Quantum-Dense Metrology.

    Science.gov (United States)

    Ast, Melanie; Steinlechner, Sebastian; Schnabel, Roman

    2016-10-28

    Quantum-dense metrology constitutes a special case of quantum metrology in which two orthogonal phase space projections of a signal are simultaneously sensed beyond the shot-noise limit. Previously, it was shown that the additional sensing channel that is provided by quantum-dense metrology contains information that can be used to identify and to discard corrupted segments from the measurement data. Here, we propose and demonstrate a new method in which this information is used for improving the sensitivity without discarding any measurement segments. Our measurement reached sub-shot-noise performance, although initially strong classical noise polluted the data. The new method has high potential for improving the noise spectral density of gravitational-wave detectors at signal frequencies of high astrophysical relevance.

  3. Collective waves in dense and confined microfluidic droplet arrays.

    Science.gov (United States)

    Schiller, Ulf D; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    2015-08-07

    Excitation mechanisms for collective waves in confined dense one-dimensional microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific 'defect' patterns in flowing droplet trains. Excited longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets. Transversely excited modes obey the dispersion relation of microfluidic phonons and induce a coupling between longitudinal and transverse modes, whose origin is the hydrodynamic interaction of the droplets with the confining walls. Moreover, we investigate the long-time behaviour of the oscillations and discuss possible mechanisms for the onset of instabilities. Our findings demonstrate that the collective dynamics of microfluidic droplet ensembles can be studied particularly well in dense and confined systems. Experimentally, the ability to control microfluidic droplets may allow the modulation of the refractive index of optofluidic crystals, which is a promising approach for the production of dynamically programmable metamaterials.

  4. Traveling salesman problem, conformal invariance, and dense polymers.

    Science.gov (United States)

    Jacobsen, J L; Read, N; Saleur, H

    2004-07-16

    We propose that the statistics of the optimal tour in the planar random Euclidean traveling salesman problem is conformally invariant on large scales. This is exhibited in the power-law behavior of the probabilities for the tour to zigzag repeatedly between two regions, and in subleading corrections to the length of the tour. The universality class should be the same as for dense polymers and minimal spanning trees. The conjectures for the length of the tour on a cylinder are tested numerically.

  5. Memory-efficient analysis of dense functional connectomes

    Directory of Open Access Journals (Sweden)

    Kristian Loewe

    2016-11-01

    Full Text Available The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software are compared with regard to their computational efficiency in terms of memory requirements and computation time. The matrix implementation based on on-demand computations has very low memory requirements thus enabling

  6. Composition and thermodynamic properties of dense alkali metal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gabdullin, M.T. [NNLOT, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan); Ramazanov, T.S.; Dzhumagulova, K.N. [IETP, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan)

    2012-04-15

    In this work composition and thermodynamic properties of dense alkali metal plasmas (Li, Na) were investigated. Composition was derived by solving the Saha equations with corrections due to nonideality. The lowering of the ionization potentials was calculated on the basis of pseudopotentials by taking screening and quantum effects into account (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. The EOS and neutrino interactions in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, M.; Reddy, S. [Dept. of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY (United States)

    1998-06-01

    The deleptonization and cooling times of a newly born neutron star depend on the equation of state (EOS) and neutrino opacities in dense matter. Through model calculations we show that effects of Pauli blocking and many-body correlations due to strong interactions reduce both the neutral and charged current neutrino cross sections by large factors compared to the case in which these effects are ignored. (orig.)

  8. Distributed Downlink Power Control for Dense Networks with Carrier Aggregation

    OpenAIRE

    Fazliu, Zana Limani; Chiasserini, Carla-Fabiana; Dell'Aera, Gian Michele; Hamiti, Enver

    2017-01-01

    Given the proven benefits cell densification brings in terms of capacity and coverage, it is certain that 5G networks will be even more heterogeneous and dense. However, as smaller cells are introduced in the network, interference will inevitably become a serious problem as they are expected to share the same radio resources. Another central feature envisioned for future cellular networks is carrier aggregation (CA), which allows users to simultaneously use several component carriers of vario...

