WorldWideScience

Sample records for heavy chiral unitary

  1. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    E Oset; D Cabrera; H C Chiang; C Garcia Recio; S Hirenzaki; S S Kamalov; J Nieves; Y Okumura; A Ramos; H Toki; M J Vicente Vacas

    2001-08-01

    In this talk we briefly describe some basic elements of chiral perturbation theory, , and how the implementation of unitarity and other novel elements lead to a better expansion of the -matrix for meson–meson and meson–baryon interactions. Applications are then done to the interaction in nuclear matter in the scalar and vector channels, antikaons in nuclei and - atoms, and how the meson properties are changed in a nuclear medium.

  2. Unitary theory of pion photoproduction in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Araki, M.; Afnan, I.R.

    1987-07-01

    We present a multichannel unitary theory of single pion photoproduction from a baryon B. Here, B is the nucleon or ..delta..(1232), with possible extension to include the Roper resonance and strange baryons. We treat the baryon as a three-quark state within the framework of the gauge and chiral Lagrangian, derived from the Lagrangian for the chiral bag model. By first exposing two-body, and then three-body unitarity, taking into consideration the ..pi pi..B and ..gamma pi..B intermediate states, we derive a set of equations for the amplitudes both on and off the energy shell. The Born term in the expansion of the amplitude has the new feature that the vertices in the pole diagram are undressed, while those in the crossed, contact, and pion pole diagrams are dressed.

  3. Unitary theory of pion photoproduction in the chiral bag model

    Science.gov (United States)

    Araki, M.; Afnan, I. R.

    1987-07-01

    We present a multichannel unitary theory of single pion photoproduction from a baryon B. Here, B is the nucleon or Δ(1232), with possible extension to include the Roper resonance and strange baryons. We treat the baryon as a three-quark state within the framework of the gauge and chiral Lagrangian, derived from the Lagrangian for the chiral bag model. By first exposing two-body, and then three-body unitarity, taking into consideration the ππB and γπB intermediate states, we derive a set of equations for the amplitudes both on and off the energy shell. The Born term in the expansion of the amplitude has the new feature that the vertices in the pole diagram are undressed, while those in the crossed, contact, and pion pole diagrams are dressed.

  4. Eta-photoproduction in a gauge-invariant chiral unitary framework

    CERN Document Server

    Ruic, Dino; Meissner, Ulf-G

    2011-01-01

    We analyse photoproduction of eta mesons off the proton in a gauge-invariant chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the leading order chiral effective Lagrangian and iterated in a Bethe-Salpeter equation. The recent precise threshold data from the Crystal Ball at MAMI can be described rather well and the complex pole corresponding to the S11(1535) is extracted. An extension of the kernel is also discussed.

  5. A gauge invariant chiral unitary framework for kaon photo- and electroproduction on the proton

    CERN Document Server

    Borasoy, B; Meißner, Ulf-G; Nißler, R

    2007-01-01

    We present a gauge invariant approach to photoproduction of mesons on nucleons within a chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the chiral effective Lagrangian and iterated in a Bethe-Salpeter equation. Within the leading order approximation to the interaction kernel, data on kaon photoproduction from SAPHIR, CLAS and CBELSA/TAPS are analyzed in the threshold region. The importance of gauge invariance and the precision of various approximations in the interaction kernel utilized in earlier works are discussed.

  6. Chiral Magnetic Effect in Heavy Ion Collisions

    CERN Document Server

    Liao, Jinfeng

    2016-01-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.

  7. The $\\Xi^* \\bar{K}$ and $\\Omega \\eta$ interaction within a chiral unitary approach

    CERN Document Server

    Xu, Siqi; Chen, Xurong; Jia, Duojie

    2015-01-01

    In this work we study the interaction of the coupled channels $\\Omega \\eta$ and $\\Xi^* \\bar{K}$ within the chiral unitary approach. The systems under consideration have total isospins $0$, strangeness $S = -3$, and spin $3/2$. We studied the $s$ wave interaction which implies that the possible resonances generated in the system can have spin-parity $J^P = 3/2^-$. The unitary amplitudes in coupled channels develop poles that can be associated with some known baryonic resonances. We find there is a dynamically generated $3/2^-$ $\\Omega$ state with mass around $1800$ MeV, which is in agreement with the predictions of the five-quark model.

  8. Scalar Lambda N and Lambda Lambda interaction in a chiral unitary approach

    CERN Document Server

    Sasaki, K; Vacas, M J V

    2006-01-01

    We study the central part of Lambda N and Lambda Lambda potential by considering the correlated and uncorrelated two-meson exchange besides the omega exchange contribution. The correlated two-meson is evaluated in a chiral unitary approach. We find that a short range repulsion is generated by the correlated two-meson potential which also produces an attraction in the intermediate distance region. The uncorrelated two-meson exchange produces a sizeable attraction in all cases which is counterbalanced by omega exchange contribution.

  9. Heavy-tailed chiral random matrix theory

    CERN Document Server

    Kanazawa, Takuya

    2016-01-01

    We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.

  10. Heavy-tailed chiral random matrix theory

    Science.gov (United States)

    Kanazawa, Takuya

    2016-05-01

    We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.

  11. Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation

    CERN Document Server

    Koelling, S; Krebs, H; Meißner, U -G

    2009-01-01

    We derive the leading two-pion exchange contributions to the two-nucleon electromagnetic current operator in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  12. Constraints on the chiral unitary $\\bar KN$ amplitude from $\\pi\\Sigma K^+$ photoproduction data

    CERN Document Server

    Mai, Maxim

    2014-01-01

    A chiral unitary approach for antikaon-nucleon scattering in on-shell factorization is studied. We find multiple sets of parameters for which the model describes all existing hadronic data similarly well. We confirm the two-pole structure of the $\\Lambda (1405)$. The narrow $\\Lambda(1405)$ pole appears at comparable positions in the complex energy plane, whereas the location of the broad pole suffers from a large uncertainty. In the second step, we use a simple model for photoproduction of $K^+\\pi\\Sigma$ off the proton and confront it with the experimental data from the CLAS collaboration. It is found that only a few of the hadronic solutions allow for a consistent description of the CLAS data within the assumed reaction mechanism.

  13. Constraints on the chiral unitary $\\bar KN$ amplitude from ${\\pi}{\\Sigma}K^+$ photoproduction data

    CERN Document Server

    Mai, Maxim

    2015-01-01

    A chiral unitary approach for antikaon-nucleon scattering in on-shell factorization is studied. We find multiple sets of parameters for which the model describes all existing hadronic data similarly well. We confirm the two-pole structure of the ${\\Lambda}(1405)$. The narrow ${\\Lambda}(1405)$ pole appears at comparable positions in the complex energy plane, whereas the location of the broad pole suffers from a large uncertainty. In the second step, we use a simple model for photoproduction of $K^+{\\pi}{\\Sigma}$ off the proton and confront it with the experimental data from the CLAS collaboration. It is found that only a few of the hadronic solutions allow for a consistent description of the CLAS data within the assumed reaction mechanism.

  14. Construction of KbarN potential and structure of Lambda(1405) based on chiral unitary approach

    CERN Document Server

    Miyahara, Kenta

    2015-01-01

    Based on chiral unitary approach, we construct the realistic KbarN local potential, which is useful for the quantitative calculation of Kbar-nuclei. Since the resonance pole structure of the KbarN system seems important for the Kbar-nuclei and the spacial structure of Lambda(1405), we establish the construction procedure of the local potential paying attention to the scattering amplitude in the complex energy plane. Furthermore, for the quantitative study of the Kbar-nuclei, we consider the constraint from the recent experimental data measured by SIDDHARTA, which significantly reduces the uncertainty of the KbarN amplitude. With this new local potential, we estimate the spacial structure of Lambda(1405) and obtain the result indicating the meson-baryon molecular state of Lambda(1405).

  15. Heavy-Light Mesons in Chiral AdS/QCD

    CERN Document Server

    Liu, Yizhuang

    2016-01-01

    We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.

  16. Holographic Heavy-Light Chiral Effective Action

    CERN Document Server

    Liu, Yizhuang

    2016-01-01

    We propose a variant of the $D4$-$D8$ construction to describe the low energy effective theory of heavy-light mesons, interacting with the lowest lying pseudoscalar and vector mesons. The heavy degrees of freedom are identified with the $D8_L$-$D8_H$ string low energy modes, and are approximated near the world volume of $N_f-1$ light $D8_L$ branes, by fundamental vector field valued in $U(N_f-1)$. The effective action follows from the reduction of the bulk D-brane Born-Infeld (DBI) and Chern-Simons (CS) actions, and is shown to exhibit both chiral and heavy-quark symmetry. The action interpolates continuously between the $U(N_f)$ case with massless mesons, and the $U(N_f-1)$ case with heavy-light mesons. The heavy-light meson radial spectrum is Regge-like. The one-pion and two-pion couplings to the heavy-light multiplets are evaluated. The partial widths for the charged decays $G\\rightarrow H+\\pi$ are shown to be comparable to the recently reported full widths for both the charm and bottom mesons.

  17. Is the Chiral Vortical Effect Vanishing in Heavy Ion Collisions?

    CERN Document Server

    Landsteiner, Karl; Pena-Benitez, Francisco

    2013-01-01

    We study the frequency dependence of all the chiral vortical and magnetic conductivities for a relativistic chiral gas of free fermions and for a strongly coupled CFT with holographic dual in four dimensions. Both systems present gauge and gravitational anomalies and we compute their contribution to the conductivities. The chiral vortical conductivities and the chiral magnetic conductivity in the energy current show an unexpected frequency dependence in the form of a delta centered at zero frequency. We argue that this makes the CVE practically unobservable in heavy ion collisions. In the appendix we discuss why the CME seems to vanish in the consistent current for a particular implementation of the axial chemical potential.

  18. Effect of Born and unitary impurity scattering on the Kramer-Pesch shrinkage of a vortex core in a chiral p-wave superconductor

    Science.gov (United States)

    Hayashi, Nobuhiko; Kurosawa, Noriyuki; Arahata, Emiko; Kato, Yusuke; Tanuma, Yasunari; Tanaka, Yukio; Golubov, Alexander A.

    2013-11-01

    We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer-Pesch effect) in a chiral p-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of superconductivity. We find that the robustness of the Kramer-Pesch effect against the impurity scattering in the Born limit is lost in the unitary limit.

  19. Chiral Superfluidity for the Heavy Ion Collisions

    CERN Document Server

    Kalaydzhyan, T

    2013-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate tempera...

  20. Effect of Born and unitary impurity scattering on the Kramer-Pesch shrinkage of a vortex core in a chiral p-wave superconductor

    NARCIS (Netherlands)

    Hayashi, Nobuhiko; Kurosawa, Noriyuki; Arahata, Emiko; Kato, Yusuke; Tanuma, Yasunari; Tanaka, Yukio; Golubov, Alexander A.

    2013-01-01

    We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer–Pesch effect) in a chiral p-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of supercondu

  1. Effect of Born and unitary impurity scattering on the Kramer-Pesch shrinkage of a vortex core in a chiral p-wave superconductor

    NARCIS (Netherlands)

    Hayashi, Nobuhiko; Kurosawa, Noriyuki; Arahata, Emiko; Kato, Yusuke; Tanuma, Yasunari; Tanaka, Yukio; Golubov, Alexandre Avraamovitch

    2013-01-01

    We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer–Pesch effect) in a chiral p-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of

  2. Effect of Born and unitary impurity scattering on the Kramer–Pesch shrinkage of a vortex core in a chiral p-wave superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Nobuhiko, E-mail: n-hayashi@21c.osakafu-u.ac.jp [NanoSquare Research Center (N2RC), Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570 (Japan); Kurosawa, Noriyuki [Department of Basic Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Arahata, Emiko [Institute of Industrial Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8505 (Japan); Kato, Yusuke [Department of Basic Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Tanuma, Yasunari [Faculty of Engineering and Resource Science, Akita University, Akita 010-8502 (Japan); Tanaka, Yukio [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Golubov, Alexander A. [Faculty of Science and Technology and MESA Institute for Nanotechnology, University of Twente, 7500 AE Enshede (Netherlands)

    2013-11-15

    Highlights: •We theoretically study an impurity scattering effect on the vortex core structure in a chiral p-wave superconductor. •A low-temperature vortex core shrinkage (or Kramer–Pesch effect) is investigated. •The robustness of the Kramer–Pesch effect against an impurity scattering in the Born limit is lost in the unitary limit. -- Abstract: We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer–Pesch effect) in a chiral p-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of superconductivity. We find that the robustness of the Kramer–Pesch effect against the impurity scattering in the Born limit is lost in the unitary limit.

  3. Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model

    Energy Technology Data Exchange (ETDEWEB)

    C. Kao; D. Drechsel; S. Kamalov; M. Vanderhaeghen

    2003-11-01

    The third moment d{sub 2} of the twist-3 part of the nucleon spin structure function g{sub 2} is generalized to arbitrary momentum transfer Q{sup 2} and is evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order {Omicron}(p{sup 4}) and in a unitary isobar model (MAID). We show how to link d{sub 2} as well as higher moments of the nucleon spin structure functions g{sub 1} and g{sub 2} to nucleon spin polarizabilities. We compare our results with the most recent experimental data, and find a good description of these available data within the unitary isobar model. We proceed to extract the twist-4 matrix element f{sub 2} which appears in the 1/Q{sup 2} suppressed term in the twist expansion of the spin structure function g{sub 1} for proton and neutron.

  4. Two $\\Lambda(1405)$ states in a chiral unitary approach with a fully-calculated loop function

    CERN Document Server

    Dong, Fang-Yong; Pang, Jing-Long

    2016-01-01

    The Bethe-Salpeter equation is solved in the framework of unitary coupled-channel approximation by using the pseudoscalar meson-baryon octet interaction. The loop function of the intermediate meson and baryon is deduced accurately in a fully dimensional regularization scheme, where the off-shell correction is supplemented. Two $\\Lambda(1405)$ states are generated dynamically in the strangeness $S=-1$ and isospin $I=0$ sector, and their masses, decay widths and couplings to the meson and the baryon are similar to those values obtained in the on-shell factorization. However, the scattering amplitudes at these two poles become weaker than the cases in the on-shell factorization.

  5. Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory

    CERN Document Server

    Aubin, C

    2007-01-01

    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (\\schpt), working to leading order in $1/m_Q$, where $m_Q$ is the heavy quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick'' within \\schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass depende...

  6. A Review of Heavy-Quark and Chiral Perturbation Theory

    CERN Document Server

    Naboulsi, R

    2003-01-01

    In this paper we discuss the relations between various decays that can be obtained by combining heavy-quark perturbation theory and chiral perturbation theory for the emission of soft pseudoscalar particles. In the heavy-quark limit of QCD the interactions of the heavy quark Q are simplified because of a new set of symmetries not manifestly present in the full QCD. This fact is usually used in the construction of the new effective theory where the heavy-quark mass goes to infinity $(m_Q\\gg \\Lambda_{QCD})$ with its four-velocity fixed. The spin-flavor symmetry group of this new theory with N heavy quarks is SU(2N) because the interactions of the heavy quarks are independent of their spins and flavors. This fact is widely used in the description of the semileptonic decays of $B$ mesons to $D$ and $D^\\ast$ mesons where heavy-quark symmetry allows a parameterization of the decay amplitudes in terms of the single Isgur-Wise function [1].

  7. Topics on heavy baryon chiral perturbation theory in the large N_c limit

    CERN Document Server

    Flores-Mendieta, R

    2002-01-01

    We compute nonanalytical pion-loop corrections to baryon masses in a combined expansion in chiral symmetry breaking and 1/N_c, where N_c is the number of colors. Specifically, we compute flavor-27 baryon mass splittings at leading order in chiral perturbation theory. Our results, at the physical value N_c=3, are compared with the expressions obtained in heavy baryon chiral perturbation theory with no 1/N_c expansion.

  8. Mass Spectra of Heavy-Light Mesons in Heavy Hadron Chiral Perturbation Theory

    CERN Document Server

    Alhakami, Mohammad H

    2016-01-01

    We study the masses of the low-lying charm and bottom mesons within the framework of heavy- hadron chiral perturbation theory. We work to third order in the chiral expansion, where meson loops contribute. In contrast to previous approaches, we use physical meson masses in evaluating these loops. This ensures that their imaginary parts are consistent with the observed widths of the D-mesons. The lowest odd- and even-parity, strange and nonstrange charm mesons provide enough constraints to determine only certain linear combinations of the low-energy constants (LECs) in the effective Lagrangian. We comment on how lattice QCD could provide further information to disentangle these constants. Then we use the results from the charm sector to predict the spectrum of odd- and even-parity of the bottom mesons. The predicted masses from our theory are in good agreement with experimentally measured masses for the case of the odd-parity sector. For the even-parity sector, the B-meson states have not yet been observed; thu...

  9. Improved Unitarized Heavy Baryon Chiral Perturbation Theory for $\\pi N $ Scattering

    CERN Document Server

    Nicola, A G; Peláez, J R; Ruiz-Arriola, E

    2000-01-01

    We show how the unitarized description of pion nucleon scattering within Heavy Baryon Chiral Perturbation Theory can be considerably improved, by a suitable reordering of the expansion over the nucleon mass. Within this framework, the $\\Delta$ resonance and its associated pole can be recovered from the chiral parameters obtained from low-energy determinations. In addition, we can obtain a good description of the six $S$ and $P$ wave phase shifts in terms of chiral parameters with a natural size and compatible with the Resonance Saturation Hypothesis.

  10. Nuclear forces from chiral Lagrangians using the method of unitary transformation II: The two-nucleon system

    CERN Document Server

    Epelbaum, E; Meißner, Ulf G

    2000-01-01

    We employ the chiral nucleon-nucleon potential derived in [Nucl. Phys. A 637 (1998) 107] to study bound and scattering states in the two-nucleon system. At next-to-leading order, this potential is the sum of renormalized one-pion and two-pion exchange and contact interactions. At next-to-next-to-leading order, we have additional chiral two-pion exchange with low-energy constants determined from pion-nucleon scattering. Alternatively, we consider the DELTA(1232) as an explicit degree of freedom in the effective field theory. The nine parameters related to the contact interactions can be determined by a fit to the np S- and P-waves and the mixing parameter epsilon sub 1 for laboratory energies below 100 MeV. The predicted phase shifts and mixing parameters for higher energies and higher angular momenta are mostly well described for energies below 300 MeV. The S-waves are described as precisely as in modern phenomenological potentials. We find a good description of the deuteron properties.

  11. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    CERN Document Server

    Sun, Yifeng; Li, Feng

    2016-01-01

    Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).

  12. Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen; Roxanne Springer

    2005-03-01

    We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.

  13. Elastic Pion-Nucleon Scattering to $O(p^{3})$ in Heavy Baryon Chiral Perturbation Theory

    CERN Document Server

    Mojzis, M

    1997-01-01

    The elastic pi-N scattering amplitude in the isospin limit is calculated in the framework of heavy baryon chiral perturbation theory, up to the third order. Threshold parameters like scattering lengths, volumes, effective ranges, etc. are compared with data. All relevant low energy constants are fixed from the available pion-nucleon data. A clear improvement in the description of data is observed, when going from the first two orders in the chiral expansion to the third one. The importance of even higher orders is suggested by the result.

  14. Unitary version of the single-particle dispersive optical model and single-hole excitations in medium-heavy spherical nuclei

    Science.gov (United States)

    Kolomiytsev, G. V.; Igashov, S. Yu.; Urin, M. H.

    2017-07-01

    A unitary version of the single-particle dispersive optical model was proposed with the aim of applying it to describing high-energy single-hole excitations in medium-heavy mass nuclei. By considering the example of experimentally studied single-hole excitations in the 90Zr and 208Pb parent nuclei, the contribution of the fragmentation effect to the real part of the optical-model potential was estimated quantitatively in the framework of this version. The results obtained in this way were used to predict the properties of such excitations in the 132Sn parent nucleus.

  15. Lowest-lying even-parity anti B{sub s} mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses

    Energy Technology Data Exchange (ETDEWEB)

    Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)

    2017-03-15

    The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)

  16. Status of Chiral Doublers of Heavy-Light Hadrons in Light of Recent Babar, Cleo, Belle and Selex Ds States

    Science.gov (United States)

    Nowak, Maciej A.

    We explain the main idea of the chiral doublers scenario, originating from simultaneous constraints of chiral symmetry and of heavy quark spin symmetry on effective theories of heavy-light hadrons. In particular we discuss chiral doublers for mesons, chiral doublers for excited mesons, chiral doublers for baryons and chiral doublers for excited baryons. We point out the arguments why new states Ds(2317) and Ds(2457) might be viewed as chiral doublers of Ds and Ds*. Then we comment on non-strange mesons D0(2308) and D‧1(2427) observed by Belle and Focus, and on Θc(3099) signal observed by H1. Finally, we point out that very recent discovery by SELEX of Ds(2632), if confirmed by other experiments and if spin-parity of this state is 1-, may be interpreted as a signal for chiral doubler of Ds1(2536). Such an identification implies another narrow, spin-parity 2- Ds state ca 37 MeV above the new 1-, corresponding to chiral partner of Ds2.

  17. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    Science.gov (United States)

    Sun, Yifeng; Ko, Che Ming; Li, Feng

    2016-10-01

    Using an anomalous transport model for massless quarks and antiquarks, we study the effect of a magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in noncentral heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision. The electric quadrupole moment subsequently leads to a splitting between the elliptic flows of quarks and antiquarks. The slope of the charge asymmetry dependence of the elliptic flow difference between positively and negatively charged particles is positive, which is expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the BNL Relativistic Heavy Ion Collider, only if the Lorentz force acting on the charged particles is neglected and the quark-antiquark scattering is assumed to be dominated by the chirality changing channel.

  18. Influence of Chiral Mean Field on Kaon In-plane Flow in Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu-Ming; FUCHS Christian; FAESSLER Amand; SHEKHTER Kirril; SRISAWAD Pornrad; KOBDAJ Chinorat; YAN Yu-Peng

    2004-01-01

    The influence of the chiral mean field on the K+ in-plane flow in heavy ion collisions at SIS energy is investigated within covariant kaon dynamics. For the kaon mesons inside the nuclear medium a quasi-particle picture including scalar and vector fields is adopted and compared to the standard treatment with a static potential. It is confirmed that a Lorentz force from spatial component of the vector field provides an important contribution to the inmedium kaon dynamics and strongly counterbalances the influence of the vector potential on the K+ in-plane flow. The calculated results show that the new FOPI data can be reasonably described using the Brown & Rho parametrization,which partly takes into account the correction of higher order contributions in the chiral expansion. This indicates that one can abstract the information on the kaon potential in a nuclear medium from the analysis of the K+ in-plane flow.

  19. Modeling chiral criticality and its consequences for heavy-ion collisions

    CERN Document Server

    Almási, Gábor András; Redlich, Krzysztof

    2016-01-01

    We explore the critical fluctuations near the chiral critical endpoint (CEP) in a chiral effective model and discuss possible signals of the CEP, recently explored experimentally in nuclear collision. Particular attention is paid to the dependence of such signals on the location of the phase boundary and the EP relative to the chemical freeze-out conditions in nuclear collisions. We argue that in effective models, standard freeze-out fits to heavy-ion data should not be used directly. Instead, the relevant quantities should be examined on lines in the phase diagram that are defined self-consistently, within the framework of the model. We discuss possible choices for such an approach.

  20. Formation of disoriented chiral condensates in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    Ajit M Srivastava

    2000-07-01

    We present a brief review of the subject of disoriented chiral condensates (DCC). We describe the conventional scenarios for the formation of DCC which have been proposed in the literature. Observable signals, such as fluctuations in neutral to charged pion ratio, are discussed. We then discuss a novel scenario for DCC formation, recently proposed by us, where the entire region of hot partons can get converted into a single large DCC. Our arguments suggest that formation of such large DCC is unlikely in the collision of heavy nuclei, and ultra-high energy hadronic collisions may be better suited for this.

  1. Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not

    CERN Document Server

    Bar-Shalom, Shaouly

    2016-01-01

    We revisit models where a heavy chiral 4th generation doublet of fermions is embedded in a class of two Higgs doublets models (2HDM) with a discrete $Z_2$ symmetry, which couples the "heavy" scalar doublet only to the 4th generation fermions and the "light" one to the Standard Model (SM) fermions - the so-called 4G2HDM introduced by us several years ago. We study the constraints imposed on the 4G2HDM from direct searches of heavy fermions, from precision electroweak data (PEWD) and from the measured production and decay signals of the 125 GeV scalar, which in the 4G2HDM corresponds to the lightest CP-even scalar h. We then show that the recently reported excess in the $\\gamma\\gamma$ spectrum around 750 GeV can be accommodated by the heavy CP-even scalar of the 4G2HDM, H, resulting in a unique choice of parameter space: negligible mixing (sin\\alpha ~ O(0.001)) between the two CP-even scalars h,H and heavy 4th generation quark and lepton masses m_t',m_b' 900 GeV, respectively. Whether or not the 750 GeV \\gamma...

  2. Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yi, E-mail: yyin@bnl.gov [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liao, Jinfeng, E-mail: liaoji@indiana.edu [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-05-10

    Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction — a phenomenon known as the Chiral Magnetic Effect (CME). The quark–gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHC for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. The implications for the search of CME are discussed.

  3. New lessons from the nucleon mass, lattice QCD and heavy baryon chiral perturbation theory

    CERN Document Server

    Walker-Loud, A

    2008-01-01

    I will review heavy baryon chiral perturbation theory for the nucleon delta degrees of freedom and then examine the recent dynamical lattice calculations of the nucleon mass from the BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD and RBC/UKQCD Collaborations. Performing the chiral extrapolations of these results, one finds remarkable agreement with the physical nucleon mass, from each lattice data set. However, a careful examination of the lattice data and the resulting extrapolation functions reveals some unexpected results, serving to highlight the significant challenges in performing chiral extrapolations of baryon quantities. All the N_f=2+1 dynamical results can be quantitatively described by theoretically unmotivated fit function linear in the pion mass with m_pi ~ 750 -190 MeV. When extrapolated to the physical point, the results are in striking agreement with the physical nucleon mass. I will argue that knowledge of each lattice datum of the nucleon mass is required at the 1-2% level, includ...

  4. Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not

    Science.gov (United States)

    Bar-Shalom, Shaouly; Soni, Amarjit

    2017-03-01

    We revisit models where a heavy chiral 4th generation doublet of fermions is embedded in a class of two Higgs doublets models (2HDM) with a discrete Z2 symmetry, which couples the ;heavy; scalar doublet only to the 4th generation fermions and the ;light; one to the Standard Model (SM) fermions - the so-called 4G2HDM introduced by us several years ago. We study the constraints imposed on the 4G2HDM from direct searches of heavy fermions, from precision electroweak data (PEWD) and from the measured production and decay signals of the 125 GeV scalar, which in the 4G2HDM corresponds to the lightest CP-even scalar h. We then show that the recently reported excess in the γγ spectrum around 750 GeV can be accommodated by the heavy CP-even scalar of the 4G2HDM, H, resulting in a unique choice of parameter space: negligible mixing (sin ⁡ α ≲ O (10-3)) between the two CP-even scalars h , H and heavy 4th generation quark and lepton masses mt‧ ,mb‧ ≲ 400 GeV and mν‧ ,mτ‧ ≳ 900 GeV, respectively. Whether or not the 750 GeV γγ resonance is confirmed, interesting phenomenology emerges in q‧ - Higgs systems (q‧ =t‧ ,b‧), that can be searched for at the LHC. For example, the heavy scalar states of the model, S = H , A ,H+, may have BR (S →qbar‧q‧) ∼ O (1), giving rise to observable qbar‧q‧ signals on resonance, followed by the flavor changing q‧ decays t‧ → uh (u = u , c) and/or b‧ → dh (d = d , s , b). This leads to rather distinct signatures, with or without charged leptons, of the form qbar‧q‧ →(nj + mb + ℓW) S (j and b being light and b-quark jets, respectively), with n + m + ℓ = 6- 8 and unique kinematic features. These high jet-multiplicity signals appear to be very challenging and may need new search strategies for detection of such heavy chiral quarks. It is also shown that the flavor structure of the 4G2HDM can easily accommodate the interesting recent indications of a percent-level branching ratio in the

  5. Chiral symmetry restoration in heavy-ion collisions at intermediate energies

    CERN Document Server

    Palmese, A; Seifert, E; Steinert, T; Moreau, P; Bratkovskaya, E L

    2016-01-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range $\\sqrt{s_{NN}}$=3-20 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear $\\sigma-\\omega$ model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations.

  6. Electromagnetic fields with electric and chiral magnetic conductivities in heavy ion collisions

    Science.gov (United States)

    Li, Hui; Sheng, Xin-li; Wang, Qun

    2016-10-01

    We derive an analytic formula for electric and magnetic fields produced by a moving charged particle in a conducting medium with the electric conductivity σ and the chiral magnetic conductivity σχ. We use the Green's function method and assume that σχ is much smaller than σ . The compact algebraic expressions for electric and magnetic fields without any integrals are obtained. They recover the Lienard-Wiechert formula at vanishing conductivities. Exact numerical solutions are also found for any values of σ and σχ and are compared with analytic results. Both numerical and analytic results agree very well for the scale of high-energy heavy ion collisions. The spacetime profiles of electromagnetic fields in noncentral Au+Au collisions have been calculated based on these analytic formula as well as exact numerical solutions.

  7. Electromagnetic fields with electric and chiral magnetic conductivities in heavy ion collisions

    CERN Document Server

    Li, Hui; Wang, Qun

    2016-01-01

    We derive analytic formula for electric and magnetic fields produced by a moving charged particle in a conducting medium with the electric conductivity \\sigma and the chiral magnetic conductivity \\sigma_{\\chi}. We use the Green function method and assume that \\sigma_{\\chi} is much smaller than \\sigma. The compact algebraic expressions for electric and magnetic fields without any integrals are obtained. They recover the Lienard-Wiechert formula at vanishing conductivities. Exact numerical solutions are also found for any values of \\sigma and \\sigma_{\\chi} and are compared to analytic results. Both numerical and analytic results agree very well for the scale of high energy heavy ion collisions. The space-time profiles of electromagnetic fields in non-central Au+Au collisions have been calculated based on these analytic formula as well as exact numerical solutions.

  8. Upper Energy Limit of Heavy Baryon Chiral Perturbation Theory in Neutral Pion Photoproduction

    CERN Document Server

    Fernandez-Ramirez, C

    2013-01-01

    We assess the energy limit up to which Heavy Baryon Chiral Perturbation Theory can be accurately applied to the process of neutral pion photoproduction from the proton by analyzing the latest data from the A2 and CB-TAPS collaborations at Mainz. We find that, within the current experimental status, the theory works up to $\\sim$170 MeV. Above this energy the data call for further improvement in the theory such as the explicit inclusion of the $\\Delta$(1232). We also find that data and multipoles can be well described up to $\\sim$185 MeV with Taylor expansions in the partial waves up to first order in pion energy.

  9. Chiral electric field in relativistic heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin

    2016-08-01

    It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)

  10. Study of the correlation of charge separation of the chiral magnetic effect in Relativistic Heavy-ion Collisions

    CERN Document Server

    Feng, Sheng-Qin; Sun, Fei; Zhong, Yang; Yin, Zhong-Bao

    2016-01-01

    It was pointed out that the Chiral Magnetic Effect is a process of charge separation with respect to the reaction plane. There is one kind of phenomenon of gauge field configurations with nonzero topological charge, which can be a sphaleron in the QCD vacuum. At high temperatures, one expects that the sphaleron process is a dominant process. One finds that left-handed quarks will become right-handed quarks, and right-handed quarks will remain right-handed in a region with negative topological charge. The strong magnetic field produced in relativistic heavy-ion collisions interacts with the magnetic moment of the quarks and locates the spins of quarks with positive (negative) electric charge to be parallel (anti-parallel) to the field direction. The Chiral Separation Effect is a similar effect in which the occurrence of a vector charge, e.g. electric charge, causes a separation of chiralities. We calculate the chiral separation effects during RHIC and LHC energy regions by studying the detailed chiral charge s...

  11. Chiral symmetry restoration in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Moreau, P.; Bratkovskaya, E. L.

    2016-10-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √{sN N}=3 -20 GeV within the parton-hadron-string dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the nonlinear σ -ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ term we adopt Σπ≈ 45 MeV, which corresponds to some world average. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √{sN N}=3 -20 GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the nonstrange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the so-called horn structure in the excitation function of the K+/π+ ratio: The CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sN N}≈7 GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance and disappearance of the horn-structure are investigated as functions of the system size and collision centrality. We close this work by an analysis of strangeness production in the (T ,μB ) plane (as extracted from the PHSD for central Au+Au collisions) and discuss the possibilities to identify a possible critical point in the phase diagram.

  12. Unitary lens semiconductor device

    Science.gov (United States)

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  13. Unitary appreciative inquiry.

    Science.gov (United States)

    Cowling, W R

    2001-06-01

    Unitary appreciative inquiry is described as an orientation, process, and approach for illuminating the wholeness, uniqueness, and essence that are the pattern of human life. It was designed to bring the concepts, assumptions, and perspectives of the science of unitary human beings into reality as a mode of inquiry. Unitary appreciative inquiry provides a way of giving fullest attention to important facets of human life that often are not fully accounted for in current methods that have a heavier emphasis on diagnostic representations. The participatory, synoptic, and transformative qualities of the unitary appreciative process are explicated. The critical dimensions of nursing knowledge development expressed in dialectics of the general and the particular, action and theory, stories and numbers, sense and soul, aesthetics and empirics, and interpretation and emancipation are considered in the context of the unitary appreciative stance. Issues of legitimacy of knowledge and credibility of research are posed and examined in the context of four quality standards that are deemed important to evaluate the worthiness of unitary appreciative inquiry for the advancement of nursing science and practice.

  14. Tetraquark bound states and resonances in a unitary microscopic quark model: A case study of bound states of two light quarks and two heavy antiquarks

    Science.gov (United States)

    Bicudo, P.; Cardoso, M.

