WorldWideScience

Sample records for heavy alloy fabricated

  1. Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying

    Science.gov (United States)

    Kim, Dong-Kuk; Lee, Sunghak; Ryu, Ho Jin; Hyunghong, Soon; Noh, Joon-Woong

    2000-10-01

    In this study, tungsten heavy alloy specimens were fabricated by mechanical alloying (MA), and their dynamic torsional properties and penetration performance were investigated. Dynamic torsional tests were conducted on the specimens fabricated with different sintering temperatures after MA, and then the test data were compared with those of a conventionally processed specimen. Refinement of tungsten particles was obtained after MA, but contiguity was seriously increased, thereby leading to low ductility and impact energy. Specimens in which both particle size and contiguity were simultaneously reduced by MA and two-step sintering and those having higher matrix fraction by partial MA were successfully fabricated. The dynamic test results indicated that the formation of adiabatic shear bands was expected because of the plastic localization at the central area of the gage section. Upon highspeed impact testing of these specimens, self-sharpening was promoted by the adiabatic shear band formation, but their penetration performance did not improve since much of kinetic energy of the penetrators was consumed for the microcrack formation due to interfacial debonding and cleavage fracture of tungsten particles. In order to improve penetration performance as well as to achieve selfsharpening by applying MA, conditions of MA and sintering process should be established so that alloy densification, particle refinement, and contiguity reduction can be simultaneously achieved.

  2. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  3. Refractory alloy component fabrication

    International Nuclear Information System (INIS)

    Young, W.R.

    1984-01-01

    Purpose of this report is to describe joining procedures, primarily welding techniques, which were developed to construct reliable refractory alloy components and systems for advanced space power systems. Two systems, the Nb-1Zr Brayton Cycle Heat Receiver and the T-111 Alloy Potassium Boiler Development Program, are used to illustrate typical systems and components. Particular emphasis is given to specific problems which were eliminated during the development efforts. Finally, some thoughts on application of more recent joining technology are presented. 78 figures

  4. Strain aging in tungsten heavy alloys

    International Nuclear Information System (INIS)

    Dowding, R.J.; Tauer, K.J.

    1991-01-01

    This paper reports on tungsten heavy alloys which are two-phase mixtures of body center cubic (BCC) tungsten surrounded by a face center cubic (FCC) matrix. The matrix is most often composed of nickel and iron in a ratio of 70:30 but, occasionally, the matrix may also contain cobalt or copper. Nickel, however, is always the primary matrix component. The tungsten heavy alloy is fabricated through powder metallurgy techniques. Elemental powders are blended, pressed to shape, and sintered. Depending upon the tungsten content, the sintering temperatures are usually in the range of 1450 degrees C to 1525 degrees C. These temperatures are high enough that, as a result, the matrix is at the liquid phase and the process is known as liquid phase sintering. At the liquid phase temperature, the matrix becomes saturated with tungsten, but this does not change the FCC character of the matrix. The sintering is usually done in a hydrogen atmosphere furnace in order to reduce the oxides on the tungsten powder surfaces and create clean, active surfaces which will enhance the adherence between the tungsten and the matrix. The hydrogen atmosphere also creates the presence of excess dissolved hydrogen in the alloy. It has been shown that the hydrogen degrades the toughness and ductility of the heavy alloy. A post-sintering vacuum heat treatment is generally required to insure that there is no residual hydrogen present. The as-sintered tensile strength of a 90% tungsten, 7% nickel, 3% iron alloy (90W) is in the range of 800 to 940 MPa and can be increased significantly by cold working, usually rolling or swaging. Swaging to reductions in area of 20% can result in tensile strengths of 1250 MPa or more. As the strength increases, the elongation, which may have been 30% or more, decreases to less than 5%

  5. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  6. Characterization of plasma coated tungsten heavy alloy

    International Nuclear Information System (INIS)

    Bose, A.; Kapoor, D.; Lankford, J. Jr.; Nicholls, A.E.

    1996-01-01

    The detrimental environmental impact of Depleted Uranium-based penetrators have led to tremendous development efforts in the area of tungsten heavy alloy based penetrators. One line of investigation involves the coating of tungsten heavy alloys with materials that are prone to shear localization. Plasma spraying of Inconel 718 and 4340 steel have been used to deposit dense coatings on tungsten heavy alloy substrates. The aim of the investigation was to characterize the coating primarily in terms of its microstructure and a special push-out test. The paper describes the results of the push-out tests and analyzes some of the possible failure mechanisms by carrying out microstructural characterization of the failed rings obtained from the push out tests

  7. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  8. Fabrication of tungsten wire reinforced nickel-base alloy composites

    Science.gov (United States)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  9. Serrated flow behavior in tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Das, Jiten, E-mail: das.jiten@gmail.com; Sankaranarayana, M.; Nandy, T.K.

    2015-10-14

    Flow behavior of a tungsten heavy alloy of composition, 90.5 wt% W–7.1 wt% Ni–1.65 wt% Fe–0.5 wt% Co–0.25 wt% Mo was investigated in a temperature range of 223–973 K and strain rate range of 10{sup −5}–10{sup −2} s{sup −1}. In the temperature range of 773–873 K, the stress strain curves were characterized by jerky flow pointing towards Dynamic Strain Ageing (DSA)/Portevin Le-Chatelier's (PLC) effect. Characteristics of DSA were analyzed in detail. Based on the value of activation energy determined from the critical strain method, diffusion of interstitials (carbon, oxygen, nitrogen and hydrogen) were thought to be responsible for the DSA effect. The results were discussed in relation to information existing in this area in tungsten heavy alloys. The study of fracture surface of tensile tested samples (in the range of 823–973 K) showed that the fractographic features, mostly intergranular, predominantly govern the overall ductility of the alloy and do not change except for surface oxidation at relatively higher temperatures.

  10. Automatic welding and cladding in heavy fabrication

    International Nuclear Information System (INIS)

    Altamer, A. de

    1980-01-01

    A description is given of the automatic welding processes used by an Italian fabricator of pressure vessels for petrochemical and nuclear plant. The automatic submerged arc welding, submerged arc strip cladding, pulsed TIG, hot wire TIG and MIG welding processes have proved satisfactory in terms of process reliability, metal deposition rate, and cost effectiveness for low alloy and carbon steels. An example shows sequences required during automatic butt welding, including heat treatments. Factors which govern satisfactory automatic welding include automatic anti-drift rotator device, electrode guidance and bead programming system, the capability of single and dual head operation, flux recovery and slag removal systems, operator environment and controls, maintaining continuity of welding and automatic reverse side grinding. Automatic welding is used for: joining vessel sections; joining tubes to tubeplate; cladding of vessel rings and tubes, dished ends and extruded nozzles; nozzle to shell and butt welds, including narrow gap welding. (author)

  11. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  12. Annex 5 - Fabrication of U-Al alloy

    International Nuclear Information System (INIS)

    Drobnjak, Dj.; Lazarevic, Dj.; Mihajlovic, A.

    1961-01-01

    Alloy U-Al with low content of aluminium is often used for fabrication of fuel elements because it is stable under moderate neutron flux density. Additionally this type of alloys show much better characteristics than pure uranium under reactor operating conditions (temperature, mechanical load, corrosion effect of water). This report contains the analysis of the phase diagram of U-Al alloy with low content of aluminium, applied procedure for alloying and casting with detailed description of equipment. Characteristics of the obtained alloy are described and conclusions about the experiment and procedure are presented [sr

  13. Fabrication technology for ODS Alloy MA957

    International Nuclear Information System (INIS)

    ML Hamilton; DS Gelles; RJ Lobsinger; MM Paxton; WF Brown

    2000-01-01

    A successful fabrication schedule has been developed at Carpenter Technology Corporation for the production of MA957 fuel and blanket cladding. Difficulties with gun drilling, plug drawing and recrystallization were overcome to produce a pilot lot of tubing. This report documents the fabrication efforts of two qualified vendors and the support studies performed at WHC to develop the fabrication-schedule

  14. Evaluation of the hazard associated with fabricating beryllium copper alloys

    International Nuclear Information System (INIS)

    Senn, T.J.

    1977-01-01

    Beryllium-copper alloys should be considered toxic materials and proper controls must be used when they are machined, heated, or otherwise fabricated. Air samples should be taken for each type of fabrication to determine the worker's exposure and the effectiveness of the controls in use. It has been shown that aerosols containing beryllium are generated during the four methods of fabrication tested, and that these aerosols can be reduced through local exhaust to undetectable levels. Considering the acute, chronic and possibly carcinogenic effects of exposure to beryllium, effective controls should be required because they are feasible both technologically and economically. The health hazards and control measures are reviewed

  15. Fabrication Process and Reliability Evaluation of Shape Memory Alloy Composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Choi, Il Kook; Park, Young Chul; Lee, Kyu Chang; Lee, Joon Hyun

    2001-01-01

    Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and A16061 were used as reinforcing material and mix, respectively. In this study, TiNi/A16061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at the boundary between TiNi fiber and Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effect. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at high temperature

  16. Electron Beam Freeform Fabrication of Titanium Alloy Gradient Structures

    Science.gov (United States)

    Brice, Craig A.; Newman, John A.; Bird, Richard Keith; Shenoy, Ravi N.; Baughman, James M.; Gupta, Vipul K.

    2014-01-01

    Historically, the structural optimization of aerospace components has been done through geometric methods. A monolithic material is chosen based on the best compromise between the competing design limiting criteria. Then the structure is geometrically optimized to give the best overall performance using the single material chosen. Functionally graded materials offer the potential to further improve structural efficiency by allowing the material composition and/or microstructural features to spatially vary within a single structure. Thus, local properties could be tailored to the local design limiting criteria. Additive manufacturing techniques enable the fabrication of such graded materials and structures. This paper presents the results of a graded material study using two titanium alloys processed using electron beam freeform fabrication, an additive manufacturing process. The results show that the two alloys uniformly mix at various ratios and the resultant static tensile properties of the mixed alloys behave according to rule-of-mixtures. Additionally, the crack growth behavior across an abrupt change from one alloy to the other shows no discontinuity and the crack smoothly transitions from one crack growth regime into another.

  17. Analysis of heavy alloying elements segregation in gravity cast experimental Mg-Al-Zn-RE alloy

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2010-01-01

    Full Text Available Microstructure of experimental AZ91 alloy with an addition of rare earth elements (RE at a level of 4 wt.% was examined by means of light microscopy. The investigated AZ91 + 4 wt.% RE alloy was fabricated by adding cerium rich mish metal to molten commercial AZ91 alloy. In the microstructure of the resulting alloy, besides α solid solution, α + γ eutectic and discontinuous precipitates of γ phase, also the Al11RE3 phase with needle-like morphology and the polygonal Al10RE2Mn7 phase were revealed. No segregation of rare earth elements was found in the investigated gravity cast alloy, which was confirmed by statistical analysis of cerium concentrations in selected parts of the cast. Similar results were obtained for manganese. Ce and Mn concentrations were determined by a spectrophotometric method.

  18. Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC

    Directory of Open Access Journals (Sweden)

    Chen Dongfeng

    2010-02-01

    Full Text Available AZ91D surface alloying was investigated through evaporative pattern casting (EPC technology. Aluminum powder (0.074 to 0.104 mm was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of β-Mg17Al12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.

  19. Abrasive Wear of Alloyed Cast Steels Applied for Heavy Machinery

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-03-01

    Full Text Available In the paper the results and analysis of abrasive wear studies were shown for two grades of cast steels: low-alloyed cast steel applied for heavy machinery parts such as housing, covers etc. and chromium cast steels applied for kinetic nodes of pin-sleeve type. Studies were performed using the modified in Department of Foundry pin-on-disc method.

  20. Freeze-dried processing of tungsten heavy alloys

    International Nuclear Information System (INIS)

    White, G.D.; Gurwell, W.E.

    1989-06-01

    Tungsten heavy alloy powders were produced from freeze-dried aqueous solutions of ammonium metatungstate and, principally, sulfates of Ni and Fe. The freeze-dried salts were calcined and hydrogen reduced to form very fine, homogeneous, low-density, W heavy alloy powders having a coral-like structure with elements of approximately 0.1 μm in diameter. The powders yield high green strength and sinterability. Tungsten heavy alloy powders of 70%, 90%, and 96% W were prepared by freeze drying, compacted, and solid-state (SS) sintered to fully density at temperatures as low as 1200 degree C and also at conventional liquid-phase (LP) sintering temperatures. Solid-state sintered microstructures contained polygonal W grains with high contiguity; the matrix did not coat and separate the W grains to form low-contiguity, high-ductility structures. Liquid-phase sintered microstructures were very conventional in appearance, having W spheroids of low contiguity. All these materials were found to be brittle. High levels of residual S accompanied by segregation of the S to all the microstructural interfaces are principally responsible for the brittleness; problems with S could be eliminated by using Fe and Ni nitrates rather than the sulfates. 9 refs., 22 figs., 3 tabs

  1. Flow behaviour of a heat treated tungsten heavy alloy

    International Nuclear Information System (INIS)

    Das, Jiten; Sarkar, R.; Rao, G. Appa; Sankaranarayana, M.; Nandy, T.K.; Pabi, S.K.

    2012-01-01

    Highlights: ► An Arrhenius type of constitutive equation is proposed for the investigated alloy. ► Peierl's controlled dislocation motion is observed at low temperature. ► Transition from Peierl's to forest controlled mechanism is observed at 673 K. ► At room temperature predominantly tungsten grain, cleavage fracture is observed. ► At elevated temperature predominantly intergranular fracture is observed. - Abstract: Flow behaviour of a tungsten heavy alloy was studied in the strain rate-temperature range of 10 −5 –1/s and 298–973 K, respectively. It was observed in this study that the dislocation motion in tungsten heavy alloy was controlled by a Peierl's mechanism at low temperatures (up to 573 K). This was confirmed by the magnitude of apparent activation volume and apparent activation enthalpy as well as TEM observations. Apparent activation enthalpy in the Peierls regime, determined by several methods, was found to vary in between 22 and 37 kJ/mol. An Arrhenius type of constitutive equation was also proposed in the Peierls controlled regime for predicting flow stress as a function of temperature and strain rate. Transition temperature of rate controlling mechanism—from Peierl's mechanism to forest mechanism—was determined from the strain rate sensitivity and apparent activation volume estimation at several temperatures. The transition temperature was found to be about 673 K.

  2. Methods for Fabricating Gradient Alloy Articles with Multi-Functional Properties

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Borgonia, John Paul C. (Inventor); Dillon, Robert P. (Inventor); Suh, Eric J. (Inventor); Mulder, Jerry L. (Inventor); Gardner, Paul B. (Inventor)

    2015-01-01

    Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.

  3. Zinc Alloys for the Fabrication of Semiconductor Devices

    Science.gov (United States)

    Ryu, Yungryel; Lee, Tae S.

    2009-01-01

    ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and

  4. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    Directory of Open Access Journals (Sweden)

    Olgierd Janusz Goroch

    2017-12-01

    Full Text Available The results of studies concerning friction welding of Weight Heavy Alloy (WHA with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum is used for projectile ballistic cup.

  5. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    OpenAIRE

    Olgierd Janusz Goroch; Zbigniew Gulbinowicz

    2017-01-01

    The results of studies concerning friction welding of Weight Heavy Alloy (WHA) with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum i...

  6. Effect of composition on the high rate dynamic behaviour of tungsten heavy alloys

    Directory of Open Access Journals (Sweden)

    Latif Kesemen

    2015-01-01

    Full Text Available Tungsten heavy alloys are currently used as kinetic energy penetrators in military applications due to their high density and superior mechanical properties. In the literature, quasi-static properties of different tungsten heavy alloys based on W-Ni-Cu and W-Ni-Fe ternary systems are well documented and presented. However, comparison of the dynamic behaviour of these alloys in terms of the correlation between quasi-static mechanical characterization and dynamical properties is lacking. In the present study, dynamic properties of tungsten heavy alloys having different binder phase compositions (90W-7Ni-3Cu and 90W-8Ni-2Fe at different projectile velocities were investigated. The examined and tested alloys were produced through the conventional powder metallurgy route of mixing, cold compaction and sintering. Mechanical characterization of these alloys was performed. In the ballistic tests, cylindrical tungsten heavy alloys with L/D ratio of 3 were impacted to hardened steel target at different projectile velocities. After the ballistic tests, deformation characteristics of test specimens during dynamic loading were evaluated by comparing the change of length and diameter of the specimens versus kinetic energy densities. The study concluded that 90W-8Ni-2Fe alloy has better perforation characteristics than 90W-7Ni-3Cu alloy.

  7. Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    Science.gov (United States)

    Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.

    2013-01-01

    assortment of "post-processing" methods to locally alter properties (such as coating, heat treating, work hardening, shot peening, etching, anodizing, among others). Building the final part in an additive process allows for the development of an entirely new class of metals, so-called "functionally graded metals" or "gradient alloys." By carefully blending feedstock materials with different properties in an AM process, hardware can be developed with properties that cannot be obtained using other techniques but with the added benefit of the net-shaped fabrication that AM allows.

  8. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    Directory of Open Access Journals (Sweden)

    J.J.S. Dilip

    2017-04-01

    Full Text Available The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti–6Al–4V and Al powders. This approach uses a binder jetting additive manufacturing process followed by reactive sintering. The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

  9. Kinetics and formation mechanism of amorphous Fe52Nb48 alloy powder fabricated by mechanical alloying

    International Nuclear Information System (INIS)

    El-Eskandarany, S.

    1999-01-01

    A single phase amorphous Fe 52 Nb 48 alloy has been synthesized through a solid state interdiffusion of pure polycrystalline Fe and Nb powders at room temperature, using a high-energy ball-milling technique. The mechanisms of metallic glass formation and competing crystallization processes in the mechanically deformed composite powders have been investigated by means of X-ray diffraction, Moessbauer spectroscopy, differential thermal analysis, scanning electron microscopy and transmission electron microscopy. The numerous intimate layered composite particles of the diffusion couples that formed during the first and intermediate stages of milling time (0-56 ks), are intermixed to form amorphous phase(s) upon heating to about 625 K by so-called thermally assisted solid state amorphization, TASSA. The amorphization heat of formation for binary system via the TASSA, ΔH a , was measured directly as a function of the milling time. Comparable with the TASSA, homogeneous amorphous alloys were fabricated directly without heating the composite multilayered particles upon milling these particles for longer milling time (86 ks-144 ks). The amorphization reaction here is attributed to the mechanical driven solid state amorphization. This single amorphous phase transforms into an order phase (μ phase) upon heating at 1088 K (crystallization temperature, T x ) with enthalpy change of crystallization, ΔH x , of -8.3 kJmol -1 . (orig.)

  10. Development of a tungsten heavy alloy, W-Ni-Mn, used as kinetic energy penetrator

    International Nuclear Information System (INIS)

    Zahraee, S. M.; Salehi, M. T.; Arabi, H.; Tamizifar, M.

    2007-01-01

    The objective of this research was to develop a tungsten heavy alloy having a microstructure and properties good enough to penetrate hard rolled steels as deep as possible. In addition this alloy should not have environmental problems as depleted uranium materials, For this purpose a wide spread literature survey was performed and on the base of information obtained in this survey, three compositions of tungsten heavy alloy were chosen for investigation in this research. The alloys namely 90 W-7 Ni-3 Fe, 90 W-9 Ni-Mn and 90 W-8 Ni-2 Mn were selected and after producing these alloys through powder metallurgy technique, their thermal conductivity, compression flow properties and microstructure, were studied. The results of these investigations indicated that W-Ni-Mn alloys had better flow properties and lower thermal conductivities relative to W-Ni-Fe alloy. In addition Mn helped to obtain a finer microstructure in tungsten heavy alloy. Worth mentioning that a finer microstructure as well as lower thermal conductivity in this type of alloys increased the penetration depth due to formation of adiabatic shear bands during impact

  11. Directed light fabrication of refractory metals and alloys

    International Nuclear Information System (INIS)

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-01-01

    This report covers deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. (1) Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. (2) The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. (3) The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06microm), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. (4) The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required

  12. Directed light fabrication of refractory metals and alloys

    International Nuclear Information System (INIS)

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-01-01

    This report covers work performed under Order No. FA0000020 AN Contract DE-AC12-76SN00052 for deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents the progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. 1. Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. 2. The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. 3. The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06microm), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. 4. The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required

  13. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  14. Electron beam welding of heavy section 3Cr-1.5Mo alloy

    International Nuclear Information System (INIS)

    King, J.F.; David, S.A.; Nasreldin, A.

    1986-01-01

    Welding of thick section steels is a common practice in the fabrication of pressure vessels for energy systems. The fabrication cost is strongly influenced by the speed at which these large components can be welded. Conventional welding processes such as shielded metal arc (SMA) and submerged arc (SA) are time-consuming and expensive. Hence there is a great need to reduce welding time and the tonnage of weld metal deposited. Electron beam welding (EBW) is a process that potentially could be used to achieve dramatic reduction in the welding time and costs. The penetrating ability of the beam produces welds with high depth-to-width ratios at relatively high travel speeds, making it possible to weld thick sections with one or two passes without filler metals and other consumables. The paper describes a study that was undertaken to investigate the feasibility of using a high power electron beam welding machine to weld heavy section steel. The main emphasis of this work was concentrated on determining the mechanical properties of the resulting weldment, characterizing the microstructure of the various weldment regions, and comparing these results with those from other processes. One of the steels selected for the heavy section electron beam welding study was a new 3 Cr-1.5 Mo-0.1 V alloy. The steel was developed at the AMAX Materials Research Center by Wada and co-workers for high temperature, high pressure hydrogen service as a possible improved replacement for 2-1/4 Cr-1 Mo steels. The excellent strength and toughness of this steel make it a promising candidate for future pressure vessels such as those for coal gasifiers. The work was conducted on 102 mm (4 in.) thick plates of this material in the normalized-and-tempered condition

  15. Method and alloys for fabricating wrought components for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Thompson, L.D.; Johnson, W.R.

    1983-01-01

    Wrought, nickel-based alloys, suitable for components of a high-temperature gas-cooled reactor exhibit strength and excellent resistance to carburization at elevated temperatures and include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength. The range of compositions of these alloys is given. (author)

  16. Physical and chemical grounds of electrolytic fabrication of aluminium-strontium alloying composition

    International Nuclear Information System (INIS)

    Lysenko, A.P.

    1998-01-01

    It was revealed via study of literature sources that usage of alloying composition of strontium (not of sodium) is more expedient in modification of silumin-type alloys. In this case modification effect is keeping during long holdings and in repeated meltings. Electrolytic decomposition of strontium chloride with usage of liquid aluminium cathode is the most simple and cheap method for fabrication of alloying composition. The operation scheme for production of Al-Sr alloy was proposed in this work on the base of thermodynamic analysis

  17. Fabrication development and usage of vanadium alloys in DIII-D

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Reis, E.E.

    1996-10-01

    GA is procuring material, designing components, and developing fabrication techniques for use of V alloy into the DIII-D divertor as elements of the Radiative Divertor Project modification. This program was developed to assist in the development of low activation alloys for fusion use by demonstrating the fabrication and installation of V alloy components in an operating tokamak. Along with fabrication development, the program includes multiple steps starting with small coupons installed in DIII-D to measure the environmental effects on V. This is being done in collaboration with DOE Fusion Materials Program (particularly at ANL and ORNL). Procurement of the material has been completed; the world's largest heat of V alloy (1200 kg V-4Cr-4Ti) was produced and converted into various products. Manufacturing process is described and chemistry results presented. Research into potential fabrication methods is being performed. Joining of V alloys was identified as the most critical fabrication issue for its use in the Radiative Divertor program. Successful welding trials were done using resistance, friction, and electron beam methods; metallography and mechanical tests were done to evaluate the welds

  18. Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Brice, Craig, E-mail: craig.a.brice@lmco.com [NASA Langley Research Center, Hampton, VA 23681 (United States); Shenoy, Ravi [Northrop Grumman Corporation Technical Services, Hampton, VA 23681 (United States); Kral, Milo; Buchannan, Karl [University of Canterbury, Christchurch (New Zealand)

    2015-11-11

    Additive manufacturing (AM) is an emerging technology capable of producing near net shape structures in a variety of materials directly from a computer model. Standard metallic alloys that were developed for cast or wrought processing have largely been adopted for AM feedstock. In many applications, these legacy alloys are quite acceptable. In the aluminum alloy family, however, there is a significant performance gap between the casting alloys currently being used in AM processes and the high strength/toughness capability available in certain wrought alloys. The precipitation hardenable alloys, most often used in high performance structures, present challenges for processing by AM. The near net shape nature of AM processes does not allow for mechanical work prior to the heat treatment that is often necessary to develop a uniform distribution of precipitates and give peak mechanical performance. This paper examines the aluminum (Al) alloy 2139, a composition that is strengthened by homogeneous precipitation of Ω (Al{sub 2}Cu) plates and thus ideally suited for near net shape processes like AM. Transmission electron microscopy, microhardness, and tensile testing determined that, with proper processing conditions, Al 2139 can be additively manufactured and subsequently heat treated to strength levels comparable to those of peak aged wrought Al 2139.

  19. Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing

    International Nuclear Information System (INIS)

    Brice, Craig; Shenoy, Ravi; Kral, Milo; Buchannan, Karl

    2015-01-01

    Additive manufacturing (AM) is an emerging technology capable of producing near net shape structures in a variety of materials directly from a computer model. Standard metallic alloys that were developed for cast or wrought processing have largely been adopted for AM feedstock. In many applications, these legacy alloys are quite acceptable. In the aluminum alloy family, however, there is a significant performance gap between the casting alloys currently being used in AM processes and the high strength/toughness capability available in certain wrought alloys. The precipitation hardenable alloys, most often used in high performance structures, present challenges for processing by AM. The near net shape nature of AM processes does not allow for mechanical work prior to the heat treatment that is often necessary to develop a uniform distribution of precipitates and give peak mechanical performance. This paper examines the aluminum (Al) alloy 2139, a composition that is strengthened by homogeneous precipitation of Ω (Al_2Cu) plates and thus ideally suited for near net shape processes like AM. Transmission electron microscopy, microhardness, and tensile testing determined that, with proper processing conditions, Al 2139 can be additively manufactured and subsequently heat treated to strength levels comparable to those of peak aged wrought Al 2139.

  20. Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy

    International Nuclear Information System (INIS)

    Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J.; Horvat, Joseph

    2014-01-01

    Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and 0 and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy tungsten alloys

  1. Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Xi; Zou, Lijie; Yao, Yao; Lin, Yaojun; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697 (United States); Zhang, Lianmeng, E-mail: lmzhang@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2016-04-13

    We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu{sub 50}Al{sub 50}, Cu{sub 40}Al{sub 60}, Cu{sub 33}Al{sub 67} and Cu{sub 30}Al{sub 70} (at%) alloys. The precursor Cu–Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu–Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 °C. We studied the microstructure of the precursor Cu–Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130±20 nm (for Cu{sub 50}Al{sub 50}), 170±20 nm (for Cu{sub 40}Al{sub 60}) and 160±10 nm (for Cu{sub 33}Al{sub 67}). Interestingly the microstructure of de-alloyed Cu{sub 30}Al{sub 70} is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3±2% to 73.9±2%, the compressive strength decreased from 17.18±1 MPa to 2.71±0.5 MPa.

  2. Recent developments in metal and alloy fabrication. Influence on the utilization

    International Nuclear Information System (INIS)

    1983-01-01

    The program of the colloquium includes three parts. In the first part are given developments of metals and alloys elaboration leading to a better productivity, a more precise chemical composition of alloys a greater homogeneity of micro and macrostructure and a decrease of inclusion contents. These improvement in quality are obtained by smelting, refining, ingot solidification and hot working (forging and rolling). The second part shows the consequences of fabrication processes on uses and analyses with more details these improvements by few examples: stainless steels for nuclear industry microalloyed steels, aluminum and titanium alloys. The third part treats chemical analysis to follow the evolution of alloy composition during fabrication and to modify eventually the composition of the melt. New analysis methods are necessary for their adjustment to the nature and the quantity of elements and obtain the required accuracy [fr

  3. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of); Cha, Seung I. [International Center for Young Scientists, National Institute for Materials Science 1-1, Namiki, Tsukuba 305-0044 (Japan); Ryu, Ho J. [DUPIC, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yusong-gu, Taejon 305-353 (Korea, Republic of); Hong, Soon H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of)], E-mail: shhong@kaist.ac.kr

    2007-06-15

    Oxide dispersion strengthened (ODS) tungsten heavy alloys have been considered as promising candidates for advanced kinetic energy penetrator due to their characteristic fracture mode compared to conventional tungsten heavy alloy. In order to obtain high relative density, the ODS tungsten heavy alloy needs to be sintered at higher temperature for longer time, however, induces growth of tungsten grains. Therefore, it is very difficult to obtain controlled microstructure of ODS tungsten heavy alloy having fine tungsten grains with full densification. In this study, two-stage sintering process, consisted of primary solid-state sintering and followed by secondary liquid phase sintering, was introduced for ODS tungsten heavy alloys. The mechanically alloyed 94W-4.56Ni-1.14Fe-0.3Y{sub 2}O{sub 3} powders are solid-state sintered at 1300-1450 deg. C for 1 h in hydrogen atmosphere, and followed by liquid phase sintering temperature at 1465-1485 deg. C for 0-60 min. The microstructure of ODS tungsten heavy alloys showed high relative density above 97%, with contiguous tungsten grains after primary solid-state sintering. The microstructure of solid-state sintered ODS tungsten heavy alloy was changed into spherical tungsten grains embedded in W-Ni-Fe matrix during secondary liquid phase sintering. The two-stage sintered ODS tungsten heavy alloy from mechanically alloyed powders showed finer microstructure and higher mechanical properties than conventional liquid phase sintered alloy. The mechanical properties of ODS tungsten heavy alloys are dependent on the microstructural parameters such as tungsten grain size, matrix volume fraction and tungsten/tungsten contiguity, which can be controlled through the two-stage sintering process.

  4. Method of fabricating thin-walled articles of tungsten-nickel-iron alloy

    Science.gov (United States)

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1982-01-01

    The present invention relates to a method for fabricating thin-walled high-density structures oftungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.

  5. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.R.; Smith, J.P.; Trester, P.W.

    1997-04-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy.

  6. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.; Trester, P.W.

    1997-01-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy

  7. Matrix composition effects on the tensile properties of tungsten-molybdenum heavy alloys

    International Nuclear Information System (INIS)

    Bose, A.; German, R.N.

    1990-01-01

    Tungsten-base heavy alloys are liquid-phase sintered from mixed tungsten, nickel, and iron powders. The sintered product is a composite consisting of interlaced tungsten and solidified matrix (W-Ni-Fe) phases. These alloys are most useful in applications requiring high density, strength, and toughness. The design of improved tungsten heavy alloys has been the subject of several research investigations. Much success has taken place through improved processing, but parallel compositional studies have resulted in new microstructure-property combinations. As part of these investigations, the Ni/Fe ratio has been varied, with the general conclusion that optimal strength and ductility occur with a ratio between 2 and 4. Brittle intermetallic phases can form outside of this composition range. Historically, a 7/3 Ni/Fe ratio has been selected for processing studies. Recently, others reported higher ductilities and impact energies for 90 and 93 pct W heavy alloys with the 8/2 Ni/Fe ratio. Alternatively, these alloys can be strengthened by both solid solution and grain size refinement through incorporation of molybdenum, tantalum, or rhenium. These additions are soluble in both the tungsten and matrix phases and retard solution-reprecipitation during liquid phase sintering. In this study, the alloy composition was varied in the nickel/iron ratio and molybdenum was partially substituted for tungsten. The sintered tensile properties are assessed vs these compositional variations

  8. Microstructural and microchemical evolution in vanadium alloys by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sekimura, Naoto; Kakiuchi, Hironori; Shirao, Yasuyuki; Iwai, Takeo [Tokyo Univ. (Japan)

    1996-10-01

    Microstructural and microchemical evolution in vanadium alloys were investigated using heavy ion irradiation. No cavities were observed in V-5Cr-5Ti alloys irradiated to 30 dpa at 520 and 600degC. Energy dispersive X-ray spectroscopy analyses showed that Ti peaks around grain boundaries. Segregation of Cr atoms was not clearly detected. Co-implanted helium was also found to enhance dislocation evolution in V-5Cr-5Ti. High density of matrix cavities were observed in V-5Fe alloys irradiated with dual ions, whereas cavities were formed only around grain boundaries in single ion irradiated V-5Fe. (author)

  9. Development of fabrication technology for low activation vanadium alloys as fusion blanket structural materials

    International Nuclear Information System (INIS)

    Nagasaka, T.; Muroga, T.; Fukumoto, K.; Watanabe, H.; Grossbeck, M.L.; Chen, J.M.

    2005-01-01

    High purity vanadium alloy products, such as plates, wires and tubes, were fabricated from reference high-purity V-4Cr-4Ti ingots designated as NIFS-HEAT, by using technologies applicable to industrial scale fabrication. Impurity behavior during breakdown, and its effect on mechanical properties were investigated. It was revealed that mechanical properties of the products were significantly improved by the control of Ti-C, N, O precipitation induced during the processes. (author)

  10. Tensile Flow Behavior of Tungsten Heavy Alloys Produced by CIPing and Gelcasting Routes

    Science.gov (United States)

    Panchal, Ashutosh; Ravi Kiran, U.; Nandy, T. K.; Singh, A. K.

    2018-06-01

    Present work describes the flow behavior of tungsten heavy alloys with nominal compositions 90W-7Ni-3Fe, 93W-4.9Ni-2.1Fe, and 95W-3.5Ni-1.5Fe (wt pct) produced by CIPing and gelcasting routes. The overall microstructural features of gelcasting are finer than those of CIPing alloys. Both the grain size of W and corresponding contiguity values increase with increase in W content in the present alloys. The volume fraction of matrix phase decreases with increase in W content in both the alloys. The lattice parameter values of the matrix phase also increase with increase in W content. The yield strength ( σ YS) continuously increases with increase in W content in both the alloys. The σ YS values of CIPing alloys are marginally higher than those of gelcasting at constant W. The ultimate tensile strength ( σ UTS) and elongation values are maximum at intermediate W content. Present alloys exhibit two slopes in true stress-true plastic strain curves in low and high strain regimes and follow a characteristic Ludwigson relation. The two slopes are associated with two deformation mechanisms that are occurring during tensile deformation. The overall nature of differential curves of all the alloys is different and these curves contain three distinctive stages of work hardening (I, II, and III). This suggests varying deformation mechanisms during tensile testing due to different volume fractions of constituent phases. The slip is the predominant deformation mechanism of the present alloys during tensile testing.

  11. Structure and magnetic properties of nanostructured MnNi alloys fabricated by mechanical alloying and annealing treatments

    Science.gov (United States)

    Jalal, T.; Hossein Nedjad, S.; Khalili Molan, S.

    2013-05-01

    A nearly equiatomic MnNi alloy was fabricated from the elemental powders by means of mechanical alloying in a planetary ball milling apparatus. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and measurements of magnetization were conducted to identify the structural states and properties of the prepared alloys. After ball milling for 20 h, a disordered face-centered cubic (f.c.c.) solid solution was formed which increased in lattice parameter by further milling up to 50 h. An exothermic reaction took place at around 300-400°C during continuous heating of the disordered f.c.c. solid solution. This reaction is attributed to a structural ordering leading to the formation of a face-centered tetragonal (f.c.t.) phase with L10 type ordering. Examination of the magnetic properties indicated that the structural ordering increases remnant magnetization and decreases coerecivity.

  12. Topical papers on heavy water, fuel fabrication and reactors

    International Nuclear Information System (INIS)

    1978-01-01

    A total of four papers is presented. The first contribution of the Federal Republic of Germany reviews the market situation for reactors and the relations between reactor producers and buyers as reflected in sales agreements. The second West German contribution gives a world-wide survey of fuel element production as well as of fuel and fuel element demand up to the year 2000. The Canadian paper discusses the future prospects of heavy-water production, while the Ecuador contribution deals with small and medium-sized nuclear power plants

  13. Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Margaret L.; Gelles, David S.; Lobsinger, Ralph J.; Johnson, Gerald D.; Brown, W. F.; Paxton, Michael M.; Puigh, Raymond J.; Eiholzer, Cheryl R.; Martinez, C.; Blotter, M. A.

    2000-02-28

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report.

  14. Fabrication and study of double sintered TiNi-based porous alloys

    Science.gov (United States)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  15. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.R.; Smith, J.P.

    1997-08-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging.

  16. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.

    1997-01-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging

  17. Process for fabricating articles of tungsten-nickel-iron alloy

    Science.gov (United States)

    Northcutt, Jr., Walter G.; Snyder, Jr., William B.

    1976-01-01

    A high density W--Ni--Fe alloy of composition 85-96% by weight W and the remainder Ni and Fe in a wt. ratio of 5:5-8:2 having enhanced mechanical properties is prepared by compacting the mixed powders, sintering the compact in reducing atmosphere to near theoretical density followed by further sintering at a temperature where a liquid phase is present, vacuum annealing, and cold working to achieve high uniform hardness.

  18. Process for fabricating articles of tungsten--nickel--iron alloy

    International Nuclear Information System (INIS)

    Northcutt, W.G. Jr.; Snyder, W.B. Jr.

    1976-01-01

    A high density W--Ni--Fe alloy of composition 85 to 96 percent by weight W and the remainder Ni and Fe in a wt. ratio of 5:5 to 8:2 having enhanced mechanical properties is prepared by compacting the mixed powders, sintering the compact in reducing atmosphere to near theoretical density followed by further sintering at a temperature where a liquid phase is present, vacuum annealing, and cold working to achieve high uniform hardness. 7 claims

  19. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting.

    Science.gov (United States)

    Hedberg, Yolanda S; Qian, Bin; Shen, Zhijian; Virtanen, Sannakaisa; Wallinder, Inger Odnevall

    2014-05-01

    Selective laser melting (SLM) is increasingly used for the fabrication of customized dental components made of metal alloys such as CoCrMo. The main aim of the present study is to elucidate the influence of the non-equilibrium microstructure obtained by SLM on corrosion susceptibility and extent of metal release (measure of biocompatibility). A multi-analytical approach has been employed by combining microscopic and bulk compositional tools with electrochemical techniques and chemical analyses of metals in biologically relevant fluids for three differently SLM fabricated CoCrMo alloys and one cast CoCrMo alloy used for comparison. Rapid cooling and strong temperature gradients during laser melting resulted in the formation of a fine cellular structure with cell boundaries enriched in Mo (Co depleted), and suppression of carbide precipitation and formation of a martensitic ɛ (hcp) phase at the surface. These features were shown to decrease the corrosion and metal release susceptibility of the SLM alloys compared with the cast alloy. Unique textures formed in the pattern of the melting pools of the three different laser melted CoCrMo alloys predominantly explain observed small, though significant, differences. The susceptibility for corrosion and metal release increased with an increased number (area) of laser melt pool boundaries. This study shows that integrative and interdisciplinary studies of microstructural characteristics, corrosion, and metal release are essential to assess and consider during the design and fabrication of CoCrMo dental components of optimal biocompatibility. The reason is that the extent of metal release from CoCrMo is dependent on fabrication procedures. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Moessbauer study of amorphous alloys irradiated with energetic heavy ions

    International Nuclear Information System (INIS)

    Kuzmann, E.; Spirov, I.N.

    1984-01-01

    The Moessbauer spectroscopy was applied to study radiation damages in amorphous alloys irradiated with 40 Ar (E=225 MeV) or 132 Xe (E=120 MeV) ions at room temperature. In the magnetically splitted Moessbauer spectra the dose-dependent decreases of the intensity of the 2nd and 5th lines as well as of the average hyperfine magnetic field were observed. The changes weAe also analysed using the hyperfine field distribution obtained from the spectra. The results are interpreted in terms of defect creation and structural changes of shortrange order of irradiated amorphoys alloys

  1. Electroless Fabrication of Cobalt Alloys Nanowires within Alumina Template

    Directory of Open Access Journals (Sweden)

    Nazila Dadvand

    2007-01-01

    Full Text Available A new method of nanowire fabrication based on electroless deposition process is described. The method is novel compared to the current electroless procedure used in making nanowires as it involves growing nanowires from the bottom up. The length of the nanowires was controlled at will simply by adjusting the deposition time. The nanowires were fabricated within the nanopores of an alumina template. It was accomplished by coating one side of the template by a thin layer of palladium in order to activate the electroless deposition within the nanopores from bottom up. However, prior to electroless deposition process, the template was pretreated with a suitable wetting agent in order to facilitate the penetration of the plating solution through the pores. As well, the electroless deposition process combined with oblique metal evaporation process within a prestructured silicon wafer was used in order to fabricate long nanowires along one side of the grooves within the wafer.

  2. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes

    2011-01-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  3. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  4. Fabrication characteristics and hydrogenation behavior of hydrogen storage alloys for sealed Ni-MH batteries

    Science.gov (United States)

    Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon

    2008-08-01

    Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.

  5. Fabrication, magnetostriction properties and applications of Tb-Dy-Fe alloys: a review

    Directory of Open Access Journals (Sweden)

    Nai-juan Wang

    2016-03-01

    Full Text Available As an excellent giant-magnetostrictive material, Tb-Dy-Fe alloys (based on Tb0.27-0.30Dy0.73-0.70Fe1.9-2 Laves compound can be applied in many engineering fields, such as sonar transducer systems, sensors, and micro-actuators. However, the cost of the rare earth elements Tb and Dy is too high to be widely applied for the materials. Nowadays, there are two different ways to substitute for these alloying elements. One is to partially replace Tb or Dy by cheaper rare earth elements, such as Pr, Nd, Sm and Ho; and the other is to use non-rare earth elements, such as Co, Al, Mn, Si, Ce, B, Be and C, to substitute Fe to form single MgCu2-type Laves phase and a certain amount of Re-rich phase, which can reduce the brittleness and improve the corrosion resistance of the alloy. This paper systemically introduces the development, the fabrication methods and the corresponding preferred growth directions of Tb-Dy-Fe alloys. In addition, the effects of alloying elements and heat treatment on magnetostrictive and mechanical properties of Tb-Dy-Fe alloys are also reviewed, respectively. Finally, some possible applications of Tb-Dy-Fe alloys are presented.

  6. The performance of alloy 625 in the high temperature application of Heavy Water Plants

    International Nuclear Information System (INIS)

    Mitra, J.; Dey, G.K.; Sundararaman, M.; Dubey, J.S.; De, P.K.; Kumar, Niraj

    2006-01-01

    Wrought and centrifugally cast alloy 625 tubes are used in the cracker units of ammonia based Heavy Water Plants (HWP). During the service of about 100,000 h, the ammonia cracker tubes, predictably, have been exposed to temperatures below 600degC to above 765degC and have undergone several hundreds of start-shutdown cycles, producing several ordered phases in the alloy. To understand the effect of the ordered phases on the structure properties, Alloy 625 samples were aged at 540degC, 700degC and 850degC temperatures, for duration up to 1200 h. Results were compared with that of cast and wrought Alloy 625 samples, which aged during the service of 100,000 h and that failed during the service after about 24,000 h along with that of aged samples, which were resolutionised at 1170degC for 2h. (author)

  7. Electroless plating of Cu-Ni-P alloy on PET fabrics and effect of plating parameters on the properties of conductive fabrics

    International Nuclear Information System (INIS)

    Gan Xueping; Wu Yating; Liu Lei; Shen Bin; Hu Wenbin

    2008-01-01

    Electroless plating of Cu-Ni-P alloy on polyethylene terephthalate (PET) fabrics and effect of plating parameters on the properties of alloy-coated fabrics were investigated. The deposition rate increased with the increase of temperature, pH and nickel ion concentration. The addition of K 4 Fe(CN) 6 to the solution could reduce the deposition rate and make the deposits become more compact. The color of the deposits also had a corresponding improvement, changing from dark-brown to copper-bright with the addition of K 4 Fe(CN) 6 to the plating solution. The deposits have an intensified copper (1 1 1) plane orientation with the addition of K 4 Fe(CN) 6 to the plating bath. The surface electrical resistance of alloy-coated fabrics increased with increase of nickel ions concentration in the solution. The addition of K 4 Fe(CN) 6 to the solution reduced significantly the surface resistance of alloy-coated fabrics. The conductive fabrics with high shielding effectiveness could be prepared at the optimum condition with 0.0038 M nickel ions and 2 ppm K 4 Fe(CN) 6 . As the deposit weight on the fabric was 40 g/m 2 , the shielding effectiveness of alloy-coated fabrics was more than 85 dB at frequency ranging from 100 MHz to 20 GHz

  8. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    Science.gov (United States)

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.

  9. Development of Zr alloys - Fabrication of Zr-Nb alloy used in PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang In; Kim, Won Baek; Choi, Guk Sun; Lee, Chul Kyung; Jang, Dae Kyu; Seo, Chang Yeol; Sim, Kun Joo; Lee, Jae Cheon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-07-01

    The manufacture of Zr-Nb alloy ingot by EB melting process is carried out to meet the chemical composition and mechanical and property specifications and to ensure that the ingots are free of unacceptable defects through this study. It was established that Zr-Nb alloy was made by EB melting technique including the control of adding elements, melting power and melting and cast device. 28 refs., 13 tabs., 26 figs., 23 ills. (author)

  10. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  11. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    Energy Technology Data Exchange (ETDEWEB)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi (Japan); Nagasaka, Takuya; Muroga, Takeo [National Inst. for Fusion Science, Toki, Gifu (Japan); Shibayama, Tamaki [Center for Advanced Research of Energy Technology, Hokkaido University, Sapporo, Hokkaido (Japan); Tomiyama, Shigeki [Daido Bunseki Research Inc., Nagoya, Aichi (Japan); Sakata, Masafumi [Daido Steel Co. Ltd., Nagoya (Japan)

    2000-09-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  12. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    International Nuclear Information System (INIS)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori; Nagasaka, Takuya; Muroga, Takeo; Shibayama, Tamaki; Tomiyama, Shigeki; Sakata, Masafumi

    2000-01-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  13. Evaluation on microscopic damage and fabrication process of shape memory alloy

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Choi, Il Kook; Park, Young Chul; Lee, Kyu Chang; Lee, Jun Hyun

    2002-01-01

    Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and Al6061 were used as reinforcing material and matrix, respectively. In this study, TiNi/Al6061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at tile boundary between TiNi fiber anti Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effort. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/Al6061 shape memory alloy composite at high temperature.

  14. Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.

    Science.gov (United States)

    Lee, Chung-Hyo

    2018-02-01

    We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.

  15. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    International Nuclear Information System (INIS)

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-01-01

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, αprime precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9 at

  16. Fabrication of high-alloy powders consisting of spherical particles from ultradispersed components

    Science.gov (United States)

    Samokhin, A. V.; Fadeev, A. A.; Sinayskiy, M. A.; Alekseev, N. V.; Tsvetkov, Yu. V.; Arzhatkina, O. A.

    2017-07-01

    It is shown that powders of a model high alloy consisting of spherical particles 25-50 μm in size can be synthesized from a starting ultradispersed powder, which is made of a mixture of the alloy components and is fabricated by the magnesiothermal reduction of metal chlorides in the potassium chloride melt. The synthesis includes the stages of microgranulation of an ultradispersed powder, heat treatment of microgranules, classification of the microgranules with the separation of microgranule fraction of 25-50 μm, spheroidization of the separated fraction in a thermal plasma flow, and classification with the separation of a fraction of micro- and submicrometer-sized particles.

  17. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-03-27

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, {alpha}{prime} precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9

  18. Regularities of structure formation on different stages of WC-Co hard alloys fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chernyavskij, K S

    1987-03-01

    Some regularities of structural transformations in powder products of the hard alloys fabrication have been formulated on the basis of results of the author works and other native and foreign reseachers. New data confirming the influene of technological prehistory of carbide powder on the mechanism of its particle grinding as well as the influence of the structural-energy state of WC powder on the course of the WC-Co alloy structure formation processes are given. Some possibilities for the application in practice of the regularities studied are considered.

  19. Fabrication and microstructure of CNTs activated sintered W–Nb alloys

    International Nuclear Information System (INIS)

    Sha, J.J.; Hao, X.N.; Li, J.; Wang, Z.

    2014-01-01

    Highlights: • Fabrication and microstructure of CNTs activated sintered W-Nb alloys were investigated. • CNTs could significantly enhance the sintering ability of W-Nb alloys at a low temperature. • The improved sintering was due to the enhanced diffusion of W atoms along the GBs induced by CNTs. • The grain size in CNTs activated sintered W-Nb alloys decreased with increasing the Nb content. -- Abstract: In order to fabricate highly dense W-based alloys at low temperature, in the present work, high-energy ball milling and hot pressing were applied to fabricate W–Nb alloys (mass fraction of Nb varied from 0.5% to 5%), where CNTs were used as the activated sintering additives. The phase composition and microstructure were characterized by XRD and SEM equipped with EDS, respectively. The study found coupled effects of CNTs activated sintering and Nb addition on the enhanced sintering ability and refined microstructure of W at 1500 °C. The main results are: (i) XRD characterization revealed that the high-energy ball milling could significantly reduce the crystallite size of W particles and increase lattice distortion, which would enhance the sintering behavior of W alloys. (ii) The addition of CNTs to W (W–0.1CNTs) led to the formation of nanoscale interfacial layer between W grains during hot pressing, resulting in considerable densification and grain growth. Based on this result, it suggested that the activated sintering of W in the present work is due to an enhanced diffusion of W atoms along the GBs induced by CNTs. (iii) With the addition of CNTs to W–Nb alloys, the densification was improved again, but was not so obvious. The optimal densification was obtained for the W–0.1CNTs–1Nb specimen. Moreover, the microstructure characterization in CNTs activated sintered W–Nb alloys indicated that the distribution of sphere-like W(Nb) solid solution particles and decreased W grain sizes with increasing Nb content are the main microstructure features

  20. Fabrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling

    Science.gov (United States)

    Ai, Bangcheng; Chen, Siyuan; Yu, Jijun; Lu, Qin; Han, Hantao; Hu, Longfei

    2018-05-01

    In this study, lithium/C-103 alloys heat pipes are proposed for sharp leading edge cooling. Three models of lithium/C-103 alloy heat pipes were fabricated. And their startup properties were tested by radiant heat tests and aerothermal tests. It is found that the startup temperature of lithium heat pipe was about 860 °C. At 1000 °C radiant heat tests, the operating temperature of lithium/C-103 alloy heat pipe is lower than 860 °C. Thus, startup failure occurs. At 1100 °C radiant heat tests and aerothermal tests, the operating temperature of lithium/C-103 alloy heat pipe is higher than 860 °C, and the heat pipe starts up successfully. The startup of lithium/C-103 alloy heat pipe decreases the leading edge temperature effectively, which endows itself good ablation resistance. After radiant heat tests and aerothermal tests, all the heat pipe models are severely oxidized because of the C-103 poor oxidation resistance. Therefore, protective coatings are required for further applications of lithium/C-103 alloy heat pipes.

  1. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  2. Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding

    International Nuclear Information System (INIS)

    Zheng Min; Fan Ding; Li Xiukun; Li Wenfei; Liu Qibin; Zhang Jianbin

    2008-01-01

    To construct a bioactive interface between metal implant and the surrounding bone tissue, the gradient calcium phosphate bioceramic coating on titanium alloy (Ti-6Al-4V) was designed and fabricated by laser cladding. The results demonstrated that the gradient bioceramic coating was metallurgically bonded to the titanium alloy substrate. The appearance of hydroxyapatite and β-tricalcium phosphate indicated that the bioactive phases were synthesized on the surface of coating. The microhardness gradually decreased from the coating to substrate, which could help stress relaxation between coating and bone tissue. Furthermore, the methyl thiazolyl tetrazolium (MTT) assay of cell proliferation revealed that the laser-cladded bioceramic coating had more favorable osteoblast response compared with the surface of untreated titanium alloy substrate

  3. Fabrication of polymer-alloy based on polytetrafluoroethylene by radiation-crosslinking

    International Nuclear Information System (INIS)

    Oshima, A.; Asano, S.; Hyunga, T.; Ichizuri, S.; Washio, M.