  9. Topical Collaboration "Neutrinos and Nucleosynthesis in Hot and Dense Matter"

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdi, Rouzbeh [Univ. of New Mexico, Albuquerque, NM (United States)

    2015-09-18

    This is the final technical report describing contributions from the University of New Mexico to Topical Collaboration on "Neutrinos and Nucleosynthesis in Hot and Dense Matter" in the period June 2010 through May 2015. During the funding period, the University of New Mexico successfully hired Huaiyu Duan as a new faculty member with the support from DOE, who has contributed to the Topical Collaboration through his research and collaborations.

  10. Studies of RF Breakdown of Metals in Dense Gases

    CERN Document Server

    Hanlet, Pierrick M; Ankenbrandt, Charles; Johnson, Rolland P; Kaplan, Daniel; Kuchnir, Moyses; Moretti, Alfred; Paul, Kevin; Popovic, Milorad; Yarba, Victor; Yonehara, Katsuya

    2005-01-01

    A study of RF breakdown of metals in gases has begun as part of a program to develop RF cavities filled with dense hydrogen gas to be used for muon ionization cooling. A pressurized 800 MHz test cell has been used at Fermilab to compare the conditioning and breakdown behavior of copper, molybdenum, chromium, and beryllium electrodes as functions of hydrogen and helium gas density. These results are compared to the predicted or known RF breakdown behavior of these metals in vacuum.

  11. Recent progress on dense nuclear matter in skyrmion approaches

    Science.gov (United States)

    Ma, YongLiang; Rho, Mannque

    2017-03-01

    The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependence (IDD) reflecting the change of vacuum by compressed baryonic matter figures naturally in the approach. In this article, we review the recent progress on accessing dense nuclear matter by putting baryons treated as solitons, namely, skyrmions, on crystal lattice with accents on the implications in compact stars.

  12. Dense Suspension Splat: Monolayer Spreading and Hole Formation after Impact

    Science.gov (United States)

    Lubbers, Luuk A.; Xu, Qin; Wilken, Sam; Zhang, Wendy W.; Jaeger, Heinrich M.

    2014-07-01

    We use experiments and minimal numerical models to investigate the rapidly expanding monolayer formed by the impact of a dense suspension drop against a smooth solid surface. The expansion creates a lacelike pattern of particle clusters separated by particle-free regions. Both the expansion and the development of the spatial inhomogeneity are dominated by particle inertia and, therefore, are robust and insensitive to details of the surface wetting, capillarity, and viscous drag.

  13. Path Integral Monte Carlo Simulations of Warm Dense Matter and Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Militzer, Burkhard [University of California, Berkeley

    2018-01-13

    New path integral Monte Carlo simulation (PIMC) techniques will be developed and applied to derive the equation of state (EOS) for the regime of warm dense matter and dense plasmas where existing first-principles methods cannot be applied. While standard density functional theory has been used to accurately predict the structure of many solids and liquids up to temperatures on the order of 10,000 K, this method is not applicable at much higher temperature where electronic excitations become important because the number of partially occupied electronic orbitals reaches intractably large numbers and, more importantly, the use of zero-temperature exchange-correlation functionals introduces an uncontrolled approximation. Here we focus on PIMC methods that become more and more efficient with increasing temperatures and still include all electronic correlation effects. In this approach, electronic excitations increase the efficiency rather than reduce it. While it has commonly been assumed such methods can only be applied to elements without core electrons like hydrogen and helium, we recently showed how to extend PIMC to heavier elements by performing the first PIMC simulations of carbon and water plasmas [Driver, Militzer, Phys. Rev. Lett. 108 (2012) 115502]. Here we propose to continue this important development to extend the reach of PIMC simulations to yet heavier elements and also lower temperatures. The goal is to provide a robust first-principles simulation method that can accurately and efficiently study materials with excited electrons at solid-state densities in order to access parts of the phase diagram such the regime of warm dense matter and plasmas where so far only more approximate, semi-analytical methods could be applied.

