WorldWideScience

Sample records for heavily ionizing tracks

  1. Tracking with heavily irradiated silicon detectors operated at cryogenic temperatures

    International Nuclear Information System (INIS)

    Casagrande, L.; Barnett, B.M.; Bartalina, P.

    1999-01-01

    In this work, the authors show that a heavily irradiated double-sided silicon microstrip detector recovers its performance when operated at cryogenic temperatures. A DELPHI microstrip detector, irradiated to a fluence of ∼4 x 10 14 p/cm 2 , no longer operational at room temperature, cannot be distinguished from a non-irradiated one when operated at T < 120 K. Besides confirming the previously observed Lazarus effect in single diodes, these results establish, for the first time, the possibility of using standard silicon detectors for tracking applications in extremely demanding radiation environments

  2. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  3. Ionization yield from electron tracks in liquid xenon

    International Nuclear Information System (INIS)

    Voronova, T.Ya.; Kipsanov, M.A.; Kruglov, A.A.; Obodovskij, I.M.; Pokachalov, S.G.; Shilov, V.A.; Khristich, E.B.

    1989-01-01

    Methods for calculating coefficients K β , characterizing ionization yield from electron track in liquid xenon are considered. K β calculation is conducted on the base of experimental data on K parameter characterizing ionization yield from a certain combination of photo-, Compton-and Auger electron tracks. K parameter measurements are conducted in liquid xenon at 170 K temperature within 10-30 keV gamma- and X radiation energy ranges. Calculated dependence of K β and K coefficients on the energy in a wide (5-500 keV) range is presented. K β values obtained can be applied for calculating the energy resolution of a gamma-spectrometer and linearity of its calibration characteristics if the electric field intensity in the spectrometer does not exceed some kV/cm

  4. Roles of ionizing radiation in cell transformation

    International Nuclear Information System (INIS)

    Tobias, C.A.; Albright, N.W.; Yang, T.C.

    1983-07-01

    Earlier the authors described a repair misrepair model (RMR-I) which is applicable for radiations of low LET, e.g., x rays and gamma rays. RMR-II was described later. Here is introduced a mathematical modification of the RMR model, RMR-III, which is intended to describe lethal effects caused by heavily ionizing tracks. 31 references, 4 figures

  5. Thermosetting resins for nuclear track detection

    International Nuclear Information System (INIS)

    Fujii, M.

    1985-01-01

    Several new thermosetting resins with a three dimensional network structure like CR-39 were polymerized to study their characteristics for use as nuclear track detectors. During the course of this study, thermosetting resins with good etching properties and various sensitivities have been obtained. The comparison of the molecular structures of these resins gives up an important clue for the development of highly sensitive polymeric track detectors. They will also be useful for observations of ultra-heavy cosmic rays and heavily ionizing particles at low energies. (orig.)

  6. Thermosetting resins for nuclear track detection

    International Nuclear Information System (INIS)

    Fujii, Masami; Yokota, Rikio

    1985-01-01

    Several new thermosetting resins with a three dimensional network structure like CR-39 were polymerized to study their characteristics for use as nuclear track detectors. During the course of this study, thermosetting resins with good etching properties and various sensitivities have been obtained. The comparison of the molecular structures of these resins gives us an important clue for the development of highly sensitive polymeric track detectors. They will also be useful for observations of ultra-heavy cosmic rays and heavily ionizing particles at low energies. (author)

  7. Production of slow particle in 1.7 AGeV 84Kr induced emulsion interaction

    International Nuclear Information System (INIS)

    Li Huiling; Zhang Donghai; Li Xueqin; Jia Huiming

    2008-01-01

    The production of slow particle in 1.7 AGeV 84 Kr induced emulsion interaction was studied. The experimental results show that the average multiplicity of black, grey and heavily ionized track particle increases with the increase of impact centrality and target size. The average multiplicity of grey track particle and heavily ionized track particle increases with the increase of the number of black track particle. The average multiplicity of heavily ionized track particle increases with the increase of the number of grey track particle, but average multiplicity of black track particle increases with the increase of the number of grey track particle and then saturated. The average multiplicity of grey track particle increases with the increase of the number of heavily ionized track particle, but average multiplicity of black track particle increases with the increase of the number of heavily ionized track particle and then saturated. Those experimental results can be well explained by using the nuclear impact geometry model. (authors)

  8. Kit with track detectors aiming at didactic

    International Nuclear Information System (INIS)

    Cesar, M.F.; Koskinas, M.F.

    1988-01-01

    The kit intends to improve the possibilities in performing experiments of Nuclear Physics in Modern Physics Laboratories of Physics Course introducing the solid state nuclear track detectors. In these materials the passage of heavily ionizing nuclear particles creates paths (tracks) that may be revealed and made visible in an optical microscope. By the help of the kit several experiments and/or demonstrations may be performed. The kit contains solid state nuclear track detectors unirradiated and irradiated, irradiated etched and uneteched sheets; an alpha source of 241 Am and an instrution text with photomicrographs. To use the kit the laboratory must have an ordinary optical microscope. (author) [pt

  9. A Novel Highly Ionizing Particle Trigger using the ATLAS Transition Radiation Tracker

    CERN Document Server

    Penwell, J; The ATLAS collaboration

    2011-01-01

    The ATLAS Transition Radiation Tracker (TRT) is an important part of the experiment’s charged particle tracking system. It also provides the ability to discriminate electrons from pions efficiently using large signal amplitudes induced in the TRT straw tubes by transition radiation. This amplitude information can also be used to identify heavily ionizing particles, such as monopoles, or Q-balls, that traverse the straws. Because of their large ionization losses, these particles can range out before they reach the ATLAS calorimeter, making them difficult to identify by the experiment’s first level trigger. Much of this inefficiency could be regained by making use of a feature of the TRT electronics that allows fast access to information on whether large-amplitude signals were produced in regions of the detector. A modest upgrade to existing electronics could allow triggers sensitive to heavily ionizing particles at level-1 to be constructed by counting such large-amplitude signals in roads corresponding to...

  10. Track reconstruction in liquid hydrogen ionization chamber

    International Nuclear Information System (INIS)

    Balbekov, V.I.; Baranov, A.M.; Krasnokutski, R.N.; Perelygin, V.P.; Rasuvaev, E.A.; Shuvalov, R.S.; Zhigunov, V.P.; Lebedenko, V.N.; Stern, B.E.