    2003-01-01

    Perfluoropolymer such as polytetrafluoroethylene (PTFE), tetrafluoroethylene co-perfluoroalkylvinylether (PFA) and tetrafluoroethylene-co-hexafluoropropylene (FFP) have been classified to be a typical polymer of radiation-induced degradation. However, we confirmed that the crosslinking of PTFE, PFA and FEP proceed by irradiation under selective condition where oxygen-free and high temperature above the melting temperature of them. In this study, fabrication of polymer-alloy based on PTFE has been demonstrated by radiation-crosslinking techniques. The polymer alloy, which was PTFE fine powder contained with other polymeric materials, was obtained by electron beams irradiation under oxygen-free atmosphere. Characterization of polymer-alloy based on PTFE has been studied by various measurements such as solid state 19F- and 13C-NMR spectroscopy, thermal analysis (DSC, TGA)

  4. Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Min [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China)], E-mail: zhminmin@sina.com; Fan Ding; Li Xiukun [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Li Wenfei; Liu Qibin [College of Materials Science and Engineering, Guizhou University, Guiyang 550003 (China); Zhang Jianbin [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China)

    2008-11-15

    To construct a bioactive interface between metal implant and the surrounding bone tissue, the gradient calcium phosphate bioceramic coating on titanium alloy (Ti-6Al-4V) was designed and fabricated by laser cladding. The results demonstrated that the gradient bioceramic coating was metallurgically bonded to the titanium alloy substrate. The appearance of hydroxyapatite and {beta}-tricalcium phosphate indicated that the bioactive phases were synthesized on the surface of coating. The microhardness gradually decreased from the coating to substrate, which could help stress relaxation between coating and bone tissue. Furthermore, the methyl thiazolyl tetrazolium (MTT) assay of cell proliferation revealed that the laser-cladded bioceramic coating had more favorable osteoblast response compared with the surface of untreated titanium alloy substrate.

  5. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds

    International Nuclear Information System (INIS)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G.

    2002-01-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  6. Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires

    Science.gov (United States)

    Hou, Huilong; Horn, Mark W.; Hamilton, Reginald F.

    2016-12-01

    Nanoskiving is a novel nanofabrication technique to produce shape memory alloy nanowires. Our previous work was the first to successfully fabricate NiTi alloy nanowires using the top-down approach, which leverages thin film technology and ultramicrotomy for ultra-thin sectioning. For this work, we utilized biased target ion beam deposition technology to fabricate nanoscale (i.e., sub-micrometer) NiTi alloy thin films. In contrast to our previous work, rapid thermal annealing was employed for heat treatment, and the B2 austenite to R-phase martensitic transformation was confirmed using stress-temperature and diffraction measurements. The ultramicrotome was programmable and facilitated sectioning the films to produce nanowires with thickness-to-width ratios ranging from 4:1 to 16:1. Energy dispersive X-ray spectroscopy analysis confirmed the elemental Ni and Ti make-up of the wires. The findings exposed the nanowires exhibited a natural ribbon-like curvature, which depended on the thickness-to-width ratio. The results demonstrate nanoskiving is a potential nanofabrication technique for producing NiTi alloy nanowires that are continuous with an unprecedented length on the order of hundreds of micrometers.

  7. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    Science.gov (United States)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  8. Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, James [Caterpillar Inc., Mossville, IL (United States)

    2017-06-13

    Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the next generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.

  9. Bubble formation in Zr alloys under heavy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, L. Jr.; Motta, A.T. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Nuclear Engineering; Birtcher, R.C. [Argonne National Lab., IL (United States). Materials Science Div.

    1995-12-01

    Kr ions were used in the HVEM/Tandem facility at ANL to irradiate several Zr alloys, including Zircaloy-2 and -4, at 300-800 C to doses up to 2{times}10{sup 16}ion.cm{sup -2}. Both in-situ irradiation of thin foils as well as irradiation of bulk samples with an ion implanter were used in this study. For the thin foil irradiations, a distribution of small bubbles in the range of 30-100 {angstrom} was found at all temperatures with the exception of the Cr-rich Valloy where 130 {angstrom} bubbles were found. Irradiation of bulk samples at 700-800 C produced large faceted bubbles up to 300 {angstrom} after irradiation to 2{times}10{sup 16}ion.cm{sup -2}. Results are examined in context of existing models for bubble formation and growth in other metals.

  10. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy

    Czech Academy of Sciences Publication Activity Database

    Kunčická, L.; Kocich, R.; Hervoches, Charles; Macháčková, A.

    2017-01-01

    Roč. 705, č. 9 (2017), s. 25-31 ISSN 0921-5093 R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : Tungsten heavy alloy * residual stresses * neutron scattering * electron microscopy * work hardening Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.094, year: 2016

  11. Tungsten heavy metal alloys relations between the crystallographic texture and the internal stress distribution

    International Nuclear Information System (INIS)

    Nicolas, G.; Voltz, M.

    2001-01-01

    Quite often the W-Ni-Fe-Co heavy alloys are subjected to a thermomechanical processing of swaging and aging in order to obtain the highest possible level of resistance. Within the framework of this plastic deformation on cylindrical parts, the swaging leads to the distribution of morphological and crystallographic texture as well as specific internal stresses. The resulting mechanical characteristics are correlated to structural and sub-structural variations. (author)

  12. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting.

    Science.gov (United States)

    Wu, Lin; Zhu, Haiting; Gai, Xiuying; Wang, Yanyan

    2014-01-01

    Limited information is available regarding the microstructure and mechanical properties of dental alloy fabricated by selective laser melting (SLM). The purpose of this study was to evaluate the mechanical properties of a cobalt-chromium (Co-Cr) dental alloy fabricated by SLM and to determine the correlation between its microstructure and mechanical properties and its porcelain bond strength. Five metal specimens and 10 metal ceramic specimens were fabricated to evaluate the mechanical properties of SLM Co-Cr dental alloy (SLM alloy) with a tensile test and its porcelain bond strength with a 3-point bending test. The relevant properties of the SLM alloy were compared with those of the currently used Co-Cr dental alloy fabricated with conventional cast technology (cast alloy). The Student t test was used to compare the results of the SLM alloy and the cast alloy (α=.05). The microstructure of the SLM alloy was analyzed with a metallographic microscope; the metal ceramic interface of the SLM porcelain bonded alloy was studied with scanning electron microscopy, energy dispersive x-ray spectroscopy, and an electron probe microanalyzer. Both the mean (standard deviation) yield strength (884.37 ± 8.96 MPa) and tensile strength (1307.50 ±10.65 MPa) of the SLM alloy were notably higher than yield strength (568.10 ± 30.94 MPa) and tensile strength (758.73 ± 25.85 MPa) of the currently used cast alloy, and the differences were significant (P.05). Microstructure analysis suggested that the SLM alloy had a dense and obviously orientated microstructure, which led to excellent mechanical properties. Analysis from scanning electron microscopy, energy dispersive x-ray spectroscopy, and the electron probe microanalyzer indicated that the SLM alloy had an intermediate layer with elemental interpenetration between the alloy and the porcelain, which resulted in an improved bonding interface. Compared with the currently used cast alloy, SLM alloy possessed improved mechanical

  13. Annex 5 - Fabrication of U-Al alloy; Prilog 5 - Dobijanje legure U-Al

    Energy Technology Data Exchange (ETDEWEB)

    Drobnjak, Dj; Lazarevic, Dj; Mihajlovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Alloy U-Al with low content of aluminium is often used for fabrication of fuel elements because it is stable under moderate neutron flux density. Additionally this type of alloys show much better characteristics than pure uranium under reactor operating conditions (temperature, mechanical load, corrosion effect of water). This report contains the analysis of the phase diagram of U-Al alloy with low content of aluminium, applied procedure for alloying and casting with detailed description of equipment. Characteristics of the obtained alloy are described and conclusions about the experiment and procedure are presented. Sistem U-Al sa niskim sadrzajem aluminijuma jedan je od cesto koriscenih za izradu gorivnih elemenata, jer je dovoljno stabilan pri umerenim gustinama fluksa. Pored toga, u uslovima karakteristicnim za rad nuklearnog reaktora (temperatura, gradijent temperature, mehanicka naprezanja, koroziono dejstvo vode) legure ovog sistema pokazuju daleko bolja svojstva od nelegiranog urana. Referat sadrzi analizu dijagrama stanja U-Al legure sa niskim sadrzajem aluminijuma, primenjeni postupak legiranja i livenja sa opisom pojedinih uredjaja i operacija. Takodje su opisana svojstva dobijene legure i dat je zakljucak o eksperimentu i tehnici rada (author)

  14. Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom

    Science.gov (United States)

    Liu, Chain T.; Inouye, Henry

    1979-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.

  15. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Memarzadeh, Kaveh [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ren, Guogang [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Allaker, Robert P., E-mail: r.p.allaker@qmul.ac.uk [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-10-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  16. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    International Nuclear Information System (INIS)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P.; Yang, Ke

    2016-01-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  17. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting.

    Science.gov (United States)

    Kanazawa, Manabu; Iwaki, Maiko; Minakuchi, Shunsuke; Nomura, Naoyuki

    2014-12-01

    Casting difficulties have led to the limited use of titanium in dental prostheses. The selective laser melting system was recently developed to fabricate biomedical components from titanium alloys. However, the fabrication of a titanium alloy framework for a maxillary complete denture by selective laser melting has not yet been investigated. The purpose of the study was to fabricate thin titanium alloy frameworks for a maxillary complete denture with a selective laser melting system and to evaluate their hardness and microstructure. A cast of an edentulous maxilla was scanned with a dental 3-dimensional cone-beam computed tomography system, and standard triangulation language data were produced with the DICOM Viewer (Digital Imaging and Communications in Medicine). Two types of metal frameworks for complete dentures were designed with 3-dimensional computer-aided design software. Two titanium alloy frameworks, SLM-1 and SLM-2, were fabricated from these designs with the selective laser melting system. Plate-shaped specimens were cut from the central flat region of SLM-1, SLM-2, and as-cast Ti-6Al-4V (As-cast). Vickers hardness testing, optical microscopy, and x-ray diffraction measurements were performed. Thin titanium alloy frameworks for maxillary complete dentures could be fabricated by selective laser melting. The hardness values for SLM-1 and SLM-2 were higher than that for the as-cast specimen. Optical microscopy images of the SLM-1 and SLM-2 microstructure showed that the specimens did not exhibit pores, indicating that dense frameworks were successfully obtained with the selective laser melting process. In the x-ray diffraction patterns, only peaks associated with the α phase were observed for SLM-1 and SLM-2. In addition, the lattice parameters for SLM-1 and SLM-2 were slightly larger than those for the as-cast specimen. The mechanical properties and microstructure of the denture frameworks prepared by selective laser melting indicate that these dentures

  18. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    Science.gov (United States)

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  19. Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

    International Nuclear Information System (INIS)

    Rebak, R B

    2005-01-01

    This report deals with the impact of fabrication processes on the localized corrosion behavior of Alloy 22 (N06022). The four fabrication processes that were analyzed are: (1) Surface stress mitigation of final closure weld, (2) Manufacturing of the mockup container, (3) Black annealing of the container and (4) Use of different heats of Alloy 22 for container fabrication. Immersion and Electrochemical tests performed in the laboratory are generally aggressive and do not represent actual repository environments in Yucca Mountain. For example, to determine the intergranular attack in the heat affected zone of a weldment, tests are conducted in boiling acidic and oxidizing solutions according to ASTM standards. These solutions are used to compare the behavior of differently treated metallic coupons. Similarly for electrochemical tests many times pure sodium chloride or calcium chloride solutions are used. Pure chloride solutions are not representative of the repository environment. (1) Surface Stress Mitigation--When metallic plates are welded, for example using the Gas Tungsten Arc Welding (GTAW) method, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to comparatively test the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results from both immersion and electrochemical corrosion tests show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied. (2) Behavior of Specimens from a Mockup container--Alloy 22 has been extensively tested for

  20. The study of precipitation hardening of weight heavy alloys matrix

    Directory of Open Access Journals (Sweden)

    M. Kaczorowski

    2008-03-01

    Full Text Available Thc study of rnodcl wcight hcavy atloy (WHA W-Ni-Co-Fc. with somc cxccss or tungsrcn with respcct to its maximum nickcI hascd sol idstate solubility arc prcscntcd. The alloy was melted at the tcmpemturc 1570 "C in hydrogcn atrnosphcrc. Aftet rcmoving thc bottom par1 ofthc cwting where cxcess grains of tungstcn scdimcnt, thc ingot was solulion heat trcatmcnt for 2h at tbc tcmpcra~urc 900°C followed hywater qucnching. Finally. the specimens werc agcd at thc tcrnpcraturc 250. 3IX1 and 350 "C for time up to 48. 36 and 24 rcspcctivcly. Aficrheat trcazment the specimens wcre studicd using hardncss rncasutemcnts and structure investigations. Thc last onc includcd X-raydiffracromctry (XRD. optical metallography. scanning clcct ton microscopy (SEM and ~ransmissionrl cctron micmscopy (TEMb I t wasconcluded that two phase microstructure was not s~lhstantiallyc hangcd during aging. cspially the aging lcad not ta 111tr;l-finc prccipitnzcformation. which would causcd remnrkablc prccipizar ion strcng~hcningo f mn~rixT. hc rcsulzs analysis prompt us to concludc thna thc mainreason of minimal strcngthcning only was thc spccific output strtlcturc aftcr solution heat tscatrnen!. rcsul~cd Fmm to taw tclnpcraturc ofsolution heat treatment,

  1. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    Science.gov (United States)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  2. Fabrication of hydrophobic/super-hydrophobic nanofilms on magnesium alloys by polymer plating

    International Nuclear Information System (INIS)

    Kang Zhixin; Lai Xiaoming; Sang Jing; Li Yuanyuan

    2011-01-01

    Hydrophobic/super-hydrophobic nanofilms with improved corrosion resistance were fabricated on the surfaces of Mg–Mn–Ce magnesium alloy by a surface modification technique, named as polymer plating, which has been developed to modify superficial characteristics of magnesium alloys with polymeric nanofilms through synthesized organic compounds of triazine dithiol containing functional groups. The nanofilms were prepared by the electrochemical and polymerization reactions during polymer plating analyzed from characteristics of Fourier transform infrared spectrophotometer, X-ray photoelectron spectroscopy and scanning electron microscopy. The fabricated nanofilms changed the surface wettability of blank magnesium alloy from hydrophilic to hydrophobic with contact angle 119.0° of distilled water with lower surface free energy of 20.59 mJ/m 2 and even super-hydrophobic with contact angle 158.3° with lowest surface free energy of 4.68 mJ/m 2 by different functional nanofilms on their surfaces. Alteration of wettability from hydrophilic to hydrophobic and super-hydrophobic resulted from their low surface free energy and surface morphology with micro- and nano-rough structures. The corrosion behaviors from potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the super-hydrophobic nanofilm has higher corrosion resistance and stability in 0.1 mol/L NaCl solution and lower corrosion current density (I corr ) with R ct increasing two orders of magnitude of 16,500 Ω·cm 2 compared to that obtained for blank of 485 Ω·cm 2 .

  3. Nanosized-Particle Dispersion-Strengthened Al Matrix Composites Fabricated by the Double Mechanical Alloying Process.

    Science.gov (United States)

    Kim, Chungseok

    2018-03-01

    The objective of this study was to fabricate an Al metal matrix composite strengthened by nanosized Al3Ti particles via double mechanical alloying process. Several Al-xTi alloys were fabricated, including Al-12%Ti, Al-15%Ti, and Al-12%Ti-1%Y2O3. The lattice parameter of as-milled state was calculated to be 4.0485 Å; after a milling time of 540 min, it was 4.0401 Å. This decrease was induced by Ti solutionizing into the Al matrix. The equivalent size of a coarse Al3Ti particle was 200-500 nm after the heat treatment; however, the particles were uniformly distributed and were refined through the MA2 process. The particle size of a Al3Ti phase was 30 nm or less, and the particles were uniformly distributed. These particles remained in a fine state in the matrix without growth and coarsening, even after the hot extrusion process. The microstructure of hot extruded alloys consisted of a uniform distribution of Al3Ti particles and other dispersoids in the Al matrix.

  4. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Luo Yuting; Sun Linyu [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: Black-Right-Pointing-Pointer Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. Black-Right-Pointing-Pointer Superhydrophobic surfaces with a high water contact angle of 162 Degree-Sign and a low rolling angle of 2 Degree-Sign were obtained. Black-Right-Pointing-Pointer The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162 Degree-Sign and the sliding angle of 2 Degree-Sign was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed

  5. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    International Nuclear Information System (INIS)

    Liu Wenyong; Luo Yuting; Sun Linyu; Wu Ruomei; Jiang Haiyun; Liu Yuejun

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: ► Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. ► Superhydrophobic surfaces with a high water contact angle of 162° and a low rolling angle of 2° were obtained. ► The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low

  6. Effect Of Milling Time On Microstructure Of AA6061 Composites Fabricated Via Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Tomiczek B.

    2015-06-01

    Full Text Available The aim of this work is to determine the effect of manufacturing conditions, especially milling time, on the microstructure and crystallite size of a newly developed nanostructural composite material with the aluminium alloy matrix reinforced with halloysite nanotubes. Halloysite, being a clayey mineral of volcanic origin, is characterized by high porosity and large specific surface area. Thus it can be used as an alternative reinforcement in metal matrix composite materials. In order to obtain this goal, composite powders with fine microstructures were fabricated using high-energy mechanical alloying, cold compacting and hot extrusion techniques. The obtained composite powders of aluminium alloy reinforced with 5, 10 and 15 wt% of halloysite nanotubes were characterized with SEM, TEM and XRD analysis. It has been proven that the use of mechanical alloying leads to a high degree of deformation, which, coupled with a decreased grain size below 100 nm and the dispersion of the refined reinforcing particles–reinforces the material very well.

  7. Fabricating High-Quality 3D-Printed Alloys for Dental Applications

    Directory of Open Access Journals (Sweden)

    Min-Ho Hong

    2017-07-01

    Full Text Available Metal additive manufacturing (AM, especially selective laser melting (SLM, has been receiving particular attention because metallic functional structures with complicated configurations can be effectively fabricated using the technique. However, there still exist some future challenges for the fabrication of high-quality SLM products for dental applications. First, the surface quality of SLM products should be further improved by standardizing the laser process parameters or by appropriately post-treating the surface. Second, it should be guaranteed that dental SLM restorations have good dimensional accuracy and, in particular, a good marginal fit. Third, a definitive standard regarding building and scanning strategies, which affect the anisotropy, should be established to optimize the mechanical properties and fatigue resistance of SLM dental structures. Fourth, the SLM substructure’s bonding and support to veneering ceramic should be further studied to facilitate the use of esthetic dental restorations. Finally, the biocompatibility of SLM dental alloys should be carefully examined and improved to minimize the potential release of toxic metal ions from the alloys. Future research of SLM should focus on solving the above challenges, as well as on fabricating dental structures with “controlled” porosity.

  8. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    Science.gov (United States)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  9. Anodic Fabrication of Ti-Ni-O Nanotube Arrays on Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2014-04-01

    Full Text Available Surface modification with oxide nanostructures is one of the efficient ways to improve physical or biomedical properties of shape memory alloys. This work reports a fabrication of highly ordered Ti-Ni-O nanotube arrays on Ti-Ni alloy substrates through pulse anodization in glycerol-based electrolytes. The effects of anodization parameters and the annealing process on the microstructures and surface morphology of Ti-Ni-O were studied using scanning electron microscope and Raman spectroscopy. The electrolyte type greatly affected the formation of nanotube arrays. A formation of anatase phase was found with the Ti-Ni-O nanotube arrays annealed at 450 °C. The oxide nanotubes could be crystallized to rutile phase after annealing treatment at 650 °C. The Ti-Ni-O nanotube arrays demonstrated an excellent thermal stability by keeping their nanotubular structures up to 650 °C.

  10. Fabrication and characterization of uranium-6--niobium alloy plate with improved homogeneity

    International Nuclear Information System (INIS)

    Snyder, W.B.

    1978-01-01

    Chemical inhomogeneities produced during arc melting of uranium--6 weight percent niobium alloy normally persist during fabrication of the ingot to a finished product. An investigation was directed toward producing a more homogeneous product (approx. 13.0-mm plate) by a combination of mechanical working and homogenization. Ingots were cast, forged to various reductions, homogenized under different conditions, and finally rolled to 13.0-mm-thick plate. It was concluded that increased forging reductions prior to homogenization resulted in a more homogeneous plate. Comparison of calculated and experimentally measured niobium concentration profiles indicated that the activation energy for the diffusion of niobium in uranium--niobium alloys may be lower than previously observed

  11. Fabrication and magnetic investigations of highly uniform CoNiGa alloy nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Jing; Khan, U.; Irfan, Muhammad [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Javed, K. [Department of Physics, Forman Christian College, Lahore 5400 (Pakistan); Liu, P. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Ban, S.L. [School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Han, X.F., E-mail: xfhan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-06-15

    Highlights: • Highly ordered CoNiGa alloy nanowires with different compositions were fabricated by DC electrodeposition. • The magnetic properties of CoNiGa nanowires can be easily tailored by varying its components. • Magnetostatic interactions plays an important role in the magnetization reversal process. • A linear dependence of coercivity on temperature was found for Co{sub 55}Ni{sub 28}Ga{sub 17} samples. - Abstract: CoNiGa ternary alloy nanowire arrays were successfully fabricated by simple DC electrodeposition into the anodized aluminum oxide (AAO) templates. A systematic study of the potential and components of the electrolyte were conducted to obtain different components of CoNiGa nanowires. The largest Ga content in the prepared alloy nanowires was about 17%, while for Co and Ni contents which can be controlled in a wide range by adjusting the composition and pH value of the electrolyte appropriately. X-ray diffraction analysis confirmed that the as-grown CoNiGa nanowire arrays were polycrystal with fcc phase of Co where Co atoms partially substituted by Ni and Ga. Magnetization curves of samples with different composition were measured at room temperature as well as low temperature. The results showed that the components of the alloy nanowires have a great impact on its magnetic properties. For Co{sub 55}Ni{sub 28}Ga{sub 17} nanowires, the magnetization reversal mode changes from curling mode to coherent rotation as the angle increases, and the temperature dependence of coercivity can be well described by the thermal activation effect.

  12. Tribological characterization of Al7075–graphite composites fabricated by mechanical alloying and hot extrusion

    International Nuclear Information System (INIS)

    Deaquino-Lara, R.; Soltani, N.; Bahrami, A.; Gutiérrez-Castañeda, E.; García-Sánchez, E.; Hernandez-Rodríguez, M.A.L.

    2015-01-01

    Highlights: • Al7075–graphite composites were synthesized by mechanical alloying and hot extrusion. • Effects of graphite content and milling time on the mechanical and wear properties of fabricated composites were analyzed. • Microstructure and worn surfaces of samples were studied by transmission and scanning electron microscope. • The friction coefficient, wear rate and debris thickness of fabricated composite were investigated. - Abstract: Aluminum matrix composites (AMCs) are candidate materials for aerospace and automotive industry owing to their large elastic modulus, improved strength and low wear rate. A simple method for fabrication of Al7075–graphite composites produced by mechanical alloying (MI) and hot extrusion is described in this paper. Effects of milling time (0–10 h) and graphite concentration (0–1.5 wt.%) on friction, hardness and wear resistance of the AMC were investigated. Wear resistance was determined by the pin-on-disk wear method using 20 and 40 N normal loads at a 0.367 m/s sliding velocity. The worn surfaces were examined by scanning electron microscopy (SEM) to identify distinct topographical features for elucidation of the prevailing wear mechanisms. Experimental results indicated considerable improvement in AMC hardness and wear resistance by adding 1.5% G (wt.) and 10 h of milling, showing homogenous distribution of the reinforcement particles in the Al-base metal-matrix composite. It was found that abrasion is the dominant wear mechanism in all extruded composites, whilst a combination of adhesion and delamination seems to be the governing mechanism for the 7075 aluminum alloy

  13. Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement

    International Nuclear Information System (INIS)

    Lin, J C; Chang, T K; Yang, J H; Jeng, J H; Lee, D L; Jiang, S B

    2009-01-01

    Micrometer Ni–Cu alloy columns have been fabricated by the micro-anode-guided electroplating (MAGE) process in the citrate bath. The surface morphology and chemical composition of the micro-columns were determined by copper concentration in the bath and by the electrical bias of MAGE. When fabricated in a bath of dilute copper (i.e. 4 mM) at lower voltages (e.g. 3.8 and 4.0 V), the alloy micro-columns revealed uniform diameter and smooth appearance. The alloy composition demonstrated an increase in the wt% ratio of Ni/Cu from 75/25, 80/20, 83/17 to 87/13 with increasing electrical bias from 3.8, 4.0, 4.2 to 4.4 V. However, it decreases from 75/25, 57/43 to 47/53 with increasing copper concentration from 4, 8 to 12 mM in the bath. Citrate plays a role in forming complexes with nickel and copper at similar reduction potentials, thus reducing simultaneously to Ni–Cu alloy. The mechanism for fabricating alloy micro-columns could be delineated on the basis of cathodic polarization of the complexes. A couple of micro-columns were fabricated using MAGE in constructing a pure copper micro-column on the top of a Ni/Cu (at 47/53) alloy micro-column. This micro-thermocouple provides a satisfactory measurement with good sensitivity and precision

  14. Development of advanced nuclear materials - Fabrication of Zr-Nb alloy used in PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang In; Kim, Won Baek; Lee, Chul Kyung; Choi, Kuk Sun; Kang, Dae Kyu; Seo, Chang Ryul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The following conclusions can be made from the second year research: 1. Easy control for alloying elements can be made for the following adding metals like Nb, V, Sn, Mo, Fe due to low vapor pressure. In case of Cr and Te= known to have high vapor pressure, they are controlled by adding master alloy(Zr-Cr) or quite excess of aimed composition. However, Bi was found to be very difficult to charging the certain amount into the melt. 2. Oxygen content can be adjusted by adding the Zr-10%O master alloy considering the inherent amount of oxygen in sponge zirconium. 3. The charging rod of 38 mm in diameter, 96 mm in length was made by a series of button melting, casting and vacuum welding, from this, Zr-2.5Nb ingot of 50 mm in diameter and 550 mm in length was fabricated by EB drip melting process. 4. The amount of Nb can be successfully adjusted at 2.8% with charging 15% excess. Nb as adding element is easily controlled due to high-melting -point metal and its low vapor pressure. 5. Oxygen content is not varied during remelting, casting, and drip melting, only slight change was observed in button melting stage due to uptake the desorbed gases during the melting operation. Nuclear materials in domestic nuclear power plants depend on import and this amount reaches 100 million dollars per year. The increase in demand for the development of new zirconium based alloys are expecting. All the results involving this research can be applied for the melting of reactive metals, vacuum refining and alloy design. 13 refs., 6 tabs., 10 figs., 10 ills. (author)

  15. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Science.gov (United States)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  16. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  17. Fabrication of a smart air intake structure using shape memory alloy wire embedded composite

    International Nuclear Information System (INIS)

    Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi; Lee, Woo-Yong; Ahn, Sung-Hoon

    2010-01-01

    Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in intersection -shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.

  18. Grain Refinement of Freeform Fabricated Ti-6Al-4V Alloy Using Beam/Arc Modulation

    Science.gov (United States)

    Mitzner, Scott; Liu, Stephen; Domack, Marcia S.; Hafley, Robert A.

    2012-01-01

    Grain refinement can significantly improve the mechanical properties of freeform-fabricated Ti-6Al-4V alloy, promoting increased strength and enhanced isotropy compared with coarser grained material. Large beta-grains can lead to a segregated microstructure, in regard to both alpha-phase morphology and alpha-lath orientation. Beam modulation, which has been used in conventional fusion welding to promote grain refinement, is explored in this study for use in additive manufacturing processes including electron beam freeform fabrication (EBF(sup 3)) and gas-tungsten arc (GTA) deposition to alter solidification behavior and produce a refined microstructure. The dynamic molten pool size induced by beam modulation causes rapid heat flow variance and results in a more competitive grain growth environment, reducing grain size. Consequently, improved isotropy and strength can be achieved with relatively small adjustments to deposition parameters.

  19. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    Science.gov (United States)

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  20. Salvaging of service exposed cast alloy 625 cracker tubes of ammonia based Heavy Water Plants

    International Nuclear Information System (INIS)

    Kumar, Niraj; Misra, B.; Mahajan, M.P.; Mittra, J.; Sundararaman, M.; Chakravartty, J.K.

    2006-01-01

    In ammonia based heavy water plants, cracking of ammonia vapour, enriched in deuterium is carried out inside a cracker tube, packed with catalyst. These cracker tubes are made of alloy 625 (either wrought or cast) having dimensions of about 12.5 metres long, 88 mm outer diameter and 7.9 mm wall thickness. Seventy such tubes are housed in a typical ammonia cracker unit. The anticipated design life of such tube is 1,00,000 hrs. when operated at 720 degC based on creep as main degradation mechanism. Presently, these tubes are being operated at 680 degC skin temperature. Alloy 625 tubes are costly and normally not manufactured in India and are being imported. The cast alloy 625 cracker tubes have outlived their design life of 100,000 hrs. Therefore it has been decided to salvage the cast cracker tubes and extend the life further as it had already been done for wrought tubes. Similar to the earlier attempt of resolutionising of wrought alloy 625 tubes, efforts are in progress to salvage these cast tubes. In this study, cast tubes samples were subjected to solution-annealing treatment at two different temperatures, 1100degC and 1160degC respectively for two hrs. Mechanical properties along with the microstructure of the samples, which were resolutionized at 1160degC were comparable with that of virgin material. The 12.5 metres long cast alloy 625 cracker tubes will also be shortly solution-annealed in a specially designed resistance heating furnace after completing some more tests. (author)

  1. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  2. Fabrication of uranium alloy fuel slug for sodium-cooled fast reactor by injection casting

    International Nuclear Information System (INIS)

    Jong Hwan Kim; Hoon Song; Ki Hwan Kim; Chan Bock Lee

    2014-01-01

    Metal fuel slugs of U-Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U-10 wt% Zr and U-10 wt% Zr-5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions. (author)

  3. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    Science.gov (United States)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  4. Fabrication of hydrophobic/super-hydrophobic nanofilms on magnesium alloys by polymer plating

    Energy Technology Data Exchange (ETDEWEB)

    Kang Zhixin, E-mail: zxkang@scut.edu.cn; Lai Xiaoming; Sang Jing; Li Yuanyuan

    2011-11-01

    Hydrophobic/super-hydrophobic nanofilms with improved corrosion resistance were fabricated on the surfaces of Mg-Mn-Ce magnesium alloy by a surface modification technique, named as polymer plating, which has been developed to modify superficial characteristics of magnesium alloys with polymeric nanofilms through synthesized organic compounds of triazine dithiol containing functional groups. The nanofilms were prepared by the electrochemical and polymerization reactions during polymer plating analyzed from characteristics of Fourier transform infrared spectrophotometer, X-ray photoelectron spectroscopy and scanning electron microscopy. The fabricated nanofilms changed the surface wettability of blank magnesium alloy from hydrophilic to hydrophobic with contact angle 119.0 Degree-Sign of distilled water with lower surface free energy of 20.59 mJ/m{sup 2} and even super-hydrophobic with contact angle 158.3 Degree-Sign with lowest surface free energy of 4.68 mJ/m{sup 2} by different functional nanofilms on their surfaces. Alteration of wettability from hydrophilic to hydrophobic and super-hydrophobic resulted from their low surface free energy and surface morphology with micro- and nano-rough structures. The corrosion behaviors from potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the super-hydrophobic nanofilm has higher corrosion resistance and stability in 0.1 mol/L NaCl solution and lower corrosion current density (I{sub corr}) with R{sub ct} increasing two orders of magnitude of 16,500 {Omega}{center_dot}cm{sup 2} compared to that obtained for blank of 485 {Omega}{center_dot}cm{sup 2}.

  5. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods.

    Science.gov (United States)

    Tuna, Süleyman Hakan; Özçiçek Pekmez, Nuran; Kürkçüoğlu, Işin

    2015-11-01

    The effects of fabrication methods on the corrosion resistance of frameworks produced with Co-Cr alloys are not clear. The purpose of this in vitro study was to evaluate the electrochemical corrosion resistance of Co-Cr alloy specimens that were fabricated by conventional casting, milling, and laser sintering. The specimens fabricated with 3 different methods were investigated by potentiodynamic tests and electrochemical impedance spectroscopy in an artificial saliva. Ions released into the artificial saliva were estimated with inductively coupled plasma-mass spectrometry, and the results were statistically analyzed. The specimen surfaces were investigated with scanning electron microscopy before and after the tests. In terms of corrosion current and Rct properties, statistically significant differences were found both among the means of the methods and among the means of the material groups (Pcorrosion than those produced by milling and laser sintering. The corrosion resistance of a Co-Cr alloy specimens fabricated by milling or laser sintering was greater than that of the conventionally cast alloy specimens. The Co-Cr specimens produced by the same method also differed from one another in terms of corrosion resistance. These differences may be related to the variations in the alloy compositions. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Thermal Expansion Properties of Fe-42Ni-Si Alloy Strips Fabricated by Melt Drag Casting Process

    International Nuclear Information System (INIS)

    Kim, Moo Kyum; Ahn, Yong Sik; Namkung, Jeong; Kim, Moon Chul; Kim, Yong Chan

    2007-01-01

    Thermal expansion property was investigated on Fe-42% Ni alloy strip added by alloying element of Si of 0∼1.5wt.%. The strip was fabricated by a melt drag casting process. Addition of Si enlarged the solid-liquid region and reduced the melting point which leads to the increase of the formability of a strip. The alloy containing 0.6 wt.% Si showed the lowest thermal expansion ratio in the temperature range between 20 to 350 .deg. C. The grain size was increased with reduction ratio and annealing temperature, which resulted in the decrease of the thermal expansion coefficient of strip. Because of grain refining by precipitation of Ni 3 Fe, the alloy strip containing 1.5 wt.% Si showed higher thermal expansion ratio compared with the alloy containing 0.6 wt.% Si

  7. Effect of surface shear on cube texture formation in heavy cold-rolled Cu-45 at%Ni alloy substrates

    DEFF Research Database (Denmark)

    Tian, Hui; Suo, Hongli; Liang, Yaru

    2015-01-01

    Two types of Cu-45 at%Ni alloy thin tapes with and without surface shear were obtained by different heavy cold rolling processes. The deformation and recrystallization textures of the two tapes were thoroughly investigated by electron back scattering diffraction technique. The results showed...... that a shear texture mainly covered the surface of the heavy deformed tapes because of the fraction between the surface of rolling mills and the thin tapes when the rolling force strongly reduced at high strain, which significantly reduced the fraction of rolling texture on the surface of the Cu-45at %Ni alloy...

  8. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties.

    Science.gov (United States)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P; Yang, Ke

    2016-10-01

    The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Shape distortion and dimensional precision in tungsten heavy alloy liquid phase sintering

    International Nuclear Information System (INIS)

    Wuwen Yi; German, R.M.; Lu, P.K.

    2001-01-01

    Microstructure effects on densification and shape distortion in liquid phase sintering of tungsten heavy alloy were investigated. Microstructure parameters such as the solid volume fraction, dihedral angle, initial porosity, and pore size were varied to measure densification and distortion behavior during LPS using W-Ni-Cu alloys. Green compacts were formed using ethylene-bis-stearamide as a pore-forming agent with the amount of polymer controlling the initial porosity. Different initial pore sizes were generated by varying the polymer particle size. Dihedral angle was varied by changing the Ni:Cu ratio in the alloys. Finally, the solid volume fraction was adjusted via the tungsten content. Distortion was quantified using profiles determined with a coordinate measuring machine to calculate a distortion parameter. Sintering results showed that solid volume fraction and dihedral angle are the dominant factors on densification and distortion during liquid phase sintering. Distortion decreases with increasing solid volume fraction and dihedral angle, while initial porosity and pore size have no observable effect on distortion at nearly full densification. Various strategies emerge to improve distortion control in liquid phase sintering. (author)

  10. The influence of Fe content on spreading ability of tungsten heavy alloys matrix on tungsten surface

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2011-07-01

    Full Text Available The results of experimental study of tungsten spreading ability with W-Ni-Co-Fe matrix are presented. The aim of these investigations was to see how Fe concentration in W – Ni – Co matrix influences the wettability of tungsten grains during liquid phase sintering. Four green compact specimens containing 50%W, 10%Co and Ni + Fe = 40% but with different Ni to Fe ratio were prepared. The cylindrical specimen 5mm diameter and 5mm height were put on clean pure tungsten substrate and then 20 minutes heated at 1520oC in hydrogen atmosphere. After heating the specimens were carefully measured and then the specimens for structure observations were prepared. It was concluded, that increase of Fe content decrease the melting temperature of W – Ni – Co alloy. The melting point decrease caused by Fe content increase substantially the spreading ability of tungsten substrate with W – Ni – Co alloy. Metallography investigations showed some microstructure changes in “reaction zone” identified in tungsten substrate – (WNi40-xCo10Fex interface. The results of the study confirmed our earlier observations that even relative small Fe addition promotes Weight Heavy Alloys (WHA liquid phase sintering.

  11. Effect of solution treatment temperature and cooling rate on the mechanical properties of tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Anjali, E-mail: anjalikumari1261@gmail.com; Prabhu, G.; Sankaranarayana, M.; Nandy, T.K.

    2017-03-14

    The present study investigates the effect of solution treatment temperature and cooling rate on mechanical properties of a tungsten heavy alloy (89.6W-6.2Ni-1.8Fe-2.4Co). In addition to water quenching, rapid argon quenching has been attempted in this study since it is a relatively cleaner process and it can be used in conjunction with vacuum treatment. Since in these alloys, there is a possibility of incomplete dissolution of intermetallics or segregation of impurities during heat treatment, which results in scatter in the mechanical properties, it was decided that the solution treatment temperature for both water and argon quenching would be varied from 1100 to 1250 °C in order to see its effect on the microstructure and mechanical properties. Solution treatment at varying temperatures followed by water quenching resulted in tensile strength ranging from 908 to 921 MPa and % elongation varied from 19% to 26%. On the other hand, the argon quenching heat treatment resulted in tensile strength in the range of 871–955 MPa and % elongation from 9% to 25%. No significant trend with respect to solution treatment temperature on tensile properties was seen in both argon and water quenched samples. % elongation to failure and impact values of water quenched specimens were better than those of argon quenched specimens for a given solution treatment temperature. The impact values appeared to improve with increasing solution treatment temperature in water quenched condition. The properties were correlated with underlying microstructure and fractographs of the failed specimens. The study showed the argon quenching may not be appropriate for the heat treatment of heavy alloys since it results in inferior mechanical properties as compared to water quenching.

  12. Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning

    Science.gov (United States)

    Khoo, Zhong Xun; Liu, Yong; Low, Zhi Hong; An, Jia; Chua, Chee Kai; Leong, Kah Fai

    2018-01-01

    Additive manufacturing has the potential to overcome the poor machinability of NiTi shape-memory alloy in fabricating smart structures of complex geometry. In recent years, a number of research activities on selective laser melting (SLM) of NiTi have been carried out to explore the optimal parameters for producing SLM NiTi with the desired phase transformation characteristics and shape-memory properties. Different effects of energy density and processing parameters on the properties of SLM NiTi were reported. In this research, a new approach—repetitive laser scanning—is introduced to meet these objectives as well. The results suggested that the laser absorptivity and heat conductivity of materials before and after the first scan significantly influence the final properties of SLM NiTi. With carefully controlled repetitive scanning process, the fabricated samples have demonstrated shape-memory effect of as high as 5.11% (with an average value of 4.61%) and exhibited comparable transformation characteristics as the NiTi powder used. These results suggest the potential for fabricating complex NiTi structures with similar properties to that of the conventionally produced NiTi parts.

  13. Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning

    Science.gov (United States)

    Khoo, Zhong Xun; Liu, Yong; Low, Zhi Hong; An, Jia; Chua, Chee Kai; Leong, Kah Fai

    2018-03-01

    Additive manufacturing has the potential to overcome the poor machinability of NiTi shape-memory alloy in fabricating smart structures of complex geometry. In recent years, a number of research activities on selective laser melting (SLM) of NiTi have been carried out to explore the optimal parameters for producing SLM NiTi with the desired phase transformation characteristics and shape-memory properties. Different effects of energy density and processing parameters on the properties of SLM NiTi were reported. In this research, a new approach—repetitive laser scanning—is introduced to meet these objectives as well. The results suggested that the laser absorptivity and heat conductivity of materials before and after the first scan significantly influence the final properties of SLM NiTi. With carefully controlled repetitive scanning process, the fabricated samples have demonstrated shape-memory effect of as high as 5.11% (with an average value of 4.61%) and exhibited comparable transformation characteristics as the NiTi powder used. These results suggest the potential for fabricating complex NiTi structures with similar properties to that of the conventionally produced NiTi parts.

  14. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  15. Fabrication of a Textured Non-Magnetic Ni-12at.%V Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Grivel, Jean-Claude; Suo, H. L.

    2011-01-01

    Ni-12at.%V alloy is a promising candidate for non-magnetic cube textured metallic substrates used for high temperature coated conductors. In this work, a textured Ni-12at.%V substrate has been fabricated by powder metallurgy route. After cold rolling and recrystallization annealing, a cube texture...

  16. Establishment of technological basis for fabrication of U-Pu-Zr ternary alloy fuel pins for irradiation tests in Japan

    International Nuclear Information System (INIS)

    Kikuchi, Hironobu; Iwai, Takashi; Nakajima, Kunihisa; Arai, Yasuo; Nakamura, Kinya; Ogata, Takanari

    2011-01-01

    A high-purity Ar gas atmosphere glove box accommodating injection casting and sodium-bonding apparatuses was newly installed in the Plutonium Fuel Research Facility of Oarai Research and Development Center, Japan Atomic Energy Agency, in which several nitride and carbide fuel pins were fabricated for irradiation tests. The experiences led to the establishment of the technological basis of the fabrication of U-Pu-Zr alloy fuel pins for the first time in Japan. After the injection casting of the U-Pu-Zr alloy, the metallic fuel pins were fabricated by welding upper and lower end plugs with cladding tubes of ferritic-martensitic steel. Subsequent to the sodium bonding for filling the annular gap region between the U-Pu-Zr alloy and the cladding tube with the melted sodium, the fuel pins for irradiation tests are inspected. This paper shows the apparatuses and the technological basis for the fabrication of U-Pu-Zr alloy fuel pins for the irradiation test planned at the experimental fast test reactor Joyo. (author)

  17. Fabrication and AE characteristics of TiNi/A16061 shape memory alloy composite

    International Nuclear Information System (INIS)

    Park, Young Chul; Lee, Jin Kyung

    2004-01-01

    TiNi/A16061 Shape Memory Alloy (SMA) composite was fabricated by hot press method to investigate the microstructure and mechanical properties. Interface bonding between TiNi reinforcement and A1 matrix was observed by using SEM and EDS. Pre-strain was imposed to generate compressive residual stress inside composite. A tensile test for specimen, which underwent pre-strain, was performed at high temperature to evaluate the variation of strength and the effect of pre-strain. It was shown that interfacial reactions occurred at the bonding between matrix and fiber, creating two inter-metallic layers. And yield stress increased with the amount of pre-strain. Acoustic emission technique was also used to nondestructively clarify the microscopic damage behavior at high temperature and the effect of pre-strain of TiNi/A16061 SMA composite

  18. Design, fabrication, and characterization of electroless Ni–P alloy films for micro heating devices

    International Nuclear Information System (INIS)

    Liu, Bernard Haochih; Liao, Fang-Yi; Chen, Jian-Hong

    2013-01-01

    In this work electroless nickel–phosphorous coatings were used as the micro heaters for scanning thermal microscopy. The deposition of Ni–P alloys not only simplified the microelectromechanical system fabrication steps but also provided flexibility in the tuning of the resistance of the heating elements. Ni–P films were plated on patterned silicon substrates and silicon with a silicon nitride film. The pre-deposition reactive ion etch (RIE) treatment caused a change in surface roughness that enhanced the adhesion of Ni–P coatings. Optimization of RIE parameters and pH values could achieve selective deposition of Ni–P, thus helped the lift-off of a serpentine circuit pattern. The chemical composition and microstructure of Ni–P films affect the electrical properties of micro heaters. Energy-dispersive X-ray spectroscopy identified the Ni–P composition and confirmed its insignificant level of oxidation. The high-temperature X-ray diffraction indicated that the as-deposited film was crystalline Ni, which later transformed into Ni 3 P at higher temperature. The resistivity of Ni–P films was tailored between 10 −5 and 10 −7 Ω m via a post-deposition annealing, which also obtained a stable temperature coefficient of resistance. Consequently, the performance of micro heaters could be designed with a high degree of flexibility. - Highlights: • We developed a process to fabricate micro heater by Ni–P electroless plating. • Reactive ion etch caused oscillating surface roughness and affected Ni–P adhesion. • Ni 3 P phase precipitates during annealing and reduces resistivity of Ni–P alloys. • Resistivity of Ni–P is tunable from 10 −5 to 10 −7 Ω m by plating and annealing

  19. Design, fabrication, and characterization of electroless Ni–P alloy films for micro heating devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bernard Haochih, E-mail: hcliu@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Taiwan (China); Liao, Fang-Yi; Chen, Jian-Hong [Department of Materials Science and Engineering, National Cheng Kung University, Taiwan (China)

    2013-06-30

    In this work electroless nickel–phosphorous coatings were used as the micro heaters for scanning thermal microscopy. The deposition of Ni–P alloys not only simplified the microelectromechanical system fabrication steps but also provided flexibility in the tuning of the resistance of the heating elements. Ni–P films were plated on patterned silicon substrates and silicon with a silicon nitride film. The pre-deposition reactive ion etch (RIE) treatment caused a change in surface roughness that enhanced the adhesion of Ni–P coatings. Optimization of RIE parameters and pH values could achieve selective deposition of Ni–P, thus helped the lift-off of a serpentine circuit pattern. The chemical composition and microstructure of Ni–P films affect the electrical properties of micro heaters. Energy-dispersive X-ray spectroscopy identified the Ni–P composition and confirmed its insignificant level of oxidation. The high-temperature X-ray diffraction indicated that the as-deposited film was crystalline Ni, which later transformed into Ni{sub 3}P at higher temperature. The resistivity of Ni–P films was tailored between 10{sup −5} and 10{sup −7} Ω m via a post-deposition annealing, which also obtained a stable temperature coefficient of resistance. Consequently, the performance of micro heaters could be designed with a high degree of flexibility. - Highlights: • We developed a process to fabricate micro heater by Ni–P electroless plating. • Reactive ion etch caused oscillating surface roughness and affected Ni–P adhesion. • Ni{sub 3}P phase precipitates during annealing and reduces resistivity of Ni–P alloys. • Resistivity of Ni–P is tunable from 10{sup −5} to 10{sup −7} Ω m by plating and annealing.

  20. Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance

    International Nuclear Information System (INIS)

    Wang Jun; Li Dandan; Liu Qi; Yin Xi; Zhang Ying; Jing Xiaoyan; Zhang Milin

    2010-01-01

    A hydrotalcite/hydromagnesite conversion coating with hierarchical structure has been fabricated on a Mg alloy substrate by in situ hydrothermal crystallization method. A MgO layer existing between the hydrotalcite/hydromagnesite film and the substrate was formed prior to the hydrotalcite/hydromagnesite film during the crystallization process. After surface treatment with silane coupling agent, the surface of conversion coating changes from hydrophilic to hydrophobic. Scanning electron microscopy (SEM) revealed that the silylated conversion coating with hierarchical structure maintains the original rough surface of which was composed of numerous micro-scale flakes and beautiful flower-like protrusions. Polarization measurements have shown that the hydrophobic conversion coating exhibited a low corrosion current density value of 0.432 μA/cm 2 , which means that the hydrophobic conversion coating can effectively protect Mg alloy from corrosion. Electrochemical impedance spectroscopy (EIS) showed that the impedance of the hydrophobic conversion coating was 9000 Ω. It means that the coating served as a passive layer with high charge transfer resistance.

  1. Fabrication of fine spongy nanoporous Ag-Au alloys with improved catalysis properties

    Directory of Open Access Journals (Sweden)

    Cuiting Li

    2017-12-01

    Full Text Available Fine NP-AgAu (nanoporous AgAu alloys with spongy structure was fabricated by chemical dealloying from rapidly solidified amorphous precursors Ag38.75−xCu38.75Si22.5Aux (x=0, 0.5, 1 and 5. The results indicate that the addition of small content Au in precursor can refine both the ligaments and pores obviously. Among the present components of the precursors, NP-AgAu alloys dealloying from Ag37.75Cu38.75Si22.5Au1 had the finest spongy structure. The size of pores was 5–10 nm and the grain size of ligaments was 10–20 nm. It also had the highest surface area of 106.83 m2g−1 and the best catalytic activity towards electro-oxidation of formaldehyde with the peak current of 665 mA mg−1.

  2. Fabrication of a Porous Metal via Selective Phase Dissolution in Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Juan Vargas-Martínez

    2018-05-01

    Full Text Available Through free corrosion, a new low cost porous material was successfully fabricated by removing a single phase of a binary aluminum-copper alloy. This selective phase dissolution was carried out an Al-Al2Cu eutectic alloy of the Al-Cu binary system and additionally for two hypereutectic compositions. The porosity of the material depends on the microstructure formed upon solidification. For this reason, several solidification methods were studied to define the most convenient in terms of uniformity and refinement of the average pore and ligament sizes. The samples were corroded in a 10% v/v NaOH aqueous solution, which demonstrated to be the most convenient in terms of time involved and resulting porosity conditions after the corrosion process. The porosity was measured through analysis of secondary electron images. The effectiveness of the process was verified using X-ray diffraction, which showed that, under the proposed methodology, there was complete removal of one of the phases, namely the aluminum one.

  3. A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior

    International Nuclear Information System (INIS)

    Kim, Ji Yong; Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Kim, Si Hyung

    2010-01-01

    The pyrometallurgical nuclear fuel recycle process, called pyroprocessing, has been known as a promising nuclear fuel recycling technology. Pyroprocessing technology is crucial to advanced nuclear systems due to increased nuclear proliferation resistance and economic efficiency. The basic concept of pyroprocessing is group actinide recovery, which enhances the nuclear proliferation resistance significantly. One of the key steps in pyroprocessing is 'electrowinning' which recovers group actinides with lanthanide from the spent nuclear fuels. In this study, a vertical cadmium distiller was manufactured. The evaporation rate of pure cadmium in vertical cadmium distiller varied from 12.3 to 40.8 g/cm 2 /h within a temperature range of 773 ∼ 923 K and pressure below 0.01 torr. Uranium - cadmium alloy was fabricated by electrolysis using liquid cadmium cathode in a high purity argon atmosphere glove box. The distillation behavior of pure cadmium and cadmium in uranium - cadmium alloy was investigated. The distillation behavior of cadmium from this study could be used to develop an actinide recovery process from a liquid cadmium cathode in a cadmium distiller

  4. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    Science.gov (United States)

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.

  5. A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Yong [University of Science and Technology, Daejeon (Korea, Republic of); Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Kim, Si Hyung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-12-15

    The pyrometallurgical nuclear fuel recycle process, called pyroprocessing, has been known as a promising nuclear fuel recycling technology. Pyroprocessing technology is crucial to advanced nuclear systems due to increased nuclear proliferation resistance and economic efficiency. The basic concept of pyroprocessing is group actinide recovery, which enhances the nuclear proliferation resistance significantly. One of the key steps in pyroprocessing is 'electrowinning' which recovers group actinides with lanthanide from the spent nuclear fuels. In this study, a vertical cadmium distiller was manufactured. The evaporation rate of pure cadmium in vertical cadmium distiller varied from 12.3 to 40.8 g/cm{sup 2}/h within a temperature range of 773 {approx} 923 K and pressure below 0.01 torr. Uranium - cadmium alloy was fabricated by electrolysis using liquid cadmium cathode in a high purity argon atmosphere glove box. The distillation behavior of pure cadmium and cadmium in uranium - cadmium alloy was investigated. The distillation behavior of cadmium from this study could be used to develop an actinide recovery process from a liquid cadmium cathode in a cadmium distiller.

  6. Ricochet of a tungsten heavy alloy long-rod projectile from deformable steel plates

    International Nuclear Information System (INIS)

    Lee, Woong; Lee, Heon-Joo; Shin, Hyunho

    2002-01-01

    Ricochet of a tungsten heavy alloy long-rod projectile from oblique steel plates with a finite thickness was investigated numerically using a full three-dimensional explicit finite element method. Three distinctive regimes resulting from oblique impact depending on the obliquity, namely simple ricochet, critical ricochet and target perforation, were investigated in detail. Critical ricochet angles were calculated for various impact velocities and strengths of the target plates. It was predicted that critical ricochet angle increases with decreasing impact velocities and that higher ricochet angles were expected if higher strength target materials are employed. Numerical predictions were compared with existing two-dimensional analytical models. Experiments were also carried out and the results supported the predictions of the numerical analysis

  7. Fabrication of bio-inspired nitinol alloy surface with tunable anisotropic wetting and high adhesive ability.

    Science.gov (United States)

    Tian, Yan L; Zhao, Yue C; Yang, Cheng J; Wang, Fu J; Liu, Xian P; Jing, Xiu B

    2018-10-01

    In this paper, micro/nano-scale structures were fabricated on nitinol alloy (NiTi) to realize tunable anisotropic wetting and high adhesive capability. Laser texturing and silanization process are utilized to change the morphological and chemical properties of substrates. It is noted that these treated substrates exhibit the joint characteristics of anisotropic wetting and high adhesive capability. In order to investigate the influences of laser-texturing and silanization processes on NiTi, these surfaces were evaluated using scanning electron microscope (SEM), a white light confocal microscope, X-ray photoelectron spectroscopy (XPS) and goniometer. The relationship between water volume and anisotropic wetting was also established. From the experimental testing, we can obtain the following conclusions: (1) the anisotropic wetting characterized by the difference between the water contact angles (WCAs) in the vertical and parallel directions ranges from 0° to 20.3°, which is far more than the value of natural rice leaves. (2) the water sliding angles (WSAs) kept stable at 180°, successfully mimicking the adhesive ability of rose petals. (3) the silanization process could strengthen the hydrophobicity but weaken anisotropic wetting. These bio-inspired NiTi surfaces have a tremendous potential applications such as microfluidic devices, bio-mimetic materials fabrication and lab on chip. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  9. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants

    Science.gov (United States)

    Chan, Kwai S.; Koike, Marie; Mason, Robert L.; Okabe, Toru

    2013-02-01

    Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.