  14. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan

    2012-02-29

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Heavy fields and gravity

    Science.gov (United States)

    Goon, Garrett

    2017-01-01

    We study the effects of heavy fields on 4D spacetimes with flat, de Sitter and anti-de Sitter asymptotics. At low energies, matter generates specific, calculable higher derivative corrections to the GR action which perturbatively alter the Schwarzschild-( A) dS family of solutions. The effects of massive scalars, Dirac spinors and gauge fields are each considered. The six-derivative operators they produce, such as ˜ R 3 terms, generate the leading corrections. The induced changes to horizon radii, Hawking temperatures and entropies are found. Modifications to the energy of large AdS black holes are derived by imposing the first law. An explicit demonstration of the replica trick is provided, as it is used to derive black hole and cosmological horizon entropies. Considering entropy bounds, it's found that scalars and fermions increase the entropy one can store inside a region bounded by a sphere of fixed size, but vectors lead to a decrease, oddly. We also demonstrate, however, that many of the corrections fall below the resolving power of the effective field theory and are therefore untrustworthy. Defining properties of black holes, such as the horizon area and Hawking temperature, prove to be remarkably robust against higher derivative gravitational corrections.

  16. Observable heavy Higgs dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Keus, Venus [Department of Physics and Helsinki Institute of Physics,Gustaf Hallstromin katu 2, FIN-00014 University of Helsinki (Finland); School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Moretti, Stefano [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Sokolowska, Dorota [University of Warsaw, Faculty of Physics, Pasteura 5,02-093 Warsaw (Poland)

    2015-11-04

    Dark Matter (DM), arising from an Inert Higgs Doublet, may either be light, below the W mass, or heavy, above about 525 GeV. While the light region may soon be excluded, the heavy region is known to be very difficult to probe with either Direct Detection (DD) experiments or the Large Hadron Collider (LHC). We show that adding a second Inert Higgs Doublet helps to make the heavy DM region accessible to both DD and the LHC, by either increasing its couplings to the observed Higgs boson, or lowering its mass to 360 GeV≲m{sub DM}, or both.

  17. Ab initio thermodynamic results for warm dense matter

    Science.gov (United States)

    Bonitz, Michael

    2016-10-01

    Warm dense matter (WDM) - an exotic state where electrons are quantum degenerate and ions may be strongly correlated - is ubiquitous in dense astrophysical plasmas and highly compressed laboratory systems including inertial fusion. Accurate theoretical predictions require precision thermodynamic data for the electron gas at high density and finite temperature around the Fermi temperature. First such data have been obtained by restricted path integral Monte Carlo (restricted PIMC) simulations and transformed into analytical fits for the free energy. Such results are also key input for novel finite temperature density functional theory. However, the RPIMC data of Ref. 1 are limited to moderate densities, and even there turned out to be surprisingly inaccurate, which is a consequence of the fermion sign problem. These problems were recently overcome by the development of alternative QMC approaches in Kiel (configuration PIMC and permutation blocking PIMC) and Imperial College (Density matrix QMC). The three methods have their strengths and limitations in complementary parameter regions and provide highly accurate thermodynamic data for the electronic contributions in WDM. While the original results were obtained for small particle numbers, recently accurate finite size corrections were derived allowing to compute ab initio thermodynamic data with an unprecedented accuracy of better than 0.3 percent. This provides the final step for the use as benchmark data for experiments and models of Warm dense matter. Co-authors: T. Schoof, S. Groth, T. Dornheim, F. D. Malone, M. Foulkes, and T. Sjostroem, Funded by: DFG via SFB-TR24 and project BO1366-10.

  18. Ultra-dense deuterium and cold fusion claims

    Science.gov (United States)

    Winterberg, F.

    2010-06-01

    An attempt is made to explain the recently reported occurrence of 14 MeV neutron induced nuclear reactions in deuterium metal hydrides as the manifestation of a slightly radioactive ultra-dense form of deuterium, with a density of 130,000 g/cm 3 observed by a Swedish research group through the collapse of deuterium Rydberg matter. In accordance with this observation it is proposed that a large number of deuterons form a “linear-atom” supermolecule. By the Madelung transformation of the Schrödinger equation, the linear deuterium supermolecule can be described by a quantized line vortex. A vortex lattice made up of many such supermolecules is possible only with deuterium, because deuterons are bosons, and the same is true for the electrons, which by the electron-phonon interaction in a vortex lattice form Cooper pairs. It is conjectured that the latent heat released by the collapse into the ultra-dense state has been misinterpreted as cold fusion. Hot fusion though, is here possible through the fast ignition of a thermonuclear detonation wave from a hot spot made with a 1 kJ 10 petawatt laser in a thin slice of the ultra-dense deuterium.