    1979-01-01

    It is shown that particle track parameters can be reconstructed by the currents in the anode cells of the ionization chamber. The calculations are carried out for the chamber with 10 cm anode-cathode gap width. For simplicity a two-dimensional chamber model is used. To make the calculations simpler the charge density along the track is considered to be constant and equal to 10 4 electrons/mm. The drift velocity of electrons is assumed to be 5x10 6 cm/s. The anode is devided into cells 2 cm in width. The events in the chamber is defined with the coordinates X and Z of the event vertex, polar angles THETA of each track and track length l. The coordinates x, y and track angle THETA are reconstructed by currents with errors of up to millimetre and milliradian. The reconstruction errors are proportional to noise levels of electronics and also depend on the track geometry and argon purification. The energy resolution of the chamber is calculated for high energy electrons by means of computer program based on a Monter-Carlo method. The conclusion is made that the energy resolution depends on the gap width as a square root. Two ways to solve the track reconstruction problem are considered: 1. the initial charge density is determined by measuring the charges induced in anode strips at some discrete moments of time; 2. the evaluation of the parameters ia made by traditional minimization technique. The second method is applicable only for a not very large number of hypothesis, but it is less time consuming

  11. Solid state nuclear track detectors kit for the use in teaching

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.

    1988-11-01

    The kit intends to improve the possibilities in performing experiments of Nuclear Physics in Modern Physics laboratories of Physics Course introducing the solid state nuclear track detectors. In these materials the passage of heavily ionizing nuclear particles creates paths (tracks) that may be revealed and made visible in an optical microscope. By the help of the kit several experiments and/or demonstrations may be performed. The kit contains solid state nuclear track detectors unirradiated and irradiated, irradiated etched and unetched sheets: an alpha source of 241 Am and an instrution text with photomicrographs. To use the kit the laboratory must have an ordinary optical microscope. (author) [pt

  12. A multiple sampling time projection ionization chamber for nuclear fragment tracking and charge measurement

    International Nuclear Information System (INIS)

    Bauer, G.; Bieser, F.; Brady, F.P.; Chance, J.C.; Christie, W.F.; Gilkes, M.; Lindenstruth, V.; Lynen, U.; Mueller, W.F.J.; Romero, J.L.; Sann, H.; Tull, C.E.; Warren, P.

    1997-01-01

    A detector has been developed for the tracking and charge measurement of the projectile fragment nuclei produced in relativistic nuclear collisions. This device, MUSIC II, is a second generation Multiple Sampling Ionization Chamber (MUSIC), and employs the principles of ionization and time projection chambers. It provides unique charge determination for charges Z≥6, and excellent track position measurement. MUSIC II has been used most recently with the EOS (equation of state) TPC and other EOS collaboration detectors. Earlier it was used with other systems in experiments at the Heavy Ion Superconducting Spectrometer (HISS) facility at Lawrence Berkeley Laboratory and the ALADIN spectrometer at GSI. (orig.)

  13. Computer image analysis of etched tracks from ionizing radiation

    Science.gov (United States)

    Blanford, George E.

    1994-01-01

    I proposed to continue a cooperative research project with Dr. David S. McKay concerning image analysis of tracks. Last summer we showed that we could measure track densities using the Oxford Instruments eXL computer and software that is attached to an ISI scanning electron microscope (SEM) located in building 31 at JSC. To reduce the dependence on JSC equipment, we proposed to transfer the SEM images to UHCL for analysis. Last summer we developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. As part of a consortium effort to better understand the maturation of lunar soil and its relation to its infrared reflectance properties, we worked on lunar samples 67701,205 and 61221,134. These samples were etched for a shorter time (6 hours) than last summer's sample and this difference has presented problems for establishing the correct analysis conditions. We used computer counting and measurement of area to obtain preliminary track densities and a track density distribution that we could interpret for sample 67701,205. This sample is a submature soil consisting of approximately 85 percent mature soil mixed with approximately 15 percent immature, but not pristine, soil.

  14. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    International Nuclear Information System (INIS)

    Benson, Andrew; Venkatesan, Aparna; Shull, J. Michael

    2013-01-01

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  15. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Andrew [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Venkatesan, Aparna [Department of Physics and Astronomy, University of San Francisco, San Francisco, CA 94117 (United States); Shull, J. Michael, E-mail: abenson@obs.carnegiescience.edu, E-mail: avenkatesan@usfca.edu, E-mail: michael.shull@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2013-06-10

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  16. Thermosetting resins for nuclear track detection

    International Nuclear Information System (INIS)

    Fujii, M.; Yokota, R.

    1986-01-01

    Several new thermosetting resins with a three dimensional network structure similar to that of CR-39 were polymerized to study their characteristics as nuclear track detectors. The comparison of the molecular structures of these resins gives us an important clue to develop highly sensitive polymeric track detectors. For example, butanediol bis allylcarbonate (BuAC) shows the sensitivity about ten times higher than diallyl and adipate (DAA). This suggests the carbonate groups in the BuAC molecule provide a much higher sensitivity than the ester groups in the DAA. During the course of this study, thermosetting resins with good etching properties and various sensitivities have been developed. Though the sensitivity of DAA is low, it will be useful for observations of ultra heavy cosmic rays and heavily ionizing particles at low energies. (author)

  17. Image analysis used to count and measure etched tracks from ionizing radiation

    Science.gov (United States)

    Blanford, George E.; Schulz, Cindy K.

    1995-01-01

    We have developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains and plastic dosimeters. Tracks in lunar samples are formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. We worked on two samples identified for a consortium study of lunar weathering effects, 61221 and 67701. They were prepared by the lunar curator's staff as polished grain mounts that were etched in boiling 1 N NaOH for 6 h to reveal tracks. We determined that backscattered electron images taken at 10 percent contrast and approximately 50 percent brightness produced suitable high contrast images for analysis. We used the NIH Image program to cut out areas that were unsuitable for measurement such as edges, cracks, etc. We ascertained a gray-scale threshold of 25 to separate tracks from background. We used the computer to count everything that was two pixels or greater in size and to measure the area to obtain track densities. We found an excellent correlation with manual measurements for track densities below 1 x 10(exp 8) cm(exp -2). For track densities between 1 x 10(exp 8) cm(exp -2) to 1 x 10(exp 9) cm(exp -2) we found that a regression formula using the percentage area covered by tracks gave good agreement with manual measurements. We determined the track density distributions for 61221 and 67701. Sample 61221 is an immature sample, but not pristine. Sample 67701 is a submature sample that is very close to being fully mature. Because only 10 percent of the grains have track densities less than 10(exp 9) cm(exp -2), it is difficulty to determine whether the sample matured in situ or is a mixture of a mature and a submature soil. Although our analysis

  18. Track structure theory in radiobiology and in radiation detection

    International Nuclear Information System (INIS)

    Katz, R.