  10. Magnetron Sputtering as a Fabrication Method for a Biodegradable Fe32Mn Alloy

    Directory of Open Access Journals (Sweden)

    Till Jurgeleit

    2017-10-01

    Full Text Available Biodegradable metals are a topic of great interest and Fe-based materials are prominent examples. The research task is to find a suitable compromise between mechanical, corrosion, and magnetic properties. For this purpose, investigations regarding alternative fabrication processes are important. In the present study, magnetron sputtering technology in combination with UV-lithography was used in order to fabricate freestanding, microstructured Fe32Mn films. To adjust the microstructure and crystalline phase composition with respect to the requirements, the foils were post-deposition annealed under a reducing atmosphere. The microstructure and crystalline phase composition were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, for mechanical characterization, uniaxial tensile tests were performed. The in vitro corrosion rates were determined by electrochemical polarization measurements in pseudo-physiological solution. Additionally, the magnetic properties were measured via vibrating sample magnetometry. The foils showed a fine-grained structure and a tensile strength of 712 MPa, which is approximately a factor of two higher compared to the sputtered pure Fe reference material. The yield strength was observed to be even higher than values reported in literature for alloys with similar composition. Against expectations, the corrosion rates were found to be lower in comparison to pure Fe. Since the annealed foils exist in the austenitic, and antiferromagnetic γ-phase, an additional advantage of the FeMn foils is the low magnetic saturation polarization of 0.003 T, compared to Fe with 1.978 T. This value is even lower compared to the SS 316L steel acting as a gold standard for implants, and thus enhances the MRI compatibility of the material. The study demonstrates that magnetron sputtering in combination with UV-lithography is a new concept for the fabrication of already in situ

  11. Influence of the chemical composition and the fabrication process on the behaviour of high temperature oxidation of Fe-Cr-Al alloys

    International Nuclear Information System (INIS)

    Clemendot, F.; Arnoldi, F.; Cerede, J.B.; Dionnet, B.; Nardou, F.; Duysen, J.C. van

    1993-01-01

    The oxidation behaviour of four industrial Fe-Cr-Al alloys was studied. Two of them were Fe-Cr-Al alloys fabricated either by melting or by powder metallurgy. The two other ones were Fe-Cr-Al-Y alloys either produced by melting or by mechanical alloying. On these alloys, we determined oxidation kinetics and observed the morphology of the oxide layer after isothermal and cyclic exposures from 1000 C up to 1300 C. The beneficial effect of yttrium on the adherence of oxide layers was confirmed. The powder metallurgy fabrication route does not improve the oxidation resistance of yttrium-free alloys. On the other hand, the association of the powder metallurgy and the addition of yttrium allow the manufacturing of alloys which present an excellent behaviour to high temperature oxidation. (orig.)

  12. Effect of heavy ion irradiation on thermodynamically equilibrium Zr-Excel alloy

    Science.gov (United States)

    Yu, Hongbing; Liang, Jianlie; Yao, Zhongwen; Kirk, Mark A.; Daymond, Mark R.

    2017-05-01

    The thermodynamically equilibrium state was achieved in a Zr-Sn-Nb-Mo alloy by long-term annealing at an intermediate temperature. The fcc intermetallic Zr(Mo, Nb)2 enriched with Fe was observed at the equilibrium state. In-situ 1 MeV Kr2+ heavy ion irradiation was performed in a TEM to study the stability of the intermetallic particles under irradiation and the effects of the intermetallic particle on the evolution of type dislocation loops at different temperatures from 80 to 550 °C. Chemi-STEM elemental maps were made at the same particles before and after irradiation up to 10 dpa. It was found that no elemental redistribution occurs at 200 °C and below. Selective depletion of Fe was observed from some precipitates under irradiation at higher temperatures. No change in the morphology of particles and no evidence showing a crystalline to amorphous transformation were observed at all irradiation temperatures. The formation of type dislocation loops was observed under irradiation at 80 and 200 °C, but not at 450 and 550 °C. The loops were non-uniformly distributed; a localized high density of type dislocation loops were observed near the second phase particles; we suggest that loop nucleation is favored as a result of the stress induced by the particles, rather than by elemental redistribution. The stability of the second phase particles and the formation of the type loops under heavy ion irradiation are discussed.

  13. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    Science.gov (United States)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  14. Swift heavy ion irradiation of Cu-Zn-Al and Cu-Al-Ni alloys.

    Science.gov (United States)

    Zelaya, E; Tolley, A; Condo, A M; Schumacher, G

    2009-05-06

    The effects produced by swift heavy ions in the martensitic (18R) and austenitic phase (β) of Cu based shape memory alloys were characterized. Single crystal samples with a surface normal close to [210](18R) and [001](β) were irradiated with 200 MeV of Kr(15+), 230 MeV of Xe(15+), 350 and 600 MeV of Au(26+) and Au(29+). Changes in the microstructure were studied with transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). It was found that swift heavy ion irradiation induced nanometer sized defects in the 18R martensitic phase. In contrast, a hexagonal close-packed phase formed on the irradiated surface of β phase samples. HRTEM images of the nanometer sized defects observed in the 18R martensitic phase were compared with computer simulated images in order to interpret the origin of the observed contrast. The best agreement was obtained when the defects were assumed to consist of local composition modulations.

  15. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications.

    Science.gov (United States)

    Takaichi, Atsushi; Suyalatu; Nakamoto, Takayuki; Joko, Natsuka; Nomura, Naoyuki; Tsutsumi, Yusuke; Migita, Satoshi; Doi, Hisashi; Kurosu, Shingo; Chiba, Akihiko; Wakabayashi, Noriyuki; Igarashi, Yoshimasa; Hanawa, Takao

    2013-05-01

    The selective laser melting (SLM) process was applied to a Co-29Cr-6Mo alloy, and its microstructure, mechanical properties, and metal elution were investigated to determine whether the fabrication process is suitable for dental applications. The microstructure was evaluated using scanning electron microscopy with energy-dispersed X-ray spectroscopy (SEM-EDS), X-ray diffractometry (XRD), and electron back-scattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test. Dense builds were obtained when the input energy of the laser scan was higher than 400 J mm⁻³, whereas porous builds were formed when the input energy was lower than 150 J mm⁻³. The microstructure obtained was unique with fine cellular dendrites in the elongated grains parallel to the building direction. The γ phase was dominant in the build and its preferential orientation was confirmed along the building direction, which was clearly observed for the builds fabricated at lower input energy. Although the mechanical anisotropy was confirmed in the SLM builds due to the unique microstructure, the yield strength, UTS, and elongation were higher than those of the as-cast alloy and satisfied the type 5 criteria in ISO22764. Metal elution from the SLM build was smaller than that of the as-cast alloy, and thus, the SLM process for the Co-29Cr-6Mo alloy is a promising candidate for fabricating dental devices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. [Energy dispersive spectrum analysis of surface compositions of selective laser melting cobalt-chromium alloy fabricated by different processing parameters].

    Science.gov (United States)

    Qian, Liang; Zeng, Li; Wei, Bin; Gong, Yao

    2015-06-01

    To fabricate selective laser melting cobalt-chromium alloy samples by different processing parameters, and to analyze the changes of energy dispersive spectrum(EDS) on their surface. Nine groups were set up by orthogonal experimental design according to different laser powers,scanning speeds and powder feeding rates(laser power:2500-3000 W, scanning speed: 5-15 mm/s, powder feeding rate: 3-6 r/min). Three cylinder specimens(10 mm in diameter and 3 mm in thickness) were fabricated in each group through Rofin DL 035Q laser cladding system using cobalt-chromium alloy powders which were developed independently by our group.Their surface compositions were then measured by EDS analysis. Results of EDS analysis of the 9 groups fabricated by different processing parameters(Co:62.98%-67.13%,Cr:25.56%-28.50%,Si:0.49%-1.23%) were obtained. They were similar to the compositions of cobalt-chromium alloy used in dental practice. According to EDS results, the surface compositions of the selective laser melting cobalt-chromium alloy samples are stable and controllable, which help us gain a preliminary sight into the range of SLM processing parameters. Supported by "973" Program (2012CB910401) and Research Fund of Science and Technology Committee of Shanghai Municipality (12441903001 and 13140902701).

  17. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    Science.gov (United States)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  18. Fabrication of nano porous with heavy ions in plastics for the oil industry

    International Nuclear Information System (INIS)

    Balcazar, M.; Tavera, L.; Mendoza, D.; Mut, A.

    2003-01-01

    The natural gas has undesirable concentrations of other gases like the nitrogen that reduces the heat capacity of the gas. It is required to develop separation technology to increase the caloric value of the gas. Among the technology in development for the separation of these gases there are the nano membranes; these are polymeric material that when synthesizing them form nano pores that allow the selective separation of the gas. Another form of creating these nano pores with uniform and controlled pore size, is irradiating a polymeric material with heavy ions. The energy loss of the heavy ion produces cylindrical damages around its trajectory in a diameter among 30 x 10 -10 m and 100 x 10 -10 m. This damage breaks the chains of the polymer making it susceptible to the corrosion of appropriate chemical agents that allow to create a pore of the size of some nanometers in the polymer. The basic mechanisms of the interaction of the ions with the polymer are important for the controlled creation, the observation and analysis of these nano pores. One of the more appropriate techniques for the visualization and analysis of the geometry of the produced damages, it is the scanning electron and of the atomic force microscopies. The present work has as objective to define the basic parameters of the interaction of the ion with the polymer that intervene in the fabrication of this nano pores. The conditions of the chemical corrosion process are presented for the creation of micro pores in two polymers CR39 and Makrofol produced by fission fragments and alpha particles. A characterization of the diameters and of the damages profile is make. The obtained results are related with the mechanisms of loss of energy of the ions in the matter and the particles identification in function of the damage geometry. (Author)

  19. [A preliminary study on the forming quality of titanium alloy removable partial denture frameworks fabricated by selective laser melting].

    Science.gov (United States)

    Liu, Y F; Yu, H; Wang, W N; Gao, B

    2017-06-09

    Objective: To evaluate the processing accuracy, internal quality and suitability of the titanium alloy frameworks of removable partial denture (RPD) fabricated by selective laser melting (SLM) technique, and to provide reference for clinical application. Methods: The plaster model of one clinical patient was used as the working model, and was scanned and reconstructed into a digital working model. A RPD framework was designed on it. Then, eight corresponding RPD frameworks were fabricated using SLM technique. Three-dimensional (3D) optical scanner was used to scan and obtain the 3D data of the frameworks and the data was compared with the original computer aided design (CAD) model to evaluate their processing precision. The traditional casting pure titanium frameworks was used as the control group, and the internal quality was analyzed by X-ray examination. Finally, the fitness of the frameworks was examined on the plaster model. Results: The overall average deviation of the titanium alloy RPD framework fabricated by SLM technology was (0.089±0.076) mm, the root mean square error was 0.103 mm. No visible pores, cracks and other internal defects was detected in the frameworks. The framework fits on the plaster model completely, and its tissue surface fitted on the plaster model well. There was no obvious movement. Conclusions: The titanium alloy RPD framework fabricated by SLM technology is of good quality.

  20. Cobalt-doped Ti–48Al–2Cr–2Nb alloy fabricated by cold compaction and pressureless sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Yu, P. [Department of Micro-Nano Material and Device, The South University of Science and Technology of China, Shenzhen, 518055 (China); Schaffer, G.B. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Qian, M., E-mail: ma.qian@uq.edu.au [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia)

    2013-07-01

    An addition of 1.5 at% Co to Ti–48Al–2Cr–2Nb (in at%) transformed the alloy from essentially unsinterable to fully sinterable at 1300 °C. This, together with a simple powder coating process developed recently, has allowed near-net shape fabrication of the alloy for the first time by cold compaction and pressureless sintering. The addition of Co results in the formation of an intermediate face centred cubic (fcc) CoAl{sub 2}Ti phase prior to 1220 °C during heating. It subsequently reacts with an α phase leading to the formation of a Co-containing, wettable sintering liquid through a two-step process, CoAl{sub 2}Ti+α→Liquid at 1256.2 °C and CoAl{sub 2}Ti+α→γ-TiAl+Liquid at 1267.2 °C, and therefore full densification of the alloy. Without Co, sintering of the Ti–48Al–2Cr–2Nb alloy powder at 1300 °C is controlled by the slow self-diffusion of Ti and interdiffusion of Ti and Al according to the activation energy determined. Transmission electron microscopy (TEM) identified an fcc CoAl{sub 2}Ti phase and a hexagonal close packed (hcp) Co-enriched Ti(Al, Co, Cr, Nb) phase in the final as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy. They both form during cooling at 1240 °C through Liquid+α→CoAl{sub 2}Ti+Ti (Al, Co, Cr, Nb). The tensile and compressive properties of the as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy were compared to the original General Electric (GE) Ti–48Al–2Cr–2Nb alloy fabricated by casting or metal injection moulding.

  1. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications

    Science.gov (United States)

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin

    2018-01-01

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy. PMID:29601517

  2. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications.

    Science.gov (United States)

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin; Qu, Xuanhui

    2018-03-30

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy.

  3. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2012-03-15

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl{sub 2}O{sub 4}, {alpha}-Al{sub 2}O{sub 3}, and {gamma}-Al{sub 2}O{sub 3.} By controlling the working parameters, the distribution of the CoAl{sub 2}O{sub 4} phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  4. Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer

    Directory of Open Access Journals (Sweden)

    Tianwen Yuan

    2016-05-01

    Full Text Available Esophageal stent implantation can relieve esophageal stenosis and obstructions in benign esophageal strictures, and magnesium alloy stents are a good candidate because of biodegradation and biological safety. However, biodegradable esophageal stents show a poor corrosion resistance and a quick loss of mechanical support in vivo. In this study, we chose the elastic and biodegradable mixed polymer of Poly(ε-caprolactone (PCL and poly(trimethylene carbonate (PTMC as the coated membrane on magnesium alloy stents for fabricating a fully biodegradable esophageal stent, which showed an ability to delay the degradation time and maintain mechanical performance in the long term. After 48 repeated compressions, the mechanical testing demonstrated that the PCL-PTMC-coated magnesium stents possess good flexibility and elasticity, and could provide enough support against lesion compression when used in vivo. According to the in vitro degradation evaluation, the PCL-PTMC membrane coated on magnesium was a good material combination for biodegradable stents. During the in vivo evaluation, the proliferation of the smooth muscle cells showed no signs of cell toxicity. Histological examination revealed the inflammation scores at four weeks in the magnesium-(PCL-PTMC stent group were similar to those in the control group (p > 0.05. The α-smooth muscle actin layer in the media was thinner in the magnesium-(PCL-PTMC stent group than in the control group (p < 0.05. Both the epithelial and smooth muscle cell layers were significantly thinner in the magnesium-(PCL-PTMC stent group than in the control group. The stent insertion was feasible and provided reliable support for at least four weeks, without causing severe injury or collagen deposition. Thus, this stent provides a new stent for the treatment of benign esophageal stricture and a novel research path in the development of temporary stents in other cases of benign stricture.

  5. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O.

    2012-01-01

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl 2 O 4 , α-Al 2 O 3 , and γ-Al 2 O 3. By controlling the working parameters, the distribution of the CoAl 2 O 4 phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  6. The influence of fabrication procedure on the void swelling of an oxide dispersion strengthened ferritic alloy in a HVEM

    International Nuclear Information System (INIS)

    Snykers, M.; Biermans, F.; Cornelis, J.

    1982-01-01

    The influence of changes in the fabrication procedure of ferritic alloys with compositions Fe-13Cr-Ti-Mo-TiO 2 on the swelling behaviour are investigated. The fabrication procedures are: casting, powder metallurgy; milling in air and powder metallurgy; milling in argon. No difference is found for the results obtained for the materials fabricated by casting and by powder metallurgy; milling in air. Slightly different results are obtained for the material fabricated by powder metallurgy; milling in argon. This material contains argon in solution in the matrix, which causes a small shift of the peak swelling temperature and of the peak swelling helium concentration for tests carried out at 450 0 C. The overall swelling of this material is the lowest due to the small grain size and to the high density of inclusions. (orig.)

  7. Direct gap Ge1-ySny alloys: Fabrication and design of mid-IR photodiodes

    Science.gov (United States)

    Senaratne, C. L.; Wallace, P. M.; Gallagher, J. D.; Sims, P. E.; Kouvetakis, J.; Menéndez, J.

    2016-07-01

    Chemical vapor deposition methods were developed, using stoichiometric reactions of specialty Ge3H8 and SnD4 hydrides, to fabricate Ge1-ySny photodiodes with very high Sn concentrations in the 12%-16% range. A unique aspect of this approach is the compatible reactivity of the compounds at ultra-low temperatures, allowing efficient control and systematic tuning of the alloy composition beyond the direct gap threshold. This crucial property allows the formation of thick supersaturated layers with device-quality material properties. Diodes with composition up to 14% Sn were initially produced on Ge-buffered Si(100) featuring previously optimized n-Ge/i-Ge1-ySny/p-Ge1-zSnz type structures with a single defected interface. The devices exhibited sizable electroluminescence and good rectifying behavior as evidenced by the low dark currents in the I-V measurements. The formation of working diodes with higher Sn content up to 16% Sn was implemented by using more advanced n-Ge1-xSnx/i-Ge1-ySny/p-Ge1-zSnz architectures incorporating Ge1-xSnx intermediate layers (x ˜ 12% Sn) that served to mitigate the lattice mismatch with the Ge platform. This yielded fully coherent diode interfaces devoid of strain relaxation defects. The electrical measurements in this case revealed a sharp increase in reverse-bias dark currents by almost two orders of magnitude, in spite of the comparable crystallinity of the active layers. This observation is attributed to the enhancement of band-to-band tunneling when all the diode layers consist of direct gap materials and thus has implications for the design of light emitting diodes and lasers operating at desirable mid-IR wavelengths. Possible ways to engineer these diode characteristics and improve carrier confinement involve the incorporation of new barrier materials, in particular, ternary Ge1-x-ySixSny alloys. The possibility of achieving type-I structures using binary and ternary alloy combinations is discussed in detail, taking into account

  8. Fabrication technology for lead-alloy Josephson devices for high-density integrated circuits

    International Nuclear Information System (INIS)

    Imamura, T.; Hoko, H.; Tamura, H.; Yoshida, A.; Suzuki, H.; Morohashi, S.; Ohara, S.; Hasuo, S.; Yamaoka, T.

    1986-01-01

    Fabrication technology for lead-alloy Josephson devices was evaluated from the viewpoint of application to large-scale integrated circuits. Metal and insulating layers used in the circuits were evaluated, and optimization of techniques for deposition or formation of these layers was investigated. Metallization of the Pb-In-Au base electrode and the Pb-Bi counterelectrode was studied in terms of optimizing the deposited films, to improve the reliability of junction electrodes. The formation of the oxide barrier was studied by in situ ellipsometry. SiO/sub x/ deposited in oxygen was developed as the insulation layer with less defect density than conventional SiO. A liftoff technique using toluene soaking was developed, and patterns with a minimum line width of 2 μm were consistently reproduced. The characteristics of each element in the circuits were evaluated for test vehicles. For the junction, the following items were evaluated: controllability of the critical current I/sub c/, junction quality, I/sub c/ uniformity, junction yield, and thermal cycling and storage stability. For the peripheral elements, integrity of lines and contacts, and characteristics of resistors were evaluated. 8-kbit memory cell arrays with a full vertical structure were fabricated to evaluate these technologies in combination. The continuity of each metal layer and insulation between metal layers were evaluated with an autoprober at room temperature. For selected chips, cell characteristics have been measured, and their I/sub c/ uniformity and production yields for cells are discussed. Normal operation of the memory cells was confirmed for all of the 24 accessible cells on a chip

  9. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    Science.gov (United States)

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do

    2017-01-01

    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  10. Effect of annealing procedure on the bonding of ceramic to cobalt-chromium alloys fabricated by rapid prototyping.

    Science.gov (United States)

    Tulga, Ayca

    2018-04-01

    An annealing procedure is a heat treatment process to improve the mechanical properties of cobalt-chromium (Co-Cr) alloys. However, information is lacking about the effect of the annealing process on the bonding ability of ceramic to Co-Cr alloys fabricated by rapid prototyping. The purpose of this in vitro study was to evaluate the effects of the fabrication techniques and the annealing procedure on the shear bond strength of ceramic to Co-Cr alloys fabricated by different techniques. Ninety-six cylindrical specimens (10-mm diameter, 10-mm height) made of Co-Cr alloy were prepared by casting (C), milling (M), direct process powder-bed (LaserCUSING) with and without annealing (CL+, CL), and direct metal laser sintering (DMLS) with annealing (EL+) and without annealing (EL). After the application of ceramic to the metal specimens, the metal-ceramic bond strength was assessed using a shear force test at a crosshead speed of 0.5 mm/min. Shear bond strength values were statistically analyzed by 1-way ANOVA and Tukey multiple comparison tests (α=.05). Although statistically significant differences were found among the 3 groups (M, 29.87 ±2.06; EL, 38.92 ±2.04; and CL+, 40.93 ±2.21; P=.002), no significant differences were found among the others (P>.05). The debonding surfaces of all specimens exhibited mixed failure mode. These results showed that the direct process powder-bed method is promising in terms of metal-ceramic bonding ability. The manufacturing technique of Co-Cr alloys and the annealing process influence metal-ceramic bonding. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Microstructure of Semi-Solid 6063 Alloy Fabricated by Radial Forging Combined with Unidirectional Compression Recrystallization and Partial Melting Process

    Directory of Open Access Journals (Sweden)

    Wang Yongfei

    2017-01-01

    Full Text Available Radial forging combined with unidirectional compression (RFCUM is introduced in recrystallization and partial melting (RAP to fabricate semi-solid 6063 aluminum alloy, which can be defined as a process of RFCUM-RAP. In this study, the microstructures of semi-solid 6063 alloy prepared by semi-solid isothermal treatment (SSIT and RFCUM-RAP processes are investigated. The results show that, the solid grains of semi-solid alloy prepared by SSIT are large and irregular. However, solid grains of semi-solid billet prepared by RFCUC-RAP are fine and spherical. Additionally, during RFCUC-RAP process, with the increase of isothermal holding time, the shape of solid grain is more and more spherical, but the size of solid grain is gradually increased. To obtain ideal semi-solid microstructure, the optimal isothermal holding temperature and time are 630 °C and 5~10 min, respectively.

  12. In situ study of heavy ion induced radiation damage in NF616 (P92) alloy

    International Nuclear Information System (INIS)

    Topbasi, Cem; Motta, Arthur T.; Kirk, Mark A.

    2012-01-01

    Highlights: ► The ferritic–martensitic alloy NF616 was irradiated in situ with 1 MeV Kr ions at 50 K and 473 K. ► The defect cluster density increases with dose and saturates at ∼6 dpa at 50 K and 473 K. ► The defect size distributions do not change with dose at this temperature range. ► Results indicate that defect cluster formation and destruction is governed by cascade impact. - Abstract: NF616 is a nominal 9Cr ferritic–martensitic steel that is amongst the primary candidates for cladding and duct applications in the Sodium-Cooled Fast Reactor, one of the Generation IV nuclear energy systems. In this study, an in situ investigation of the microstructure evolution in NF616 under heavy ion irradiation has been conducted. NF616 was irradiated to 8.4 dpa at 50 K and to 7.6 dpa at 473 K with 1 MeV Kr ions. Nano-sized defects first appeared as white dots in dark-field TEM images and their areal density increased until saturation (∼6 dpa). Dynamic observations at 50 K and 473 K showed appearance and disappearance of TEM-visible defect clusters under irradiation that continued above saturation dose. Quantitative analysis showed no significant change in the average size (∼3–4 nm) and distribution of defect clusters with increasing dose at 50 K and 473 K. These results indicate a cascade-driven process of microstructure evolution under irradiation in these alloys that involves both the formation of TEM-visible defect clusters by various degrees of cascade overlap and cascade induced defect cluster elimination. According to this mechanism, saturation of defect cluster density is reached when the rate of defect cluster formation by overlap is equal to the rate of cluster elimination during irradiation.

  13. Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinping [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wang, Zhihong [School of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355 (China); Zhao, Dianyun [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Xu, Caixia, E-mail: chm_xucx@ujn.edu.cn [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2014-06-01

    Graphical abstract: Nanoporous PdFe alloy, characterized by open three-dimensional bicontinuous nanospongy architecture, was easily fabricated by selectively dealloying PdFeAl source alloys, which exhibits greatly enhanced sensing performance and structure stability towards H{sub 2}O{sub 2} and glucose compared with NP-Pd and Pd/C catalysts. - Highlights: • NP-PdFe alloy is fabricated by a simple dealloying method. • NP-PdFe possesses open three-dimensional bicontinuous spongy morphology. • NP-PdFe shows high electrochemical sensing activities towards H{sub 2}O{sub 2} and glucose. • NP-PdFe shows good long-term stability for H{sub 2}O{sub 2} and glucose detection. • NP-PdFe shows good reproducibility for H{sub 2}O{sub 2} and glucose detection. - Abstract: Nanoporous (NP) PdFe alloy is easily fabricated through one step mild dealloying of PdFeAl ternary source alloy in NaOH solution. Electron microscopy characterization demonstrates that selectively dissolving Al from PdFeAl alloy generates three-dimensional bicontinuous nanospongy architecture with the typical ligament size around 5 nm. Electrochemical measurements show that the NP-PdFe alloy exhibits the superior electrocatalytic activity and durability towards hydrogen peroxide (H{sub 2}O{sub 2}) detection compared with NP-Pd and commercial Pd/C catalysts. In addition, NP-PdFe performs high sensing performance towards H{sub 2}O{sub 2} in a wide linear range from 0.5 to 6 mM with a low detection limit of 2.1 μM. This nanoporous structure also can sensitively detect glucose over a wide concentration range (1–32 mM) with a low detection limit of 1.6 μM and high resistance against chloride ions. Along with these attractive features, the as-made NP-PdFe alloy also has a good anti-interference towards ascorbic acid, uric acid, and dopamine.

  14. Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy

    International Nuclear Information System (INIS)

    Wu Hanhua; Wang Jianbo; Long Beiyu; Long Beihong; Jin Zengsun; Naidan Wang; Yu Fengrong; Bi Dongmei

    2005-01-01

    Ultra-hard ceramic coatings with microhardness of 2535 Hv have been synthesized on the Al alloy substrate by microarc oxidation (MAO) technique. The effects of anodic current density (j a ) and the ratio of cathodic to anodic current density (j c /j a ) on the mechanical and corrosion resistance properties of MAO coatings have been studied by microhardness and pitting corrosion tests, respectively. In addition, the phase composition and microstructure of the coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the coatings prepared at high anodic current density consist mainly of α-Al 2 O 3 , while those fabricated at low anodic current density are almost composed of γ-Al 2 O 3 . Microhardness test shows that the coatings have high microhardness, and the highest one is found in the coating formed at j a = 15 A/dm 2 and j c /j a = 0.7. Pitting corrosion test shows that the structure of coatings is strongly influenced by the varying j c /j a

  15. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    International Nuclear Information System (INIS)

    Chan, Kwai S.

    2015-01-01

    Rectangular plates of Ti–6Al–4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti–6Al–4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%–75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm. (paper)

  16. Characterization and Bone Differentiation of Nanoporous Structure Fabricated on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Yingmin Su

    2015-01-01

    Full Text Available The optimal temperature for the alkaline treatment and subsequent heat treatment is determined to optimize the nanoporous structures formed on Ti6Al4V titanium alloy plates. Surface characterization of the alkali-heat treated samples was performed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The effects of heating temperatures on albumin adhesion, rat bone marrow mesenchymal stem cells (BMMSCs adhesion, alkaline phosphatase activity, osteocalcin production, calcium deposition, and Runx2 mRNA expression were evaluated. The nanotopography, surface chemistry, and surface roughness were unchanged even after heat treatments at 200, 400, and 600°C. Only the amorphous sodium titanate phase changed, increasing with the temperature of the heat treatments, which played a crucial role in promoting superior cell adhesion on the nanoporous surface compared with the sodium hydrogen titanate obtained by a single alkali treatment. The heat treatment at 800°C did not enhance cell attachment on the surface because the nanostructure was dramatically destroyed with the reappearance of Al and V. This study reveals that nanoporous structures with amorphous sodium titanate were fabricated on Ti6Al4V surface through an amended alkali-heat treatment process to improve BMMSCs adhesion.

  17. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    Science.gov (United States)

    Chan, Kwai S.

    2015-12-01

    Rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti-6Al-4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%-75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm.

  18. Changes in the design, fabrication and setting of guide tube support pins in alloy X750

    International Nuclear Information System (INIS)

    Benhamou, C.; Chambrin, J.L.; Todeschini, P.; Champredonde, J.; Lemaire, E.

    2004-01-01

    As a consequence of a problem of stress corrosion cracking (SCC) encountered on guide tube support pins (GTSP) of first generation (1982) and of second generation (1987), EDF and Framatome decided in mars 1988 to launch an important program involving a complete overhaul of the design, the material used, the fabrication and the setting in reactor of GTSP. This program has led to the implementation in 900 MWe and 1300 MWe PWR of a new tube guide support pin called NG89. This implementation began in 1989, now 15 years later, 40% of the operating GTSP in 900 MWe and 1300 MWe PWR are of NG89 type, the oldest ones cumulate 105000 hours in service without negative feedback experience. The main features of the NG89 is: - to be made from an alloy X-750 containing boron (from 25 to 45 ppm) - to have a SCC threshold set at 720 MPa - to be machined from metal bars completely treated, - to have a rolling of the fillets, and - to undergo a shot blasting on the zones of the surface the most acted upon. (A.C.)

  19. In vitro dermal and epidermal cellular response to titanium alloy implants fabricated with electron beam melting.

    Science.gov (United States)

    Springer, Jessica Collins; Harrysson, Ola L A; Marcellin-Little, Denis J; Bernacki, Susan H

    2014-10-01

    Transdermal osseointegrated prostheses (TOPs) are emerging as an alternative to socket prostheses. Electron beam melting (EBM) is a promising additive manufacturing technology for manufacture of custom, freeform titanium alloy (Ti6Al4V) implants. Skin ongrowth for infection resistance and mechanical stability are critically important to the success of TOP, which can be influenced by material composition and surface characteristics. We assessed viability and proliferation of normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF) on several Ti6Al4V surfaces: solid polished commercial, solid polished EBM, solid unpolished EBM and porous unpolished EBM. Cell proliferation was evaluated at days 2 and 7 using alamarBlue(®) and cell viability was analyzed with a fluorescence-based live-dead assay after 1 week. NHDF and NHEK were viable and proliferated on all Ti6Al4V surfaces. NHDF proliferation was highest on commercial and EBM polished surfaces. NHEK was highest on commercial polished surfaces. All EBM Ti6Al4V discs exhibited an acceptable biocompatibility profile compared to solid Ti6Al4V discs from a commercial source for dermal and epidermal cells. EBM may be considered as an option for fabrication of custom transdermal implants. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Fabrication and characterization of Y2O3 dispersion strengthened copper alloys

    International Nuclear Information System (INIS)

    Carro, G.; Muñoz, A.; Monge, M.A.; Savoini, B.; Pareja, R.; Ballesteros, C.; Adeva, P.

    2014-01-01

    Three copper base materials were fabricated following different routes: cast Cu–1 wt.%Y (C-Cu1Y) produced by vacuum induction melting, and Cu–1 wt.%Y (PM-Cu1Y) and Cu–1 wt.%Y 2 O 3 (PM-Cu1Y 2 O 3 ) both processed by a powder metallurgy route and sintering by hot isostatic pressing. PM-Cu1Y alloy was prepared by cryomilling and PM-Cu1Y 2 O 3 by conventional milling at room temperature. The materials were characterized by X-ray diffraction, optical and electron microscopy and microhardness measurements. C-Cu1Y presents a characteristic eutectic microstructure while PM-Cu1Y 2 O 3 exhibits a composite like microstructure. Electron microscopy analyses of as-HIP PM-Cu1Y revealed irregular decoration of yttrium-rich oxides at the grain boundaries and an inhomogeneous dispersion of polygonal shaped yttrium-rich oxides dispersed in the Cu matrix. Tensile tests performed on PM-Cu–1Y on the temperature range of 293–773 K have showed a decrease of the yield strength at temperatures higher than 473 K, and monotonically decrease of the ultimate tensile strength and maximum plastic strain on increasing temperature

  1. Fabrication and characterization of Y{sub 2}O{sub 3} dispersion strengthened copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Carro, G.; Muñoz, A. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Monge, M.A., E-mail: mmonge@fis.uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Savoini, B.; Pareja, R.; Ballesteros, C. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Adeva, P. [Centro Nacional de Investigaciones Metalúrgicas, CSIC, Av. Gregorio del Amo, 8, 28040 Madrid (Spain)

    2014-12-15

    Three copper base materials were fabricated following different routes: cast Cu–1 wt.%Y (C-Cu1Y) produced by vacuum induction melting, and Cu–1 wt.%Y (PM-Cu1Y) and Cu–1 wt.%Y{sub 2}O{sub 3} (PM-Cu1Y{sub 2}O{sub 3}) both processed by a powder metallurgy route and sintering by hot isostatic pressing. PM-Cu1Y alloy was prepared by cryomilling and PM-Cu1Y{sub 2}O{sub 3} by conventional milling at room temperature. The materials were characterized by X-ray diffraction, optical and electron microscopy and microhardness measurements. C-Cu1Y presents a characteristic eutectic microstructure while PM-Cu1Y{sub 2}O{sub 3} exhibits a composite like microstructure. Electron microscopy analyses of as-HIP PM-Cu1Y revealed irregular decoration of yttrium-rich oxides at the grain boundaries and an inhomogeneous dispersion of polygonal shaped yttrium-rich oxides dispersed in the Cu matrix. Tensile tests performed on PM-Cu–1Y on the temperature range of 293–773 K have showed a decrease of the yield strength at temperatures higher than 473 K, and monotonically decrease of the ultimate tensile strength and maximum plastic strain on increasing temperature.

  2. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    Science.gov (United States)

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  3. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  4. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D - Annual report input for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-10-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor (RD) upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy has been completed at Teledyne Wah Chang of Albany, Oregon (TWCA) to provide {approximately}800-kg of applicable product forms, and two billets have been extruded from the ingot. Chemical compositions of the ingot and both extruded billets were acceptable. Material from these billets will be converted into product forms suitable for components of the DIII-D Radiative Divertor structure. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes and to Inconel 625 by friction welding.

  5. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D - Annual report input for 1996

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-01-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor (RD) upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy has been completed at Teledyne Wah Chang of Albany, Oregon (TWCA) to provide ∼800-kg of applicable product forms, and two billets have been extruded from the ingot. Chemical compositions of the ingot and both extruded billets were acceptable. Material from these billets will be converted into product forms suitable for components of the DIII-D Radiative Divertor structure. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes and to Inconel 625 by friction welding

  6. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical

  7. Effect of heavy ion irradiation on thermodynamically equilibrium Zr-Excel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongbing [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Liang, Jianlie [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); College of Science, Guangxi University for Nationalities, 188, East Da Xue Rd., Nanning, Guangxi, 530006 P.R.C (China); Yao, Zhongwen, E-mail: yaoz@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Kirk, Mark A. [Material Science Division Argonne National Laboratory, Argonne, IL 60439 (United States); Daymond, Mark R., E-mail: mark.daymond@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2017-05-15

    The thermodynamically equilibrium state was achieved in a Zr-Sn-Nb-Mo alloy by long-term annealing at an intermediate temperature. The fcc intermetallic Zr(Mo, Nb){sub 2} enriched with Fe was observed at the equilibrium state. In-situ 1 MeV Kr{sup 2+} heavy ion irradiation was performed in a TEM to study the stability of the intermetallic particles under irradiation and the effects of the intermetallic particle on the evolution of type dislocation loops at different temperatures from 80 to 550 °C. Chemi-STEM elemental maps were made at the same particles before and after irradiation up to 10 dpa. It was found that no elemental redistribution occurs at 200 °C and below. Selective depletion of Fe was observed from some precipitates under irradiation at higher temperatures. No change in the morphology of particles and no evidence showing a crystalline to amorphous transformation were observed at all irradiation temperatures. The formation of type dislocation loops was observed under irradiation at 80 and 200 °C, but not at 450 and 550 °C. The loops were non-uniformly distributed; a localized high density of type dislocation loops were observed near the second phase particles; we suggest that loop nucleation is favored as a result of the stress induced by the particles, rather than by elemental redistribution. The stability of the second phase particles and the formation of the type loops under heavy ion irradiation are discussed.

  8. Process development for fabrication of Ag-15% In-5% Cd alloys and rods for the control rods of IPEN critical unit

    International Nuclear Information System (INIS)

    Figueredo, A.M. de.

    1985-12-01

    The development of two process at the Nuclear and Energetic Research Institute (IPEN-Brazil) are described. - the production of Ag-15% In-5%. Cd alloys with nuclear grade. The fabrication of rods from Ag-15% In-5% Cd alloy for use at the critical unit. The methods for quality control of alloy and rod are presented, and main problems are identified. (C.G.C.)

  9. Batangas Heavy Fabrication Yard Multi-Purpose Cooperative: Basis for Business Operation

    Directory of Open Access Journals (Sweden)

    JENNIFER D. MASICAT

    2014-08-01

    Full Text Available This research aimed to determine the proposed business initiatives to enhance the operation of Batangas Heavy Fabrication Yard Multi-Purpose Cooperative for the long survival and growth. More specifically, it shall answer the following objectives to describe the profile of the respondents in terms of their age, gender, type of membership and shared capital; to assess the business operation of the cooperative in the aspects of its management, marketing, finances, facilities and technology and their delivery of services; to identify the problems encountered by the cooperative in its business operation; to determine the significant relationship between the profile of the respondents and their assessment to its business operation; and to propose an action plan and to assess the business operation of BHFY Multi-Purpose Cooperative. The researcher used the descriptive correlation design in the study to obtain information concerning the current status of the BHFY-MPC cooperative; to describe what exists with respect to the variables or conditions in a situation. Based on the result, majority of the members are aged 51 to 55 years old, holding the regular type of membership and have a shared capital ranging from 51,001 to 100,000.The finding of the study states that the BHFY Multi-purpose cooperative performs well in terms of its management, marketing, finances, facilities and technology and delivery of services. Also, there are problems seldom encountered in the operation of the cooperative but the cooperative never encountered problems like overinvestment, ineffective leadership of management team and board of directors, inadequate source of fund, income of cooperative affected by negative issues and mismanagement of funds by the officers. Also, the type of membership influences the members’ assessment on the type of delivery of services; moreover, age contributes to the assessment of the business operation in terms of management and delivery of

  10. A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qian; Wang Xiaoguang; Qi Zhen [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China); Wang Yan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, Jiwei Road 106, Jinan 250022 (China); Zhang Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn

    2009-11-01

    Nanoporous gold (NPG) ribbons have been fabricated through electrochemical dealloying of melt-spun Al-Au alloys with 20-50 at.% Au in a 10 wt.% NaCl aqueous solution under potential control at room temperature. The microstructures of NPG were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDX) analysis. The microstructures of the NPG ribbons strongly depend upon the phase constitutions of the starting Al-Au alloys. The single-phase Al{sub 2}Au or AlAu intermetallic compound can be fully dealloyed, resulting in the formation of NPG with a homogeneous porous structure. The separate dealloying of Al{sub 2}Au and AlAu in the two-phase Al-45 Au alloy leads to the formation of NPG composites (NPGCs). In addition, the dealloying of the Al-20 Au alloy comprising {alpha}-Al and Al{sub 2}Au leads to the formation of NPG with bimodal channel size distributions. According to the ligament size, the surface diffusivity of Au adatoms along the alloy/electrolyte interface has been evaluated and increases with increasing applied potential. The dealloying mechanism in the neutral NaCl solution has been explained based upon pourbaix diagram and chloride ion effect.

  11. Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility.

    Science.gov (United States)

    Liu, Jue; Ruan, Jianming; Chang, Lin; Yang, Hailin; Ruan, Wei

    2017-09-01

    Porous Nb-Ti-Ta (at.%) alloys with the pore size of 100-600μm and the porosity of 50%-80% were fabricated by the combination of the sponge impregnation technique and sintering method. The results revealed that the pores were well connected with three-dimensional (3D) network structure, which showed morphological similarity to the anisotropic porous structure of human bones. The results also showed that the alloys could provide the compressive Young's modulus of 0.11±0.01GPa to 2.08±0.09GPa and the strength of 17.45±2.76MPa to 121.67±1.76MPa at different level of porosity, indicating that the mechanical properties of the alloys are similar to those of human bones. Pore structure on the compressive properties was also discussed on the basis of the deformation mode. The relationship between compressive properties and porosity was well consistent with the Gibson-Ashby model. The mechanical properties could be tailored to match different requirements of the human bones. Moreover, the alloys had good biocompatibility due to the porous structure with higher surface, which were suitable for apatite formation and cell adhesion. In conclusion, the porous Nb-Ti-Ta alloy is potentially useful in the hard tissue implants for the appropriate mechanical properties as well as the good biocompatible properties. Copyright © 2017. Published by Elsevier B.V.

  12. Microstructure and texture of a nano-grained complex Al alloy fabricated by accumulative roll-bonding of dissimilar Al alloys.

    Science.gov (United States)

    Lee, Seong-Hee; Jeon, Jae-Yeol; Lee, Kwang-Jin

    2013-01-01

    An ultrafine grain (UFG) complex lamella aluminum alloy sheet was successfully fabricated by ARB process using AA1050 and AA6061. The lamella thickness of the alloy became thinner and elongated to the rolling direction with increasing the number of ARB cycles. By TEM observation, it is revealed that the aspect ratio of UFGs formed by ARB became smaller with increasing the number of ARB cycles. In addition, the effect of ARB process on the development of deformation texture at the quarter thickness of ARB-processed sheets was clarified. ARB process leaded to the formation of the rolling texture with shear texture and weak cube orientation. The subdivision of the grains to the rolling direction began to occur after 3 cycles of the ARB, resulting in formation of ultrafine grains with small aspect ratio. After 5 cycles, the ultrafine grained structure with the average grain diameter of 560 nm develops in almost whole regions of the sample.

  13. Fabrication and structure of bulk nanocrystalline Al-Si-Ni-mishmetal alloys

    International Nuclear Information System (INIS)

    Latuch, Jerzy; Cieslak, Grzegorz; Kulik, Tadeusz

    2007-01-01

    Al-based alloys of structure consisting of nanosized Al crystals, embedded in an amorphous matrix, are interesting for their excellent mechanical properties, exceeding those of the commercial crystalline Al-based alloys. Recently discovered nanocrystalline Al alloys containing silicon (Si), rare earth metal (RE) and late transition metal (Ni), combine high tensile strength and good wear resistance. The aim of this work was to manufacture bulk nanocrystalline alloys from Al-Si-Ni-mishmetal (Mm) system. Bulk nanostructured Al 91-x Si x Ni 7 Mm 2 (x = 10, 11.6, 13 at.%) alloys were produced by ball milling of nanocrystalline ribbons followed by high pressure hot isostating compaction

  14. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    Science.gov (United States)

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  15. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    Science.gov (United States)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-12-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  16. Fabrication of Ti–Nb–Ag alloy via powder metallurgy for biomedical applications

    International Nuclear Information System (INIS)

    Wen, Ming; Wen, Cuie; Hodgson, Peter; Li, Yuncang

    2014-01-01

    Highlights: • The Ti–26Nb–5Ag alloy sintered by SPS showed a dense structure without any pores. • Nanostructure Ag was distributed in the Ti–26Nb–5Ag alloy sintered by SPS. • The SPS sample displayed higher strength than that of traditional sintered sample. - Abstract: Ti and some of its alloys are widely used as orthopedic implants. In the present study, Ti–26Nb–5Ag alloys were prepared by mechanical alloying followed by vacuum furnace sintering or spark plasma sintering (SPS). The microstructure and mechanical properties of the Ti–Nb–Ag alloys were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX), compressive and micro-hardness tests. The effect of different sintering methods on the microstructure and properties of Ti–Nb–Ag alloy was discussed. The results showed that the titanium alloy sintered by vacuum furnace exhibited a microstructure consisting of α, β and a small amount of α″ martensite phase; whilst the SPS sintered alloy exhibited a microstructure consisting of α, β and a small amount of α″ martensite phase, as well as a nanostructured Ag homogeneously distributed at the boundaries of the β phases. The Ti–Nb–Ag alloy sintered by SPS possessed fracture strength nearly 3 times of the alloy sintered by vacuum furnace

  17. Defects induced by swift heavy ions in the 18R martensite of Cu-Zn-Al alloy

    International Nuclear Information System (INIS)

    Zelaya, Eugenia; Tolley, Alfredo; Condo, Adriana; Lovey, Francisco; Schumacher, G

    2003-01-01

    The swift heavy ion incidence over the surface of a given material produces a strong energy deposition in a nanometric scale.Swift heavy ions, of the order of one thousand of MeV, deposit their energy as electronic excitations.This highly localized deposition can induce metastable transformations within the material. For example, in martensitic NiTi alloys irradiated with swift heavy ions, it has been observed changes on the martensitic transformation temperature and amorphous areas induced by the irradiation.In this work, the effects produced by swift heavy ions on the martensitic 18R structure of Cu-Zn-Al alloy (Cu - 12.17 Zn - 17.92 Al, in %at) were analyzed.Crystalline samples were irradiated in a direction close to the [2 1 0] of 18R with Xe + 230 MeV, Au + of 350 MeV and Kr + of 200 MeV ion beams.Defects of the order of nanometers induced by the irradiation were observed by transmission electron microscopy (TEM) and high resolution electron microscopy (HREM).It was also observed, that the average size of the irradiation defects induced by Au + ion is larger than those induced by Xe + and Kr + ions.In this case, no relationship between the observed defects and the energy deposition was found in the 23 keV/nn to 48 keV/nn range

  18. Fabrication and characterization of nanostructured mechanically alloyed Pt-Co catalyst for oxygen gas-diffusion-electrode

    International Nuclear Information System (INIS)

    Pharkya, P.; Farhat, Z.; Czech, E.; Hawthorne, H.; Alfantazi, A.

    2003-01-01

    The use of PEM fuel cells depends largely upon the cost of materials, processing and fabrication. The cost of Pt catalyst is a significant cost of a fuel cell. Alternative low cost catalyst that promotes high rate of oxygen reduction is needed. To achieve this, a mechanochemical technique was employed to refine the catalyst layer structure (i.e. increasing the effective catalyst surface area) and reducing the amount of Pt used, by alloying with a cheaper element. An investigation is carried out to study the relationship between the new catalyst structure refinement, morphology, microstructure and its electrocatalytic behaviour. Nanostructured Pt, Co and Pt 0.2 5 Co 0.75 alloy was fabricated from high purity Pt (99.9%) and Co (99.5%) powders using a Laboratory Planetary Ball Mill 'Pulverisette 6'. Optimum milling conditions, that produce fine, uniform and mechanically alloyed microstructure, were determined during fabrication, by varying process parameters (i.e., rpm, milling time, ball to powder ratio, milling atmosphere, surface-agents and milling/cooling cycle). Mechanically induced chemical and physical reactions and thermal effects were monitored 'in-situ' using a GTM system, which recorded temperature and pressure changes during milling. The alloy catalysts were characterized using TEM, SEM, EDX, XRD and BET techniques. Electrochemical tests were carried out on prepared powders. Exchange currents were determined from a potentiodynamic polarization tests and used to compare relative electrocatalytic behaviour of the new catalyst. Structure/property relationships were discussed and conclusions were drawn on the production of improved low cost catalyst. (author)

  19. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting

    Science.gov (United States)

    Koike, Mari; Greer, Preston; Owen, Kelly; Lilly, Guo; Murr, Lawrence E.; Gaytan, Sara M.; Martinez, Edwin; Okabe, Toru

    2011-01-01

    This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23) specimens fabricated by a laser beam melting (LBM) and an electron beam melting (EBM) system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam AB®) in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast) were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought) was used as a control. The mechanical properties, corrosion properties and grindability (wear properties) were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05). The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods. PMID:28824107

  20. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies-Electron Beam Melting and Laser Beam Melting.

    Science.gov (United States)

    Koike, Mari; Greer, Preston; Owen, Kelly; Lilly, Guo; Murr, Lawrence E; Gaytan, Sara M; Martinez, Edwin; Okabe, Toru

    2011-10-10

    This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23) specimens fabricated by a laser beam melting (LBM) and an electron beam melting (EBM) system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam AB Ò ) in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast) were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought) was used as a control. The mechanical properties, corrosion properties and grindability (wear properties) were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05). The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.

  1. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting

    Directory of Open Access Journals (Sweden)

    Toru Okabe

    2011-10-01

    Full Text Available This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23 specimens fabricated by a laser beam melting (LBM and an electron beam melting (EBM system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam ABÒ in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought was used as a control. The mechanical properties, corrosion properties and grindability (wear properties were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05. The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.

  2. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al{sub x}CoCrFeNi high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jithin, E-mail: jithin@deakin.edu.au [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia); Jarvis, Tom; Wu, Xinhua [Monash Centre for Additive Manufacturing, Monash University, Clayton 3168 (Australia); Stanford, Nicole; Hodgson, Peter; Fabijanic, Daniel Mark [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia)

    2015-05-01

    High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the Al{sub x}CoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85 M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA's.

  3. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques.

    Science.gov (United States)

    Wang, Hongmei; Feng, Qing; Li, Ning; Xu, Sheng

    2016-12-01

    Limited information is available regarding the metal-ceramic bond strength of dental Co-Cr alloys fabricated by casting (CAST), computer numerical control (CNC) milling, and selective laser melting (SLM). The purpose of this in vitro study was to evaluate the metal-ceramic bond characteristics of 3 dental Co-Cr alloys fabricated by casting, computer numerical control milling, and selective laser melting techniques using the 3-point bend test (International Organization for Standardization [ISO] standard 9693). Forty-five specimens (25×3×0.5 mm) made of dental Co-Cr alloys were prepared by CAST, CNC milling, and SLM techniques. The morphology of the oxidation surface of metal specimens was evaluated by scanning electron microscopy (SEM). After porcelain application, the interfacial characterization was evaluated by SEM equipped with energy-dispersive spectrometry (EDS) analysis, and the metal-ceramic bond strength was assessed with the 3-point bend test. Failure type and elemental composition on the debonding interface were assessed by SEM/EDS. The bond strength was statistically analyzed by 1-way ANOVA and Tukey honest significant difference test (α=.05). The oxidation surfaces of the CAST, CNC, and SLM groups were different. They were porous in the CAST group but compact and irregular in the CNC and SLM groups. The metal-ceramic interfaces of the SLM and CNC groups showed excellent combination compared with those of the CAST group. The bond strength was 37.7 ±6.5 MPa for CAST, 43.3 ±9.2 MPa for CNC, and 46.8 ±5.1 MPa for the SLM group. Statistically significant differences were found among the 3 groups tested (P=.028). The debonding surfaces of all specimens exhibited cohesive failure mode. The oxidation surface morphologies and thicknesses of dental Co-Cr alloys are dependent on the different fabrication techniques used. The bond strength of all 3 groups exceed the minimum acceptable value of 25 MPa recommended by ISO 9693; hence, dental Co-Cr alloy

  4. Fabrication of anticorrosive multilayer onto magnesium alloy substrates via spin-assisted layer-by-layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Cai Kaiyong, E-mail: Kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Sui Xiaojing; Hu Yan [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Zhao Li [China National Centre for Biotechnology Development, No. 16, Xi Si Huan Zhong Lu, Haidian District, Beijing 100036 (China); Lai Min; Luo Zhong; Liu Peng; Yang Weihu [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2011-12-01

    To improve the corrosion resistance of magnesium alloy, we reported a novel approach for the fabrication of anticorrosive multilayers onto AZ91D substrates. The multilayers were composed of poly(ethylene imine) (PEI), poly(styrene sulfonate) (PSS) and 8-hydroxyquinoline (8HQ). They were deposited onto AZ91D substrates via a spin-assisted layer-by-layer (LbL) technique. The multilayered structure was stabilized with glutaraldehyde (GA) as crossing linker. It was confirmed by Fourier transform infrared spectroscopy (FT-IR). Surface morphologies and elemental compositions of the formed anticorrosive multilayers were characterized with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The corrosion performance of the multilayer coated AZ91D substrates was characterized by hydrogen evolution. The results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements suggested that the multilayered coating improved the corrosion resistance of AZ91D substrates. In vitro study revealed that the multilayered coating was cytocompatible. The study provides a potential alternative for the fabrication of corrosion resistant magnesium alloy-based implants. Highlights: {yields} Corrosion protective multilayers have been constructed onto AZ91D substrates via layer by layer technique. {yields} The multilayered structured containing 8-hydroxyquinoline highly improves the corrosion resistance of AZ91D substrates. {yields} The novel multilayered coating is potentially important for developing corrosion resistant magnesium alloy-based implants.