  19. Approximate hard-sphere method for densely packed granular flows.

    Science.gov (United States)

    Guttenberg, Nicholas

    2011-05-01

    The simulation of granular media is usually done either with event-driven codes that treat collisions as instantaneous but have difficulty with very dense packings, or with molecular dynamics (MD) methods that approximate rigid grains using a stiff viscoelastic spring. There is a little-known method that combines several collision events into a single timestep to retain the instantaneous collisions of event-driven dynamics, but also be able to handle dense packings. However, it is poorly characterized as to its regime of validity and failure modes. We present a modification of this method to reduce the introduction of overlap error, and test it using the problem of two-dimensional (2D) granular Couette flow, a densely packed system that has been well characterized by previous work. We find that this method can successfully replicate the results of previous work up to the point of jamming, and that it can do so a factor of 10 faster than comparable MD methods.

  20. Exotic x-ray emission from dense plasmas

    Science.gov (United States)

    Rosmej, F. B.; Dachicourt, R.; Deschaud, B.; Khaghani, D.; Dozières, M.; Šmíd, M.; Renner, O.

    2015-11-01

    Exotic x-ray emission from dense matter is identified as the complex high intensity satellite emission from autoionizing states of highly charged ions. Among a vast amount of possible transitions, double K-hole hollow ion (HI) x-ray emission K0L X → K1L X-1 + hν hollow is of exceptional interest due to its advanced diagnostic potential for matter under extreme conditions where opacity and radiation fields play important roles. Transient ab initio simulations identify intense short pulse radiation fields (e.g., those emitted by x-ray free electron lasers) as possible driving mechanisms of HI x-ray emission via two distinct channels: first, successive photoionization of K-shell electrons, second, photoionization followed by resonant photoexciation among various ionic charge states that are simultaneously present in high density matter. We demonstrated that charge exchange of intermixing inhomogenous plasmas as well as collisions driven by suprathermal electrons are possible mechanisms to populate HIs to observable levels in dense plasmas, particularly in high current Z-pinch plasmas and high intensity field-ionized laser produced plasmas. Although the HI x-ray transitions were repeatedly identified in many other cases of dense optical laser produced plasmas on the basis of atomic structure calculations, their origin is far from being understood and remains one of the last holy grails of high intensity laser-matter interaction.

  1. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  2. The Role of Polycyclic Aromatic Hydrocarbons in Dense Cloud Absorption Features: The Last Major Unanswered Question in Interstellar Ice Spectroscopy

    Science.gov (United States)

    Chiar, Jean

    Interstellar dust plays a vital role in the star formation process and the eventual formation of planetary systems including our own. Ice mantles are an important component of the dust: reactions involving simple ices can create more complex (and astrobiologically interesting) molecules, and ices sublimated back into the gas phase influence the gas- phase chemistry. Although polycyclic aromatic hydrocarbons (PAHs) are commonly thought to be very abundant interstellar species and, as such, are likely to be important components of interstellar ices, their contribution to the infrared spectra and chemistry of ices in dense molecular clouds is an open question. This program makes extensive use of three major NASA-funded databases: the Spitzer archive, the 2MASS archive, and the NASA Ames PAH database in order to answer the last major unanswered question in interstellar ice spectroscopy: what role do PAHs play in contributing to unidentified absorption features observed in dense cloud spectra. PAHs are observed to be present and abundant in nearly all phases of the galactic and extragalactic interstellar medium. The evidence for the ubiquity of interstellar PAHs is the widespread well-known family of prominent emission bands at 3.28, 6.2, 7.7, 8.6, and 11.2 micron. To date, these PAH bands have been most easily detected in regions where individual gas phase PAH molecules (neutrals and ions) become highly vibrationally excited by the ambient radiation field. While PAHs and closely related aromatic materials should be present throughout dense interstellar regions, PAH emission is quenched in cold dark dense clouds. Also, in these regions, most PAHs should efficiently condense out onto dust grains, either as "pure" solids or as "guest molecules" in icy grain mantles, much as is the case for most other interstellar molecules. Thus, in dense molecular clouds, condensed PAHs will give rise to IR absorption bands rather than emission features. While PAH absorption has been