    1976-01-01

    The response of biological cells, and many physical radiation and track detectors to ionizing radiations, and to energetic heavily ionizing particles results from the secondary and higher generation electrons ejected from the atoms and molecules of the detector by the incident primary radiation. The models which have been used for detector response arise from target theory, and are of the form of statistical models called multi-hit or multi-target detectors, in which it is assumed that there are sensitive elements (emulsion grains, or biological cell nuclei) which may require many hits (emulsion grains) or single hits in different targets (say, cellular chromosomes) in order to produce the observed endpoint. Physically, a hit is interpreted as a 'registered event' caused by an electron passing through the sensitive site, with an efficiency which depends on the electron's speed. Some knowledge of size of the sensitive volume and of the sensitive target is required to make the transition from gamma-ray response to heavy ion response. Recent work has demonstrated that many-hit physical detectors do exist. From both emulsion sensitometry and from the structure of tracks of heavy ions, we are able to show that emulsion-developer combinations exist which yield many-hit response. There is also some evidence that the supralinearity in thermoluminescent dosimeters arises from a trap structures within the same TLD crystal. These detectors can be expected to mimic the response of biological cells to radiations of different quality. Their patterns of response may help us to understand better the structure of particle tracks in SSNTD's. (orig./ORU) [de

  19. Track structure theory in radiobiology and in radiation detection

    International Nuclear Information System (INIS)

    Katz, R.

    1978-01-01

    The response of biological cells, and many physical radiation and track detectors to ionizing radiations and to energetic heavily ionizing particles, results from the secondary and higher generation electrons ejected from the atoms and molecules of the detector by the incident primary radiation. The theory uses a calculation of the radial distribution of local dose deposited by secondary electrons (delta-rays) from an energetic heavy ion as a transfer function, relating the dose-response relation measured (or postulated) for a particular detector in a uniform radiation field (gamma-rays) to obtain the radial distribution in response about the ion's path, and thus the structure of the track of a particle. Subsequent calculations yield the response of the detector to radiation fields of arbitrary quality. The models which have been used for detector response arise from target theory, and are of the form of statistical models called multi-hit or multi-target detectors, in which it is assumed that there are sensitive elements (emulsion grains, or biological cell nuclei) which may require many hits (emulsion grains) or single hits in different targets (say, cellular chromosomes) in order to produce the observed end-point. Recent work has demonstrated that many-hit physical detectors do exist. From both emulsion sensitometry and from the structure of tracks of heavy ions, it can be shown that emulsion-developer combinations exist which yield many-hit response. There is also some evidence that the supralinearity in thermoluminescent dosimeters arises from a mixture of 1-hit and 2-hit response, perhaps of different trap structures within the same TLD crystal. These detectors can be expected to mimic the response of biological cells to radiations of different quality. Their patterns of response may help us to understand better the structure of particle tracks in SSNTD's. (author)

  20. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  1. Cluster analysis of track structure

    International Nuclear Information System (INIS)

    Michalik, V.

    1991-01-01

    One of the possibilities of classifying track structures is application of conventional partition techniques of analysis of multidimensional data to the track structure. Using these cluster algorithms this paper attempts to find characteristics of radiation reflecting the spatial distribution of ionizations in the primary particle track. An absolute frequency distribution of clusters of ionizations giving the mean number of clusters produced by radiation per unit of deposited energy can serve as this characteristic. General computation techniques used as well as methods of calculations of distributions of clusters for different radiations are discussed. 8 refs.; 5 figs

  2. An approach to modelling radiation damage by fast ionizing particles

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1987-01-01

    The paper presents a statistical approach to modelling radiation damage in small biological structures such as enzymes, viruses, and some cells. Irreparable damage is assumed to be caused by the occurrence of ionizations within sensitive regions. For structures containing double-stranded DNA, one or more ionizations occurring within each strand of the DNA will cause inactivation; for simpler structures without double-stranded DNA a single ionization within the structure will be sufficient for inactivation. Damaging ionizations occur along tracks of primary irradiating particles or along tracks of secondary particles released at primary ionizations. An inactivation probability is derived for each damage mechanism, expressed in integral form in terms of the radius of the biological structure (assumed spherical), rate of ionization along primary tracks, and maximum energy for secondary particles. The performance of each model is assessed by comparing results from the model with those derived from data from various experimental studies extracted from the literature. For structures where a single ionization is sufficient for inactivation, the model gives qualitatively promising results; for larger more complex structures containing double-stranded DNA, the model requires further refinements. (author)

  3. Ionizing radiation interactions with DNA: nanodosimetry

    International Nuclear Information System (INIS)

    Bug, Marion; Nettelbeck, Heidi; Hilgers, Gerhard; Rabus, Hans

    2011-01-01

    The metrology of ionizing radiation is based on measuring values that are averaged over macroscopic volume elements, for instance the energy dose is defined as ratio of the energy deposited on the absorber and the absorber mass. For biological or medical radiation effects the stochastic nature of radiation interaction id of main importance, esp. the interaction of ionizing radiation with the DNA as the genetic information carrier. For radiotherapy and risk evaluation purposes a comprehensive system of radiation weighing factors and other characteristics, like radiation quality or relative biological efficacy was developed. The nanodosimetry is aimed to develop a metrological basis relying on physical characteristics of the microscopic structure of ionizing radiation tracks. The article includes the development of experimental nanodosimetric methods, the respective calibration techniques, Monte-Carlo simulation of the particle track microstructure and the correlation nanodosimetry and biological efficiency.