  5. Fabrication of anticorrosive multilayer onto magnesium alloy substrates via spin-assisted layer-by-layer technique

    International Nuclear Information System (INIS)

    Cai Kaiyong; Sui Xiaojing; Hu Yan; Zhao Li; Lai Min; Luo Zhong; Liu Peng; Yang Weihu

    2011-01-01

    To improve the corrosion resistance of magnesium alloy, we reported a novel approach for the fabrication of anticorrosive multilayers onto AZ91D substrates. The multilayers were composed of poly(ethylene imine) (PEI), poly(styrene sulfonate) (PSS) and 8-hydroxyquinoline (8HQ). They were deposited onto AZ91D substrates via a spin-assisted layer-by-layer (LbL) technique. The multilayered structure was stabilized with glutaraldehyde (GA) as crossing linker. It was confirmed by Fourier transform infrared spectroscopy (FT-IR). Surface morphologies and elemental compositions of the formed anticorrosive multilayers were characterized with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The corrosion performance of the multilayer coated AZ91D substrates was characterized by hydrogen evolution. The results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements suggested that the multilayered coating improved the corrosion resistance of AZ91D substrates. In vitro study revealed that the multilayered coating was cytocompatible. The study provides a potential alternative for the fabrication of corrosion resistant magnesium alloy-based implants. Highlights: → Corrosion protective multilayers have been constructed onto AZ91D substrates via layer by layer technique. → The multilayered structured containing 8-hydroxyquinoline highly improves the corrosion resistance of AZ91D substrates. → The novel multilayered coating is potentially important for developing corrosion resistant magnesium alloy-based implants.

  6. Fabrication and Performance Test of Aluminium Alloy-Rice Husk Ash Hybrid Metal Matrix Composite as Industrial and Construction Material

    Directory of Open Access Journals (Sweden)

    Md. Rahat Hossain

    2017-12-01

    Full Text Available Aluminium matrix composites (AMCs used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs such as aluminium alloy (A356 reinforced with rice husk ash particles (RHA are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356 reinforced with various amounts of (2%, 4%, and 6% rice husk ash (RHA particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA and aluminium matrix composites (AMCs. In future, the optimum percentages of rice husk ash (RHA to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM will be applied for further investigation.

  7. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping.

    Science.gov (United States)

    Wen, Xiaopeng; Gao, Shan; Feng, Jinteng; Li, Shuo; Gao, Rui; Zhang, Guangjian

    2018-01-08

    As 3D printing technology emerge, there is increasing demand for a more customizable implant in the repair of chest-wall bony defects. This article aims to present a custom design and fabrication method for repairing bony defects of the chest wall following tumour resection, which utilizes three-dimensional (3D) printing and rapid-prototyping technology. A 3D model of the bony defect was generated after acquiring helical CT data. A customized prosthesis was then designed using computer-aided design (CAD) and mirroring technology, and fabricated using titanium-alloy powder. The mechanical properties of the printed prosthesis were investigated using ANSYS software. The yield strength of the titanium-alloy prosthesis was 950 ± 14 MPa (mean ± SD), and its ultimate strength was 1005 ± 26 MPa. The 3D finite element analyses revealed that the equivalent stress distribution of each prosthesis was unifrom. The symmetry and reconstruction quality contour of the repaired chest wall was satisfactory. No rejection or infection occurred during the 6-month follow-up period. Chest-wall reconstruction with a customized titanium-alloy prosthesis is a reliable technique for repairing bony defects.

  8. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    Science.gov (United States)

    Vaibhaw, Kumar; Rao, S. V. R.; Jha, S. K.; Saibaba, N.; Jayaraj, R. N.

    2008-12-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (˜300 °C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation ( F n) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  9. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Rao, S.V.R.; Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2008-01-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (∼300 deg. C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation (F n ) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process

  10. Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Paula Rojas

    2016-09-01

    Full Text Available The manufacture of alloys in solid state has many differences with the conventional melting (casting process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding medium; there is no melting, but the microstructural changes go from microstructural refinement to amorphization in solid state. This work studies the behavior of pure metals (Cu and Ni, and different binary alloys (Cu-Ni and Cu-Zr, under the same milling/mechanical alloying conditions. After high-energy milling, X ray diffraction (XRD patterns were analyzed to determine changes in the lattice parameter and find both microstrain and crystallite sizes, which were first calculated using the Williamson-Hall (W-H method and then compared with the transmission electron microscope (TEM images. Calculations showed a relatively appropriate approach to observations with TEM; however, in general, TEM observations detect heterogeneities, which are not considered for the W-H method. As for results, in the set of pure metals, we show that pure nickel undergoes more microstrain deformations, and is more abrasive than copper (and copper alloys. In binary systems, there was a complete solid solution in the Cu-Ni system and a glass-forming ability for the Cu-Zr, as a function of the Zr content. Mathematical methods cannot be applied when the systems have amorphization because there are no equations representing this process during milling. A general conclusion suggests that, under the same milling conditions, results are very different due to the significant impact of the composition: nickel easily forms a solid solution, while with a higher zirconium content there is a higher degree of glassforming ability.

  11. Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method

    International Nuclear Information System (INIS)

    Xie Zhuoming; Liu Rui; Fang Qianfeng; Zhang Tao; Jiang Yan; Wang Xianping; Liu Changsong

    2015-01-01

    W-(0.2, 0.5, 1.0)wt% ZrC alloys with a relative density above 97.5% were fabricated through the spark plasma sintering (SPS) method. The grain size of W-1.0wt% ZrC is about 2.7 μm, smaller than that of pure W and W-(0.2, 0.5)wt% ZrC. The results indicated that the W-ZrC alloys exhibit higher hardness at room temperature, higher tensile strength at high temperature, and a lower ductile to brittle transition temperature (DBTT) than pure W. The tensile strength and total elongation of W-0.5wt% ZrC alloy at 700 °C is 535 MPa and 24.8%, which are respectively 59% and 114% higher than those of pure W (337 MPa, 11.6%). The DBTT of W-(0.2, 0.5, 1.0)wt% ZrC materials is in the range of 500°C–600°C, which is about 100 °C lower than that of pure W. Based on microstructure analysis, the improved mechanical properties of the W-ZrC alloys were suggested to originate from the enhanced grain boundary cohesion by ZrC capturing the impurity oxygen in tungsten and nano-size ZrC dispersion strengthening. (paper)

  12. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles

    International Nuclear Information System (INIS)

    Roedel, Erik Q.; Cafasso, Danielle E.; Lee, Karen W.M.; Pierce, Lisa M.

    2012-01-01

    Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24 h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals. -- Highlights: ► Intratracheal instillation of W–Ni–Co and W–Ni–Fe induces lung inflammation in rats. ► W–Ni–Co and W–Ni–Fe alter expression of oxidative stress and toxicity genes. ► W

  13. Fabrication of multifunctional CaP-TC composite coatings and the corrosion protection they provide for magnesium alloys.

    Science.gov (United States)

    Tan, Cui; Zhang, Xiaoxu; Li, Qing

    2017-08-28

    Two major problems with magnesium (Mg) alloy biomaterials are the poor corrosion resistance and infection associated with implantation. In this study, a novel calcium phosphate (CaP)/tetracycline (TC) composite coating for Mg implants that can both improve the corrosion resistance of Mg and release a drug in a durable way is reported. Scanning electron microscope (SEM) images showed that TC additives make the CaP coating more compact and uniform. Electrochemical tests indicated CaP/TC coatings can provide excellent corrosion protection for Mg alloy substrates. Besides, TC additives can also provide effective prevention of bone infection and inflammation due to its broad-spectrum antibacterial properties. The one-step hydrothermal process reported here greatly simplified the multi-step fabrication of smart coatings reported previously.

  14. Optimized Compositional Design and Processing-Fabrication Paths for Larger Heats of Nanostructured Ferritic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-02-06

    The objective of this work was to characterize the alloy 14YWT-PM2, which is an extruded and cross-rolled precursor alloy to a large heat of 14YWT being produced using an alternative processing path that incorporates Y during gas atomization process.

  15. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering.

    Science.gov (United States)

    Hieda, Junko; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken

    2015-09-01

    Ti-xMg (x=17, 33, and 55 mass%) alloy films, which cannot be prepared by conventional melting processes owing to the absence of a solid-solution phase in the phase diagram, were prepared by direct current magnetron sputtering in order to investigate their biocompatibility. Ti and Mg films were also prepared by the same process for comparison. The crystal structures were examined by X-ray diffraction (XRD) analysis and the surfaces were analyzed by X-ray photoelectron spectroscopy. The Ti, Ti-xMg alloy, and Mg films were immersed in a 0.9% NaCl solution at 310 K for 7d to evaluate the dissolution amounts of Ti and Mg. In addition, to evaluate the formation ability of calcium phosphate in vitro, the Ti, Ti-xMg alloy, and Mg films were immersed in Hanks' solution at 310 K for 30 d. Ti and Mg form solid-solution alloys because the peaks attributed to pure Ti and Mg do not appear in the XRD patterns of any of the Ti-xMg alloy films. The surfaces of the Ti-17 Mg alloy and Ti-33 Mg alloy films contain Ti oxides and MgO, whereas MgO is the main component of the surface oxide of the Ti-55 Mg alloy and Mg films. The dissolution amounts of Ti from all films are below or near the detection limit of inductively coupled plasma-optical emission spectroscopy. On the other hand, the Ti-17 Mg alloy, Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films exhibit Mg dissolution amounts of approximately 2.5, 1.4, 21, and 41 μg/cm(2), respectively. The diffraction peaks attributed to calcium phosphate are present in the XRD patterns of the Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films after the immersion in Hanks' solution. Spherical calcium phosphate particles precipitate on the surface of the Ti-33 Mg film. However, many cracks are observed in the Ti-55 Mg film, and delamination of the film occurs after the immersion in Hanks' solution. The Mg film is dissolved in Hanks' solution and calcium phosphate particles precipitate on the glass substrate. Consequently, it is revealed that the Ti-33 Mg

  16. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy

    Science.gov (United States)

    Gao, J. H.; Guan, S. K.; Chen, J.; Wang, L. G.; Zhu, S. J.; Hu, J. H.; Ren, Z. W.

    2011-01-01

    The poor corrosion resistance of magnesium alloys is a dominant problem that limits their clinical application. In order to solve this challenge, micro-arc oxidation (MAO) was used to fabricate a porous coating on magnesium alloys and then electrochemical deposition (ED) was done to fabricate rod-like nano-hydroxyapatite (RNHA) on MAO coating. The cross-section morphology of the composite coatings and its corresponding energy dispersion spectroscopy (EDS) surficial scanning map of calcium revealed that HA rods were successfully deposited into the pores. The three dimensional morphology and scanning electron microscopy (SEM) image of the composite coatings showed that the distribution of the HA rods was dense and uniform. Atomic force microscope (AFM) observation of the composite coatings showed that the diameters of HA rods varied from 95 nm to 116 nm and the root mean square roughness (RMS) of the composite coatings was about 42 nm, which were favorable for cellular survival. The bonding strength between the HA film and MAO coating increased to 12.3 MPa, almost two times higher than that of the direct electrochemical deposition coating (6.3 MPa). Compared with that of the substrate, the corrosion potential of Mg-Zn-Ca alloy with composite coatings increased by 161 mV and its corrosion current density decreased from 3.36 × 10 -4 A/cm 2 to 2.40 × 10 -7 A/cm 2 which was due to the enhancement of bonding strength and the deposition of RNHA in the MAO pores. Immersion tests were carried out at 36.5 ± 0.5 °C in simulated body fluid (SBF). It was found that RNHA can induce the rapid precipitation of calcium orthophosphates in comparison with conventional HA coatings. Thus magnesium alloy coated with the composite coatings is a promising candidate as biodegradable bone implants.

  17. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy

    International Nuclear Information System (INIS)

    Gao, J.H.; Guan, S.K.; Chen, J.; Wang, L.G.; Zhu, S.J.; Hu, J.H.; Ren, Z.W.

    2011-01-01

    The poor corrosion resistance of magnesium alloys is a dominant problem that limits their clinical application. In order to solve this challenge, micro-arc oxidation (MAO) was used to fabricate a porous coating on magnesium alloys and then electrochemical deposition (ED) was done to fabricate rod-like nano-hydroxyapatite (RNHA) on MAO coating. The cross-section morphology of the composite coatings and its corresponding energy dispersion spectroscopy (EDS) surficial scanning map of calcium revealed that HA rods were successfully deposited into the pores. The three dimensional morphology and scanning electron microscopy (SEM) image of the composite coatings showed that the distribution of the HA rods was dense and uniform. Atomic force microscope (AFM) observation of the composite coatings showed that the diameters of HA rods varied from 95 nm to 116 nm and the root mean square roughness (RMS) of the composite coatings was about 42 nm, which were favorable for cellular survival. The bonding strength between the HA film and MAO coating increased to 12.3 MPa, almost two times higher than that of the direct electrochemical deposition coating (6.3 MPa). Compared with that of the substrate, the corrosion potential of Mg-Zn-Ca alloy with composite coatings increased by 161 mV and its corrosion current density decreased from 3.36 x 10 -4 A/cm 2 to 2.40 x 10 -7 A/cm 2 which was due to the enhancement of bonding strength and the deposition of RNHA in the MAO pores. Immersion tests were carried out at 36.5 ± 0.5 deg. C in simulated body fluid (SBF). It was found that RNHA can induce the rapid precipitation of calcium orthophosphates in comparison with conventional HA coatings. Thus magnesium alloy coated with the composite coatings is a promising candidate as biodegradable bone implants.

  18. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J.H. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China); Guan, S.K., E-mail: skguan@zzu.edu.cn [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China); Chen, J. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China); Division of Materials and Manufacturing Science, Osaka University, Osaka 567-0047 (Japan); Wang, L.G.; Zhu, S.J.; Hu, J.H.; Ren, Z.W. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China)

    2011-01-01

    The poor corrosion resistance of magnesium alloys is a dominant problem that limits their clinical application. In order to solve this challenge, micro-arc oxidation (MAO) was used to fabricate a porous coating on magnesium alloys and then electrochemical deposition (ED) was done to fabricate rod-like nano-hydroxyapatite (RNHA) on MAO coating. The cross-section morphology of the composite coatings and its corresponding energy dispersion spectroscopy (EDS) surficial scanning map of calcium revealed that HA rods were successfully deposited into the pores. The three dimensional morphology and scanning electron microscopy (SEM) image of the composite coatings showed that the distribution of the HA rods was dense and uniform. Atomic force microscope (AFM) observation of the composite coatings showed that the diameters of HA rods varied from 95 nm to 116 nm and the root mean square roughness (RMS) of the composite coatings was about 42 nm, which were favorable for cellular survival. The bonding strength between the HA film and MAO coating increased to 12.3 MPa, almost two times higher than that of the direct electrochemical deposition coating (6.3 MPa). Compared with that of the substrate, the corrosion potential of Mg-Zn-Ca alloy with composite coatings increased by 161 mV and its corrosion current density decreased from 3.36 x 10{sup -4} A/cm{sup 2} to 2.40 x 10{sup -7} A/cm{sup 2} which was due to the enhancement of bonding strength and the deposition of RNHA in the MAO pores. Immersion tests were carried out at 36.5 {+-} 0.5 deg. C in simulated body fluid (SBF). It was found that RNHA can induce the rapid precipitation of calcium orthophosphates in comparison with conventional HA coatings. Thus magnesium alloy coated with the composite coatings is a promising candidate as biodegradable bone implants.

  19. Comparison and evaluation of marginal and internal gaps in cobalt-chromium alloy copings fabricated using subtractive and additive manufacturing.

    Science.gov (United States)

    Kim, Dong-Yeon; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul

    2018-01-01

    To evaluate the marginal and internal gaps of cobalt-chromium (Co-Cr) alloy copings fabricated using subtractive and additive manufacturing. A study model of an abutment tooth 46 was prepared by a 2-step silicone impression with dental stone. Fifteen stereolithography files for Co-Cr alloy copings were compiled using a model scanner and dental CAD software. Using the lost wax (LW), wax block (WB), soft metal block (SMB), microstereolithography (μ-SLA), and selected laser melting (SLM) techniques, 15 Co-Cr alloy copings were fabricated per group. The marginal and internal gaps of these Co-Cr alloy copings were measured using a digital microscope (160×), and the data obtained were analyzed using the non-parametric Kruskal-Wallis H-test and post-hoc Mann-Whitney U-test with Bonferroni correction. The mean values of the marginal, axial wall, and occlusal gaps were 91.8, 83.4, and 163μm in the LW group; 94.2, 77.5, and 122μm in the WB group; 60.0, 79.4, and 90.8μm in the SMB group; 154, 72.4, and 258μm in the μ-SLA group; and 239, 73.6, and 384μm in the SLM group, respectively. The differences in the marginal and occlusal gaps between the 5 groups were statistically significant (P<.05). The marginal gaps of the LW, WB, and SMB groups were within the clinically acceptable limit, but further improvements in the μ-SLA and SLM approaches may be required prior to clinical implementation. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  20. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-05-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  1. Metastable phases in Zr-Excel alloy and their stability under heavy ion (Kr{sup 2+}) irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongbing, E-mail: 12hy1@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Zhang, Ken; Yao, Zhongwen [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Kirk, Mark A. [Material Science Division Argonne National Laboratory, Argonne, IL, 60439 (United States); Long, Fei; Daymond, Mark R. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2016-02-15

    Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo, wt.%) has been proposed as a candidate material of pressure tubes in the CANDU-SCWR design. It is a dual-phase alloy containing primary hcp α-Zr and metastable bcc β-Zr. Metastable hexagonal ω-Zr phase could form in β-Zr as a result of aging during the processing of the tube. A synchrotron X-ray study was employed to study the lattice properties of the metastable phases in as-received Zr-Excel pressure tube material. In situ heavy ion (1 MeV Kr{sup 2+}) irradiations were carried out at 200 °C and 450 °C to emulate the stability of the metastable phase under a reactor environment. Quantitative Chemi-STEM EDS analysis was conducted on both un-irradiated and irradiated samples to investigate alloying element redistribution induced by heavy ion irradiation. It was found that no decomposition of β-Zr was observed under irradiation at both 200 °C and 450 °C. However, ω-Zr particles experienced shape changes and shrinkage associated with enrichment of Fe at the β/ω interface during 200 °C irradiation but not at 450 °C. There is a noticeable increase in the level of Fe in the α matrix after irradiation at both 200 °C and 450 °C. The concentrations of Nb, Mo and Fe are increased in the ω phase but decreased in the β phase at 200 °C. The stability of metastable phases under heavy ion irradiation associated with elemental redistribution is discussed.

  2. Facile fabrication of hydrophobic surfaces on mechanically alloyed-Mg/HA/TiO{sub 2}/MgO bionanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Khalajabadi, Shahrouz Zamani [Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my [Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Izman, Sudin; Mohd Yusop, Mohd Zamri [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-01-01

    Highlights: • Mg/HA/TiO{sub 2}-based nanocomposite was produced using mechanical alloying. • The hydrophobic surface coverage was fabricated on the mechanical alloyed samples by annealing. • The morphological characteristics, phase evolution and wettability of nanocomposites and the hydrophobic surface coverage were investigated. • The activation energies and reaction kinetic of the powder mixture of nanocomposites were calculated. - Abstract: The effect of mechanical alloying and post-annealing on the phase evolution, microstructure, wettability and thermal stability of Mg–HA–TiO{sub 2}–MgO composites was investigated in this study. Phase evolution and microstructure analysis were performed using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy, as well as the wettability determined by contact angle measurements with SBF. The 16-h mechanical alloying resulted in the formation of MgTiO{sub 3}, CaTiO{sub 3}, Mg{sub 3}(PO{sub 4}){sub 2} and Mg(OH){sub 2} phases and a decrease in wettability of the nanocomposites. A hydrophobic film with hierarchical structures comprising nanoflakes of MgTiO{sub 3}, nano-cuboids of CaTiO{sub 3}, microspheres of Mg{sub 3}(PO{sub 4}){sub 2} and Mg(OH){sub 2} was successfully constructed on the surface of the Mg-based nanocomposites substrates as a result of the post-annealing process. After 1-h annealing at 630 °C, the synthesized hydrophobic surface on the nanocomposite substrates decreased the wettability, as the 8-h-mechanically alloyed samples exhibited a contact angle close to 93°. The formation activation energies and reaction kinetics of the powder mixture were investigated using differential thermal analysis and thermal gravimetric analysis. The released heat, weight loss percentage and reaction kinetics increased, while the formation activation energies of the exothermic reactions decreased following an increase in the milling time.

  3. A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication

    Science.gov (United States)

    Li, Ling; Tirado, Angelica; Conner, B. S.; Chi, Miaofang; Elliott, Amy M.; Rios, Orlando; Zhou, Haidong; Paranthaman, M. Parans

    2017-09-01

    In this paper, binder jetting additive manufacturing technique is employed to fabricate NdFeB isotropic bonded magnets, followed by an infiltration process with low-melting point eutectic alloys [i.e., Nd3Cu0.25Co0.75 (NdCuCo) and Pr3Cu0.25Co0.75 (PrCuCo)]. Densification and mechanical strength improvement are achieved for the as-printed porous part. Meanwhile, the intrinsic coercivity Hci is enhanced from 732 to 1345 kA/m and 1233 kA/m after diffusion of NdCuCo and PrCuCo, respectively. This study presents a novel method for fabricating complex-shaped bonded magnets with promising mechanical and magnetic properties.

  4. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    Science.gov (United States)

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg 2 (Zn, Al) 11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5MgAl-0.3MgAl-0.1MgAl. The cytotoxicity tests exhibited that the Zn-0.5Al-0.5Mg alloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fabrication by powder metallurgy of the niobium based alloy Nb-1-Zr

    International Nuclear Information System (INIS)

    Marty, M.; Delaunay, C.; Walder, A.

    1989-01-01

    The Nb-1Zr alloy has been produced by the powder metallurgy technique. Production of powders was performed by centrifugal atomization with the rotating electrode process (REP) under an inert atmosphere of argon-helium. Alloy powders were characterized by granulometric spectra, oxygen content and the various types of structures which were found. After consolidation by extrusion, materials were evaluated by tensile test under vacuum at ambient temperature, 750 and 900 0 C and compared with the same alloy elaborated by ingot metallurgy. 8 refs., 9 figs. (Author)

  6. The effect of 3 wt.% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting.

    Science.gov (United States)

    Luo, Jiasi; Wu, Songquan; Lu, Yanjin; Guo, Sai; Yang, Yang; Zhao, Chaoqian; Lin, Junjie; Huang, Tingting; Lin, Jinxin

    2018-03-19

    Microstructure, tribological property and corrosion resistance of orthopedic implant materials CoCrW-3 wt.% Cu fabricated by selective laser melting (SLM) process were systematically investigated with CoCrW as control. Equaxied γ-phase together with the inside {111}  type twin and platelet ε-phase was found in both the Cu-bearing and Cu-free alloys. Compared to the Cu-free alloy, the introduction of 3 wt.% Cu significantly increased the volume fraction of the ε-phase. In both alloys, the hardness of ε-phase zone was rather higher (~4 times) than that of γ-phase zone. The wear factor of 3 wt.% Cu-bearing alloy possessed smaller wear factor, although it had higher friction coefficient compared with Cu-free alloys. The ε-phase in the CoCr alloy would account for reducing both abrasive and fatigue wear. Moreover, the Cu-bearing alloy presented relatively higher corrosion potential E corr and lower corrosion current density I corr compared to the Cu-free alloy. Accordingly, 3 wt.% Cu addition plays a key role in enhancing the wear resistance and corrosion resistance of CoCrW alloys, which indicates that the SLM CoCrW-3Cu alloy is a promising personalized alternative for traditional biomedical implant materials.

  7. Near Net Shape Fabrication Technology for Shape Memory Alloy Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I effort proposes to develop an innovative, affordable processing route for larger-sized shape memory alloy (SMA) components. Despite significant...

  8. Fabrication of cold-rolled bands of the alloy-ehi 702 in rolls

    International Nuclear Information System (INIS)

    Zhuchin, V.N.; Gindin, A.Sh.; Shaburov, V.E.; Vladimirov, S.M.; Sokolov, V.A.; Shavkun, V.V.; Perepelitsa, I.V.; Markov, V.V.; Naymov, E.P.; Evstaf'ev, P.P.

    1977-01-01

    The questions are discussed, connected with the manufacture of cold-rolled strip of alloy EI702 in reels from strip blanks. It has been established that in the manufacture of hot-rolled stock from EI702 slabs it is necessary to use powerful rolling equipment because of high resistance to deformation. The reel method for manufacturing EI702 alloy improves the rolled stock and increases percentage of serviceable stock, as well as the output

  9. Influence of solutes on heavy ion induced void-swelling in binary copper alloys

    International Nuclear Information System (INIS)

    Leister, K.H.

    1983-05-01

    As radiation induced swelling of metals depends on their constitution, swelling of copper and copper alloys with low solute concentration is studied. Diffusion coefficients and solubility of solute in copper were used as criteria of selection of the alloys. The samples were irradiated by 200keV copper ions. Swelling and void densities were measured by transmission electron microscopy. The measurements show low dependence of swelling upon the diffusibility of the solute in the solvent and a strong dependence on their concentration. Alloys of 0.1at% solute show more swelling than pure copper, and alloys of 1at% show less swelling under the irradiation conditions. The different swelling behavior in Cu-Ni alloys is due to the different void densities. (orig.) [de

  10. Unexpected formation of hydrides in heavy rare earth containing magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2016-09-01

    Full Text Available Mg–RE (Dy, Gd, Y alloys show promising for being developed as biodegradable medical applications. It is found that the hydride REH2 could be formed on the surface of samples during their preparations with water cleaning. The amount of formed hydrides in Mg–RE alloys is affected by the content of RE and heat treatments. It increases with the increment of RE content. On the surface of the alloy with T4 treatment the amount of formed hydride REH2 is higher. In contrast, the amount of REH2 is lower on the surfaces of as-cast and T6-treated alloys. Their formation mechanism is attributed to the surface reaction of Mg–RE alloys with water. The part of RE in solid solution in Mg matrix plays an important role in influencing the formation of hydrides.

  11. Fabrication and mechanical properties of quasicrystal-reinforced Al-Mn-Mm alloys

    International Nuclear Information System (INIS)

    Jun, Joong-Hwan; Kim, Jeong-Min; Kim, Ki-Tae; Jung, Woon-Jae

    2007-01-01

    Microstructures and room temperature mechanical properties of quasicrystal-reinforced Al 94-x Mn 6 Mm x (Mm: misch metal, x = 0-6 at.%) alloys have been studied systematically. Cylindrical rod samples with 3 mm in diameter were synthesized by injection-casting into a Cu mould and analyzed by means of X-ray diffractometry, differential scanning calorimetry, optical microscopy and scanning electron microscopy with energy-dispersive X-ray spectrometry. Mechanical properties of the cylindrical rods were measured at room temperature by compression tests. The Al 94 Mn 6 alloy contains hexagonal-shape particles and long needle-shape Al 6 Mn precipitates surrounded by α-Al matrix. An addition of Mm into the Al 94 Mn 6 alloy generates icosahedral quasicrystalline phase (IQC) with an extinction of hexagonal and Al 6 Mn phases, and the fraction of IQC increases continuously with an increase in Mm content. Compressive yield strength (σ cys ) and ultimate compressive strength (σ ucs ) of the Al-Mn-Mm alloys are improved with Mm content up to 4%, whereas elongation is steeply deteriorated by the Mm addition. The Al 90 Mn 6 Mm 4 alloy exhibits the highest 570 and 783 MPa of σ cys and σ ucs , respectively, both of which are comparable to those of Al 90 Mn 6 Ce 4 alloy

  12. Fabrication of metallic alloy powder (Ni{sub 3}Fe) from Fe–77Ni scrap

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Inseok [ES Materials Research Center, Research Institute of Industrial Science and Technology, Incheon 406-840 (Korea, Republic of); Shin, Shun-Myung [Extractive Metallurgy Department, Korea Institute of Geoscience and Mineral Resources, Deajeon 305-350 (Korea, Republic of); Ha, Sang-An [Department of Environmental Engineering, Silla University, Busan 46958 (Korea, Republic of); Wang, Jei-Pil, E-mail: jpwang@pknu.ac.kr [Department of Metallurgical Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of)

    2016-06-15

    The oxidation behavior of Fe–77Ni alloy scrap was investigated at an oxygen partial pressure of 0.2 atm and temperatures ranging from 400 °C to 900 °C. The corresponding oxidation rate increased with increasing temperature and obeyed the parabolic rate law, as evidenced by its linear proportionality to the temperature. In addition, surface morphologies, cross-sectional views, compositions, structural properties were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Diffusion through either the spinel structure or the NiO layer, which were both present in the alloy during oxidation at elevated temperatures, was deemed the rate-limiting step of the reaction. The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap was obtained using ball-milling and sieving processes. In fact, 15 h of milling yielded a recovery ratio of 97%. Using hydrogen gas, the oxide powder was successfully reduced to an alloy powder of Ni{sub 3}Fe and reduction rates of ∼97% were achieved after 3 h at 1000 °C. - Highlights: • The oxidation behavior of Fe–77Ni alloy scrap was investigated. • The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap. • Using hydrogen gas, the oxide powder was successfully reclaimed. • Reduction rates of ∼97% were achieved after 3 h at 1000 °C.

  13. Comparisons of microstructures and texture and mechanical properties of magnesium alloy fabricated by compound extrusion and direct extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.-J., E-mail: hhj@cqut.edu.cn [Chongqing University of Technology, Chongqing 400050 (China); PLA Chongqing Logistics Engineering College, 401311 (China); Ying, Y.-L. [Chongqing University of Technology, Chongqing 400050 (China); Ou, Z.-W. [PLA Chongqing Logistics Engineering College, 401311 (China); Wang, X.-Q. [The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-05-17

    In this study, microstructure evolution, textures and mechanical properties of AZ61 magnesium alloy were investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The samples were processed by a new compound extrusion (CE) which combines direct extrusion (DE) and two steps of equal channel anger extrusion (ECAE). The results show that CE process can refine the microstructure more effectively than the DE process. The CE-fabricated samples have a weaker texture (0002), and a more fine and homogeneous microstructures, which attributes to the additional two steps of ECAE in CE process. In CE process, twin dynamic recrystallization and rotational dynamic recrystallization occurred, which enhances the refinement of the grains and weakening of the texture. In addition, the samples fabricated by CE process display a higher tensile properties (yield strength, tensile strength and elongation) with an excellent balance of strength and tensile ductility. Based on this study, severe plastic deformation (SPD) techniques combining conventional DE and two steps ECAE into a single process are feasibility to improve the mechanical properties of AZ61 Mg alloy.

  14. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting

    Science.gov (United States)

    Zhang, Hu; Zhu, Haihong; Nie, Xiaojia; Qi, Ting; Hu, Zhiheng; Zeng, Xiaoyan

    2016-04-01

    The proposed paper illustrates the fabrication and heat treatment of high strength Al-Cu-Mg alloy produced by selective laser melting (SLM) process. Al-Cu-Mg alloy is one of the heat treatable aluminum alloys regarded as difficult to fusion weld. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, 3D Al-Cu-Mg parts with relative high density of 99.8% are produced by SLM from gas atomized powders. Room temperature tensile tests reveal a remarkable mechanical behavior: the samples show yield and tensile strengths of about 276 MPa and 402 MPa, respectively, along with fracture strain of 6%. The effect of solution treatment on microstructure and related tensile properties is examined and the results demonstrate that the mechanical behavior of the SLMed Al-Cu-Mg samples can be greatly enhanced through proper heat treatment. After T4 solution treatment at 540°C, under the effect of precipitation strengthening, the tensile strength and the yield strength increase to 532 MPa and 338 MPa, respectively, and the elongation increases to 13%.

  15. Thin film fabrication and transport properties of the heavy Fermion oxide LiV{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Ulrike [Max Planck Institute for Solid State Research, Stuttgart (Germany); Hirai, Daigorou [University of Tokyo, Tokyo (Japan); Takagi, Hidenori [Max Planck Institute for Solid State Research, Stuttgart (Germany); University of Tokyo, Tokyo (Japan); Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Stuttgart (Germany)

    2016-07-01

    The spinel compound LiV{sub 2}O{sub 4} is well-known for its heavy fermion behaviour, although it contains no f-electron bands. This unexpected behaviour has been a subject of several studies, but the origin of it is still not fully understood. In this study, we successfully fabricated single crystalline epitaxial thin film of LiV{sub 2}O{sub 4} on SrTiO{sub 3}, LSAT and MgO substrates, using a pulsed laser deposition technique. By changing film thickness and substrate materials, dimensionality and epitaxial strain was controlled. The formation of an epitaxially grown LiV{sub 2}O{sub 4} phase has been confirmed by X-ray diffraction measurements. LiV{sub 2}O{sub 4} films on MgO were found to be strained, due to the small lattice mismatch, in contrast to fully relaxed films on SrTiO{sub 3}.The heavy fermion behaviour of bulk LiV{sub 2}O{sub 4} at low temperatures is well reproduced in thick enough (∼ 7 nm) films on SrTiO{sub 3} substrates. In contrast, an insulating phase was found in strained LiV{sub 2}O{sub 4} thin films on MgO substrates, revealing the key role of the lattice in stabilising the metallic ground state. In this presentation, we discuss the thin film fabrication and the effect of epitaxial strain on heavy fermion behaviour in LiV{sub 2}O{sub 4}.

  16. Microstructure and mechanical properties of Ti–22Al–25Nb alloy fabricated by vacuum hot pressing sintering

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jianbo, E-mail: jiajianbohit@163.com [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); School of Mechanical Engineering, Beihua University, Jilin 132021 (China); Zhang, Kaifeng; Jiang, Shaosong [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China)

    2014-10-20

    A study has been undertaken to verify the feasibility of using a powder metallurgy (P/M) approach to fabricate Ti–22Al–25Nb alloys. Pre-alloyed powders with a nominal composition of Ti–22Al–25Nb (at%) obtained by argon atomization were sieved to the spherical size less than 180 μm and used for the fabrication of P/M Ti–22Al–25Nb alloys via hot pressing in vacuum. Vacuum hot pressing sintering was carried out in a temperature range of 950–1200 °C with a pressure of 35 MPa for 1 h followed by furnace cooling. Microstructure and phase composition examinations of the as-atomized powders and hot pressed (HP'ed) samples were conducted by applying optical microscopy, back-scatter electron imaging and X-ray diffraction analysis. Tensile tests were studied at room temperature and 650 °C, respectively. The results showed that all HP'ed samples were composed of coarse equiaxed B2 grains, fine lamellar O phase inside the B2 grains, and some α{sub 2} along B2 grain boundaries. The elongations of HP'ed samples were less than 3.95%, indicating the bad ductility at room temperature. However, the elongations were improved as the tensile temperature increased to 650 °C. The sample sintered at 1050 °C exhibited a better ductility with the elongation of 7.97% at 650 °C than that of other samples.

  17. Fabrication of Ternary AgPdAu Alloy Nanoparticles on c-Plane Sapphire by the Systematical Control of Film Thickness and Deposition Sequence

    Science.gov (United States)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-06-01

    In this work, a systematic study on the fabrication of ternary AgPdAu alloy nanoparticles (NPs) on c-plane sapphire (0001) is presented and the corresponding structural and optical characteristics are demonstrated. The metallic trilayers of various thicknesses and deposition orders are annealed in a controlled manner (400 °C to 900 °C) to induce the solid-state dewetting that yields the various structural configurations of AgPdAu alloy NPs. The dewetting of relatively thicker trilayers (15 nm) is gradually progressed with void nucleation, growth, and coalescence, isolated NP formation, and shape transformation, along with the temperature control. For 6 nm thickness, owing to the sufficient dewetting of trilayers along with enhanced diffusion, dense and small spherical alloy NPs are fabricated. Depending on the specific growth condition, the surface diffusion and interdiffusion of metal atoms, surface and interface energy minimization, Rayleigh instability, and equilibrium configuration are correlated to describe the fabrication of ternary alloy NPs. Ternary alloy NPs exhibit morphology-dependent ultraviolet-visible-near infrared (UV-VIS-NIR) reflectance properties such as the inverse relationship of average reflectance with the surface coverage, absorption enhancement in specific regions, and reflectance maxima in UV and NIR regions. In addition, Raman spectra depict the six active phonon modes of sapphires and their intensity and position modulation by the alloy NPs.

  18. Penetrating performance and “self-sharpening” behavior of fine-grained tungsten heavy alloy rod penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Rongmei, E-mail: luorm_1999@126.com [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning (China); Huang, Dewu; Yang, Mingchuan; Tang, Enling; Wang, Meng; He, Liping [College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning (China)

    2016-10-15

    Rod penetrators with 95W–3.75Ni–1.25Fe fine-grained tungsten heavy alloy (fine-grained 95W) and conventional tungsten heavy alloy rod penetrators with the same chemical composition (conventional 95W) were subjected to ballistic impact to compare their penetration performance. “Self-sharpening” behavior and an average 10.5% increase in penetration depth compared to conventional 95W penetrators. An acute head remained on the fine-grained 95W rod with SEM results revealing many micro-cracks and small debris on surface layer of the rod head. The stress-strain curves collected in the Split Hopkinson Pressure Bar (SHPB) experiment showed that critical failure strain values of the fine-grained 95W were 0.12 and 0.39 at strain rate of 2×10{sup 3} s{sup −1} and 3.9×10{sup 3} s{sup −1}, respectively, approximately 40% and 10% lower than those of the conventional 95W. The dynamic strength values of fine-grained 95W were 2100 MPa and 2520 MPa, respectively, which were 500 MPa and 520 MPa higher than those of the conventional 95W. The relationship among microstructure, mechanical property and “self-sharpening” behavior of fine-grained 95W is discussed in this work.

  19. Synthesis of high purity tungsten nanoparticles from tungsten heavy alloy scrap by selective precipitation and reduction route

    International Nuclear Information System (INIS)

    Kamal, S.S. Kalyan; Sahoo, P.K.; Vimala, J.; Shanker, B.; Ghosal, P.; Durai, L.

    2016-01-01

    In this paper we report synthesis of tungsten nanoparticles of high purity >99.7 wt% from heavy alloy scrap using a novel chemical route of selective precipitation and reduction. The effect of Poly(vinylpyrrolidone) polymer on controlling the particle size is established through FTIR spectra and corroborated with TEM images, wherein the average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g under different experimental conditions. This process is economical as raw material is a scrap and the efficiency of the reaction is >95%. - Highlights: • Tungsten nanoparticles were synthesized from tungsten heavy alloy scrap. • A novel chemical route of precipitation and reduction with Poly(vinylpyrrolidone) polymer as stabilizer is reported. • The average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g. • High pure tungsten nanoparticles of >99.7% purity could be synthesized using this route. • Efficiency of the reaction is >95%.

  20. Fabrication of welded pipes of the KhN45Yu alloy

    International Nuclear Information System (INIS)

    Lyapunov, A.I.; Krichevskij, E.M.; L'vov, V.N.; Kozlov, N.N.; Kireeva, T.S.

    1977-01-01

    A highly heat-resistant KhN45Yu (EP 747) alloy has been developed; the alloy is designed to withstand prolonged service in the temperature range of 1000-1300 deg C, or short-term service at 1300-1400 deg C. The satisfactory ductility and good weldability of the alloy have made it possible to obtain sheets and pipes (32 x 2.0 mm) by argon arc welding. The ductility of pipes from EP 747 alloy exceeds that of pipes from KhN78T (EI 435) alloy by 5.10%, the strength being approximately equal. In regard to strength the welded joint differs little from the base metal. The ductility characteristics up to 900 deg C are also equal, since failure occurs in the base metal. At higher temperatures the welded joint fails in the metal of the weld, and its ductility drops sharply. The grain size of the base metal corresponds to No. 3-4. The welded joint has a cast structure with a grain size larger than No. 1, but its ductility characteristics are satisfactory. This structure ensures an increased long-term strength of the material at 1000-1200 deg C

  1. Fabrication, microstructural characterization and wear characteristics of A380 alloy-alumina composites

    KAUST Repository

    Nurani, Sheikh Jaber

    2016-03-10

    To obtain better mechanical and tribological properties than aluminium alloys aluminium is reinforced with alumina particles making aluminium metal matrix composites. In this work scrap piston A380 alloy was used as the matrix alloy. Alumina particles were added by 5%, 10% and 15% into matrix alloy respectively to form desired composites by stir casting technique. Pin on disc wear testing machine with counter surface as steel disc of hardness HRC 32 and surface roughness of 0.62 μm was used to conduct the wear test. In result composites showed superior wear resistance property over A380 alloy. The effect of load, sliding speed and sliding distance on wear behaviour were also examined in this study. Wear mechanism was identified from the worn surface. Both optical and scanning electron microscope (SEM) of the composites was performed to determine the microstructures. Optical micrograph shows grain size decreases with addition of alumina particles. EDS analysis was performed to confirm the presence of α-Al matrix, primary Si particles and intermetallic. As a general method, phase compositions were analyzed by using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS). Optical microstructures were consistent with the SEM micrographs. © 2015 IEEE.

  2. Fe-15Ni-13Cr austenitic stainless steels for fission and fusion reactor applications. I. Effects of minor alloying elements on precipitate phases in melt products and implication in alloy fabrication

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.

    2000-01-01

    In an effort to develop alloys for fission and fusion reactor applications, 28Fe-15Ni-13Cr base alloys were fabricated by adding various combinations of the minor alloying elements, Mo, Ti, C, Si, P, Nb, and B. The results showed that a significant fraction of undesirable residual oxygen was removed as oxides when Ti, C, and Si were added. Accordingly, the concentrations of the latter three essential alloying elements were reduced also. Among these elements, Ti was the strongest oxide former, but the largest oxygen removal (over 80%) was observed when carbon was added alone without Ti, since gaseous CO boiled off during melting. This paper recommends an alloy melting procedure to mitigate solute losses while reducing the undesirable residual oxygen. In this work, 14 different types of precipitate phases were identified. Compositions of precipitate phases and their crystallographic data are documented. Finally, stability of precipitate phases was examined in view of Gibbs free energy of formation

  3. Fabrication and Characterization of Targets for Shock Propagation and Radiation Burnthrough Measurements on Be-0.9 AT. % Cu Alloy

    International Nuclear Information System (INIS)

    Nobile, A.; Dropinski, S.C.; Edwards, J.M.; Rivera, G.; Margevicius, R.W.; Sebring, R.J.; Olson, R. E.; Tanner, D.L.

    2004-01-01

    Beryllium-copper alloy (Be0.9%Cu) ICF capsules are being developed for the pursuit of thermonuclear ignition at the National Ignition Facility (NIF). Success of this capsule material requires that its shock propagation and radiation burnthrough characteristics be accurately understood. To this end, experiments are being conducted to measure the shock propagation and radiation burnthrough properties of Be0.9%Cu alloy. These experiments involve measurements on small Be0.9%Cu wedge, step and flat samples. Samples are mounted on 1.6-mm-diameter x 1.2-mm-length hohlraums that are illuminated by the OMEGA laser at the University of Rochester. X-rays produced by the hohlraum drive the sample. A streaked optical pyrometer detects breakout of the shock produced by the X-ray pulse. In this paper we describe synthesis of the alloy material, fabrication and characterization of samples, and assembly of the targets. Samples were produced from Be0.9%Cu alloy that was synthesized by hot isostatic pressing of Be powder and copper flake. Samples were 850 μm diameter disks with varying thickness in the case of wedge and step samples, and uniform thickness in the case of flat samples. Sample thickness varied in the range 10-90 μm. Samples were prepared by precision lathe machining and electric discharge machining. The samples were characterized by a Veeco white light interferometer and an optical thickness measurement device that simultaneously measured the upper and lower surface contours of samples using two confocal laser probes. Several campaigns with these samples have been conducted over the past two years

  4. Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.

    Science.gov (United States)

    Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J

    1975-03-01

    Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.

  5. Morphological characterisation and spectroscopic studies of the corrosion behaviour of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Ogundipe, A.; Greenberg, B.; Braida, W.; Christodoulatos, C.; Dermatas, D.

    2006-01-01

    Tungsten-based alloys have been used in a wide variety of industrial and military applications. These alloys are composed mainly of tungsten (88-95%) with various combinations of nickel, cobalt, iron and copper usually making up the remaining fraction. The corrosion behaviours of five munitions grade tungsten alloys of interest have been examined using immersion tests and wet-dry cycle tests to determine the mechanisms involved in the release of the metallic components. Analyses carried out using SEM, EDS and grazing incidence XRD techniques, show the release of tungsten as well as alloying elements due to galvanic corrosion resulting from the difference in electrode potential between the tungsten phase and the binder phase in all cases studied. The extent of corrosion was directly related with the dissolution of tungsten in the binder phase during the sintering stage of manufacture. In W-Ni-Co-Fe alloys binder phase corrosion was observed while the relatively noble tungsten phase was less affected. The reverse was observed for a W-Cu alloy

  6. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Parish, C.M., E-mail: parishcm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Unocic, K.A.; Tan, L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zinkle, S.J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Kondo, S. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011 (Japan); Snead, L.L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hoelzer, D.T.; Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    We irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ∼50 dpa, ∼15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ∼8 nm, ∼10{sup 21} m{sup −3} (CNA), and of ∼3 nm, 10{sup 23} m{sup −3} (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces in all alloys survived ∼50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.

  7. Advantages of heavy metal collars in directional drilling and deviation control

    International Nuclear Information System (INIS)

    Bradley, W.B.; Murphey, C.E.; McLamore, R.T.; Dickson, L.L.

    1976-01-01

    A heavy, stiff-bottom drill collar can substantially improve deviation performance, theoretically increasing penetration rates by 50 to 100 percent in deviation-prone areas. This paper presents the underlying theory, practical charts on performance characteristics, and Shell Development Co.'s experience in fabricating and field testing two depleted-uranium alloy, heavy metal collars

  8. Low-cost method for fabricating palladium and palladium-alloy thin films on porous supports

    Science.gov (United States)

    Lee, Tae H; Park, Chan Young; Lu, Yunxiang; Dorris, Stephen E; Balachandran, Uthamalingham

    2013-11-19

    A process for forming a palladium or palladium alloy membrane on a ceramic surface by forming a pre-colloid mixture comprising a powder palladium source, carrier fluid, dispersant and a pore former and a binder. Ultrasonically agitating the precolloid mixture and applying to a substrate with an ultrasonic nozzle and heat curing the coating form a palladium-based membrane.

  9. [The measurement of thermal expansion coefficient of Co-Cr alloy fabricated by selective laser melting].

    Science.gov (United States)

    Tian, Xiao-mei; Zeng, Li; Wei, Bin; Huang, Yi-feng

    2015-12-01

    To investigate the thermal expansion coefficient of different processing parameters upon the Co-Cr alloy prepared by selective laser melting (SLM) technique, in order to provide technical support for clinical application of SLM technology. The heating curve of self-made Co-Cr alloy was protracted from room temperature to 980°C centigrade with DIL402PC thermal analysis instrument, keeping temperature rise rate and cooling rate at 5 K/min, and then the thermal expansion coefficient of 9 groups of Co-Cr alloy was measured from 20°C centigrade to 500°C centigrade and 600°C centigrade. The 9 groups thermal expansion coefficient values of Co-Cr alloy heated from 20°C centigrade to 500°C centigrade were 13.9×10(-6)/K,13.6×10(-6)/K,13.9×10(-6)/K,13.7×10(-6)/K,13.5×10(-6)/K,13.8×10(-6)/K,13.7×10(-6)/K,13.7×10(-6)/K,and 13.9×10(-6)/K, respectively; when heated from 20°C centigrade to 600°C centigrade, they were 14.2×10(-6)/K,13.9×10(-6)/K,13.8×10(-6)/K,14.0×10(-6)/K,14.1×10(-6)/K,14.1×10(-6)/K,13.9×10(-6)/K,14.2×10(-6)/K, and 13.7×10(-6)/K, respectively. The results showed that the Co-Cr alloy has good matching with the VITA VMK 95 porcelain powder and can meet the requirement of clinic use.

  10. Microstructure and phase transformations in the ODS alloys irradiated by swift heavy ions

    International Nuclear Information System (INIS)

    Zlotski, S.V.; Anishchik, V.M; Skuratov, V.A.; O’Connell, J.; Neethling, J.H.

    2015-01-01

    Microstructure of KP4 ODS alloy irradiated with 700 MeV bismuth ions at 300 K has been studied using high resolution transmission electron microscopy. No latent tracks have been observed in Y 4 Al 2 O 9 particles in KP4 irradiated with Bi ions. Small oxides (~ 5 nm) in KP4 alloy remain crystalline at Bi ion fluence 1.5*10 13 cm -2 , while subsurface regions in large (~ 20 nm) particles faced to the beam entrance became amorphous. (authors)

  11. [Research progress in CoCr metal-ceramic alloy fabricated by selective laser melting].

    Science.gov (United States)

    Yan, X; Lin, H

    2018-02-09

    Cobalt-chromium alloys have been applied to dental porcelain fused to metal (PFM) restorations over the past decades owing to their excellent corrosion resistance, good biocompatibility and low price. The production of CoCr metal-ceramic restorations has always been based on traditional lost-wax casting techniques. However, in recent years, selective laser melting (SLM) is becoming more and more highly valued by dental laboratories and dental practitioners due to its individuation, precision and efficiency. This paper mainly reviews the recent researches on the production process of copings, microstructure, mechanical property, metal-ceramic bond strength, fit of copings, corrosion resistance and biocompatibility of SLM CoCr metal-ceramic alloy.

  12. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rastabi, Reza Amini; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid; Ramazani, Mazaher

    2017-03-15

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe{sub 55}Cr{sub 25}Co{sub 20} magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5. - Highlights: • Milled samples consist of single phase α-solid solution. • Saturation of magnetization of Fe{sub 65}Cr{sub 15}Co{sub 20} reached to 172 emu/g. • Fe{sub 65}Cr{sub 15}Co{sub 20} alloy is the suitable composition fabricated by SPS.

  13. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Ramazani, Mazaher

    2017-01-01

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe 80−x Cr x Co 20 (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe 55 Cr 25 Co 20 magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5. - Highlights: • Milled samples consist of single phase α-solid solution. • Saturation of magnetization of Fe 65 Cr 15 Co 20 reached to 172 emu/g. • Fe 65 Cr 15 Co 20 alloy is the suitable composition fabricated by SPS.

  14. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances

    KAUST Repository

    Huang, Jianfeng

    2015-08-13

    Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here, a new synthetic strategy is reported that enables the epitaxial growth of a homogeneously alloyed AuAg shell on Au nanorod seeds, circumventing the phase segregation of Au and Ag encountered in conventional synthesis. The resulting core–shell structured bimetallic nanorods (AuNR@AuAg) have well-mixed Au and Ag atoms in their shell without discernible domains. This degree of mixing allows AuNR@AuAg to combine the high stability of Au with the superior plasmonic activity of Ag, thus outperforming seemingly similar nanostructures with monometallic shells (e.g., Ag-coated Au NRs (AuNR@Ag) and Au-coated Au NRs (AuNR@Au)). AuNR@AuAg is comparable to AuNR@Ag in plasmonic activity, but that it is markedly more stable toward oxidative treatment. Specifically, AuNR@AuAg and AuNR@Ag exhibit similarly strong signals in surface-enhanced Raman spectroscopy that are some 30-fold higher than that of AuNR@Au. When incubated with a H2O2 solution (0.5 m), the plasmonic activity of AuNR@Ag immediately and severely decayed, whereas AuNR@AuAg retained its activity intact. Moreover, the longitudinal SPR frequency of AuNR@AuAg can be tuned throughout the red wavelengths (≈620–690 nm) by controlling the thickness of the AuAg alloy shell. The synthetic strategy is versatile to fabricate AuAg alloyed shells on different shaped Au, with prospects for new possibilities in the synthesis and application of plasmonic nanocrystals.