  3. Numerical simulation of the flow field in a dense-media cyclone

    Energy Technology Data Exchange (ETDEWEB)

    Li-juan Shen; Yan-feng Hu; Jian-zhong Chen; Peng Zhang; Hua-zhen Dai [China University of Mining & Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2009-03-15

    An analytical study of the flow and pressure fields inside a small-diameter dense-media cyclone is presented. The simulations were done with the help of the CFD software FLUENT. The following conclusions were reached: the tangential velocity tends to increase when moving from the center toward the exterior. The velocity then begins to decrease when the maximum velocity point is reached. The velocity field divides into two different sections; an inner swirling zone and an outer swirling zone. The axial velocity points down at the wall and gradually decreases toward the bottom. Continuing toward the bottom, the axial velocity passes through zero and then gradually increases in the opposite direction. In the cyclone's central zone, the pressure is negative and the suction of air allows an air column to be formed therein. At the center of the radial negative zone the pressure drops to its lowest value phenomenon that has been verified by theoretical analysis. Some discrepancies between the observed data and the simulated data are noted when an analysis in made on a cyclone operating with either fresh water only or with water with added heavy particles. 11 refs., 4 figs., 1 tab.

  4. Cern academic training programme 2011: Selected Topics in the Physics of Heavy Ion Collisions

    CERN Multimedia

    PH Department

    2011-01-01

    LECTURE SERIES 14, 15 & 16 March 2011 Selected Topics in the Physics of Heavy Ion Collisions 11:00-12:00 - Bldg. 222-R-001 - Filtration Plant In these lectures, I discuss some classes of measurements accessible in heavy ion collisions at the LHC. How can these observables be measured, to what extent can they be calculated, and what do they tell us about the dense mesoscopic system created during the collision? In the first lecture, I shall focus in particular on measurements that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions. Organiser: Maureen Prola-Tessaur/PH-EDU  

  5. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Kremer, Jakub Andrzej; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in nucleus-nucleus collisions at the LHC. In addition to hot matter effects in heavy-ion collisions, cold nuclear effects may also affect quarkonia production. Therefore, a full assessment requires detailed studies on the effects present in both A+A and $\\textit{p}$+A collisions. Based on $\\textit{p}$+Pb data collected in 2013 and $\\textit{pp}$ and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt $J/\\psi$ and $\\psi\\left(2\\mathrm{S}\\right)$ productions as well as $\\Upsilon\\left(n\\mathrm{S}\\right)$ production via the di-muon decay final states. The results of the various measurements are discussed.

  6. Heavy Quark Production in Pb-Pb Collisions at the LHC with the ATLAS Detector

    CERN Document Server

    Przybycien, M; The ATLAS collaboration

    2013-01-01

    Bottom quarks are important probes to study the hot, dense medium produced in the heavy ion collisions. These heavier quarks are produced at a relatively early stage of the nucleus-nucleus collisions and may have reduced gluon radiation due to the suppression of small angle gluon radiation known as the `dead cone effect’. Because of the heavy mass of b-hadrons, muons from semi-leptonic b-hadron decays tend to have a larger angle with respect to the jet axis. This information can be used to tag b-jets. In this talk, we present the inclusive heavy flavor suppression in Pb+Pb collisions at 2.76 TeV, which was obtained by studying single muons decaying semi-leptonically from the b- and c-quark containing hadrons.

  7. Heavy Flavor Production in Heavy Ion Collisions at CMS

    CERN Document Server

    Sun, Jian

    2016-01-01

    Studies of Heavy flavor production are of great interest in heavy ion collisions. In the produced medium, the binding potential between a quark and antiquark in quarkonium is screened by surrounding light quarks and antiquarks. Thus, the various quarkonium states are expected to be melt at different temperatures depending on their binding energies, which allows us to characterize the QCD phase transition. In addition, open heavy flavor production are relevant for flavor-dependence of the in-medium parton energy loss. In QCD, gluons are expected to lose more energy compared to quarks when passing through the QGP due to the larger color charge. Compared to light quarks, heavy quarks are expected to lose less radiative energy because gluon radiation is suppressed at angles smaller than the ratio of the quark mass to its energy. This dead cone effect (and its disappearance at high transverse momentum) can be studied using open heavy flavor mesons and heavy flavor tagged jets. With CMS detector, quarkonia, open he...