    2016-11-01

    We address q q Q ¯Q ¯ exotic tetraquark bound states and resonances with a fully unitarized and microscopic quark model. We propose a triple string flip-flop potential, inspired by lattice QCD tetraquark static potentials and flux tubes, combining meson-meson and double Y potentials. Our model includes the color excited potential, but neglects the spin-tensor potentials, as well as all the other relativistic effects. To search for bound states and resonances, we first solve the two-body mesonic problem. Then we develop fully unitary techniques to address the four-body tetraquark problem. We fold the four-body Schrödinger equation with the mesonic wave functions, transforming it into a two-body meson-meson problem with nonlocal potentials. We find bound states for some quark masses, including the one reported in lattice QCD. Moreover, we also find resonances and calculate their masses and widths, by computing the T matrix and finding its pole positions in the complex energy plane, for some quantum numbers. However, a detailed analysis of the quantum numbers where binding exists shows a discrepancy with recent lattice QCD results for the l l b ¯ b ¯ tetraquark bound states. We conclude that the string flip-flop models need further improvement.

  15. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    CERN Document Server

    Cassing, W; Moreau, P; Bratkovskaya, E L

    2015-01-01

    We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the $K^+/\\pi^+$ and the $(\\Lambda+\\Sigma^0)/\\pi^-$ ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modelling of chiral symmetry restoration is driven by the pion-nucleon $\\Sigma$-term in the computation of the quark scalar condensate $$ that serves as an order parameter for CSR and also scales approximately with the effective quark masses $m_s$ and $m_q$. Furthermore, the nucleon scalar density $\\rho_s$, which also enters the computation of $$, is evaluated within the nonlinear $\\sigma-\\omega$ model which is constraint by Dirac-Brueckner calculations and low energy...

  16. Bethe-Salpeter Approach for the $P_{33}$ Elastic Pion-Nucleon Scattering in Heavy Baryon Chiral Perturbation Theory

    CERN Document Server

    Nieves, J

    2001-01-01

    Heavy Baryon Chiral Perturbation Theory (HBChPT) to leading order provides a kernel to solve the Bethe-Salpeter equation for the $P_{33}$ ($\\Delta(1232)$-channel) $\\pi-N$ system, in the infinite nucleon mass limit. Crossed Born terms include, when iterated within the Bethe-Salpeter equation, both {\\it all} one- and {\\it some} two-pion intermediate states, hence preserving elastic unitarity below the two-pion production threshold. This suggests searching for a solution with the help of dispersion relations and suitable subtraction constants, when all in-elasticities are explicitly neglected. The solution allows for a successful description of the experimental phase shift from threshold up to $\\sqrt{s}=1500$ MeV in terms of four subtraction constants. Next-to-leading order HBChPT calculations are also used to estimate the unknown subtraction constants which appear in the solution. Large discrepancies are encountered which can be traced to the slow convergence rate of HBChPT.

  17. Entanglement quantification by local unitaries

    CERN Document Server

    Monras, A; Giampaolo, S M; Gualdi, G; Davies, G B; Illuminati, F

    2011-01-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "shield entanglement". They are constructed by first considering the (squared) Hilbert- Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these shield entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary f...

  18. The phi-meson and Chiral-mass-meson production in heavy-ion collisions as potential probes of quark-gluon-plasma and Chiral symmetry transitions

    Science.gov (United States)

    Takahashi, Y.; Eby, P. B.

    1985-01-01

    Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.

  19. Unitary Gas Constraints on Nuclear Symmetry Energy

    CERN Document Server

    Kolomeitsev, Evgeni E; Ohnishi, Akira; Tews, Ingo

    2016-01-01

    We show the existence of a lower bound on the volume symmetry energy parameter $S_0$ from unitary gas considerations. We further demonstrate that values of $S_0$ above this minimum imply upper and lower bounds on the symmetry energy parameter $L$ describing its lowest-order density dependence. The bounds are found to be consistent with both recent calculations of the energies of pure neutron matter and constraints from nuclear experiments. These results are significant because many equations of state in active use for simulations of nuclear structure, heavy ion collisions, supernovae, neutron star mergers, and neutron star structure violate these constraints.

  20. Entanglement Continuous Unitary Transformations

    CERN Document Server

    Sahin, S; Orus, R

    2016-01-01

    Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called "entanglement-CUT" or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators, and we present proof-of-principle results for the spin-1/2 1d quantum Ising model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermo...

  1. Entanglement continuous unitary transformations

    Science.gov (United States)

    Sahin, Serkan; Schmidt, Kai Phillip; Orús, Román

    2017-01-01

    Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called “entanglement-CUT” or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators. We also present proof-of-principle results for the spin-(1/2) 1d quantum Ising model and the 3-state quantum Potts model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermodynamic limit.

  2. Unitary Transformation in Quantum Teleportation

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-Chuan

    2006-01-01

    In the well-known treatment of quantum teleportation, the receiver should convert the state of his EPR particle into the replica of the unknown quantum state by one of four possible unitary transformations. However, the importance of these unitary transformations must be emphasized. We will show in this paper that the receiver cannot transform the state of his particle into an exact replica of the unknown state which the sender wants to transfer if he has not a proper implementation of these unitary transformations. In the procedure of converting state, the inevitable coupling between EPR particle and environment which is needed by the implementation of unitary transformations will reduce the accuracy of the replica.

  3. All maximally entangling unitary operators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Scott M. [Department of Physics, Duquesne University, Pittsburgh, Pennsylvania 15282 (United States); Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2011-11-15

    We characterize all maximally entangling bipartite unitary operators, acting on systems A and B of arbitrary finite dimensions d{sub A}{<=}d{sub B}, when ancillary systems are available to both parties. Several useful and interesting consequences of this characterization are discussed, including an understanding of why the entangling and disentangling capacities of a given (maximally entangling) unitary can differ and a proof that these capacities must be equal when d{sub A}=d{sub B}.

  4. Unitary pattern: a review of theoretical literature.

    Science.gov (United States)

    Musker, Kathleen M

    2012-07-01

    It is the purpose of this article to illuminate the phenomenon of unitary pattern through a review of theoretical literature. Unitary pattern is a phenomenon of significance to the discipline of nursing because it is manifested in and informs all person-environment health experiences. Unitary pattern was illuminated by: addressing the barriers to understanding the phenomenon, presenting a definition of unitary pattern, and exploring Eastern and Western theoretical literature which address unitary pattern in a way that is congruent with the definition presented. This illumination of unitary pattern will expand nursing knowledge and contribute to the discipline of nursing.

  5. Despair: a unitary appreciative inquiry.

    Science.gov (United States)

    Cowling, W Richard

    2004-01-01

    A unitary appreciative case study method was used to explicate unitary understandings of despair embedded in the unique personal life contexts of the participants. Fourteen women engaged in dialogical, appreciative interviews that led to the creation of profiles of the life pattern or course associated with despair for each woman. Three exemplar cases are detailed including the profiles that incorporate story, metaphor, music, and imagery. The voices of the women provide morphogenic knowledge of the contexts, nature, consequences, and contributions of despair as well as practical guidance for healthcare providers.

  6. Field-enlarging transformations and chiral theories

    CERN Document Server

    Sladkowski, J

    1995-01-01

    A field-enlarging transformation in the chiral electrodynamics is performed. This introduces an additional gauge symmetry to the model that is unitary and anomaly-free and allows for comparison of different models discussed in the literature. The problem of superfluous degrees of freedom and their influence on quantization is discussed. Several "mysteries" are explained from this point of view.

  7. Teleportation of M-Qubit Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.

  8. Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, H Z; Huang, B; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, W; Li, Y; Li, C; Li, N; Li, Z M; Li, X; Li, X; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, L; Ma, R; Ma, Y G; Ma, G L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D L; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, S; Raniwala, R; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Sharma, M K; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, D; Smirnov, N; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B J; Sun, X; Sun, X M; Sun, Z; Sun, Y; Surrow, B; Svirida, D N; Szelezniak, M A; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbaek, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, Y; Wang, H; Wang, J S; Wang, Y; Wang, G; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, Y F; Xu, N; Xu, Z; Xu, Q H; Xu, H; Yang, Y; Yang, Y; Yang, C; Yang, S; Yang, Q; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, J B; Zhang, J; Zhang, Z; Zhang, S; Zhang, Y; Zhang, J L; Zhao, F; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2015-06-26

    We present measurements of π(-) and π(+) elliptic flow, v(2), at midrapidity in Au+Au collisions at √[s(NN)]=200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV, as a function of event-by-event charge asymmetry, A(ch), based on data from the STAR experiment at RHIC. We find that π(-) (π(+)) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at √[s(NN)]=27  GeV and higher. At √[s(NN)]=200  GeV, the slope of the difference of v(2) between π(-) and π(+) as a function of A(ch) exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

  9. Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, Y.; Li, C.; Li, N.; Li, Z. M.; Li, X.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, R.; Ma, Y. G.; Ma, G. L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X.; Sun, X. M.; Sun, Z.; Sun, Y.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Wang, Y.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, Y. F.; Xu, N.; Xu, Z.; Xu, Q. H.; Xu, H.; Yang, Y.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J. B.; Zhang, J.; Zhang, Z.; Zhang, S.; Zhang, Y.; Zhang, J. L.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-06-01

    We present measurements of π- and π+ elliptic flow, v2, at midrapidity in Au +Au collisions at √{sNN }=200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV, as a function of event-by-event charge asymmetry, Ach, based on data from the STAR experiment at RHIC. We find that π- (π+) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at √{sNN }=27 GeV and higher. At √{sNN }=200 GeV , the slope of the difference of v2 between π- and π+ as a function of Ach exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

  10. Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Bairathi,; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, X; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, W; Li, Z M; Li, X; Li, Y; Li, C; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, Y G; Ma, R; Ma, G L; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, M K; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, N; Smirnov, D; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, N; Szelezniak, M A; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, H; Wang, J S; Wang, Y; Wang, F; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z G; Xie, W; Xin, K; Xu, Q H; Xu, N; Xu, H; Xu, Z; Xu, Y F; Yang, Q; Yang, Y; Yang, C; Yang, S; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J; Zhang, X P; Zhang, Z; Zhang, Y; Zhang, S; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2015-01-01

    We present measurements of $\\pi^-$ and $\\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\\sqrt{s_{_{\\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\\pi^-$ ($\\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\\sqrt{s_{_{\\rm NN}}} = \\text{27 GeV}$ and higher. At $\\sqrt{s_{_{\\rm NN}}} = \\text{200 GeV}$, the slope of the difference of $v_2$ between $\\pi^-$ and $\\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

  11. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  12. Applications Of Chiral Perturbation Theory

    CERN Document Server

    Mohta, V

    2005-01-01

    Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...

  13. Unitary equivalence of quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Sandeep K., E-mail: sandeep.goyal@ucalgary.ca [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, 4000 Durban (South Africa); Konrad, Thomas [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, 4000 Durban (South Africa); National Institute for Theoretical Physics (NITheP), KwaZulu-Natal (South Africa); Diósi, Lajos [Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, H-1525 Budapest 114, P.O.B. 49 (Hungary)

    2015-01-23

    Highlights: • We have found unitary equivalent classes in coined quantum walks. • A single parameter family of coin operators is sufficient to realize all simple one-dimensional quantum walks. • Electric quantum walks are unitarily equivalent to time dependent quantum walks. - Abstract: A simple coined quantum walk in one dimension can be characterized by a SU(2) operator with three parameters which represents the coin toss. However, different such coin toss operators lead to equivalent dynamics of the quantum walker. In this manuscript we present the unitary equivalence classes of quantum walks and show that all the nonequivalent quantum walks can be distinguished by a single parameter. Moreover, we argue that the electric quantum walks are equivalent to quantum walks with time dependent coin toss operator.

  14. Recent Developments in Chiral Unitary Dynamics of Resonances

    CERN Document Server

    Oset, E; Gamermann, D; Vacas, M J Vicente; Strottman, D; Khemchandani, K P; Torres, A Martinez; Oller, J A; Roca, L

    2007-01-01

    In this talk I summarize recent findings made on the description of axial vector mesons as dynamically generated states from the interaction of peseudoscalar mesons and vector mesons, dedicating some attention to the two $K_1(1270)$ states. Then I review the generation of open and hidden charm scalar and axial states. Finally, I present recent results showing that the low lying $1/2^+$ baryon resonances for S=-1 can be obtained as bound states or resonances of two mesons and one baryon in coupled channels dynamics.

  15. To CME or not to CME? Implications of p+Pb measurements of the chiral magnetic effect in heavy ion collisions

    CERN Document Server

    Belmont, R

    2016-01-01

    The Chiral Magnetic Effect (CME) is a fundamental prediction of QCD and various observables have been proposed in heavy ion collisions to access this physics. Recently the CMS Collaboration \\cite{Khachatryan:2016got} has reported results from p+Pb collisions at 5.02 TeV on one such observable, the three-point correlator. The results are strikingly similar to those measured at the same particle multiplicity in Pb+Pb collisions, that have been attributed to the CME. This similarity, combined with two key assumptions about the magnetic field in p+Pb collisions, presents a major challenge to the CME picture. These two assumptions as stated in the CMS paper are (1) that the magnetic field in p+Pb collisions is smaller than that in Pb+Pb collisions and (2) that the magnetic field direction is uncorrelated with the flow angle. We test these two postulates in the Monte Carlo Glauber framework and find that the magnetic fields are not significantly smaller in central p+Pb collisions, however the magnetic field directi...

  16. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Directory of Open Access Journals (Sweden)

    Tomoya Hayata

    2015-05-01

    Full Text Available We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  17. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Energy Technology Data Exchange (ETDEWEB)

    Hayata, Tomoya, E-mail: hayata@riken.jp [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Yamamoto, Arata [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-05-11

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  18. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model; Einfluss schwerer hadronischer Zustaende auf das QCD-Phasendiagramm und die Ausfrierbedingungen in einem hadronischen chiralen Modell

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, G.

    2006-07-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized {sigma}-{omega} model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the

  19. Truncations of random unitary matrices

    CERN Document Server

    Zyczkowski, K; Zyczkowski, Karol; Sommers, Hans-Juergen

    1999-01-01

    We analyze properties of non-hermitian matrices of size M constructed as square submatrices of unitary (orthogonal) random matrices of size N>M, distributed according to the Haar measure. In this way we define ensembles of random matrices and study the statistical properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble is characterized by the ratio M/N. For the truncated CUE we derive analytically the joint density of eigenvalues from which easily all correlation functions are obtained. For N-M fixed and N--> infinity the universal resonance-width distribution with N-M open channels is recovered.

  20. Direct dialling of Haar random unitary matrices

    Science.gov (United States)

    Russell, Nicholas J.; Chakhmakhchyan, Levon; O’Brien, Jeremy L.; Laing, Anthony

    2017-03-01

    Random unitary matrices find a number of applications in quantum information science, and are central to the recently defined boson sampling algorithm for photons in linear optics. We describe an operationally simple method to directly implement Haar random unitary matrices in optical circuits, with no requirement for prior or explicit matrix calculations. Our physically motivated and compact representation directly maps independent probability density functions for parameters in Haar random unitary matrices, to optical circuit components. We go on to extend the results to the case of random unitaries for qubits.

  1. Singular Value Decomposition for Unitary Symmetric Matrix

    Institute of Scientific and Technical Information of China (English)

    ZOUHongxing; WANGDianjun; DAIQionghai; LIYanda

    2003-01-01

    A special architecture called unitary sym-metric matrix which embodies orthogonal, Givens, House-holder, permutation, and row (or column) symmetric ma-trices as its special cases, is proposed, and a precise corre-spondence of singular values and singular vectors between the unitary symmetric matrix and its mother matrix is de-rived. As an illustration of potential, it is shown that, for a class of unitary symmetric matrices, the singular value decomposition (SVD) using the mother matrix rather than the unitary symmetric matrix per se can save dramatically the CPU time and memory without loss of any numerical precision.

  2. Unitary Root Music and Unitary Music with Real-Valued Rank Revealing Triangular Factorization

    Science.gov (United States)

    2010-06-01

    AFRL-RY-WP-TP-2010-1213 UNITARY ROOT MUSIC AND UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) Nizar...DATES COVERED (From - To) June 2010 Journal Article Postprint 08 September 2006 – 31 August 2009 4. TITLE AND SUBTITLE UNITARY ROOT MUSIC AND...UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8650-05-D-1912-0007 5c

  3. On the chirality of the SM and the fermion content of GUTs

    Directory of Open Access Journals (Sweden)

    Renato M. Fonseca

    2015-08-01

    Full Text Available The Standard Model (SM is a chiral theory, where right- and left-handed fermion fields transform differently under the gauge group. Extra fermions, if they do exist, need to be heavy otherwise they would have already been observed. With no complex mechanisms at work, such as confining interactions or extra-dimensions, this can only be achieved if every extra right-handed fermion comes paired with a left-handed one transforming in the same way under the Standard Model gauge group, otherwise the new states would only get a mass after electroweak symmetry breaking, which would necessarily be small (∼100 GeV. Such a simple requirement severely constrains the fermion content of Grand Unified Theories (GUTs. It is known for example that three copies of the representations 5¯+10 of SU(5 or three copies of the 16 of SO(10 can reproduce the Standard Model's chirality, but how unique are these arrangements? In a systematic way, this paper looks at the possibility of having non-standard mixtures of fermion GUT representations yielding the correct Standard Model chirality. Family unification is possible with large special unitary groups — for example, the 171 representation of SU(19 may decompose as 3(16+120+3(1 under SO(10.

  4. Dileptons and Chiral Symmetry Restoration

    CERN Document Server

    Hohler, P M

    2015-01-01

    We report on recent work relating the medium effects observed in dilepton spectra in heavy-ion collisions to potential signals of chiral symmetry restoration. The key connection remains the approach to spectral function degeneracy between the vector-isovector channel with its chiral partner, the axialvector-isovector channel. Several approaches are discussed to elaborate this connection, namely QCD and Weinberg sum rules with input for chiral order parameters from lattice QCD, and chiral hadronic theory to directly evaluate the medium effects of the axialvector channel and the pertinent pion decay constant as function of temperature. A pattern emerges where the chiral mass splitting between rho and a_1 burns off and is accompanied by a strong broadening of the spectral distributions.

  5. Nonequilibrium chiral perturbation theory and disoriented chiral condensates

    CERN Document Server

    Nicola, A G

    1999-01-01

    We analyse the extension of Chiral Perturbation Theory to describe a meson gas out of thermal equilibrium. For that purpose, we let the pion decay constant be a time-dependent function and work within the Schwinger-Keldysh contour technique. A useful connection with curved space-time QFT allows to consistently renormalise the model, introducing two new low-energy constants in the chiral limit. We discuss the applicability of our approach within a Relativistic Heavy-Ion Collision environment. In particular, we investigate the formation of Disoriented Chiral Condensate domains in this model, via the parametric resonance mechanism.

  6. Unitary symmetry, combinatorics, and special functions

    Energy Technology Data Exchange (ETDEWEB)

    Louck, J.D.

    1996-12-31

    From 1967 to 1994, Larry Biedenham and I collaborated on 35 papers on various aspects of the general unitary group, especially its unitary irreducible representations and Wigner-Clebsch-Gordan coefficients. In our studies to unveil comprehensible structures in this subject, we discovered several nice results in special functions and combinatorics. The more important of these will be presented and their present status reviewed.

  7. Spectral stability of unitary network models

    Science.gov (United States)

    Asch, Joachim; Bourget, Olivier; Joye, Alain

    2015-08-01

    We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one-dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.

  8. Complex positive maps and quaternionic unitary evolution

    Energy Technology Data Exchange (ETDEWEB)

    Asorey, M [Departamento de Fisica Teorica, Universidad de Zaragoza, 50009 Zaragoza (Spain); Scolarici, G [Dipartimento di Fisica dell' Universita di Lecce and INFN, Sezione di Lecce, I-73100 Lecce (Italy)

    2006-08-04

    The complex projection of any n-dimensional quaternionic unitary dynamics defines a one-parameter positive semigroup dynamics. We show that the converse is also true, i.e. that any one-parameter positive semigroup dynamics of complex density matrices with maximal rank can be obtained as the complex projection of suitable quaternionic unitary dynamics.

  9. Composed ensembles of random unitary ensembles

    CERN Document Server

    Pozniak, M; Kus, M; Pozniak, Marcin; Zyczkowski, Karol; Kus, Marek

    1997-01-01

    Composed ensembles of random unitary matrices are defined via products of matrices, each pertaining to a given canonical circular ensemble of Dyson. We investigate statistical properties of spectra of some composed ensembles and demonstrate their physical relevance. We discuss also the methods of generating random matrices distributed according to invariant Haar measure on the orthogonal and unitary group.

  10. Tensor Products of Random Unitary Matrices

    CERN Document Server

    Tkocz, Tomasz; Kus, Marek; Zeitouni, Ofer; Zyczkowski, Karol

    2012-01-01

    Tensor products of M random unitary matrices of size N from the circular unitary ensemble are investigated. We show that the spectral statistics of the tensor product of random matrices becomes Poissonian if M=2, N become large or M become large and N=2.

  11. Antikaon induced Ξ production from a chiral model at NLO

    Directory of Open Access Journals (Sweden)

    Feijoo A.

    2014-01-01

    Full Text Available We study the meson-baryon interaction in the strangeness S = −1 sector using a chiral unitary approach, paying particular attention to the K̄N → KΞ reaction, especially important for constraining the next-to-leading order chiral terms, and considering also the effect of high spin hyperonic resonances. We also present results for the production of Ξ hyperons in nuclei

  12. Kitaev honeycomb tensor networks: exact unitary circuits and applications

    CERN Document Server

    Schmoll, Philipp

    2016-01-01

    The Kitaev honeycomb model is a paradigm of exactly-solvable models, showing non-trivial physical properties such as topological quantum order, abelian and non-abelian anyons, and chirality. Its solution is one of the most beautiful examples of the interplay of different mathematical techniques in condensed matter physics. In this paper, we show how to derive a tensor network (TN) description of the eigenstates of this spin-1/2 model in the thermodynamic limit, and in particular for its ground state. In our setting, eigenstates are naturally encoded by an exact 3d TN structure made of fermionic unitary operators, corresponding to the unitary quantum circuit building up the many-body quantum state. In our derivation we review how the different "solution ingredients" of the Kitaev honeycomb model can be accounted for in the TN language, namely: Jordan-Wigner transformation, braidings of Majorana modes, fermionic Fourier transformation, and Bogoliubov transformation. The TN built in this way allows for a clear u...

  13. Energy Transfer Using Unitary Transformations

    Directory of Open Access Journals (Sweden)

    Winny O'Kelly de Galway

    2013-11-01

    Full Text Available We study the unitary time evolution of a simple quantum Hamiltonian describing two harmonic oscillators coupled via a three-level system. The latter acts as an engine transferring energy from one oscillator to the other and is driven in a cyclic manner by time-dependent external fields. The S-matrix (scattering matrix of the cycle is obtained in analytic form. The total number of quanta contained in the system is a conserved quantity. As a consequence, the spectrum of the S-matrix is purely discrete, and the evolution of the system is quasi-periodic. The explicit knowledge of the S-matrix makes it possible to do accurate numerical evaluations of the time-dependent wave function. They confirm the quasi-periodic behavior. In particular, the energy flows back and forth between the two oscillators in a quasi-periodic manner.

  14. Spectral study of a chiral limit without chiral condensate

    CERN Document Server

    Bietenholz, Wolfgang

    2009-01-01

    Random Matrix Theory (RMT) has elaborated successful predictions for Dirac spectra in field theoretical models. However, a generic assumption by RMT has been a non-vanishing chiral condensate $\\Sigma$ in the chiral limit. Here we consider the 2-flavour Schwinger model, where this assumption does not hold. We simulated this model with dynamical overlap hypercube fermions, and entered terra incognita by analysing this Dirac spectrum. The usual RMT prediction for the unfolded level spacing distribution in a unitary ensemble is precisely confirmed. The microscopic spectrum does not perform a Banks-Casher plateau. Instead the obvious expectation is a density of the lowest eigenvalue $\\lambda_{1}$ which increases $\\propto \\lambda_{1}^{1/3}$. That would correspond to a scale-invariant parameter $\\propto \\lambda V^{3/4}$, which is, however, incompatible with our data. Instead we observe to high precision a scale-invariant parameter $z \\propto \\lambda V^{5/8}$. This surprising result implies a microscopic spectral den...

  15. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  16. Compactifications of the Heterotic string with unitary bundles

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, T.

    2006-05-23

    In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing

  17. Chiral algebras

    CERN Document Server

    Beilinson, Alexander

    2004-01-01

    Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch

  18. Extremal spacings of random unitary matrices

    CERN Document Server

    Smaczynski, Marek; Kus, Marek; Zyczkowski, Karol

    2012-01-01

    Extremal spacings between unimodular eigenvalues of random unitary matrices of size N pertaining to circular ensembles are investigated. Probability distributions for the minimal spacing for various ensembles are derived for N=4. We show that for large matrices the average minimal spacing s_min of a random unitary matrix behaves as N^(-1/(1+B)) for B equal to 0,1 and 2 for circular Poisson, orthogonal and unitary ensembles, respectively. For these ensembles also asymptotic probability distributions P(s_min) are obtained and the statistics of the largest spacing s_max are investigated.

  19. Intercept Capacity: Unknown Unitary Transformation

    Directory of Open Access Journals (Sweden)

    Bill Moran

    2008-11-01

    Full Text Available We consider the problem of intercepting communications signals between Multiple-Input Multiple-Output (MIMO communication systems. To correctly detect a transmitted message it is necessary to know the gain matrix that represents the channel between the transmitter and the receiver. However, even if the receiver has knowledge of the message symbol set, it may not be possible to estimate the channel matrix. Blind Source Separation (BSS techniques, such as Independent Component Analysis (ICA can go some way to extracting independent signals from individual transmission antennae but these may have been preprocessed in a manner unknown to the receiver. In this paper we consider the situation where a communications interception system has prior knowledge of the message symbol set, the channel matrix between the transmission system and the interception system and is able to resolve the transmissionss from independent antennae. The question then becomes: what is the mutual information available to the interceptor when an unknown unitary transformation matrix is employed by the transmitter.

  20. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  1. Unitary Approximations in Fault Detection Filter Design

    Directory of Open Access Journals (Sweden)

    Dušan Krokavec

    2016-01-01

    Full Text Available The paper is concerned with the fault detection filter design requirements that relax the existing conditions reported in the previous literature by adapting the unitary system principle in approximation of fault detection filter transfer function matrix for continuous-time linear MIMO systems. Conditions for the existence of a unitary construction are presented under which the fault detection filter with a unitary transfer function can be designed to provide high residual signals sensitivity with respect to faults. Otherwise, reflecting the emplacement of singular values in unitary construction principle, an associated structure of linear matrix inequalities with built-in constraints is outlined to design the fault detection filter only with a Hurwitz transfer function. All proposed design conditions are verified by the numerical illustrative examples.

  2. Quantum unitary dynamics in cosmological spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D’Ávila e Bolama, 6201-001 Covilhã (Portugal)

    2015-12-15

    We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.

  3. Asymptotic Evolution of Random Unitary Operations

    CERN Document Server

    Novotny, J; Jex, I

    2009-01-01

    We analyze the asymptotic dynamics of quantum systems resulting from large numbers of iterations of random unitary operations. Although, in general, these quantum operations cannot be diagonalized it is shown that their resulting asymptotic dynamics is described by a diagonalizable superoperator. We prove that this asymptotic dynamics takes place in a typically low dimensional attractor space which is independent of the probability distribution of the unitary operations applied. This vector space is spanned by all eigenvectors of the unitary operations involved which are associated with eigenvalues of unit modulus. Implications for possible asymptotic dynamics of iterated random unitary operations are presented and exemplified in an example involving random controlled-not operations acting on two qubits.

  4. Non-unitary probabilistic quantum computing

    Science.gov (United States)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  5. Entanglement quantification by local unitary operations

    Energy Technology Data Exchange (ETDEWEB)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-07-15

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  6. Right-unitary transformation theory and applications

    OpenAIRE

    Tang, Zhong

    1996-01-01

    We develop a new transformation theory in quantum physics, where the transformation operators, defined in the infinite dimensional Hilbert space, have right-unitary inverses only. Through several theorems, we discuss the properties of state space of such operators. As one application of the right-unitary transformation (RUT), we show that using the RUT method, we can solve exactly various interactions of many-level atoms with quantized radiation fields, where the energy of atoms can be two le...

  7. Entanglement quantification by local unitary operations

    Science.gov (United States)

    Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-07-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  8. Kitaev honeycomb tensor networks: Exact unitary circuits and applications

    Science.gov (United States)

    Schmoll, Philipp; Orús, Román

    2017-01-01

    The Kitaev honeycomb model is a paradigm of exactly solvable models, showing nontrivial physical properties such as topological quantum order, Abelian and non-Abelian anyons, and chirality. Its solution is one of the most beautiful examples of the interplay of different mathematical techniques in condensed matter physics. In this paper, we show how to derive a tensor network (TN) description of the eigenstates of this spin-1/2 model in the thermodynamic limit, and in particular for its ground state. In our setting, eigenstates are naturally encoded by an exact 3d TN structure made of fermionic unitary operators, corresponding to the unitary quantum circuit building up the many-body quantum state. In our derivation we review how the different "solution ingredients" of the Kitaev honeycomb model can be accounted for in the TN language, namely, Jordan-Wigner transformation, braidings of Majorana modes, fermionic Fourier transformation, and Bogoliubov transformation. The TN built in this way allows for a clear understanding of several properties of the model. In particular, we show how the fidelity diagram is straightforward both at zero temperature and at finite temperature in the vortex-free sector. We also show how the properties of two-point correlation functions follow easily. Finally, we also discuss the pros and cons of contracting of our 3d TN down to a 2d projected entangled pair state (PEPS) with finite bond dimension. The results in this paper can be extended to generalizations of the Kitaev model, e.g., to other lattices, spins, and dimensions.

  9. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  10. Uncertainty relations for general unitary operators

    Science.gov (United States)

    Bagchi, Shrobona; Pati, Arun Kumar

    2016-10-01

    We derive several uncertainty relations for two arbitrary unitary operators acting on physical states of a Hilbert space. We show that our bounds are tighter in various cases than the ones existing in the current literature. Using the uncertainty relation for the unitary operators, we obtain the tight state-independent lower bound for the uncertainty of two Pauli observables and anticommuting observables in higher dimensions. With regard to the minimum-uncertainty states, we derive the minimum-uncertainty state equation by the analytic method and relate this to the ground-state problem of the Harper Hamiltonian. Furthermore, the higher-dimensional limit of the uncertainty relations and minimum-uncertainty states are explored. From an operational point of view, we show that the uncertainty in the unitary operator is directly related to the visibility of quantum interference in an interferometer where one arm of the interferometer is affected by a unitary operator. This shows a principle of preparation uncertainty, i.e., for any quantum system, the amount of visibility for two general noncommuting unitary operators is nontrivially upper bounded.

  11. Nuclear axial current operators to fourth order in chiral effective field theory

    OpenAIRE

    Krebs, H; Epelbaum, E.; Meißner, U.-G

    2016-01-01

    We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized singl...

  12. Black holes, quantum information, and unitary evolution

    CERN Document Server

    Giddings, Steven B

    2012-01-01

    The unitary crisis for black holes indicates an apparent need to modify local quantum field theory. This paper explores the idea that quantum mechanics and in particular unitarity are fundamental principles, but at the price of familiar locality. Thus, one should seek to parameterize unitary evolution, extending the field theory description of black holes, such that their quantum information is transferred to the external state. This discussion is set in a broader framework of unitary evolution acting on Hilbert spaces comprising subsystems. Here, various constraints can be placed on the dynamics, based on quantum information-theoretic and other general physical considerations, and one can seek to describe dynamics with "minimal" departure from field theory. While usual spacetime locality may not be a precise concept in quantum gravity, approximate locality seems an important ingredient in physics. In such a Hilbert space approach an apparently "coarser" form of localization can be described in terms of tenso...

  13. Color Energy Of A Unitary Cayley Graph

    Directory of Open Access Journals (Sweden)

    Adiga Chandrashekar

    2014-11-01

    Full Text Available Let G be a vertex colored graph. The minimum number χ(G of colors needed for coloring of a graph G is called the chromatic number. Recently, Adiga et al. [1] have introduced the concept of color energy of a graph Ec(G and computed the color energy of few families of graphs with χ(G colors. In this paper we derive explicit formulas for the color energies of the unitary Cayley graph Xn, the complement of the colored unitary Cayley graph (Xnc and some gcd-graphs.

  14. Chiral Corrections to Vector Meson Decay Constants

    CERN Document Server

    Bijnens, J; Talavera, P; Bijnens, Johan; Gosdzinsky, Peter; Talavera, Pere

    1998-01-01

    We calculate the leading quark mass corrections of order $m_q\\log(m_q)$, $m_q$ and $m_q^{3/2}$ to the vector meson decay constants within Heavy Vector Meson Chiral Perturbation Theory. We discuss the issue of electromagnetic gauge invariance and the heavy mass expansion. Reasonably good fits to the observed decay constants are obtained.

  15. Quantized superfluid vortex rings in the unitary Fermi gas.

    Science.gov (United States)

    Bulgac, Aurel; Forbes, Michael McNeil; Kelley, Michelle M; Roche, Kenneth J; Wlazłowski, Gabriel

    2014-01-17

    In a recent article, Yefsah et al. [Nature (London) 499, 426 (2013)] report the observation of an unusual excitation in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe oscillations almost an order of magnitude slower than predicted by any theory of domain walls which they interpret as a "heavy soliton" of inertial mass some 200 times larger than the free fermion mass or 50 times larger than expected for a domain wall. We present compelling evidence that this "soliton" is instead a quantized vortex ring, by showing that the main aspects of the experiment can be naturally explained within the framework of time-dependent superfluid density functional theories.

  16. Chiral Nuclear Dynamics II

    CERN Document Server

    Rho, Mannque

    2008-01-01

    This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and

  17. Strange chiral nucleon form factors

    CERN Document Server

    Hemmert, T R; Meißner, Ulf G; Hemmert, Thomas R.; Kubis, Bastian; Meissner, Ulf-G.

    1999-01-01

    We investigate the strange electric and magnetic form factors of the nucleon in the framework of heavy baryon chiral perturbation theory to third order in the chiral expansion. All counterterms can be fixed from data. In particular, the two unknown singlet couplings can be deduced from the parity-violating electron scattering experiments performed by the SAMPLE and the HAPPEX collaborations. Within the given uncertainties, our analysis leads to a small and positive electric strangeness radius, $ = (0.05 \\pm 0.16) fm^2$. We also deduce the consequences for the upcoming MAMI A4 experiment.