  15. Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting.

    Science.gov (United States)

    Al Jabbari, Y S; Koutsoukis, T; Barmpagadaki, X; Zinelis, S

    2014-04-01

    Bulk and interfacial characterization of porcelain fused to metal (PFM) Co-Cr dental alloys fabricated via conventional casting, milling and selective laser melting. Three groups of metallic specimens made of PFM Co-Cr dental alloys were prepared using casting (CST), milling (MIL) and selective laser sintering (SLM). The porosity of the groups was evaluated using X-ray scans. The microstructures of the specimens were evaluated via SEM examination, EDX and XRD analysis. Vickers hardness testing was utilized to measure the hardness of the specimens. Interfacial characterization was conducted on the porcelain-covered specimens from each group to test the elemental distribution with and without the application of INmetalbond. The elemental distribution of the probed elements was assessed using EDX line profile analysis. Hardness results were statistically analyzed using one-way ANOVA and Holm-Sidak's method (α=0.05). X-ray radiography revealed the presence of porosity only in the CST group. Different microstructures were identified among the groups. Together with the γ phase matrix, a second phase, believed to be the Co3Mo phase, was also observed by SEM and subsequent XRD analysis. Cr7C3 and Cr23C6 carbides were also identified via XRD analysis in the CST and MIL groups. The hardness values were 320±12 HV, 297±5 HV and 371±10 HV, and statistically significant differences were evident among the groups. The microstructure and hardness of PFM Co-Cr dental alloys are dependent on the manufacturing technique employed. Given the differences in microstructural and hardness properties among the tested groups, further differences in their clinical behavior are anticipated. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Fabrication and tensile properties of rapidly solidified Cu-10wt. %Ni alloy. [Cu-10Ni

    Energy Technology Data Exchange (ETDEWEB)

    Baril, D; Angers, R; Baril, J [Dept. of Mining and Metallurgy, Laval Univ., Ste-Foy, Quebec (Canada)

    1992-10-15

    Cu-10wt.%Ni ribbons were produced by melt spinning and cut into small particles with a blade cutter mill. The powders were then hot consolidated to full density by hot pressing followed by hot extrusion. Tensile properties of the resulting pieces were measured. Cu-10wt.%Ni cast ingots were also hot extruded and mechanically tested to compare with the rapidly solidified alloy and to evaluate the possible benefits brought by the rapid solidification process.

  17. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Bafandeh, Mohammad Reza, E-mail: mr.bafandeh@gmail.com [Department of Materials Science and Engineering, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Gharahkhani, Raziyeh; Fathi, Mohammad Hossein [Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  18. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    International Nuclear Information System (INIS)

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-01-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  19. Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy.

    Science.gov (United States)

    She, Zuxin; Li, Qing; Wang, Zhongwei; Li, Longqin; Chen, Funan; Zhou, Juncen

    2012-08-01

    A novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy is reported in this paper. Hierarchical structure composed of micro/nano-featherlike CuO was obtained by electrodeposition of Cu-Zn alloy coating and subsequently an electrochemical anodic treatment in alkaline solution. After modification with lauric acid, the surface became hydrophobicity/superhydrophobicity. The formation of featherlike CuO structures was controllable by varying the coating composition. By applying SEM, ICP-AES, and water contact angle analysis, the effects of coating composition on the surface morphology and hydrophobicity of the as-prepared surfaces were detailedly studied. The results indicated that at the optimal condition, the surface showed a good superhydrophobicity with a water contact angle as high as 155.5 ± 1.3° and a sliding angle as low as about 3°. Possible growth mechanism of featherlike CuO hierarchical structure was discussed. Additionally, the anticorrosion effect of the superhydrophobic surface was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The interface model for anticorrosion mechanism of superhydrophobic surface in corrosive medium was proposed. Besides, the mechanical stability test indicated that the resulting superhydrophobic surfaces have good mechanical stability.

  20. Fabrication and tests and RF control of the superconducting resonators of the Saclay heavy ion LINAC

    International Nuclear Information System (INIS)

    Cauvin, B.; Coret, M.; Fouan, J.P.; Girard, J.; Girma, J.L.; Leconte, P.; Lussignol, Y.; Moreau, R.; Passerieux, J.P.; Ramstein, G.; Wartski, L.

    1987-01-01

    Two types of niobium superconducting resonators used in the Saclay linac are discussed. The outer cylinder and RF ports are identical for the two designs, but internal structures are different: full wave helix with three gaps behavior; or half wave with two gaps behavior. All cavities (34 full wave, 16 half) were tested for field and mounted in the machine cryostats. Cavity fabrication and performance are summarized. Vibration tests and Rf control are described. It is argued that helix resonators can overcome problems due to vibration. The very low lock out time percentage measured in an acceleration test with 21 cavities supports this confidence

  1. Fabrication, tests, and RF control of the 50 superconducting resonators of the Saclay heavy ion linac

    International Nuclear Information System (INIS)

    Cauvin, B.; Coret, M.; Fouan, J.P.

    1988-01-01

    Two types of niobium superconducting resonators are currently in use in the linac Outer cylinder and RF ports are identical for both designs but internal structures are different full wave helix (λ) with three gaps behavior or half-wave (λ/2) with two gaps behavior. The λ structure is based on a Karlsruhe design. All cavities (34 λ and 16 λ/2) are now fabricated, tested for field, and mounted in the eight machine cryostats. Resonator characteristics are listed. Frequencies are multiples of the low energy bunching frequency (13.5 MHz). The high magnetic fields arise at the welds joining helix to can (λ/2) or half-helices together (λ)

  2. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Murr, L.E.; Gaytan, S.M.; Ceylan, A.; Martinez, E.; Martinez, J.L.; Hernandez, D.H.; Machado, B.I.; Ramirez, D.A.; Medina, F.; Collins, S.; Wicker, R.B.

    2010-01-01

    Intermetallic, γ-TiAl, equiaxed, small-grain (∼2 μm) structures with lamellar γ/α 2 -Ti 3 Al colonies with average spacing of 0.6 μm have been fabricated by additive manufacturing using electron beam melting (EBM) of precursor, atomized powder. The residual microindentation (Vickers) hardness (HV) averaged 4.1 GPa, corresponding to a nominal yield strength of ∼1.4 GPa (∼HV/3), and a specific yield strength of 0.37 GPa cm 3 g -1 (for a density of 3.76 g cm -3 ), in contrast to 0.27 GPa cm 3 g -1 for EBM-fabricated Ti-6Al-4V components. These results demonstrate the potential to fabricate near net shape and complex titanium aluminide products directly using EBM technology in important aerospace and automotive applications.

  3. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology program series 4 and 5)

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.; Thoms, K.R.; Menke, B.H.

    1985-01-01

    This report presents studies on the irradiation effects in low-alloy reactor pressure vessel steels. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (''current practice welds''). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds. 27 refs., 22 figs

  4. Transference of know-how for the fabrication of heavy components for nuclear power reactors

    International Nuclear Information System (INIS)

    Meier, F.

    1977-01-01

    1) Heavy components for nuclear power reactors. Reactor pressure vessels with total weight of 540 tons; steam generators: heat exchangers with U-type tube bundles, total weight 420 tons. 2) Choice of know-how recipient. Technical criteria, i.e. manufacturing facilities, existing quality assurance system, location of the workshops, possibilities for training, infrastructures. 3. Measures for transferring know-how to a newly established company. Planning and erection of the factory: organisational set up of the company; personnel selection and training; transfer of documentation; transfer of know-how that cannot be transferred in a written form. 4) Contracts for assuring the transfer of know-how. Stipulation of mutual rights and obligations of the know-how owner and receiver in individual contracts: engineering services contract, technical information contract, personnel training contract, license contract. (orig.) [de

  5. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Mingfeng; Gao, Yunxia [Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Jing, E-mail: jliu@mail.ipc.ac.cn [Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2014-03-15

    In this study, Ni nanoparticles were loaded into the partially oxidized gallium and its alloys to fabricate desired magnetic nanofluid. It was disclosed that the Ni nanoparticles sharply increased the freezing temperature and latent heat of the obtained magnetic nano liquid metal fluid, while the melting process was less affected. For the gallium sample added with 10 vol% coated Ni particles, a hysteresis loop was observed and the magnetization intensity decreased with the increase of the temperature. The slope for the magnetization-temperature curve within 10–30 K was about 20 times of that from 40 K to 400 K. Further, the dynamic impact experiments of striking magnetic liquid metal droplets on the magnet revealed that the regurgitating of the leading edge of the liquid disk and the subsequent wave that often occurred in the gallium-indium droplets would disappear for the magnetic fluids case due to attraction force of the magnet. - Graphical abstract: High speed videos for the impact of striking GaIn{sub 24.5} based magnetic liquid metal droplets on a magnet plate. - Highlights: • A feasible way to fabricate magnetic nano liquid metal fluid was presented. • Ni nanoparticles sharply increased freezing temperature and latent heat of magnetic nanofluid. • A hysteresis loop phenomenon was observed for the magnetic nanofluid. • Temperature dependent magnetization spanning from 10 K to 400 K was measured. • Impact phenomena of striking magnetic droplets on magnet were disclosed.

  6. Lithography-Free Fabrication of Large Area Subwavelength Antireflection Structures Using Thermally Dewetted Pt/Pd Alloy Etch Mask

    Directory of Open Access Journals (Sweden)

    Kang Jeong-Jin

    2009-01-01

    Full Text Available Abstract We have demonstrated lithography-free, simple, and large area fabrication method for subwavelength antireflection structures (SAS to achieve low reflectance of silicon (Si surface. Thin film of Pt/Pd alloy on a Si substrate is melted and agglomerated into hemispheric nanodots by thermal dewetting process, and the array of the nanodots is used as etch mask for reactive ion etching (RIE to form SAS on the Si surface. Two critical parameters, the temperature of thermal dewetting processes and the duration of RIE, have been experimentally studied to achieve very low reflectance from SAS. All the SAS have well-tapered shapes that the refractive index may be changed continuously and monotonously in the direction of incident light. In the wavelength range from 350 to 1800 nm, the measured reflectance of the fabricated SAS averages out to 5%. Especially in the wavelength range from 550 to 650 nm, which falls within visible light, the measured reflectance is under 0.01%.

  7. A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing.

    Science.gov (United States)

    Zeng, Li; Xiang, Nan; Wei, Bin

    2014-11-01

    A cobalt-chromium-molybdenum alloy fabricated by selective laser melting is a promising material; however, there are concerns about the change in its corrosion behavior. The purpose of this study was to evaluate the changes in corrosion behavior of a cobalt-chromium-molybdenum alloy fabricated by the selective laser melting technique before and after ceramic firing, with traditional processing of cobalt-chromium-molybdenum alloy serving as a control. Two groups of specimens were designated as group selective laser melting and group traditional. For each group, 20 specimens with a cylindrical shape were prepared and divided into 4 cells: selective laser melting as-cast, selective laser melting fired in pH 5.0 and 2.5, traditional as-cast, and traditional fired in pH 5.0 and 2.5. Specimens were prepared with a selective laser melting system for a selective laser melting alloy and the conventional lost wax technique for traditional cast alloy. After all specimen surfaces had been wet ground with silicon carbide paper (1200 grit), each group of 10 specimens was put through a series of ceramic firing cycles. Microstructure, Vickers microhardness, surface composition, oxide film thickness, and corrosion behavior were examined for specimens before and after ceramic firing. Three-way ANOVA was used to evaluate the effect of porcelain firing and pH values on the corrosion behavior of the 2 alloys (α=.05). Student t tests were used to compare the Vickers hardness. Although porcelain firing changed the microstructure, microhardness, and x-ray photoelectron spectroscopy results, it showed no significant influence on the corrosion behavior of the selective laser melting alloy and traditional cast alloy (P>.05). No statistically significant influence was found on the corrosion behavior of the 2 alloys in different pH value solutions (P>.05). The porcelain firing process had no significant influence on the corrosion resistance results of the 2 alloys. Compared with traditional

  8. Microstructure and Mechanical Properties of the As-Cast and As-Homogenized Mg-Zn-Sn-Mn-Ca Alloy Fabricated by Semicontinuous Casting.

    Science.gov (United States)

    Lu, Xing; Zhao, Guoqun; Zhou, Jixue; Zhang, Cunsheng; Yu, Junquan

    2018-04-29

    In this paper, a new type of low-cost Mg-3.36Zn-1.06Sn-0.33Mn-0.27Ca (wt %) alloy ingot with a diameter of 130 mm and a length of 4800 mm was fabricated by semicontinuous casting. The microstructure and mechanical properties at different areas of the ingot were investigated. The microstructure and mechanical properties of the alloy under different one-step and two-step homogenization conditions were studied. For the as-cast alloy, the average grain size and the second phase size decrease from the center to the surface of the ingot, while the area fraction of the second phase increases gradually. At one-half of the radius of the ingot, the alloy presents the optimum comprehensive mechanical properties along the axial direction, which is attributed to the combined effect of relatively small grain size, low second-phase fraction, and uniform microstructure. For the as-homogenized alloy, the optimum two-step homogenization process parameters were determined as 340 °C × 10 h + 520 °C × 16 h. After the optimum homogenization, the proper size and morphology of CaMgSn phase are conducive to improve the microstructure uniformity and the mechanical properties of the alloy. Besides, the yield strength of the alloy is reduced by 20.7% and the elongation is increased by 56.3%, which is more favorable for the subsequent hot deformation processing.

  9. Microstructure and Mechanical Properties of the As-Cast and As-Homogenized Mg-Zn-Sn-Mn-Ca Alloy Fabricated by Semicontinuous Casting

    Science.gov (United States)

    Lu, Xing; Zhao, Guoqun; Zhou, Jixue; Zhang, Cunsheng; Yu, Junquan

    2018-01-01

    In this paper, a new type of low-cost Mg-3.36Zn-1.06Sn-0.33Mn-0.27Ca (wt %) alloy ingot with a diameter of 130 mm and a length of 4800 mm was fabricated by semicontinuous casting. The microstructure and mechanical properties at different areas of the ingot were investigated. The microstructure and mechanical properties of the alloy under different one-step and two-step homogenization conditions were studied. For the as-cast alloy, the average grain size and the second phase size decrease from the center to the surface of the ingot, while the area fraction of the second phase increases gradually. At one-half of the radius of the ingot, the alloy presents the optimum comprehensive mechanical properties along the axial direction, which is attributed to the combined effect of relatively small grain size, low second-phase fraction, and uniform microstructure. For the as-homogenized alloy, the optimum two-step homogenization process parameters were determined as 340 °C × 10 h + 520 °C × 16 h. After the optimum homogenization, the proper size and morphology of CaMgSn phase are conducive to improve the microstructure uniformity and the mechanical properties of the alloy. Besides, the yield strength of the alloy is reduced by 20.7% and the elongation is increased by 56.3%, which is more favorable for the subsequent hot deformation processing. PMID:29710818

  10. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinming, E-mail: xmzhang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Yuan, Xubo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cui, Zhenduo; Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-11-01

    The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti–24Nb–2Zr (TNZ) alloy. Zeta potential oscillated between −2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI){sub 5}). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI){sub 5} sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI){sub 5} to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI){sub 5} was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.

  11. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth

    International Nuclear Information System (INIS)

    Zhang, Xinming; Li, Zhaoyang; Yuan, Xubo; Cui, Zhenduo; Yang, Xianjin

    2013-01-01

    The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti–24Nb–2Zr (TNZ) alloy. Zeta potential oscillated between −2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI) 5 ). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI) 5 sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI) 5 to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI) 5 was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.

  12. Fabrication of Nb_3Al superconductor by the optimized mechanical alloying method with low temperature

    International Nuclear Information System (INIS)

    Zhang, Y.; Lin, W.J.; Xu, L.Y.; Yang, D.W.; Chen, Y.L.; Li, P.Y.; Pan, X.F.; Yan, G.; Zhao, Y.

    2016-01-01

    Highlights: • Due to a much better strain tolerance than Nb_3Sn, Nb_3Al has been considered as an excellent candidate for making high field magnets. At present, the Nb_3Al superconducting wires were prepared mainly by the Jelly-roll method combined with a rapid heating and quenching (RHQ) heat treatment at around 2000 °C. In this study, Nb_3Al superconductor with T_c of 15.6 K is directly prepared with a mechanical alloying method followed by a low temperature annealing at 800 to 900 °C. Our results hint the possibility that Nb_3Al superconducting wire with high performance can be prepared below the melting point of Cu (1080 °C) by a conventional powder in tube (PIT) method, thus effectively avoiding high temperature heat treatment and RHQ device. - Abstract: Mechanical alloying was used to synthesize Nb_3Al superconductor successfully, and the process was optimization under various preparation conditions. In the current study, Nb_3Al superconductor with T_c of 15.6 K was directly prepared from high quality Nb (Al) solid solution by mechanical alloying method and heat treatment at a low temperature of 800 to 900 °C. The results showed that Nb_3Al superconducting wire with high performance could be prepared after heat treatment below the melting point of Cu (1080°C) and using Nb (Al) solid solution and conventional powder in tube (PIT) method, thus effectively avoiding ultra-high temperature heat treatment and special rapid heating and quenching(RHQ) device.

  13. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    International Nuclear Information System (INIS)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-01-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C 5+ ions at a fluence of 2 × 10 14 ions/cm 2 . After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (n e ) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C 5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics

  14. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    Science.gov (United States)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-11-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C5+ ions at a fluence of 2 × 1014 ions/cm2. After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (ne) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics.

  15. Structure of the AZ91 alloy pressure castings fabricated of home scrap containing charge

    Directory of Open Access Journals (Sweden)

    Z. Konopka

    2011-04-01

    Full Text Available The influence of the AZ91 alloy home scrap addition to the metal charge on both the structure and the selected mechanical propertiesof pressure castings was examined in this article. Two heats were made using different components, the first with only pure AZ91 alloyingots in the charge, and the second containing 30 wt % of home scrap. The hot chamber 3 MN machine was used for casting. Thestructures of the castings and their Brinell hardness were examined for both cases. A strong refinement of crystals was observed in castings made with the contribution of the recycled material. Any significant differences in castings hardness were not observed.

  16. Powder Metallurgy Fabrication of Porous 51(at.%)Ni-Ti Shape Memory Alloys for Biomedical Applications

    Science.gov (United States)

    Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.

    2018-05-01

    The effect of time and temperature on the microwave sintering of 51(at.%)Ni-Ti shape memory alloys (SMAs) was investigated in the current research. Furthermore, the microstructure, mechanical properties, and bio-corrosion properties were analyzed based on the sintering conditions. The results revealed that the sintering condition of 700 °C for 15 min produced a part with coherent surface survey that does not exhibit gross defects. Increasing the sintering time and temperature created defects on the outer surface, while reducing the temperature to 550 °C severely affected the mechanical properties. The microstructure of these samples showed two regions of Ni-rich region and Ti-rich region between them Ti2Ni, NiTi, and Ni3Ti phases. The differential scanning calorimeter (DSC) curves of Ni-Ti samples exhibited a multi-step phase transformation B19'-R-B2 during heating and cooling. An increase in the sintering temperature from 550 to 700 °C was found to increase the fracture strength significantly and decreased the fracture strain slightly. Reducing the sintering temperature from 700 to 550 °C severely affected the corrosion behaviors of 51%Ni-Ti SMAs. This research aims to select the optimum parameters to produce Ni-Ti alloys with desired microstructure, mechanical properties, and corrosion behaviors for biomedical applications.

  17. Analysis of the current density characteristics in through-mask electrochemical micromachining (TMEMM for fabrication of micro-hole arrays on invar alloy film

    Directory of Open Access Journals (Sweden)

    Da-som JIN

    2017-06-01

    Full Text Available Invar alloy consisting of 64% iron and 36% nickel has been widely used for the production of shadow masks for organic light emitting diodes (OLEDs because of its low thermal expansion coefficient (1.86 × 10−6 cm/°C. To fabricate micro-hole arrays on 30 μm invar alloy film, through-mask electrochemical micromachining (TMEMM was developed and combined with a portion of the photolithography etching process. For precise hole shapes, patterned photoresist (PR film was applied as an insulating mask. To investigate the relationship between the current density and the material removal rate, the principle of the electrochemical machining was studied with a focus on the equation. The finite element method (FEM was used to verify the influence of each parameter on the current density on the invar alloy film surface. The parameters considered were the thickness of the PR mask, inter-electrode gap (IEG, and electrolyte concentration. Design of experiments (DOE was used to figure out the contribution of each parameter. A simulation was conducted with varying parameters to figure out their relationships with the current density. Optimization was conducted to select the suitable conditions. An experiment was carried out to verify the simulation results. It was possible to fabricate micro-hole arrays on invar alloy film using TMEMM, which is a promising method that can be applied to fabrications of OLEDs shadow masks.

  18. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bingjing; Wang, Hong [Department of Stomatology, General Hospital of the PLA, Beijing (China); Department of Stomatology, The Second Affiliated Stomatological Hospital of Liaoning Medical University (China); Qiao, Ning [College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing (China); Wang, Chao [School of Medicine, Nankai University, Tianjin 300071 (China); Hu, Min, E-mail: humin48@vip.163.com [Department of Stomatology, General Hospital of the PLA, Beijing (China)

    2017-01-01

    The purpose of this study is to determine the corrosion resistance of Ti-6Al-4V alloy fabricated with electron beam melting and selective laser melting for implantation in vivo. Ti-6Al-4V alloy specimens were fabricated with electron beam melting (EBM) and selective laser melting (SLM). A wrought form of Ti-6Al-4V alloy was used as a control. Surface morphology observation, component analysis, corrosion resistance experimental results, electrochemical impedance spectroscopy, crevice corrosion resistance experimental results, immersion test and metal ions precipitation analysis were processed, respectively. The thermal stability of EBM specimen was the worst, based on the result of open circuit potential (OCP) result. The result of electrochemical impedance spectroscopy indicated that the corrosion resistance of the SLM specimen was the best under the low electric potential. The result of potentiodynamic polarization suggested that the corrosion resistance of the SLM specimen was the best under the low electric potential (< 1.5 V) and EBM specimen was the best under the high electric potential (> 1.5 V).The crevice corrosion resistance of the EBM specimen was the best. The corrosion resistance of SLM specimen was the best, based on the result of immersion test. The content of Ti, Al and V ions of EBM, SLM and wrought specimens was very low. In general, the scaffolds that were fabricated with EBM and SLM had good corrosion resistance, and were suitable for implantation in vivo. - Highlights: • EBM and SLM Ti-6Al-4V alloy have good corrosion resistance, and both of them can be applied in vivo. • SLM Ti-6Al-4V alloy was more suitable for implantation in vivo than that of EBM Ti-6Al-4V alloy. • The crevice corrosion resistance of the EBM specimen is the best. • EBM and SLM specimens can form oxide film.

  19. Fabrication of a micro-porous Ti–Zr alloy by electroless reduction with a calcium reductant for electrolytic capacitor applications

    International Nuclear Information System (INIS)

    Kikuchi, Tatsuya; Yoshida, Masumi; Taguchi, Yoshiaki; Habazaki, Hiroki; Suzuki, Ryosuke O.

    2014-01-01

    Highlights: • A metallic Ti–Zr alloy was obtained by electroless reduction for capacitor applications. • The reduction mechanisms were studied by SEM, XRD, EPMA, and an oxygen analyzer. • The alloy was obtained by electroless reduction in the presence of excess calcium reductant. • A micro-porous Ti–Zr alloy was successfully obtained. • The alloy has a low oxygen content and a large surface area. -- Abstract: A metallic titanium and zirconium micro-porous alloy for electrolytic capacitor applications was produced by electroless reduction with a calcium reductant in calcium chloride molten salt at 1173 K. Mixed TiO 2 –70 at%ZrO 2 oxides, metallic calcium, and calcium chloride were placed in a titanium crucible and heated under argon atmosphere to reduce the oxides with the calcium reductant. A metallic Ti–Zr alloy was obtained by electroless reduction in the presence of excess calcium reductant and showed a micro-porous morphology due to the sintering of each of the reduced particles during the reduction. The residual oxygen content and surface area of the reduced Ti–Zr alloy decreased over time during the electroless reduction. The element distributions were slightly different at the positions of the alloy and were in the composition range of Ti-69.3 at% to 74.3 at%Zr. A micro-porous Ti–Zr alloy with low oxygen content (0.20 wt%) and large surface area (0.55 m 2 g −1 ) was successfully fabricated by electroless reduction under optimal conditions. The reduction mechanisms of the mixed and pure oxides by the calcium reductant are also discussed

  20. Fabrication of carbon nanotube thermal interface material on aluminum alloy substrates with low pressure CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Z L; Zhang, K; Yuen, M M F, E-mail: megzl@ust.hk [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Hong Kong)

    2011-07-01

    High quality vertically aligned carbon nanotube (VACNT) arrays have been synthesized on bulk Al alloy (Al6063) substrates with an electron-beam (E-beam) evaporated Fe catalyst using low pressure chemical vapor deposition (LPCVD). The pretreatment process of the catalyst was shown to play a critical role. This was studied comprehensively and optimized to repeatedly grow high quality VACNT arrays within a wide range of thicknesses of catalyst layer (2-11 nm) and acetylene (C{sub 2}H{sub 2}) flow rates (100-300 sccm). The thermal performance of the resulting VACNT arrays was evaluated. The minimum interfacial thermal resistance of the Si/VACNT/Al interfaces achieved so far is only 4 mm{sup 2} K W{sup -1}, and the average value is 14.6 mm{sup 2} K W{sup -1}.

  1. Fabrication of powder from ductile uranium alloys for use as nuclear dispersion

    International Nuclear Information System (INIS)

    Durazzo, M.; Leal Neto, R.M.; Rocha, C.J.; Urano de Carvalho, E.; Riella, H.G.

    2014-01-01

    This work forms part of the studies presently ongoing at IPEN investigating the feasibility of powdering ductile U-10wt%Mo alloy by hydriding-milling-de-hydriding of the gamma phase (HMD). Hydriding was conducted at room temperature in a Sievert apparatus following heat treatment activation. Hydrided pieces were fragile enough to be hand milled to the desired particle size range. Hydrogen was removed by heating the samples under high vacuum. X-ray diffraction analysis of the hydrided material showed an amorphous-like pattern that is completely reversed following de-hydriding. The hydrogen content of the hydrided samples corresponds to a trihydride, i.e. (U,Mo)H 3 . SEM analysis of HMD powder particles revealed equi-axial powder particles together with some plate-like particles. A hypothesis for the amorphous hydride phase formation is suggested. (authors)

  2. Fabrication of Si3N4 thin films on phynox alloy substrates for electronic applications

    Science.gov (United States)

    Shankernath, V.; Naidu, K. Lakshun; Krishna, M. Ghanashyam; Padmanabhan, K. A.

    2018-04-01

    Thin films of Si3N4 are deposited on Phynox alloy substrates using radio frequency magnetron sputtering. The thickness of the films was varied between 80-150 nm by increasing the duration of deposition from 1 to 3 h at a fixed power density and working pressure. X-ray diffraction patterns reveal that the Si3N4 films had crystallized inspite of the substrates not being heated during deposition. This was confirmed using selected area electron diffraction and high resolution transmission electron microscopy also. It is postulated that a low lattice misfit between Si3N4 and Phynox provides energetically favourable conditions for ambient temperature crystallization. The hardness of the films is of the order of 6 to 9 GPa.

  3. Fabrication of GaInPSb quaternary alloy nanowires and its room temperature electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yadan; Ma, Liang; Li, Dan; Yang, Yankun; Wan, Qiang [Hunan University, School of Physics and Electronics, Changsha, Hunan (China); Liu, Ruping [Beijing Institute of Graphic Communication, Beijing (China); Dai, Guozhang [Central South University, School of Physics and Electronics, Changsha, Hunan (China)

    2017-01-15

    GaInPSb quaternary alloy nanowires were first synthesized via a simple chemical vapor deposition method. The synthesized nanowires' length can reach up to 20 μm and diameter ranging from 50 to 100 nm. Raman measurements and high-resolution transmission electron microscopy image illustrate that the as-grown nanowires have a high crystallinity. Room temperature near-infrared photodetector based on as-prepared GaInPSb nanowires was also built for the first time. It shows a good contact with the electrode, and the device has a strong light response to light illumination. This novel near-infrared photodetector may find promising applications in integrated infrared photodetection, information communication, and processing. (orig.)

  4. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    Science.gov (United States)

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.; El-Atwani, O.; Wang, Y. Q.; Mara, N. A.

    2018-05-01

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al2O3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe2+ ion irradiation up to ∼16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two-beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size and a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α‧ precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ∼3.4 dpa and ∼16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.

  5. Development of modified route for fabrication of Zr-2.5Nb alloy pressure tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Hemantha Rao, G.V.S.; Phani Babu, C.; Jha, S.K.; Ganesha, G.N.; Ramana Rao, S.V.; Kumar Vaibhaw; Dey, G.K.; Srivastava, D.; Neogy, S.; Mani Krishna, K.V.

    2013-01-01

    Different fabrication trials involving the variation in three important manufacturing stages of Zr-2.5%Nb pressure tube were partially undetaken. The variations were with respect of mode of breaking the cast structure of the ingot (forging vs extrution), ratio of hot extrusion and number of stages of subsequent cold work to produce the finished tube. It was observed that forging process resulted in superior performance in breaking the cast structure. Higher extrusion ratios resulted in more favorable texture and microstrucutre. Continuity of the beta phase in the final microstructure was observed to be more in case of route involving single cold work subsequent to hot extrusion. (author)

  6. Microstructure and Mechanical Properties of MWCNTs Reinforced A356 Aluminum Alloys Cast Nanocomposites Fabricated by Using a Combination of Rheocasting and Squeeze Casting Techniques

    Directory of Open Access Journals (Sweden)

    Abou Bakr Elshalakany

    2014-01-01

    Full Text Available A356 hypoeutectic aluminum-silicon alloys matrix composites reinforced by different contents of multiwalled carbon nanotubes (MWCNTs were fabricated using a combination of rheocasting and squeeze casting techniques. A novel approach by adding MWCNTs into A356 aluminum alloy matrix with CNTs has been performed. This method is significant in debundling and preventing flotation of the CNTs within the molten alloy. The microstructures of nanocomposites and the interface between the aluminum alloy matrix and the MWCNTs were examined by using an optical microscopy (OM and scanning electron microscopy (SEM equipped with an energy dispersive X-ray analysis (EDX. This method remarkably facilitated a uniform dispersion of nanotubes within A356 aluminum alloy matrix as well as a refinement of grain size. In addition, the effects of weight fraction (0.5, 1.0, 1.5, 2.0, and 2.5 wt% of the CNT-blended matrix on mechanical properties were evaluated. The results have indicated that a significant improvement in ultimate tensile strength and elongation percentage of nanocomposite occurred at the optimal amount of 1.5 wt% MWCNTs which represents an increase in their values by a ratio of about 50% and 280%, respectively, compared to their corresponding values of monolithic alloy. Hardness of the samples was also significantly increased by the addition of CNTs.

  7. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth-Telluride Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Abdellah Boulouz

    2014-01-01

    Full Text Available The principal motivation of this work is the development and realization of smart cooling and sensors devices based on the elaborated and characterized semiconducting thermoelectric thin film materials. For the first time, the details design of our sensor and the principal results are published. Fabrication and characterization of Bi/Sb/Te (BST semiconducting thin films have been successfully investigated. The best values of Seebeck coefficient (α(T at room temperature for Bi2Te3, and (Bi1−xSbx2Te3 with x = 0.77 are found to be −220 µV/K and +240 µV/K, respectively. Fabrication and evaluation of performance devices are reported. 2.60°C of cooling of only one Peltier module device for an optimal current of Iopt=2.50 mA is obtained. The values of temperature measured by infrared camera, by simulation, and those measured by the integrated and external thermocouple are reported. A sensitivity of the sensors of 5 mV Torr−1 mW−1 for the pressure sensor has been found with a response time of about 600 ms.

  8. Fabrication and properties of high-strength extruded brass using elemental mixture of Cu-40% Zn alloy powder and Mg particle

    Energy Technology Data Exchange (ETDEWEB)

    Atsumi, Haruhiko, E-mail: atsumi-h@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Imai, Hisashi; Li, Shufeng; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kousaka, Yoshiharu; Kojima, Akimichi [San-etsu Metals Co. Ltd., 1892 Ohta, Tonami, Toyama 939-1315 (Japan)

    2012-08-15

    In this paper, high-strength brass (Cu-40% Zn) alloy with magnesium (Mg) element was fabricated via powder technology process, and the effect of the additive Mg element on microstructural and mechanical properties of extruded brass alloys with {alpha}-{beta} duplex phases was investigated. Pre-mixed Cu-40% Zn alloy powder with 0.5-1.5 mass% pure Mg powder (Cu-40% Zn + Mg) was consolidated using a spark plasma sintering (SPS) equipment. SPSed Cu-40% Zn + Mg specimens consisted of {alpha}-{beta} duplex phases containing Mg(Cu{sub 1-x}Zn{sub x}){sub 2} intermetallic compounds (IMCs) with a mean particle size of 10-30 {mu}m in diameter. The IMCs were completely dissolved in the {alpha}-{beta} duplex phases by a heat-treatment at 973 K for 15 min; thus, in order to disperse fine IMCs on {alpha}-{beta} duplex phase matrix, the SPSed Cu-40% Zn + Mg specimens were pre-heated at the solid solutionizing condition, and immediately extruded. The extruded specimen exhibited fine {alpha}-{beta} duplex phases, containing very fine precipitates of the above Mg(Cu{sub 1-x}Zn{sub x}){sub 2} IMCs with 0.5-3.0 {mu}m in diameter. In particular, a mean grain size of the extruded Cu-40% Zn + 1.0% Mg specimen was 3.32 {mu}m analyzed using an electron back-scattered diffraction. Tensile properties of the extruded Cu-40% Zn + 1.0% Mg specimen were an average value of yield strength (YS): 328 MPa, ultimate tensile strength (UTS): 553 MPa, and 25% elongation. This indicated that the extruded Cu-40% Zn + 1.0% Mg specimen revealed the significantly high-strength properties compared to a conventional binary brass alloy with 229 MPa YS and 464 MPa UTS. A high strengthening mechanism of this wrought brass alloy was mainly due to the grain refinement because of a pinning effect by the fine Mg(Cu{sub 1-x}Zn{sub x}){sub 2} precipitates at the boundaries of each phase. -- Highlights: Black-Right-Pointing-Pointer New high-strength extruded brass alloy with Mg was fabricated via powder metallurgy. Black

  9. Fabrication of Ti-0.48Al Alloy by Centrifugal Casting.

    Science.gov (United States)

    Park, Jong Bum; Lee, Jung-Il; Ryu, Jeong Ho

    2018-09-01

    Many of the unique properties of TiAl alloys that make are attractive for use in high-temperature structural applications also make it challenging to process them into useful products. Cast TiAl is rapidly nearing commercialization, particularly in the vehicle industry, owing to its low production cost. In this study, the centrifugal casting of a TiAl (Ti-48%Al, mole fraction) turbocharger was simulated and an experimental casting was created in vacuum using an induction melting furnace coupled to a ceramic composite mold. Numerical simulation results agreed with the experiment. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometry, optical microscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). FE-SEM and EDS examinations of the TiAl casting revealed that the thickness of the oxide layer (α-case) was typically less than 35 μm.

  10. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting.

    Science.gov (United States)

    Xiang, Nan; Xin, Xian-Zhen; Chen, Jie; Wei, Bin

    2012-06-01

    This study was to evaluated the metal-ceramic bond strength of a Co-Cr dental alloy prepared using a selective laser melting (SLM) technique. Two groups comprised of twenty Co-Cr metal bars each were prepared using either a SLM or traditional lost-wax casting method. Ten bars from each group were moulded into standard ISO 9693:1999 dimensions of 25 mm × 3 mm × 0.5 mm with 1.1 mm of porcelain fused onto an 8 mm × 3 mm rectangular area in the centre of each bar. Metal-ceramic bonding was assessed using a three-point bending test. Fracture mode analysis and area fraction of adherence porcelain (AFAP) were determined by measuring Si content of specimens by SEM/EDS. Student's t-test within the groups demonstrated no significant difference for the mean bond strength between the SLM and traditional cast sample groups. While SEM/EDS analysis indicated a mixed fracture mode on the debonding interface of both the SLM and the cast groups, the SLM group showed significantly more porcelain adherence than the control group (p<0.05). The SLM metal-ceramic system exhibited a bonding strength that exceeds the requirement of ISO 9691:1999(E) and it even showed a better behaviour in porcelain adherence test comparable to traditional cast methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique.

    Science.gov (United States)

    Dimitriadis, Konstantinos; Spyropoulos, Konstantinos; Papadopoulos, Triantafillos

    2018-02-01

    The aim of the present study was to record the metal-ceramic bond strength of a feldspathic dental porcelain and a Co-Cr alloy, using the Direct Metal Laser Sintering technique (DMLS) for the fabrication of metal substrates. Ten metal substrates were fabricated with powder of a dental Co-Cr alloy using DMLS technique (test group) in dimensions according to ISO 9693. Another ten substrates were fabricated with a casing dental Co-Cr alloy using classic casting technique (control group) for comparison. Another three substrates were fabricated using each technique to record the Modulus of Elasticity ( E ) of the used alloys. All substrates were examined to record external and internal porosity. Feldspathic porcelain was applied on the substrates. Specimens were tested using the three-point bending test. The failure mode was determined using optical and scanning electron microscopy. The statistical analysis was performed using t-test. Substrates prepared using DMLS technique did not show internal porosity as compared to those produced using the casting technique. The E of control and test group was 222 ± 5.13 GPa and 227 ± 3 GPa, respectively. The bond strength was 51.87 ± 7.50 MPa for test group and 54.60 ± 6.20 MPa for control group. No statistically significant differences between the two groups were recorded. The mode of failure was mainly cohesive for all specimens. Specimens produced by the DMLS technique cover the lowest acceptable metal-ceramic bond strength of 25 MPa specified in ISO 9693 and present satisfactory bond strength for clinical use.

  12. Adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by selective laser melting technique.

    Science.gov (United States)

    Ye, Ye; Jiao, Ting; Zhu, Jiarui; Sun, Jian

    2018-01-24

    The purpose of the study was to evaluate the adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by the selective laser melting (SLM) technique. Twenty pairs of edentulous casts were randomly and evenly divided into two groups, and manufacturing of the Co-Cr alloy maxillary complete denture base was conducted either by the SLM technique or by the conventional method. The base-cast sets were transversally sectioned into three sections at the distal canines, mesial of the first molars and the posterior palatal zone. The gap between the metal base and cast was measured in these three sections with a stereoscopic microscope, and the data were analysed using t tests. A total of five specimens of 5 mm diameter were fabricated with the Co-Cr alloy by SLM and the traditional casting technology. A scanning electron microscope (SEM) was used to evaluate the differences in microstructure between these specimens. There was no statistical difference between the three sections in all four groups (P > 0.05). At the region of the canines, the clearance value for the SLM Co-Cr alloy group was larger than that of the conventional method group (P  0.05). The SLM Co-Cr alloy has a denser microstructure behaviour and less casting defect than the cast Co-Cr alloy. The SLM technique showed initial feasibility for the manufacture of dental bases of complete dentures, but large sample studies are needed to prove its reliability in clinical applications. The mechanical properties and microstructure of the denture frameworks prepared by selective laser melting indicate that these dentures are appropriate for clinical use.

  13. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance

    International Nuclear Information System (INIS)

    Zhao, Lin; Liu, Qi; Gao, Rui; Wang, Jun; Yang, Wanlu; Liu, Lianhe

    2014-01-01

    Highlights: •The myristic acid iron superhydrophobic surface was formatted on AZ31. •Two procedures to build a super-hydrophobic were simplified to one step. •The superhydrophobic surface shows good anticorrosion, antifouling properties. •We report a new approach for the superhydrophobic surface protection on AZ31. -- Abstract: Inspired by the lotus leaf, various methods to fabricate artificial superhydrophobic surfaces have been developed. Our purpose is to create a simple, one-step and environment-friendly method to construct a superhydrophobic surface on a magnesium alloy substrate. The substrate was immersed in a solution containing ferric chloride (FeCl 3 ·6H 2 O), deionized water, tetradecanoic acid (CH 3 (CH 2 ) 12 COOH) and ethanol. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared (FT-IR) were employed to characterize the substrate surface. The obtained surface showed a micron rough structure, a high contact angle (CA) of 165° ± 2° and desirable corrosion protection and antifouling properties

  14. Thermoelectric property of fine-grained CoSb3 skutterudite compound fabricated by mechanical alloying and spark plasma sintering

    International Nuclear Information System (INIS)

    Liu Weishu; Zhang Boping; Li Jingfeng; Zhao Lidong

    2007-01-01

    Skutterudite CoSb 3 polycrystalline materials were prepared using a combined process of mechanical alloying (MA) and spark plasma sintering (SPS). The influence of SPS temperature on the thermoelectric properties was focused in this work with a special emphasis on the analysis of the size effects of grains. The average grain sizes decreased from 300 to 50 nm with decreasing SPS temperatures from 600 to 300 deg. C. The electrical resistivities of samples spark plasma sintered at 300-600 deg. C all decreased with increasing temperature, indicating a classic intrinsic conduction behaviour of semiconductors. The samples spark plasma sintered at 300-500 deg. C showed a positive Seebeck coefficient while the sample spark plasma sintered at 600 deg. C showed a negative Seebeck coefficient. The room-temperature thermal conductivities were reduced from 4.30 to 2.92 W m -1 K -1 as the grain sizes were decreased from 300 to 100 nm corresponding to SPS at 600 and 400 deg. C, respectively. The present work indicates that MA and SPS is a good combination for fabricating fine-grained CoSb 3 thermoelectric materials

  15. Rudimentary simple, single step fabrication of nano-flakes like AgCd alloy electro-catalyst for oxygen reduction reaction in alkaline fuel cell

    International Nuclear Information System (INIS)

    Bhandary, Nimai; Basu, Suddhasatwa; Ingole, Pravin P.

    2016-01-01

    In this work, for the first time, we report rudimentary simple, single step fabrication of an electro-catalyst based on AgCd alloy nanoparticles with flakes like geometry which shows highly efficient activity towards oxygen reduction reaction (ORR). A simple potentiostatic deposition method has been employed for co-depositing AgCd alloy nanostructures with flakes like shapes along with dendrites on the surface of carbon fibre paper. The chemico-physical properties of the catalyst are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDXS). Electro-catalytic activity of AgCd alloy based electro-catalyst towards ORR is studied in alkaline medium by cyclic voltammetry and rotating ring disk electrode (RRDE) technique. Electrochemical in-situ FTIR measurements are also performed to identify the species generated during ORR process. Based on the results from electro-catalysis experiment, it is concluded that nano-alloyed AgCd electrodeposited on carbon paper shows excellent activity for ORR, following four electron pathways with H_2O_2 yield less than 15%. The combination of low cost of Ag and Cd, fast and facile method of its fabrication and higher activity towards ORR makes the AgCd electro-catalyst an attractive catalyst of choice for alkaline fuel cell.

  16. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo.

    Science.gov (United States)

    Zhao, Bingjing; Wang, Hong; Qiao, Ning; Wang, Chao; Hu, Min

    2017-01-01

    The purpose of this study is to determine the corrosion resistance of Ti-6Al-4V alloy fabricated with electron beam melting and selective laser melting for implantation in vivo. Ti-6Al-4V alloy specimens were fabricated with electron beam melting (EBM) and selective laser melting (SLM). A wrought form of Ti-6Al-4V alloy was used as a control. Surface morphology observation, component analysis, corrosion resistance experimental results, electrochemical impedance spectroscopy, crevice corrosion resistance experimental results, immersion test and metal ions precipitation analysis were processed, respectively. The thermal stability of EBM specimen was the worst, based on the result of open circuit potential (OCP) result. The result of electrochemical impedance spectroscopy indicated that the corrosion resistance of the SLM specimen was the best under the low electric potential. The result of potentiodynamic polarization suggested that the corrosion resistance of the SLM specimen was the best under the low electric potential (1.5V).The crevice corrosion resistance of the EBM specimen was the best. The corrosion resistance of SLM specimen was the best, based on the result of immersion test. The content of Ti, Al and V ions of EBM, SLM and wrought specimens was very low. In general, the scaffolds that were fabricated with EBM and SLM had good corrosion resistance, and were suitable for implantation in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Fabrication of SiCp/Al Alloy Composites by In-situ Vacuum Hot Press Process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. W.; Hong, S. K.; Kim, Y. M.; Kang, C. S. [Chonnam National University, Kwangju (Korea); Chang, S. Y. [Hanyang University, Seoul (Korea)

    2001-07-01

    SiCp/pure Al and SiCp/2024Al MMCs were fabricated by in-situ VHP process designed specially just in this study which is composed of the vacuum hot press at range from R.T. to 500 deg.C and the continuous extrusion without canning process at 520 deg.C. It was investigated the effect of SiC particle size, volume fraction and extrusion ratio on the tensile properties and micro structure in all composites. In case of the 10:1 extrusion ratio, but SiCp/pure Al and SiCp/2024Al composites were shown a sound appearance and a good micro structure without crack of SiCp as well as uniform distribution of SiCp. However, in case of the 16:1 extrusion ratio, the number of cracked SiC particles more than increased in a higher volume fraction composite and 2024Al matrix composite compared with pure Al matrix one. The tensile strength of the composites reinforced smaller SiCp was higher than that of the bigger SiCp reinforced in same volume fraction and extrusion ratio. (author) 14 refs., 14 figs.

  18. Physical properties and microstructure study of stainless steel 316L alloy fabricated by selective laser melting

    Science.gov (United States)

    Islam, Nurul Kamariah Md Saiful; Harun, Wan Sharuzi Wan; Ghani, Saiful Anwar Che; Omar, Mohd Asnawi; Ramli, Mohd Hazlen; Ismail, Muhammad Hussain

    2017-12-01

    Selective Laser Melting (SLM) demonstrates the 21st century's manufacturing infrastructure in which powdered raw material is melted by a high energy focused laser, and built up layer-by-layer until it forms three-dimensional metal parts. SLM process involves a variation of process parameters which affects the final material properties. 316L stainless steel compacts through the manipulation of building orientation and powder layer thickness parameters were manufactured by SLM. The effect of the manipulated parameters on the relative density and dimensional accuracy of the 316L stainless steel compacts, which were in the as-build condition, were experimented and analysed. The relationship between the microstructures and the physical properties of fabricated 316L stainless steel compacts was investigated in this study. The results revealed that 90° building orientation has higher relative density and dimensional accuracy than 0° building orientation. Building orientation was found to give more significant effect in terms of dimensional accuracy, and relative density of SLM compacts compare to build layer thickness. Nevertheless, the existence of large number and sizes of pores greatly influences the low performances of the density.

  19. SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development

    International Nuclear Information System (INIS)

    Webb, Jonathan A.; Charit, Indrajit; Sparks, Cory; Butt, Darryl P.; Frary, Megan; Carroll, Mark

    2011-01-01

    Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with average respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.

  20. Heavy element research

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Heavy element research activities in metallurgy and ceramics during 1976 at Lawrence Berkeley Laboratory are reviewed. Topics include: microstructure, properties and alloy design; ceramic alloy program; high resolution and high voltage electron microscopy; and powder metallurgy

  1. A functionalized phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild process for heavy metal uptake

    Energy Technology Data Exchange (ETDEWEB)

    Daikopoulos, Chris [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, Athanasios B. [Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, Athens 15310 (Greece); Georgiou, Yiannis [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Deligiannakis, Yiannis, E-mail: ideligia@cc.uoi.gr [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Zboril, Radek [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University, Olomouc 77146 (Czech Republic); Karakassides, Michael A. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece)

    2014-04-01

    Highlights: • Novel phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild xerogel process. • Surface Complexation Modeling reveals that PSLM bears 2 types of functional groups able to bind heavy metal. • Maximum metal uptake capacities were found 2.72 mmol g{sup −1} for Cu{sup 2+}, 1.67 mmol g{sup −1} for Pb{sup 2+} and 1.00 mmol g{sup −1} for Cd{sup 2+} at pH 7. • EPR spectroscopy reveals local coordination environment for Cu{sup 2+} ions. - Abstract: A phosphonate-rich organosilica layered hybrid material (PSLM) made of 3-(trihydroxysilyl)propyl methylphosphonate, monosodium salt, as the single silica source, has been obtained from its aqueous solution through a xerogel process and mild thermal aging. The method is simple, affording bulk quantities of powdered PSLM in a single-step. The hybrid is stable in water and possesses a high content of phosphonate groups fixed on the solid matrix. In addition, PSLM shows good thermal stability, which exceeds 300 °C in air. The material was characterized using SEM, TEM, XRD, FT-IR and TGA techniques. Potentiometric titrations show that PSLM bears high-surface density of phosphonate groups (3 mmol g{sup −1}). As a result, the material displays high metal uptake capacity for heavy metal ions such as Cu{sup 2+} (2.72 mmol g{sup −1}), Pb{sup 2+} (1.67 mmol g{sup −1}) and Cd{sup 2+} (1.00 mmol g{sup −1}) at neutral pH values e.g. the pH of natural waters. Detailed theoretical modeling using a Surface Complexation Model combined with Electron Paramagnetic Resonance (EPR) spectroscopy shows that the surface distribution of surface bound Cu{sup 2+} ions is rather homogeneous e.g. copper-binding phosphonate sites are arranged in average distances 5–8 Å.

  2. Anisotropic Negative Thermal Expansion Behavior of the As-Fabricated Ti-Rich and Equiatomic Ti-Ni Alloys Induced by Preferential Grain Orientation

    Science.gov (United States)

    Zhao, Zhong-Xun; Ma, Xiao; Cao, Shan-Shan; Ke, Chang-Bo; Zhang, Xin-Ping

    2018-03-01

    The present study focuses on the anisotropic negative thermal expansion (NTE) behaviors of Ti-rich (Ti54Ni46) and equiatomic Ti-Ni (Ti50Ni50) alloys fabricated by vacuum arc melting and without subsequent plastic deformation. Both alloys exhibit NTE responses in vertical and horizontal directions, and the total strains and CTEs of the NTE stage along the two mutually perpendicular measuring directions are obviously different, indicating obvious anisotropic NTE behavior of the alloys. Besides, the numerical differences between the starting temperature of NTE and austenitic transformation and between the finishing temperature of NTE and austenitic transformation are very small, which indicates that an apparent relationship exists between the NTE behavior and the phase transformation. The microstructure in the vertical cross sections shows obviously preferential orientation characteristics: Ti2Ni phases of both alloys grow along the vertical direction, and B19' martensite of Ti50Ni50 alloy has distinct preferential orientation, which results from a large temperature gradient between the top and the bottom of the button ingots during solidification. The microstructure with preferential orientation induces the anisotropic NTE behavior of the samples.

  3. Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting.

    Science.gov (United States)

    Lu, Yanjin; Ren, Ling; Xu, Xiongcheng; Yang, Yang; Wu, Songquan; Luo, Jiasi; Yang, Mingyu; Liu, Lingling; Zhuang, Danhong; Yang, Ke; Lin, Jinxin

    2018-05-01

    In the study, CoCrWCu alloys with differing Cu content (2, 3, 4 wt%) were prepared by selective laser melting using mixture powders consisting of CoCrW and Cu, aiming at investigating the effect of Cu on the microstructures, mechanical properties, corrosion behavior and cytotoxicity. The SEM observations indicated that the Cu content up to 3 wt% caused the Si-rich precipitates to segregate along grain boundaries and in the grains, and EBSD analysis suggested that the Cu addition decreased the recrystallization degree and increased the grain diameter and fraction of big grains. The tensile tests found that the increasing Cu content led to a decrease of mechanical properties compared with Cu-free CoCrW alloy. The electrochemical tests revealed that the addition of Cu shifted the corrosion potential toward nobler positive, but increased the corrosion current density. Also, a more protective passive film was formed when 2 wt% Cu content was added, but the higher Cu content up to 3 wt% was detrimental to the corrosion resistance. It was noted that there was no cytotoxicity for Cu-bearing CoCrW alloys to MG-63 cell and the cells could spread well on the surfaces of studied alloys. Meanwhile, the Cu-bearing CoCrW alloy exhibited an excellent antibacterial performance against E.coli when Cu content was up to 3 wt%. It is suggested that the feasible fabrication of Cu-bearing CoCrW alloy by SLM using mixed CoCrW and Cu powders is a promising candidate for use in antibacterial oral repair products. This current study also can aid in the further design of antibacterial Cu-containing CoCrW alloying powders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Microstructures and room temperature fracture toughness of Nb/Nb5Si3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Xiong, Bowen; Cai, Changchun; Wang, Zhenjun

    2014-01-01

    Highlights: • Microstructure of Nb/Nb 5 Si 3 composite alloyed with W and Mo is change obviously. • W and Mo elements can solid solution in Nb and Nb 5 Si 3 phase respectively. • Alloyed with W and Mo together, the solid solubility of Nb 5 Si 3 phases is undetected. • The Nb/Nb 5 Si 3 composite alloyed with W and Mo together has high fracture toughness. - Abstract: Microstructures and room temperature fracture toughness of Nb/Nb 5 Si 3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering were investigated. The microstructures were examined using scanning electron microscope (SEM). X-ray diffraction (XRD) was performed on the bulk specimens for identification of phases. The chemical species were analyzed using electron-probe micro-analysis (EPMA). Results indicated that the microstructures of Nb/Nb 5 Si 3 composites alloyed with W or Mo is unaltered, including primary Nb and eutectic mixtures of Nb and Nb 5 Si 3 , and the coarse and fine eutectic mixtures. The W and Mo elements solid solution in Nb and Nb 5 Si 3 phase are detected. But that alloyed with W and Mo together, The microstructures are change obviously, including Nb phase, the solid solubility phases of W and Mo atoms in Nb, and the solid solubility phases of Nb atoms in W are also found, but the solid solubility phenomenon of Nb 5 Si 3 phases is not detected. The microhardness of Nb and Nb 5 Si 3 phases increases obviously because of solid solution strengthening. The Nb/Nb 5 Si 3 composite alloyed with W and Mo together hashing high fracture toughness is attributable to the big eutectic Nb and interface of eutectic phases, which can bear large deformation to absorb the crack energy and form the decohesion between eutectic phases

  5. Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process

    International Nuclear Information System (INIS)

    Koohbor, M.; Soltanian, S.; Najafi, M.; Servati, P.