  4. One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T L; Hirose, Y; Hitosugi, T; Hasegawa, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)], E-mail: chen@ksp.or.jp

    2008-03-21

    We present a novel way to obtain heavily nitrogen doped anatase TiO{sub 2} films by using a solid-state nitrogen source. Epitaxial growth of the films was realized by introducing one unit-cell seed layer, which was indicated by reflection high-energy electron diffraction as intensity oscillation. Results of x-ray diffraction and x-ray photoelectron spectroscopy confirmed that the films were in the anatase phase heavily doped with nitrogen of {approx}15 at%. The films obtained exhibited considerable narrowing of the optical bandgap, resulting in an enhancement of absorption in the visible-light region. (fast track communication)

  5. Track structure in biological models.

    Science.gov (United States)

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.

  6. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response

    DEFF Research Database (Denmark)

    Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.

    2013-01-01

    Genotoxic insults, such as ionizing radiation (IR), cause DNA damage that evokes a multifaceted cellular DNA damage response (DDR). DNA damage signaling events that control protein activity, subcellular localization, DNA binding, protein-protein interactions, etc. rely heavily on time...

  7. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    International Nuclear Information System (INIS)

    Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi

    2008-01-01

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies

  8. Time expansion chamber and single ionization cluster measurement

    International Nuclear Information System (INIS)

    Walenta, A.H.

    1978-10-01

    The time expansion chamber (TEC), a new type of drift chamber, allows the measurement of microscopic details of ionization. The mean drift time interval from subsequent sngle ionization clusters of a relativistic particle in the TEC can be made large enough compared to the width of a anode signal to allow the recording of the clusters separately. Since single primary electrons can be detected, the cluster counting would allow an improved particle separation using the relativistic rise of primary ionization. In another application, very high position accuracy for track detectors or improved energy resolution may be obtained. Basic ionization phenomena and drift properties can be measured at the single electron level

  9. Efficiency calibration of solid track spark auto counter

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Liu Rong; Jiang Li; Lu Xinxin; Zhu Tonghua

    2008-01-01

    The factors influencing detection efficiency of solid track spark auto counter were analyzed, and the best etch condition and parameters of charge were also reconfirmed. With small plate fission ionization chamber, the efficiency of solid track spark auto counter at various experiment assemblies was re-calibrated. The efficiency of solid track spark auto counter at various experimental conditions was obtained. (authors)

  10. Determination of absorbed dose to water in a clinical carbon ion beam by means of fluorescent nuclear track detectors, ionization chambers, and water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Osinga-Blaettermann, Julia-Maria

    2016-12-20

    Until now, dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as of high-energy photons. This is mainly caused by the threefold higher uncertainty of the k{sub Q,Q{sub 0}}-factor of ionization chambers, which is derived by calculations due to a lack of experimental data. The current thesis comprises two major aims with respect to the dosimetry of carbon ion beams: first, the investigation of the potential of fluorescent nuclear track detectors for fluence-based dosimetry and second, the experimental determination of the k{sub Q,Q{sub 0}}-factor. The direct comparison of fluence- and ionization-based measurements has shown a significant discrepancy of 4.5 %, which re-opened the discussion on the accuracy of calculated k{sub Q,Q{sub 0}}-factors. Therefore, absorbed dose to water measurements by means of water calorimetry have been performed allowing for the direct calibration of ionization chambers and thus for the experimental determination of k{sub Q,Q{sub 0}}. For the first time it could be shown that the experimental determination of k{sub Q,Q{sub 0}} for carbon ion beams is achievable with a standard measurement uncertainty of 0.8 %. This corresponds to a threefold reduction of the uncertainty compared to calculated values and therefore enables to significantly decrease the overall uncertainty related to ionization-based dosimetry of clinical carbon ion beams.

  11. Research and development of a gaseous detector PIM (parallel ionization multiplier) dedicated to particle tracking under high hadron rates

    International Nuclear Information System (INIS)

    Beucher, J.

    2007-10-01

    PIM (Parallel Ionization Multiplier) is a multi-stage micro-pattern gaseous detector using micro-meshes technology. This new device, based on Micromegas (micro-mesh gaseous structure) detector principle of operation, offers good characteristics for minimum ionizing particles track detection. However, this kind of detectors placed in hadron environment suffers discharges which degrade sensibly the detection efficiency and account for hazard to the front-end electronics. In order to minimize these strong events, it is convenient to perform charges multiplication by several successive steps. Within the framework of a European hadron physics project we have investigated the multi-stage PIM detector for high hadrons flux application. For this part of research and development, a systematic study for many geometrical configurations of a two amplification stages separated with a transfer space operated with the gaseous mixture Ne + 10% CO 2 has been performed. Beam tests realised with high energy hadrons at CERN facility have given that discharges probability could be strongly reduced with a suitable PIM device. A discharges rate lower to 10 9 by incident hadron and a spatial resolution of 51 μm have been measured at the beginning efficiency plateau (>96 %) operating point. (author)

  12. Charge collection properties of heavily irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Kramberger, G.; Cindro, V.; Dolenc, I.; Fretwurst, E.; Lindstroem, G.; Mandic, I.; Mikuz, M.; Zavrtanik, M.

    2005-01-01

    Detectors processed on epitaxial silicon seem to be a viable solution for the extreme radiation levels in the innermost layers of tracking detectors at upgraded LHC (SLHC). A set of epitaxial pad detectors of 50 and 75μm thicknesses (ρ=50Ωcm) was irradiated with 24GeV/c protons and reactor neutrons up to equivalent fluences of 10 16 cm -2 . Charge collection for minimum ionizing electrons from a 90 Sr source was measured using a charge sensitive preamplifier and a 25ns shaping circuit. The dependence of collected charge on annealing time and operation temperature was studied. Results were used to predict the performance of fine pitch pixel detectors proposed for SLHC

  13. Charge collection properties of heavily irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, G. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia)]. E-mail: Gregor.Kramberger@ijs.si; Cindro, V. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Dolenc, I. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Fretwurst, E. [University of Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, D-22761 Hamburg (Germany); Lindstroem, G. [University of Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, D-22761 Hamburg (Germany); Mandic, I. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Mikuz, M. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Zavrtanik, M. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia)

    2005-12-01

    Detectors processed on epitaxial silicon seem to be a viable solution for the extreme radiation levels in the innermost layers of tracking detectors at upgraded LHC (SLHC). A set of epitaxial pad detectors of 50 and 75{mu}m thicknesses ({rho}=50{omega}cm) was irradiated with 24GeV/c protons and reactor neutrons up to equivalent fluences of 10{sup 16}cm{sup -2}. Charge collection for minimum ionizing electrons from a {sup 90}Sr source was measured using a charge sensitive preamplifier and a 25ns shaping circuit. The dependence of collected charge on annealing time and operation temperature was studied. Results were used to predict the performance of fine pitch pixel detectors proposed for SLHC.