  18. Experimental Overview of the Search for Chiral Effects at RHIC

    Science.gov (United States)

    Wang, Gang

    2017-01-01

    In high-energy heavy-ion collisions, various novel transport phenomena in local chiral domains result from the interplay of quantum anomalies with magnetic field and vorticity, and could survive the expansion of the fireball and be detected in experiments. Among these phenomena are the chiral magnetic effect, the chiral vortical effect and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. This review will describe the current status of experimental studies at Relativistic Heavy Ion Collider at BNL, and outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.

  19. Experimental results on chiral magnetic and vortical effects

    CERN Document Server

    Wang, Gang

    2016-01-01

    Various novel transport phenomena in chiral systems result from the interplay of quantum anomalies with magnetic field and vorticity in high-energy heavy-ion collisions, and could survive the expansion of the fireball and be detected in experiments. Among them are the chiral magnetic effect, the chiral vortical effect and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. The goal of this review is to describe the current status of experimental studies at Relativistic Heavy Ion Collider at BNL and the Large Hadron Collider at CERN, and to outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.

  20. Chiral liquids

    Directory of Open Access Journals (Sweden)

    Zakharov V.I.

    2015-01-01

    Full Text Available We review briefly properties of chiral liquids, or liquids with massless fermionic constituents. We concentrate on three effects, namely, the low ratio of viscosity η to entropy density s, chiral magnetic and vortical effects. We sketch standard derivations of these effects in the hydrodynamic approximation and then concentrate on possibile unifying approach which is based on consideration of the (anomalously conserved axial current. The point is that the conservation of chirality is specific for the microscopic, field-theoretic description of massless fermions and their interactions. On the macroscopic side, the standard hydrodynamic equations are not consistent, generally speaking, with conservation of a helical macroscopic motion. Imposing extra constraints on the hydrodynamics might resolve this “clash-of-symmetries” paradox.

  1. Chirally symmetric but confined hadrons at finite density

    CERN Document Server

    Glozman, L Ya

    2008-01-01

    At a critical finite chemical potential and low temperature QCD undergoes the chiral restoration phase transition. The folklore tradition is that simultaneously hadrons are deconfined and there appears the quark matter. We demonstrate that it is possible to have confined but chirally symmetric hadrons at a finite chemical potential and hence beyond the chiral restoration point at a finite chemical potential and low temperature there could exist a chirally symmetric matter consisting of chirally symmetric but confined hadrons. If it does happen in QCD, then the QCD phase diagram should be reconsidered with obvious implications for heavy ion programs and astrophysics.

  2. Boundary Relations, Unitary Colligations, and Functional Models

    NARCIS (Netherlands)

    Behrndt, Jussi; Hassi, Seppo; de Snoo, Henk

    2009-01-01

    Recently a new notion, the so-called boundary relation, has been introduced involving an analytic object, the so-called Weyl family. Weyl families and boundary relations establish a link between the class of Nevanlinna families and unitary relations acting from one Krein in space, a basic (state) sp

  3. Developmental Dyspraxia: Is It a Unitary Function?

    Science.gov (United States)

    Ayres, A. Jean; And Others

    1987-01-01

    A group of 182 children (ages four through nine) with known or suspected sensory integrative dysfunction were assessed using tests and clinical observations to examine developmental dyspraxia. The study did not justify the existence of either a unitary function or different types of developmental dyspraxia. (Author/CH)

  4. Dirac cohomology of unitary representations of equal rank exceptional groups

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we consider the unitary representations of equal rank exceptional groups of type E with a regular lambda-lowest K-type and classify those unitary representations with the nonzero Dirac cohomology.

  5. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  6. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  7. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    NgSeikWng; HUSheng-Zhi

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations).For a chiral molecule,which must crystallize in a chiral space group,the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  8. Chiral symmetry and lattice gauge theory

    CERN Document Server

    Creutz, M

    1994-01-01

    I review the problem of formulating chiral symmetry in lattice gauge theory. I discuss recent approaches involving an infinite tower of additional heavy states to absorb Fermion doublers. For hadronic physics this provides a natural scheme for taking quark masses to zero without requiring a precise tuning of parameters. A mirror Fermion variation provides a possible way of extending the picture to chirally coupled light Fermions. Talk presented at "Quark Confinement and the Hadron Spectrum," Como, Italy, 20-24 June 1994.

  9. Pseudo-random unitary operators for quantum information processing.

    Science.gov (United States)

    Emerson, Joseph; Weinstein, Yaakov S; Saraceno, Marcos; Lloyd, Seth; Cory, David G

    2003-12-19

    In close analogy to the fundamental role of random numbers in classical information theory, random operators are a basic component of quantum information theory. Unfortunately, the implementation of random unitary operators on a quantum processor is exponentially hard. Here we introduce a method for generating pseudo-random unitary operators that can reproduce those statistical properties of random unitary operators most relevant to quantum information tasks. This method requires exponentially fewer resources, and hence enables the practical application of random unitary operators in quantum communication and information processing protocols. Using a nuclear magnetic resonance quantum processor, we were able to realize pseudorandom unitary operators that reproduce the expected random distribution of matrix elements.

  10. Identical Wells, Symmetry Breaking, and the Near-Unitary Limit

    Science.gov (United States)

    Harshman, N. L.

    2017-03-01

    Energy level splitting from the unitary limit of contact interactions to the near unitary limit for a few identical atoms in an effectively one-dimensional well can be understood as an example of symmetry breaking. At the unitary limit in addition to particle permutation symmetry there is a larger symmetry corresponding to exchanging the N! possible orderings of N particles. In the near unitary limit, this larger symmetry is broken, and different shapes of traps break the symmetry to different degrees. This brief note exploits these symmetries to present a useful, geometric analogy with graph theory and build an algebraic framework for calculating energy splitting in the near unitary limit.

  11. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  12. Baryon resonances as dynamically generated states in chiral dynamics

    CERN Document Server

    Jido, Dasiuke

    2012-01-01

    We discuss baryon resonances which are dynamically generated in hadron dynamics based on chiral coupled channels approach. With the dynamical description of the baryon resonance, we discuss the origin of the resonance pole, finding that for the description of N(1535) some other components than meson and baryon are necessary. Since the chiral unitary model provides a microscopic description in terms of constituent hadrons, it is straightforward to calculate transition amplitudes and form factors of resonances without introducing further parameters. Finally we briefly discuss few-body nuclear kaonic systems as hadronic molecular states.

  13. Transition from Poisson to circular unitary ensemble

    Indian Academy of Sciences (India)

    Vinayak; Akhilesh Pandey

    2009-09-01

    Transitions to universality classes of random matrix ensembles have been useful in the study of weakly-broken symmetries in quantum chaotic systems. Transitions involving Poisson as the initial ensemble have been particularly interesting. The exact two-point correlation function was derived by one of the present authors for the Poisson to circular unitary ensemble (CUE) transition with uniform initial density. This is given in terms of a rescaled symmetry breaking parameter Λ. The same result was obtained for Poisson to Gaussian unitary ensemble (GUE) transition by Kunz and Shapiro, using the contour-integral method of Brezin and Hikami. We show that their method is applicable to Poisson to CUE transition with arbitrary initial density. Their method is also applicable to the more general ℓ CUE to CUE transition where CUE refers to the superposition of ℓ independent CUE spectra in arbitrary ratio.

  14. Complete Pick Positivity and Unitary Invariance

    CERN Document Server

    Bhattacharya, Angshuman

    2009-01-01

    The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel $k_S(z,w) = (1 - z\\ow)^{-1}$ for $|z|, |w| < 1$, by means of $(1/k_S)(T,T^*) \\ge 0$, we consider an arbitrary open connected domain $\\Omega$ in $\\BC^n$, a complete Nevanilinna-Pick kernel $k$ on $\\Omega$ and a tuple $T = (T_1, ..., T_n)$ of commuting bounded operators on a complex separable Hilbert space $\\clh$ such that $(1/k)(T,T^*) \\ge 0$. For a complete Pick kernel the $1/k$ functional calculus makes sense in a beautiful way. It turns out that the model theory works very well and a characteristic function can be associated with $T$. Moreover, the characteristic function then is a complete unitary invariant for a suitable class of tuples $T$.

  15. Quantum Mutual Information Along Unitary Orbits

    CERN Document Server

    Jevtic, Sania; Rudolph, Terry

    2011-01-01

    Motivated by thermodynamic considerations, we analyse the variation of the quantum mutual information on a unitary orbit of a bipartite system state, with and without global constraints such as energy conservation. We solve the full optimisation problem for the smallest system of two qubits, and explore thoroughly the effect of unitary operations on the space of reduced-state spectra. We then provide applications of these ideas to physical processes within closed quantum systems, such as a generalized collision model approach to thermal equilibrium and a global Maxwell demon playing tricks on local observers. For higher dimensions, the maximization of correlations is relatively straightforward, however the minimisation of correlations displays non-trivial structures. We characterise a set of separable states in which the minimally correlated state resides, and find a collection of classically correlated states admitting a particular "Young tableau" form. Furthermore, a partial order exists on this set with re...

  16. On unitary reconstruction of linear optical networks

    CERN Document Server

    Tillmann, Max; Walther, Philip

    2015-01-01

    Linear optical elements are pivotal instruments in the manipulation of classical and quantum states of light. The vast progress in integrated quantum photonic technology enables the implementation of large numbers of such elements on chip while providing interferometric stability. As a trade-off these structures face the intrinsic challenge of characterizing their optical transformation as individual optical elements are not directly accessible. Thus the unitary transformation needs to be reconstructed from a dataset generated with having access to the input and output ports of the device only. Here we present a novel approach to unitary reconstruction that significantly improves upon existing approaches. We compare its performance to several approaches via numerical simulations for networks up to 14 modes. We show that an adapted version of our approach allows to recover all mode-dependent losses and to obtain highest reconstruction fidelities under such conditions.

  17. Unitary and room air-conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-09-01

    The scope of this technology evaluation on room and unitary air conditioners covers the initial investment and performance characteristics needed for estimating the operating cost of air conditioners installed in an ICES community. Cooling capacities of commercially available room air conditioners range from 4000 Btu/h to 36,000 Btu/h; unitary air conditioners cover a range from 6000 Btu/h to 135,000 Btu/h. The information presented is in a form useful to both the computer programmer in the construction of a computer simulation of the packaged air-conditioner's performance and to the design engineer, interested in selecting a suitably sized and designed packaged air conditioner.

  18. Scalable Noise Estimation with Random Unitary Operators

    CERN Document Server

    Emerson, J; Zyczkowski, K; Emerson, Joseph; Alicki, Robert; Zyczkowski, Karol

    2005-01-01

    We describe a scalable stochastic method for the experimental measurement of generalized fidelities characterizing the accuracy of the implementation of a coherent quantum transformation. The method is based on the motion reversal of random unitary operators. In the simplest case our method enables direct estimation of the average gate fidelity. The more general fidelities are characterized by a universal exponential rate of fidelity loss. In all cases the measurable fidelity decrease is directly related to the strength of the noise affecting the implementation -- quantified by the trace of the superoperator describing the non--unitary dynamics. While the scalability of our stochastic protocol makes it most relevant in large Hilbert spaces (when quantum process tomography is infeasible), our method should be immediately useful for evaluating the degree of control that is achievable in any prototype quantum processing device. By varying over different experimental arrangements and error-correction strategies a...

  19. Scalable noise estimation with random unitary operators

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Joseph [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Alicki, Robert [Institute of Theoretical Physics and Astrophysics, University of Gdansk, Wita Stwosza 57, PL 80-952 Gdansk (Poland); Zyczkowski, Karol [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2005-10-01

    We describe a scalable stochastic method for the experimental measurement of generalized fidelities characterizing the accuracy of the implementation of a coherent quantum transformation. The method is based on the motion reversal of random unitary operators. In the simplest case our method enables direct estimation of the average gate fidelity. The more general fidelities are characterized by a universal exponential rate of fidelity loss. In all cases the measurable fidelity decrease is directly related to the strength of the noise affecting the implementation, quantified by the trace of the superoperator describing the non-unitary dynamics. While the scalability of our stochastic protocol makes it most relevant in large Hilbert spaces (when quantum process tomography is infeasible), our method should be immediately useful for evaluating the degree of control that is achievable in any prototype quantum processing device. By varying over different experimental arrangements and error-correction strategies, additional information about the noise can be determined.

  20. Generalized Unitaries and the Picard Group

    Indian Academy of Sciences (India)

    Michael Skeide

    2006-11-01

    After discussing some basic facts about generalized module maps, we use the representation theory of the algebra $\\mathscr{B}^a(E)$ of adjointable operators on a Hilbert $\\mathcal{B}$-module to show that the quotient of the group of generalized unitaries on and its normal subgroup of unitaries on is a subgroup of the group of automorphisms of the range ideal $\\mathcal{B}_E$ of in $\\mathcal{B}$. We determine the kernel of the canonical mapping into the Picard group of $\\mathcal{B}_E$ in terms of the group of quasi inner automorphisms of $\\mathcal{B}_E$. As a by-product we identify the group of bistrict automorphisms of the algebra of adjointable operators on modulo inner automorphisms as a subgroup of the (opposite of the) Picard group.

  1. Recurrence for discrete time unitary evolutions

    CERN Document Server

    Grünbaum, F A; Werner, A H; Werner, R F

    2012-01-01

    We consider quantum dynamical systems specified by a unitary operator U and an initial state vector \\phi. In each step the unitary is followed by a projective measurement checking whether the system has returned to the initial state. We call the system recurrent if this eventually happens with probability one. We show that recurrence is equivalent to the absence of an absolutely continuous part from the spectral measure of U with respect to \\phi. We also show that in the recurrent case the expected first return time is an integer or infinite, for which we give a topological interpretation. A key role in our theory is played by the first arrival amplitudes, which turn out to be the (complex conjugated) Taylor coefficients of the Schur function of the spectral measure. On the one hand, this provides a direct dynamical interpretation of these coefficients; on the other hand it links our definition of first return times to a large body of mathematical literature.

  2. Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange

    CERN Document Server

    Llanes-Estrada, Felipe J; Swanson, Eric S; Szczepaniak, Adam P; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.; Szczepaniak, Adam P.; Swanson, Eric S.

    2004-01-01

    Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both $S$ and $D$ waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the $\\pi$-$\\rho$ mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the $\\pi$ mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The $\\eta_b$ mass is predicted to be around 9400 MeV consistent w...

  3. Integral Compressor/Generator/Fan Unitary Structure

    OpenAIRE

    Dreiman, Nelik

    2016-01-01

    INTEGRAL COMPRESSOR / GENERATOR / FAN UNITARY STRUCTURE.*) Dr. Nelik Dreiman Consultant, P.O.Box 144, Tipton, MI E-mail: An extremely compact, therefore space saving single compressor/generator/cooling fan structure of short axial length and light weight has been developed to provide generation of electrical power with simultaneous operation of the compressor when power is unavailable or function as a regular AC compressor powered by a power line. The generators and ai...

  4. Unitary representations and harmonic analysis an introduction

    CERN Document Server

    Sugiura, M

    1990-01-01

    The principal aim of this book is to give an introduction to harmonic analysis and the theory of unitary representations of Lie groups. The second edition has been brought up to date with a number of textual changes in each of the five chapters, a new appendix on Fatou''s theorem has been added in connection with the limits of discrete series, and the bibliography has been tripled in length.

  5. Optimal control theory for unitary transformations

    CERN Document Server

    Palao, J P; Palao, Jose P.

    2003-01-01

    The dynamics of a quantum system driven by an external field is well described by a unitary transformation generated by a time dependent Hamiltonian. The inverse problem of finding the field that generates a specific unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal control theory (OCT) is used to solve the inversion problem irrespective of the initial input state. A unified formalism, based on the Krotov method is developed leading to a new scheme. The schemes are compared for the inversion of a two-qubit Fourier transform using as registers the vibrational levels of the $X^1\\Sigma^+_g$ electronic state of Na$_2$. Raman-like transitions through the $A^1\\Sigma^+_u$ electronic state induce the transitions. Light fields are found that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by pulse-...

  6. Stegosaurus chirality

    OpenAIRE

    Cameron, R.P.; Cameron, J. A.; Barnett, S. M.

    2016-01-01

    We explain that Stegosaurus exhibited exterior chirality and observe that the largest plate in particular of USNM 4394, USNM 4714, DMNS 2818 and NHMUK R36730 appears to have tilted to the right rather than to the left in each case. Several instances in which Stegosaurus specimens have been confused with their distinct, hypothetical mirror-image forms are highlighted. We believe our findings to be consistent with the hypothesis that Stegosaurus's plates acted primarily as display structures. A...

  7. Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Higa, R; Valderrama, M Pavon; Arriola, E Ruiz

    2007-06-14

    The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.

  8. Stable unitary integrators for the numerical implementation of continuous unitary transformations

    Science.gov (United States)

    Savitz, Samuel; Refael, Gil

    2017-09-01

    The technique of continuous unitary transformations has recently been used to provide physical insight into a diverse array of quantum mechanical systems. However, the question of how to best numerically implement the flow equations has received little attention. The most immediately apparent approach, using standard Runge-Kutta numerical integration algorithms, suffers from both severe inefficiency due to stiffness and the loss of unitarity. After reviewing the formalism of continuous unitary transformations and Wegner's original choice for the infinitesimal generator of the flow, we present a number of approaches to resolving these issues including a choice of generator which induces what we call the "uniform tangent decay flow" and three numerical integrators specifically designed to perform continuous unitary transformations efficiently while preserving the unitarity of flow. We conclude by applying one of the flow algorithms to a simple calculation that visually demonstrates the many-body localization transition.

  9. Non-chiral fusion rules, structure constants of $D_{m}$ minimal models

    CERN Document Server

    Rida, A

    1999-01-01

    We present a technique to construct, for $D_{m}$ unitary minimal models, the non-chiral fusion rules which determines the operator content of the operator product algebra. Using these rules we solve the bootstrap equations and therefore determine the structure constants of these models. Through this approach we emphasize the role played by some discrete symmetries in the classification of minimal models.

  10. Recent developments in chiral dynamics of hadrons and hadrons in nuclei

    CERN Document Server

    Oset, E; Kaskulov, M; Roca, L; Sarkar, S; Strottman, D D; Vacas, M J V; Magas, V K; Ramos, A; Hernández, E

    2007-01-01

    In this talk I present recent developments in the field of hadronic physics and hadrons in the nuclear medium. I review the unitary chiral approach to meson baryon interaction and address the topics of the two dynamically generated $\\Lambda(1405)$ resonances, with experiments testing it, the $\\Lambda(1520)$ and $\\Delta(1700)$ resonances, plus the $\\Lambda(1520)$, $\\Sigma(1385)$ and $\\omega$ in the nuclear medium.

  11. Matching the Heavy Vector Meson Theory

    CERN Document Server

    Bijnens, J; Talavera, P

    1998-01-01

    We show how to obtain a ``heavy'' meson effective lagrangian for the case where the number of heavy particles is not conserved. We apply the method in a simple example at tree level and perform then the reduction for the case of vector mesons in Chiral Perturbation Theory in a manifestly chiral invariant fashion. Some examples showing that ``heavy'' meson effective theory also works at the one-loop level are included.

  12. Chiral imbalance in QCD

    Directory of Open Access Journals (Sweden)

    Andrianov Alexander

    2017-01-01

    Full Text Available The chiral imbalance (ChI is given by a difference between the numbers of RH and LH quarks which may occur in the fireball after heavy ion collision. To characterize it adiabatically a quark chiral (axial chemical potential must be introduced taking into account emergence of a ChI in such a phase. In this report the phenomenology of formation of Local spatial Parity Breaking (LPB in the hot and dense baryon matter is discussed and its simulation within a number of QCD-inspired models is outlined. The appearance of new states in the spectra of scalar, pseudoscalar and vector particles in such a matter is elucidated. In particular, from the effective vector meson theory in the presence of Chern-Simons interaction it is demonstrated that the spectrum of massive vector mesons splits into three polarization components with different effective masses. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton invariant mass can serve as a characteristic indication of the LPB in PHENIX, STAR and ALICE experiments.

  13. On unitary representability of topological groups

    OpenAIRE

    Galindo Pastor, Jorge

    2006-01-01

    We prove that the additive group $(E^\\ast,\\tau_k(E))$ of an $\\mathscr{L}_\\infty$-Banach space $E$, with the topology $\\tau_k(E)$ of uniform convergence on compact subsets of $E$, is topologically isomorphic to a subgroup of the unitary group of some Hilbert space (is \\emph{unitarily representable}). This is the same as proving that the topological group $(E^\\ast,\\tau_k(E))$ is uniformly homeomorphic to a subset of $\\ell_2^\\kappa$ for some $\\kappa$. As an immediate consequence, preduals of com...

  14. Quantum remote control Teleportation of unitary operations

    CERN Document Server

    Huelga, S F; Chefles, A; Plenio, M B

    2001-01-01

    We consider the implementation of an unknown arbitrary unitary operation U upon a distant quantum system. This teleportation of U can be viewed as a quantum remote control. We investigate the protocols which achieve this using local operations, classical communication and shared entanglement (LOCCSE). Lower bounds on the necessary entanglement and classical communication are determined using causality and the linearity of quantum mechanics. We examine in particular detail the resources required if the remote control is to be implemented as a classical black box. Under these circumstances, we prove that the required resources are, necessarily, those needed for implementation by bidirectional state teleportation.

  15. Shear Viscosity of a Unitary Fermi Gas

    OpenAIRE

    Wlazłowski, Gabriel; Magierski, Piotr; Drut, Joaquín E.

    2012-01-01

    We present the first ab initio determination of the shear viscosity eta of the Unitary Fermi Gas, based on finite temperature quantum Monte Carlo calculations and the Kubo linear-response formalism. We determine the temperature dependence of the shear viscosity to entropy density ratio eta/s. The minimum of eta/s appears to be located above the critical temperature for the superfluid-to-normal phase transition with the most probable value being eta/s approx 0.2 hbar/kB, which almost saturates...

  16. Universal dynamics in a Unitary Bose Gas

    Science.gov (United States)

    Klauss, Catherine; Xie, Xin; D'Incao, Jose; Jin, Deborah; Cornell, Eric

    2016-05-01

    We investigate the dynamics of a unitary Bose gas with an 85 Rb BEC, specifically to determine whether the dynamics scale universally with density. We find that the initial density affects both the (i) projection of the strongly interacting many-body wave-function onto the Feshbach dimer state when the system is rapidly ramped to a weakly interacting value of the scattering length a and (ii) the overall decay rate to deeper bound states. We will present data on both measurements across two orders of magnitude in density, and will discuss how the data illustrate the competing roles of universality and Efimov physics.

  17. Unitary Quantum Lattice Algorithms for Turbulence

    Science.gov (United States)

    2016-05-23

    collision operator, based on the 3D relativistic Dirac particle dynamics theory of Yepez, ĈD = cosθ x( ) −i sinθ x( ) −i sinθ x( ) cosθ x... based algorithm it will result in a finite difference representation of the GP Eq. (24) provided the parameters are so chosen to yield diffusion-like...Fluid Dynamics, ed. H. W. Oh, ( InTech Publishers, Croatia, 2012) [20] “Unitary qubit lattice simulations of complex vortex structures

  18. Unitary water-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-10-01

    Performance and cost functions for nine unitary water-to-air heat pumps ranging in nominal size from /sup 1///sub 2/ to 26 tons are presented in mathematical form for easy use in heat pump computer simulations. COPs at nominal water source temperature of 60/sup 0/F range from 2.5 to 3.4 during the heating cycle; during the cooling cycle EERs range from 8.33 to 9.09 with 85/sup 0/F entering water source temperatures. The COP and EER values do not include water source pumping power or any energy requirements associated with a central heat source and heat rejection equipment.

  19. Quantum mechanics with non-unitary symmetries

    CERN Document Server

    Bistrovic, B

    2000-01-01

    This article shows how to properly extend symmetries of non-relativistic quantum mechanics to include non-unitary representations of Lorentz group for all spins. It follows from this that (almost) all existing relativistic single particle Lagrangians and equations are incorrect. This is shown in particular for Dirac's equation and Proca equations. It is shown that properly constructed relativistic extensions have no negative energies, zitterbewegung effects and have proper symmetric energy-momentum tensor and angular momentum density tensor. The downside is that states with negative norm are inevitable in all representations.

  20. Unitary appreciative inquiry: evolution and refinement.

    Science.gov (United States)

    Cowling, W Richard; Repede, Elizabeth

    2010-01-01

    Unitary appreciative inquiry (UAI), developed over the past 20 years, provides an orientation and process for uncovering human wholeness and discovering life patterning in individuals and groups. Refinements and a description of studies using UAI are presented. Assumptions and conceptual underpinnings of the method distinguishing its contributions from other methods are reported. Data generation strategies that capture human wholeness and elucidate life patterning are proposed. Data synopsis as an alternative to analysis is clarified and explicated. Standards that suggest enhancing the legitimacy of knowledge and credibility of research are specified. Potential expansions of UAI offer possibilities for extending epistemologies, aesthetic integration, and theory development.

  1. Asymptotic expansions for the Gaussian unitary ensemble

    DEFF Research Database (Denmark)

    Haagerup, Uffe; Thorbjørnsen, Steen

    2012-01-01

    Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian...... Unitary Ensemble (GUE). Using an analytical approach, we provide in the present paper an alternative proof of this asymptotic expansion in the GUE case. Specifically we derive for a random matrix Xn that where k is an arbitrary positive integer. Considered as mappings of g, we determine the coefficients...

  2. Endoscopic classification of representations of quasi-split unitary groups

    CERN Document Server

    Mok, Chung Pang

    2015-01-01

    In this paper the author establishes the endoscopic classification of tempered representations of quasi-split unitary groups over local fields, and the endoscopic classification of the discrete automorphic spectrum of quasi-split unitary groups over global number fields. The method is analogous to the work of Arthur on orthogonal and symplectic groups, based on the theory of endoscopy and the comparison of trace formulas on unitary groups and general linear groups.

  3. Charge fluctuations in chiral models and the QCD phase transition

    CERN Document Server

    Skokov, V; Karsch, F; Redlich, K

    2011-01-01

    We consider the Polyakov loop-extended two flavor chiral quark--meson model and discuss critical phenomena related with the spontaneous breaking of the chiral symmetry. The model is explored beyond the mean-field approximation in the framework of the functional renormalisation group. We discuss properties of the net-quark number density fluctuations as well as their higher cumulants. We show that with the increasing net-quark number density, the higher order cumulants exhibit a strong sensitivity to the chiral crossover transition. We discuss their role as probes of the chiral phase transition in heavy-ion collisions at RHIC and LHC.

  4. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  5. Chiral Nanoscience and Nanotechnology

    Directory of Open Access Journals (Sweden)

    Dibyendu S. Bag

    2008-09-01

    Full Text Available The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale approaches to chiraltechnology such as asymmetric synthesis and catalysis, chiral separation and detection, and enantiomericanalysis. Chiral sensors have also been included. The state-of-the-art chiral research at DMSRDE,Kanpur isalso presented.Defence Science Journal, 2008, 58(5, pp.626-635, DOI:http://dx.doi.org/10.14429/dsj.58.1685

  6. Right-unitary transformation theory and applications

    CERN Document Server

    Tang, Z

    1996-01-01

    We develop a new transformation theory in quantum physics, where the transformation operators, defined in the infinite dimensional Hilbert space, have right-unitary inverses only. Through several theorems, we discuss the properties of state space of such operators. As one application of the right-unitary transformation (RUT), we show that using the RUT method, we can solve exactly various interactions of many-level atoms with quantized radiation fields, where the energy of atoms can be two levels, three levels in Lambda, V and equiv configurations, and up to higher (>3) levels. These interactions have wide applications in atomic physics, quantum optics and quantum electronics. In this paper, we focus on two typical systems: one is a two-level generalized Jaynes-Cummings model, where the cavity field varies with the external source; the other one is the interaction of three-level atom with quantized radiation fields, where the atoms have Lambda-configuration energy levels, and the radiation fields are one-mode...

  7. Isotopic variants of light and heavy L-pyroglutamic acid succinimidyl esters as the derivatization reagents for DL-amino acid chiral metabolomics identification by liquid chromatography and electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Toshiki; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo’oka, Toshimasa, E-mail: toyooka@u-shizuoka-ken.ac.jp

    2014-02-06

    Graphical abstract: -- Highlights: •Isotopic variants of chiral labeling reagents were newly synthesized. •Analysis of DL-amino acids was performed by UPLC–ESI–MS/MS. •Highly efficient enantioseparation and detection of DL-amino acids were performed. •Differential analysis of DL-amino acid was successfully performed in real samples. -- Abstract: L-Pyroglutamic acid succinimidyl ester (L-PGA-OSu) and its isotopic variant (L-PGA[d{sub 5}]-OSu) were newly synthesized and evaluated as the chiral labeling reagents for the enantioseparation of amino acids, in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The enantiomers of amino acids were easily labeled with the reagents at 60 °C within 10 min in an alkaline medium containing triethylamine. Although all the diastereomers derived from 18 proteolytic amino acids could not be satisfactorily separated, the pairs of 9 amino acids were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs = 1.95–8.05). The characteristic daughter ions, i.e., m/z 84.04 and m/z 89.04, were detected from all the derivatives by the collision induced dissociation of the protonated molecular ions. A highly sensitive detection at a low-fmol level (0.5–3.2 fmol) was also obtained from the selected reaction monitoring (SRM) chromatograms. An isotope labeling strategy using light and heavy L-PGA-OSu for the differential analysis of the DL-amino acids in different sample groups is also presented in this paper. The differential analysis of biological sample (i.e., human serum) and food product (i.e., yogurt) were tried to demonstrate the efficiency of the proposed method. The ratios of the DL-amino acids in human serum samples, spiked with the different concentrations of D-amino acids, were determined by the procedures using L-PGA-OSu and L-PGA[d{sub 5}]-OSu. The D/L ratios in the two sample groups at different concentrations of

  8. Electroweak Chiral Lagrangian for Neutral Higgs Boson

    Institute of Scientific and Technical Information of China (English)

    WANG Shun-Zhi; WANG Qing

    2008-01-01

    A neutral Higgs boson is added into the traditional electroweak chiral Lagrangian by writing down all possible high dimension operators. The matter part of the Lagrangian is investigated in detail. We find that if Higgs field dependence of Yukawa couplings can be factorized out, there will be no flavour changing neutral couplings; neutral Higgs can induce coupling between light and heavy neutrinos.

  9. Leading chiral logarithms for the nucleon mass

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, Alexey A.; Bijnens, Johan [Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE 223 62 Lund (Sweden)

    2016-01-22

    We give a short introduction to the calculation of the leading chiral logarithms, and present the results of the recent evaluation of the LLog series for the nucleon mass within the heavy baryon theory. The presented results are the first example of LLog calculation in the nucleon ChPT. We also discuss some regularities observed in the leading logarithmical series for nucleon mass.

  10. Chiral mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  11. Molecular chirality at surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Karl-Heinz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Organic Chemistry Institute, University Zurich, 8057 Zuerich (Switzerland)

    2012-11-15

    With the adsorption of larger molecules being increasingly tackled by surface scientists, the aspect of chirality often plays a role. This paper gives a topical review of molecular chirality at surfaces and gives a phenomenological overview of different aspects of adsorption and self-assembly of chiral and prochiral molecules and the principles of mirror-symmetry breaking at a surface. After a brief introduction into the history of molecular chirality and the important role it played for understanding the spatial structure of molecules, definitions of chirality are presented. Topics treated here are principle ways to create single chiral adsorbates, chiral ensembles, and monolayers by achiral molecules, adsorption of intrinsically chiral molecules at achiral and chiral surfaces, long-range symmetry breaking in two-dimensional (2D) crystals due to additional chiral bias, chiral restructuring of solid surfaces under the influence of chiral molecules, switching the handedness of adsorbates, and chirality at the liquid/air interface. An outlook onto further potential research directions and recommendations for further reading, including nonsurface-related sources of chiral topics completes this paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Perfect state transfer in unitary Cayley graphs over local rings

    Directory of Open Access Journals (Sweden)

    Yotsanan Meemark

    2014-12-01

    Full Text Available In this work, using eigenvalues and eigenvectors of unitary Cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing PST occurring in its unitary Cayley graph. Moreover, we have some developments when $R$ is a product of local rings.

  13. Hydrodynamics of a unitary Bose gas

    Science.gov (United States)

    Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran

    2016-05-01

    In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.

  14. Unitary air-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-07-01

    This technology evaluation covers commercially available unitary heat pumps ranging from nominal capacities of 1/sup 1///sub 2/ to 45 tons. The nominal COP of the heat pump models, selected as representative, vary from 2.4 to 2.9. Seasonal COPs for heat pump installations and single-family dwellings are reported to vary from 2.5 to 1.1, depending on climate. For cooling performance, the nominal EER's vary from 6.5 to 8.7. Representative part-load performance curves along with cost estimating and reliability data are provided to aid: (1) the systems design engineer to select suitably sized heat pumps based on life-cycle cost analyses, and (2) the computer programmer to develop a simulation code for heat pumps operating in an Integrated Community Energy System.

  15. Biphoton transmission through non-unitary objects

    CERN Document Server

    Reichert, Matthew; Sun, Xiaohang; Fleischer, Jason W

    2016-01-01

    Losses should be accounted for in a complete description of quantum imaging systems, and yet they are often treated as undesirable and largely neglected. In conventional quantum imaging, images are built up by coincidence detection of spatially entangled photon pairs (biphotons) transmitted through an object. However, as real objects are non-unitary (absorptive), part of the transmitted state contains only a single photon, which is overlooked in traditional coincidence measurements. The single photon part has a drastically different spatial distribution than the two-photon part. It contains information both about the object, and, remarkably, the spatial entanglement properties of the incident biphotons. We image the one- and two-photon parts of the transmitted state using an electron multiplying CCD array both as a traditional camera and as a massively parallel coincidence counting apparatus, and demonstrate agreement with theoretical predictions. This work may prove useful for photon number imaging and lead ...

  16. Unitary Quantum Relativity - (Work in Progress)

    Science.gov (United States)

    Finkelstein, David Ritz

    2016-12-01

    A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.

  17. Unitary Quantum Relativity. (Work in Progress)

    Science.gov (United States)

    Finkelstein, David Ritz

    2017-01-01

    A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.

  18. Nuclear chiral dynamics and thermodynamics

    Science.gov (United States)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  19. Chiral conducting polymers.