    2012-01-01

    Highlights: ► Increasing the Zn concentration changes the structure of NWs from hcp to amorphous. ► Increasing the Zn concentration significantly reduces the Hc value of NWs. ► Magnetic properties of CoZn NWs can be significantly enhanced by appropriate annealing. ► The pH of electrolyte has no significant effect on the properties of the NW arrays. ► Deposition frequency has considerable effects on the magnetic properties of NWs. - Abstract: Highly ordered arrays of Co 1−x Zn x (0 ≤ x ≤ 0.74) nanowires (NWs) with diameters of ∼35 nm and high length-to-diameter ratios (up to 150) were fabricated by co-electrodeposition of Co and Zn into pores of anodized aluminum oxide (AAO) templates. The Co and Zn contents of the NWs were adjusted by varying the ratio of Zn and Co ion concentrations in the electrolyte. The effect of the Zn content, electrodeposition conditions (frequency and pH) and annealing on the structural and magnetic properties (e.g., coercivity (Hc) and squareness (Sq)) of NW arrays were investigated using X-ray diffraction (XRD), scanning electron microscopy, electron diffraction, and alternating gradient force magnetometer (AGFM). XRD patterns reveal that an increase in the concentration of Zn ions of the electrolyte forces the hcp crystal structure of Co NWs to change into an amorphous phase, resulting in a significant reduction in Hc. It was found that the magnetic properties of NWs can be significantly improved by appropriate annealing process. The highest values for Hc (2050 Oe) and Sq (0.98) were obtained for NWs electrodeposited using 0.95/0.05 Co:Zn concentrations at 200 Hz and annealed at 575 °C. While the pH of electrolyte is found to have no significant effect on the structural and magnetic properties of the NW arrays, the electrodeposition frequency has considerable effects on the magnetic properties of the NW arrays. The changes in magnetic property of NWs are rooted in a competition between shape anisotropy and

  6. Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Koohbor, M. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Soltanian, S., E-mail: s.soltanian@gmail.com [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Department of Electrical and Computer Engineering, University of British Columbia, Vancouver (Canada); Najafi, M. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Department of Physics, Hamadan University of Technology, Hamadan (Iran, Islamic Republic of); Servati, P. [Department of Electrical and Computer Engineering, University of British Columbia, Vancouver (Canada)

    2012-01-05

    Highlights: Black-Right-Pointing-Pointer Increasing the Zn concentration changes the structure of NWs from hcp to amorphous. Black-Right-Pointing-Pointer Increasing the Zn concentration significantly reduces the Hc value of NWs. Black-Right-Pointing-Pointer Magnetic properties of CoZn NWs can be significantly enhanced by appropriate annealing. Black-Right-Pointing-Pointer The pH of electrolyte has no significant effect on the properties of the NW arrays. Black-Right-Pointing-Pointer Deposition frequency has considerable effects on the magnetic properties of NWs. - Abstract: Highly ordered arrays of Co{sub 1-x}Zn{sub x} (0 {<=} x {<=} 0.74) nanowires (NWs) with diameters of {approx}35 nm and high length-to-diameter ratios (up to 150) were fabricated by co-electrodeposition of Co and Zn into pores of anodized aluminum oxide (AAO) templates. The Co and Zn contents of the NWs were adjusted by varying the ratio of Zn and Co ion concentrations in the electrolyte. The effect of the Zn content, electrodeposition conditions (frequency and pH) and annealing on the structural and magnetic properties (e.g., coercivity (Hc) and squareness (Sq)) of NW arrays were investigated using X-ray diffraction (XRD), scanning electron microscopy, electron diffraction, and alternating gradient force magnetometer (AGFM). XRD patterns reveal that an increase in the concentration of Zn ions of the electrolyte forces the hcp crystal structure of Co NWs to change into an amorphous phase, resulting in a significant reduction in Hc. It was found that the magnetic properties of NWs can be significantly improved by appropriate annealing process. The highest values for Hc (2050 Oe) and Sq (0.98) were obtained for NWs electrodeposited using 0.95/0.05 Co:Zn concentrations at 200 Hz and annealed at 575 Degree-Sign C. While the pH of electrolyte is found to have no significant effect on the structural and magnetic properties of the NW arrays, the electrodeposition frequency has considerable effects on

  7. The fabrication and hydrophobic property of micro-nano patterned surface on magnesium alloy using combined sparking sculpture and etching route

    Science.gov (United States)

    Wu, Yunfeng; Wang, Yaming; Liu, Hao; Liu, Yan; Guo, Lixin; Jia, Dechang; Ouyang, Jiahu; Zhou, Yu

    2016-12-01

    Magnesium alloy with micro-nano structure roughness surface, can serve as the loading reservoirs of medicine capsule and industrial lubricating oil, or mimic 'lotus leaf' hydrophobic surface, having the potential applications in medical implants, automobile, aerospace and electronic products, etc. Herein, we propose a novel strategy to design a micro-nano structure roughness surface on magnesium alloy using combined microarc sparking sculpture and etching in CrO3 aqueous solution. A hydrophobic surface (as an applied example) was further fabricated by chemical decorating on the obtained patterned magnesium alloy surface to enhance the corrosion resistance. The results show that the combined micro-nano structure of 7-9 μm diameter big pores insetting with nano-scale fine pores was duplicated after etched the sparking sculptured 'over growth' oxide regions towards the magnesium substrate. The micro-nano structure surface was chemically decorated using AgNO3 and stearic acid, which enables the contact angle increased from 60° to 146.8°. The increasing contact angle is mainly attributed to the micro-nano structure and the chemical composition. The hydrophobic surface of magnesium alloy improved the corrosion potential from -1.521 V of the bare magnesium to -1.274 V. Generally, the sparking sculpture and then etching route demonstrates a low-cost, high-efficacy method to fabricate a micro-nano structure hydrophobic surface on magnesium alloy. Furthermore, our research on the creating of micro-nano structure roughness surface and the hydrophobic treatment can be easily extended to the other metal materials.

  8. The fabrication and hydrophobic property of micro-nano patterned surface on magnesium alloy using combined sparking sculpture and etching route

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yunfeng [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yaming, E-mail: wangyaming@hit.edu.cn [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Hao [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Yan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Guo, Lixin; Jia, Dechang; Ouyang, Jiahu; Zhou, Yu [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China)

    2016-12-15

    Highlights: • A hydrophobic micro-nano roughness surface on magnesium was fabricated. • Micro-nano structure derives from duplicating ‘over growth’ regions by MAO. • 7–9 μm micro-scale big pores insetting with nano-scale fine pores were fabricated. • Hydrophobicity of micro-nano surface was improved by chemical decoration and stearic treatment. - Abstract: Magnesium alloy with micro-nano structure roughness surface, can serve as the loading reservoirs of medicine capsule and industrial lubricating oil, or mimic ‘lotus leaf’ hydrophobic surface, having the potential applications in medical implants, automobile, aerospace and electronic products, etc. Herein, we propose a novel strategy to design a micro-nano structure roughness surface on magnesium alloy using combined microarc sparking sculpture and etching in CrO{sub 3} aqueous solution. A hydrophobic surface (as an applied example) was further fabricated by chemical decorating on the obtained patterned magnesium alloy surface to enhance the corrosion resistance. The results show that the combined micro-nano structure of 7–9 μm diameter big pores insetting with nano-scale fine pores was duplicated after etched the sparking sculptured ‘over growth’ oxide regions towards the magnesium substrate. The micro-nano structure surface was chemically decorated using AgNO{sub 3} and stearic acid, which enables the contact angle increased from 60° to 146.8°. The increasing contact angle is mainly attributed to the micro-nano structure and the chemical composition. The hydrophobic surface of magnesium alloy improved the corrosion potential from −1.521 V of the bare magnesium to −1.274 V. Generally, the sparking sculpture and then etching route demonstrates a low-cost, high-efficacy method to fabricate a micro-nano structure hydrophobic surface on magnesium alloy. Furthermore, our research on the creating of micro-nano structure roughness surface and the hydrophobic treatment can be easily

  9. The fabrication and hydrophobic property of micro-nano patterned surface on magnesium alloy using combined sparking sculpture and etching route

    International Nuclear Information System (INIS)

    Wu, Yunfeng; Wang, Yaming; Liu, Hao; Liu, Yan; Guo, Lixin; Jia, Dechang; Ouyang, Jiahu; Zhou, Yu

    2016-01-01

    Highlights: • A hydrophobic micro-nano roughness surface on magnesium was fabricated. • Micro-nano structure derives from duplicating ‘over growth’ regions by MAO. • 7–9 μm micro-scale big pores insetting with nano-scale fine pores were fabricated. • Hydrophobicity of micro-nano surface was improved by chemical decoration and stearic treatment. - Abstract: Magnesium alloy with micro-nano structure roughness surface, can serve as the loading reservoirs of medicine capsule and industrial lubricating oil, or mimic ‘lotus leaf’ hydrophobic surface, having the potential applications in medical implants, automobile, aerospace and electronic products, etc. Herein, we propose a novel strategy to design a micro-nano structure roughness surface on magnesium alloy using combined microarc sparking sculpture and etching in CrO_3 aqueous solution. A hydrophobic surface (as an applied example) was further fabricated by chemical decorating on the obtained patterned magnesium alloy surface to enhance the corrosion resistance. The results show that the combined micro-nano structure of 7–9 μm diameter big pores insetting with nano-scale fine pores was duplicated after etched the sparking sculptured ‘over growth’ oxide regions towards the magnesium substrate. The micro-nano structure surface was chemically decorated using AgNO_3 and stearic acid, which enables the contact angle increased from 60° to 146.8°. The increasing contact angle is mainly attributed to the micro-nano structure and the chemical composition. The hydrophobic surface of magnesium alloy improved the corrosion potential from −1.521 V of the bare magnesium to −1.274 V. Generally, the sparking sculpture and then etching route demonstrates a low-cost, high-efficacy method to fabricate a micro-nano structure hydrophobic surface on magnesium alloy. Furthermore, our research on the creating of micro-nano structure roughness surface and the hydrophobic treatment can be easily extended to the

  10. Fabricating method of hydrogen absorbing alloy for alkali storage battery; Arukari chikudenchiyo suiso kyuzo gokin no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Tadokoro, M.

    1996-03-08

    There are many grain boundaries in spherical hydrogen absorbing alloy particles prepared by rapid solidification methods such as centrifugal spraying method and gas atomizing method, and heterogeneous strains are produced at boundaries. When hydrogen absorbing alloy with large heterogeneous strain is used for preparing electrodes, many cracks are produced in hydrogen absorbing alloy to cause pulverization in the charge and discharge cycles. This invention relates to heat treatment of hydrogen absorbing alloys having spherical shape, cannon ball shape, and egg-like shape prepared by rapid solidification method in moving conditions. By this heat treatment, mutual sintering of hydrogen absorbing alloy particles can be prevented. The methods for moving hydrogen absorbing alloy are vibration or rotation of the heat treatment container in which hydrogen absorbing alloy is held and agitation of hydrogen absorbing alloy powder. Furthermore, mutual sintering of hydrogen absorbing alloy is restricted to reduce homogeneous strain by heat treatment in the range from 700{degree}C to 1,100{degree}C. 3 figs., 6 tabs.

  11. VANADIUM ALLOYS

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  12. Residual stress and its effect on the mechanical properties of Y-doped Mg alloy fabricated via back-pressure assisted equal channel angular pressing (ECAP-BP)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jianghua, E-mail: j_shen@live.cn [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Gärtnerová, Viera [Laboratory of Nanostructures and Nanomaterials, Institute of Physics of the ASCR, Na Slovance 2, CZ – 182 21, Prague 8 (Czech Republic); Kecskes, Laszlo J. [US Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069 (United States); Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Jäger, Aleš, E-mail: jager@fzu.cz [Laboratory of Nanostructures and Nanomaterials, Institute of Physics of the ASCR, Na Slovance 2, CZ – 182 21, Prague 8 (Czech Republic); Wei, Qiuming [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States)

    2016-07-04

    In this study, pure magnesium (Mg) and Mg-0.6 wt% yttrium (Y) binary alloy were fabricated via casting followed by room temperature equal channel angular pressing (ECAP) using an applied back pressure (BP). Microstructural examination after ECAP-BP revealed a fine-grained Mg-Y alloy with a high residual stress level, whereas, the pure Mg exhibited a well-recrystallized microstructure with uniform and equiaxed grains, but retaining very little residual stress. The Y atoms were present in the Mg matrix as solid solutes and acted as dislocation and grain boundary blockers, thus suppressing dynamic recovery and/or recrystallization during the ECAP process. The Mg-Y alloy had an average grain size of ~400 nm, approximately one order smaller than that of pure Mg. The combination of high residual stress and ultrafine grains of the Mg-Y alloy gave rise to a significant difference in its mechanical behavior from that of the pure Mg, under both quasi-static and dynamic compressive loading.

  13. Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements

    International Nuclear Information System (INIS)

    Huang Zanjun; Yang Bin; Cui Hua; Zhang Jishan

    2003-01-01

    A new idea to fabricate aluminum matrix composites strengthened by combined in-situ particle strengthening and in-situ alloying has been proposed. Following the concept of in-situ alloying and in-situ particle strengthening, aluminum matrix composites reinforced by Cu and α-Al 2 O 3 particulate (material I) and the same matrix reinforced by Cu, Si alloying elements and α-Al 2 O 3 particulate (material II) have been obtained. SEM observation, EDS and XRD analysis show that the alloy elements Cu and Si exist in the two materials, respectively. In-situ Al 2 O 3 particulates are generally spherical and their mean size is less than 0.5 μm. TEM observation shows that the in-situ α-Al 2 O 3 particulates have a good cohesion with the matrix. The reaction mechanism of the Al 2 O 3 particulate obtained by this method was studied. Thermodynamic considerations are given to the in-situ reactions and the distribution characteristic of in-situ the α-Al 2 O 3 particulate in the process of solidification is also discussed

  14. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping

    Energy Technology Data Exchange (ETDEWEB)

    Kunce, I., E-mail: ikunce@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Polanski, M.; Karczewski, K. [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Plocinski, T.; Kurzydlowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska Str., 02-507 Warsaw (Poland)

    2015-11-05

    Laser engineered net shaping (LENS) was used to produce thin-walled samples of the high-entropy alloy AlCoCrFeNi from a prealloyed powder. To determine the effect of the cooling rate during solidification on the microstructure of the alloy, different laser scanning rates were used. A microstructural study of the surfaces of the sample walls was performed using X-ray diffraction analysis and optical and scanning/transmission electron microscopy. The crystal structure of the alloy was determined to be a body-centred cubic (bcc)-derivative B2-ordered type. The microstructure of the alloy produced by LENS was dendritic. Further, it was found that with an increase in the laser scanning rate from 2.5 to 40 mm s{sup −1}, the average grain size decreased from 108.3 ± 32.4 μm to 30.6 ± 9.2 μm. The maximum cooling rate achieved during the laser cladding of the alloy was 44 × 10{sup 3} K s{sup −1}. The electron microscopy study of the alloy showed the presence of precipitates. The morphology of the disordered bcc (Fe, Cr)-rich precipitates in the ordered B2 (Al, Ni)-rich matrix changed in the dendritic and interdendritic regions from fine and spherical (with a diameter of less 100 nm) to spinodal (with the thickness being less than 100 nm). The LENS- produced AlCoCrFeNi alloy exhibited an average microhardness of approximately 543 HV0.5; this was approximately 13% higher than the hardness in the as-cast state and can be attributed to the grain refinemet in the LENS- produced alloy. Moreover, it was found that increasing the cooling rate during laser cladding increasess the microhardness of the alloy. - Highlights: • Laser-engineered net shaping is used to produce samples of AlCoCrFeNi alloy. • The alloy has a body-centred cubic (bcc)-derivative B2-ordered crystal structure. • Electron microscopy images of the alloy show the presence of precipitates. • The microhardness of the laser-clad alloy is higher than that of the as-cast alloy. • The cooling rate

  15. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    International Nuclear Information System (INIS)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei

    2017-01-01

    Highlights: • Zn-Al LDHs film loaded nitrate anions has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method. • The Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs film were obtained based on anion-exchange mechanism. • The Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs film could effectively protect magnesium alloy. - Abstract: Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO_3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  16. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei, E-mail: kwgao@yahoo.com

    2017-05-15

    Highlights: • Zn-Al LDHs film loaded nitrate anions has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method. • The Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs film were obtained based on anion-exchange mechanism. • The Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs film could effectively protect magnesium alloy. - Abstract: Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO{sub 3} LDHs, Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  17. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem A. [Jefferson Lab., Newport News, VA (United States); Daly, Edward F. [Jefferson Lab., Newport News, VA (United States); Clemens, William A. [Jefferson Lab., Newport News, VA (United States); McIntyre, Gary T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Qiong [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, Steve [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  18. Study of irradiation induced defects and phase instability in β phase of Zr Excel alloy with in-situ heavy ion irradiation

    International Nuclear Information System (INIS)

    Yu, H.; Yao, Z.; Kirk, M.A.; Daymond, M.R.

    2015-01-01

    In situ heavy ion irradiation with 1 MeV Kr"2"+ was carried out to study irradiation induced phase change and atomic lattice defects in theβ phase of Zr Excel alloy. No decomposition of β-Zr was observed under irradiation at either 200 "oC or 450 "oC. However, ω-Zr particles experienced shape change and shrinkage associated enrichment of Fe in the β/ω interface at 200 "oC irradiation but not at 450 "oC. The defect evolution in the β-phase was examined with single phase Zr-20Nb alloy. It was found that dislocation loops with Burgers vector 1/2 and both present in β-Zr under room temperature irradiation. (author)

  19. Study of irradiation induced defects and phase instability in β phase of Zr Excel alloy with in-situ heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H.; Yao, Z., E-mail: 12hy1@queensu.ca [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada); Kirk, M.A. [Argonne National Laboratory, Materials Science Division, Argonne, IL (United States); Daymond, M.R. [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada)

    2015-07-01

    In situ heavy ion irradiation with 1 MeV Kr{sup 2+} was carried out to study irradiation induced phase change and atomic lattice defects in theβ phase of Zr Excel alloy. No decomposition of β-Zr was observed under irradiation at either 200 {sup o}C or 450 {sup o}C. However, ω-Zr particles experienced shape change and shrinkage associated enrichment of Fe in the β/ω interface at 200 {sup o}C irradiation but not at 450 {sup o}C. The defect evolution in the β-phase was examined with single phase Zr-20Nb alloy. It was found that dislocation loops with Burgers vector 1/2<111> and <001> both present in β-Zr under room temperature irradiation. (author)

  20. Past research and fabrication conducted at SCK•CEN on ferritic ODS alloys used as cladding for FBR's fuel pins

    Science.gov (United States)

    De Bremaecker, Anne

    2012-09-01

    In the 1960s in the frame of the sodium-cooled fast breeders, SCK•CEN decided to develop claddings made with ferritic stainless materials because of their specific properties, namely a higher thermal conductivity, a lower thermal expansion, a lower tendency to He-embrittlement, and a lower swelling than the austenitic stainless steels. To enhance their lower creep resistance at 650-700 °C arose the idea to strengthen the microstructure by oxide dispersions. This was the starting point of an ambitious programme where both the matrix and the dispersions were optimized. A purely ferritic 13 wt% Cr matrix was selected and its mechanical strength was improved through addition of ferritizing elements. Results of tensile and stress-rupture tests showed that Ti and Mo were the most beneficial elements, partly because of the chi-phase precipitation. In 1973 the optimized matrix composition was Fe-13Cr-3.5Ti-2Mo. To reach creep properties similar to those of AISI 316, different dispersions and methods were tested: internal oxidation (that was not conclusive), and the direct mixing of metallic and oxide powders (Al2O3, MgO, ZrO2, TiO2, ZrSiO4) followed by pressing, sintering, and extrusion. The compression and extrusion parameters were determined: extrusion as hollow at 1050 °C, solution annealing at 1050 °C/15 min, cleaning, cold drawing to the final dimensions with intermediate annealings at 1050 °C, final annealing at 1050 °C, straightening and final aging at 800 °C. The choice of titania and yttria powders and their concentrations were finalized on the basis of their out-of-pile and in-pile creep and tensile strength. As soon as a resistance butt welding machine was developed and installed in a glove-box, fuel segments with PuO2 were loaded in the Belgian MTR BR2. The fabrication parameters were continuously optimized: milling and beating, lubrication, cold drawing (partial and final reduction rates, temperature, duration, atmosphere and furnace). Specific non

  1. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing

  2. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  3. TiNi shape memory alloys: effects of the fabrication route, the oxygen content and the zirconium or hafnium additions on the metallurgical characteristics and the thermomechanical properties

    International Nuclear Information System (INIS)

    Olier, P.

    1996-01-01

    In order to promote the development of Ti-Ni shape memory alloys, we have studied the correlation between the fabrication route, the chemical composition (O 2 content, Zr or Hf additions), the metallurgical characteristics and the thermomechanical properties. A conventional sintering does not allow to obtain a homogeneous compound of pure Ti 50 Ni 50 alloy because of the occurrence of Kirkendall porosities which act as a diffusion barrier. An original process including combustion synthesis and hot-extrusion was successfully developed. Resulting products exhibit a smaller grain size (15-20μm) and an enhanced workability in comparison with products obtained by arc-melting and subsequent hot rolling. The presence of oxygen in equiatomic Ti-Ni alloy induces the oxide precipitation of Ti 4 Ni 2 O x type (with x ≤ 1). The precipitated particle fraction is proportional to the oxygen nominal content of the alloy. We show that the decrease of the transformation temperatures is correlated with the decrease of Ti in solid solution due to Ti 4 Ni 2 O precipitation. Moreover, we find that a fine and homogenous oxide dispersion is suitable to decrease the grain size during hot rolling and to enhance to the one way shape memory properties. An increase of the typical transformation temperatures is obtained through of Zr or Hf (in substitution to Ti). But, an increase of the hardness is measured, and consequently the workability of the ternary alloys becomes reduced. However, it is worthwhile to point out that a Ti 38 Ni 50 Hf 12 product obtained by arc melting and hot extrusion is able to fully recover an apparent plastic strain of more than 4% during tensile tests performed under special loading conditions. Such as behaviour is of great interest with respect to potential applications in a temperature range higher that 100 deg. C. (author)

  4. Drop Weight Impact Behavior of Al-Si-Cu Alloy Foam-Filled Thin-Walled Steel Pipe Fabricated by Friction Stir Back Extrusion

    Science.gov (United States)

    Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2017-02-01

    In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.

  5. The Static and Fatigue Behavior of AlSiMg Alloy Plain, Notched, and Diamond Lattice Specimens Fabricated by Laser Powder Bed Fusion

    Directory of Open Access Journals (Sweden)

    Hugo Soul

    2018-04-01

    Full Text Available The fabrication of engineered lattice structures has recently gained momentum due to the development of novel additive manufacturing techniques. Interest in lattice structures resides not only in the possibility of obtaining efficient lightweight materials, but also in the functionality of pre-designed architectured structures for specific applications, such as biomimetic implants, chemical catalyzers, and heat transfer devices. The mechanical behaviour of lattice structures depends not only the composition of the base material, but also on the type and size of the unit cells, as well as on the material microstructure resulting from a specific fabrication procedure. The present work focuses on the static and fatigue behavior of diamond cell lattice structures fabricated from an AlSiMg alloy by laser powder bed fusion technology. In particular, the specimens were fabricated with three different orientations of lattice cells—[001], [011], [111]—and subjected to static tensile testing and force-controlled pull–pull fatigue testing up to 1 × 107 cycles. In parallel, the mechanical behavior of dense tensile plain and notched specimens was also studied and compared to that of their lattice counterparts. Results showed a significant effect of the cell orientation on the fatigue lives: specimens oriented at [001] were ~30% more fatigue-resistant than specimens oriented at [011] and [111].

  6. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques

    Directory of Open Access Journals (Sweden)

    Hae Ri Kim

    2016-07-01

    Full Text Available The microstructures and mechanical properties of cobalt-chromium (Co-Cr alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures or dumbbell- (mechanical properties specimens made of Co-Cr alloys were prepared using casting (CS, milling (ML, selective laser melting (SLM, and milling/post-sintering (ML/PS. For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6. The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process.

  7. Influence of solution treatment on microstructure evolution of TC21 titanium alloy with near equiaxed β grains fabricated by laser additive manufacture

    International Nuclear Information System (INIS)

    Zhang, Q.; Chen, J.; Tan, H.; Lin, X.; Huang, W.D.

    2016-01-01

    Laser additive manufacture (LAM) is a novel technique in which metal components can be fabricated layer by layer. In this paper, the effects of solution temperature and cooling rate on microstructure evolution of the LAMed TC21 titanium alloy which containing near equiaxed prior β grains were studied. The LAMed and solution treated samples were investigated by optical microscopy (OM), scanning election microscope (SEM) and X-ray diffractometer (XRD). The results indicate that both the α phase volume fraction and α laths width are affected by the solution temperature and cooling rate. Different microstructure characterization leads to different Vickers hardness values. However, the solution temperatures selected in this study have insignificant effects on the β and α phase texture. The near equiaxed prior β grains exhibits much weaker texture intensity than the typical columnar prior β grains. The comparison of the calculated and measured α phase texture indicates that variant selection occurred during the solution treatment. The martensite α′ phase precipitated during the layer by layer process shows weak variant selection tendency. - Highlights: • LAMed TC21 titanium alloy containing near equiaxed β grains was fabricated. • Near equiaxed β grains exhibit weaker texture intensity than columnar β grains. • The solution treatment below T_β had insignificant effect on α phase texture. • Variant selection occurred during the solution treatment.

  8. Influence of thermo-mechanical cycling on porcelain bonding to cobalt-chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting.

    Science.gov (United States)

    Antanasova, Maja; Kocjan, Andraž; Kovač, Janez; Žužek, Borut; Jevnikar, Peter

    2018-04-01

    The aim has been to determine the effect of thermo-mechanical cycling on shear-bond-strength (SBS) of dental porcelain to Co-Cr and Ti-based alloys fabricated by casting, computer-numerical-controlled milling, and selective-laser-melting (SLM). Seven groups (n=22/group) of metal cylinders were fabricated by casting (Co-Cr and commercially pure-cpTi), milling (Co-Cr, cpTi, Ti-6Al-4V) or by SLM (Co-Cr and Ti-6Al-4V) and abraded with airborne-particles. The average surface roughness (R a ) was determined for each group. Dental porcelain was applied and each metal-ceramic combination was divided into two subgroups - stored in deionized water (24-h, 37°C), or subjected to both thermal (6000-cycles, between 5 and 60°C) and mechanical cycling (10 5 -cycles, 60N-load). SBS test-values and failure modes were recorded. Metal-ceramic interfaces were analyzed with a focused-ion-beam/scanning-electron-microscope (FIB/SEM) and energy-dispersive-spectroscopy (EDS). The elastic properties of the respective metal and ceramic materials were evaluated by instrumented-indentation-testing. The oxide thickness on intact Ti-based substrates was measured with Auger-electron-spectroscopy (AES). Data were analyzed using ANOVA, Tukey's HSD and t-tests (α=0.05). The SBS-means differed according to the metal-ceramic combination (p<0.0005) and to the fatigue conditions (p<0.0005). The failure modes and interface analyses suggest better porcelain adherence to Co-Cr than to Ti-based alloys. Values of R a were dependent on the metal substrate (p<0.0005). Ti-based substrates were not covered with thick oxide layers following digital fabrication. Ti-based alloys are more susceptible than Co-Cr to reduction of porcelain bond strength following thermo-mechanical cycling. The porcelain bond strength to Ti-based alloys is affected by the applied metal processing technology. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Thermoelectric properties of p-type (Bi{sub 1{minus}x}Sb{sub x}){sub 2}Te{sub 3} fabricated by mechanical alloying process

    Energy Technology Data Exchange (ETDEWEB)

    Jung, B Y; Choi, J S; Oh, T S; Hyun, D B

    1997-07-01

    Thermoelectric properties of polycrystalline (Bi{sub 1{minus}x}Sb{sub x}){sub 2}Te{sub 3} (0.75 {le} x {le} 0.85), fabricated by mechanical alloying and hot pressing methods, have been investigated. Formation of (Bi{sub 0.25}Sb{sub 0.75}){sub 2}Te{sub 3} alloy powder was completed by mechanical alloying for 5 hours at ball-to-material ratio of 5:1, and processing time for (Bi{sub 1{minus}sub x}Sb{sub x}){sub 2}Te{sub 3} formation increased with Sb{sub 2}Te{sub 3} content x. When (Bi{sub 0.25}Sb{sub 0.75}){sub 2}Te{sub 3} was hot pressed at temperatures ranging from 300 C to 550 C for 30 minutes, figure-of-merit increased with hot pressing temperature and maximum value of 2.8 x 10{sup {minus}3}/K could be obtained by hot pressing at 550 C. When hot pressed at 550 C, (Bi{sub 0.2}Sb{sub 0.8}){sub 2}Te{sub 3} exhibited figure-of-merit of 2.92 x 10{sup {minus}3}/K, which could be improved to 2.97 x 10{sup {minus}3}/K with addition of 1 wt% Sb as acceptor dopant.

  10. Fabrication of nano ZrO2 dispersed novel W79Ni10Ti5Nb5 alloy by mechanical alloying and pressureless sintering

    Science.gov (United States)

    Sahoo, R. R.; Patra, A.; Karak, S. K.

    2017-02-01

    A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy

  11. Effect of composition on the fabrication and properties of Ag-Cu alloy sheathed (Bi,Pb)2223 tapes

    International Nuclear Information System (INIS)

    Nakamura, Yuichi; Nakashima, Sohei; Inada, Ryoji; Oota, Akio

    2004-01-01

    To achieve high J c values as well as high mechanical strength, the effects of Ag-Cu alloy sheath and initial composition of precursor on the microstructure and J c properties of Ag-Cu alloy sheathed tapes were investigated. The alkaline-earth cuprate particles were found to form preferentially near the interface between superconducting core and sheath. Although the worse (Bi,Pb)2223 purity and microstructure of alloy sheathed tapes, the reduction of J c values of the tapes was small especially in 7-filaments tapes. This might be explained by the well grain alignment of (Bi,Pb)2223 into the middle region of the filament due to the high strength of alloy sheath. The usage of the Cu deficient composition was effective to reduce the total amount of 14:24 particle while the filament thickness should be thin to maintain J c values for Ag-Cu alloy sheathed tapes due to the lack of Cu diffusion from the sheath to convert 2212 into (Bi,Pb) in the middle region of the filament

  12. A new insight into high-strength Ti62Nb12.2Fe13.6Co6.4Al5.8 alloys with bimodal microstructure fabricated by semi-solid sintering.

    Science.gov (United States)

    Liu, L H; Yang, C; Kang, L M; Qu, S G; Li, X Q; Zhang, W W; Chen, W P; Li, Y Y; Li, P J; Zhang, L C

    2016-03-31

    It is well known that semi-solid forming could only obtain coarse-grained microstructure in a few alloy systems with a low melting point, such as aluminum and magnesium alloys. This work presents that semi-solid forming could also produce novel bimodal microstructure composed of nanostructured matrix and micro-sized (CoFe)Ti2 twins in a titanium alloy, Ti62Nb12.2Fe13.6Co6.4Al5.8. The semi-solid sintering induced by eutectic transformation to form a bimodal microstructure in Ti62Nb12.2Fe13.6Co6.4Al5.8 alloy is a fundamentally different approach from other known methods. The fabricated alloy exhibits high yield strength of 1790 MPa and plastic strain of 15.5%. The novel idea provides a new insight into obtaining nano-grain or bimodal microstructure in alloy systems with high melting point by semi-solid forming and into fabricating high-performance metallic alloys in structural applications.

  13. In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components

    International Nuclear Information System (INIS)

    Verma, Ranjana; Xu, Xiufen; Jaiswal, Manoj K.; Olsen, Cara; Mears, David; Caretti, Giuseppina; Galdzicki, Zygmunt

    2011-01-01

    Tungsten-alloy has carcinogenic potential as demonstrated by cancer development in rats with intramuscular implanted tungsten-alloy pellets. This suggests a potential involvement of epigenetic events previously implicated as environmental triggers of cancer. Here, we tested metal induced cytotoxicity and epigenetic modifications including H3 acetylation, H3-Ser10 phosphorylation and H3-K4 trimethylation. We exposed human embryonic kidney (HEK293), human neuroepithelioma (SKNMC), and mouse myoblast (C2C12) cultures for 1-day and hippocampal primary neuronal cultures for 1-week to 50-200 μg/ml of tungsten-alloy (91% tungsten/6% nickel/3% cobalt), tungsten, nickel, and cobalt. We also examined the potential role of intracellular calcium in metal mediated histone modifications by addition of calcium channel blockers/chelators to the metal solutions. Tungsten and its alloy showed cytotoxicity at concentrations > 50 μg/ml, while we found significant toxicity with cobalt and nickel for most tested concentrations. Diverse cell-specific toxic effects were observed, with C2C12 being relatively resistant to tungsten-alloy mediated toxic impact. Tungsten-alloy, but not tungsten, caused almost complete dephosphorylation of H3-Ser10 in C2C12 and hippocampal primary neuronal cultures with H3-hypoacetylation in C2C12. Dramatic H3-Ser10 dephosphorylation was found in all cobalt treated cultures with a decrease in H3 pan-acetylation in C2C12, SKNMC and HEK293. Trimethylation of H3-K4 was not affected. Both tungsten-alloy and cobalt mediated H3-Ser10 dephosphorylation were reversed with BAPTA-AM, highlighting the role of intracellular calcium, confirmed with 2-photon calcium imaging. In summary, our results for the first time reveal epigenetic modifications triggered by tungsten-alloy exposure in C2C12 and hippocampal primary neuronal cultures suggesting the underlying synergistic effects of tungsten, nickel and cobalt mediated by changes in intracellular calcium homeostasis and

  14. B2 Grain Growth Behavior of a Ti-22Al-25Nb Alloy Fabricated by Hot Pressing Sintering

    Science.gov (United States)

    Jia, Jianbo; Liu, Wenchao; Xu, Yan; Chen, Chen; Yang, Yue; Luo, Junting; Zhang, Kaifeng

    2018-05-01

    Grain growth behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy was investigated by applying a series of isothermal treatment tests over a wide range of temperatures and holding times. An isothermal treatment scheme was conducted in the B2 phase region (1070-1110 °C) and α 2 + B2 phase region (1010-1050 °C) at holding times of 10, 30 min, 1, 2, and 3 h, respectively. The effects of temperature and holding time on the microstructure evolution and microhardness of the P/M Ti-22Al-25Nb alloy at elevated temperatures were evaluated using optical microscope, scanning electron microscope, x-ray diffraction, and Vickers hardness test techniques. The results revealed that the alloy's treated microstructure was closely linked to temperature and holding time, respectively. The change law of B2 grain growth with holding time and temperature can be well interpreted by the Beck equation and Hillert equation, respectively. The B2 grain growth exponent n and activation energy Q were acquired based on experimental data in the α 2 + B2 and B2 phase regions. In addition, the grain growth contour map for the P/M Ti-22Al-25Nb alloy was constructed to depict variations in B2 grain size based on holding time and temperature.

  15. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Pripanapong, Patchara; Kariya, Shota; Luangvaranunt, Tachai; Umeda, Junko; Tsutsumi, Seiichiro; Takahashi, Makoto; Kondoh, Katsuyoshi

    2016-01-01

    Ti and solution treated Mg alloys such as AZ31B (ST), AZ61 (ST), AZ80 (ST) and AZ91 (ST) were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST), in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST) exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST) dissimilar materials is discussed in this work. PMID:28773788

  16. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Patchara Pripanapong

    2016-08-01

    Full Text Available Ti and solution treated Mg alloys such as AZ31B (ST, AZ61 (ST, AZ80 (ST and AZ91 (ST were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST, in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST dissimilar materials is discussed in this work.

  17. Microstructure and mechanical properties of Al-Si-X alloys fabricated by gas atomization and extrusion process

    International Nuclear Information System (INIS)

    Lee, T.H.; Hong, S.J.

    2009-01-01

    In order to develop good wear resistant and high-strength alloys, Al 81 Si 19 alloy was reinforced with transition elements such as Ni and Ce. The solubility of Si in aluminum was amplified, with increasing the Ni and Ce content in the rapidly solidified powders. The extruded bars consist of homogeneously dispersed fine Si particles along with Al 3 Ni and Al 3 Ce compounds (30-120 nm) in aluminum matrix (grain size below 500 nm). The tensile strength at room temperature for Al 81 Si 19 , Al 78 Si 19 Ni 2 Ce 0.5 and Al 76 Si 19 Ni 4 Ce 1 bars extruded at 400 deg. C was estimated as 281, 521, and 668 MPa, respectively. In addition, the maximum tensile strength of 730 MPa was attained in Al 73 Si 19 Ni 7 Ce 1 bulk alloy. The uniform dispersion of precipitates (Si, Al 3 Ni and Al 3 Ce particles) from the supersaturated Al matrix of ternary and quaternary alloys after extrusion was effective for enhanced mechanical properties.

  18. Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes

    International Nuclear Information System (INIS)

    Sajjadi, S.A.; Ezatpour, H.R.; Torabi Parizi, M.

    2012-01-01

    Highlights: → Nano and micro-composites (A356/Al 2 O 3 ) were fabricated by stir-casting and compo-casting. → Uniform distribution, grain refinement and low porosity in the composites were attained. → Addition of alumina led to the improvement in yield, ultimate tensile and compression strength. → Nano-alumina particles and compo-casting process obtained the best mechanical properties. -- Abstract: Metal-matrix composites (MMCs), as light and strong materials, are very attractive for application in different industries. In the present work, nano and micro-composites (A356/Al 2 O 3 ) with different weight percent of particles were fabricated by two melt techniques such as stir-casting and compo-casting. Microstructural characterization was investigated by optical (OP) and scanning electron microscopy (SEM). Tensile, hardness and compression tests were carried out in order to identify mechanical properties of the composites. The results of microstructural study revealed uniform distribution, grain refinement and low porosity in micro and nano-composite specimens. The mechanical results showed that the addition of alumina (micro and nano) led to the improvement in yield strength, ultimate tensile strength, compression strength and hardness. It was indicated that type of fabrication process and particle size were the effective factors influencing on the mechanical properties. Decreasing alumina particle size and using compo-casting process obtained the best mechanical properties.

  19. Fabrication of ZIF-8@SiO2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance.

    Science.gov (United States)

    Wu, Cuiqing; Liu, Qi; Chen, Rongrong; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Takahashi, Kazunobu; Liu, Peili; Wang, Jun

    2017-03-29

    Superhydrophobic coatings are highly promising for protecting material surfaces and for wide applications. In this study, superhydrophobic composites, comprising a rhombic-dodecahedral zeolitic imidazolate framework (ZIF-8@SiO 2 ), have been manufactured onto AZ31 magnesium alloy via chemical etching and dip-coating methods to enhance stability and corrosion resistance. Herein, we report on a simple strategy to modify hydrophobic hexadecyltrimethoxysilan (HDTMS) on ZIF-8@SiO 2 to significantly improve the property of repelling water. We show that various liquids can be stable on its surface and maintain a contact angle higher than 150°. The morphologies and chemical composition were characterized by means of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FI-IR). In addition, the anticorrosion and antiattrition properties of the film were assessed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization and HT, respectively. Such a coating shows promising potential as a material for large-scale fabrication.

  20. Effect of positively charged particles on sputtering damage of organic electro-luminescent diodes with Mg:Ag alloy electrodes fabricated by facing target sputtering

    Directory of Open Access Journals (Sweden)

    Kouji Suemori

    2017-04-01

    Full Text Available We investigated the influence of the positively charged particles generated during sputtering on the performances of organic light-emitting diodes (OLEDs with Mg:Ag alloy electrodes fabricated by sputtering. The number of positively charged particles increased by several orders of magnitude when the target current was increased from 0.1 A to 2.5 A. When a high target current was used, many positively charged particles with energies higher than the bond energy of single C–C bonds, which are typically found in organic molecules, were generated. In this situation, we observed serious OLED performance degradation. On the other hand, when a low target current was used, OLED performance degradation was not observed when the number of positively charged particles colliding with the organic underlayer increased. We concluded that sputtering damage caused by positively charged particles can be avoided by using a low target current.

  1. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route.

    Science.gov (United States)

    Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-03-21

    Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  2. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2014-03-01

    Full Text Available Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  3. Corrosion of high temperature resisting alloys exposed to heavy fuel ash; Corrosion de aleaciones resistentes a altas temperaturas expuestas a ceniza de combustoleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Wong Moreno, Adriana del Carmen

    1998-03-01

    The objective of the performed research was to study the degradation process by high temperature corrosion of alloys exposed to heavy fuel oil ashes through a comparative experimental evaluation of its performance that allowed to establish the mechanisms involved in the phenomenon. The experimentation carried out involved the determination of the resistance to the corrosion of 14 alloys of different type (low and medium alloy steels, ferritic and austenitic stainless steels, nickel base alloys and a FeCrAl alloy of type ODS) exposed to high temperatures (580 Celsius degrees - 900 Celsius degrees) in 15 ash deposits with different corrosive potential, which were collected in the high temperature zone of boilers of thermoelectric power stations. The later studies to the corrosion tests consisted of the analysis by sweeping electron microscopy supported by microanalysis of the corroded probes, with the purpose of determining the effect of Na, V and S on the corrosivity of the ash deposits and the effect of the main alloying elements on the corrosion resistance of the alloys. Such effects are widely documented to support the proposed mechanisms of degradation that are occurring. The global analysis of the generated results has allowed to propose a model to explain the global mechanism of corrosion of alloys exposed to the high temperatures of ash deposits. The proposed model, complements the processed one by Wilson, widely accepted for fused vanadates, as far as on one hand, it considers the effect of the sodium sulfate presence (in addition to the vanadium compounds) in the deposits, and on the other hand, it extends it to temperatures higher than the point of fusion of constituent vanadium compounds of the deposits. Both aspects involve considering the roll that the process of diffusion of species has on the degradation and the capacity of protection of the alloy. The research performed allowed to confirm what the Wilson model had established for deposits with high

  4. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    Science.gov (United States)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei

    2017-05-01

    Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  5. Fabrication of γ-Fe2O3 Nanoparticles by Solid-State Thermolysis of a Metal-Organic Framework, MIL-100(Fe, for Heavy Metal Ions Removal

    Directory of Open Access Journals (Sweden)

    Shengtao Hei

    2014-01-01

    Full Text Available Porous γ-Fe2O3 nanoparticles were prepared via a solid-state conversion process of a mesoporous iron(III carboxylate crystal, MIL-100(Fe. First, the MIL-100(Fe crystal that served as the template of the metal oxide was synthesized by a low-temperature (<100°C synthesis route. Subsequently, the porous γ-Fe2O3 nanoparticles were fabricated by facile thermolysis of the MIL-100(Fe powders via a two-step calcination treatment. The obtained γ-Fe2O3 was characterized by X-ray diffraction (XRD, N2 adsorption, X-ray photoelectron spectroscopy (XPS, and scanning electron microscopy (SEM techniques, and then used as an adsorbent for heavy metal ions removal in water treatment. This study illustrates that the metal-organic frameworks may be suitable precursors for the fabrication of metal oxides nanomaterials with large specific surface area, and the prepared porous γ-Fe2O3 exhibits a superior adsorption performance for As(V and As(III ions removal in water treatment.

  6. Superhydrophobic titania nanoparticles for fabrication of paper-based analytical devices: An example of heavy metals assays.

    Science.gov (United States)

    Xu, Wenjian; Chen, Xi; Cai, Songcai; Chen, Jin; Xu, Zhen; Jia, Hongpeng; Chen, Jing

    2018-05-01

    A new strategy has been introduced to successfully fabricate the hydrophobic barriers of PADs by using organofluorine-modified superhydrophobic TiO 2 NPs. Superhydrophobic TiO 2 -140 NPs with high-photoactivity can be converted to hydrophilicity by self-degradation of surface organic moieties under full spectrum light irradiation. Superhydrophobic TiO 2 -RT NPs with low-photoactivity exhibits good hydrophobic stability under light irradiation. Thus, combining these features, the PADs have been designed and constructed by photo-induced fabrication of hydrophobic barriers on the surface of the paper. To demonstrate the effectiveness of the constructed PADs, colorimetric detections have been displayed for Fe 3+ and Ni 2+ ions. The synchronous multi-component detections based on the "multi-channel" PADs and the intuitive detections based on the "chemical-symbol-style" PADs are rapid and feasible. A detection range of Fe 3+ and Ni 2+ ions based on the "circle-array" PAD is applicable and reliable in 0.2-6.0 mM and 0.4-4.0 mM, respectively. Thus, these results make it to be believed that this new strategy provides an alternative way to effectively construct the PADs. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhanced Raman Spectroscopy Based Trace Explosives Detection

    Directory of Open Access Journals (Sweden)

    Moram Sree Satya Bharati

    2018-03-01

    Full Text Available Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk in HAuCl4 (5 mM solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2,4,6-trinitrophenol (PA, 2,4-dinitrotoluene (DNT and a common dye methylene blue (MB using the surface enhanced Raman spectroscopy (SERS technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT and few picograms in the case of a common dye molecule (MB. Typical enhancement factors achieved were estimated to be ~104, ~105, and ~107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.

  8. Fabrication and electromagnetic properties of bio-based helical soft-core particles by way of Ni-Fe alloy electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Lan Mingming, E-mail: lan_mingming@163.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Zhang Deyuan; Cai Jun; Zhang Wenqiang; Yuan Liming [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2011-12-15

    Ni-Fe alloy electroplating was used as a bio-limited forming process to fabricate bio-based helical soft-core ferromagnetic particles, and a low frequency vibration device was applied to the cathode to avoid microorganism (Spirulina platens) cells adhesion to the copper net during the course of plating. The morphologies and ingredients of the coated Spirulina cells were characterized using scanning electron microscopy and energy dispersive spectrometer. The complex permittivity and permeability of the samples containing the coated Spirulina cells before and after heat treatment were measured and investigated by a vector network analyzer. The results show that the Spirulina cells after plating keep their initial helical shape, and applying low frequency vibration to the copper net cathode in the plating process can effectively prevent agglomeration and intertwinement of the Spirulina cells. The microwave absorbing and electromagnetic properties of the samples containing the coated Spirulina cells particles with heat treatment are superior to those samples containing the coated Spirulina cells particles without heat treatment. - Highlights: > We used the microorganism cells as forming template to fabricate the bio-based helical soft-core ferromagnetic particles. > Microorganism selected as forming templates was Spirulina platens, which are of natural helical shape and have high aspect ratio. > Coated Spirulina cells were a kind lightweight ferromagnetic particle.

  9. Fabrication of Nb{sub 3}Al superconductor by the optimized mechanical alloying method with low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: yongzhang@swjtu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Lin, W.J.; Xu, L.Y.; Yang, D.W.; Chen, Y.L. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, P.Y.; Pan, X.F.; Yan, G. [Western Superconducting Technoligies Co., Ltd., Xi' an 710018 (China); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052 NSW (Australia)

    2016-11-15

    Highlights: • Due to a much better strain tolerance than Nb{sub 3}Sn, Nb{sub 3}Al has been considered as an excellent candidate for making high field magnets. At present, the Nb{sub 3}Al superconducting wires were prepared mainly by the Jelly-roll method combined with a rapid heating and quenching (RHQ) heat treatment at around 2000 °C. In this study, Nb{sub 3}Al superconductor with T{sub c} of 15.6 K is directly prepared with a mechanical alloying method followed by a low temperature annealing at 800 to 900 °C. Our results hint the possibility that Nb{sub 3}Al superconducting wire with high performance can be prepared below the melting point of Cu (1080 °C) by a conventional powder in tube (PIT) method, thus effectively avoiding high temperature heat treatment and RHQ device. - Abstract: Mechanical alloying was used to synthesize Nb{sub 3}Al superconductor successfully, and the process was optimization under various preparation conditions. In the current study, Nb{sub 3}Al superconductor with T{sub c} of 15.6 K was directly prepared from high quality Nb (Al) solid solution by mechanical alloying method and heat treatment at a low temperature of 800 to 900 °C. The results showed that Nb{sub 3}Al superconducting wire with high performance could be prepared after heat treatment below the melting point of Cu (1080°C) and using Nb (Al) solid solution and conventional powder in tube (PIT) method, thus effectively avoiding ultra-high temperature heat treatment and special rapid heating and quenching(RHQ) device.

  10. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    OpenAIRE

    Wei-wei Chen; Ze-xin Wang; Lei Sun; Sheng Lu

    2015-01-01

    Micro-arc oxidation (MAO) coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2). The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM) coupled with an energy dispersive spectrometer (EDS), confocal laser scanning microscopy and X-ray diffraction (XRD). The results indicate that the growth process of MAO coating mainly goes through “form...

  11. Effect of heat treatment on the microstructure of Co-Cr-W alloy fabricated by laser additive manufacturing

    Science.gov (United States)

    Ren, Bo; Chen, Changjun; Zhang, Min

    2018-04-01

    Stellite 6 cobalt-based alloy powder was used to produce Co-Cr-W alloy using laser additive manufacturing technology, and then different heat treatment strategies were carried out on the deposited sample. The characteristics of microstructure under different heat treatment conditions were investigated using scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscope, and x-ray diffraction. The results show that the as-deposited sample has few cracks or pores, and the microstructure is typical dendritic structure, and lamellar eutectic carbides are rich in Cr in interdendritic. The matrix mainly consists of γ phases and a few ɛ phases. Some γ phases transform into ɛ phases after 900°C/6 h aging treatment and lamellar eutectic carbides transform into blocky carbides presenting as a network, most of the carbides are rich in Cr and a few are rich in W. When heat treated at 1200°C/1 h followed by water cooling and then treated at 900°C/6 h followed by furnace cooling, it can be found that some γ phases transform into ɛ phases. The carbides transform into elliptical M23C6 carbides that are rich in Cr with the size of 1 to 3 μm and a part of W-rich carbides.

  12. Study on the fabrication of the Stress Corrosion Crack by vapor pressure in the Alloy 600 Pipe

    International Nuclear Information System (INIS)

    Kim, Jae Seong; An, Ju Seon; Hwang, Woong Ki; Lee, Bo Young

    2010-01-01

    The stress corrosion crack is one of the life-limiting mechanisms in nuclear power plant conditions. During the operation of a power plant stress corrosion cracks can initiate and grow in dissimilar metal weld pipe joints of primary loop components. In particular, stress corrosion cracking usually occurs when the following three factors exist at the same time; susceptible material, corrosive environment, and tensile stress (including residual stress). Thus, residual stress becomes very critical for stress-corrosion cracking when it is difficult to improve the material corrosivity of the components and their environment under operating conditions. Since the research conducted by Coriou et al., it is well known that Ni-based alloy is susceptible to stress corrosion cracking(SCC) in deaerated pure water at high temperature and the SCC is difficult to be reproduced in laboratory. The aim of this study was to fulfill the need by developing an artificial SCC manufacturing method, which would produce realistic SCC in the Alloy 600 pipe

  13. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition.