  14. Cluster analysis of HZE particle tracks as applied to space radiobiology problems

    International Nuclear Information System (INIS)

    Batmunkh, M.; Bayarchimeg, L.; Lkhagva, O.; Belov, O.

    2013-01-01

    A cluster analysis is performed of ionizations in tracks produced by the most abundant nuclei in the charge and energy spectra of the galactic cosmic rays. The frequency distribution of clusters is estimated for cluster sizes comparable to the DNA molecule at different packaging levels. For this purpose, an improved K-mean-based algorithm is suggested. This technique allows processing particle tracks containing a large number of ionization events without setting the number of clusters as an input parameter. Using this method, the ionization distribution pattern is analyzed depending on the cluster size and particle's linear energy transfer

  15. CMS Tracking Performance Results from Early LHC Operation

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; Ceard, Ludivine; De Wolf, Eddi A.; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Adler, Volker; Beauceron, Stephanie; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Villella, Ilaria; Chabert, Eric Christian; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Marage, Pierre Edouard; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Marinov, Andrey; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; De Favereau De Jeneret, Jerome; Delaere, Christophe; Demin, Pavel; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Quertenmont, Loic; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Ferreira Dias, Marco Andre; Tomei, Thiago; De Moraes Gregores, Eduardo; Da Cunha Marinho, Franciole; Novaes, Sergio F.; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Stoykova, Stefka; Sultanov, Georgi; Trayanov, Rumen; Vankov, Ivan; Dyulendarova, Milena; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Marinova, Evelina; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Yang, Min; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Hu, Zhen; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhu, Bo; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Fereos, Reginos; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A.; Rykaczewski, Hans; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Kannike, Kristjan; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Klem, Jukka; Kortelainen, Matti J.; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Sarkar, Subir; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Dejardin, Marc; Denegri, Daniel; Descamps, Julien; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Rousseau, Delphine; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Kalinowski, Artur; Miné, Philippe; Paganini, Pascal; Sabes, David; Sirois, Yves; Thiebaux, Christophe; Zabi, Alexandre; Agram, Jean-Laurent; Besson, Auguste; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Speck, Joaquim; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Xiao, Hong; Roinishvili, Vladimir; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Actis, Oxana; Ata, Metin; Bender, Walter; Biallass, Philipp; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Hof, Carsten; Kirsch, Matthias; Klimkovich, Tatsiana; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Sowa, Michael; Steggemann, Jan; Teyssier, Daniel; Zeidler, Clemens; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Borras, Kerstin; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Parenti, Andrea; Raspereza, Alexei; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Stein, Matthias; Tomaszewska, Justyna; Volyanskyy, Dmytro; Wissing, Christoph; Autermann, Christian; Bobrovskyi, Sergei; Draeger, Jula; Eckstein, Doris; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Srivastava, Ajay Kumar; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Wolf, Roger; Bauer, Julia; Buege, Volker; Cakir, Altan; Chwalek, Thorsten; Daeuwel, Daniel; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Piparo, Danilo; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Renz, Manuel; Sabellek, Andreas; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Petrakou, Eleni; Gouskos, Loukas; Katsas, Panagiotis; Panagiotou, Apostolos; Evangelou, Ioannis; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A.; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Debreczeni, Gergely; Hajdu, Csaba; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Laszlo, Andras; Sikler, Ferenc; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Sharma, Richa; Singh, Anil; Singh, Jas Bir; Singh, Supreet Pal; Ahuja, Sudha; Chauhan, Sushil; Choudhary, Brajesh C.; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Kumar, Ashok; Ranjan, Kirti; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kataria, Sushil Kumar; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Suggisetti, Praveenkumar; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Dimitrov, Anton; Fedele, Francesca; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Broccolo, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Genta, Chiara; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; Cerati, Giuseppe Benedetto; De Guio, Federico; Di Matteo, Leonardo; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Miccio, Vincenzo; Moroni, Luigi; Negri, Pietro; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Salerno, Roberto; Tabarelli de Fatis, Tommaso; Tancini, Valentina; Taroni, Silvia; Buontempo, Salvatore; Cimmino, Anna; De Cosa, Annapaola; De Gruttola, Michele; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Noli, Pasquale; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Carlin, Roberto; Checchia, Paolo; Conti, Enrico; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gresele, Ambra; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Santocchia, Attilio; Servoli, Leonello; Valdata, Marisa; Volpe, Roberta; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Organtini, Giovanni; Palma, Alessandro; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Trocino, Daniele; Vilela Pereira, Antonio; Ambroglini, Filippo; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Kim, Hyunsoo; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Son, Dohhee; Son, Dong-Chul; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Carrillo Moreno, Salvador; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A.; Allfrey, Philip; Krofcheck, David; Tam, Jason; Butler, Philip H.; Signal, Tony; Williams, Jennifer C.; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R.; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Sá Martins, Pedro; Mini, Giuliano; Musella, Pasquale; Nayak, Aruna; Raposo, Luis; Ribeiro, Pedro Quinaz; Seixas, Joao; Silva, Pedro; Soares, David; Varela, Joao; Wöhri, Hermine Katharina; Belotelov, Ivan; Bunin, Pavel; Finger, Miroslav; Finger Jr., Michael; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Bondar, Nikolai; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Kuleshov, Sergey; Oulianov, Alexei; Safronov, Grigory; Semenov, Sergey; Shreyber, Irina; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V.; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Datsko, Kirill; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Sytine, Alexandre; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Maletic, Dimitrije; Milosevic, Jovan; Puzovic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Diez Pardos, Carmen; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M.; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Diaz Merino, Irma; Diez Gonzalez, Carlos; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Gonzalez Suarez, Rebeca; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Rodrigo, Teresa; Ruiz Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Beaudette, Florian; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Breuker, Horst; Brona, Grzegorz; Bunkowski, Karol; Camporesi, Tiziano; Cano, Eric; Cattai, Ariella; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Covarelli, Roberto; Curé, Benoît; Dahms, Torsten; De Roeck, Albert; Elliott-Peisert, Anna; Funk, Wolfgang; Gaddi, Andrea; Gennai, Simone; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegner, Benedikt; Henderson, Conor; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Lecoq, Paul; Leonidopoulos, Christos; Lourenco, Carlos; Macpherson, Alick; Maki, Tuula; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Racz, Attila; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stöckli, Fabian; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Veres, Gabor