    Science.gov (United States)

    Kane-Maguire, Leon A P; Wallace, Gordon G

    2010-07-01

    This critical review describes the preparation and properties of a relatively new class of chiral macromolecules, namely chiral conducting polymers. It focuses in particular on examples based on polypyrrole, polythiophene and polyaniline. They possess remarkable properties, combining not only chirality with electrical conductivity but also the ability to undergo facile redox and pH switching. These unique properties have opened up a range of exciting new potential applications, including as chiral sensors, as novel stationary phases for chiral separations, and as chiral electrodes for electrochemical asymmetric synthesis (153 references).

  20. Quantum Entanglement Growth under Random Unitary Dynamics

    Science.gov (United States)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  1. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  2. Chiral Gravitational Waves from Chiral Fermions

    CERN Document Server

    Anber, Mohamed M

    2016-01-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  3. Chiral gravitational waves from chiral fermions

    Science.gov (United States)

    Anber, Mohamed M.; Sabancilar, Eray

    2017-07-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  4. Two-nucleon electromagnetic current in chiral effective field theory: one-pion exchange and short-range contributions

    CERN Document Server

    Koelling, S; Krebs, H; Meißner, U -G

    2011-01-01

    We derive the leading one-loop contribution to the one-pion exchange and short-range two-nucleon electromagnetic current operator in the framework of chiral effective field theory. The derivation is carried out using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  5. Nuclear axial current operators to fourth order in chiral effective field theory

    CERN Document Server

    Krebs, H; Meißner, U -G

    2016-01-01

    We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized single-, two- and three-nucleon contributions to the charge and current operators and pseudoscalar operators including the relevant relativistic corrections. We also verify explicitly the validity of the continuity equation.

  6. Sequential scheme for locally discriminating bipartite unitary operations without inverses

    Science.gov (United States)

    Li, Lvzhou

    2017-08-01

    Local distinguishability of bipartite unitary operations has recently received much attention. A nontrivial and interesting question concerning this subject is whether there is a sequential scheme for locally discriminating between two bipartite unitary operations, because a sequential scheme usually represents the most economic strategy for discrimination. An affirmative answer to this question was given in the literature, however with two limitations: (i) the unitary operations to be discriminated were limited to act on d ⊗d , i.e., a two-qudit system, and (ii) the inverses of the unitary operations were assumed to be accessible, although this assumption may be unrealizable in experiment. In this paper, we improve the result by removing the two limitations. Specifically, we show that any two bipartite unitary operations acting on dA⊗dB can be locally discriminated by a sequential scheme, without using the inverses of the unitary operations. Therefore, this paper enhances the applicability and feasibility of the sequential scheme for locally discriminating unitary operations.

  7. The supersymmetry method for chiral random matrix theory with arbitrary rotation-invariant weights

    Science.gov (United States)

    Kaymak, Vural; Kieburg, Mario; Guhr, Thomas

    2014-07-01

    In the past few years, the supersymmetry method has been generalized to real symmetric, Hermitian, and Hermitian self-dual random matrices drawn from ensembles invariant under the orthogonal, unitary, and unitary symplectic groups, respectively. We extend this supersymmetry approach to chiral random matrix theory invariant under the three chiral unitary groups in a unifying way. Thereby we generalize a projection formula providing a direct link and, hence, a ‘short cut’ between the probability density in ordinary space and that in superspace. We emphasize that this point was one of the main problems and shortcomings of the supersymmetry method, since only implicit dualities between ordinary space and superspace were known before. To provide examples, we apply this approach to the calculation of the supersymmetric analogue of a Lorentzian (Cauchy) ensemble and an ensemble with a quartic potential. Moreover, we consider the partially quenched partition function of the three chiral Gaussian ensembles corresponding to four-dimensional continuum quantum chromodynamics. We identify a natural splitting of the chiral Lagrangian in its lowest order into a part for the physical mesons and a part associated with source terms generating the observables, e.g. the level density of the Dirac operator.

  8. Dynamics of the chiral phase transition

    CERN Document Server

    van Hees, H; Meistrenko, A; Greiner, C

    2013-01-01

    The intention of this study is the search for signatures of the chiral phase transition in heavy-ion collisions. To investigate the impact of fluctuations, e.g., of the baryon number, at the transition or at a critical point, the linear sigma model is treated in a dynamical (3+1)-dimensional numerical simulation. Chiral fields are approximated as classical mean fields, and quarks are described as quasi particles in a Vlasov equation. Additional dynamics is implemented by quark-quark and quark-sigma-field interactions. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.

  9. Heavy hadron spectrum and interactions

    CERN Document Server

    Ebert, D

    1996-01-01

    Starting from the approximate symmetries of QCD, namely chiral symmetry for light quarks and spin and flavor symmetry for heavy quarks, we investigate the low-energy properties of heavy hadrons. For this purpose we construct a consistent picture of quark-antiquark and quark-diquark interactions as a low-energy approximation to the flavor dynamics in heavy mesons and heavy baryons, respectively. Using standard functional integration tools, we derive an effective Lagrangian in terms of heavy hadron fields and discuss several properties, like the mass spectrum, coupling and decay constants, Isgur-Wise form factors.

  10. Quantum Entanglement Growth Under Random Unitary Dynamics

    CERN Document Server

    Nahum, Adam; Vijay, Sagar; Haah, Jeongwan

    2016-01-01

    Characterizing how entanglement grows with time in a many-body system, for example after a quantum quench, is a key problem in non-equilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time--dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the `entanglement tsunami' in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar--Parisi--Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like $(\\text{time})^{1/3}$ and are spatially correlated over a distance $\\propto (\\text{time})^{2/3}$. We derive KPZ universal behaviour in three complementary ways, by mapping random entanglement growth to: (i) a stochastic model of a growing surface; (ii) a `minimal cut' picture, reminisce...

  11. A unitary test of the Ratios Conjecture

    CERN Document Server

    Goes, John; Miller, Steven J; Montague, David; Ninsuwan, Kesinee; Peckner, Ryan; Pham, Thuy

    2009-01-01

    The Ratios Conjecture of Conrey, Farmer and Zirnbauer predicts the answers to numerous questions in number theory, ranging from n-level densities and correlations to mollifiers to moments and vanishing at the central point. The conjecture gives a recipe to generate these answers, which are believed to be correct up to square-root cancelation. These predictions have been verified, for suitably restricted test functions, for the 1-level density of orthogonal and symplectic families of L-functions. In this paper we verify the conjecture's predictions for the unitary family of all Dirichlet $L$-functions with prime conductor; we show square-root agreement between prediction and number theory if the support of the Fourier transform of the test function is in (-1,1), and for support up to (-2,2) we show agreement up to a power savings in the family's cardinality. The interesting feature in this family (which has not surfaced in previous investigations) is determining what is and what is not a diagonal term in the R...

  12. Quantum metrology with unitary parametrization processes.

    Science.gov (United States)

    Liu, Jing; Jing, Xiao-Xing; Wang, Xiaoguang

    2015-02-24

    Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative representation of quantum Fisher information for unitary parametrization processes. In this representation, all information of parametrization transformation, i.e., the entire dynamical information, is totally involved in a Hermitian operator H. Utilizing this representation, quantum Fisher information is only determined by H and the initial state. Furthermore, H can be expressed in an expanded form. The highlights of this form is that it can bring great convenience during the calculation for the Hamiltonians owning recursive commutations with their partial derivative. We apply this representation in a collective spin system and show the specific expression of H. For a simple case, a spin-half system, the quantum Fisher information is given and the optimal states to access maximum quantum Fisher information are found. Moreover, for an exponential form initial state, an analytical expression of quantum Fisher information by H operator is provided. The multiparameter quantum metrology is also considered and discussed utilizing this representation.

  13. Unitary Evolution and Cosmological Fine-Tuning

    CERN Document Server

    Carroll, Sean M

    2010-01-01

    Inflationary cosmology attempts to provide a natural explanation for the flatness and homogeneity of the observable universe. In the context of reversible (unitary) evolution, this goal is difficult to satisfy, as Liouville's theorem implies that no dynamical process can evolve a large number of initial states into a small number of final states. We use the invariant measure on solutions to Einstein's equation to quantify the problems of cosmological fine-tuning. The most natural interpretation of the measure is the flatness problem does not exist; almost all Robertson-Walker cosmologies are spatially flat. The homogeneity of the early universe, however, does represent a substantial fine-tuning; the horizon problem is real. When perturbations are taken into account, inflation only occurs in a negligibly small fraction of cosmological histories, less than $10^{-6.6\\times 10^7}$. We argue that while inflation does not affect the number of initial conditions that evolve into a late universe like our own, it neve...

  14. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  15. Chiral Rotational Spectroscopy

    CERN Document Server

    Cameron, Robert P; Barnett, Stephen M

    2015-01-01

    We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.

  16. Decomposition of Unitary Matrices for Finding Quantum Circuits

    CERN Document Server

    Daskin, Anmer

    2010-01-01

    Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Here, we use the group leaders optimization algorithm, which is an effective and simple global optimization algorithm, to decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. Using this procedure, we present new circuit designs for the simulation of the Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, the sender part of the quantum teleportation and the Hamiltonian for the Hydrogen molecule. In addition, we give two algorithmic methods for the construction of unitary matrices with respect to the different types of the quantum control gates. Our results indicate that the procedure is effective, general, and easy to implement.

  17. Transitioning to Low-GWP Alternatives in Unitary Air Conditioning

    Science.gov (United States)

    This fact sheet provides current information on low-Global Warming Potential (GWP) refrigerant alternatives used in unitary air-conditioning equipment, relevant to the Montreal Protocol on Substances that Deplete the Ozone Layer.

  18. Modeling Sampling in Tensor Products of Unitary Invariant Subspaces

    Directory of Open Access Journals (Sweden)

    Antonio G. García

    2016-01-01

    Full Text Available The use of unitary invariant subspaces of a Hilbert space H is nowadays a recognized fact in the treatment of sampling problems. Indeed, shift-invariant subspaces of L2(R and also periodic extensions of finite signals are remarkable examples where this occurs. As a consequence, the availability of an abstract unitary sampling theory becomes a useful tool to handle these problems. In this paper we derive a sampling theory for tensor products of unitary invariant subspaces. This allows merging the cases of finitely/infinitely generated unitary invariant subspaces formerly studied in the mathematical literature; it also allows introducing the several variables case. As the involved samples are identified as frame coefficients in suitable tensor product spaces, the relevant mathematical technique is that of frame theory, involving both finite/infinite dimensional cases.

  19. Virial theorem and universality in a unitary fermi gas.

    Science.gov (United States)

    Thomas, J E; Kinast, J; Turlapov, A

    2005-09-16

    Unitary Fermi gases, where the scattering length is large compared to the interparticle spacing, can have universal properties, which are independent of the details of the interparticle interactions when the range of the scattering potential is negligible. We prepare an optically trapped, unitary Fermi gas of 6Li, tuned just above the center of a broad Feshbach resonance. In agreement with the universal hypothesis, we observe that this strongly interacting many-body system obeys the virial theorem for an ideal gas over a wide range of temperatures. Based on this result, we suggest a simple volume thermometry method for unitary gases. We also show that the observed breathing mode frequency, which is close to the unitary hydrodynamic value over a wide range of temperature, is consistent with a universal hydrodynamic gas with nearly isentropic dynamics.

  20. Exact and Approximate Unitary 2-Designs: Constructions and Applications

    CERN Document Server

    Dankert, C; Emerson, J; Livine, E; Dankert, Christoph; Cleve, Richard; Emerson, Joseph; Livine, Etera

    2006-01-01

    We consider an extension of the concept of spherical t-designs to the unitary group in order to develop a unified framework for analyzing the resource requirements of randomized quantum algorithms. We show that certain protocols based on twirling require a unitary 2-design. We describe an efficient construction for an exact unitary 2-design based on the Clifford group, and then develop a method for generating an epsilon-approximate unitary 2-design that requires only O(n log(1/epsilon)) gates, where n is the number of qubits and epsilon is an appropriate measure of precision. These results lead to a protocol with exponential resource savings over existing experimental methods for estimating the characteristic fidelities of physical quantum processes.

  1. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  2. Experimental Results on Chiral Magnetic and Vortical Effects

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2017-01-01

    Full Text Available Various novel transport phenomena in chiral systems result from the interplay of quantum anomalies with magnetic field and vorticity in high-energy heavy-ion collisions and could survive the expansion of the fireball and be detected in experiments. Among them are the chiral magnetic effect, the chiral vortical effect, and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. The goal of this review is to describe the current status of experimental studies at Relativistic Heavy-Ion Collider at BNL and the Large Hadron Collider at CERN and to outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.

  3. Gluonic Lorentz violation and chiral perturbation theory

    Science.gov (United States)

    Noordmans, J. P.

    2017-04-01

    By applying chiral-perturbation-theory methods to the QCD sector of the Lorentz-violating Standard-Model Extension, we investigate Lorentz violation in the strong interactions. In particular, we consider the C P T -even pure-gluon operator of the minimal Standard-Model Extension. We construct the lowest-order chiral effective Lagrangian for three as well as two light quark flavors. We develop the power-counting rules and construct the heavy-baryon chiral-perturbation-theory Lagrangian, which we use to calculate Lorentz-violating contributions to the nucleon self-energy. Using the constructed effective operators, we derive the first stringent limits on many of the components of the relevant Lorentz-violating parameter. We also obtain the Lorentz-violating nucleon-nucleon potential. We suggest that this potential may be used to obtain new limits from atomic-clock or deuteron storage-ring experiments.

  4. The B*Bpi coupling using relativistic heavy quarks

    CERN Document Server

    Flynn, J M; Kawanai, T; Lehner, C; Samways, B; Sachrajda, C T; Van de Water, R S; Witzel, O

    2015-01-01

    We report on a calculation of the B*Bpi coupling in lattice QCD. The strong matrix element for a B* to Bpi transition is directly related to the leading order low-energy constant in heavy meson chiral perturbation theory (HMChPT) for B mesons. We carry out our calculation directly at the b-quark mass using a non-perturbatively tuned clover action that controls discretization effects of order pa and (ma)^n for all n. Our analysis is performed on RBC/UKQCD gauge configurations using domain-wall fermions and the Iwasaki gauge action at two lattice spacings of ainverse = 1.729(25) GeV, ainverse = 2.281(28) GeV, and unitary pion masses down to 290 MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final result for the HMChPT coupling g_b = 0.56(3)stat(7)sys in the continuum and at the physical light-quark masses. This is the first calculation performed directly at the physical b-quark mass and lies in the region one would expect from carrying out an interpolation between ...

  5. The Theory of Unitary Development of Chengdu and Chongqing

    Institute of Scientific and Technical Information of China (English)

    HuangQing

    2005-01-01

    Chengdu and Chongqing are two megalopolises with the synthesized economic strength and the strongest urban competitiveness in the entire western region, which have very important positions in the development of western China. Through horizontal contrast of social economic developing level of the two cities, the two cities' economic foundation of unitary development is analyzed from complementary and integrative relationship. Then the policies and measures of economic unitary development of two cities is put forward.

  6. Free Energies and Fluctuations for the Unitary Brownian Motion

    Science.gov (United States)

    Dahlqvist, Antoine

    2016-12-01

    We show that the Laplace transforms of traces of words in independent unitary Brownian motions converge towards an analytic function on a non trivial disc. These results allow one to study the asymptotic behavior of Wilson loops under the unitary Yang-Mills measure on the plane with a potential. The limiting objects obtained are shown to be characterized by equations analogue to Schwinger-Dyson's ones, named here after Makeenko and Migdal.

  7. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  8. Implementation of bipartite or remote unitary gates with repeater nodes

    Science.gov (United States)

    Yu, Li; Nemoto, Kae

    2016-08-01

    We propose some protocols to implement various classes of bipartite unitary operations on two remote parties with the help of repeater nodes in-between. We also present a protocol to implement a single-qubit unitary with parameters determined by a remote party with the help of up to three repeater nodes. It is assumed that the neighboring nodes are connected by noisy photonic channels, and the local gates can be performed quite accurately, while the decoherence of memories is significant. A unitary is often a part of a larger computation or communication task in a quantum network, and to reduce the amount of decoherence in other systems of the network, we focus on the goal of saving the total time for implementing a unitary including the time for entanglement preparation. We review some previously studied protocols that implement bipartite unitaries using local operations and classical communication and prior shared entanglement, and apply them to the situation with repeater nodes without prior entanglement. We find that the protocols using piecewise entanglement between neighboring nodes often require less total time compared to preparing entanglement between the two end nodes first and then performing the previously known protocols. For a generic bipartite unitary, as the number of repeater nodes increases, the total time could approach the time cost for direct signal transfer from one end node to the other. We also prove some lower bounds of the total time when there are a small number of repeater nodes. The application to position-based cryptography is discussed.

  9. Extrinsic electromagnetic chirality in metamaterials

    OpenAIRE

    Plum, E.; Fedotov, V. A.; Zheludev, N. I.

    2009-01-01

    Three- and two-dimensional chirality arising from the mutual orientation of non-chiral planar metamaterial structures and the incident electromagnetic wave (extrinsic chirality) lead to pronounced optical activity, circular dichroism and asymmetric transmission indistinguishable from those seen in media consisting of three- and two-dimensionally chiral molecules (intrinsic chirality).

  10. Radiative neutron-proton capture in effective chiral lagrangians

    CERN Document Server

    Park, T S; Rho, M; Park, Tae Sun; Min, Dong Pil; Rho, Mannque

    1994-01-01

    We calculate the cross-section for the thermal n+p\\rightarrow d+\\gamma process in chiral perturbation theory to next-to-next-to-leading order using heavy-fermion formalism. The exchange current correction is found to be (4.5\\pm 0.3)~\\% in amplitude and the chiral perturbation at one-loop order gives the cross section \\sigma_{th}^{np}=(334\\pm 2)\\ {\\mbox mb} which is in agreement with the experimental value (334.2\\pm 0.5)\\ {\\mbox mb}. Together with the axial charge transitions, this provides a strong support for the power of chiral Lagrangians for nuclear physics.

  11. Chiral dynamics in the gamma p --> p pi0 reaction

    CERN Document Server

    Blin, A N Hiller; Vacas, M J Vicente

    2014-01-01

    We investigate the neutral pion photoproduction on the proton near threshold in covariant chiral perturbation theory with the explicit inclusion of Delta degrees of freedom. This channel is specially sensitive to chiral dynamics and the advent of very precise data from the Mainz microtron has shown the limits of the convergence of the chiral series for both the heavy baryon and the covariant approaches. We show that the inclusion of the Delta resonance substantially improves the convergence leading to a good agreement with data for a wider range of energies.

  12. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  13. Orientifold ABJM Matrix Model: Chiral Projections and Worldsheet Instantons

    CERN Document Server

    Moriyama, Sanefumi

    2016-01-01

    We study the partition function of the orientifold ABJM theory, which is a superconformal Chern-Simons theory associated with the orthosymplectic supergroup. We find that the partition function associated with any orthosymplectic supergroup can be realized as that of a Fermi gas system whose density matrix is identical to that associated with the corresponding unitary supergroup with a projection to the even or odd chirality. Furthermore we propose an identity and use it to identify all of the Gopakumar-Vafa invariants for the worldsheet instanton effects systematically.

  14. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  15. On the Elastic Scattering of Heavy Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, J. S.; Park, S. C.; Turner, J. E.

    1960-01-01

    A program is presented for determining the differential cross-section for the elastic scattering of heavy nuclei. It utilizes the unitary property of the S-matrix and a less drastic L-dependence of the absorption than the sharp cut-off model of Blair. it is shown that experimental data can be fitted quite well. (auth)

  16. Unified description of hadrons and heavy hadron decays

    CERN Document Server

    Kitazawa, N

    1993-01-01

    We construct an effective Lagrangian which describes interactions of heavy and light hadrons utilizing the chiral flavor symmetry for light quarks and heavy quark symmetry. For both light and heavy sector we include pseudo scalars, vectors and baryons in the Lagrangian. Heavy hadron decays are discussed as application of our formalism. The $D_s$ decay constant and the coupling constant among heavy meson, heavy vector meson and light meson are fitted from the experimental data of $D^0 \\rightarrow K^- e^+\

  17. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  18. On the chiral imbalance and Weibel instabilities

    Science.gov (United States)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Kaw, P. K.

    2016-06-01

    We study the chiral-imbalance and the Weibel instabilities in presence of the quantum anomaly using the Berry-curvature modified kinetic equation. We argue that in many realistic situations, e.g. relativistic heavy-ion collisions, both the instabilities can occur simultaneously. The Weibel instability depends on the momentum anisotropy parameter ξ and the angle (θn) between the propagation vector and the anisotropy direction. It has maximum growth rate at θn = 0 while θn = π / 2 corresponds to a damping. On the other hand the pure chiral-imbalance instability occurs in an isotropic plasma and depends on difference between the chiral chemical potentials of right and left-handed particles. It is shown that when θn = 0, only for a very small values of the anisotropic parameter ξ ∼ξc, growth rates of the both instabilities are comparable. For the cases ξc Weibel modes dominate over the chiral-imbalance instability if μ5 / T ≤ 1. However, when μ5 / T ≥ 1, it is possible to have dominance of the chiral-imbalance modes at certain values of θn for an arbitrary ξ.

  19. Molecular partners of the X(3872) from heavy-quark spin symmetry: a fresh look

    Science.gov (United States)

    Baru, V.; Epelbaum, E.; Filin, A. A.; Hanhart, C.; Nefediev, A. V.

    2017-03-01

    The heavy-quark spin symmetry (HQSS) partners of the X(3872) molecule are investigated in a chiral effective field theory (EFT) approach which incorporates contact and one-pion exchange interactions. The integral equations of the Lippmann-Schwinger type are formulated and solved for the coupled-channel problem for the DD¯, DD¯*, and D*D¯* systems with the quantum numbers JPC = 1++, 1+-, 0++, and 2++. We confirm that, if the X(3872) is a 1++DD¯* molecular state then, in the strict heavy-quark limit, there exist three partner states, with the quantum numbers 1+-, 0++, and 2++, which are degenerate in mass. At first glance, this result looks natural only for the purely contact pionless theory since pions contribute differently to different transition potentials and, therefore, may lift the above degeneracy. Nevertheless, it is shown that, by an appropriate unitary transformation, the Lippmann-Schwinger equation in each channel still can be brought to a block-diagonal form, with the same blocks for all quantum numbers, so that the degeneracy of the bound states in different channels is preserved. We stress that neglecting some of the coupled-channel transitions in an inconsistent manner leads to a severe violation of HQSS and yields regulator-dependent results for the partner states. The effect of HQSS violation in combination with nonperturbative pion dynamics on the pole positions of the partner states is discussed.

  20. Molecular partners of the X(3872 from heavy-quark spin symmetry: a fresh look

    Directory of Open Access Journals (Sweden)

    Baru V.

    2017-01-01

    Full Text Available The heavy-quark spin symmetry (HQSS partners of the X(3872 molecule are investigated in a chiral effective field theory (EFT approach which incorporates contact and one-pion exchange interactions. The integral equations of the Lippmann-Schwinger type are formulated and solved for the coupled-channel problem for the DD̄, DD̄*, and D*D̄* systems with the quantum numbers JPC = 1++, 1+−, 0++, and 2++. We confirm that, if the X(3872 is a 1++DD̄* molecular state then, in the strict heavy-quark limit, there exist three partner states, with the quantum numbers 1+−, 0++, and 2++, which are degenerate in mass. At first glance, this result looks natural only for the purely contact pionless theory since pions contribute differently to different transition potentials and, therefore, may lift the above degeneracy. Nevertheless, it is shown that, by an appropriate unitary transformation, the Lippmann-Schwinger equation in each channel still can be brought to a block-diagonal form, with the same blocks for all quantum numbers, so that the degeneracy of the bound states in different channels is preserved. We stress that neglecting some of the coupled-channel transitions in an inconsistent manner leads to a severe violation of HQSS and yields regulator-dependent results for the partner states. The effect of HQSS violation in combination with nonperturbative pion dynamics on the pole positions of the partner states is discussed.

  1. Chiral rotational spectroscopy

    Science.gov (United States)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.

    2016-09-01

    We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.

  2. Chiral Superfluidity for QCD

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  3. Emerging chirality in nanoscience.

    Science.gov (United States)

    Wang, Yong; Xu, Jun; Wang, Yawen; Chen, Hongyu

    2013-04-07

    Chirality in nanoscience may offer new opportunities for applications beyond the traditional fields of chirality, such as the asymmetric catalysts in the molecular world and the chiral propellers in the macroscopic world. In the last two decades, there has been an amazing array of chiral nanostructures reported in the literature. This review aims to explore and categorize the common mechanisms underlying these systems. We start by analyzing the origin of chirality in simple systems such as the helical spring and hair vortex. Then, the chiral nanostructures in the literature were categorized according to their material composition and underlying mechanism. Special attention is paid to highlight systems with original discoveries, exceptional structural characteristics, or unique mechanisms.

  4. Mechanical separation of chiral dipoles by chiral light

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.

  5. Polarized pK{sup -} scattering in Unitary Baryon Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Bouzas, Antonio O. [CINVESTAV-IPN, Departamento de Fisica Aplicada, Carretera Antigua a Progreso Km. 6, Apdo. Postal 73 ' ' Cordemex' ' , Merida, Yucatan (Mexico)

    2010-03-15

    We study pK{sup -} scattering in the energy range from threshold through the {lambda} (1520) peak in UBChPT, taking into account O(q) vertices from meson-baryon contact interactions and s- and u-channel ground-state baryon exchange, s- and u-channel decuplet- and nonet-baryon exchange and t -channel vector-meson exchange, as well as O(q {sup 2}) flavor-breaking vertices. Detailed fits to data are presented, including a substantial body of differential cross-section data with meson momentum q{sub lab} >300 MeV not considered in previous treatments. (orig.)

  6. Chiral Unitary Dynamics of Hadrons and Hadrons in a Nuclear Medium

    CERN Document Server

    Oset, E; Gamermann, D; Vacas, M J Vicente; Strottman, D; Khemchandani, K P; Torres, A Martinez; Oller, J A; Roca, L; Napsuciale, Mauro

    2008-01-01

    In this talk I summarize recent findings around the description of axial vector mesons as dynamically generated states from the interaction of pseudoscalar mesons and vector mesons, dedicating some attention to the two $K_1(1270)$ states. Then I review the generation of open and hidden charm scalar and axial states, and how some recent experiment supports the existence of the new hidden charm scalar state predicted. I present recent results showing that the low lying $1/2^+$ baryon resonances for S=-1 can be obtained as bound states or resonances of two mesons and one baryon in coupled channels. Then show the differences with the S=0 case, where the $N^*(1710)$ appears also dynamically generated from the two pion one nucleon system, but the $N^*(1440)$ does not appear, indicating a more complex structure of the Roper resonance. Finally I shall show how the state X(2175), recently discovered at BABAR and BES, appears naturally as a resonance of the $\\phi K \\bar{K}$ system.

  7. What flows in the chirally anomalous transport?

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kenji

    2016-12-15

    A combination of the magnetic field and the quantum anomaly leads to transport phenomena of chiral fermions. On the microscopic level, however, what really flows is a non-trivial question. I propose an answer to this question; the particle production affected by the magnetic field and the quantum anomaly has an anisotropic distribution in momentum space, which should be realized in the heavy-ion collision by a fast process occurring on top of color flux tubes in the glasma.

  8. Reducible chiral four-body interactions in nuclear matter

    CERN Document Server

    Kaiser, N

    2015-01-01

    The method of unitary transformations generates five classes of leading-order reducible chiral four-nucleon interactions which involve pion-exchanges and a spin-spin contact-term. Their first-order contributions to the energy per particle of isospin-symmetric nuclear matter and pure neutron matter are evaluated in detail. For most of the closed four-loop diagrams the occurring integrals over four Fermi-spheres can be reduced to easily manageable one- or two-parameter integrals. One observes substantial cancelations among the different contributions arising from 2-ring and 1-ring diagrams. Altogether, the net attraction generated by the chiral four-nucleon interaction does not exceed values of $-1.3$\\,MeV for densities $\\rho<2\\rho_0$.

  9. Reducible chiral four-body interactions in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, N.; Milkus, R. [Technische Universitaet Muenchen, Physik-Department T39, Garching (Germany)

    2016-01-15

    The method of unitary transformations generates five classes of leading-order reducible chiral four-nucleon interactions which involve pion exchanges and a spin-spin contact term. Their first-order contributions to the energy per particle of isospin-symmetric nuclear matter and pure neutron matter are evaluated in detail. For most of the closed four-loop diagrams the occurring integrals over four Fermi spheres can be reduced to easily manageable one- or two-parameter integrals. One finds substantial compensations among the different contributions arising from 2-ring and 1-ring diagrams. Altogether, the net attraction generated by the chiral four-nucleon interaction does not exceed values of -1.3 MeV for densities ρ < 2ρ{sub 0}. (orig.)

  10. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  11. Chiral Shock Waves

    CERN Document Server

    Sen, Srimoyee

    2016-01-01

    We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.

  12. Anomalous chiral superfluidity

    Energy Technology Data Exchange (ETDEWEB)

    Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2010-02-08

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.

  13. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  14. Efficient unitary designs with nearly time-independent Hamiltonian dynamics

    CERN Document Server

    Nakata, Yoshifumi; Koashi, Masato; Winter, Andreas

    2016-01-01

    We provide new constructions of unitary $t$-designs for general $t$ on one qudit and $N$ qubits, and propose a design Hamiltonian, a random Hamiltonian of which dynamics always forms a unitary design after a threshold time, as a basic framework to investigate randomising time evolution in quantum many-body systems. The new constructions are based on recently proposed schemes of repeating random unitaires diagonal in mutually unbiased bases. We first show that, if a pair of the bases satisfies a certain condition, the process on one qudit approximately forms a unitary $t$-design after $O(t)$ repetitions. We then construct quantum circuits on $N$ qubits that achieve unitary $t$-designs for $t = o(N^{1/2})$ using $O(t N^2)$ gates, improving the previous result using $O(t^{10}N^2)$ gates in terms of $t$. Based on these results, we present a design Hamiltonian with periodically changing two-local spin-glass-type interactions, leading to fast and relatively natural realisations of unitary designs in complex many-bo...

  15. Distinguishing Standard Model Extensions using Monotop Chirality at the LHC

    CERN Document Server

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Gao, Yu; Kamon, Teruki

    2015-01-01

    We present two minimal extensions of the standard model that gives rise to baryogensis and include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM.

  16. Heavy Exotic Molecules

    CERN Document Server

    Liu, Yizhuang

    2016-01-01

    We briefly review the formation of pion-mediated heavy-light exotic molecules with both charm and bottom, under the general strictures of chiral and heavy quark symmetries. The charm isosinglet exotic molecules with $J^{PC}=1^{++}$ binds, which we identify as the reported neutral $X(3872)$. The bottom isotriplet exotic with $J^{PC}=1^{+-}$ binds, and is identified as a mixed state of the reported charged exotics $Z^+_b(10610)$ and $Z^+_b(10650)$. The bound bottom isosinglet molecule with $J^{PC}=1^{++}$ is a possible neutral $X_b(10532)$ to be observed.

  17. Heavy exotic molecules

    Science.gov (United States)

    Liu, Yizhuang; Zahed, Ismail

    We briefly review the formation of pion-mediated heavy-light exotic molecules with both charm and bottom, under the general structures of chiral and heavy quark symmetries. The charm isosinglet exotic molecules with JPC = 1++ binds, which we identify as the reported neutral X(3872). The bottom isotriplet exotic with JPC = 1+1 binds, and is identified as a mixed state of the reported charged exotics Zb+(10610) and Zb-(10650). The bound bottom isosinglet molecule with JPC = 1++ is a possible neutral Xb(10532) to be observed.

  18. Bloch-Messiah reduction of Gaussian unitaries by Takagi factorization

    Science.gov (United States)

    Cariolaro, Gianfranco; Pierobon, Gianfranco

    2016-12-01

    The Bloch-Messiah (BM) reduction allows the decomposition of an arbitrarily complicated Gaussian unitary into a very simple scheme in which linear optical components are separated from nonlinear ones. The nonlinear part is due to the squeezing possibly present in the Gaussian unitary. The reduction is usually obtained by exploiting the singular value decomposition (SVD) of the matrices appearing in the Bogoliubov transformation of the given Gaussian unitary. This paper discusses a different approach, where the BM reduction is obtained in a straightforward way. It is based on the Takagi factorization of the (complex and symmetric) squeeze matrix and has the advantage of avoiding several matrix operations of the previous approach (polar decomposition, eigendecomposition, SVD, and Takagi factorization). The theory is illustrated with an application example in which the previous and present approaches are compared.

  19. Defect of a Kronecker product of unitary matrices

    CERN Document Server

    Tadej, Wojciech

    2010-01-01

    The defect d(U) of an NxN unitary matrix U with no zero entries is the dimension (called the generalized defect D(U)) of the real space of directions, moving into which from U we do not disturb the moduli |U_ij| as well as the Gram matrix U'*U in the first order, diminished by 2N-1. Calculation of d(U) involves calculating the dimension of the space in R^(N^2) spanned by a certain set of vectors associated with U. We split this space into a direct sum, assuming that U is a Kronecker product of unitary matrices, thus making it easier to perform calculations numerically. Basing on this, we give a lower bound on D(U) (equivalently d(U)), supposing it is achieved for most unitaries with a fixed Kronecker product structure. Also supermultiplicativity of D(U) with respect to Kronecker subproducts of U is shown.

  20. Compressor-fan unitary structure for air conditioning system

    Science.gov (United States)

    Dreiman, N.

    2015-08-01

    An extremely compact, therefore space saving unitary structure of short axial length is produced by radial integration of a revolving piston rotary compressor and an impeller of a centrifugal fan. The unitary structure employs single motor to run as the compressor so the airflow fan and eliminates duality of motors, related power supply and control elements. Novel revolving piston rotary compressor which provides possibility for such integration comprises the following: a suction gas delivery system which provides cooling of the motor and supplies refrigerant into the suction chamber under higher pressure (supercharged); a modified discharge system and lubricating oil supply system. Axial passages formed in the stationary crankshaft are used to supply discharge gas to a condenser, to return vaporized cooling agent from the evaporator to the suction cavity of the compressor, to pass a lubricant and to accommodate wiring supplying power to the unitary structure driver -external rotor electric motor.

  1. Amending entanglement-breaking channels via intermediate unitary operations

    Science.gov (United States)

    Cuevas, Á.; De Pasquale, A.; Mari, A.; Orieux, A.; Duranti, S.; Massaro, M.; Di Carli, A.; Roccia, E.; Ferraz, J.; Sciarrino, F.; Mataloni, P.; Giovannetti, V.