  8. levels of heavy metals in gubi dam water bauchi, nigeria

    African Journals Online (AJOL)

    Ada

    rivers to the ocean is in the form of particulate ... B.M. Wufem, Chemistry Programme, Abubakar Tafawa Balewa University, P.M.B. 0248, Bauchi. A.Q. Ibrahim ..... Chemistry. Wiley Interscience NY, p. 780. Sukiman, S.B., 1989. The determination of heavy metals in water, suspended materials and sediments from Langat River,.

  9. Assessment of heavy metals leachability from traditional clay pots ...

    African Journals Online (AJOL)

    The clay pots may transfer ones of their constituents into foodstuffs when they are coated with glazes which are said to contain heavy metals like Pb and Cd. This study was conducted to determine if traditional clay pots (unglazed) can also behave the same way. Leachate from the clay raw pulp material was initially ...

  10. Assessment of heavy metals leachability from traditional clay pots ...

    African Journals Online (AJOL)

    Abstract. The clay pots may transfer ones of their constituents into foodstuffs when they are coated with glazes which are said to contain heavy metals like Pb and Cd. This study was conducted to determine if traditional clay pots (unglazed) can also behave the same way. Leachate from the clay raw pulp material was initially ...

  11. Heavy density liquid metal spallation target studies for Indian ADS ...

    Indian Academy of Sciences (India)

    energy heavy particles (incoming proton beam, high energy spallation neutrons and spallation products), to the extent of DPA~100 or more per year). The spallation module design should be based on optimization between neutron yield, material properties and thermal-hydraulic performance while meeting the required ...

  12. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    EJIRO

    application for the removal of Cu, Cd and Pb from industrial wastewater than the dead bacterial cells. Key words: Biosorption, bacteria, heavy metal, dead bacterial cells, immobilization. INTRODUCTION. The current pattern of industrial activity allows the natural flow of materials and introduces novel toxic chemicals into the ...

  13. Photoelectron spectroscopy in heavy fermions: Inconsistencies with the Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Blyth, R.R.; Canfield, P.C.; Thompson, J.D.; Bartlett, R.J.; Fisk, Z. [Los Alamos National Lab., NM (United States); Lawrence, J.; Tang, J. [California Univ., Irvine, CA (United States); Riseborough, P. [Polytechnic Univ., Brooklyn, NY (United States)

    1992-09-01

    We have investigated a number of Ce and Yb heavy fermion compounds via photoelectron spectroscopy and compared the results to the predictions of the Imurity Anderson Hamiltonian within the Gunnarson-Schonhammer approach. For the low T{sub K} materials investigated we find little or no correlation with T{sub K}, the only parameter that can be determined independent of photoemission.

  14. Photoluminescence and Raman studies in swift heavy ion irradiated ...

    Indian Academy of Sciences (India)

    Administrator

    Swift heavy ions (SHI) cause intense electronic excita- tions along the ion trajectory when they pass through material that may result in defect production or amorphiza- tion or phase transformation on nanometer scale (Bolse et al 2004; Wang et al 2004). Thus, it is interesting to know the effect of strong electronic excitation ...

  15. Fungicide, antibiotic, heavy metal resistance and salt tolerance of ...

    African Journals Online (AJOL)

    user

    2011-03-28

    Mar 28, 2011 ... of fungicides, antibiotics, heavy metal and salt on growth of Rhizobium isolates. MATERIALS AND METHODS. Twenty Rhizobium bacteria were isolated by standard method. (Jordan, 1984) from nodules of Vicia palaestina in Şanliurfa,. Turkey. In all cases, large sized randomly chosen active (pink.