Istvan; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Caminada, Lea; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nardulli, Alessandro; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Schinzel, Dietrich; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguiló, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Jaeger, Andreas; Millan Mejias, Barbara; Regenfus, Christian; Robmann, Peter; Rommerskirchen, Tanja; Schmidt, Alexander; Tsirigkas, Dimitrios; Wilke, Lotte; Chang, Yuan-Hann; Chen, Kuan-Hsin; Chen, Wan-Ting; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Ming-Hsiung; Lu, Yun-Ju; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lin, Sheng-Wen; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Ueno, Koji; Wang, Chin-chi; Wang, Minzu; Wei, Jui-Te; Adiguzel, Aytul; Ayhan, Aydin; Bakirci, Mustafa Numan; Cerci, Salim; Demir, Zahide; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gökbulut, Gül; Güler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Kayis Topaksu, Aysel; Nart, Alisah; Önengüt, Gülsen; Ozdemir, Kadri; Ozturk, Sertac; Polatöz, Ayse; Sahin, Ozge; Sengul, Ozden; Sogut, Kenan; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Halu, Arda; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Özbek, Melih; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bell, Peter; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Cussans, David; Frazier, Robert; Goldstein, Joel; Hansen, Maria; Heath, Greg P.; Heath, Helen F.; Hill, Christopher; Huckvale, Benedickt; Jackson, James; Kreczko, Lukasz; Mackay, Catherine Kirsty; Metson, Simon; Newbold, Dave M.; Nirunpong, Kachanon; Smith, Vincent J.; Ward, Simon; Basso, Lorenzo; Bell, Ken W.; Belyaev, Alexander; Brew, Christopher; Brown, Robert M.; Camanzi, Barbara; Cockerill, David J.A.; Coughlan, John A.; Harder, Kristian; Harper, Sam; Kennedy, Bruce W.; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R.; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Foudas, Costas; Fulcher, Jonathan; Futyan, David; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R.; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Teodorescu, Liliana; Bose, Tulika; Carrera Jarrin, Edgar; Clough, Andrew; Fantasia, Cory; Heister, Arno; St. John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sulak, Lawrence; Andrea, Jeremy; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Esen, Selda; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Narain, Meenakshi; Nguyen, Duong; Speer, Thomas; Tsang, Ka Vang; Borgia, Maria Assunta; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Cebra, Daniel; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Erhan, Samim; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Wallny, Rainer; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Luthra, Arun; Nguyen, Harold; Pasztor, Gabriella; Satpathy, Asish; Shen, Benjamin C.; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G.; Dusinberre, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bellan, Riccardo; Blume, Michael; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Garberson, Jeffrey; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lamb, James; Lowette, Steven; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Witherell, Michael; Bornheim, Adolf; Bunn, Julian; Gataullin, Marat; Kcira, Dorian; Litvine, Vladimir; Ma, Yousi; Newman, Harvey B.; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Terentyev, Nikolay; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T.; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Blekman, Freya; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Fields, Laura Johanna; Gibbons, Lawrence Kent; Heltsley, Brian; Henriksson, Kristofer; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Kuznetsov, Valentin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Riley, Daniel; Ryd, Anders; Saelim, Michael; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar A.T.; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C.; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Demarteau, Marcel; Eartly, David P.; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M.; Hirschauer, James; James, Eric; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Kilminster, Benjamin; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Limon, Peter; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; McCauley, Thomas; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Popescu, Sorina; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Smith, Richard P.; Soha, Aron; Spalding, William J.; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D.; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Kim, Bockjoo; Klimenko, Sergey; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Pakhotin, Yuriy; Piedra Gomez, Jonatan; Prescott, Craig; Remington, Ronald; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Mesa, Dalgis; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F.; Prosper, Harrison; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M.; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Mermerkaya, Hamit; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Garcia-Solis, Edmundo Javier; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Shabalina, Elizaveta; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Cankocak, Kerem; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Murray, Michael; Radicci, Valeria; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Bandurin, Dmitry; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Hadley, Nicholas John; Kellogg, Richard G.; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C.; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; D'Enterria, David; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cole, Perrie; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Sonnek, Peter; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R.; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Lundstedt, Carl; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R.; Baur, Ulrich; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Smith, Kenneth; Zennamo, Joseph; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Ofierzynski, Radoslaw Adrian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Killewald, Phillip; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E.; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F.; Gecse, Zoltan; Gutay, Laszlo; Jones, Matthew; Koybasi, Ozhan; Laasanen, Alvin T.; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Potamianos, Karolos; Shipsey, Ian; Silvers, David; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank J.M.; Liu, Jinghua H.; Morales, Jafet; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Demortier, Luc; Goulianos, Konstantin; Hatakeyama, Kenichi; Lungu, Gheorghe; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Asaadi, Jonathan; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Nguyen, Chi Nhan; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Buehler, Marc; Conetti, Sergio; Cox, Bradley; Hirosky, Robert; Ledovskoy, Alexander; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Gunthoti, Kranti; Harr, Robert; Karchin, Paul Edmund; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Dutta, Suchandra; Efron, Jonathan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Lomidze, David; Loveless, Richard; Mohapatra, Ajit; Polese, Giovanni; Reeder, Don; Savin, Alexander; Smith, Wesley H.; Swanson, Joshua; Weinberg, Marc

    2010-01-01

    The first LHC pp collisions at centre-of-mass energies of 0.9 and 2.36 TeV were recorded by the CMS detector in December 2009. The trajectories of charged particles produced in the collisions were reconstructed using the all-silicon Tracker and their momenta were measured in the 3.8 T axial magnetic field. Results from the Tracker commissioning are presented including studies of timing, efficiency, signal-to-noise, resolution, and ionization energy. Reconstructed tracks are used to benchmark the performance in terms of track and vertex resolutions, reconstruction of decays, estimation of ionization energy loss, as well as identification of photon conversions, nuclear interactions, and heavy-flavour decays.