    2017-08-01

    We report a bulk optics experiment demonstrating the possibility of restoring the entanglement distribution through noisy quantum channels by inserting a suitable unitary operation (filter) in the middle of the transmission process. We focus on two relevant classes of single-qubit channels consisting in repeated applications of rotated phase-damping or rotated amplitude-damping maps, both modeling the combined Hamiltonian and dissipative dynamics of the polarization state of single photons. Our results show that interposing a unitary filter between two noisy channels can significantly improve entanglement transmission. This proof-of-principle demonstration could be generalized to many other physical scenarios where entanglement-breaking communication lines may be amended by unitary filters.

  2. Non-unitary fusion categories and their doubles via endomorphisms

    CERN Document Server

    Evans, David E

    2015-01-01

    We realise non-unitary fusion categories using subfactor-like methods, and compute their quantum doubles and modular data. For concreteness we focus on generalising the Haagerup-Izumi family of Q-systems. For example, we construct endomorphism realisations of the (non-unitary) Yang-Lee model, and non-unitary analogues of one of the even subsystems of the Haagerup subfactor and of the Grossman-Snyder system. We supplement Izumi's equations for identifying the half-braidings, which were incomplete even in his Q-system setting. We conjecture a remarkably simple form for the modular S and T matrices of the doubles of these fusion categories. We would expect all of these doubles to be realised as the category of modules of a rational VOA and conformal net of factors. We expect our approach will also suffice to realise the non-semisimple tensor categories arising in logarithmic conformal field theories.

  3. Time reversal and exchange symmetries of unitary gate capacities

    CERN Document Server

    Harrow, A W; Harrow, Aram W.; Shor, Peter W.

    2005-01-01

    Unitary gates are an interesting resource for quantum communication in part because they are always invertible and are intrinsically bidirectional. This paper explores these two symmetries: time-reversal and exchange of Alice and Bob. We will present examples of unitary gates that exhibit dramatic separations between forward and backward capacities (even when the back communication is assisted by free entanglement) and between entanglement-assisted and unassisted capacities, among many others. Along the way, we will give a general time-reversal rule for relating the capacities of a unitary gate and its inverse that will explain why previous attempts at finding asymmetric capacities failed. Finally, we will see how the ability to erase quantum information and destroy entanglement can be a valuable resource for quantum communication.

  4. Topics in three flavor chiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nissler, Robin

    2007-07-01

    In this work, we investigate several processes in low-energy hadron physics by combining chiral perturbation theory (ChPT), the effective field theory of quantum chromodynamics (QCD) at low energies, with a unitarization method based on the Bethe-Salpeter equation. Such so-called chiral unitary approaches are capable of describing processes in the three flavor sector of the strong interaction which involve substantial effects from final-state interactions and the excitation of (subthreshold) resonances, a domain where the perturbative framework of ChPT is not applicable. In part I of this work we study {eta} and {eta}' decays which constitute a perfect tool to examine symmetries and symmetry breaking patterns of QCD being incorporated in a model-independent fashion in ChPT. In particular, these decays allow to investigate the breaking of isospin symmetry due to the light quark mass difference m{sub d}-m{sub u} as well as effects of anomalies stemming from the quantum nature of QCD. For these reasons the decays of {eta} and {eta}' have also attracted considerable experimental interest. They are currently under investigation at several facilities including KLOE rate at DA{phi}NE, Crystal Ball at MAMI, WASA-at-COSY, VES at IHEP, and CLEO at CESR. In part II we investigate low-energy meson-baryon scattering in the strangeness S=-1 sector which is dominated by the {lambda}(1405) resonance immediately below the anti KN threshold. The anti KN interaction below threshold is of relevance for the quest of possible deeply bound anti K-nuclear clusters and has recently received an additional tight constraint: the K{sup -}p scattering length as determined from kaonic hydrogen by the KEK and the DEAR collaborations. Apart from successfully describing a large amount of experimental data and furnishing predictions for yet unmeasured quantities, our calculations allow to interrelate different experimental observables providing important consistency tests of experiments. E

  5. Applications of chiral symmetry

    CERN Document Server

    Pisarski, R D

    1995-01-01

    I discuss several topics in the applications of chiral symmetry at nonzero temperature, including: where the rho goes, disoriented chiral condensates, and the phase diagram for QCD with 2+1 flavors. (Based upon talks presented at the "Workshop on Finite Temperature QCD", Wuhan, P.R.C., April, 1994.)

  6. Classification of delocalization power of global unitary operations in terms of LOCC one-piece relocalization

    Directory of Open Access Journals (Sweden)

    Akihito Soeda

    2010-06-01

    Full Text Available We study how two pieces of localized quantum information can be delocalized across a composite Hilbert space when a global unitary operation is applied. We classify the delocalization power of global unitary operations on quantum information by investigating the possibility of relocalizing one piece of the quantum information without using any global quantum resource. We show that one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent of a controlled-unitary operation. The delocalization power turns out to reveal different aspect of the non-local properties of global unitary operations characterized by their entangling power.

  7. Potential Energy Surfaces Using Algebraic Methods Based on Unitary Groups

    Directory of Open Access Journals (Sweden)

    Renato Lemus

    2011-01-01

    Full Text Available This contribution reviews the recent advances to estimate the potential energy surfaces through algebraic methods based on the unitary groups used to describe the molecular vibrational degrees of freedom. The basic idea is to introduce the unitary group approach in the context of the traditional approach, where the Hamiltonian is expanded in terms of coordinates and momenta. In the presentation of this paper, several representative molecular systems that permit to illustrate both the different algebraic approaches as well as the usual problems encountered in the vibrational description in terms of internal coordinates are presented. Methods based on coherent states are also discussed.

  8. A construction of fully diverse unitary space-time codes

    Institute of Scientific and Technical Information of China (English)

    YU Fei; TONG HongXi

    2009-01-01

    Fully diverse unitary space-time codes are useful in multiantenna communications,especially in multiantenna differential modulation.Recently,two constructions of parametric fully diverse unitary space-time codes for three antennas system have been introduced.We propose a new construction method based on the constructions.In the present paper,fully diverse codes for systems of odd prime number antennas are obtained from this construction.Space-time codes from present construction are found to have better error performance than many best known ones.

  9. Non-unitary probabilistic quantum computing circuit and method

    Science.gov (United States)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  10. A construction of fully diverse unitary space-time codes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Fully diverse unitary space-time codes are useful in multiantenna communications, especially in multiantenna differential modulation. Recently, two constructions of parametric fully diverse unitary space-time codes for three antennas system have been introduced. We propose a new construction method based on the constructions. In the present paper, fully diverse codes for systems of odd prime number antennas are obtained from this construction. Space-time codes from present construction are found to have better error performance than many best known ones.

  11. Pattern, participation, praxis, and power in unitary appreciative inquiry.

    Science.gov (United States)

    Cowling, W Richard

    2004-01-01

    This article is an explication and clarification of unitary appreciative inquiry based on several recent projects. Four central dimensions of the inquiry process are presented: pattern, participation, praxis, and power. Examples of inquiry projects demonstrate and illuminate the possibilities of unitary appreciative inquiry. The relationship of these central dimensions to experiential, presentational, propositional, and practical knowledge outcomes is articulated. A matrix framework integrating pattern, participation, praxis, and power demonstrates the potential for generating knowledge relevant to the lives of participants and creating an inquiry process worthy of human aspiration.

  12. Tables of the principal unitary representations of Fedorov groups

    CERN Document Server

    Faddeyev, D K

    1961-01-01

    Tables of the Principal Unitary Representations of Fedorov Groups contains tables of all the principal representations of Fedorov groups from which all irreducible unitary representations can be obtained with the help of some standard operations. The work originated at a seminar on mathematical crystallography held in 1952-1953 at the Faculty of Mathematics and Mechanics of the Leningrad State University. The book is divided into two parts. The first part discusses the relation between the theory of representations and the generalized Fedorov groups in Shubnikov's sense. It shows that all un

  13. Nuclear chiral dynamics and thermodynamics

    CERN Document Server

    Holt, J W; Weise, W

    2013-01-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic des...

  14. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  15. Molecular model for chirality phenomena.

    Science.gov (United States)

    Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G

    2016-10-21

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  16. Chiral Dynamics of Baryons in a Lorentz Covariant Quark Model

    CERN Document Server

    Faessler, A; Lyubovitskij, V E; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.

    2006-01-01

    We develop a manifestly Lorentz covariant chiral quark model for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons. The approach is based on a non-linear chirally symmetric Lagrangian, which involves effective degrees of freedom - constituent quarks and the chiral (pseudoscalar meson) fields. In a first step, this Lagrangian can be used to perform a dressing of the constituent quarks by a cloud of light pseudoscalar mesons and other heavy states using the calculational technique of infrared dimensional regularization of loop diagrams. We calculate the dressed transition operators with a proper chiral expansion which are relevant for the interaction of quarks with external fields in the presence of a virtual meson cloud. In a second step, these dressed operators are used to calculate baryon matrix elements. Applications are worked out for the masses of the baryon octet, the meson-nucleon sigma terms, the magnetic moments of the baryon octet, the nucleon charge...

  17. Chiral symmetry breaking, instantons, and monopoles

    CERN Document Server

    Di Giacomo, Adriano

    2015-01-01

    The purpose of this study is to show that monopoles induce the chiral symmetry breaking. In order to indicate the evidence, we add one pair of monopoles with magnetic charges to the quenched SU(3) configurations by a monopole creation operator, and investigate the propaties of the chiral symmetry breaking using the Overlap fermion. We show that instantons are created by the monopoles. The pseudoscalar meson mass and decay constant are computed from the correlation functions, and the renormalization constant $Z_{S}$ is determined by the non perturbative method. The renormalization group invariant chiral condensate in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV] is evaluated by the Gell-Mann-Oakes-Renner formula, and the random matrix theory. Finally, we estimate the renormalization group invariant quark masses $\\bar{m} = (m_{u} + m_{d})/2$, and $m_{s}$ in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV]. The preliminary results indicate that the chiral condensate decreases and the quark masses become slightly heavy by inc...

  18. On the Chiral imbalance and Weibel Instabilities

    CERN Document Server

    Kumar, Avdhesh; Kaw, Predhiman K

    2016-01-01

    We study the chiral-imbalance and the Weibel instabilities in presence of the quantum anomaly using the Berry-curvature modified kinetic equation. We argue that in many realistic situations, e.g. relativistic heavy-ion collisions, both the instabilities can occur simultaneously. The Weibel instability depends on the momentum anisotropy parameter $\\xi$ and the angle ($\\theta_n$) between the propagation vector and the anisotropy direction. It has maximum growth rate at $\\theta_n=0$ while $\\theta_n=\\pi/2$ corresponds to a damping. On the other hand the pure chiral-imbalance instability occurs in an isotropic plasma and depends on difference between the chiral chemical potentials of right and left-handed particles. It is shown that when $\\theta_n=0$, only for a very small values of the anisotropic parameter $\\xi\\sim \\xi_c$, growth rates of the both instabilities are comparable. For the cases $\\xi_c<\\xi\\ll1$, $\\xi\\approx 1$ or $\\xi \\geq 1$ at $\\theta_n=0$, the Weibel modes dominate over the chiral-imbalance ins...

  19. Two-Element Generation of Unitary Groups Over Finite Fields

    Science.gov (United States)

    2013-01-31

    like to praise my Lord and Savior, Jesus Christ , for allowing me this opportunity to work on a Ph.D in mathematics, and for His sustaining grace...Ishibashi’s original result. The paper’s main theorem will show that all unitary groups over finite fields of odd characteristic are generated by only two

  20. Universal Loss Dynamics in a Unitary Bose Gas

    Science.gov (United States)

    Eismann, Ulrich; Khaykovich, Lev; Laurent, Sébastien; Ferrier-Barbut, Igor; Rem, Benno S.; Grier, Andrew T.; Delehaye, Marion; Chevy, Frédéric; Salomon, Christophe; Ha, Li-Chung; Chin, Cheng

    2016-04-01

    The low-temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here, we present experiments performed with unitary 133Cs and 7Li atoms in two different setups, which enable quantitative comparison of the three-body recombination rate in the low-temperature domain. We develop a theoretical model that describes the dynamic competition between two-body evaporation and three-body recombination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal "magic" trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the two-dimensional evaporation case, and it fully supports our experimental findings. Combined 133Cs and 7Li experimental data allow investigations of loss dynamics over 2 orders of magnitude in temperature and 4 orders of magnitude in three-body loss rate. We confirm the 1 /T2 temperature universality law. In particular, we measure, for the first time, the Efimov inelasticity parameter η*=0.098 (7 ) for the 47.8-G d -wave Feshbach resonance in 133Cs. Our result supports the universal loss dynamics of trapped unitary Bose gases up to a single parameter η*.

  1. Experimental Realization of Perfect Discrimination for Two Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Jun; HONG Zhi

    2008-01-01

    We experimentally demonstrate perfect discrimination between two unitary operations by using the sequential scheme proposed by Duan et al.[Phys. Rev. Lett. 98 (2007) 100503] Also, we show how to understand the scheme and to calculate the parameters for two-dimensional operations in the picture of the Bloch sphere.

  2. Unitary operator bases and q-deformed algebras

    Energy Technology Data Exchange (ETDEWEB)

    Galleti, D.; Lunardi, J.T.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1995-11-01

    Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed communication relation is shown to emergence in a natural way, when the deformation parameter is a root of unity. (author). 14 refs.

  3. Unitary operator bases and Q-deformed algebras

    Energy Technology Data Exchange (ETDEWEB)

    Galetti, D.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica. Grupo de Fisica Nuclear e Teorica e Fenomenologia de Particulas Elementares; Lunardi, J.T. [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Matematica e Estatistica

    1998-03-01

    Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity. (author)

  4. The Wilson loop in the Gaussian Unitary Ensemble

    CERN Document Server

    Gurau, Razvan

    2016-01-01

    Using the supersymmetric formalism we compute exactly at finite $N$ the expectation of the Wilson loop in the Gaussian Unitary Ensemble and derive an exact formula for the spectral density at finite $N$. We obtain the same result by a second method relying on enumerative combinatorics and show that it leads to a novel proof of the Harer-Zagier series formula.

  5. An algebraic study of unitary one dimensional quantum cellular automata

    CERN Document Server

    Arrighi, P

    2005-01-01

    We provide algebraic characterizations of unitary one dimensional quantum cellular automata. We do so both by algebraizing existing decision procedures, and by adding constraints into the model which do not change the quantum cellular automata's computational power. The configurations we consider have finite but unbounded size.

  6. CONSTRUCTION OF AUTHENTICATION CODES WITH ARBITRATION FROM UNITARY GEOMETRY

    Institute of Scientific and Technical Information of China (English)

    LiRuihu; OuoLuobin

    1999-01-01

    A family of authentication codes with arbitration is constructed from unitary geome-try,the parameters and the probabilities of deceptions of the codes are also computed. In a spe-cial case a perfect authentication code with arbitration is ohtalned.

  7. Establishing the Unitary Classroom: Organizational Change and School Culture.

    Science.gov (United States)

    Eddy, Elizabeth M.; True, Joan H.

    1980-01-01

    This paper examines the organizational changes introduced in two elementary schools to create unitary (desegregated) classrooms. The different models adopted by the two schools--departmentalization and team teaching--are considered as expressions of their patterns of interaction, behavior, and values. (Part of a theme issue on educational…

  8. Linear programming bounds for unitary space time codes

    CERN Document Server

    Creignou, Jean

    2008-01-01

    The linear programming method is applied to the space $\\U_n(\\C)$ of unitary matrices in order to obtain bounds for codes relative to the diversity sum and the diversity product. Theoretical and numerical results improving previously known bounds are derived.

  9. Chiral supergravity and anomalies

    CERN Document Server

    Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.

    1999-01-01

    Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.

  10. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  11. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  12. Color chiral solitons

    CERN Document Server

    Novozhilov, V Yu; Novozhilov, Victor; Novozhilov, Yuri

    2002-01-01

    We discuss specific features of color chiral solitons (asymptotics, possibility of confainment, quantization) at example of isolated SU(2) color skyrmions, i.e. skyrmions in a background field which is the vacuum field forming the gluon condensate.

  13. Chiral brownian heat pump.

    Science.gov (United States)

    van den Broek, M; Van den Broeck, C

    2008-04-04

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  14. Chiral Brownian heat pump

    OpenAIRE

    Van Den Broek, Martijn; Van Den Broeck, Christian

    2007-01-01

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  15. Chiral extrapolation of nucleon magnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    P. Wang; D. Leinweber; A. W. Thomas; R.Young

    2007-04-01

    The extrapolation of nucleon magnetic form factors calculated within lattice QCD is investigated within a framework based upon heavy baryon chiral effective-field theory. All one-loop graphs are considered at arbitrary momentum transfer and all octet and decuplet baryons are included in the intermediate states. Finite range regularization is applied to improve the convergence in the quark-mass expansion. At each value of the momentum transfer (Q{sup 2}), a separate extrapolation to the physical pion mass is carried out as a function of m{sub {pi}} alone. Because of the large values of Q{sup 2} involved, the role of the pion form factor in the standard pion-loop integrals is also investigated. The resulting values of the form factors at the physical pion mass are compared with experimental data as a function of Q{sup 2} and demonstrate the utility and accuracy of the chiral extrapolation methods presented herein.

  16. Electrodynamics of chiral matter

    Science.gov (United States)

    Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang

    2017-02-01

    Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.

  17. Chiral Odd GPDs

    Directory of Open Access Journals (Sweden)

    Goldstein Gary R.

    2015-01-01

    Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.

  18. Chiral Sensitivity in Electron-Molecule Interactions

    Science.gov (United States)

    Dreiling, Joan

    2015-09-01

    All molecular forms of life possess a chiral asymmetry, with amino acids and sugars found respectively in L- and D-enantiomers only. The primordial origin of this enantiomeric excess is unknown. One possible explanation is given by the Vester- Ulbricht hypothesis, which suggests that left-handed electrons present in beta-radiation, produced by parity-violating weak decays, interacted with biological precursors and preferentially destroyed one of the two enantiomers. Experimental tests of this idea have thus far yielded inconclusive results. We show direct evidence for chirally-dependent bond breaking through a dissociative electron attachment (DEA) reaction when spin-polarized electrons are incident on gas-phase chiral molecules. This provides unambiguous evidence for a well-defined, chirally-sensitive destructive molecular process and, as such, circumstantial evidence for the Vester-Ulbricht hypothesis. I will also present the results of our systematic study of the DEA asymmetry for different chiral halocamphor molecules. Three halocamphor molecules were investigated: 3-bromocamphor (C10H15BrO), 3-iodocamphor(C10H15IO), and 10-iodocamphor. The DEA asymmetries collected for bromocamphor and iodocamphor are qualitatively different, suggesting that the atomic number of the heaviest atom in the molecule plays a crucial role in the asymmetric interactions. The DEA asymmetry data for 3- and 10-iodocamphor have the same qualitative behavior, but the 10-iodocamphor asymmetry is about twice as large at the lowest energies investigated, so the location of the heavy atom in the camphor molecule also affects the asymmetries. This work was performed at the University of Nebraska-Lincoln. This project is funded by NSF Grant PHY-1206067.

  19. Large Representation Recurrences in Large N Random Unitary Matrix Models

    CERN Document Server

    Karczmarek, Joanna L

    2011-01-01

    In a random unitary matrix model at large N, we study the properties of the expectation value of the character of the unitary matrix in the rank k symmetric tensor representation. We address the problem of whether the standard semiclassical technique for solving the model in the large N limit can be applied when the representation is very large, with k of order N. We find that the eigenvalues do indeed localize on an extremum of the effective potential; however, for finite but sufficiently large k/N, it is not possible to replace the discrete eigenvalue density with a continuous one. Nonetheless, the expectation value of the character has a well-defined large N limit, and when the discreteness of the eigenvalues is properly accounted for, it shows an intriguing approximate periodicity as a function of k/N.

  20. Efimov-driven phase transitions of the unitary Bose gas.

    Science.gov (United States)

    Piatecki, Swann; Krauth, Werner

    2014-03-20

    Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.

  1. Universal unitary gate for single-photon spinorbit ququart states

    CERN Document Server

    Slussarenko, Sergei; Piccirillo, Bruno; Marrucci, Lorenzo; Santamato, Enrico

    2009-01-01

    The recently demonstrated possibility of entangling opposite values of the orbital angular momentum (OAM) of a photon with its spin enables the realization of nontrivial one-photon spinorbit ququart states, i.e., four-dimensional photon states for quantum information purposes. Hitherto, however, an optical device able to perform arbitrary unitary transformations on such spinorbit photon states has not been proposed yet. In this work we show how to realize such a ``universal unitary gate'' device, based only on existing optical technology, and describe its operation. Besides the quantum information field, the proposed device may find applications wherever an efficient and convenient manipulation of the combined OAM and spin of light is required.

  2. On an average over the Gaussian Unitary Ensemble

    CERN Document Server

    Mezzadri, F

    2009-01-01

    We study the asymptotic limit for large matrix dimension N of the partition function of the unitary ensemble with weight exp(-z^2/2x^2 + t/x - x^2/2). We compute the leading order term of the partition function and of the coefficients of its Taylor expansion. Our results are valid in the range N^(-1/2) < z < N^(1/4). Such partition function contains all the information on a new statistics of the eigenvalues of matrices in the Gaussian Unitary Ensemble (GUE) that was introduced by Berry and Shukla (J. Phys. A: Math. Theor., Vol. 41 (2008), 385202, arXiv:0807.3474). It can also be interpreted as the moment generating function of a singular linear statistics.

  3. Random unitary evolution model of quantum Darwinism with pure decoherence

    Science.gov (United States)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S- E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  4. All unitary cubic curvature gravities in D dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sisman, Tahsin Cagri; Guellue, Ibrahim; Tekin, Bayram, E-mail: sisman@metu.edu.tr, E-mail: e075555@metu.edu.tr, E-mail: btekin@metu.edu.tr [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)

    2011-10-07

    We construct all the unitary cubic curvature gravity theories built on the contractions of the Riemann tensor in D-dimensional (anti)-de Sitter spacetimes. Our construction is based on finding the equivalent quadratic action for the general cubic curvature theory and imposing ghost and tachyon freedom, which greatly simplifies the highly complicated problem of finding the propagator of cubic curvature theories in constant curvature backgrounds. To carry out the procedure we have also classified all the unitary quadratic models. We use our general results to study the recently found cubic curvature theories using different techniques and the string generated cubic curvature gravity model. We also study the scattering in critical gravity and give its cubic curvature extensions.

  5. Unitary Noise and the Mermin-GHZ Game

    CERN Document Server

    Fialík, Ivan

    2010-01-01

    Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.

  6. Unitary Noise and the Mermin-GHZ Game

    Institute of Scientific and Technical Information of China (English)

    Ivan Fialík

    2011-01-01

    Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.

  7. Unitary Noise and the Mermin-GHZ Game

    Directory of Open Access Journals (Sweden)

    Ivan Fialík

    2010-06-01

    Full Text Available Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.

  8. Derandomizing Quantum Circuits with Measurement-Based Unitary Designs

    Science.gov (United States)

    Turner, Peter S.; Markham, Damian

    2016-05-01

    Entangled multipartite states are resources for universal quantum computation, but they can also give rise to ensembles of unitary transformations, a topic usually studied in the context of random quantum circuits. Using several graph state techniques, we show that these resources can "derandomize" circuit results by sampling the same kinds of ensembles quantum mechanically, analogously to a quantum random number generator. Furthermore, we find simple examples that give rise to new ensembles whose statistical moments exactly match those of the uniformly random distribution over all unitaries up to order t , while foregoing adaptive feedforward entirely. Such ensembles—known as t designs—often cannot be distinguished from the "truly" random ensemble, and so they find use in many applications that require this implied notion of pseudorandomness.

  9. The Shear Viscosity in an Anisotropic Unitary Fermi Gas

    CERN Document Server

    Samanta, Rickmoy; Trivedi, Sandip P

    2016-01-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a gravitational dual. Results using the AdS/CFT correspondence in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the KSS bound. This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential. We give a concrete proposal for an experimental setup w...

  10. Chiral Random Matrix Theory and Chiral Perturbation Theory

    CERN Document Server

    Damgaard, P H

    2011-01-01

    Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.

  11. Chiral Random Matrix Theory and Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Damgaard, Poul H, E-mail: phdamg@nbi.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2011-04-01

    Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.

  12. Chiral Graphene Quantum Dots.

    Science.gov (United States)

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  13. ROTATION CONSTELLATION FOR DIFFERENTIAL UNITARY SPACE-TIME MODULATION

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Cao Haiyan; Wei Gang

    2006-01-01

    A new constellation which is the multiplication of the rotation matrix and the diagonal matrix according to the number of transmitters is proposed to increase the diversity product, the key property to the performance of the differential unitary space-time modulation. Analyses and the simulation results show that the proposed constellation performs better and 2dB or more coding gain can be achieved over the traditional cyclic constellation.

  14. Unitary-matrix models as exactly solvable string theories

    Science.gov (United States)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  15. Unitary transformation method for solving generalized Jaynes-Cummings models

    Indian Academy of Sciences (India)

    Sudha Singh

    2006-03-01

    Two fully quantized generalized Jaynes-Cummings models for the interaction of a two-level atom with radiation field are treated, one involving intensity dependent coupling and the other involving multiphoton interaction between the field and the atom. The unitary transformation method presented here not only solves the time dependent problem but also allows a determination of the eigensolutions of the interacting Hamiltonian at the same time.

  16. Unitary representations of the fundamental group of orbifolds

    Indian Academy of Sciences (India)

    INDRANIL BISWAS; AMIT HOGADI

    2016-10-01

    Let $X$ be a smooth complex projective variety of dimension $n$ and $\\mathcal{L}$ an ample line bundle on it. There is a well known bijective correspondence between the isomorphism classes of polystable vector bundles $E$ on $X$ with $c_{1}(E) = 0 = c_{2}(E) \\cdot c_{1} \\mathcal (L)^{n−2}$ and the equivalence classes of unitary representations of $\\pi_{1}(X)$. We show that this bijective correspondence extends to smooth orbifolds.

  17. Unitary approach to the quantum forced harmonic oscillator

    OpenAIRE

    2014-01-01

    In this paper we introduce an alternative approach to studying the evolution of a quantum harmonic oscillator subject to an arbitrary time dependent force. With the purpose of finding the evolution operator, certain unitary transformations are applied successively to Schr\\"odinger's equation reducing it to its simplest form. Therefore, instead of solving the original Schr\\"odinger's partial differential equation in time and space the problem is replaced by a system of ordinary differential eq...

  18. Unitary Application of the Quantum Error Correction Codes

    Institute of Scientific and Technical Information of China (English)

    游波; 许可; 吴小华

    2012-01-01

    For applying the perfect code to transmit quantum information over a noise channel, the standard protocol contains four steps: the encoding, the noise channel, the error-correction operation, and the decoding. In present work, we show that this protocol can be simplified. The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation. We also offer a quantum circuit, which can correct the arbitrary single-qubit errors.

  19. Unitary-matrix models as exactly solvable string theories

    Science.gov (United States)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  20. Two Combinations of Unitary Operators and Frame Representations

    Institute of Scientific and Technical Information of China (English)

    李祚; 朱红鲜; 张慧; 杜鸿科

    2005-01-01

    In this paper, we prove that the norm closure of all linear combinations of two unitary operators is equal to the norm closure of all invertible operators in B(H). We apply the results to frame representations and give some simple and alternative proofs of the propositions in “P. G. Casazza, Every frame is a sum of three (but not two) orthonormal bases-and other frame representations, J. Fourier Anal. Appl., 4(6)(1998), 727-732.”

  1. Unitary fermions on the lattice I: in a harmonic trap

    CERN Document Server

    Endres, Michael G; Lee, Jong-Wan; Nicholson, Amy N

    2011-01-01

    We present a new lattice Monte Carlo approach developed for studying large numbers of strongly interacting nonrelativistic fermions, and apply it to a dilute gas of unitary fermions confined to a harmonic trap. Our lattice action is highly improved, with sources of discretization and finite volume errors systematically removed; we are able to demonstrate the expected volume scaling of energy levels of two and three untrapped fermions, and to reproduce the high precision calculations published previously for the ground state energies for N = 3 unitary fermions in a box (to within our 0.3% uncertainty), and for N = 3, . . ., 6 unitary fermions in a harmonic trap (to within our ~ 1% uncertainty). We use this action to determine the ground state energies of up to 70 unpolarized fermions trapped in a harmonic potential on a lattice as large as 64^3 x 72; our approach avoids the use of importance sampling or calculation of a fermion determinant and employs a novel statistical method for estimating observables, allo...

  2. Entanglement entropy of non-unitary integrable quantum field theory

    Directory of Open Access Journals (Sweden)

    Davide Bianchini

    2015-07-01

    Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3log⁡ℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.

  3. On SU(3 Effective Models and Chiral Phase Transition

    Directory of Open Access Journals (Sweden)

    Abdel Nasser Tawfik

    2015-01-01

    Full Text Available Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL model and Polyakov linear sigma-model (PLSM has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM a gluonic sector is integrated into LSM. The hadron resonance gas (HRG model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.

  4. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  5. Superconductivity in a chiral nanotube

    Science.gov (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  6. Chiral transition in a strong magnetic background

    CERN Document Server

    Fraga, Eduardo S

    2008-01-01

    The presence of a strong magnetic background can modify the nature and the dynamics of the chiral phase transition at finite temperature. We compute the modified effective potential in the linear sigma model with quarks to one loop in the $\\bar{MS}$ scheme for $N_{f}=2$. For fields $eB\\sim 5 m_{\\pi}^{2}$ and larger a crossover is turned into a weak first-order transition. We discuss possible implications for non-central heavy ion collisions at RHIC and LHC, and for the primordial QCD transition.

  7. Chiral Imbalance in QCD and its consequences

    Directory of Open Access Journals (Sweden)

    Andrianov Alexander

    2016-01-01

    Full Text Available Under extreme conditions of high temperature and/or large quark (baryon density, the vacuum of QCD changes its properties, and deconfinement, chiral symmetry restoration as well as chiral symmetry breaking take place. These transitions (phases are accompanied by the rapid change in the rate and nature of topological transitions connecting different topological sectors. The heavy ion collisions (HIC program opens a possibility to study these phenomena in so-called non-Abelian Quark-gluon plasma (QGP. In these phases the currents of light quarks (vector and axial-vector can be independently examined for right-handed (RH and left-handed (LH quarks. To describe such a quark matter chiral chemical potential can be introduced to quantify the presence of chirality imbalance (ChI i.e. the difference between the average numbers of RH and LH quarks in the fireball after HIC. In this review talk we will focus our attention on the discussion of the ChI related developments in heavy ion physics at central collisions and the plans for the future experiments aimed at establishing (or falsifying the presence of Local spacial Parity Breaking (LPB in heavy ion data. We describe some of experimental observables in detecting the signal of LPB. A number of measurements is proposed that allow to reach a definite conclusion on the occurrence of LPB effects in non-Abelian QGP produced in central heavy ion collisions and its simulation within a number of QCD-inspired models is outlined. Based on the effective meson theory in the presence of Chern-Simons interaction it is found that the spectrum of massive vector mesons splits into three polarization components with different effective masses. Moreover a resonance broadening occurs that leads to an increase of spectral contribution to the dilepton production as compared to the vacuum state. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the

  8. Chiral Imbalance in QCD and its consequences

    Science.gov (United States)

    Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec

    2016-10-01

    Under extreme conditions of high temperature and/or large quark (baryon) density, the vacuum of QCD changes its properties, and deconfinement, chiral symmetry restoration as well as chiral symmetry breaking take place. These transitions (phases) are accompanied by the rapid change in the rate and nature of topological transitions connecting different topological sectors. The heavy ion collisions (HIC) program opens a possibility to study these phenomena in so-called non-Abelian Quark-gluon plasma (QGP). In these phases the currents of light quarks (vector and axial-vector) can be independently examined for right-handed (RH) and left-handed (LH) quarks. To describe such a quark matter chiral chemical potential can be introduced to quantify the presence of chirality imbalance (ChI) i.e. the difference between the average numbers of RH and LH quarks in the fireball after HIC. In this review talk we will focus our attention on the discussion of the ChI related developments in heavy ion physics at central collisions and the plans for the future experiments aimed at establishing (or falsifying) the presence of Local spacial Parity Breaking (LPB) in heavy ion data. We describe some of experimental observables in detecting the signal of LPB. A number of measurements is proposed that allow to reach a definite conclusion on the occurrence of LPB effects in non-Abelian QGP produced in central heavy ion collisions and its simulation within a number of QCD-inspired models is outlined. Based on the effective meson theory in the presence of Chern-Simons interaction it is found that the spectrum of massive vector mesons splits into three polarization components with different effective masses. Moreover a resonance broadening occurs that leads to an increase of spectral contribution to the dilepton production as compared to the vacuum state. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton

  9. Quarkyonic Chiral Spirals

    CERN Document Server

    Kojo, Toru; McLerran, Larry; Pisarski, Robert D

    2009-01-01

    We consider the formation of chiral density waves in Quarkyonic matter, which is a phase where cold, dense quarks experience confining forces. We model confinement following Gribov and Zwanziger, taking the gluon propagator, in Coulomb gauge and momentum space, as 1/(p^2)^2. We assume that the number of colors, N, is large, and that the quark chemical potential, mu, is much larger than renormalization mass scale, Lambda_QCD. To leading order in 1/N and Lambda_QCD, a gauge theory with Nf flavors of massless quarks in 3+1 dimensions naturally reduces to a gauge theory in 1+1 dimensions, with an enlarged flavor symmetry of SU(2Nf). Through an anomalous chiral rotation, in two dimensions a Fermi sea of massless quarks maps directly onto the corresponding theory in vacuum. A chiral condensate forms locally, and varies with the spatial position, z, as . Following Schon and Thies, we term this two dimensional pion condensate a (Quarkyonic) chiral spiral. Massive quarks also exhibit chiral spirals, with the magnitude...