    Science.gov (United States)

    Liu, Yan; Xue, Jingze; Luo, Dan; Wang, Huiyuan; Gong, Xu; Han, Zhiwu; Ren, Luquan

    2017-04-01

    A facile, rapid and one-step electrodeposition process has been employed to construct a superhydrophobic surface with micro/nano scale structure on a Mg-Sn-Zn (TZ51) alloy, which is expected to be applied as a biodegradable biomedical implant materials. By changing the electrodeposition time, the maximum contact angle of the droplet was observed as high as 160.4°±0.7°. The characteristics of the as-prepared surface were conducted by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). Besides, the anti-corrosion performance of the coatings in stimulated body fluid (SBF) solution were investigated by electrochemical measurement. The results demonstrated that the anti-corrosion property of superhydrophobic surface was greatly improved. This method show beneficial effects on the wettability and corrosion behavior, and therefore provides a efficient route to mitigate the undesirable rapid corrosion of magnesium alloy in favor of application for clinical field. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Properties of Rolled AZ31 Magnesium Alloy Sheet Fabricated by Continuous Variable Cross-Section Direct Extrusion

    Science.gov (United States)

    Liu, Yang; Li, Feng; Li, Xue Wen; Shi, Wen Yong

    2018-03-01

    Rolling is currently a widely used method for manufacturing and processing high-performance magnesium alloy sheets and has received widespread attention in recent years. Here, we combined continuous variable cross-section direct extrusion (CVCDE) and rolling processes. The microstructure and mechanical properties of the resulting sheets rolled at different temperatures from CVCDE extrudate were investigated by optical microscopy, scanning electron microscope, transmission electron microscopy and electron backscatter diffraction. The results showed that a fine-grained microstructure was present with an average grain size of 3.62 μm in sheets rolled from CVCDE extrudate at 623 K. Dynamic recrystallization and a large strain were induced by the multi-pass rolling, which resulted in grain refinement. In the 573-673 K range, the yield strength, tensile strength and elongation initially increased and then declined as the CVCDE temperature increased. The above results provide an important scientific basis of processing, manufacturing and the active control on microstructure and property for high-performance magnesium alloy sheet.

  15. Effects of fabrication practices and techniques on the corrosion and mechanical properties of Ni-Cr-Mo nickel based alloys UNS N10276, N06022, N06686, and N06625

    International Nuclear Information System (INIS)

    Hinshaw, E.B.; Crum, J.R.

    1996-01-01

    Ni-Cr-Mo alloys have excellent resistance to both oxidizing and reducing type environments; however, heat treating, surface condition, welding, and type of welding consumable can have a significant affect on the corrosion resistance and mechanical properties of these alloys. It is also important when performing standard ASTM intergranular corrosion tests on welded test coupons to make an accurate comparison of alloys being tested. A standard weld procedure and consistent post-weld sample conditioning method should be incorporated into the comparison test program. An evaluation of the effect of various fabrication practices on the corrosion resistance of the alloy was performed using accelerated corrosion tests ASTM G28B. The fabrication conditions examined were as-welded, welded-pickled, welded-annealed-pickled, welded annealed ground, welded-ground, using over matching filler metals, and various levels of heat input. In addition to fabrication techniques, the effect of ASTM G28B test duration on corrosion rates of UNS N10276, N06022, N06686, and N06625 was evaluated. ASTM G28A intergranular corrosion and mechanical testing using welded coupons of UNS N06625 were also performed to determine the affect of post-weld annealing and aging heat treatments on the corrosion resistance and mechanical properties of UNS N06625

  16. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting.

    Science.gov (United States)

    Wang, Hong; Zhao, Bingjing; Liu, Changkui; Wang, Chao; Tan, Xinying; Hu, Min

    2016-01-01

    Electron beam melting (EBM) and selective laser melting (SLM) are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT) and Computer-aided Design (CAD) data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemical properties, which are closely related to the biocompatibility of metallic products. In this study, we evaluate and compare the biocompatibility, including cytocompatibility, haemocompatibility, skin irritation and skin sensitivity of Ti6Al4V fabricated by EBM and SLM. The results were analysed using one-way ANOVA and Tukey's multiple comparison test. Both the EBM and SLM Ti6Al4V exhibited good cytobiocompatibility. The haemolytic ratios of the SLM and EBM were 2.24% and 2.46%, respectively, which demonstrated good haemocompatibility. The EBM and SLM Ti6Al4V samples showed no dermal irritation when exposed to rabbits. In a delayed hypersensitivity test, no skin allergic reaction from the EBM or the SLM Ti6Al4V was observed in guinea pigs. Based on these results, Ti6Al4V fabricated by EBM and SLM were good cytobiocompatible, haemocompatible, non-irritant and non-sensitizing materials. Although the data for cell adhesion, proliferation, ALP activity and the haemolytic ratio was higher for the SLM group, there were no significant differences between the different manufacturing methods.

  17. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    Science.gov (United States)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  18. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  19. Monocrystalline Heusler Co2FeSi alloy glass-coated microwires: Fabrication and magneto-structural characterization

    Science.gov (United States)

    Galdun, L.; Ryba, T.; Prida, V. M.; Zhukova, V.; Zhukov, A.; Diko, P.; Kavečanský, V.; Vargova, Z.; Varga, R.

    2018-05-01

    Large scale production of single crystalline phase of Heusler Co2FeSi alloy microwire is reported. The long microwire (∼1 km) with the metallic nucleus diameter of about 2 μm is characterized by well oriented monocrystalline structure (B2 phase, with the lattice parameter a = 5.615 Å). Moreover, the crystallographic direction [1 0 1] is parallel to the wire's axis along the entire length. Additionally, the wire is characterized by exhibiting a high Curie temperature (Tc > 800 K) and well-defined magnetic anisotropy mainly governed by shape. Electrical resistivity measurement reveals the exponential suppression of the electron-magnon scattering which provides strong evidence on the half-metallic behaviour of this material in the low temperature range.

  20. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    Directory of Open Access Journals (Sweden)

    Wei-wei Chen

    2015-09-01

    Full Text Available Micro-arc oxidation (MAO coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2. The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM coupled with an energy dispersive spectrometer (EDS, confocal laser scanning microscopy and X-ray diffraction (XRD. The results indicate that the growth process of MAO coating mainly goes through “forming → puncturing → rapid growth of micro-arc oxidation →large arc discharge → self-repairing”. The coating grows inward and outward at the same time in the initial stage, but outward growth of the coating is dominant later. Mg, Mg2SiO4 and MgO are the main phases of ceramic coating.

  1. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Keju; Zhao, Huihui; Zhang, Jun; Chen, Jia; Dai, Zhendong, E-mail: zddai@nuaa.edu.cn

    2014-08-30

    Highlights: • Cu–Ni alloy open-cell foam integrated with CNTs was used for EMI shielding. • The composite was prepared by electroless, electro-, and electrophoretic deposition. • The main shielding mechanism was multiple reflections and absorptions of microwaves. • The composite had a porous structure, large surface area, and inherent permeability. - Abstract: A lightweight multi-layered electromagnetic interference (EMI) shielding material made of open-cell foam of a Cu–Ni alloy integrated with carbon nanotubes (CNTs) was prepared by electroless copper plating, then nickel electroplating, and finally electrophoretic deposition of CNTs. The foamed Cu–Ni–CNT composite comprises, from inside to outside, Cu, Ni, and CNT layers. Scanning electron microscopy, energy dispersive spectroscopy, and EMI tests were employed to characterize the morphology, composition, and EMI performance of the composite, respectively. The results indicated that the shielding effectiveness (SE) of the composite increased with increasing pore density (indicated as pores per inch (PPI)) and increasing thickness. A specimen with a PPI of 110 and a 1.5-mm thickness had a maximum SE of up to 54.6 dB, and a SE as high as 47.5 dB on average in the 8–12 GHz range. Integrating the inherent superiority of Cu, Ni, and CNTs, the porous structure of the composite can attenuate the incident electromagnetic microwaves by reflecting, scattering, and absorbing them between the metallic skeleton and the CNT layer. The multiple reflections and absorptions make it difficult for the microwaves to escape from the composite before being absorbed, thereby making the composite a potential shielding material.

  2. Heavy Metals and Radioactive Characterization of the Main Materials Involved in the HC-FeMn Alloy Production Process

    Energy Technology Data Exchange (ETDEWEB)

    Badran, H. [Taif University (Saudi Arabia); Bakr, H.; Elnimr, T. [Tanta University (Egypt); Sharshar, T. [Kafrelsheikh University (Egypt)

    2014-07-01

    Natural occurring radioactive materials (NORM) are always present in association with a variety of elements in the geological formations. The extraction of non-radioactive minerals from the mineral matrices may lead to the buildup of NORM in wastes and/or end product with different concentrations of uranium and thorium daughters, depending on extraction procedures, initial concentrations and chemical forms of the NORM in the mineral matrices. Gamma-ray spectrometry was used for the quantitative assessment of radionuclides and the associated radiation hazards at the high carbon Ferromanganese alloy (HC-FeMn) production plant in Abu Zenima (West Sinai, Egypt). The low grad Mn from Um Bogma is mixed with Norwegian Mn to improve its quality. While the Egyptian raw Mn is richer in {sup 238}U, Cu and Zn, the Norwegian raw Mn is richer in {sup 40}K and Mn. The mixing process leads to increasing concentrations of {sup 226}Ra and Zn. Enhanced concentrations of Mn, Cu and Zn were also found in the waste. The radioactivity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K in different raw materials used in the alloy formation process, HC-FeMn alloy, waste and other mining products produced by the same company are also determined. The estimated range of the total activities of wastes produced annually by the extraction process are 8.7-17.3, 0.7-1.3 and 6.7-13.4 GBq for {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. The calculated absorbed dose rate and the annual effective dose equivalent in waste dumps with these increased fractions of NORM are 225 nGy/h and 276 mSv, respectively. This investigation does not recommend the use of the waste in housing construction or as filling materials in the area where houses may be built on or near the tailing piles. Document available in abstract form only. (authors)

  3. Fabrication of nano porous with heavy ions in plastics for the oil industry; Fabricacion de nano poros con iones pesados en plasticos para la industria petrolera

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Tavera, L.; Mendoza, D.; Mut, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mbg@nuclear.inin.mx

    2003-07-01

    The natural gas has undesirable concentrations of other gases like the nitrogen that reduces the heat capacity of the gas. It is required to develop separation technology to increase the caloric value of the gas. Among the technology in development for the separation of these gases there are the nano membranes; these are polymeric material that when synthesizing them form nano pores that allow the selective separation of the gas. Another form of creating these nano pores with uniform and controlled pore size, is irradiating a polymeric material with heavy ions. The energy loss of the heavy ion produces cylindrical damages around its trajectory in a diameter among 30 x 10{sup -10} m and 100 x 10{sup -10} m. This damage breaks the chains of the polymer making it susceptible to the corrosion of appropriate chemical agents that allow to create a pore of the size of some nanometers in the polymer. The basic mechanisms of the interaction of the ions with the polymer are important for the controlled creation, the observation and analysis of these nano pores. One of the more appropriate techniques for the visualization and analysis of the geometry of the produced damages, it is the scanning electron and of the atomic force microscopies. The present work has as objective to define the basic parameters of the interaction of the ion with the polymer that intervene in the fabrication of this nano pores. The conditions of the chemical corrosion process are presented for the creation of micro pores in two polymers CR39 and Makrofol produced by fission fragments and alpha particles. A characterization of the diameters and of the damages profile is make. The obtained results are related with the mechanisms of loss of energy of the ions in the matter and the particles identification in function of the damage geometry. (Author)

  4. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2014-12-15

    Highlights: • Adding CeO{sub 2}/ZrO{sub 2} nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO{sub 2} and ZrO{sub 2} nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO{sub 2} and ZrO{sub 2} peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  5. 25 years of NDE in fabrication of zirconium alloy mill products and nuclear fuel in the Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Mistry, R.K.; Laxminarayana, B.; Srivastava, R.K.

    1996-01-01

    Failure of nuclear fuel is highly undesirable from both economic and operational aspects. Hence all the components require rigorous QC and inspection checks. NDT plays a major role in assuring the quality of the products both at final and intermediate stages. This paper gives an overall review of NDT methods employed in achieving the integrity of nuclear products. The NDE procedures followed in NFC are visual inspection, radiography, penetrant testing, eddy current testing, ultrasonic testing and helium leak testing. NFC's quality assurance programme is organised to achieve the desired objectives by carrying out in process and final inspection at all critical steps of fabrication. (author)

  6. Microstructure and textural characterization of hot extruded Zr-2.5Nb alloy PHWR pressure tube fabricated by various ingot processing route

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Jha, S.K.; Saibaba, N.; Neogy, S.; Mani Krishna, K.V.; Srivastava, D.; Dey, G.K.

    2011-01-01

    Zr-2.5 Nb alloys finds its applications as a pressure tube component in pressure tube type thermal reactors such as PHWRs and RBMK due to properties attributed such as low neutron absorption cross section, high temperature strength and corrosion resistance etc. Manufacturing of this life time components involves series of thermo-mechanical processes of hot working and cold working with intermediate annealing. The life time of Pressure tube are limited due to their diametral creep properties which is governed by metallurgical characteristics such as texture, microstructure dislocation density etc. The primary breakdown of cast structure in Vacuum Arc Melted ingot can be effected by either hot extrusion or forging in single or multiple stages before final hot extrusion step into the blank for manufacturing of seamless pressure tube. Elevated temperature deformation carried out in hot working above the recrystallization temperature would enable impositions of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on process parameters such as extrusion ratio, temperature and strain rate. Basic microstructure developed at this deformation stage has significant bearing on the final properties of the material fabricated with subsequent cold working steps. The major texture in α+β Zr-2.5 Nb alloy is established during final extrusion to blank which does not change significantly during subsequent cold pilgering. However, microstructure is modified significantly in subsequent cold working which can be effected by cold pilgering or cold drawing in single or multiple steps. Present paper brings out the various ingot processing routes using forging and or extrusion followed for fabrication of pressure tubes. The development of texture and microstructures has been discussed at the blank stage from these processing routes and also with respect to varying extrusion variable such as extrusion ratio

  7. Mechanical behavior of Ti-Ta-based surface alloy fabricated on TiNi SMA by pulsed electron-beam melting of film/substrate system

    Science.gov (United States)

    Meisner, S. N.; Yakovlev, E. V.; Semin, V. O.; Meisner, L. L.; Rotshtein, V. P.; Neiman, A. A.; D'yachenko, F.

    2018-04-01

    The physical-mechanical properties of the Ti-Ta based surface alloy with thickness up to ∼2 μm fabricated through the multiple (up to 20 cycles) alternation of magnetron deposition of Ti70Ta30 (at.%) thin (50 nm) films and their liquid-phase mixing with the NiTi substrate by microsecond low-energy, high current pulsed electron beam (LEHCPEB: ≤15 keV, ∼2 J/cm2) are presented. Two types of NiTi substrates (differing in the methods of melting alloys) were pretreated with LEHCPEB to improve the adhesion of thin-film coating and to protect it from local delimitation because of the surface cratering under pulsed melting. The methods used in the research include nanoindentation, transmission electron microscopy, and depth profile analysis of nanohardness, Vickers hardness, elastic modulus, depth recovery ratio, and plasticity characteristic as a function of indentation depth. For comparison, similar measurements were carried out with NiTi substrates in the initial state and after LEHCPEB pretreatment, as well as on "Ti70Ta30(1 μm) coating/NiTi substrate" system. It was shown that the upper surface layer in both NiTi substrates is the same in properties after LEHCPEB pretreatment. Our data suggest that the type of multilayer surface structure correlates with its physical-mechanical properties. For NiTi with the Ti-Ta based surface alloy ∼1 μm thick, the highest elasticity falls on the upper submicrocrystalline layer measuring ∼0.2 μm and consisting of two Ti-Ta based phases: α‧‧ martensite (a = 0.475 nm, b = 0.323 nm, c = 0.464 nm) and β austenite (a = 0.327 nm). Beneath the upper layer there is an amorphous sublayer followed by underlayers with coarse (>20 nm) and fine (<20 nm) average grain sizes which provide a gradual transition of the mechanical parameters to the values of the NiTi substrate.

  8. Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process

    Directory of Open Access Journals (Sweden)

    Xuewei Fang

    2018-05-01

    Full Text Available In this research, four different welding arc modes including conventional cold metal transfer (CMT, CMT-Pulse (CMT-P, CMT-Advanced (CMT-ADV, and CMT pulse advanced (CMT-PADV were used to deposit 2219-Al wire. The effects of different arc modes on porosity, pore size distribution, microstructure evolution, and mechanical properties were thoroughly investigated. The statistical analysis of the porosity and its size distribution indicated that the CMT-PADV process gave the smallest pore area percentage and pore aspect ratio, and had almost no larger pores. The results from optical microscopy, scanning electron microscopy, and fractographic morphology proved that uniform and fine equiaxed grains, evenly distributed Al2Cu second phase particles were formed during the CMT-PADV process. Furthermore, the X-ray diffraction test ascertained that the CMT-PADV sample had the smallest lattice parameter and the highest solute Cu content. Besides, the tensile strength could reach 283 MPa, the data scattering was the smallest, and the strength scattering of the sample in the horizontal direction was the shortest. In addition, the strength properties were nearly isotropic, with only 5 MPa difference in the vertical and horizontal directions. The above mentioned results indicated that the mechanical properties of 2219 aluminum alloy was improved using the CMT-PADV arc mode.

  9. Effect of Cobalt on Microstructure and Wear Resistance of Ni-Based Alloy Coating Fabricated by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Kaiming Wang

    2017-12-01

    Full Text Available Ni-based alloy powders with different contents of cobalt (Co have been deposited on a 42CrMo steel substrate surface using a fiber laser. The effects of Co content on the microstructure, composition, hardness, and wear properties of the claddings were studied by scanning electron microscopy (SEM, an electron probe microanalyzer (EPMA, X-ray diffraction (XRD, a hardness tester, and a wear tester. The results show that the phases in the cladding layers are mainly γ, M7(C, B3, M23(C, B6, and M2B. With the increase in Co content, the amounts of M7(C, B3, M23(C, B6, and M2B gradually decrease, and the width of the eutectic structure in the cladding layer also gradually decreases. The microhardness decreases but the wear resistance of the cladding layer gradually improves with the increase of Co content. The wear resistance of the NiCo30 cladding layer is 3.6 times that of the NiCo00 cladding layer. With the increase of Co content, the wear mechanism of the cladding layer is changed from abrasive wear to adhesive wear.

  10. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.F. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: Guohf@hit.edu.cn; An, M.Z. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: mzan@hit.edu.cn; Huo, H.B. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Xu, S. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wu, L.J. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-09-15

    Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg{sub 2}SiO{sub 4} and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg{sub 2}SiO{sub 4} was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.

  11. Characterization and hardness of TiCu–Ti2Cu3 intermetallic material fabricated by mechanical alloying and subsequent annealing

    International Nuclear Information System (INIS)

    Akbarpour, Mohammad Reza; Hesari, Feridoun Alikhani

    2016-01-01

    In this research, the microstructural and phase evolutions during mechanical alloying (MA) and subsequent heat treatment of Cu–Ti powder mixture are investigated through x-ray diffraction, scanning electron microscopy, transmission electron microscopy and micro-hardness measurements. The obtained experimental results demonstrated that after an optimum MA time of 30 h, TiCu intermetallic compound was achieved with a mean grain size of ≈8 nm and a high micro-hardness value of ≈634 Hv. Annealing the milled powder at different temperatures resulted in formation of major TiCu and Ti 2 Cu 3 , and minor Ti 2 Cu and Cu 4 Ti nanocrystalline phases, release of internal strain, and coarsening of grains. The amount of TiCu phase and the grain size increased with increase of the annealing temperature. Micro-hardness value of ≈765 Hv was recorded when the milled TiCu powder was annealed at 850 °C. This superior high micro-hardness value can be attributed to formation of higher amount of TiCu phase. (paper)

  12. Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process.

    Science.gov (United States)

    Fang, Xuewei; Zhang, Lijuan; Li, Hui; Li, Chaolong; Huang, Ke; Lu, Bingheng

    2018-05-16

    In this research, four different welding arc modes including conventional cold metal transfer (CMT), CMT-Pulse (CMT-P), CMT-Advanced (CMT-ADV), and CMT pulse advanced (CMT-PADV) were used to deposit 2219-Al wire. The effects of different arc modes on porosity, pore size distribution, microstructure evolution, and mechanical properties were thoroughly investigated. The statistical analysis of the porosity and its size distribution indicated that the CMT-PADV process gave the smallest pore area percentage and pore aspect ratio, and had almost no larger pores. The results from optical microscopy, scanning electron microscopy, and fractographic morphology proved that uniform and fine equiaxed grains, evenly distributed Al₂Cu second phase particles were formed during the CMT-PADV process. Furthermore, the X-ray diffraction test ascertained that the CMT-PADV sample had the smallest lattice parameter and the highest solute Cu content. Besides, the tensile strength could reach 283 MPa, the data scattering was the smallest, and the strength scattering of the sample in the horizontal direction was the shortest. In addition, the strength properties were nearly isotropic, with only 5 MPa difference in the vertical and horizontal directions. The above mentioned results indicated that the mechanical properties of 2219 aluminum alloy was improved using the CMT-PADV arc mode.

  13. Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process

    Science.gov (United States)

    Fang, Xuewei; Li, Hui; Li, Chaolong; Lu, Bingheng

    2018-01-01

    In this research, four different welding arc modes including conventional cold metal transfer (CMT), CMT-Pulse (CMT-P), CMT-Advanced (CMT-ADV), and CMT pulse advanced (CMT-PADV) were used to deposit 2219-Al wire. The effects of different arc modes on porosity, pore size distribution, microstructure evolution, and mechanical properties were thoroughly investigated. The statistical analysis of the porosity and its size distribution indicated that the CMT-PADV process gave the smallest pore area percentage and pore aspect ratio, and had almost no larger pores. The results from optical microscopy, scanning electron microscopy, and fractographic morphology proved that uniform and fine equiaxed grains, evenly distributed Al2Cu second phase particles were formed during the CMT-PADV process. Furthermore, the X-ray diffraction test ascertained that the CMT-PADV sample had the smallest lattice parameter and the highest solute Cu content. Besides, the tensile strength could reach 283 MPa, the data scattering was the smallest, and the strength scattering of the sample in the horizontal direction was the shortest. In addition, the strength properties were nearly isotropic, with only 5 MPa difference in the vertical and horizontal directions. The above mentioned results indicated that the mechanical properties of 2219 aluminum alloy was improved using the CMT-PADV arc mode. PMID:29772708

  14. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds; Diseno y fabricacion de un sistema de aleado mecanico para preparar compuestos intermetalicos, nanocristalinos, amorfos y cuasicristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  15. Process heat exchanger for SO3 decomposer fabricated with Ni-based alloys surface modified by SiC film deposition and N ion beam bombardment

    International Nuclear Information System (INIS)

    Park, Jae-Won; Kim, Hyung-Jin; Choi, Yong-Woon; Kim, Yong-Wan

    2007-01-01

    In the iodine-sulfur (IS) cycle for the hydrogen production using the high temperature gas-cooled reactor (HTGR), one of the important components is the SO 3 decomposer which generates SO 2 and SO 3 gases under high temperature conditions. Since this environment is extremely corrosive, the materials used for the decomposer should meet excellent mechanical properties at the elevated temperature as well as high corrosion resistance in SO 2 /SO 3 atmospheres. In general, ceramics are protective against the corrosion, but metals exhibit limited corrosion resistance. In this work, the ceramic coating on the metallic substrate was studied. We selected SiC as coating materials and Ni-based alloys as the substrate materials. Since the adhesion between the coated layer and the substrate is most crucial in this application, we attempted to develop Ion Beam Mixing (IBM) technique to produce a highly adherent coated layer. For the fabrication of process heat exchange for SO 3 decomposer, the diffusion bonding at ∼900 .deg. C is employed because this temperature does not affect the mechanical properties of materials

  16. Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting

    International Nuclear Information System (INIS)

    Sun, Shi-Hai; Koizumi, Yuichiro; Kurosu, Shingo; Li, Yun-Ping; Matsumoto, Hiroaki; Chiba, Akihiko

    2014-01-01

    The microstructures and high-temperature tensile properties of a Co–28Cr–6Mo–0.23C–0.17N alloy fabricated by electron beam melting (EBM) with cylindrical axes deviating from the build direction by 0°, 45°, 55° and 90° were investigated. The preferred crystal orientations of the γ phase in the as-EBM-built samples with angles of 0°, 45°, 55° and 90° were near [0 0 1], [1 1 0], [1 1 1] and [1 0 0], respectively. M 23 C 6 precipitates (M = Cr, Mo or Si) were observed to align along the build direction with intervals of around 3 μm. The phase was completely transformed into a single ε-hexagonal close-packed (hcp) phase after aging treatment at 800 °C for 24 h, when lamellar colonies of M 2 N precipitates and the ε-hcp phase appeared in the matrix. Among the samples, the one built with 55° deviation had the highest ultimate tensile strength of 806 MPa at 700 °C. The relationship between the microstructure and the build direction dependence of mechanical properties suggested that the conditions of heat treatment to homogenize the microstructure throughout the height of the EBM-built object should be determined by taking into account the thermal history during the post-melt period of the EBM process, especially when the solid–solid transformation is sluggish

  17. Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor.

    Science.gov (United States)

    Safavi, Afsaneh; Farjami, Fatemeh

    2011-01-15

    An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. In-situ field-ion microscope study of the recovery behavior of heavy metal ion-irradiated tungsten, tungsten (rhenium) alloys and molybdenum

    International Nuclear Information System (INIS)

    Nielsen, C.H.

    1977-06-01

    Three field ion microscope (FIM) experiments were carried out to study the annealing behavior of heavy ion irradiated tungsten, tungsten (rhenium) alloys and molybdenum. The first experiment dealt with the stage I long-range migration of tungsten self interstitial atoms (SIAs) in high purity tungsten of resistivity ratio, R = 24,000 (R = rho 300 /rho 4 . 2 , where rho 300 and rho 4 . 2 are the room temperature and 0 0 C resistivities). The FIM specimens were irradiated in situ at 18 K with 30 keV W + ions to an average dose of 5 x 10 12 ions cm -2 and subsequently examined by the pulsed-field evaporation technique. The second experiment dealt with the phenomenon of impurity atom trapping of SIAs during long-range migration. It was shown that rhenium atoms in a tungsten matrix tend to capture tungsten SIAs and remain bound up to temperatures as high as 390 K. The final experiment was concerned with the low temperature annealing kinetics of irradiated molybdenum. High purity molybdenum of resistivity ratio R = 5700 was irradiated at 10 K with 30 keV Mo + ions to a dose of approximately 5 x 10 12 ions cm -2 . The results indicated that the electric field has only a minimal effect on the SIA annealing kinetics. This tends to strengthen the contention that the molybdenum SIA becomes mobile at 32 K

  19. Effect of Heat Treatment on Microstructure and Mechanical Properties of Inconel 625 Alloy Fabricated by Pulsed Plasma Arc Deposition

    Science.gov (United States)

    Xu, Fujia; Lv, Yaohui; Liu, Yuxin; Xu, Binshi; He, Peng

    Pulsed plasma arc deposition (PPAD) was successfully used to fabricate the Ni-based superalloy Inconel 625 samples. The effects of three heat treatment technologies on microstructure and mechanical properties of the as-deposited material were investigated. It was found that the as-deposited structure exhibited homogenous cellular dendrite structure, which grew epitaxially along the deposition direction. Moreover, some intermetallic phases including Laves phase and MC carbides were precipitated in the interdendritic region as a result of Nb segregation. Compared with the as-deposited microstructure, the direct aged (DA) microstructure changed little except the precipitation of hardening phases γ' and γ" (Ni3Nb), which enhanced the hardness and tensile strength. But the plastic property was inferior due to the existence of brittle Laves phase. After solution and aging heat treatment (STA), a large amount of Laves particles in the interdendritic regions were dissolved, resulting in the reduction of Nb segregation and the precipitation of needle-like δ (Ni3Nb) in the interdendritic regions and grain boundaries. The hardness and tensile strength were improved without sacrificing the ductility. By homogenization and STA heat treatment (HSTA), Laves particles were dissolved into the matrix completely and resulted in recrystallized large grains with bands of annealing twins. The primary MC particles and remaining phase still appeared in the matrix and grain boundaries. Compared with the as-deposited sample, the mechanical properties decreased severely as a result of the grain growth coarsening. The failure modes of all the tensile specimens were analyzed with fractography.

  20. Research on Mechanisms and Controlling Methods of Macro Defects in TC4 Alloy Fabricated by Wire Additive Manufacturing.

    Science.gov (United States)

    Ji, Lei; Lu, Jiping; Tang, Shuiyuan; Wu, Qianru; Wang, Jiachen; Ma, Shuyuan; Fan, Hongli; Liu, Changmeng

    2018-06-28

    Wire feeding additive manufacturing (WFAM) has broad application prospects because of its advantages of low cost and high efficiency. However, with the mode of lateral wire feeding, including wire and laser additive manufacturing, gas tungsten arc additive manufacturing etc., it is easy to generate macro defects on the surface of the components because of the anisotropy of melted wire, which limits the promotion and application of WFAM. In this work, gas tungsten arc additive manufacturing with lateral wire feeding is proposed to investigate the mechanisms of macro defects. The results illustrate that the defect forms mainly include side spatters, collapse, poor flatness, and unmelted wire. It was found that the heat input, layer thickness, tool path, and wire curvature can have an impact on the macro defects. Side spatters are the most serious defects, mainly because the droplets cannot be transferred to the center of the molten pool in the lateral wire feeding mode. This research indicates that the macro defects can be controlled by optimizing the process parameters. Finally, block parts without macro defects were fabricated, which is meaningful for the further application of WFAM.

  1. Facile fabrication of a novel 3D graphene framework/Bi nanoparticle film for ultrasensitive electrochemical assays of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Lei [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Yangyang; Rong, Xiaojiao [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Yan [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Ding, Shiming, E-mail: smding@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-05-22

    In this work, a novel 3D graphene framework/Bi nanoparticle (GF/BiNP) film was fabricated with a facile preparation route. 3D graphene framework with porous structures was electrochemically reduced and in situ assembled on the electrode, and BiNPs with tunable morphologies were highly dispersed on the framework by a chemical reduction. Newly-designed 3D GF/BiNP film possessed a significantly large active area, fast electron transfer ability, high mass transfer efficiency, and excellent structure stability and binding strength on electrode. To demonstrate its superior ability, electrochemical sensors for the assay of heavy metal ions were constructed. As a result, a simultaneous assay of Pb{sup 2+} and Cd{sup 2+} with ultralow detection limits (0.02 μg L{sup −1} of Pb{sup 2+} and 0.05 μg L{sup −1} of Cd{sup 2+}, S/N = 3) and a wide linear range from 1 to 120 μg L{sup −1} was achieved. Meanwhile, a separate analysis of Zn{sup 2+} was performed to get optimum responses, in which a low detection limit of 4.0 μg L{sup −1} (S/N = 3) with a linear range from 40 to 300 μg L{sup −1} was observed, confirming the versatility of the GF/BiNP film in the detection of heavy metal ions. Moreover, excellent repeatability, reproducibility and stability, and reliable assays in real water samples were realized with constructed sensors. Due to its convenient preparation, favorable structures and excellent properties, prepared 3D GF/BiNP film will find great potential for advanced applications in environment, biomedicine and energy systems. - Highlights: • A novel 3D graphene framework/Bi nanoparticle (GF/BiNP) film is prepared. • Porous graphene framework is in situ assembled on the electrode. • BiNPs with tunable morphologies are highly dispersed on the framework. • Newly-designed 3D GF/BiNP film possesses excellent properties. • Sensitive electrochemical sensors for Pb{sup 2+}, Cd{sup 2+} and Zn{sup 2+} are constructed.

  2. Hydrogen Storage and Release Properties of Transition Metal-Added Magnesium Hydride Alloy Fabricated by Grinding in a Hydrogen Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sung Nam; Song, Myoung Youp [Chonbuk National University, Jeonju (Korea, Republic of); Park, Hye Ryoung [Chonnam National University, Gwangju (Korea, Republic of)

    2016-07-15

    90 wt% MgH{sub 2}+5 wt% Ni+2.5 wt% Fe+2.5 wt% Ti (called MgH{sub 2}+Ni+Fe+Ti), a hydrogen storage and release material, was fabricated by grinding in a hydrogen atmosphere, and then its quantities of stored and released hydrogen as a function of time were examined. A nanocrystalline MgH{sub 2}+Ni+Fe+Ti specimen was made by grinding in a hydrogen atmosphere and subsequent hydrogen storage-release cycling. The crystallite size of Mg and the strain of the Mg crystallite after ten hydrogen storage-release cycles, which were obtained using the Williamson-Hall method, were 38.6 (±1.4) nm and 0.025 (±0.0081) %, respectively. The MgH{sub 2}+Ni+Fe+Ti sample after the process of grinding in a hydrogen atmosphere was highly reactive with hydrogen. The sample exhibited an available storage capacity of hydrogen (the amount of hydrogen stored during 60 minutes) of about 5.7 wt%. At the first cycle, the MgH2+Ni+Fe+Ti sample stored hydrogen of 5.53 wt% in 5 minutes, 5.66 wt% in 10 minutes and 5.73 wt% in 60 minutes at 573 K and 12 bar of hydrogen. The MgH{sub 2}+Ni+Fe+Ti after activation released hydrogen of 0.56 wt% in 5 minutes, 1.26 wt% in 10 minutes, 2.64 wt% in 20 minutes, 3.82 wt% in 30 minutes, and 5.03 wt% in 60 minutes.

  3. Fabrication of Nb3Al superconducting wires by utilizing the mechanically alloyed Nb(Al)ss supersaturated solid-solution with low-temperature annealing

    International Nuclear Information System (INIS)

    Pan, X.F.; Yan, G.; Qi, M.; Cui, L.J.; Chen, Y.L.; Zhao, Y.; Li, C.S.; Liu, X.H.; Feng, Y.; Zhang, P.X.; Liu, H.J.

    2014-01-01

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb 3 Al wires. • The Nb 3 Al wires were made by using Nb(Al) ss supersaturated solid solution powders. • The Cu-matrix Nb 3 Al superconducting wires have been successfully fabricated. • The transport J c of Nb 3 Al wires at 4.2 K, 10 T is up to 12,700 A/cm 2 . - Abstract: High-performance Nb 3 Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb 3 Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb 3 Al superconducting wires, which were made by using the mechanically alloyed Nb(Al) ss supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb 3 Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb 2 Al and Nb impurities still keep being existence at present work. At the Nb 3 Al with a nominal 26 at.% Al content, the onset T c reaches 15.8 K. Furthermore, a series of Nb 3 Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J c at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm 2 , respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb 3 Al superconducting wires by directly using the Nb(Al) ss supersaturated solid-solution without the complex RHQT heat-treatment process

  4. Fabrication of Nb{sub 3}Al superconducting wires by utilizing the mechanically alloyed Nb(Al){sub ss} supersaturated solid-solution with low-temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Yan, G., E-mail: gyan@c-nin.com [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Qi, M. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Cui, L.J. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, C.S. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Liu, X.H. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Feng, Y.; Zhang, P.X. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Liu, H.J. [Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031 (China); and others

    2014-07-15

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb{sub 3}Al wires. • The Nb{sub 3}Al wires were made by using Nb(Al){sub ss} supersaturated solid solution powders. • The Cu-matrix Nb{sub 3}Al superconducting wires have been successfully fabricated. • The transport J{sub c} of Nb{sub 3}Al wires at 4.2 K, 10 T is up to 12,700 A/cm{sup 2}. - Abstract: High-performance Nb{sub 3}Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb{sub 3}Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb{sub 3}Al superconducting wires, which were made by using the mechanically alloyed Nb(Al){sub ss} supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb{sub 3}Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb{sub 2}Al and Nb impurities still keep being existence at present work. At the Nb{sub 3}Al with a nominal 26 at.% Al content, the onset T{sub c} reaches 15.8 K. Furthermore, a series of Nb{sub 3}Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J{sub c} at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm{sup 2}, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb{sub 3}Al superconducting wires by directly using the Nb(Al){sub ss} supersaturated solid-solution without the complex RHQT heat-treatment process.

  5. Slurry Erosion Behavior of AlxCoCrFeNiTi0.5 High-Entropy Alloy Coatings Fabricated by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Jianhua Zhao

    2018-02-01

    Full Text Available High-entropy alloys (HEAs have gained extensive attention due to their excellent properties and the related scientific value in the last decade. In this work, AlxCoCrFeNiTi0.5 HEA coatings (x: molar ratio, x = 1.0, 1.5, 2.0, and 2.5 were fabricated on Q345 steel substrate by laser-cladding process to develop a practical protection technology for fluid machines. The effect of Al content on their phase evolution, microstructure, and slurry erosion performance of the HEA coatings was studied. The AlxCoCrFeNiTi0.5 HEA coatings are composed of simple face-centered cubic (FCC, body-centered cubic (BCC and their mixture phase. Slurry erosion tests were conducted on the HEA coatings with a constant velocity of 10.08 m/s and 16–40 meshs and particles at impingement angles of 15, 30, 45, 60 and 90 degrees. The effect of three parameters, namely impingement angle, sand concentration and erosion time, on the slurry erosion behavior of AlxCoCrFeNiTi0.5 HEA coatings was investigated. Experimental results show AlCoCrFeNiTi0.5 HEA coating follows a ductile erosion mode and a mixed mode (neither ductile nor brittle for Al1.5CoCrFeNiTi0.5 HEA coating, while Al2.0CoCrFeNiTi0.5 and Al2.5CoCrFeNiTi0.5 HEA coatings mainly exhibit brittle erosion mode. AlCoCrFeNiTi0.5 HEA coating has good erosion resistance at all investigated impingement angles due to its high hardness, good plasticity, and low stacking fault energy (SFE.

  6. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  7. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  8. Application of rapid solidification powder metallurgy to the fabrication of high-strength, high-ductility Mg-Al-Zn-Ca-La alloy through hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Ayman, Elsayed, E-mail: ayman@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Junko, Umeda; Katsuyoshi, Kondoh [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-01-15

    The microstructure and mechanical properties of hot extruded Mg-7Al-1Zn-1Ca powder alloys with an addition of 1.5% La or 3.3% La were investigated. Both rapidly solidified powders, produced via spinning water atomization process, and cast billets were extruded at 573, 623 and 673 K to optimize the processing conditions for obtaining better mechanical response. Powders were consolidated using both cold compaction and spark plasma sintering. The tensile properties of the extruded alloys were then evaluated and correlated to their microstructures. The results showed that the use of rapidly solidified Mg-7Al-1Zn-1Ca alloy powders with La additions could lead to effective grain refinement and super saturation of alloying elements, which in turn resulted in the improved mechanical response. The Mg-7Al-1Zn-1Ca-1.5La alloy extruded at 573 K attained ultimate tensile strength of 450 {+-} xx MPa and elongation of 17 {+-} xx%, superior to the Mg-7Al-1Zn-1Ca-3.3La alloy and other Mg alloys like Mg-Al-Mn-Ca. This may help extend the application of Mg alloys to higher load-carrying parts while maintaining the excellent advantage of light weight.

  9. Evaluation of Aluminum Alloy 2050-T84 Microstructure and Mechanical Properties at Ambient and Cryogenic Temperatures

    Science.gov (United States)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320degF. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  10. Heavy-ion targets

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.

    1985-01-01

    This chapter examines the characteristics of targets required in heavy-ion accelerator physics experiments. The effects of target parameters on heavy-ion experimental results are reviewed. The target fabrication and characterization techniques used to minimize experimental problems during heavy-ion bombardment are described. Topics considered include target thickness and uniformity, target lifetime, target purity, substrate materials, Doppler shift effects, metal preparations, and target preparation methods

  11. Past research and fabrication conducted at SCK-CEN on ferritic ODS alloys used as cladding for FBR's fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    De Bremaecker, Anne, E-mail: adbremae@sckcen.be [Studiecentrum voor Kernenergie-Centre d' Etude de l' Energie Nucleaire (SCK-CEN), NMS, Mol (Belgium)

    2012-09-15

    In the 1960s in the frame of the sodium-cooled fast breeders, SCK-CEN decided to develop claddings made with ferritic stainless materials because of their specific properties, namely a higher thermal conductivity, a lower thermal expansion, a lower tendency to He-embrittlement, and a lower swelling than the austenitic stainless steels. To enhance their lower creep resistance at 650-700 Degree-Sign C arose the idea to strengthen the microstructure by oxide dispersions. This was the starting point of an ambitious programme where both the matrix and the dispersions were optimized. A purely ferritic 13 wt% Cr matrix was selected and its mechanical strength was improved through addition of ferritizing elements. Results of tensile and stress-rupture tests showed that Ti and Mo were the most beneficial elements, partly because of the chi-phase precipitation. In 1973 the optimized matrix composition was Fe-13Cr-3.5Ti-2Mo. To reach creep properties similar to those of AISI 316, different dispersions and methods were tested: internal oxidation (that was not conclusive), and the direct mixing of metallic and oxide powders (Al{sub 2}O{sub 3}, MgO, ZrO{sub 2}, TiO{sub 2}, ZrSiO{sub 4}) followed by pressing, sintering, and extrusion. The compression and extrusion parameters were determined: extrusion as hollow at 1050 Degree-Sign C, solution annealing at 1050 Degree-Sign C/15 min, cleaning, cold drawing to the final dimensions with intermediate annealings at 1050 Degree-Sign C, final annealing at 1050 Degree-Sign C, straightening and final aging at 800 Degree-Sign C. The choice of titania and yttria powders and their concentrations were finalized on the basis of their out-of-pile and in-pile creep and tensile strength. As soon as a resistance butt welding machine was developed and installed in a glove-box, fuel segments with PuO{sub 2} were loaded in Belgian MTR BR2. The fabrication parameters were continuously optimized: milling and beating, lubrication, cold drawing (partial

  12. Synthesis and mechanical properties of bulk Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy fabricated by consolidation of mechanically alloyed amorphous powders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinfu; Wang, Kun; Li, Zhendong; Wang, Xingfu; Wang, Dan; Han, Fusheng, E-mail: fshan@issp.ac.cn

    2015-05-25

    Graphical abstract: Different regions indentation morphologies under 50 g load consolidated at 723 K (left), nanohardness of the Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy as a function consolidation temperature (right). It can be seen from the above figures that the consolidated sample presents white regions, and the microhardness in the white regions is a little lower than the matrix, which could be caused by the difference of the chemical composition and chemical bonding forces between them. Interestingly, the cracks were formed around the indentation periphery in the white regions, which are not shown in the matrix. The nanohardness of the bulk composites increased from 11.16 to 13.27 GPa with the consolidation temperature increasing, mechanical softening was also found in the present alloys. - Highlights: • Bulk amorphous–nanocrystalline Al-based alloys were prepared by HPS process. • The Vickers microhardness of bulk samples is in the range of 945–1177HV0.1. • The nanohardness agrees well with the Vickers hardness testing results. - Abstract: Mechanically alloyed amorphous Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} (at.%) alloy powder was consolidated by high-pressure sintering process. The influence of the consolidation temperature on the structure and mechanical properties of the consolidated bulk alloys was examined by X-ray diffraction (XRD), Optical microscopy (OM), Scanning electron microscopy (SEM), Vickers Hardness Tester and Nano Indenter. Structural investigations of the bulk materials revealed that most of the amorphous structure was retained after consolidation at 623 K, however, compaction at 723 K and 823 K caused crystallization of the amorphous phase with the appearance of white regions. The results also indicate that application of high pressure affected the crystallization products of the present alloy. Micro mechanical analysis showed that the microhardness of the bulk composites increased from 945HV{sub 0.1} to 1177HV

  13. Process for fabrication of cermets

    Science.gov (United States)

    Landingham, Richard L [Livermore, CA

    2011-02-01

    Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.

  14. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  15. Microstructure and mechanical properties of Ni1,5Co1,5CrFeTi0,5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Moravčík, I.; Čížek, J.; Zapletal, J.; Kováčová, Z.; Veselý, J.; Minařík, P.; Kitzmantel, E.; Neubauer, E.; Dlouhý, Ivo

    2017-01-01

    Roč. 119, APR (2017), s. 141-150 ISSN 0264-1275 Institutional support: RVO:68081723 Keywords : Multi principal element alloy * Tensile strength * Fracture * Ductility Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 4.364, year: 2016 http://www.sciencedirect.com/science/article/pii/S0264127517300461

  16. Fabrication and mechanical test data for the four 6-inch-thick intermediate test vessels made from steel plate for the Heavy Section Steel Program

    International Nuclear Information System (INIS)

    Childress, C.E.

    1976-01-01

    The HSST Program has among its goals the objective of demonstrating the capability to predict safe behavior of thick-walled pressure vessels containing flaws of known dimensions under frangible, transitional, and tough loading regimes. To accomplish these objectives the program is conducting a series of tests involving 6-in.-thick pressure vessels which will serve as test specimens for assisting in the characterization of failure under these loading conditions. Among the vessels a number of parameters, such as weld type, weld location, flaw size and shape, and test temperature and pressure, will be selectively varied to show that a rationale exists for dealing with the varied stress and metallurgical states which normally exist in commercial nuclear reactor vessels. Each vessel will serve as a go, no-go determination of critical flaw size for a specific set of test parameters. Item 4 of the previous issues in this series covers the fabrication details of the first six 6-in.-thick test vessels, which were fabricated from ASTM A-508 Cl 2 forging materials. This report covers the fabrication details of four additional 6-in.-thick intermediate test vessels having shell courses fabricated from ASTM A-533 Gr B Cl 1 plate. The remaining components were made from forgings. Essentially this report is a continuation of ORNL-TM-4351; it describes the manufacturing details of the individual parts and their ultimate assembly into finished vessels. Details concerning chemical composition and mechanical and nondestructive test data are presented

  17. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but

  18. Mechanical Characterization and Corrosion Testing of X608 Al Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad; Choi, Jung-Pyung; Stephens, Elizabeth V.; Catalini, David; Lavender, Curt A.; Rohatgi, Aashish

    2016-02-07

    This paper describes the mechanical characterization and corrosion testing of X608 Al alloy that is being considered for A-pillar covers for heavy-duty truck applications. Recently, PNNL developed a thermo-mechanical process to stamp A-pillar covers at room temperature using this alloy, and the full-size prototype was successfully stamped by a tier-1 supplier. This study was conducted to obtain additional important information related to the newly developed forming process, and to further improve its mechanical properties. The solutionization temperature, pre-strain and paint-bake heat-treatment were found to influence the alloy’s fabricability and mechanical properties. Natural aging effect on the formability was investigated by limiting dome height (LDH) tests. Preliminary corrosion experiments showed that the employed thermo-mechanical treatments did not significantly affect the corrosion behavior of Al X608.

  19. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Y.; Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada); Cui, J.; Shek, G.K. [Kinetrics, Mississauga, ON (Canada); Daymond, M.R., E-mail: daymond@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada)

    2016-11-15

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen. - Graphical abstract: STEM HAADF micrographs at low magnification showing the hydride structure in Zr-2.5Nb alloy.

  20. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  1. Rare earth metal alloy magnets

    International Nuclear Information System (INIS)

    Harris, I.R.; Evans, J.M.; Nyholm, P.S.

    1979-01-01

    This invention relates to rare earth metal alloy magnets and to methods for their production. The technique is based on the fact that rare earth metal alloys (for e.g. cerium or yttrium) which have been crumbled to form a powder by hydride formation and decomposition can be used for the fabrication of magnets without the disadvantages inherent in alloy particle size reduction by mechanical milling. (UK)

  2. Thermoelectric properties of n-type Bi{sub 2}(Te{sub 1{minus}x}Se{sub x}){sub 3} fabricated by mechanical alloying and hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H J; Choi, J S; Oh, T S; Hyun, D B

    1997-07-01

    Thermoelectric properties of polycrystalline Bi{sub 2}(Te{sub 1{minus}x}Se{sub x}){sub 3} (0.05 {le} x {le} 0.25), fabricated by mechanical alloying and hot pressing, have been investigated. Formation of n-type Bi{sub 2}(Te{sub 0.9}Se{sub 0.1}){sub 3} alloy powders was completed by mechanical alloying for 3 hours at ball-to-material ratio of 5:1, and processing time for Bi{sub 2}(Te{sub 1{minus}x}Se{sub x}){sub 3} formation increased with Bi{sub 2}Se{sub 3} content x. Figure-of-merit of Bi{sub 2}(Te{sub 0.9}Se{sub 0.1}) was markedly increased by hot pressing at temperatures above 450 C, and maximum value of 1.9 x 10{sup {minus}3}/K was obtained by hot pressing at 550 C. With addition of 0.015 wt% Bi as acceptor dopant, figure-of-merit of Bi{sub 2}(Te{sub 0.9}Se{sub 0.1}){sub 3} was hot pressed at 550 C, could be improved to 2.1 x 10{sup {minus}3}/K. When Bi{sub 2}(Te{sub 1{minus}x}Se{sub x}){sub 3} was hot pressed at 550 C, figure-of-merit increased from 1.14 x 10{sup {minus}3}/K to 1.92 x 10{sup {minus}3}/K with increasing Bi{sub 2}Se{sub 3} content x from 0.05 to 0.15, and then decreased to 1.30 x 10{sup {minus}3}/K for x = 0.25 composition.

  3. Effect of the Grain Size of the Initial Structure of 1565chM Alloy on the Structure and Properties of the Joints Fabricated by Friction Stir Welding

    Science.gov (United States)

    Ovchinnikov, V. V.; Drits, A. M.; Gureeva, M. A.; Malov, D. V.

    2017-12-01

    The effect of the initial grain size in the structure of the aluminum 1565chM alloy on the mechanical properties of the welded joints formed by friction stir welding and on the grain size in the weld core is studied. It is shown that the design of tool and, especially, the parameters of a screw groove exert a great effect on the grain size in the weld core.

  4. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles.

    Science.gov (United States)

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1-30.0 μM and 30.0-330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. Copyright © 2014. Published by Elsevier B.V.

  5. Preliminary studies of vanadium-base alloys intended for use in fabrication of cans for fast reactors; Etudes preliminaires sur les alliages a base de vanadium envisages pour la fabrication de gaines de reacteurs rapides

    Energy Technology Data Exchange (ETDEWEB)

    Conte, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-03-15

    Preliminary research has been carried out on a series of vanadium-based alloys: V, 0.5 per cent Si; V, 5 per cent Ca; V, 5 per cent Mo; V, 5 per cent Nb; V, 2 per cent Zr; V, 20 per cent Ti; V, 10 per cent Al; V, 10 per cent Sn and v, 10 per cent Ti liable to be used as canning material in fast reactors. The transformation by forging at about 1000 deg. C and rolling between 200 deg. C and room temperature is satisfactory for all types of alloys except V with 10 per cent Sn and V with 10 per cent Al. The mechanical properties deduced from tensile strength tests carried out on alloy samples annealed 1 hour at 1050 deg. C in a vacuum show that, generally speaking, the addition elements lead to an improvement in these properties as compared to those of pure vanadium. After undergoing corrosion tests in a liquid sodium loop purified by a cold trap, the alloys become brittle at room temperature. Only the vanadium containing 20 per cent Ti keeps its plastic properties. These alloys are covered by a layer of vanadium carbide VC. After undergoing treatment in a liquid sodium loop purified by a hot trap, all the alloys keep their good mechanical characteristics. The surface layer with which they are covered is composed of two vanadium carbides VC and {sub {gamma}}VC, and a vanadium sub-oxide VO{sub 0.9}. (author) [French] Des etudes preliminaires ont ete faites sur une serie d'alliages a base de vanadium: V-0,5 pour cent Si, V-5 pour cent Ca, V-5 pour cent Mo, V-5 pour cent Nb, V-2 pour cent Zr, V-20 pour cent Ti, V-10 pour cent Al, V-10 pour cent Sn et V-10 pour cent Ti susceptibles d'etre utilises comme materiau de gainage pour les reacteurs rapides. La transformation par forgeage a 1000 deg. C environ et laminage entre 200 deg. C et la temperature ambiante est satisfaisante pour toutes les nuances d'alliage sauf le V-10 pour cent Sn et le V-10 pour cent Al. Les proprietes mecaniques deduites des essais de traction realises sur des eprouvettes d'alliages recuits 1 heure a

  6. Chlorine triggered de-alloying of AuAg@Carbon nanodots: Towards fabrication of a dual signalling assay combining the plasmonic property of bimetallic alloy nanoparticles and photoluminescence of carbon nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpour, Zahra; Safavi, Afsaneh, E-mail: safavi@susc.ac.ir; Abdollahi, Seyyed Hossein

    2017-03-22

    Integration of Au-Ag alloy and fluorescent carbon nanodots (C-dots) into a single platform resulted in a new dual sensing assay for chlorine. Selective etching of Ag from AuAg@C-dots was transformed into: (i) colorimetric signal by surface plasmon resonance (SPR) tuning of the alloy and (ii) fluorimetric signal by perturbation of fluorescence energy transfer between C-dots and alloy nanoparticles. Fast oxidizing of silver atoms incorporated in the bimetallic structure induced by chlorine resulted in selective de-alloying of bimetallic hybrid nanoparticles and an intense visible change of the colloidal dispersion color. On the other hand, the systematic change in Au/Ag ratio strongly affected the emission intensity of C-dots in the hybrid structure leading to an enhancement in the fluorescence signal. Thus, the assay enables the detection of chlorine both under visible and UV lights with high sensitivity. The detection limit (DL) values were calculated as 6.2 × 10{sup −7} M and 5.1 × 10{sup −7} M through colorimetric and fluorimetric pathways, respectively. Most importantly, it was demonstrated to be selective over common cations, anions and some reactive oxygen species (ROS). This assay was successfully applied to the determination of chlorine concentration in bleach solution and tap water. It is robust and is suitable for cost effective chlorine measurement in environmental samples. - Highlights: • A new dual signalling assay for hypochlorite ion is introduced. • Bimetallic Au-Ag nanoparticles are hybridized with fluorescent carbon nanodots. • It shows amplified colorimetric response with respect to monometallic counterparts. • This sensor is multifunctional, robust, rapid and sensitive. • The practical applicability is investigated for environmental monitoring.