  16. β-ray track imaging application in phytoremediation of radionuclide-contaminated soil

    International Nuclear Information System (INIS)

    Wan Junsheng; Xiao Yan; Pan Xiaobing; Tang Xiuhuan; Yang Yongqing; Wang Beisong; Zhao Xiangfeng; Li Hua; Miao Zhengqiang; Yang Jun

    2008-01-01

    The phytoremediation was widely studied in the field of treating technology of soil contamination with long-lived nuclides. Studies on the β-ray track imaging application in phytoremediation of radionuclide-contaminated soil were carried out in the present work. Experiments showed that this technology might be used for screening plants for phytoremediation and for the studies of phytoremediation mechanism, such as radioactivity concentration and distribution in plant organs. The influence of α- and γ-rays on the β-ray track imaging was studied. Theoretical studies showed that the influence of α-rays might be heavily reduced with proper thickness of PE-film. The image sensor was not so sensitive to γ-rays as β-rays, and the influence of surrounding γ-rays could be heavily reduced with a proper thickness of Pb-shielding

  17. Structure of electron tracks in water. 2. Distribution of primary ionizations and excitations in water radiolysis

    International Nuclear Information System (INIS)

    Pimblott, S.M.; Mozumder, A.

    1991-01-01

    A procedure for the calculation of entity-specific ionization and excitation probabilities for water radiolysis at low linear energy transfer (LET) has been developed. The technique pays due attention to the effects of the ionization threshold and the energy dependence of the ionization efficiency. The numbers of primary ionizations and excitations are not directly proportional to the spur energy. At a given spur energy, ionization follows a binomial distribution subject to an energetically possible maximum. The excitation distribution for a spur of given energy and with a given number of ionizations is given by a geometric series. The occurrence probabilities depend upon the cross sections of ionization, excitation, and other inferior processes. Following the low-LET radiolysis of liquid water the most probable spurs contain one ionization, two ionizations, or one ionization and one excitation, while in water vapor they contain either one ionization or one excitation. In liquid water the most probable outcomes for spurs corresponding to the most probable energy loss (22 eV) and to the mean energy loss (38 eV) are one ionization and one excitation, and two ionizations and one excitation, respectively. In the vapor, the most probable energy loss is 14 eV which results in one ionization or one excitation and the mean energy loss is 34 eV for which the spur of maximum probability contains one ionization and two excitations. The total calculated primary yields for low-LET radiolysis are in approximate agreement with experiment in both phases

  18. The dE/dx capabilities of the D0 tracking system

    International Nuclear Information System (INIS)

    Rajagopalan, S.

    1992-06-01

    The D0 forward tracking system has been extensively calibrated using electron and pion beams in the energy range from 10 GeV to 150 GeV in the neutrino area fixed target beam line at Fermilab. The forward tracking system provides a spatial resolution of 200 μm and a two hit separation of 2.5 mm at 90% efficiency. The chamber provides 32 samples of pulse height information for a given track equivalent to a dE/dx resolution of 12.7%. The energy loss response of the chamber to low energy-beam has been studied. A Monte Carlo simulation program has been developed based on the Photo Absorption Ionization model to simulate the dE/dx response of the chamber. The observations made using low energy test beam are consistent with the model's predictions. The dE/dx measurement in the D0 tracking system provides identification of electrons against gamma conversions resulting from π 0 decays. The rejection factor of distinguishing doubly minimum ionizing tracks in the chamber has been measured to be 30.5 with the requirement that singly minimum ionizing tracks be identified with a 90% efficiency. This factor improves with lower multiplicity. Using a Monte Carlo program based on GEANT, the identification efficiency of electrons and π 0 's has been determined. Using the capabilities of the outer tracking system alone, the background due to isolated π 0 production is reduced by up to a factor of 60 in the central direction based on measurements made on a sample of simulated QCD two jet events

  19. Ionizing radiation interactions with DNA: nanodosimetry; Ionisierende Strahlungswechselwirkung mit der DNS. Nanodosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Bug, Marion; Nettelbeck, Heidi [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Biologische Wirksamkeit ionisierender Strahlung' ; Hilgers, Gerhard [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Nanodosimetrie' ; Rabus, Hans [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Fachbereich ' Grundlagen der Dosimetrie'

    2011-06-15

    The metrology of ionizing radiation is based on measuring values that are averaged over macroscopic volume elements, for instance the energy dose is defined as ratio of the energy deposited on the absorber and the absorber mass. For biological or medical radiation effects the stochastic nature of radiation interaction is of main importance, esp. the interaction of ionizing radiation with the DNA as the genetic information carrier. For radiotherapy and risk evaluation purposes a comprehensive system of radiation weighing factors and other characteristics, like radiation quality or relative biological efficacy was developed. The nanodosimetry is aimed to develop a metrological basis relying on physical characteristics of the microscopic structure of ionizing radiation tracks. The article includes the development of experimental nanodosimetric methods, the respective calibration techniques, Monte-Carlo simulation of the particle track microstructure and the correlation nanodosimetry and biological efficiency.

  20. Charge identification of highly ionizing particles in desensitized nuclear emulsion using high speed read-out system

    International Nuclear Information System (INIS)

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; Koi, T.; Fukushima, C.; Ogawa, S.; Shibasaki, M.; Shibuya, H.

    2006-01-01

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles

  1. Results from Nikko-Maru

    International Nuclear Information System (INIS)

    Kinoshita, K.

    1990-01-01

    At the Nikko area of the TRISTAN storage ring the Search for Highly Ionizing Particles (SHIP) Nikko-Maru employs etchable solid state track detectors to search for heavily ionizing particles produced in the e + e - annihilations. New results are reported from exposures to 13.9 pb -1 integrated luminosity at √s=57-60.8 GeV. New upper limits are established on the production of Dirac monopoles with mass up to 28.8 GeV/c 2 . (author)

  2. Development of an optical digital ionization chamber

    International Nuclear Information System (INIS)

    Turner, J.E.; Hunter, S.R.; Hamm, R.N.; Wright, H.A.; Hurst, G.S.; Gibson, W.A.