  10. Decode-and-Forward Based Differential Modulation for Cooperative Communication System with Unitary and Non-Unitary Constellations

    CERN Document Server

    Bhatnagar, Manav R

    2012-01-01

    In this paper, we derive a maximum likelihood (ML) decoder of the differential data in a decode-and-forward (DF) based cooperative communication system utilizing uncoded transmissions. This decoder is applicable to complex-valued unitary and non-unitary constellations suitable for differential modulation. The ML decoder helps in improving the diversity of the DF based differential cooperative system using an erroneous relaying node. We also derive a piecewise linear (PL) decoder of the differential data transmitted in the DF based cooperative system. The proposed PL decoder significantly reduces the decoding complexity as compared to the proposed ML decoder without any significant degradation in the receiver performance. Existing ML and PL decoders of the differentially modulated uncoded data in the DF based cooperative communication system are only applicable to binary modulated signals like binary phase shift keying (BPSK) and binary frequency shift keying (BFSK), whereas, the proposed decoders are applicab...

  11. Chiral Synthons in Pesticide Syntheses

    NARCIS (Netherlands)

    Feringa, Bernard

    1988-01-01

    The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the implicatio

  12. Chiral fermions on the lattice

    CERN Document Server

    Jahn, O; Jahn, Oliver; Pawlowski, Jan M.

    2002-01-01

    We discuss topological obstructions to putting chiral fermions on an even dimensional lattice. The setting includes Ginsparg-Wilson fermions, but is more general. We prove a theorem which relates the total chirality to the difference of generalised winding numbers of chiral projection operators. For an odd number of Weyl fermions this implies that particles and anti-particles live in topologically different spaces.

  13. Chiral Quantum Optics

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter

    2016-01-01

    At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...

  14. Doped Chiral Polymer Metamaterials

    Science.gov (United States)

    Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

  15. [Chirality and drugs].

    Science.gov (United States)

    Testa, B; Reist, M; Carrupt, P A

    2000-07-01

    The two enantiomers of a chiral drug may have vastly different pharmacodynamic and pharmacokinetic properties. As a result, the research and development of chiral drugs raises specific problems some of which are discussed here. Thus, various pharmacokinetic interactions may involve two enantiomers, as seen for example when one enantiomer inhibits the metabolism of the other and modifies its effects. A different situation occurs when a third compound stereoselectively inhibits the metabolism of one of the two enantiomers. Another problem examined here results from the lack of configurational stability of some chiral drugs, a little known phenomenon whose consequences can be of pharmacological or pharmaceutical significance depending on the rate of the reaction of racemization or epimerisation. In-depth investigations are needed before choosing between a eutomer or a racemate.

  16. Chiral quark model

    Indian Academy of Sciences (India)

    H Weigel

    2003-11-01

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.

  17. Anomalous transport effects and possible environmental symmetry 'violation' in heavy-ion collisions

    Indian Academy of Sciences (India)

    Jinfeng Liao

    2015-05-01

    The heavy-ion collision provides a unique many-body environment where local domains of strongly interacting chiral medium may occur and in a sense allow environmental symmetry 'violation' phenomena. For example, certain anomalous transport processes, forbidden in usual medium, become possible in such domains. We briefly review recent progress in both the theoretical understanding and experimental search of various anomalous transport effects (such as the chiral magnetic effect, chiral separation effect, chiral electric separation effect, chiral electric/magnetic waves, etc.) in the hot QCD fluid formed by such collisions.

  18. Cross-talk in phase encoded volume holographic memories employing unitary matrices

    Science.gov (United States)

    Zhang, X.; Berger, G.; Dietz, M.; Denz, C.

    2006-12-01

    The cross-talk noise in phase encoded holographic memories employing unitary matrices is theoretically investigated. After reviewing some earlier work in this area, we derive a relationship for the noise-to-signal ratio for phase-code multiplexing with unitary matrices. The noise-to-signal ratio rises in a zigzag way on increasing the storage capacity. Cross-talk is mainly caused by high-frequency phase codes. Unitary matrices of even orders have only one bad code, while unitary matrices of odd orders have four bad codes. The signal-to-noise ratios of all other codes can in each case be drastically improved by omission of these bad codes. We summarize the optimal orders of Hadamard and unitary matrices for recording a given number of holograms. The unitary matrices can enable us to adjust the available spatial light modulators to achieve the maximum possible storage capacity in both circumstances with and without bad codes.

  19. Global unitary fixing and matrix-valued correlations in matrix models

    CERN Document Server

    Adler, S L; Horwitz, Lawrence P.

    2003-01-01

    We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrix-valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions.

  20. Chiral Effective Theory of Dark Matter Direct Detection

    CERN Document Server

    Bishara, Fady; Grinstein, Benjamin; Zupan, Jure

    2016-01-01

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.

  1. Chiral Loops and Ghost States in the Quenched Scalar Propagator

    Energy Technology Data Exchange (ETDEWEB)

    W. Bardeen; A. Duncan; E. Eichten; N. Isgur; H. Thacker

    2001-06-01

    The scalar, isovector meson propagator is analyzed in quenched QCD, using the MQA pole-shifting ansatz to study the chiral limit. In addition to the expected short-range exponential falloff characteristic of a heavy scalar meson, the propagator also exhibits a longer-range, negative metric contribution which becomes pronounced for smaller quark masses. We show that this is a quenched chiral loop effect associated with the anomalous structure of the eta' propagator in quenched QCD. Both the time dependence and the quark mass dependence of this effect are well-described by a chiral loop diagram corresponding to an eta'-pi intermediate state, which is light and effectively of negative norm in the quenched approximation. The relevant parameters of the effective Lagrangian describing the scalar sector of the quenched theory are determined.

  2. Meson-Baryon Interactions in Unitarized Chiral Perturbation Theory

    CERN Document Server

    García-Recio, C; Ruiz-Arriola, E; Vacas, M J V

    2003-01-01

    Meson-Baryon Interactions can be successfully described using both Chiral Symmetry and Unitarity. The $s-$wave meson-baryon scattering amplitude is analyzed in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry in the potential. Two body coupled channel unitarity is exactly preserved. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism. Off-shell behavior is parameterized in terms of low energy constants. The relation to the heavy baryon limit is discussed. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths baryonic resonances of the N(1535), N(1670), $\\Lambda (1405)$ and $\\Lambda(1670)$ resonances which compare well with accepted numbers.

  3. Quantifying Chiral Magnetic Effect from Anomalous-Viscous Fluid Dynamics

    CERN Document Server

    Jiang, Yin; Yin, Yi; Liao, Jinfeng

    2016-01-01

    Chiral Magnetic Effect (CME) is the macroscopic manifestation of the fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as anomalous transport current in the fluid dynamics framework. Experimental observation of CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to search for CME in heavy ion collisions. Encouraging evidence of CME-induced charge separation in those collisions has been reported, albeit with ambiguity due to background contamination. Crucial for addressing such issue, is the need of quantitative predictions for CME signal with sophisticated modelings. In this paper we develop such a tool, the Anomalous Viscous Fluid Dynamics (AVFD) framework, which simulates the evolution of fermion currents in QGP on top of the data-validated VISHNU bulk hydrodynamic flow. With realistic initial conditions and magnetic field lifetime, the AVFD-predicted CME signal could be quantitatively consistent with measured ch...

  4. Chiral effective theory of dark matter direct detection

    Science.gov (United States)

    Bishara, Fady; Brod, Joachim; Grinstein, Benjamin; Zupan, Jure

    2017-02-01

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of Script O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.

  5. Interweaving Chiral Spirals

    CERN Document Server

    Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D

    2011-01-01

    We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...

  6. Simplicial chiral models

    CERN Document Server

    Rossi, P; Rossi, Paolo; Tan, Chung I

    1995-01-01

    Principal chiral models on a d-1 dimensional simplex are introduced and studied analytically in the large N limit. The d = 0 , 2, 4 and \\infty models are explicitly solved. Relationship with standard lattice models and with few-matrix systems in the double scaling limit are discussed.

  7. Finite nuclei in relativistic models with a light chiral scalar meson

    Science.gov (United States)

    Furnstahl, R. J.; Serot, Brian D.

    1993-05-01

    Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.

  8. Abstract structure of unitary oracles for quantum algorithms

    Directory of Open Access Journals (Sweden)

    William Zeng

    2014-12-01

    Full Text Available We show that a pair of complementary dagger-Frobenius algebras, equipped with a self-conjugate comonoid homomorphism onto one of the algebras, produce a nontrivial unitary morphism on the product of the algebras. This gives an abstract understanding of the structure of an oracle in a quantum computation, and we apply this understanding to develop a new algorithm for the deterministic identification of group homomorphisms into abelian groups. We also discuss an application to the categorical theory of signal-flow networks.

  9. Unitary evolution for a quantum Kantowski-Sachs cosmology

    CERN Document Server

    Pal, Sridip

    2015-01-01

    It is shown that like Bianchi I, V and IX models, a Kantowski-Sachs cosmological model also allows a unitary evolution on quantization. It has also been shown that this unitarity is not at the expense of the anisotropy. Non-unitarity, if there is any, cannot escape notice in this as the evolution is studied against a properly oriented time parameter fixed by the evolution of the fluid. Furthermore, we have constructed a wave-packet by superposing different energy eigenstates, thereby establishing unitarity in a non-trivial way, which is a stronger result than an energy eigenstate trivially giving time independent probability density. For $\\alpha\

  10. Introduction to orthogonal, symplectic and unitary representations of finite groups

    CERN Document Server

    Riehm, Carl R

    2011-01-01

    Orthogonal, symplectic and unitary representations of finite groups lie at the crossroads of two more traditional subjects of mathematics-linear representations of finite groups, and the theory of quadratic, skew symmetric and Hermitian forms-and thus inherit some of the characteristics of both. This book is written as an introduction to the subject and not as an encyclopaedic reference text. The principal goal is an exposition of the known results on the equivalence theory, and related matters such as the Witt and Witt-Grothendieck groups, over the "classical" fields-algebraically closed, rea

  11. Deformations of polyhedra and polygons by the unitary group

    Science.gov (United States)

    Livine, Etera R.

    2013-12-01

    We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient {{C}}^{2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in {{C}}2 satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N-2)). We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in a

  12. UV radiation sensors with unitary and binary superficial barrier

    Science.gov (United States)

    Dorogan, Valerian; Vieru, Tatiana; Kosyak, V.; Damaskin, I.; Chirita, F.

    1998-07-01

    UV radiation sensors with unitary and binary superficial barrier, made on the basis of GaP - SnO2 and GaAs - AlGaAs - SnO2 heterostructures, are presented in the paper. Technological and constructive factors, which permit to realize a high conversion efficiency and to exclude the influence of visible spectrum upon the photoanswer, are analyzed. It was established that the presence of an isotypical superficial potential barrier permits to suppress the photoanswer component formed by absorption of visible and infrared radiation in semiconductor structure bulk.

  13. Non-unitary neutrino propagation from neutrino decay

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Berryman

    2015-03-01

    Full Text Available Neutrino propagation in space–time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  14. Multiscale differential phase contrast analysis with a unitary detector

    KAUST Repository

    Lopatin, Sergei

    2015-12-30

    A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.

  15. Non-unitary neutrino propagation from neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Jeffrey M., E-mail: jeffreyberryman2012@u.northwestern.edu [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Oliveira, Roberto L.N. [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, UNICAMP 13083-970, Campinas, São Paulo (Brazil)

    2015-03-06

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  16. Computing a logarithm of a unitary matrix with general spectrum

    CERN Document Server

    Loring, Terry A

    2012-01-01

    In theory, a unitary matrix U has a skew-hermitian logarithm H. In a computing environment one expects only to know U^*U \\approx I and might wish to compute H with e^H \\approx U and H^*= -H. This is relatively easy to accomplish using the Schur decomposition. Reasonable error bounds are derived. In cases where the norm of U^*U-I is somewhat large we discuss the utility of pre-processing with Newton's method of approximating the polar decomposition. In the case of U being J-skew-symmetric, one can insist that H be J-skew-symmetric and skew-Hermitian.

  17. Thermoelectric-induced unitary Cooper pair splitting efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhan; Fang, Tie-Feng [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Li, Lin [Department of Physics, Southern University of Science and Technology of China, Shenzhen 518005 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2015-11-23

    Thermoelectric effect is exploited to optimize the Cooper pair splitting efficiency in a Y-shaped junction, which consists of two normal leads coupled to an s-wave superconductor via double noninteracting quantum dots. Here, utilizing temperature difference rather than bias voltage between the two normal leads, and tuning the two dot levels such that the transmittance of elastic cotunneling process is particle-hole symmetric, we find current flowing through the normal leads are totally contributed from the splitting of Cooper pairs emitted from the superconductor. Such a unitary splitting efficiency is significantly better than the efficiencies obtained in experiments so far.

  18. Implementing controlled-unitary operations over the butterfly network

    Science.gov (United States)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2014-12-01

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  19. Unitary cycles on Shimura curves and the Shimura lift II

    OpenAIRE

    Sankaran, Siddarth

    2013-01-01

    We consider two families of arithmetic divisors defined on integral models of Shimura curves. The first was studied by Kudla, Rapoport and Yang, who proved that if one assembles these divisors in a formal generating series, one obtains the q-expansion of a modular form of weight 3/2. The present work concerns the Shimura lift of this modular form: we identify the Shimura lift with a generating series comprised of unitary divisors, which arose in recent work of Kudla and Rapoport regarding cyc...

  20. Luria: a unitary view of human brain and mind.

    Science.gov (United States)

    Mecacci, Luciano

    2005-12-01

    Special questions the eminent Russian psychologist and neuropsychologist Aleksandr R. Luria (1902-1977) dealt with in his research regarded the relationship between animal and human brain, child and adult mind, normal and pathological, theory and rehabilitation, clinical and experimental investigation. These issues were integrated in a unitary theory of cerebral and psychological processes, under the influence of both different perspectives active in the first half of the Nineteenth century (psychoanalysis and historical-cultural school, first of all) and the growing contribution of neuropsychological research on brain-injured patients.

  1. Implementing controlled-unitary operations over the butterfly network

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S. [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  2. Graphical description of unitary transformations on hypergraph states

    Science.gov (United States)

    Gachechiladze, Mariami; Tsimakuridze, Nikoloz; Gühne, Otfried

    2017-05-01

    Hypergraph states form a family of multiparticle quantum states that generalizes cluster states and graph states. We study the action and graphical representation of nonlocal unitary transformations between hypergraph states. This leads to a generalization of local complementation and graphical rules for various gates, such as the CNOT gate and the Toffoli gate. As an application, we show that already for five qubits local Pauli operations are not sufficient to check local equivalence of hypergraph states. Furthermore, we use our rules to construct entanglement witnesses for three-uniform hypergraph states.

  3. Simulating Entangling Unitary Operator Using Non-maximally Entangled States

    Institute of Scientific and Technical Information of China (English)

    LI Chun-Xian; WANG Cheng-Zhi; NIE Liu-Ying; LI Jiang-Fan

    2009-01-01

    We use non-maximally entangled states (NMESs) to simulate an entangling unitary operator (EUO) w/th a certain probability. Given entanglement resources, the probability of the success we achieve is a decreasing function of the parameters of the EUO. Given an EUO, for certain entanglement resources the result is optimal, i.e., the probability obtains a maximal value, and for optimal result higher parameters of the EUO match more amount of entanglement resources. The probability of the success we achieve is higher than the known results under some condition.

  4. The science of unitary human beings and interpretive human science.

    Science.gov (United States)

    Reeder, F

    1993-01-01

    Natural science and human science are identified as the bases of most nursing theories and research programs. Natural science has been disclaimed by Martha Rogers as the philosophy of science that undergirds her work. The question remains, is the science of unitary human beings an interpretive human science? The author explores the works of Rogers through a dialectic with two human scientists' works. Wilhelm Dilthey's works represent the founding or traditional view, and Jurgen Habermas' works represent a contemporary, reconstructionist view. The ways Rogerian thought contributes to human studies but is distinct from traditional and reconstructionist human sciences are illuminated.

  5. Chiral magnetic effect without chirality source in asymmetric Weyl semimetals

    CERN Document Server

    Kharzeev, Dmitri; Meyer, Rene

    2016-01-01

    We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source generates a non-vanishing chiral chemical potential. This is due to the different capacities of the left- and right-handed (LH and RH) chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation f...

  6. Chiral symmetry restoration and strong CP violation in a strong magnetic background

    CERN Document Server

    Fraga, Eduardo S

    2009-01-01

    Motivated by the phenomenological scenario of the chiral magnetic effect that can be possibly found in high-energy heavy ion collisions, we study the role of very intense magnetic fields and strong CP violation in the phase structure of strong interactions and, more specifically, their influence on the nature of the chiral transition. Direct implications for the dynamics of phase conversion and its time scales are briefly discussed. Our results can also be relevant in the case of the early universe.

  7. Chiral symmetry restoration and strong CP violation in a strong magnetic background

    OpenAIRE

    Fraga, Eduardo S.; Mizher, Ana Júlia

    2009-01-01

    Motivated by the phenomenological scenario of the chiral magnetic effect that can be possibly found in high-energy heavy ion collisions, we study the role of very intense magnetic fields and strong CP violation in the phase structure of strong interactions and, more specifically, their influence on the nature of the chiral transition. Direct implications for the dynamics of phase conversion and its time scales are briefly discussed. Our results can also be relevant in the case of the early un...

  8. The magnetic moments and electromagnetic form factors of the decuplet baryons in chiral perturbation theory

    CERN Document Server

    Li, Hao-Song; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin

    2016-01-01

    We have systematically investigated the magnetic moments and magnetic form factors of the decuplet baryons to the next-to-next-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. We also calculate the charge and magnetic dipole form factors of the decuplet baryons. Our results may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.

  9. The universal sound velocity formula for the strongly interacting unitary Fermi gas

    Institute of Scientific and Technical Information of China (English)

    Liu Ke; Chen Ji-Sheng

    2011-01-01

    Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/ZV is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions.

  10. Detecting the chirality for coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com

    2008-04-21

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.

  11. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    CERN Document Server

    McLerran, Larry

    2009-01-01

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark Gluon Plasma, the Color Glass Condensate, the Glasma and Quarkyonic Matter. A novel effect that may be associated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts and explain how they may be seen in ultra-relativistic heavy ion collisions.

  12. Chiral scale and conformal invariance in 2D quantum field theory.

    Science.gov (United States)

    Hofman, Diego M; Strominger, Andrew

    2011-10-14

    It is well known that a local, unitary Poincaré-invariant 2D quantum field theory with a global scaling symmetry and a discrete non-negative spectrum of scaling dimensions necessarily has both a left and a right local conformal symmetry. In this Letter, we consider a chiral situation beginning with only a left global scaling symmetry and do not assume Lorentz invariance. We find that a left conformal symmetry is still implied, while right translations are enhanced either to a right conformal symmetry or a left U(1) Kac-Moody symmetry.

  13. Shortcut to adiabaticity for an anisotropic unitary Fermi gas

    CERN Document Server

    Deng, Shujin; Yu, Qianli; Wu, Haibin

    2016-01-01

    Coherent control of complex quantum systems is a fundamental requirement in quantum information processing and engineering. Recently developed notion of shortcut to adiabaticity (STA) has spawned intriguing prospects. So far, the most experimental investigations of STA are implemented in the ideal thermal gas or the weakly interacting ultracold Bose gases. Here we report the first demonstration of a many-body STA in a 3D anisotropically trapped unitary Fermi gas. A new dynamical scaling law is demonstrated on such a strongly interacting quantum gas. By simply engineering the frequency aspect ratio of a harmonic trap, the dynamics of the gas can be manipulated and the many-body state can be transferred adiabatically from one stationary state to another one in short time scale without the excitation. The universal scaling both for non-interacting and unitary Fermi gas is also verified. This could be very important for future many-body quantum engineering and the exploration of the fundamental law of the thermod...

  14. On the construction of unitary quantum group differential calculus

    Science.gov (United States)

    Pyatov, Pavel

    2016-10-01

    We develop a construction of the unitary type anti-involution for the quantized differential calculus over {{GL}}q(n) in the case | q| =1. To this end, we consider a joint associative algebra of quantized functions, differential forms and Lie derivatives over {{GL}}q(n)/{{SL}}q(n), which is bicovariant with respect to {{GL}}q(n)/{{SL}}q(n) coactions. We define a specific non-central spectral extension of this algebra by the spectral variables of three matrices of the algebra generators. In the spectrally expended algebra, we construct a three-parametric family of its inner automorphisms. These automorphisms are used for the construction of the unitary anti-involution for the (spectrally extended) calculus over {{GL}}q(n). This work has been funded by the Russian Academic Excellence Project ‘5-100’. The results of section 5 (propositions 5.2, 5.3 and theorem 5.5) have been obtained under support of the RSF grant No.16-11-10160.

  15. Event-specific versus unitary causal accounts of optimism bias.

    Science.gov (United States)

    Chua, F J; Job, R F

    1999-10-01

    Optimism bias is often assumed to have a unitary cause regardless of the event, however, factors causing it may actually be event-specific. In Experiment 1 (N = 23), subjects rated the importance of various causes for individual events. The results identified consistent differences in perceptions of causal factors across events. Experiment 2 (N = 190) employed the possible causal factors absent/exempt error and degree of motivation to investigate an event-specific theory of optimism bias in a manipulation design. Participants were encouraged to view one causal factor (absent/exempt or motivation) as either important or unimportant to future risk when they estimated their risk of absent/exempt-related, motivation-related and unrelated events (as determined in Experiment 1). A hanging control group received no manipulation. The event-specific theory's prediction that these manipulations would affect particular events and not others were not supported. However, discouraging the absent/exempt error reduced optimism bias across events, generally. Hence, a unitary and not an event-specific theory of optimism bias was supported. Furthermore, for the first time, the possible role of and confounding of cognitive manipulations of optimism bias by mood were evaluated, and not supported.

  16. Universal Structure and Universal PDE for Unitary Ensembles

    CERN Document Server

    Rumanov, Igor

    2009-01-01

    An attempt is made to describe random matrix ensembles with unitary invariance of measure (UE) in a unified way, using a combination of Tracy-Widom (TW) and Adler-Shiota-Van Moerbeke (ASvM) approaches to derivation of partial differential equations (PDE) for spectral gap probabilities. First, general 3-term recurrence relations for UE restricted to subsets of real line, or, in other words, for functions in the resolvent kernel, are obtained. Using them, simple universal relations between all TW dependent variables and one-dimensional Toda lattice $\\tau$-functions are found. A universal system of PDE for UE is derived from previous relations, which leads also to a {\\it single independent PDE} for spectral gap probability of various UE. Thus, orthogonal function bases and Toda lattice are seen at the core of correspondence of different approaches. Moreover, Toda-AKNS system provides a common structure of PDE for unitary ensembles. Interestingly, this structure can be seen in two very different forms: one arises...

  17. Boson-Faddeev in the Unitary Limit and Efimov States

    CERN Document Server

    K"\\ohler, H S

    2010-01-01

    A numerical study of the Faddeev equation for bosons is made with two-body interactions at or close to the Unitary limit. Separable interactions are obtained from phase-shifts defined by scattering length and effective range. In EFT-language this would correspond to NLO. Both ground and Efimov state energies are calculated. For effective ranges $r_0 > 0$ and rank-1 potentials the total energy $E_T$ is found to converge with momentum cut-off $\\Lambda$ for $\\Lambda > \\sim 10/r_0$ . In the Unitary limit ($1/a=r_0= 0$) the energy does however diverge. It is shown (analytically) that in this case $E_T=E_u\\Lambda^2$. Calculations give $E_u=-0.108$ for the ground state and $E_u=-1.\\times10^{-4}$ for the single Efimov state found. The cut-off divergence is remedied by modifying the off-shell t-matrix by replacing the rank-1 by a rank-2 phase-shift equivalent potential. This is somewhat similar to the counterterm method suggested by Bedaque et al. This investigation is exploratory and does not refer to any specific ph...

  18. Disorienting the Chiral Condensate at the QCD Phase Transition

    CERN Document Server

    Rajagopal, K

    1997-01-01

    I sketch how long wavelength modes of the pion field can be amplified during the QCD phase transition. If nature had been kinder, and had made the pion mass significantly less than the critical temperature for the transition, then this phenomenon would have characterized the transition in thermal equilibrium. Instead, these long wavelength oscillations of the orientation of the chiral condensate can only arise out of equilibrium. There is a simple non-equilibrium mechanism, plausibly operational during heavy ion collisions, which naturally amplifies these oscillations. The characteristic signature of this phenomenon is large fluctuations in the ratio of the number of neutral pions to the total number of pions in regions of momentum space, that is in phase space in a detector. Detection in a heavy ion collision would imply an out of equilbrium chiral transition.

  19. Soldering Chiralities; 2, Non-Abelian Case

    CERN Document Server

    Wotzasek, C

    1996-01-01

    We study the non-abelian extension of the soldering process of two chiral WZW models of opposite chiralities, resulting in a (non-chiral) WZW model living in a 2D space-time with non trivial Riemanian curvature.

  20. Heavy hadrons in nuclear matter

    Science.gov (United States)

    Hosaka, Atsushi; Hyodo, Tetsuo; Sudoh, Kazutaka; Yamaguchi, Yasuhiro; Yasui, Shigehiro

    2017-09-01

    Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy hadrons from many different points of view. We emphasize the importance of the following topics: (i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD vacuum properties and hadron modifications in nuclear medium. We pick up three different groups of heavy hadrons, quarkonia (J / ψ, ϒ), heavy-light mesons (D/ D ¯ , B ¯ / B) and heavy baryons (Λc, Λb). The modifications of those hadrons in nuclear matter provide us with important information to investigate the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not only in infinite nuclear matter, but also in finite-size atomic nuclei with finite baryon numbers, to serve future experiments.

  1. Heavy Hadrons in Nuclear Matter

    CERN Document Server

    Hosaka, Atsushi; Sudoh, Kazutaka; Yamaguchi, Yasuhiro; Yasui, Shigehiro

    2016-01-01

    Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy hadrons from many different points of view. We emphasize the importance of the following topics: (i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD vacuum properties and hadron modifications in nuclear medium. We pick up three different groups of heavy hadrons, quarkonia ($J/\\psi$, $\\Upsilon$), heavy-light mesons ($D$/$\\bar{D}$, $\\bar{B}$/$B$) and heavy baryons ($\\Lambda_{c}$, $\\Lambda_{b}$). The modifications of those hadrons in nuclear matter provide us with important information to investigate the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not only in nuclear matter with infinite volume, but also in atomic nuclei with finite bary...

  2. Spiral Galaxies as Chiral Objects?

    CERN Document Server

    Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra

    2005-01-01

    Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.

  3. Recent developments in chiral dynamics of hadrons and hadrons in a nuclear medium

    CERN Document Server

    Oset, E; Vacas, M J V; Kaskulov, M; Roca, L; Magas, V K; Ramos, A; Toki, H

    2007-01-01

    In this talk I present recent developments in chiral dynamics of hadrons and hadrons in a medium addressing the following points: interaction of the octet of pseudoscalar mesons with the octet of baryons of the nucleon, showing recent experimental evidence on the existence of two $\\Lambda(1405)$ states, the interaction of the octet of pseudoscalar mesons with the decuplet of baryons of the $\\Delta$, with particular emphasis on the $\\Lambda(1520)$ resonance, dynamically generated by this interaction. Then I review the interaction of kaons in a nuclear medium and briefly discuss the situation around the claims of deeply bound states in nuclei. The large renormalization of the $\\Lambda(1520)$ in the nuclear medium is shown as another example of successful application of the chiral unitary techniques.

  4. Chiral dynamics of baryon resonances and hadrons in a nuclear medium

    Indian Academy of Sciences (India)

    E Oset; D Cabrera; V K Magas; L Roca; S Sarkar; M J Vicente Vacas; A Ramos

    2006-04-01

    In these lectures I make an introduction to chiral unitary theory applied to the meson-baryon interaction and show how several well-known resonances are dynamically generated, and others are predicted. Two very recent experiments are analyzed, one of them showing the existence of two (1405) states and the other one providing support for the (1520) resonance as a quasi-bound state of $\\sum (1385) $. The use of chiral Lagrangians to account for the hadronic interaction at the elementary level introduces a new approach to deal with the modification of meson and baryon properties in a nuclear medium. Examples of it for $\\bar{K}$, and modification in the nuclear medium are presented.

  5. Chiral Biomarkers in Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  6. Generalized simplicial chiral models

    CERN Document Server

    Alimohammadi, M

    2000-01-01

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...

  7. Chiral nuclear thermodynamics

    CERN Document Server

    Fiorilla, Salvatore; Weise, Wolfram

    2011-01-01

    We calculate the equation of state of nuclear matter for arbitrary isospin-asymmetry up to three loop order in the free energy density in the framework of in-medium chiral perturbation theory. In our approach 1\\pi- and 2\\pi-exchange dynamics with the inclusion of the \\Delta-isobar excitation as an explicit degree of freedom, corresponding to the long- and intermediate-range correlations, are treated explicitly. Few contact terms fixed to reproduce selected known properties of nuclear matter encode the short-distance physics. Two-body as well as three-body forces are systematically included. We find a critical temperature of about 15 MeV for symmetric nuclear matter. We investigate the dependence of the liquid-gas first-order phase transition on isospin-asymmetry. In the same chiral framework we calculate the chiral condensate of isospin-symmetric nuclear matter at finite temperatures. The contribution of the \\Delta-isobar excitation is essential for stabilizing the condensate. As a result, we find no indicati...

  8. Free-standing chiral plasmonics

    Science.gov (United States)

    Leong, Eunice Sok Ping; Deng, Jie; Wu, Siji; Khoo, Eng Huat; Liu, Yan Jun

    2014-11-01

    Chiral plasmonic nanostructures offer the ability to achieve strong optical circular dichroism (CD) activity over a broad spectral range, which has been challenging for chiral molecules. Chiral plasmonic nanostructures have been extensively studied based on top-down and bottom-up fabrication techniques. Particularly, in the top-down electron-beam lithography, 3D plasmonic nanostructure fabrication involves layer-by-layer patterning and complex alignment, which is time-consuming and causes many defects in the structures. Here, we present a free-standing 3D chiral plamonic nanostructures using the electron-beam lithography technique with much simplified fabrication processes. The 3D chiral plasmonic nanostructures consist of a free-standing ultrathin silicon nitride membrane with well-aligned L-shape metal nanostructures on one side and disk-shape ones on the other side. The free-standing membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the gap between the upper and lower layers in an array of chiral nanostructures. Such free-standing chiral plasmonic nanostructures exhibit strong CD at optical frequencies, which can be engineered by simply changing the disk size on one side of the membrane. Experimental results are in good agreement with the finite-difference time-domain simulations. Such free-standing chiral plasmonics holds great potential for chirality analysis of biomolecules, drugs, and chemicals.

  9. Maxwell-Chern-Simons Hydrodynamics for the Chiral Magnetic Effect

    CERN Document Server

    Ozonder, Sener

    2010-01-01

    The rate of vacuum changing topological solutions of the gluon field, sphalerons, is estimated to be large at the typical temperatures of heavy-ion collisions, particularly at the Relativistic Heavy Ion Collider. Such windings in the gluon field are expected to produce parity-odd bubbles, which cause separation of positively and negatively charged quarks along the axis of the external magnetic field. This Chiral Magnetic Effect can be mimicked by Chern-Simons modified electromagnetism. Here we present a model of relativistic hydrodynamics including the effects of axial anomalies via the Chern-Simons term.

  10. The Schur algorithm for generalized Schur functions III : J-unitary matrix polynomials on the circle

    NARCIS (Netherlands)

    Alpay, Daniel; Azizov, Tomas; Dijksma, Aad; Langer, Heinz

    2003-01-01

    The main result is that for J = ((1)(0) (0)(-1)) every J-unitary 2 x 2-matrix polynomial on the unit circle is an essentially unique product of elementary J-unitary 2 x 2-matrix polynomials which are either of degree 1 or 2k. This is shown by means of the generalized Schur transformation introduced

  11. 47 CFR 65.101 - Initiation of unitary rate of return prescription proceedings.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Initiation of unitary rate of return...) COMMON CARRIER SERVICES (CONTINUED) INTERSTATE RATE OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Procedures § 65.101 Initiation of unitary rate of return prescription proceedings. (a) Whenever...

  12. Closely connected unitary realizations of the solutions to the basic interpolation problem for generalized Schur functions

    NARCIS (Netherlands)

    Wanjala, G; Kaashoek, MA; Seatzu, S; VanDerMee, C

    2005-01-01

    A generalized Schur function which is holomorphic at z = 0 can be written as the characteristic function of a closely connected unitary colligation with a Pontryagin state space. We describe the closely connected unitary colligation of a solution s(z) of the basic interpolation problem for generaliz

  13. Molecular Quantum Computing by an Optimal Control Algorithm for Unitary Transformations

    CERN Document Server

    Palao, J P; Palao, Jose P.; Kosloff, Ronnie

    2002-01-01

    Quantum computation is based on implementing selected unitary transformations which represent algorithms. A generalized optimal control theory is used to find the driving field that generates a prespecified unitary transformation. The approach is illustrated in the implementation of one and two qubits gates in model molecular systems.

  14. Unitary equilibrations: probability distribution of the Loschmidt echo

    CERN Document Server

    Venuti, Lorenzo Campos

    2009-01-01

    Closed quantum systems evolve unitarily and therefore cannot converge in a strong sense to an equilibrium state starting out from a generic pure state. Nevertheless for large system size one observes temporal typicality. Namely, for the overwhelming majority of the time instants, the statistics of observables is practically indistinguishable from an effective equilibrium one. In this paper we consider the Loschmidt echo (LE) to study this sort of unitary equilibration after a quench. We draw several conclusions on general grounds and on the basis of an exactly-solvable example of a quasi-free system. In particular we focus on the whole probability distribution of observing a given value of the LE after waiting a long time. Depending on the interplay between the initial state and the quench Hamiltonian, we find different regimes reflecting different equilibration dynamics. When the perturbation is small and the system is away from criticality the probability distribution is Gaussian. However close to criticali...

  15. Husserlian phenomenology and nursing in a unitary-transformative paradigm

    DEFF Research Database (Denmark)

    Hall, Elisabeth

    1996-01-01

    The aim of this article is to discuss Husserlian phenomenology as philosophy and methodology, and its relevance for nursing research. The main content in Husserl's phenomenological world view is described and compared to the unitary-transformative paradigm as mentioned by Newman et al....... The phenomenological methodology according to Spiegelberg is described, and exemplified through the author's ongoing study. Different critiques of phenomenology and phenomenological reports are mentioned, and the phenomenological description is illustrated as the metaphor «using a handful of colors». The metaphor...... is used to give phenomenological researchers and readers an expanding reality picturing, including memories and hopes and not only a reality of the five senses. It is concluded that phenomenology as a world view and methodology can contribute to nursing research and strengthen the identity of nursing...