  7. Microstructure and High Temperature Plastic Deformation Behavior of Al-12Si Based Alloy Fabricated by an Electromagnetic Casting and Stirring Process

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Kyung-Soo; Roh, Heung-Ryeol; Kim, Mok-Soon [Inha University, Incheon (Korea, Republic of); Kim, Jong-Ho; Park, Joon-Pyo [Research Institute of Industrial Science and Technology, Pohang (Korea, Republic of)

    2017-06-15

    An as-received EMC/S (electromagnetic casting and stirring)-processed Al-12Si based alloy billet was homogenized to examine its microstructure and high temperature plastic deformation behavior, using compressive tests over the temperature range from 623 to 743 K and a strain rate range from 1.0×10{sup -3} to 1.0×10{sup 0}s{sup -1}. The results were compared with samples processed by the direct chill casting (DC) method. The fraction of equiaxed structure for the as-received EMC/S billet(41%) was much higher than that of the as-received DC billet(6 %). All true stress – true strain curves acquired from the compressive tests exhibited a peak stress at the initial stage of plastic deformation. Flow stress showed a steady state region after the appearance of peak stress with increasing strain. The peak stress decreased with increasing temperature at a given strain rate and a decreasing strain rate at a given temperature. A constitutive equation was made for each alloy, which could be used to predict the peak stress. A recrystallized grain structure was observed in all the deformed specimens, indicating that dynamic recrystallization is the predominant mechanism during high temperature plastic deformation of both the homogenized EMC/S and DC-processed Al-12Si based alloys.

  8. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  9. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting.

    Science.gov (United States)

    Mohammad, Ashfaq; Alahmari, Abdulrahman M; Mohammed, Muneer Khan; Renganayagalu, Ravi Kottan; Moiduddin, Khaja

    2017-02-21

    Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM), an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.

  10. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Ashfaq Mohammad

    2017-02-01

    Full Text Available Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM, an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.

  11. Application of Box–Behnken design for fabrication of titanium alloy and 304 stainless steel joints with silver interlayer by diffusion bonding

    International Nuclear Information System (INIS)

    Balasubramanian, M.

    2015-01-01

    Highlights: • Diffusion bonding of Ti–6Al–4V to SS304 with silver interlayer was successful. • Hardness and shear strength increased with the increase in the bonding temperature. • Shear strength of 149 MPa and 18% strain to failure were achieved. • Joint efficiency of 80% was obtained for the Ti–6Al–4V and SS304L joints. - Abstract: Direct bonding between titanium (Ti)/titanium alloy(Ti alloy) and stainless steel (SS) promotes the formation of various Fe–Ti and Fe–Cr–Ti intermetallics in the diffusion zone, because the solid solubility of Fe, Cr, Ni and Ti in each other is limited and these intermetallics weaken the mechanical properties of the joint. The present study focuses on the titanium alloy Ti–6Al–4V diffusion bonded to AISI 304 stainless steel with silver foil as an interlayer. The process parameters were chosen appropriately and hence, the bonding is achieved without any defect. Box–Behnken design is used to decide the optimum number of experiments required to do the investigation. Microhardness measurements and the lap shear test were carried out to determine the hardness and strength of the joints respectively. The results show that atomic diffusion and migration between Ti and Fe or C are effectively prevented by adding pure Ag as the interlayer metal. The results from mechanical testing showed that shear strength values have a direct relationship with bonding time. The maximum lap shear strength of 149 MPa and 18% strain to failure was observed for joints obtained with bonding time of 60 min. However, effective bonding was not possible at 850 °C due to incomplete coalescence of mating surfaces

  12. Carbon steel protection in G.S. (Girlder sulfide) heavy water fabrication plants. Control of iron content at the final stage of passivation. Pt. 10

    International Nuclear Information System (INIS)

    Rojo, E.A.

    1991-01-01

    This paper is part of a series which corresponds to the carbon steel behaviour as construction material for Girlder sulfide (G.S.) heavy water plants. The present work analyses the iron concentration study during passivation in the passivating fluid. At the beginning, during the formation of the most soluble sulfide -that is the mackinawite-, the iron concentration reaches more than 10 ppm. After some days, this iron concentration begins to decrease up to its stabilization under 0.1 ppm. This process, which occurs in the 9th. and 11th days, indicates that passivation is over, and that a pyrite and pyrrhotite-pyrite layer exists on the iron. Some differences exist between the results obtained and those previsible for the iron sulfides solubilities. In spite of these difficulties, the procedure is perfectly adequate to judge the passivation final stage. (Author) [es

  13. Zircaloy 4 ingots' industrial fabrication

    International Nuclear Information System (INIS)

    Leyt, A.

    1987-01-01

    The technology developed for the industrial fabrication of Zircaloy-4 ingots is presented. According to the results obtained: a) the homogeneity of the ingots is analyzed, regarding the distribution of components (tin, iron, chromium, oxygen) and Brinell hardness as a function of different types of charge: zirconium sponge-recycling alloy material, sponge of zirconium-alloy; b) the distribution of the same parameters as a function of production is also analyzed. (Author)

  14. Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media

    Science.gov (United States)

    Guo, Hailing; Youliwasi, Nuerguli; Zhao, Lei; Chai, Yongming; Liu, Chenguang

    2018-03-01

    This paper addresses a new post-treatment strategy for the formation of carbon-encapsulated nickel-cobalt alloys nanoparticles, which is easily controlled the performance of target products via changing precursor composition, calcination conditions (e.g., temperature and atmosphere) and post-treatment condition. Glassy carbon electrode (GCE) modified by the as-obtained carbon-encapsulated mono- and bi-transition metal nanoparticles exhibit excellent electro-catalytic activity for hydrogen production in alkaline water electrolysis. Especially, Ni0.4Co0.6@N-Cs800-b catalyst prepared at 800 °C under an argon flow exhibited the best electrocatalytic performance towards HER. The high HER activity of the Ni0.4Co0.6@N-Cs800-b modified electrode is related to the appropriate nickel-cobalt metal ratio with high crystallinity, complete and homogeneous carbon layers outside of the nickel-cobalt with high conductivity and the synergistic effect of nickel-cobalt alloys that also accelerate electron transfer process.

  15. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    Science.gov (United States)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  16. Heavy leptons

    International Nuclear Information System (INIS)

    Smith, C.H.L.

    1977-01-01

    The possibility that a new lepton may exist is discussed under the headings; theoretical reasons for the introduction of heavy leptons, classification of heavy leptons (ortho and paraleptons), discrimination between different types of lepton, decays of charged heavy leptons, production of charged heavy leptons (in e + e - storage rings, neutrino production, photoproduction, and hadroproduction), neutral heavy leptons, and hadroleptons. (U.K.)

  17. Fabrication of Coatings on the Surface of Magnesium Alloy by Plasma Electrolytic Oxidation Using ZrO2 and SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. V. Gnedenkov

    2015-01-01

    Full Text Available Results of investigation of the incorporation of zirconia and silica nanoparticles into the coatings formed on magnesium alloy by plasma electrolytic oxidation are presented. Comprehensive research of electrochemical and mechanical properties of obtained coatings was carried out. It was established that the polarization resistance of the samples with a coating containing zirconia nanoparticles is two times higher than that for the sample with base PEO layer. One of the important reasons for improving the protective properties of coatings formed in electrolytes containing nanoparticles consists in enhanced morphological characteristics, in particular, the porosity decrease and increase of thickness and resistivity (up to two orders of magnitude for ZrO2-containing coating of porousless sublayer in comparison with base PEO layer. Incorporation of silica and zirconia particles into the coating increases the mechanical performances. The layers containing nanoparticles have greater hardness and are more wear resistant in comparison with the coatings formed in the base electrolyte.

  18. Fabrication of CoPd alloy nanowire arrays on an anodic aluminum oxide/Ti/Si substrate and their enhanced magnetic properties

    International Nuclear Information System (INIS)

    Xu Cailing; Li Hua; Xue Tong; Li Hulin

    2006-01-01

    An anodic aluminum oxide/Ti/Si substrate was successfully synthesized by the anodization of an aluminum film on a Ti/Si substrate and then used as a template to grow 10 nm diameter CoPd alloy nanowires. X-ray diffraction and energy-dispersed X-ray patterns indicated that Co 0.97 Pd 0.03 nanowire arrays with a preferential orientation of (0 0 2) were formed during electrodeposition. High coercivity (about 1700 Oe) and squareness (about 0.85) were obtained in the samples when the magnetic field was applied parallel to the axis of the nanowires; these values are much larger than those of pure Co nanowire arrays with the same diameters

  19. Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91D magnesium alloy

    Science.gov (United States)

    Yang, Liuqing; Li, Zhiyong; Zhang, Yingqiao; Wei, Shouzheng; Liu, Fuqiang

    2018-03-01

    Al + (Ti + B4C) composite coating was cladded on AZ91D magnesium alloy by a low power pulsed Nd-YAG laser. The Ti+B4C mixed powder is with the ratio of Ti: B4C = 5:1, which was then mixed with Al powder by weight fraction of 10%, 15% and 20%, respectively. Scanning electron microscopy, energy dispersive spectrometer and X-ray diffraction were used to study the microstructure, chemical composition and phase composition of the coating. Results showed that the coating had satisfied metallurgical bonding with the magnesium substrate. Al3Mg2, Al12Mg17, Al3Ti and TiC were formed by in-situ reaction. The coatings have micro-hardness of 348HV, which is about 5-6 times higher than that of AZ91D. The wear resistance and corrosion resistance of the coatings are enhanced with the addition of the mixed powder.

  20. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Heng; Li Jingfeng; Nan Cewen; Zhou Min; Liu Weishu; Zhang Boping; Kita, Takuji

    2006-01-01

    Polycrystalline Ag n Pb m SbTe m+2n thermoelectric materials, whose compositions can be described as Ag 0.8 Pb 18+x SbTe 20 were prepared using a combined process of mechanical alloying and spark plasma sintering. Electric properties of the sintered samples with different Pb contents were measured from room temperature to 700 K. The maximum power factor of 1.766 mW/mK 2 was obtained at 673 K for the Ag 0.8 Pb 22 SbTe 20 sample, which corresponds to a high dimensionless figure of merit, ZT=1.37. This best composition is different from that reported before

  1. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles

    International Nuclear Information System (INIS)

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R.; Goicoechea, Hector C.

    2014-01-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1–30.0 μM and 30.0–330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. - Highlights: • Eight variables were screened by Min Run Res IV FD to identify the key variables. • Mathematical models for the two studied responses were developed by FCCCD. • By using DF the responses were optimized simultaneously. • The SEM image of the modified electrode was processed by digital image processing. • The sensor was successfully applied to determination of nitrite in real samples

  2. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad-Bagher, E-mail: mbgholivand2013@gmail.com [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Jalalvand, Ali R. [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina); Goicoechea, Hector C. [Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina)

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1–30.0 μM and 30.0–330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. - Highlights: • Eight variables were screened by Min Run Res IV FD to identify the key variables. • Mathematical models for the two studied responses were developed by FCCCD. • By using DF the responses were optimized simultaneously. • The SEM image of the modified electrode was processed by digital image processing. • The sensor was successfully applied to determination of nitrite in real samples.

  3. Study of microstructure, texture and mechanical properties of Zr–2.5Nb alloy pressure tubes fabricated with different processing routes

    International Nuclear Information System (INIS)

    Saibaba, N.; Vaibhaw, Kumar; Neogy, S.; Mani Krishna, K.V.; Jha, S.K.; Phani Babu, C.; Ramana Rao, S.V.; Srivastava, D.; Dey, G.K.

    2013-01-01

    Different fabrication trials involving the variation in three important stages of Zr–2.5Nb pressure tube were undertaken. The variations were with respect to the mode of breaking the cast structure of the ingot (forging vs extrusion), the hot extrusion ratio and the number of subsequent cold work stages to produce the finished tube. It was observed that the forging process resulted in superior performance in breaking the cast structure. Higher extrusion ratios resulted in more favorable texture and microstructure. More continuity of the beta phase was observed in the final microstructure for the route involving the single cold work step subsequent to hot extrusion

  4. Investigation on mechanical alloying process for v-cr-ti alloys

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Bucsa, G.; Abrudeanu, M.; Galateanu, A.

    2015-01-01

    Mechanical alloying (MA) is an efficient approach for fabricating oxide-dispersion alloys and structural materials including vanadium alloys for fusion and fission application. Dissolution behaviour of the alloying elements is a key issue for optimizing the mechanical alloying process in fabricating vanadium alloys. This paper studies the MA process of V-4wt.%Cr-4wt.%Ti alloy. The outcomes of the MA powders in a planetary ball mill are reported in terms of powder particle size and morphology evolution and elemental composition. The impact of spark-plasma sintering process on the mechanically alloyed powder is analysed. An optimal set of sintering parameters, including the maximum temperature, the dwell time and the heating rate are determined. (authors)

  5. Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying.

    Science.gov (United States)

    Janicki, Damian

    2018-01-05

    TiC-reinforced composite surface layers (TRLs) on a ductile cast iron EN-GJS-700-2 grade (DCI) substrate were synthesized using a diode laser surface alloying with a direct injection of titanium powder into the molten pool. The experimental results were compared with thermodynamic calculations. The TRLs having a uniform distribution of the TiC particles and their fraction up to 15.4 vol % were achieved. With increasing titanium concentration in the molten pool, fractions of TiC and retained austenite increase and the shape of TiC particles changes from cubic to dendritic form. At the same time, the cementite fraction decreases, lowering the overall hardness of the TRL. A good agreement between experimental and calculated results was achieved. Comparative dry sliding wear tests between the as-received DCI, the TRLs and also laser surface melted layers (SMLs) have been performed following the ASTM G 99 standard test method under contact pressures of 2.12 and 4.25 MPa. For both the as-received DCI and the SMLs, the wear rates increased with increasing contact pressure. The TRLs exhibited a significantly higher wear resistance than the others, which was found to be load independent.

  6. Influence of Powder Surface Contamination in the Ni-Based Superalloy Alloy718 Fabricated by Selective Laser Melting and Hot Isostatic Pressing

    Directory of Open Access Journals (Sweden)

    Yen-Ling Kuo

    2017-09-01

    Full Text Available The aim of this study was to gain a deep understanding of the microstructure-mechanical relationship between solid-state sintering and full-melting processes. The IN718 superalloy was fabricated by hot isostatic pressing (HIP and selective laser melting (SLM. Continuous precipitates were clearly localized along the prior particle boundary (PPB in the HIP materials, while SLM materials showed a microstructure free of PPB. The mechanical properties of specimens that underwent SLM + solution treatment and aging were comparable to those of conventional wrought specimens both at room temperature and 650 °C. However, a drop was observed in the ductility of HIP material at 650 °C. The brittle particles along the PPB were found to affect the HIP materials’ creep life and ductility during solid-state sintering.

  7. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location

    Energy Technology Data Exchange (ETDEWEB)

    Hrabe, Nikolas, E-mail: nhrabe@gmail.com [National Institute of Standards and Technology (NIST), 325 Broadway, Stop 647, Boulder, CO 80305-3328 (United States); Quinn, Timothy, E-mail: timothy.quinn@nist.gov [National Institute of Standards and Technology (NIST), 325 Broadway, Stop 647, Boulder, CO 80305-3328 (United States)

    2013-06-20

    Selective electron beam melting (EBM) is a layer-by-layer additive manufacturing technique that shows great promise for fabrication of medical devices and aerospace components. Before its potential can be fully realized, however, a comprehensive understanding of processing-microstructure-properties relationships is necessary. Titanium alloy (Ti–6Al–4V) parts were built in a newly developed, unique geometry to allow accurate investigation of the following intra-build processing parameters: energy input, orientation, and location. Microstructure evaluation (qualitative prior-β grain size, quantitative α lath thickness), tensile testing, and Vickers microhardness were performed for each specimen. For a wide range of energy input (speed factor 30–40), small differences in mechanical properties (2% change in ultimate tensile strength (UTS) and 3% change in yield strength (YS)) were measured. Vertically built parts were found to have no difference in UTS or YS compared to horizontally built parts, but the percent elongation at break (% EL) was 30% lower. The difference in % EL was attributed to a different orientation of the tensile axis for horizontal and vertical parts compared to the elongated prior-β grain and microstructural texture direction in EBM Ti–6Al–4V. Orientation within the x–y plane as well as location were found to have less than 3% effect on mechanical properties, and it is possible a second order effect of thermal mass contributed to these results.

  8. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), part 1: Distance from build plate and part size

    Energy Technology Data Exchange (ETDEWEB)

    Hrabe, Nikolas, E-mail: nhrabe@gmail.com [National Institute of Standards and Technology (NIST), 325 Broadway, Stop 647, Boulder, CO 80305-3328 (United States); Quinn, Timothy, E-mail: timothy.quinn@nist.gov [National Institute of Standards and Technology (NIST), 325 Broadway, Stop 647, Boulder, CO 80305-3328 (United States)

    2013-06-20

    Selective electron beam melting (EBM) is a layer-by-layer additive manufacturing technique that shows great promise for fabrication of medical devices and aerospace components. Before its potential can be fully realized, however, a comprehensive understanding of processing–microstructure–properties relationships is necessary. Titanium alloy (Ti–6Al–4V) parts were built in a geometry developed to allow investigation of the following two intra-build processing parameters: distance from the build plate and part size. Microstructure evaluation (qualitative prior-β grain size, quantitative α lath thickness), tensile testing, and Vickers microhardness were performed for each specimen. Microstructure and mechanical properties, including microhardness, were not found to vary as a function of distance from the build plate, which was hypothesized to be influenced by the build plate preheating associated with the EBM process. Part size, however, was found to influence ultimate tensile strength (UTS) and yield strength (YS) by less than 2% over the size range investigated. A second order effect of thermal mass might also have influenced these results. Differences were observed between the EBM Ti–6Al–4V microstructure of this work and the expected acicular or Widmanstätten microstructure normally achieved through annealing above the β transus. Therefore, a different relationship between α lath thickness and mechanical properties might be expected.

  9. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), part 1: Distance from build plate and part size

    International Nuclear Information System (INIS)

    Hrabe, Nikolas; Quinn, Timothy

    2013-01-01

    Selective electron beam melting (EBM) is a layer-by-layer additive manufacturing technique that shows great promise for fabrication of medical devices and aerospace components. Before its potential can be fully realized, however, a comprehensive understanding of processing–microstructure–properties relationships is necessary. Titanium alloy (Ti–6Al–4V) parts were built in a geometry developed to allow investigation of the following two intra-build processing parameters: distance from the build plate and part size. Microstructure evaluation (qualitative prior-β grain size, quantitative α lath thickness), tensile testing, and Vickers microhardness were performed for each specimen. Microstructure and mechanical properties, including microhardness, were not found to vary as a function of distance from the build plate, which was hypothesized to be influenced by the build plate preheating associated with the EBM process. Part size, however, was found to influence ultimate tensile strength (UTS) and yield strength (YS) by less than 2% over the size range investigated. A second order effect of thermal mass might also have influenced these results. Differences were observed between the EBM Ti–6Al–4V microstructure of this work and the expected acicular or Widmanstätten microstructure normally achieved through annealing above the β transus. Therefore, a different relationship between α lath thickness and mechanical properties might be expected

  10. Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design

    Directory of Open Access Journals (Sweden)

    Mengke Wang

    2016-12-01

    Full Text Available Selective laser melting (SLM is a promising technique capable of rapidly fabricating customized implants having desired macro- and micro-structures by using computer-aided design models. However, the SLM-based products often have non-equilibrium microstructures and partial surface defects because of the steep thermal gradients and high solidification rates that occur during the laser melting. To meet clinical requirements, a heat treatment was used to tailor the physiochemical properties, homogenize the metallic microstructures, and eliminate surface defects, expecting to improve the cytocompatibility in vitro. Compared with the as-printed Ti–6Al–4V substrate, the heat-treated substrate had a more hydrophilic, rougher and more homogeneous surface, which should promote the early cell attachment, proliferation and osseointegration. More importantly, a crystalline rutile TiO2 layer formed during the heat treatment, which should greatly promote the biocompatibility and corrosion resistance of the implant. Compared to the untreated surfaces, the adhesion and proliferation of human bone mesenchymal stem cells (hBMSCs on heat-treated substrates were significantly enhanced, implying an excellent cytocompatibility after annealing. Therefore, these findings provide an alternative to biofunctionalized SLM-based Ti–6Al–4V implants with optimized physiochemical properties and biocompatibility for orthopedic and dental applications.

  11. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  12. Experimental study of microstructure, mechanical and tribological properties of cBN particulates SS316 alloy based MMCs fabricated by DMLS technique

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.; Mandal, V.; Singh, P. K.; Kumar, P.; Kumar, V.; Das, A. K. [Indian Institute of Technology (ISM), Dhanbad (India)

    2017-06-15

    Direct metal laser sintering process (DMLS) was chosen to develop cBN particulates reinforced SS316 based Metal matrix composite (MMC) with 5 %, 7.5 % and 10 % cBN in the nitrogen gas atmosphere using continuous wave fibre laser of 400 W output capacity. Effects of process parameters such as laser power, beam scanning speed and the mixing ratio of powder on different physical properties of the developed MMC were investigated. It was found that the physical and mechanical properties such as friction and wear behavior, micro hardness and density come up with improved results. FESEM images indicate the microstructure of the composite and evidently confirms the presence of cubic boron nitride in the SS316 matrix where chromium nitride acted as a binder in the presence of nitrogen atmosphere. The Vickers hardness values of the developed MMCs with laser power 60 W and 65 W were found in the range of 276-478 HV{sub 0}.2 and 297-460 HV{sub 0}.2, respectively. It was found that Vickers hardness is directly proportional to the % of cBN in the powder mixture and the laser beam power. The wear resistance of the sintered MMCs increased with increasing cBN content in powder mixture and re- sults show that wear of MMCs are much lower than that of SS316. X-Ray diffraction (XRD) analysis of the fabricated MMC confirms the presence of different phases such as cBN, CrN, CrB{sub 2}, Cr{sub 2}N and Fe{sub 3}N as a consequence of a series of chemical reaction between cBN and different elements of SS316 in nitrogen atmosphere.

  13. Experimental study of microstructure, mechanical and tribological properties of cBN particulates SS316 alloy based MMCs fabricated by DMLS technique

    International Nuclear Information System (INIS)

    Hussain, M.; Mandal, V.; Singh, P. K.; Kumar, P.; Kumar, V.; Das, A. K.

    2017-01-01

    Direct metal laser sintering process (DMLS) was chosen to develop cBN particulates reinforced SS316 based Metal matrix composite (MMC) with 5 %, 7.5 % and 10 % cBN in the nitrogen gas atmosphere using continuous wave fibre laser of 400 W output capacity. Effects of process parameters such as laser power, beam scanning speed and the mixing ratio of powder on different physical properties of the developed MMC were investigated. It was found that the physical and mechanical properties such as friction and wear behavior, micro hardness and density come up with improved results. FESEM images indicate the microstructure of the composite and evidently confirms the presence of cubic boron nitride in the SS316 matrix where chromium nitride acted as a binder in the presence of nitrogen atmosphere. The Vickers hardness values of the developed MMCs with laser power 60 W and 65 W were found in the range of 276-478 HV_0.2 and 297-460 HV_0.2, respectively. It was found that Vickers hardness is directly proportional to the % of cBN in the powder mixture and the laser beam power. The wear resistance of the sintered MMCs increased with increasing cBN content in powder mixture and re- sults show that wear of MMCs are much lower than that of SS316. X-Ray diffraction (XRD) analysis of the fabricated MMC confirms the presence of different phases such as cBN, CrN, CrB_2, Cr_2N and Fe_3N as a consequence of a series of chemical reaction between cBN and different elements of SS316 in nitrogen atmosphere.

  14. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  15. Microstructural characterization of the γ-TiAl alloy samples ...

    Indian Academy of Sciences (India)

    A direct laser fabrication technique (DLF) has been used to fabricate near net shape samples of a -TiAl alloy using gas atomized Ti48A148Mn2Nb2 alloy powder as a feed stock material. The microstructures of these Ti48Al48Mn2Nb2 laser treated samples have been characterized using optical, scanning (SEM) and ...

  16. Fundamental irradiation studies on vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Garner, F.A.; Ermi, A.M.

    1985-05-01

    A joint experiment on the irradiation response of simple vanadium alloys has been initiated under the auspices of the DAFS and BES progams. Specimen fabrication is nearly complete and the alloys are expected to be irradiated in lithium in FFTF-MOTA Cycles 7 and 8

  17. Heavy Chain Diseases

    Science.gov (United States)

    ... of heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy ... the disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy ...

  18. Applications of shape memory alloys in Japan

    International Nuclear Information System (INIS)

    Asai, M.; Suzuki, Y.

    2000-01-01

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and other field today. (orig.)

  19. Heavy baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.

    1994-06-01

    We review the experimental and theoretical status of baryons containing one heavy quark. The charm and bottom baryon states are classified and their mass spectra are listed. The appropriate theoretical framework for the description of heavy baryons is the Heavy Quark Effective Theory, whose general ideas and methods are introduced and illustrated in specific examples. We present simple covariant expressions for the spin wave functions of heavy baryons including p-wave baryons. The covariant spin wave functions are used to determine the Heavy Quark Symmetry structure of flavour-changing current-induced transitions between heavy baryons as well as one-pion and one-photon transitions between heavy baryons of the same flavour. We discuss 1/m Q corrections to the current-induced transitions as well as the structure of heavy to light baryon transitions. Whenever possible we attempt to present numbers to compare with experiment by making use of further model-dependent assumptions as e.g. the constituent picture for light quarks. We highlight recent advances in the theoretical understanding of the inclusive decays of hadrons containing one heavy quark including polarization. For exclusive semileptonic decays we discuss rates, angular decay distributions and polarization effects. We provide an update of the experimental and theoretical status of lifetimes of heavy baryons and of exclusive nonleptonic two body decays of charm baryons. (orig.)

  20. Heat treatment of nickel alloys

    International Nuclear Information System (INIS)

    Smith, D.F. Jr.; Clatworthy, E.F.

    1975-01-01

    A heat treating process is described that can be used to produce desired combinations of strength, ductility, and fabricability characteristics in heat resistant age-hardenable alloys having precipitation-hardening amounts of niobium, titanium, and/or tantalum in a nickel-containing matrix. (U.S.)

  1. Development of CANFLEX fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. S.; Choi, C. B.; Park, C. H.; Kwon, W. J.; Kim, C. H.; Kim, B. J.; Koo, C. H.; Cho, D. S.; So, D. Y.; Suh, S. W.; Park, C. J.; Chang, D. H.; Yun, S. H. [KEPCO Nuclear Fuel Company, Taejeon (Korea)

    2000-04-01

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU(CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. One of the improvements in CANDU fuel fabrication technology, and advanced method of Zr-Be brazing was developed. For the formation of Zr-Be alloy, preheating and main heating temperature in the furnace is 700 deg C, 1200 deg C respectively. In order to find an appropriate material for the brazing joints in the CANDU fuel, the composition of Zr based amorphous metals were designed. And, the effect of hydrogen on the mechanical properties of cladding sheath and feasibility of the eddy current test to evaluate quality of end cap weld were also studied for the fundamental research purpose. As a preliminary study to suggest optimal way for the mass production of CANFLEX-NU fuel at KNFC the existing CANDU fuel facilities and fabrication/inspection processes were reviewed. The best way is that the current CANDU facility shall be modified to produce small diametrial CANFLEX elements and a new facility shall be constructed to produce large diametrial CANFLEX fuel elements. 46 refs., 99 figs., 10 tabs. (Author)

  2. Use of low fusing alloy in dentistry.

    Science.gov (United States)

    Wee, A G; Schneider, R L; Aquilino, S A

    1998-11-01

    Low fusing alloy has been used in dentistry for remount procedures in both fixed and removable prosthodontics, in implant prosthodontics for the fabrication of solid implant casts, in maxillofacial prosthetics as oral radiation shields, and in dental research for its unique properties. Previously, the use of low fusing alloy was thought to offer a high degree of dimensional accuracy. However, multiple in vitro studies have shown that its presumed dimensional accuracy may be questionable. This article reviews the physical properties, metallurgical considerations of low fusing alloy, its applications in dentistry, and a safe, simple method of using low fusing alloy.

  3. Heavy flavors

    International Nuclear Information System (INIS)

    Cox, B.; Gilman, F.J.; Gottschalk, T.D.

    1986-11-01

    A range of issues pertaining to heavy flavors at the SSC is examined including heavy flavor production by gluon-gluon fusion and by shower evolution of gluon jets, flavor tagging, reconstruction of Higgs and W bosons, and the study of rare decays and CP violation in the B meson system. A specific detector for doing heavy flavor physics and tuned to this latter study at the SSC, the TASTER, is described. 36 refs., 10 figs

  4. Surface treatment method for hydrogen adsorbing alloy powder and alkali secondary battery fabricated by applying the method; Suiso kyuzo gokin funmatsu no hyomen shori hoho to sorewo tekiyoshite eraeta arukari niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, K. [Furukawa Electric Co. Ltd., Tokyo (Japan); Sawa, H. [The Furukawa Battery Co. Ltd., Yokohama (Japan)

    1997-03-07

    Corrosion of alloy proceeds in the conventional hydrogen absorbing alloy because the composing hydrogen absorbing alloy powder contacts with high concentration alkali electrolyte in the battery. Immersion into alkali aqueous solution and pulverization by metal fluoride compound of the electrode have been practiced to solve the problem, but internal resistance of the battery increases and the charge and discharge properties of the battery are deteriorated. This invention relates to a method in which hydrogen absorbing alloy electrode powder or the hydrogen alloy electrode whose main content is the said powder is contacted with alkali aqueous solution to increase the specific surface area of the hydrogen absorbing alloy powder, followed by its contact with pH3-6 acidic aqueous solution containing fluorine ions. As a result, corrosion resistance of the surface of hydrogen absorbing alloy powder after the treatment against high concentration alkali electrolyte is improved to elongate the cycle life. Salts of LiF, NaF, KF, RbF, and CsF or their hydrogen salts can be used as the supply source of fluorine ions. 3 tabs.

  5. Manufacturing of High Entropy Alloys

    Science.gov (United States)

    Jablonski, Paul D.; Licavoli, Joseph J.; Gao, Michael C.; Hawk, Jeffrey A.

    2015-07-01

    High entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion they have high configurational entropy, and thus they hold the promise of interesting and useful properties such as enhanced strength and phase stability. The present study investigates the microstructure of two single-phase face-centered cubic (FCC) HEAs, CoCrFeNi and CoCrFeNiMn, with special attention given to melting, homogenization and thermo-mechanical processing. Large-scale ingots were made by vacuum induction melting to avoid the extrinsic factors inherent in small-scale laboratory button samples. A computationally based homogenization heat treatment was applied to both alloys in order to eliminate segregation due to normal ingot solidification. The alloys fabricated well, with typical thermo-mechanical processing parameters being employed.

  6. Low activation vanadium alloys

    International Nuclear Information System (INIS)

    Witzenburg, W. van.

    1991-01-01

    The properties and general characteristics of vanadium-base alloys are reviewed in terms of the materials requirements for fusion reactor first wall and blanket structures. In this review attention is focussed on radiation response including induced radioactivity, mechanical properties, compatibility with potential coolants, physical and thermal properties, fabricability and resources. Where possible, properties are compared to those of other leading candidate structural materials, e.g. austenitic and ferritic/martensitic steels. Vanadium alloys appear to offer advantages in the areas of long-term activation, mechanical properties at temperatures above 600 deg C, radiation resistance and thermo-hydraulic design, due to superior physical and thermal properties. They also have a potential for higher temperature operation in liquid lithium systems. Disadvantages are associated with their ability to retain high concentrations of hydrogen isotopes, higher cost, more difficult fabrication and welding. A particular concern regarding use of vanadium alloys relates their reactivity with non-metallic elements, such as oxygen and nitrogen. (author). 33 refs.; 2 figs.; 2 tabs

  7. TiNi shape memory alloys: effects of the fabrication route, the oxygen content and the zirconium or hafnium additions on the metallurgical characteristics and the thermomechanical properties; Alliages a memoires de forme de base TiNi: influence du mode de fabrication de la teneur en oxygene et de l`ajout de Zr ou Hf sur les caracteristiques metallurgiques et les proprietes mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Olier, P.

    1996-12-31

    In order to promote the development of Ti-Ni shape memory alloys, we have studied the correlation between the fabrication route, the chemical composition (O{sub 2} content, Zr or Hf additions), the metallurgical characteristics and the thermomechanical properties. A conventional sintering does not allow to obtain a homogeneous compound of pure Ti{sub 50}Ni{sub 50} alloy because of the occurrence of Kirkendall porosities which act as a diffusion barrier. An original process including combustion synthesis and hot-extrusion was successfully developed. Resulting products exhibit a smaller grain size (15-20{mu}m) and an enhanced workability in comparison with products obtained by arc-melting and subsequent hot rolling. The presence of oxygen in equiatomic Ti-Ni alloy induces the oxide precipitation of Ti{sub 4}Ni{sub 2}O{sub x} type (with x {<=} 1). The precipitated particle fraction is proportional to the oxygen nominal content of the alloy. We show that the decrease of the transformation temperatures is correlated with the decrease of Ti in solid solution due to Ti{sub 4}Ni{sub 2}O precipitation. Moreover, we find that a fine and homogenous oxide dispersion is suitable to decrease the grain size during hot rolling and to enhance to the one way shape memory properties. An increase of the typical transformation temperatures is obtained through of Zr or Hf (in substitution to Ti). But, an increase of the hardness is measured, and consequently the workability of the ternary alloys becomes reduced. However, it is worthwhile to point out that a Ti{sub 38}Ni{sub 50}Hf{sub 12} product obtained by arc melting and hot extrusion is able to fully recover an apparent plastic strain of more than 4% during tensile tests performed under special loading conditions. Such as behaviour is of great interest with respect to potential applications in a temperature range higher that 100 deg. C. (author). 105 refs.

  8. Digital fabrication

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 3) issue of the Nexus Network Journal features seven original papers dedicated to the theme “Digital Fabrication”. Digital fabrication is changing architecture in fundamental ways in every phase, from concept to artifact. Projects growing out of research in digital fabrication are dependent on software that is entirely surface-oriented in its underlying mathematics. Decisions made during design, prototyping, fabrication and assembly rely on codes, scripts, parameters, operating systems and software, creating the need for teams with multidisciplinary expertise and different skills, from IT to architecture, design, material engineering, and mathematics, among others The papers grew out of a Lisbon symposium hosted by the ISCTE-Instituto Universitario de Lisboa entitled “Digital Fabrication – A State of the Art”. The issue is completed with four other research papers which address different mathematical instruments applied to architecture, including geometric tracing system...

  9. Nickel aluminide alloy suitable for structural applications

    Science.gov (United States)

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  10. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  11. Electroerosion micro- and nanopowders for the production of hard alloys

    Science.gov (United States)

    Latypov, R. A.; Ageeva, E. V.; Kruglyakov, O. V.; Latypova, G. R.

    2016-06-01

    The shape and the surface morphology of the powder particles fabricated by the electroerosion dispersion of tungsten-containing wastes in illuminating oil are studied. The hard alloy fabricated from these powder particles is analyzed by electron-probe microanalysis. The powder synthesized by the electroerosion dispersion of the wastes of sintered hard alloys is found to consist of particles of a spherical or elliptical shape, an irregular shape (conglomerates), and a fragment shape. It is shown that W, Ti, and Co are the main elements in the hard alloy fabricated from the powder synthesized by electroerosion dispersion in illuminating oil.

  12. Nonswelling alloy

    Science.gov (United States)

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  13. Nonswelling alloy

    International Nuclear Information System (INIS)

    Harkness, S.D.

    1975-01-01

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses

  14. The Flexible Fabric of Space

    Science.gov (United States)

    VanNorsdall, Erin Leigh

    2015-08-01

    This poster will clearly illustrate my understanding of how the fabric of space behaves. The poster will be on a large trampoline with a heavy bowling ball in the center. The observer will be able to clearly understand the much more complicated property of how an object in space, such as a star, literally bends the fabric of the space around as a result of its density. This will also help to explain, in very simple terms, how space-time is bendable, and therefore, travel in space can be as well.

  15. MOX fuel fabrication at AECL

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Jeffs, A.T.

    1995-01-01

    Atomic Energy of Canada Limited's mixed-oxide (MOX) fuel fabrication activities are conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. The RFFL facility is designed to produce experimental quantities of CANDU MOX fuel for reactor physics tests or demonstration irradiations. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions. About 150 bundles, containing over three tonnes of MOX, were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is nearing completion. This project is funded by the CANDU Owners' Group (COG). The initial fabrication campaign will consist of the production of thirty-eight 37-element (U,Pu)O 2 bundles containing 0.2 wt% Pu in Heavy Element (H.E.) destined for physics tests in the zero-power ZED-2 reactor. An overview of the Rehabilitation Project will be given. (author)

  16. Progress of HDDR NdFeB powders modulated by the diffusion of low melting point elements and their alloys

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available The hydrogenation-disproportionation-desorption-recombination (HDDR process is the main technique for the fabrication of anisotropic NdFeB magnetic powder.But the intrinsic coercivity (HC of HDDR magnetic powder is low.The addition of heavy rare earth element Dy could improve its HC.It was found that the added Dy is mainly distributed in the grain boundary of HDDR magnets,which regulates grain boundary phase and increases the thickness of grain boundary to improve the anisotropy field (HA and HC of the magnets.However,Dy becomes scarcer and more expensive,which limits the practical application of HDDR magnets.To reduce the dependence on heavy rare earth elements and cost,researchers replaced the heavy rare earth element Dy by low melting point elements and their alloys through grain boundary diffusion technique.During diffusion process low melting point metal exists as liquid phase that increases the diffusion coefficient of diffusion medium as well as its contact area with grain boundary phases of HDDR magnets,and benefits its diffusion along grain boundaries and regulation of grain boundary phase.The modified grain boundary in magnets improve HC.This review paper focuses on the research progress in improving HC of HDDR NdFeB magnets by low melting point elements and their alloys.

  17. Glass formation ability, structure and magnetocaloric effect of a heavy rare-earth bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C.-L. [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)], E-mail: jochollong@163.com; Xia Lei; Ding Ding; Dong Yuanda; Gracien, Ekoko [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)

    2008-06-30

    The glass formation ability, the structure and the magnetocaloric effect of the bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy were investigated. Bulk metallic glassy (BMGs) alloys were prepared by a copper-mold casting method. The glass forming ability and their structure were studied by using X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The XRD analysis revealed that the as-cast cylinder of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed fully amorphous structure in 2 mm diameter. The DSC revealed that the bulk cylinder of the Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed a distinct glass transition temperature and a relatively wide supercooled liquid region before crystallization. SQUID investigated the magnetic properties and the entropy changes. The Curie temperature of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} BMGs alloy was about 130 K, but the maximum magnetic entropy changes(-{delta}S{sub M}) showed at about 125 K, a little lower than the Curie temperature 130 K. The reason could probably be due to the presence of a little amount of nanocrystalline particles between amorphous phases. The BMG alloy has the characteristic of second-order transition (SOT) on Arrott plots. The results showed that the amorphous sample had a relatively improved magnetocaloric effect, indicating that the amorphous alloy could be considered as a candidate for magnetic refrigeration applications in the temperature interval range of 100-200 K.

  18. Titanium oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Hendrix, W.; Vandermeulen, W.

    1980-04-01

    The available data on the DT02 and DT3911 ferritic dispersion strengthened alloys, developed at SCK/CEN, Mol, Belgium, are presented. Both alloys consist of Fe - 13% Cr - 1.5% Mo to which 2% TiO 2 and about 3.5% Ti are added (wt.%). Their main use is for the fabrication of fast breeder reactor cladding tubes but their application as turbine blade material is also envisaged for cases where high damping is important. (auth.)

  19. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  20. Dual-Alloy Disks are Formed by Powder Metallurgy

    Science.gov (United States)

    Harf, F. H.; Miner, R. V.; Kortovich, C. S.; Marder, J. M.

    1982-01-01

    High-performance disks have widely varying properties from hub to rim. Dual property disk is fabricated using two nickel-base alloys, AF-115 for rim and Rene 95 for hub. Dual-alloy fabrication may find applications in automobiles, earth-moving equipment, and energy conversion systems as well as aircraft powerplants. There is potential for such applications as shafts, gears, and blades.

  1. Heavy flavours

    CERN Document Server

    Buras, Andrzej J

    1998-01-01

    This volume is a collection of review articles on the most outstanding topics in heavy flavour physics. All the authors have made significant contributions to this field. The book reviews in detail the theoretical structure of heavy flavour physics and confronts the Standard Model and some of its extensions with existing experimental data.This new edition covers new trends and ideas and includes the latest experimental information. Compared to the previous edition interesting new activities are included and some of the key contributions are updated. Particular attention is paid to the discover

  2. Electron microscopy of nuclear zirconium alloys

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, Miguel

    1986-01-01

    Transmission electron microscopy observations of the microstructure of zirconium alloys used in fuel sheaths of nuclear power reactors are reported. Specimens were observed after different thermal and mechanical treatment, similar to those actually used during fabrication of the sheaths. Electron micrographs and electron diffraction patterns of second phase particles present in zircaloy-2 and zircaloy-4 were also obtained, as well as some characteristic parameters. Images of oxides and hydrides most commonly present in zirconium alloys are also shown. Finally, the structure of a Zr-2,5Nb alloy used in CANDU reactors pressure tubes, is observed by electron microscopy. (Author) [es

  3. Combinatorial search for hydrogen storage alloys: Mg-Ni and Mg-Ni-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Oelmez, Rabia; Cakmak, Guelhan; Oeztuerk, Tayfur [Dept. of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2010-11-15

    A combinatorial study was carried out for hydrogen storage alloys involving processes similar to those normally used in their fabrication. The study utilized a single sample of combined elemental (or compound) powders which were milled and consolidated into a bulk form and subsequently deformed to heavy strains. The mixture was then subjected to a post annealing treatment, which brings about solid state reactions between the powders, yielding equilibrium phases in the respective alloy system. A sample, comprising the equilibrium phases, was then pulverized and screened for hydrogen storage compositions. X-ray diffraction was used as a screening tool, the sample having been examined both in the as processed and the hydrogenated state. The method was successfully applied to Mg-Ni and Mg-Ni-Ti yielding the well known Mg{sub 2}Ni as the storage composition. It is concluded that a partitioning of the alloy system into regions of similar solidus temperature would be required to encompass the full spectrum of equilibrium phases. (author)

  4. Engineering data bases for refractory alloys

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Harms, W.O.

    1985-01-01

    Refractory alloys based on niobium, molybdenum, tantalum, and tungsten are required for the multi-100kW(e) space nuclear reactor power concepts that have been assessed in the SP-100 Program because of the extremely high temperatures involved. A review is presented of the technology efforts on the candidate refractory alloys in the areas of availability/fabricability, mechanical properties, irradiation effects, and compatibility. Of the niobium-base alloys, only Nb-1Zr has a data base that is sufficiently comprehensive for the high level of confidence required in the reference-alloy selection process for the reactor concept to be tested in the Ground Engineering System (GES) Phase of the SP-100 Program. Based on relatively short-term tests, the alloy PWC-11 (Nb-1Zr-0.1C) appears to have significantly greater creep strength than Nb-1Zr; however, concerns as to whether this precipitation-hardened alloy will remain thermally stable during seven years of full-power reactor operation need to be resolved. Additional information on the reference GES alloy will be needed for the detailed engineering design of a space power system and the fabrication of prototypical GES test components. Expedient development and demonstration of an adequate total manufacturing capability will be required if a high risk of significant schedule slippages and cost overruns is to be avoided. 4 refs., 1 fig., 3 tabs

  5. Heavy quarks

    International Nuclear Information System (INIS)

    Khoze, V.A.

    1983-10-01

    We discuss the results accumulated during the last five years in heavy quark physics and try to draw a simple general picture of the present situation. The survey is based on a unified point of view resulting from quantum chromodynamics. (orig.)

  6. Metal-ceramic alloys in dentistry: a review.

    Science.gov (United States)

    Roberts, Howard W; Berzins, David W; Moore, B Keith; Charlton, David G

    2009-02-01

    The purpose of this article is to review basic information about the alloys used for fabricating metal-ceramic restorations in dentistry. Their compositions, properties, advantages, and disadvantages are presented and compared. In addition to reviewing traditional noble-metal and base-metal metal-ceramic alloys, titanium and gold composite alloys are also discussed. A broad search of the published literature was performed using Medline to identify pertinent current articles on metal-ceramic alloys as well as articles providing a historical background about the development of these alloys. Textbooks, the internet, and manufacturers' literature were also used to supplement this information. The review discusses traditional as well as more recently-developed alloys and technologies used in dentistry for fabricating metal-ceramic restorations. Clear advantages and disadvantages for these alloy types are provided and discussed as well as the role that compositional variations have on the alloys' performance. This information should enable clinicians and technicians to easily identify the important physical properties of each type and their primary clinical indications. A number of alloys and metals are available for metal-ceramic use in dentistry. Each has its advantages and disadvantages, primarily based on its specific composition. Continuing research and development are resulting in the production of new technologies and products, giving clinicians even more choices in designing and fabricating metal-ceramic restorations.

  7. Resin Infusion Fabrication of nanostructured PMC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymer reinforced composite parts required for heavy lift launch vehicles are currently fabricated by hand lay-up or automated tape lay-up followed by curing using...

  8. Tungsten alloy research at the US Army Materials Technology Laboratory

    International Nuclear Information System (INIS)

    Dowding, R.J.

    1991-01-01

    This paper reports that recent research into tungsten heavy alloys at the U. S. Army Materials Technology Laboratory (MTL) has explored many areas of processing and process development. The recrystallization and respheroidization of tungsten grains in a heavily cold worked heavy alloy has been examined and resulted in the identification of a method of grain refinement. Another area of investigation has been lightly cold worked. It was determined that it was possible to increase the strength and hardness of the tungsten grains by proper hat treatment. MTL has been involved in the Army's small business innovative research (SBIR) program and several programs have been funded. Included among these are a method of coating the tungsten powders with the alloying elements and the development of techniques of powder injection molding of heavy alloys

  9. Manufacturing development of low activation vanadium alloys

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported

  10. Low pressure plasma spray deposition of W-Ni-Fe alloy

    International Nuclear Information System (INIS)

    Mutasim, Z.Z.; Smith, R.W.

    1991-01-01

    The production of net shape refractory metal structural preforms are increasing in importance in chemical processing, defense and aerospace applications. Conventional methods become limited for refractory metal processing due to the high melting temperatures and fabrication difficulties. Plasma spray forming, a high temperature process, has been shown to be capable of refractory metal powder consolidation in net shape products. The research reported here has evaluated this method for the deposition of heavy tungsten alloys. Plasma Melted Rapidly Solidified (PMRS) W 8%Ni-2%Fe refractory metal powders were spray formed using vacuum plasma spray (VPS) process and produced 99% dense, fine grain and homogeneous microstructures. In this paper plasma operating parameters (plasma arc gas type and flowrate plasma gun nozzle size and spray distance) were studied and their effects on deposit's density and microstructure are reported

  11. Microstructural evolution and properties of friction stir welded aluminium alloy AA2219

    International Nuclear Information System (INIS)

    Gupta, R. K.; Biju, S.; Ghosh, B. R.; Sinha, P. P.

    2007-01-01

    Low weld strength of fusion welded joints of aluminium alloy AA2219 is a concern in fabrication of pressure vessels and is attributable to the presence of weld defects, as well as various metallurgical factors. Friction stir welding (FSW), being a solid state joining process has obvious advantages over fusion welding. Results of preliminary FSW experiments conducted on 10 mm thick plate using a particular tool configuration are presented here. Microscopic studies show the presence of very fine equiaxed recrystallised grain at the weld nugget and a flow pattern of grains due to heavy deformation in defect-free weld coupons. Mechanical properties are correlated with the microstructure and process variables. Fractographic analysis complements the observations of optical microscopy and mechanical properties

  12. Heavy flavours: theory summary

    OpenAIRE

    Corcella, Gennaro

    2005-01-01

    I summarize the theory talks given in the Heavy Flavours Working Group. In particular, I discuss heavy-flavour parton distribution functions, threshold resummation for heavy-quark production, progress in fragmentation functions, quarkonium production, heavy-meson hadroproduction.

  13. Fabricated Elastin.

    Science.gov (United States)

    Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S

    2015-11-18

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Using Neural Networks to Predict the Hardness of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    B. Zahran

    2015-02-01

    Full Text Available Aluminum alloys have gained significant industrial importance being involved in many of the light and heavy industries and especially in aerospace engineering. The mechanical properties of aluminum alloys are defined by a number of principal microstructural features. Conventional mathematical models of these properties are sometimes very complex to be analytically calculated. In this paper, a neural network model is used to predict the correlations between the hardness of aluminum alloys in relation to certain alloying elements. A backpropagation neural network is trained using a thorough dataset. The impact of certain elements is documented and an optimum structure is proposed.

  15. Superconducting alloys

    International Nuclear Information System (INIS)

    Bowers, J.E.

    1976-01-01

    Reference is made to superconductors having high critical currents. The superconductor described comprises an alloy consisting of a matrix of a Type II superconductor which is a homogeneous mixture of 50 to 95 at.% Pb and 5 to 40 at.%Bi and/or 10 to 50 at.%In. Dispersed in the matrix is a material to provide pinning centres comprising from 0.01% to 20% by volume of the alloy; this material is a stable discontinuous phase of discrete crystalline particles of Cu, Mn, Te, Se, Ni, Ca, Cr, Ce, Ge or La, either in the form of the element or a compound with a component of the matrix. These particles should have an average diameter of not more than 2μ. A method for making this alloy is described. (U.K.)

  16. Heavy weights

    International Nuclear Information System (INIS)

    2001-01-01

    The paper mentions the important thing that it was for the country, exporting the first shipping of crude de Castilla to a company of asphalts in United States. It was not a common sale, as those that it carries out the company with the crude of Cusiana or Cano Limon. The new of this shipping is that it was the first successful test of marketing the Colombian heavy crude in the exterior, since previously it was almost considered a curse to find heavy crude by the difficulties of its transport. Today it can be taken to any refinery of the world and the best test is that, after almost a year of efforts to overcome the barriers of the transport, the company achieved its conduction from the Castilla Field, in proximities to Villavicencio, until the Covenas Port, in the Caribbean Colombian coast

  17. Improvement in fuel utilization in pressurized heavy water reactors due to increased heavy water purity

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1991-01-01

    This paper reports that in a pressurized heavy water reactor (PHWR), the reactivity of the reactor and, consequently, the discharge burnup of the fuel depend on the isotopic purity of the heavy water used in the reactor. The optimal purity of heavy water used in PHWRs, in turn, depends on the cost of fabricated uranium fuel and on the incremental cost incurred in improving the heavy water purity. The physics and economics aspects of the desirability of increasing the heavy water purity in PHWRs in India were first examined in 1978. With the cost data available at that time, it was found that improving the heavy water purity from 99.80% to 99.95% was economically attractive. The same problem is reinvestigated with current cost data. Even now, there is sufficient incentive to improve the isotopic purity of heavy water used in PHWRs. Admittedly, the economic advantage that can be derived depends on the cost of the fabricated fuel. Nevertheless, irrespective of the economics, there is also a fairly substantial saving in natural uranium. That the increase in the heavy water purity is to be maintained only in the low-pressure moderator system, and not in the high-pressure coolant system, makes the option of achieving higher fuel burnup with higher heavy water purity feasible

  18. Heavy ions

    CERN Multimedia

    CERN. Geneva; Antinori, Federico

    2001-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  19. Heavy ions