  16. Dense and narrow rings around the Centaur object (10199) Chariklo

    Science.gov (United States)

    Sicardy, Bruno; Braga-Ribas, Felipe; Ortiz, Jose Luis; Vieira-Martins, Roberto; Colas, Francois; Duffard, Rene; Camargo, Julio I.; Desmars, Josselin; Gulbis, Amanda; Assafin, Marcelo; Maquet, Lucie; Beisker, Wolfgang; Benedetti-Rossi, Gustavo; Vachier, Frederic; Dumas, Christophe; Ivanov, Valentin D.; Renner, Stefan; Bath, Karl-Ludwig; Klotz, Alain; Pollock, Joseph T.; Lecacheux, Jean; Dauvergne, Jean-Luc; Peyrot, Andre; Teng, Jean-Paul

    2014-11-01

    A stellar occultation observed on June 3, 2013 (Braga-Ribas et al., Nature 508, 72, 2014) revealed the unexpected presence of two dense rings around (10199) Chariklo, the largest Centaur object known to date with a radius of 119±5 km (Fornasier et al. A&A 2014, in press). The two rings (called respectively C1R and C2R hereby) have orbital radii a_C1R= 390.6±3.3 km and a_C2R= 404.8±3.3 km (1-sigma limits), and typical average optical depths of tau_C1R= 0.4 and tau_C2R= 0.06. They are separated by a gap of about 9 km with optical depth less than 0.004.The presence of those two rings was confirmed during four stellar occultations observed in 2014, on February 16 (Chile), March 16 (Thailand), April 29 (Southern Africa) and June 28 (Southern Africa).The occultation events imply a J2000 pole position of α= 151.25±0.50 and δ= 41.48±0.22 deg. The rings' changing geometry explains the long term variations of Chariklo's absolute magnitude and the spectral changes observed between 1997 and 2013. They imply a reflectance I/F of about 0.07 for C1R, and show that it contains about 20% of water ice, the latter remaining undetected on Chariklo's surface (Duffard et aL A&A 2014, in press).The April 29, 2014 occultation reveals a W-shaped structure for C1R, with the densest parts reaching an apparent optical depth of about 2. The width of C1R exhibits variations that are compatible with a m=1 mode, its value varying between ~5.5 and ~7.1 km over the full 360 degrees longitude range. The width of C2R is less constrained and lies between 2 and 4 km.This is the first ring system ever observed that does not pertain to a giant planet. The existence of such a system raises several questions as to the origin and evolution of rings around such a small object. This discovery also suggests that rings may be a more frequent feature than previously thought, in particular around small bodies.Possible models for the ring formation will be proposed. They can be classified into collisional

  17. Measurement of charmonium production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00511724; The ATLAS collaboration

    2017-01-01

    The suppression of heavy charmonia states in heavy-ion collisions is a phenomenon understood as a consequence of quark gluon plasma formation in the hot, dense system formed in heavy ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions, cold nuclear effects may also affect heavy charmonia production. Therefore, a full assessment requires detailed studies on the effects present in both A+A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt $J/\\psi$ and $\\psi$(2S) productions via the dimuon decay final states. The production and excited-to-ground state ratios of heavy charmonia measured in both p+Pb and Pb+Pb collision data with respect to that measured in pp collision data will be presented in intervals of transverse momentum, rapidity and centrality.

  18. Probing the Quark Gluon Plasma with Heavy Flavours: recent results from ALICE

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The study of open heavy-flavour physics allows us to investigate the key properties of the Quark-Gluon Plasma (QGP) and the microscopic processes ongoing in the medium produced in heavy-ion collisions at relativistic energies. Heavy quarks are produced in the early stages of heavy-ion collisions and their further production and annihilation rates in the medium are expected to be very small throughout the evolution of the system. Therefore, they serve as penetrating probes that traverse the hot and dense medium, interact with the partonic constituents of the plasma and lose energy. Understanding the interactions of heavy quarks with the medium requires precise measurements over a wide momentum range in heavy-ion collisions, but also in smaller systems like pp collisions, which also test next-to-leading order perturbative QCD calculations, and proton-nucleus collisions, which are sensitive to Cold Nuclear Matter effects (CNM), such as the modification of the parton distribution functions of nuclei, and parton ...

  19. Measurement of charmonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Lopez, Jorge; The ATLAS collaboration

    2017-01-01

    The suppression of heavy charmonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in heavy ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions , cold nuclear effects may also affect heavy charmonia production . Therefore, a full assessment requires detailed studies on the effects present in both A+A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt $J/\\psi$ and $\\psi(2S)$ productions via the di-muon decay final states. The production and excited-to-ground state ratios of heavy charmonia measured in both p+Pb and Pb+Pb collision data with respect to that measured in pp collision data will be presented in intervals of transverse momentum, rapidity and centrality.

  20. Heavy quark spectroscopy and decay

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.