  16. Momentum Distribution in the Unitary Bose Gas from First Principles

    Science.gov (United States)

    Comparin, Tommaso; Krauth, Werner

    2016-11-01

    We consider a realistic bosonic N -particle model with unitary interactions relevant for Efimov physics. Using quantum Monte Carlo methods, we find that the critical temperature for Bose-Einstein condensation is decreased with respect to the ideal Bose gas. We also determine the full momentum distribution of the gas, including its universal asymptotic behavior, and compare this crucial observable to recent experimental data. Similar to the experiments with different atomic species, differentiated solely by a three-body length scale, our model only depends on a single parameter. We establish a weak influence of this parameter on physical observables. In current experiments, the thermodynamic instability of our model from the atomic gas towards an Efimov liquid could be masked by the dynamical instability due to three-body losses.

  17. The Reid93 Potential Triton in the Unitary Pole Approximation

    Science.gov (United States)

    Afnan, I. R.; Gibson, B. F.

    2013-12-01

    The Reid93 potential provides a representation of the nucleon-nucleon ( NN) scattering data that rivals that of a partial wave analysis. We present here a unitary pole approximation (UPA) for this contemporary NN potential that provides a rank one separable potential for which the wave function of the deuteron (3S1-3D1) and singlet anti-bound (1S0) state are exactly those of the original potential. Our motivation is to use this UPA potential to investigate the sensitivity of the electric dipole moment for the deuteron and 3H and 3He to the ground state nuclear wave function. We compare the Reid93 results with those for the original Reid (Reid68) potential to illustrate the accuracy of the bound state properties.

  18. An Informal Overview of the Unitary Group Approach

    Energy Technology Data Exchange (ETDEWEB)

    Sonnad, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kruse, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, R. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy

    2016-06-13

    The Unitary Groups Approach (UGA) is an elegant and conceptually unified approach to quantum structure calculations. It has been widely used in molecular structure calculations, and holds the promise of a single computational approach to structure calculations in a variety of different fields. We explore the possibility of extending the UGA to computations in atomic and nuclear structure as a simpler alternative to traditional Racah algebra-based approaches. We provide a simple introduction to the basic UGA and consider some of the issues in using the UGA with spin-dependent, multi-body Hamiltonians requiring multi-shell bases adapted to additional symmetries. While the UGA is perfectly capable of dealing with such problems, it is seen that the complexity rises dramatically, and the UGA is not at this time, a simpler alternative to Racah algebra-based approaches.

  19. C T for non-unitary CFTs in higher dimensions

    Science.gov (United States)

    Osborn, Hugh; Stergiou, Andreas

    2016-06-01

    The coefficient C T of the conformal energy-momentum tensor two-point function is determined for the non-unitary scalar CFTs with four- and six-derivative kinetic terms. The results match those expected from large- N calculations for the CFTs arising from the O( N) non-linear sigma and Gross-Neveu models in specific even dimensions. C T is also calculated for the CFT arising from ( n - 1)-form gauge fields with derivatives in 2 n + 2 dimensions. Results for ( n - 1)-form theory extended to general dimensions as a non-gauge-invariant CFT are also obtained; the resulting C T differs from that for the gauge-invariant theory. The construction of conformal primaries by subtracting descendants of lower-dimension primaries is also discussed. For free theories this also leads to an alternative construction of the energy-momentum tensor, which can be quite involved for higher-derivative theories.

  20. The unitary conformal field theory behind 2D Asymptotic Safety

    CERN Document Server

    Nink, Andreas

    2015-01-01

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in $d>2$ dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge $c=25$. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a...

  1. Qubit Transport Model for Unitary Black Hole Evaporation without Firewalls

    CERN Document Server

    Osuga, Kento

    2016-01-01

    We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon and fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.

  2. Description and calibration of the Langley unitary plan wind tunnel

    Science.gov (United States)

    Jackson, C. M., Jr.; Corlett, W. A.; Monta, W. J.

    1981-01-01

    The two test sections of the Langley Unitary Plan Wind Tunnel were calibrated over the operating Mach number range from 1.47 to 4.63. The results of the calibration are presented along with a a description of the facility and its operational capability. The calibrations include Mach number and flow angularity distributions in both test sections at selected Mach numbers and tunnel stagnation pressures. Calibration data are also presented on turbulence, test-section boundary layer characteristics, moisture effects, blockage, and stagnation-temperature distributions. The facility is described in detail including dimensions and capacities where appropriate, and example of special test capabilities are presented. The operating parameters are fully defined and the power consumption characteristics are discussed.

  3. Recent results in the NJL model with heavy quarks

    CERN Document Server

    Feldmann, T

    1996-01-01

    We investigate the interplay of chiral and heavy quark symmetries by using the NJL quark model. Heavy quarks with finite masses m(Q) as well as the limit m(Q) to infinity are studied. We found large corrections to the heavy mass scaling law for the pseudoscalar decay constant. The influence of external momenta on the shape parameters of the Isgur-Wise form factor is discussed.

  4. Heavy Exotic Molecules with Charm and Bottom

    CERN Document Server

    Liu, Yizhuang

    2016-01-01

    We revisit the formation of pion-mediated heavy-light exotic molecules with both charm and bottom and their chiral partners under the general strictures of both heavy-quark and chiral symmetry. The chiral exotic partners with good parity formed using the $(0^+, 1^+)$ multiplet are about twice more bound than their primary exotic partners formed using the $(0^-,1^-)$ multiplet. The chiral couplings across the multiplets $(0^\\pm, 1^\\pm)$ cause the chiral exotic partners to unbind, and the primary exotic molecules to be about twice more bound, for $J\\leq 1$. Our multi-channel coupling results show that only the charm isosinglet exotic molecules with $J^{PC}=1^{++}$ binds, which we identify as the reported neutral $X(3872)$. Also, the bottom isotriplet exotic with $J^{PC}=1^{+-}$ binds, which we identify as a mixture of the reported charged exotics $Z^+_b(10610)$ and $Z^+_b(10650)$. The bound isosinglet with $J^{PC}=1^{++}$ is suggested as a possible neutral $X_b(10532)$ not yet reported.

  5. Heavy exotic molecules with charm and bottom

    Science.gov (United States)

    Liu, Yizhuang; Zahed, Ismail

    2016-11-01

    We revisit the formation of pion-mediated heavy-light exotic molecules with both charm and bottom and their chiral partners under the general strictures of both heavy-quark and chiral symmetry. The chiral exotic partners with good parity formed using the (0+ ,1+) multiplet are about twice more bound than their primary exotic partners formed using the (0- ,1-) multiplet. The chiral couplings across the multiplets (0± ,1±) cause the chiral exotic partners to unbind, and the primary exotic molecules to be about twice more bound, for J ≤ 1. Our multi-channel coupling results show that only the charm isosinglet exotic molecules with JPC =1++ bind, which we identify as the reported neutral X (3872). Also, the bottom isotriplet exotic with JPC =1+- binds, which we identify as a mixture of the reported charged exotics Zb+ (10610) and Zb+ (10650). The bound isosinglet with JPC =1++ is suggested as a possible neutral Xb (10532) not yet reported.

  6. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  7. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    Science.gov (United States)

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials. © 2015 Wiley Periodicals, Inc.

  8. Factorization of J-unitary matrix polynomials on the line and a Schur algorithm for generalized Nevanlinna functions

    NARCIS (Netherlands)

    Alpay, D.; Dijksma, A.; Langer, H.

    2004-01-01

    We prove that a 2 × 2 matrix polynomial which is J-unitary on the real line can be written as a product of normalized elementary J-unitary factors and a J-unitary constant. In the second part we give an algorithm for this factorization using an analog of the Schur transformation.

  9. Quark structure of chiral solitons

    CERN Document Server

    Diakonov, D

    2004-01-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  10. Observing Disoriented Chiral Condensates

    CERN Document Server

    Bjorken, James D; Taylor, C C

    1993-01-01

    We speculate that, in very high energy hadronic collisions, large fireballs may be produced with interiors which have anomalous chiral order parameters. Such a process would result in radiation of pions with distinctive momentum and isospin distributions, and may provide an explanation of Centauro and related phenomena in cosmic-ray events. The phenomenology of such events is reviewed, with emphasis on the possibility of observing such phenomena at Fermilab experiment T-864 (MiniMax), or at a Full Acceptance Detector (FAD) at the SSC.

  11. Spontaneous Chiral Symmetry Breaking as Condensation of Dynamical Chirality

    CERN Document Server

    Alexandru, Andrei

    2012-01-01

    The occurrence of spontaneous chiral symmetry breaking (SChSB) is equivalent to sufficient abundance of Dirac near-zeromodes. However, dynamical mechanism leading to breakdown of chiral symmetry should be naturally reflected in chiral properties of the modes. Here we offer such connection, presenting evidence that SChSB in QCD proceeds via the appearance of modes exhibiting dynamical tendency for local chiral polarization. These modes form a band of finite width Lambda_ch (chiral polarization scale) around the surface of otherwise anti--polarized Dirac sea, and condense. Lambda_ch characterizes the dynamics of the breaking phenomenon and can be converted to a quark mass scale, thus offering conceptual means to determine which quarks of nature are governed by broken chiral dynamics. It is proposed that, within the context of SU(3) gauge theories with fundamental Dirac quarks, mode condensation is equivalent to chiral polarization, making Lambda_ch an "order parameter" of SChSB. Several uses of these features, ...

  12. Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity

    Directory of Open Access Journals (Sweden)

    Matthews Paul

    2004-11-01

    Full Text Available Abstract Background Knowledge of how synapses alter their efficiency of communication is central to the understanding of learning and memory. The most extensively studied forms of synaptic plasticity are long-term potentiation (LTP and its counterpart long-term depression (LTD of AMPA receptor-mediated synaptic transmission. In the CA1 region of the hippocampus, it has been shown that LTP often involves a rapid increase in the unitary conductance of AMPA receptor channels. However, LTP can also occur in the absence of any alteration in AMPA receptor unitary conductance. In the present study we have used whole-cell dendritic recording, failures analysis and non-stationary fluctuation analysis to investigate the mechanism of depotentiation of LTP. Results We find that when LTP involves an increase in unitary conductance, subsequent depotentiation invariably involves the return of unitary conductance to pre-LTP values. In contrast, when LTP does not involve a change in unitary conductance then depotentiation also occurs in the absence of any change in unitary conductance, indicating a reduction in the number of activated receptors as the most likely mechanism. Conclusions These data show that unitary conductance can be bi-directionally modified by synaptic activity. Furthermore, there are at least two distinct mechanisms to restore synaptic strength from a potentiated state, which depend upon the mechanism of the previous potentiation.

  13. Repulsive Casimir Force in Chiral Metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E.N.; Soukoulis, C.M.

    2009-09-04

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  14. Repulsive Casimir Force in Chiral Metamaterials

    OpenAIRE

    Zhao, R.; J. Zhou; Koschny, Th.; Economou, E. N.; C M Soukoulis

    2009-01-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  15. Repulsive Casimir Force in Chiral Metamaterials

    Science.gov (United States)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2009-09-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  16. Transport coefficients in Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Fraile, D.; Gomez Nicola, A. [Universidad Complutense, Departamentos de Fisica Teorica I y II, Madrid (Spain)

    2007-03-15

    We present recent results on the calculation of transport coefficients for a pion gas at zero chemical potential in Chiral Perturbation Theory (ChPT) using the Linear Response Theory (LRT). More precisely, we show the behavior of DC conductivity and shear viscosity at low temperatures. To compute transport coefficients, the standard power counting of ChPT has to be modified. The effects derived from imposing unitarity are also analyzed. As physical applications in relativistic heavy-ion collisions, we show the relation of the DC conductivity to soft-photon production and phenomenological effects related to a non-zero shear viscosity. In addition, our values for the shear viscosity to entropy ratio satisfy the KSS bound. (orig.)

  17. Chiral perturbation theory for lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Oliver

    2010-07-21

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  18. Nanoscale chirality in metal and semiconductor nanoparticles.

    Science.gov (United States)

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  19. Chiral quantum optics.

    Science.gov (United States)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  20. Chirally extended quantum chromodynamics

    CERN Document Server

    Brower, R C; Tan, C I; Richard C Brower; Yue Shen; Chung-I Tan

    1994-01-01

    We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar %\\sigma and \\pi fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investiga...

  1. The chicken or the egg; or Who ordered the chiral phase transition?

    CERN Document Server

    Kogan, I I; Tekin, B; Kogan, Ian I.; Kovner, Alex; Tekin, Bayram

    2001-01-01

    We draw an analogy between the deconfining transition in the 2+1 dimensional Georgi-Glashow model and the chiral phase transition in 3+1 dimensional QCD. Based on the detailed analysis of the former (hep-th/0010201) we suggest that the chiral symmetry restoration in QCD at high temperature is driven by the thermal ensemble of baryons and antibaryons. The chiral symmetry is restored when roughly half of the volume is occupied by the baryons. Surprisingly enough, even though baryons are rather heavy, a crude estimate for the critical temperature gives $T_c=180$ Mev. In this scenario the binding of the instantons is not the cause but rather a consequence of the chiral symmetry restoration.

  2. Charmless chiral perturbation theory for N_f=2+1+1 twisted mass lattice QCD

    CERN Document Server

    Bar, Oliver

    2014-01-01

    The chiral Lagrangian describing the low-energy behavior of N_f=2+1+1 twisted mass lattice QCD is constructed through O(a^2). In contrast to existing results the effects of a heavy charm quark are consistently removed, leaving behind a charmless 3-flavor Lagrangian. This Lagrangian is used to compute the pion and kaon masses to one loop in a regime where the pion mass splitting is large and taken as a leading order effect. In comparison with continuum chiral perturbation theory additional chiral logarithms are present in the results. In particular, chiral logarithms involving the neutral pion mass appear. These predict rather large finite volume corrections in the kaon mass which roughly account for the finite volume effects observed in lattice data.

  3. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly

    CERN Document Server

    Hirono, Yuji; Yin, Yi

    2015-01-01

    For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current - this is the Chiral Magnetic Effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity towards the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electric and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. We devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matt...

  4. Unitary theories in the work of Mira Fernandes (beyond general relativity and differential geometry)

    CERN Document Server

    Lemos, José P S

    2010-01-01

    An analysis of the work of Mira Fernandes on unitary theories is presented. First it is briefly mentioned the Portuguese scientific context of the 1920s. A short analysis of the extension of Riemann geometries to new generalized geometries with new affine connections, such as those of Weyl and Cartan, is given. Based on these new geometries, the unitary theories of the gravitational and electromagnetic fields, proposed by Weyl, Eddington, Einstein, and others are then explained. Finally, the book and one paper on connections and two papers on unitary theories, all written by Mira Fernandes, are analyzed and put in context.

  5. [Reactualization of the concept of unitary psychosis introduced by Joseph Guislain].

    Science.gov (United States)

    van Renynghe de Voxvrie, G

    1993-01-01

    This paper reminds the concept of a unitary nosological and pathogenic process that may be traced back to Joseph Guislain (1797-1860). The "phrénalgie initiale" was regarded as the initial stage of psychic illness by Guislain (Leçons orales, Ghent, 1852). That vision inspired the work of Wilhelm Griesinger (1817-1869) who further elaborated the concept of "Einheitspsychose" (Psychose unique--Unitary psychosis). That concept partially inspired Emil Kräpelin (1856-1926). Current classification systems like ICD-10 and DSM-III-R attempt to synthesize different views and the concept of unitary psychosis is actualized in the contemporary transnosography.

  6. Participatory dreaming: a conceptual exploration from a unitary appreciative inquiry perspective.

    Science.gov (United States)

    Repede, Elizabeth J

    2009-10-01

    Dreaming is a universal phenomenon in human experience and one that carries multiple meanings in the narrative discourse across disciplines. Dreams can be collective, communal, and emancipatory, as well as individual. While individual dreaming has been extensively studied in the literature, the participatory nature of dreaming as a unitary phenomenon is limited. The concept of participatory dreaming within a unitary appreciative framework for healing is explored from perspectives in anthropology, psychology, and nursing. A participatory model of dreaming is proposed from a synthesis of the literature for use in future research using unitary appreciative inquiry.

  7. Participatory dreaming: a unitary appreciative inquiry into healing with women abused as children.

    Science.gov (United States)

    Repede, Elizabeth

    2011-01-01

    Unitary appreciative inquiry was used to explore healing in the lives of 11 women abused as children using a model of participatory dreaming. Aesthetics, imagery, and journaling were used in a participatory design aimed at the appreciation of healing in the lives of the participants as it related to the abuse. Using Cowling's theory of unitary healing, research and practice were combined within a unitary-transformative framework. Participatory dreaming was useful in illuminating the life patterning in the lives of the women and promoted the development of new knowledge and skills that led to change and transformation, both individually and collectively.

  8. Three-dimensional Majorana fermions in chiral superconductors.

    Science.gov (United States)

    Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang

    2016-12-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.

  9. Large Nc volume reduction and chiral random matrix theory

    CERN Document Server

    Lee, Jong-Wan; Yamada, Norikazu

    2013-01-01

    Motivated by recent progress on the understanding of the Eguchi-Kawai (EK) volume equivalence and growing interest in conformal window, we simultaneously use the large-Nc volume reduction and Chiral Random Matrix Theory (chRMT) to study the chiral symmetry breaking of four dimensional SU(Nc) gauge theory with adjoint fermions in the large Nc limit. Although some cares are required because the chRMT limit and 't Hooft limit are not compatible in general, we show that the breakdown of the chiral symmetry can be detected in large-Nc gauge theories. As a first step, we mainly focus on the quenched approximation to establish the methodology. We first confirm that heavy adjoint fermions, introduced as the center symmetry preserver, work as expected and thanks to them the volume reduction holds. Using massless overlap fermion as a probe, we then calculate the low-lying Dirac spectrum for fermion in the adjoint representation to compare to that of chRMT, and find that chiral symmetry is indeed broken in the quenched ...

  10. Out-of-Equilibrium Chiral Magnetic Effect at Strong Coupling

    CERN Document Server

    Lin, Shu

    2013-01-01

    We study the charge transports originating from triangle anomaly in out-of-equilibrium conditions in the framework of AdS/CFT correspondence at strong coupling, to gain useful insights on possible charge separation effects that may happen in the very early stages of heavy-ion collisions. We first construct a gravity background of a homogeneous mass shell with a finite (axial) charge density gravitationally collapsing to a charged blackhole, which serves as a dual model for out-of-equilibrium charged plasma undergoing thermalization. We find that a finite charge density in the plasma slows down the thermalization. We then study the out-of-equilibrium properties of Chiral Magnetic Effect and Chiral Magnetic Wave in this background. As the medium thermalizes, the magnitude of chiral magnetic conductivity and the response time delay grow. We find a dynamical peak in the spectral function of retarded current correlator, which we identify as an out-of-equilibrium chiral magnetic wave. The group velocity of the out-...

  11. Current-driven dynamics of chiral ferromagnetic domain walls.

    Science.gov (United States)

    Emori, Satoru; Bauer, Uwe; Ahn, Sung-Min; Martinez, Eduardo; Beach, Geoffrey S D

    2013-07-01

    In most ferromagnets the magnetization rotates from one domain to the next with no preferred handedness. However, broken inversion symmetry can lift the chiral degeneracy, leading to topologically rich spin textures such as spin spirals and skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here we show that in ultrathin metallic ferromagnets sandwiched between a heavy metal and an oxide, the DMI stabilizes chiral domain walls (DWs) whose spin texture enables extremely efficient current-driven motion. We show that spin torque from the spin Hall effect drives DWs in opposite directions in Pt/CoFe/MgO and Ta/CoFe/MgO, which can be explained only if the DWs assume a Néel configuration with left-handed chirality. We directly confirm the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral. This work resolves the origin of controversial experimental results and highlights a new path towards interfacial design of spintronic devices.

  12. Chiral quantum dot based materials

    Science.gov (United States)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  13. [A comment on chiral thin layer chromatography].

    Science.gov (United States)

    Chen, Xuexian; Yuan, Liming

    2016-01-01

    In recent eight years, authors' group has repeated a lot of experiments of chiral thin layer chromatography coming from literature. From the practical opinion, we summarized that there are nine characteristics for chiral thin layer chromatography. Some progresses of chiral thin layer chromatography are reviewed, and the enantioselectivity of a commercial chiral thin layer plate is introduced. The study of vancomycin as the chiral selector in thin layer chromatography is also reported.

  14. QQqq Four-Quark Bound States in Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; ZHANG Hai-Xia; ZHANG Zong-Ye

    2008-01-01

    The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JP=1+, I=0 and for the ccnn (JP=1+, I=0) configuration, which is not bound but slightly above the D*D* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the chiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.

  15. The chiral magnetic wave in an expanding QCD fluid

    CERN Document Server

    Taghavi, Seyed Farid

    2015-01-01

    As a consequence of the chiral anomaly, the hydrodynamics of hot QCD matter coupled to QED allows for a long-wavelength mode of chiral charge density, the chiral magnetic wave (CMW), that provides for a mechanism of electric charge separation along the direction of an external magnetic field. Here, we investigate the efficiency of this mechanism for values of the time-dependent magnetic field and of the energy density attained in the hot QCD matter of ultra-relativistic heavy ion collisions. To this end, we derive the CMW equations of motion for expanding systems by treating the CMW as a charge perturbation on top of an expanding Bjorken-type background field in the limit of small chemical potential. Both, approximate analytical and full numerical solutions to these equations of motion indicate that for the lifetime and thermodynamic conditions of ultra-relativistic heavy ion collisions, the efficiency of CMW-induced electric charge separation decreases with increasing center of mass energy and that the effec...

  16. Chiral magnetic wave in an expanding QCD fluid

    Science.gov (United States)

    Taghavi, Seyed Farid; Wiedemann, Urs Achim

    2015-02-01

    As a consequence of the chiral anomaly, the hydrodynamics of hot quantum chromodynamics (QCD) matter coupled to quantum electrodynamics allows for a long-wavelength mode of chiral charge density, the chiral magnetic wave (CMW), that provides for a mechanism of electric charge separation along the direction of an external magnetic field. Here, we investigate the efficiency of this mechanism for values of the time-dependent magnetic field and of the energy density attained in the hot QCD matter of ultrarelativistic heavy-ion collisions. To this end, we derive the CMW equations of motion for expanding systems by treating the CMW as a charge perturbation on top of an expanding Bjorken-type background field in the limit μ /T ≪1 . Both, approximate analytical and full numerical solutions to these equations of motion, indicate that for the lifetime and thermodynamic conditions of ultrarelativistic heavy-ion collisions, the efficiency of CMW-induced electric charge separation decreases with increasing center-of-mass energy and that the effect is numerically very small. We note, however, that if sizable oriented asymmetries in the axial charge distribution (that are not induced by the CMW) are present in the early fluid dynamic evolution, then the mechanism of CMW-induced electric charge separation can be much more efficient.

  17. Chiral Fermions on the Lattice

    CERN Document Server

    Bietenholz, Wolfgang

    2010-01-01

    In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.

  18. Coupling chiral bosons to gravity

    CERN Document Server

    Braga, N R F; Braga, N R F; Wotzasek, C

    1995-01-01

    chiral boson actions of Floreanini and Jackiw (FJ), and of McClain,Wu and Yu (MWY) have been recently shown to be different representations of the same chiral boson theory. MWY displays manifest covariance and also a (gauge) symmetry that is hidden in the FJ side, which, on the other hand, displays the physical spectrum in a simple manner. We make use of the covariance of the MWY representation for the chiral boson to couple it to background gravity showing explicitly the equivalence with the previous results for the FJ representation

  19. Chiral gravity in higher dimensions

    CERN Document Server

    Ootsuka, T; Ura, K; Ootsuka, Takayoshi; Tanaka, Erico; Ura, Kousuke

    2003-01-01

    We construct a chiral theory of gravity in 7 and 8 dimensions, which are equivalent to Einstein-Cartan theory using less variables. In these dimensions, we can construct such higher dimensional chiral gravity because of the existence of gravitational instanton. The octonionic-valued variables in the theory represent the deviation from the gravitational instanton, and from their non-associativity, prevents the theory to be SO(n) gauge invariant. Still the chiral gravity holds G_2 (7-D), and Spin(7) (8-D) gauge symmetry.

  20. Transport coefficients of heavy baryons

    Science.gov (United States)

    Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.

    2016-08-01

    We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.

  1. Deformations of Polyhedra and Polygons by the Unitary Group

    CERN Document Server

    Livine, Etera R

    2013-01-01

    We introduce the set of framed convex polyhedra with N faces as the symplectic quotient C^2N//SU(2). A framed polyhedron is then parametrized by N spinors living in C^2 satisfying suitable closure constraints and defines a usual convex polyhedron plus a phase for each face. We show that there is an action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any polyhedron onto any other with the same total area. This realizes the isomorphism of the space of framed polyhedra with the Grassmannian space U(N)/SU(2)*U(N-2). We show how to write averages and correlations of geometrical observables over the ensemble of polyhedra as polynomial integrals over U(N) and we use the Itzykson-Zuber formula from matrix models as the generating function for them. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners. The individual face areas are quantized as half-integers (spins) and the Hilbert spaces...

  2. Unitary Networks from the Exact Renormalization of Wave Functionals

    CERN Document Server

    Fliss, Jackson R; Parrikar, Onkar

    2016-01-01

    The exact renormalization group (ERG) for $O(N)$ vector models (at large $N$) on flat Euclidean space can be interpreted as the bulk dynamics corresponding to a holographically dual higher spin gauge theory on $AdS_{d+1}$. This was established in the sense that at large $N$ the generating functional of correlation functions of single trace operators is reproduced by the on-shell action of the bulk higher spin theory, which is most simply presented in a first-order (phase space) formalism. In this paper, we extend the ERG formalism to the wave functionals of arbitrary states of the $O(N)$ vector model at the free fixed point. We find that the ERG flow of the ground state and a specific class of excited states is implemented by the action of unitary operators which can be chosen to be local. Consequently, the ERG equations provide a continuum notion of a tensor network. We compare this tensor network with the entanglement renormalization networks, MERA, and its continuum version, cMERA, which have appeared rece...

  3. Renormalization of the unitary evolution equation for coined quantum walks

    Science.gov (United States)

    Boettcher, Stefan; Li, Shanshan; Portugal, Renato

    2017-03-01

    We consider discrete-time evolution equations in which the stochastic operator of a classical random walk is replaced by a unitary operator. Such a problem has gained much attention as a framework for coined quantum walks that are essential for attaining the Grover limit for quantum search algorithms in physically realizable, low-dimensional geometries. In particular, we analyze the exact real-space renormalization group (RG) procedure recently introduced to study the scaling of quantum walks on fractal networks. While this procedure, when implemented numerically, was able to provide some deep insights into the relation between classical and quantum walks, its analytic basis has remained obscure. Our discussion here is laying the groundwork for a rigorous implementation of the RG for this important class of transport and algorithmic problems, although some instances remain unresolved. Specifically, we find that the RG fixed-point analysis of the classical walk, which typically focuses on the dominant Jacobian eigenvalue {λ1} , with walk dimension dw\\text{RW}={{log}2}{λ1} , needs to be extended to include the subdominant eigenvalue {λ2} , such that the dimension of the quantum walk obtains dw\\text{QW}={{log}2}\\sqrt{{λ1}{λ2}} . With that extension, we obtain analytically previously conjectured results for dw\\text{QW} of Grover walks on all but one of the fractal networks that have been considered.

  4. Unitary fermions and Lüscher's formula on a crystal

    Science.gov (United States)

    Valiente, Manuel; Zinner, Nikolaj T.

    2016-11-01

    We consider the low-energy particle-particle scattering properties in a periodic simple cubic crystal. In particular, we investigate the relation between the two-body scattering length and the energy shift experienced by the lowest-lying unbound state when this is placed in a periodic finite box. We introduce a continuum model for s-wave contact interactions that respects the symmetry of the Brillouin zone in its regularisation and renormalisation procedures, and corresponds to the naïve continuum limit of the Hubbard model. The energy shifts are found to be identical to those obtained in the usual spherically symmetric renormalisation scheme upon resolving an important subtlety regarding the cutoff procedure. We then particularize to the Hubbard model, and find that for large finite lattices the results are identical to those obtained in the continuum limit. The results reported here are valid in the weak, intermediate and unitary limits. These may be used to significantly ease the extraction of scattering information, and therefore effective interactions in condensed matter systems in realistic periodic potentials. This can achieved via exact diagonalisation or Monte Carlo methods, without the need to solve challenging, genuine multichannel collisional problems with very restricted symmetry simplifications.

  5. Conditional Mutual Information of Bipartite Unitaries and Scrambling

    CERN Document Server

    Ding, Dawei; Walter, Michael

    2016-01-01

    One way to diagnose chaos in bipartite unitary channels is via the negativity of the tripartite information of the corresponding Choi state, which for certain choices of the subsystems reduces to the negative conditional mutual information (CMI). We study this quantity from a quantum information-theoretic perspective to clarify its role in diagnosing scrambling. When the CMI is zero, we find that the channel has a special normal form consisting of local channels between individual inputs and outputs. However, we find that arbitrarily low CMI does not imply arbitrary proximity to a channel of this form, although it does imply a type of approximate recoverability of one of the inputs. When the CMI is maximal, we find that the residual channel from an individual input to an individual output is completely depolarizing when the other inputs are maximally mixed. However, we again find that this result is not robust. We also extend some of these results to the multipartite case and to the case of Haar-random pure i...

  6. On the infinite fern of Galois representations of unitary type

    CERN Document Server

    Chenevier, Gaetan

    2009-01-01

    Let E be a CM number field, F its maximal totally real subfield, c the generator of Gal(E/F), p an odd prime totally split in E, and S a finite set of places of E containing the places above p. Let r : G_{E,S} --> GL_3(F_p^bar) be a modular, absolutely irreducible, Galois representation of type U(3), i.e. such that r^* = r^c, and let X(r) be the rigid analytic generic fiber of its universal G_{E,S}-deformation of type U(3). We show that each irreducible component of the Zariski-closure of the modular points in X(r) has dimension at least 6[F:Q]. We study an analogue of the infinite fern of Gouvea-Mazur in this context and deal with the Hilbert modular case as well. As important steps, we prove that any first order deformation of a generic enough crystalline representation of Gal(Q_p^bar/Q_p) (of any dimension) is a linear combination of trianguline deformations, and that unitary eigenvarieties (of any rank) are etale over the weight space at the non-critical classical points. As another application, we obtain...

  7. Holographic Fluctuations from Unitary de Sitter Invariant Field Theory

    CERN Document Server

    Banks, Tom; Torres, T J; Wainwright, Carroll L

    2013-01-01

    We continue the study of inflationary fluctuations in Holographic Space Time models of inflation. We argue that the holographic theory of inflation provides a physical context for what is often called dS/CFT. The holographic theory is a quantum theory which, in the limit of a large number of e-foldings, gives rise to a field theory on $S^3$, which is the representation space for a unitary representation of SO(1,4). This is not a conventional CFT, and we do not know the detailed non-perturbative axioms for correlation functions. However, the two- and three-point functions are completely determined by symmetry, and coincide up to a few constants (really functions of the background FRW geometry) with those calculated in a single field slow-roll inflation model. The only significant deviation from slow roll is in the tensor fluctuations. We predict zero tensor tilt and roughly equal weight for all three conformally invariant tensor 3-point functions (unless parity is imposed as a symmetry). We discuss the relatio...

  8. Spectral Characteristics of the Unitary Critical Almost-Mathieu Operator

    Science.gov (United States)

    Fillman, Jake; Ong, Darren C.; Zhang, Zhenghe

    2016-10-01

    We discuss spectral characteristics of a one-dimensional quantum walk whose coins are distributed quasi-periodically. The unitary update rule of this quantum walk shares many spectral characteristics with the critical Almost-Mathieu Operator; however, it possesses a feature not present in the Almost-Mathieu Operator, namely singularity of the associated cocycles (this feature is, however, present in the so-called Extended Harper's Model). We show that this operator has empty absolutely continuous spectrum and that the Lyapunov exponent vanishes on the spectrum; hence, this model exhibits Cantor spectrum of zero Lebesgue measure for all irrational frequencies and arbitrary phase, which in physics is known as Hofstadter's butterfly. In fact, we will show something stronger, namely, that all spectral parameters in the spectrum are of critical type, in the language of Avila's global theory of analytic quasiperiodic cocycles. We further prove that it has empty point spectrum for each irrational frequency and away from a frequency-dependent set of phases having Lebesgue measure zero. The key ingredients in our proofs are an adaptation of Avila's Global Theory to the present setting, self-duality via the Fourier transform, and a Johnson-type theorem for singular dynamically defined CMV matrices which characterizes their spectra as the set of spectral parameters at which the associated cocycles fail to admit a dominated splitting.

  9. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    Energy Technology Data Exchange (ETDEWEB)

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  10. Neutron matter at low density and the unitary limit

    CERN Document Server

    Baldo, M

    2007-01-01

    Neutron matter at low density is studied within the hole-line expansion. Calculations are performed in the range of Fermi momentum $k_F$ between 0.4 and 0.8 fm$^{-1}$. It is found that the Equation of State is determined by the $^1S_0$ channel only, the three-body forces contribution is quite small, the effect of the single particle potential is negligible and the three hole-line contribution is below 5% of the total energy and indeed vanishing small at the lowest densities. Despite the unitary limit is actually never reached, the total energy stays very close to one half of the free gas value throughout the considered density range. A rank one separable representation of the bare NN interaction, which reproduces the physical scattering length and effective range, gives results almost indistinguishable from the full Brueckner G-matrix calculations with a realistic force. The extension of the calculations below $k_F = 0.4$ fm$^{-1}$ does not indicate any pathological behavior of the neutron Equation of State.

  11. Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics

    CERN Document Server

    Ruggieri, M; Chernodub, M

    2016-01-01

    We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.

  12. Consistent chiral kinetic theory in Weyl materials: chiral magnetic plasmons

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern--Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. T...

  13. Field induced spin chirality and chirality switching in magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovskaya, Elena V., E-mail: elena_tartakovskaya@yahoo.com [Institute of Magnetism NAS of Ukraine, Vernadsky blvd 36b, 03142 Kiev (Ukraine); Institute of High Technologies, Taras Shevchenko National University of Kiev, 03022 Kiev (Ukraine)

    2015-05-01

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman–Kittel–Kasuya–Yosida and the Dsyaloshinsky–Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness. - Highlights: • Field-induced spin chirality in magnetic multilayers is explained. • The roles of the RKKY, the DM and the Zeeman interactions are clarified. • Theoretical analysis of the chirality factor is in agreement with experimental data.

  14. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    Energy Technology Data Exchange (ETDEWEB)

    Akibue, Seiseki [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.

  15. Heavy Quarks, Origin of Mass, and CP Violation for Universe

    CERN Document Server

    Hou, George W S

    2013-01-01

    A scale-invariant "Gap Equation" is constructed for chiral quark $Q$ by Goldstone, or $V_L$, exchange, where massless input is guaranteed by gauge invariance. A numerical solution is found for Yukawa coupling $\\sim 4\\pi$. In turn, because this gap equation is scale invariant, the strong coupling solution is compatible with a 126 GeV dilaton, which would be a true messenger from higher energies. Some possible phenomena pertaining to heavy chiral quarks at few TeV scale is offered. Adding this heavy quark sector may provide enough CP violation for generating the matter dominance of the Universe.

  16. Unitary background gauges and hamiltonian approach to Yang-Mills theories

    CERN Document Server

    Dubin, A Yu

    1995-01-01

    A variety of unitary gauges for perturbation theory in a background field is considered in order to find those most suitable for a Hamiltonian treatment of the system. We select two convenient gauges and derive the propagators D_{\\mu\

  17. Error correcting codes for binary unitary channels on multipartite quantum systems

    CERN Document Server

    Choi, M D; Kribs, D W; Zyczkowski, K; Choi, Man-Duen; Holbrook, John A.; Kribs, David W.; Zyczkowski, Karol

    2006-01-01

    We conduct an analysis of ideal error correcting codes for randomized unitary channels determined by two unitary error operators -- what we call ``binary unitary channels'' -- on multipartite quantum systems. In a wide variety of cases we give a complete description of the code structure for such channels. Specifically, we find a practical geometric technique to determine the existence of codes of arbitrary dimension, and then derive an explicit construction of codes of a given dimension when they exist. For instance, given any binary unitary noise model on an n-qubit system, we design codes that support n-2 qubits. We accomplish this by verifying a conjecture for higher rank numerical ranges of normal operators in many cases.

  18. Forcing a unitary transformation by an external field comparing two approaches based on optimal control theory

    CERN Document Server

    Palao, J P; Palao, Jose P.; Kosloff, Ronnie

    2002-01-01

    A quantum gate is realized by specific unitary transformations operating on states representing qubits. Considering a quantum system employed as an element in a quantum computing scheme, the task is therefore to enforce the pre-specified unitary transformation. This task is carried out by an external time dependent field. Optimal control theory has been suggested as a method to compute the external field which alters the evolution of the system such that it performs the desire unitary transformation. This study compares two recent implementations of optimal control theory to find the field that induces a quantum gate. The first approach is based on the equation of motion of the unitary transformation. The second approach generalizes the state to state formulation of optimal control theory. This work highlight the formal relation between the two approaches.

  19. Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (II) - Application

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong; PAN Feng

    2001-01-01

    Simple analytical expressions for one- and two-body matrix elements in the unitary group approach to the configuration interaction problems of many-electron systems are obtained based on the previous results for general Un irreps.

  20. General Formalism for Setting Up Unitary Transform Operators from Classical Transforms via IWOP Technique

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; HU Shan

    2006-01-01

    We present a general formalism for setting up unitary transform operators from classical transforms via the technique of integration within an ordered product of operators, their normally ordered form can be obtained too.

  1. Magnetic moments of heavy baryons in the relativistic three-quark model

    CERN Document Server

    Faessler, A; Ivanov, M A; Körner, J G; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.

    2006-01-01

    The magnetic moments of ground state single, double and triple heavy baryons containing charm or bottom quarks are calculated in a relativistic three-quark model, which, in the heavy quark limit, is consistent with Heavy Quark Effective Theory and Heavy Hadron Chiral Perturbation Theory. The internal quark structure of baryons is modeled by baryonic three-quark currents with a spin-flavor structure patterned according to standard covariant baryonic wave functions and currents used in QCD sum rule calculations.

  2. Reducible chiral metamaterials

    CERN Document Server

    Ciattoni, Alessandro; Rizza, Carlo

    2016-01-01

    We introduce the concept of 3D reducible metamaterials whose constituent permittivity can be modelled by a factorized profile. The separated cartesian coordinates dependence, easily achieved in all-optical reconfigurable materials, allows to physically regard a reducible metamaterial as a superposition of three fictitious 1D generating media. We prove that, in the long-wavelength limit, the electromagnetic response of reducible metamaterials can be reconstructed from the properties of the 1D generating media whose interplay provides large freedom to control the electromagnetic chirality. Our approach introduces an unprecedented decomposition strategy in metamaterial science which allows the full ab-initio and flexible design of a complex 3D bianisotropic response by using 1D metamaterials as basic building blocks.

  3. Chirality in photonic systems

    Science.gov (United States)

    Solnyshkov, Dmitry; Malpuech, Guillaume

    2016-10-01

    The optical modes of photonic structures are the so-called TE and TM modes that bring intrinsic spin-orbit coupling and chirality to these systems. This, combined with the unique flexibility of design of the photonic potential, and the possibility to mix photon states with excitonic resonances, sensitive to magnetic field and interactions, allows us to achieve many phenomena, often analogous to other solid-state systems. In this contribution, we review in a qualitative and comprehensive way several of these realizations, namely the optical spin Hall effect, the creation of spin currents protected by a non-trivial geometry, the Berry curvature for photons, and the photonic/polaritonic topological insulator.

  4. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  5. Can a non-unitary effect be prominent In neutrino oscillation measurements?

    Institute of Scientific and Technical Information of China (English)

    L(U) Lei; WANG Wen-Yu; XIONG zhao-Hua

    2010-01-01

    Subject to neutrino experiments, the mixing matrix of ordinary neutrinos can still have small vi-olation from unitarity. We introduce a quasi-unitary matrix to interpret this violation and propose a natural scheme to parameterize it. A quasi-unitary factor △QF is defined to be measured in neutrino oscillation exper-iments and the numerical results show that the improvement in experimental precision may help us figure out the secret of neutrino mixing.

  6. Elementary proofs of two theorems involving arguments of eigenvalues of a product of two unitary matrices

    Directory of Open Access Journals (Sweden)

    Chau Hoi

    2011-01-01

    Full Text Available Abstract We give elementary proofs of two theorems concerning bounds on the maximum argument of the eigenvalues of a product of two unitary matrices--one by Childs et al. [J. Mod. Phys. 47, 155 (2000] and the other one by Chau [Quant. Inf. Comp. 11, 721 (2011]. Our proofs have the advantages that the necessary and sufficient conditions for equalities are apparent and that they can be readily generalized to the case of infinite-dimensional unitary operators.

  7. Branching laws for small unitary representations of GL(n,C)

    DEFF Research Database (Denmark)

    Möllers, Jan; Schwarz, Benjamin

    2014-01-01

    The unitary principal series representations of $G=GL(n,\\mathbb{C})$ induced from a character of the maximal parabolic subgroup $P=(GL(1,\\mathbb{C})\\times GL(n-1,\\mathbb{C}))\\ltimes\\mathbb{C}^{n-1}$ attain the minimal Gelfand--Kirillov dimension among all infinite-dimensional unitary representati...... representations of $G$. We find the explicit branching laws for the restriction of these representations to symmetric subgroups of $G$....

  8. Chiral Dynamics With Wilson Fermions

    CERN Document Server

    Splittorff, K

    2012-01-01

    Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.

  9. Domains of Disoriented Chiral Condensate

    CERN Document Server

    Amado, R D; Lu, Yang

    1996-01-01

    The probability distribution of neutral pion fraction from independent domains of disoriented chiral condensate is characterized. The signal for the condensate is clear for a small number of domains but is greatly reduced for more than three.

  10. Chiral Quark Model of Mesons

    CERN Document Server

    Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin

    1999-01-01

    We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.

  11. Chirally motivated K - nuclear potentials

    Science.gov (United States)

    Cieplý, A.; Friedman, E.; Gal, A.; Gazda, D.; Mareš, J.

    2011-08-01

    In-medium subthreshold Kbar N scattering amplitudes calculated within a chirally motivated meson-baryon coupled-channel model are used self consistently to confront K- atom data across the periodic table. Substantially deeper K- nuclear potentials are obtained compared to the shallow potentials derived in some approaches from threshold Kbar N amplitudes, with Re VK-chiral = - (85 ± 5) MeV at nuclear matter density. When Kbar NN contributions are incorporated phenomenologically, a very deep K- nuclear potential results, Re VK-chiral + phen . = - (180 ± 5) MeV, in agreement with density dependent potentials obtained in purely phenomenological fits to the data. Self consistent dynamical calculations of K--nuclear quasibound states generated by VK-chiral are reported and discussed.

  12. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    B Ananthanarayan

    2003-11-01

    A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  13. Chiral perturbation theory of muonic hydrogen Lamb shift: polarizability contribution

    CERN Document Server

    Alarcón, Jose Manuel; Pascalutsa, Vladimir

    2013-01-01

    The proton polarizability effect in the muonic-hydrogen Lamb shift comes out as a prediction of baryon chiral perturbation theory at leading order and our calculation yields for it: $\\Delta E^{(\\mathrm{pol})} (2P-2S) = 8^{+3}_{-1}\\, \\mu$eV. This result is consistent with most of evaluations based on dispersive sum rules, but is about a factor of two smaller than the recent result obtained in {\\em heavy-baryon} chiral perturbation theory. We also find that the effect of $\\Delta(1232)$-resonance excitation on the Lamb-shift is suppressed, as is the entire contribution of the magnetic polarizability; the electric polarizability dominates. Our results reaffirm the point of view that the proton structure effects, beyond the charge radius, are too small to resolve the `proton radius puzzle'.

  14. \\pi N scattering in relativistic baryon chiral perturbation theory revisited

    CERN Document Server

    Alarcon, J M; Oller, J A; Alvarez-Ruso, L

    2011-01-01

    We have analyzed pion-nucleon scattering using the manifestly relativistic covariant framework of Infrared Regularization up to {\\cal O}(q^3) in the chiral expansion, where q is a generic small momentum. We describe the low-energy phase shifts with a similar quality as previously achieved with Heavy Baryon Chiral Perturbation Theory, \\sqrt{s}\\lesssim1.14 GeV. New values are provided for the {\\cal O}(q^2) and {\\cal O}(q^3) low-energy constants, which are compared with previous determinations. This is also the case for the scattering lengths and volumes. Finally, we have unitarized the previous amplitudes and as a result the energy range where data are reproduced increases significantly.

  15. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    Science.gov (United States)

    Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2017-02-01

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.

  16. Large-Nc Gauge Theory and Chiral Random Matrix Theory

    Science.gov (United States)

    Hanada, Masanori; Lee, Jong-Wan; Yamada, Norikazu

    Effective theory approaches and the large-Nc limit are useful for studying the strongly coupled gauge theories. In this talk we consider how the chiral random matrix theory (χRMT) can be used in the study of large-Nc gauge theories. It turns out the parameter regions, in which each of these two approaches are valid, are different. Still, however, we show that the breakdown of chiral symmetry can be detected by combining the large-Nc argument and the χRMT with some cares. As a demonstration, we numerically study the four dimensional SU(Nc) gauge theory with Nf = 2 heavy adjoint fermions on a 24 lattice by using Monte-Carlo simulations, which is related to the infinite volume lattice through the Eguchi-Kawai equivalence.

  17. On the chiral separation effect in a slab

    CERN Document Server

    Sitenko, Yu A

    2016-01-01

    We study an influence of boundaries on chiral effects in hot dense relativistic spinor matter in a strong magnetic field which is transverse to bounding planes. The most general set of boundary conditions ensuring the confinement of matter within the bounding planes is considered. We find that, in thermal equilibrium, the nondissipative axial current along the magnetic field is induced, depending on chemical potential and temperature, as well as on a choice of boundary conditions. As temperature increases from zero to large values, a stepwise behaviour of the axial current density as a function of chemical potential is changed to a smooth one; the choice of a boundary condition can facilitate either amplification or diminution of the chiral separation effect. This points at a significant role of boundaries for physical systems with hot dense magnetized relativistic spinor matter, e.g., compact stars, heavy-ion collisions, novel materials known as Dirac and Weyl semimetals.

  18. Meta-Chirality: Fundamentals, Construction and Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Ma

    2017-05-01

    Full Text Available Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative refractive index. Chiral metamaterials have attracted great attentions in recent years and have given rise to a series of applications in polarization manipulation, imaging, chemical and biological detection, and nonlinear optics. Here we review the fundamental theory of chiral media and analyze the construction principles of some typical chiral metamaterials. Then, the progress in extrinsic chiral metamaterials, absorbing chiral metamaterials, and reconfigurable chiral metamaterials are summarized. In the last section, future trends in chiral metamaterials and application in nonlinear optics are introduced.

  19. Meta-Chirality: Fundamentals, Construction and Applications

    Science.gov (United States)

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Guo, Yinghui; Gao, Ping; Luo, Xiangang

    2017-01-01

    Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative refractive index. Chiral metamaterials have attracted great attentions in recent years and have given rise to a series of applications in polarization manipulation, imaging, chemical and biological detection, and nonlinear optics. Here we review the fundamental theory of chiral media and analyze the construction principles of some typical chiral metamaterials. Then, the progress in extrinsic chiral metamaterials, absorbing chiral metamaterials, and reconfigurable chiral metamaterials are summarized. In the last section, future trends in chiral metamaterials and application in nonlinear optics are introduced. PMID:28513560

  20. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  1. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  2. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  3. Baryon spectrum and chiral dynamics

    CERN Document Server

    Glozman, L Ya

    1995-01-01

    New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.

  4. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation.

    Science.gov (United States)

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-12

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  5. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation

    Science.gov (United States)

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-01

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  6. Chirality in Bare and Passivated Gold Nanoclusters

    CERN Document Server

    Garzon, I L; Rodrigues-Hernandez, J I; Sigal, I; Beltran, M R; Michaelian, K

    2002-01-01

    Chiral structures have been found as the lowest-energy isomers of bare (Au$_{28}$ and Au$_{55}) and thiol-passivated (Au$_{28}(SCH$_{3})$_{16}$ and Au$_{38}$(SCH$_{3}$)$_{24}) gold nanoclusters. The degree of chirality existing in the chiral clusters was calculated using the Hausdorff chirality measure. We found that the index of chirality is higher in the passivated clusters and decreases with the cluster size. These results are consistent with the observed chiroptical activity recently reported for glutahione-passivated gold nanoclusters, and provide theoretical support for the existence of chirality in these novel compounds.

  7. Using the Chiral Organophosphorus Derivatizing Agents for Determination of the Enantiomeric Composition of Chiral Carboxylic Acids by 31PNMR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Chao CHE; Zhong Ning ZHANG; Gui Lan HUANG; Xin Xing WANG; Zhao Hai QIN

    2004-01-01

    The use of chiral organophosphorus derivatizing agents prepared in situ from chiral tartrate or chiral diamine for the 31PNMR determination of the enantiomeric composition of chiral carboxylic acids is described. The method is accurate, reliable and convenient.

  8. Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons

    Science.gov (United States)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-03-01

    We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern-Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields, taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also by oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. This finding suggests an efficient means of extracting the chiral shift parameter from the measurement of the plasma frequencies in Weyl materials.

  9. Completely general bounds on Non-Unitary leptonic mixing

    CERN Document Server

    Hernandez-Garcia, Josu

    2016-01-01

    We derive constraints on the mixing of heavy right-handed neutrinos with the SM fields in the most general Seesaw scenario where the heavy neutrinos are integrated out. Among the electroweak and flavour observables included in the global fit, $\\mu\\rightarrow e\\gamma$ sets the present strongest bound on the additional neutrino mixing, while in the future it will be dominated by $\\mu-e$ conversion in nuclei. Increasing its sensitivity in future experiments could probe Non-Unitarity in Lepton Flavour Violating processes. Nevertheless, in order to determine completely model-independent constraints, we provide a second set of bounds derived through a global fit that does not include LFV observables. These indirect constraints on the off-diagonal elements come from the diagonal bounds through the Schwarz inequality.

  10. Chiral Perturbation Theory and the $\\bar B \\bar B$ Strong Interaction

    CERN Document Server

    Liu, Zhan-Wei; Zhu, Shi-Lin

    2012-01-01

    We have calculated the potentials of the heavy (charmed or bottomed) pseudoscalar mesons up to $O(\\epsilon^2)$ with the heavy meson chiral perturbation theory. We take into account the contributions from the football, triangle, box, and crossed diagrams with the 2$\\phi$ exchange and one-loop corrections to the contact terms. We notice that the total 2$\\phi$-exchange potential alone is attractive in the small momentum region in the channel ${\\bar B \\bar B}^{I=1}$, ${\\bar B_s \\bar B_s}^{I=0}$, or ${\\bar B \\bar B_s}^{I=1/2}$, while repulsive in the channel ${\\bar B \\bar B}^{I=0}$. Hopefully the analytical chiral structures of the potentials may be useful in the extrapolation of the heavy meson interaction from lattice QCD simulation.

  11. An ancilla-based quantum simulation framework for non-unitary matrices

    Science.gov (United States)

    Daskin, Ammar; Kais, Sabre

    2017-01-01

    The success probability in an ancilla-based circuit generally decreases exponentially in the number of qubits consisted in the ancilla. Although the probability can be amplified through the amplitude amplification process, the input dependence of the amplitude amplification makes difficult to sequentially combine two or more ancilla-based circuits. A new version of the amplitude amplification known as the oblivious amplitude amplification runs independently of the input to the system register. This allows us to sequentially combine two or more ancilla-based circuits. However, this type of the amplification only works when the considered system is unitary or non-unitary but somehow close to a unitary. In this paper, we present a general framework to simulate non-unitary processes on ancilla-based quantum circuits in which the success probability is maximized by using the oblivious amplitude amplification. In particular, we show how to extend a non-unitary matrix to an almost unitary matrix. We then employ the extended matrix by using an ancilla-based circuit design along with the oblivious amplitude amplification. Measuring the distance of the produced matrix to the closest unitary matrix, a lower bound for the fidelity of the final state obtained from the oblivious amplitude amplification process is presented. Numerical simulations for random matrices of different sizes show that independent of the system size, the final amplified probabilities are generally around 0.75 and the fidelity of the final state is mostly high and around 0.95. Furthermore, we discuss the complexity analysis and show that combining two such ancilla-based circuits, a matrix product can be implemented. This may lead us to efficiently implement matrix functions represented as infinite matrix products on quantum computers.

  12. An Inherent Chiral Calix[4]arene Bearing Chiral Groups without Forming Sub-ring

    Institute of Scientific and Technical Information of China (English)

    Xian Xian LIU; Yan Song ZHENG; Wan Ling MO

    2006-01-01

    The NMR spectra revealed that the calixarene frame of 1, 3-disubstituted calix[4]arenes bearing optically active groups is asymmetric, even without the formation of a sub-ring. This inherent chirality arises from the interaction of the two chiral groups, which hinder the substituents' free rotation. Thus, these chiral calix[4]arenes display good chiral recognition ability.

  13. Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?

    Science.gov (United States)

    LeMarechal, Jean Francois

    2008-01-01

    Several pedagogical objects can be used to discuss chirality. Here, we use the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object. Octahedral chirality is used to find situations equivalent to the cut of the apple. (Contains 5 figures.)

  14. Vacuum structure in a chiral R+R{sup n} modification of pure supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Physics Department, Theory Unit, CERN, CH 1211, Geneva 23 (Switzerland); INFN – Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Department of Theoretical Physics, 24 quai E. Ansermet, CH-1211, Geneva 4 (Switzerland); Porrati, Massimo [CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY 10016 (United States)

    2013-11-25

    We discuss an R+R{sup n} class of modified N=1, D=4 supergravity models where the deformation is a monomial R{sup n}|{sub F} in the chiral scalar curvature multiplet R of the “old minimal” auxiliary field formulation. The scalaron and goldstino multiplets are dual to each other in this theory. Since one of them is not dynamical, this theory, as recently shown, cannot be used as the supersymmetric completion of R+R{sup n} gravity. This is confirmed by investigating the scalar potential and its critical points in the dual standard supergravity formulation with a single chiral multiplet with specific Kähler potential and superpotential. We study the vacuum structure of this dual theory and we find that there is always a supersymmetric Minkowski critical point which however is pathological for n⩾3 as it corresponds to a corner (n=3) and a cusp (n>3) point of the potential. For n>3 an anti-de Sitter regular supersymmetric vacuum emerges. As a result, this class of models are not appropriate to describe inflation. We also find the mass spectrum and we provide a general formula for the masses of the scalars of a chiral multiplet around the anti-de Sitter critical point and their relation to osp(1,4) unitary representations.

  15. Chaos of chiral condensate

    CERN Document Server

    Hashimoto, Koji; Yoshida, Kentaroh

    2016-01-01

    Assigning a chaos index for vacua of generic quantum field theories is a challenging problem. We find chaotic behavior of chiral condensates of a quantum gauge theory at strong coupling limit, by using the AdS/CFT correspondence. We evaluate the time evolution of homogeneous quark condensates and in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at large 't Hooft coupling lambda. At an equivalent classical gravity picture, a Lyapunov exponent is readily defined. We show that the condensates exhibit chaotic behavior for energy density E > (6x10^2) (N_c/lambda^2) (m_q)^4 where m_q is the quark mass. The energy region of the chaotic vacua of the N=2 supersymmetric QCD increases for smaller N_c or larger lambda. The Lyapunov exponent is calculated as a function of the theory (N_c,lambda,E), showing that the N=2 supersymmetric QCD is more chaotic for smaller N_c.

  16. Chiral Thirring–Wess model

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Anisur, E-mail: anisur.rahman@saha.ac.in

    2015-10-15

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.

  17. Chiral Logs in Quenched QCD

    CERN Document Server

    Dong, S J; Horváth, I; Lee, F X; Liu, K F; Mathur, N; Zhang, J B

    2003-01-01

    The quenched chiral logs are examined on a $16^3 \\times 28$ lattice with Iwasaki gauge action and overlap fermions. The pion decay constant $f_{\\pi}$ is used to set the lattice spacing, $a = 0.200(3)$ fm. With pion mass as low as $\\sim 180 {\\rm MeV}$, we see the quenched chiral logs clearly in $m_{\\pi}^2/m$ and $f_P$, the pseudoscalar decay constant. We analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory ($\\chi$PT) to apply. With the constrained curve fitting, we are able to extract the quenched chiral log parameter $\\delta$ together with the chiral cutoff $\\Lambda_{\\chi}$ and other parameters. Only for $m_{\\pi} \\leq 300 {\\rm MeV}$ do we obtain a consistent and stable fit with a constant $\\delta$ which we determine to be 0.23(2). By comparing to the $12^3 \\times 28$ lattice, we estimate the finite volume effect to be about 1.8% for the smallest pion mass. We also study the quenched non-analytic terms in the nucleon and the $\\rho$ masses...

  18. Orientation-dependent handedness and chiral design

    OpenAIRE

    Efrati, Efi; Irvine, William T. M.

    2013-01-01

    Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in ...

  19. Chiral gap effect in curved space

    CERN Document Server

    Flachi, Antonino

    2014-01-01

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  20. Chirality: a relational geometric-physical property.

    Science.gov (United States)

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term.

  1. Bifurcated, modular syntheses of chiral annulet triazacyclononanes.

    Science.gov (United States)

    Argouarch, Gilles; Stones, Graham; Gibson, Colin L; Kennedy, Alan R; Sherrington, David C

    2003-12-21

    Three chiral 2,6-disubstituted tri-N-methyl azamacrocycles have been prepared by modular methods. These macrocycles were accessed from three chiral 1,4,7-triazaheptanes intermediates that were prepared by two independent routes. The first of these routes involved the benzylamine opening of chiral tosyl aziridines followed by debenzylation but was problematic on solubility grounds. A second, more effective, route was developed which avoided debenzylation by using ammonia in the nucleophilic opening of chiral tosyl aziridines.

  2. Chiral Decomposition For Non-Abelian Bosons

    CERN Document Server

    Braga, N R F; Braga, Nelson R. F.; Wotzasek, Clovis

    1996-01-01

    We study the non-abelian extension for the splitting of a scalar field into chiral components. Using this procedure we find a non ambiguous way of coupling a non abelian chiral scalar field to gravity. We start with a (non-chiral) WZW model covariantly coupled to a background metric and, after the splitting, arrive at two chiral Wess-Zumino-Witten (WZW) models coupled to gravity.

  3. On the Biological Advantage of Chirality

    OpenAIRE

    1999-01-01

    The presence of chirality in the main molecules of life may well be not just a structural artifact, but of pure biological advantage. The possibility of the existence of a phenomenon of a special mode of interaction, labeled as "chiral interaction" (CI), for which structural chirality is a necessary condition, is the main reason for such an advantage. In order to demonstrate such a possibility, macroscopic chiral devices are introduced and presented as analogies for such an interaction. For t...

  4. The reaction pi N-> pi pi N in chiral effective field theory with explicit Delta(1232)

    CERN Document Server

    Siemens, D; Epelbaum, E; Krebs, H; Meißner, Ulf-G

    2014-01-01

    The reaction pi N -> pi pi N is studied at tree level up to next-to-leading order in the framework of manifestly covariant baryon chiral perturbation theory with explicit Delta(1232) degrees of freedom. Using total cross section data to determine the relevant low-energy constants, predictions are made for various differential as well as total cross sections at higher energies. A detailed comparison of results based on the heavy-baryon and relativistic formulations of chiral perturbation theory with and without explicit Delta degrees of freedom is given.

  5. Forward virtual Compton scattering and the Lamb shift in chiral perturbation theory

    CERN Document Server

    Nevado, David

    2007-01-01

    We compute the spin-independent structure functions of the forward virtual-photon Compton tensor of the proton at one loop using heavy baryon chiral perturbation theory and dispersion relations. We study the relation between both approaches. We use these results to generalize some sum rules to virtual photon transfer momentum and relate them with sum rules in deep inelastic scattering. We then compute the leading chiral term of the polarizability correction to the Lamb shift of the hydrogen and muonic hydrogen. We obtain -87.05/n^3 Hz and -0.148/n^3 meV for the correction to the hydrogen and muonic hydrogen Lamb shift respectively.

  6. SU(3)-breaking corrections to the baryon-octet magnetic moments in chiral perturbation theory

    CERN Document Server

    Camalich, J Martin; Geng, L S; Vacas, M J Vicente

    2009-01-01

    We report a calculation of the baryon magnetic moments using covariant chiral perturbation theory within the extended-on-mass-shell renormalization scheme including intermediate octet and decuplet contributions. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3) breaking effects coming from the lowest-order loops. We compare with previous attempts at the same order using heavy-baryon and covariant infrared chiral perturbation theory, and discuss the source of the differences.

  7. Field induced spin chirality and chirality switching in magnetic multilayers

    Science.gov (United States)

    Tartakovskaya, Elena V.

    2015-05-01

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman-Kittel-Kasuya-Yosida and the Dsyaloshinsky-Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness.

  8. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors

    Science.gov (United States)

    Schemm, E. R.; Levenson-Falk, E. M.; Kapitulnik, A.

    2017-04-01

    The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of 3He-B, all of the known or suspected chiral - that is to say time-reversal symmetry-breaking (TRSB) - superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.

  9. Neutrino Oscillation Induced by Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei

    2009-01-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  10. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    1998-01-01

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral powe

  11. Shear Viscosity of Turbulent Chiral Plasma

    CERN Document Server

    Kumar, Avdhesh; Das, Amita; Kaw, P K

    2016-01-01

    It is well known that the difference between the chemical potentials of left-handed and right-handed particles in a parity violating (chiral) plasma can lead to an instability. We show that the chiral instability may drive turbulent transport. Further we estimate the anomalous viscosity of chiral plasma arising from the enhanced collisionality due to turbulence.

  12. Exact Chiral Symmetry on the Lattice

    CERN Document Server

    Neuberger, H

    2001-01-01

    Developments during the last eight years have refuted the folklore that chiral symmetries cannot be preserved on the lattice. The mechanism that permits chiral symmetry to coexist with the lattice is quite general and may work in Nature as well. The reconciliation between chiral symmetry and the lattice is likely to revolutionize the field of numerical QCD.

  13. Secure two-party quantum evaluation of unitaries against specious adversaries

    CERN Document Server

    Dupuis, Frédéric; Salvail, Louis

    2010-01-01

    We describe how any two-party quantum computation, specified by a unitary which simultaneously acts on the registers of both parties, can be privately implemented against a quantum version of classical semi-honest adversaries that we call specious. Our construction requires two ideal functionalities to garantee privacy: a private SWAP between registers held by the two parties and a classical private AND-box equivalent to oblivious transfer. If the unitary to be evaluated is in the Clifford group then only one call to SWAP is required for privacy. On the other hand, any unitary not in the Clifford requires one call to an AND-box per R-gate in the circuit. Since SWAP is itself in the Clifford group, this functionality is universal for the private evaluation of any unitary in that group. SWAP can be built from a classical bit commitment scheme or an AND-box but an AND-box cannot be constructed from SWAP. It follows that unitaries in the Clifford group are to some extent the easy ones. We also show that SWAP cann...

  14. Matrix elements and duality for type 2 unitary representations of the Lie superalgebra gl(m|n)

    Energy Technology Data Exchange (ETDEWEB)

    Werry, Jason L.; Gould, Mark D.; Isaac, Phillip S. [School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072 (Australia)

    2015-12-15

    The characteristic identity formalism discussed in our recent articles is further utilized to derive matrix elements of type 2 unitary irreducible gl(m|n) modules. In particular, we give matrix element formulae for all gl(m|n) generators, including the non-elementary generators, together with their phases on finite dimensional type 2 unitary irreducible representations which include the contravariant tensor representations and an additional class of essentially typical representations. Remarkably, we find that the type 2 unitary matrix element equations coincide with the type 1 unitary matrix element equations for non-vanishing matrix elements up to a phase.

  15. Synthetic Applications of Chiral Furanboronate

    Institute of Scientific and Technical Information of China (English)

    CHAN; KinFai

    2001-01-01

    We recently uncovered that consecutive reactions of chiral furfural-boronate 1 with a lithium alkoxide and a nucleophile led to the formation of alcohols 2 with good diastereoselection in favor of S-configuration at the newly generated chiral carbon. In addition, it was also found that 2a and 2b were chromatographically separable on a silica gel column. This reaction is believed to involve a tetrahedral borate intermediate, as can be substantiated by 11BNMR spectroscopic studies. Chiral furanmethanolboronates 2a(or 2b) underwent a palladium-catalyzed Suzuki coupling to form enantiomerically pure furans 3, which can be further converted to the synthetically useful hydroxypyranones 4.1,2,3 In addition, Mukaiyama reaction of 1 also led to chromatographically separable diastereomeric aldol-products. The scope and limitation of these conversions will be discussed.  ……

  16. Chiral separation of agricultural fungicides.

    Science.gov (United States)

    Pérez-Fernández, Virginia; García, Maria Ángeles; Marina, Maria Luisa

    2011-09-23

    Fungicides are very important and diverse environmental and agricultural concern species. Their determination in commercial formulations or environmental matrices, requires highly efficient, selective and sensitive methods. A significant number of these chemicals are chiral with the activity residing usually in one of the enantiomers. The different toxicological and degradation behavior observed in many cases for fungicide enantiomers, results in the need to investigate them separately. For this purpose, separation techniques such as GC, HPLC, supercritical fluid chromatography (SFC) and CE have widely been employed although, at present, HPLC still dominates chromatographic chiral analysis of fungicides. This review covers the literature concerning the enantiomeric separation of fungicides usually employed in agriculture grouping the chiral separation methodologies developed for their analysis in environmental, biological, and food samples.

  17. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented.

  18. Chiral cardiovascular drugs: an overview.

    Science.gov (United States)

    Ranade, Vasant V; Somberg, John C

    2005-01-01

    Stereochemistry in drug molecules is rapidly becoming an important aspect in drug research, design, and development. Recently, individual stereoisomers of drug molecules with asymmetric centers such as fexofenadine, cetirizine, verapamil, fluoxetine, levalbutarol, and amphetamine, for example, have been separated and developed as individual drugs. These stereoisomers have different therapeutic activity, and each isomer has contributed differently with respect to its formulation's pharmacologic activity, side effects, and toxicity. The present overview discusses chirality among a select group of cardiovascular drugs, their stereochemical synthesis/preparation, isolation techniques using chiral chromatography, methods for confirmation of their enantiomeric purity, pharmacodynamics, and pharmacokinetics. Chirality has been visualized as an important factor in cardiovascular research. It is also becoming evident in other areas of therapeutics.

  19. Synthetic Applications of Chiral Furanboronate

    Institute of Scientific and Technical Information of China (English)

    CHAN KinFai; WONG Henry N,C.

    2001-01-01

    @@ We recently uncovered that consecutive reactions of chiral furfural-boronate 1 with a lithium alkoxide and a nucleophile led to the formation of alcohols 2 with good diastereoselection in favor of S-configuration at the newly generated chiral carbon. In addition, it was also found that 2a and 2b were chromatographically separable on a silica gel column. This reaction is believed to involve a tetrahedral borate intermediate, as can be substantiated by 11BNMR spectroscopic studies. Chiral furanmethanolboronates 2a(or 2b) underwent a palladium-catalyzed Suzuki coupling to form enantiomerically pure furans 3, which can be further converted to the synthetically useful hydroxypyranones 4.1,2,3 In addition, Mukaiyama reaction of 1 also led to chromatographically separable diastereomeric aldol-products. The scope and limitation of these conversions will be discussed.

  20. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H. [Columbia Univ., New York, NY (United States); Flynn, Jonathan M. [Univ. of Southampton, Southampton (United Kingdom); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States); Kawanai, Taichi [RIKEN, Wako (Japan); Brookhaven National Lab. (BNL), Upton, NY (United States); Lehner, Christoph [Brookhaven National Lab. (BNL), Upton, NY (United States); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Van de Water, Ruth S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Witzel, Oliver [Boston Univ., Boston, MA (United States)

    2015-03-10

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as Mπ ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(αsa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0 = 196.2(15.7) MeV, fB+ = 195.4(15.8) MeV, fBs = 235.4(12.2) MeV, fBs/fB0 = 1.193(59), and fBs/fB+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.