    1988-01-01

    We are developing a new device for optically detecting and imaging the track of a charged particle in a gas. The electrons in the particle track are made to oscillate rapidly by the application of an external, short-duration, high-voltage, RF electric field. The excited electrons produce additional ionization and electronic excitation of the gas molecules in their immediate vicinity, leading to copious light emission (fluorescence) from the selected gas, allowing the location of the electrons along the track to be determined. Two digital cameras simultaneously scan the emitted light across two perpendicular planes outside the chamber containing gas. The information thus obtained for a given track can be used to infer relevant quantities for microdosimetry and dosimetry, e.g., energy deposited, LET, and track structure in the gas. The design of such a device now being constructed and methods of obtaining the dosimetric data from the digital output will be described. 4 refs., 4 figs

  3. Profile distortion by beam space-charge in Ionization Profile Monitors

    CERN Document Server

    Vilsmeier, D; Wettig, T

    Measuring the transverse beam size in the Large Hadron Collider by using Ionization Profile Monitors is a difficult task for energies above injection during the energy ramp from 450 GeV to 6.5TeV. The beam size decreases from around 1mm to 200um and the brightness of the beam is high enough to destroy the structure of any form of interacting matter. While the electron trajectories are confined by an external electro-magnetic field which forces the electrons accordingly on helix paths with certain gyroradii, this gyration is heavily increased under the influence of the electric field of the beam. Smaller beam sizes, which go hand in hand with increased bunch electric fields, lead to larger gyroradii of the ionized electrons, which results in strongly distorted profiles. In addition, this distortion becomes more visible for smaller beam sizes as the extent of gyration grows compared to the actual beam size. Depending on the initial momentum distribution of the electrons, emerging from the ionization process wit...

  4. Ionizing and non-ionizing radiations

    International Nuclear Information System (INIS)

    1994-01-01

    The monograph is a small manual to get a knowledge of ionizing and non-ionizing radiations. The main chapters are: - Electromagnetic radiations - Ionizing and non-ionizing radiations - Non-ionizing electromagnetic radiations - Ionizing electromagnetic radiation - Other ionizing radiations - Ionizing radiation effects - The Nuclear Safety Conseil

  5. Search for lightly ionizing particles with the MACRO detector

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bisi, V; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; De Cataldo, M A A; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Gray, L; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, Enzo; Katsavounidis, E; Katsavounidis, I; Kearns, E T; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Mikheyev, S P; Miller, L; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Okada, C; Osteria, G; Ouchrif, M; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Satriano, C; Satta, L; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, Lawrence R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Vilela, E; Walter, C W; Webb, R

    2000-01-01

    A search for lightly ionizing particles has been performed with the MACRO detector. This search was sensitive to particles with charges between 1/5 e and close to the charge of an electron, with beta between approximately 0.25 and 1.0. Unlike previous searches both single track events and tracks buried within high multiplicity muon showers were examined. In a period of approximately one year no candidates were observed. Assuming an isotropic flux, for the single track sample this corresponds to a 90% C.L. upper flux limit Phi

  6. Test beam performance of a tracking TRD [Transition Radiation Detector] prototype

    International Nuclear Information System (INIS)

    Shank, J.T.; Whitaker, J.S.; Polychronakos, V.A.; Radeka, V.; Stephani, D.; Beker, H.; Bock, R.K.; Botlo, M.; Fabjan, C.W.; Pfennig, J.; Price, M.J.; Willis, W.J.; Akesson, T.; Chernyatin, V.; Dolgoshein, B.; Nevsky, P.; Potekhin, M.; Romanjuk, A.; Sosnovtsev, V.; Gavrilenko, I.; Muravjev, S.; Shmeleva, A.

    1990-01-01

    A Tracking Transition Radiation Detector prototype has been constructed and tested. It consists of 240 straw tubes, 4 mm in diameter, imbedded in a polyethylene block acting as the radiator. Its performance as an electron identifier as well as a tracking device for minimum ionizing particles has been determined. 2 refs., 6 figs

  7. III. Penning ionization, associative ionization and chemi-ionization processes

    International Nuclear Information System (INIS)

    Cermak, V.

    1975-01-01

    Physical mechanisms of three important ionization processes in a cold plasma and the methods of their experimental study are discussed. An apparatus for the investigation of the Penning ionization using ionization processes of long lived metastable rare gas atoms is described. Methods of determining interaction energies and ionization rates from the measured energy spectra of the originating electrons are described and illustrated by several examples. Typical associative ionization processes are listed and the ionization rates are compared with those of the Penning ionization. Interactions with short-lived excited particles and the transfer of excitation without ionization are discussed. (J.U.)

  8. Effects of ionizing radiation of electrical properites of refractory insulators

    International Nuclear Information System (INIS)

    van Lint, V.A.J.; Bunch, J.M.

    1975-01-01

    The Los Alamos Reference Theta Pinch Reactor (RTPR) requires on the first wall an electrical insulator which will withstand transient high voltage at high temperature 10 sec after severe neutron and ionizing irradiation. Few measurements of electrical parameters for heavily disordered refractory insulators have been reported; estimates are made as to whether breakdown strength or conductivity will be degraded by the irradiation. The approach treats separately short-term ionization effects (free and trapped electrons and holes) and long-term gross damage effects (transmutation products and various lattice defects). The following processes could produce unacceptable conduction across the first wall insulator: (a) delayed electronic conductivity 10 sec after the prompt ionization by bremsstrahlung; (b) prompt electronic conductivity from delayed ionization; (c) electronic breakdown; (d) electronic or ionic conductivity due to thermal motion in the disordered material, possibly leading to thermal breakdown. Worst-case calculations based on lower limits to recombination coefficients limit process (a) to sigma much less than 5 x 10 -14 mho/cm. Data on ionization-induced conductivity in insulators predict for process (b) sigma much less than 10 -8 mho/cm. Electronic breakdown generally occurs at fields well above the 10 5 V/cm required for RTPR. Thermal breakdown is negligible due to the short voltage pulse. Ionic and electronic conduction must be studied theoretically and experimentally in the type of highly disordered materials that result from neutron irradiation of the first wall

  9. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae.

    Science.gov (United States)

    Lau, Anna F; Wang, Honghui; Weingarten, Rebecca A; Drake, Steven K; Suffredini, Anthony F; Garfield, Mark K; Chen, Yong; Gucek, Marjan; Youn, Jung-Ho; Stock, Frida; Tso, Hanna; DeLeo, Jim; Cimino, James J; Frank, Karen M; Dekker, John P

    2014-08-01

    Carbapenem-resistant Enterobacteriaceae (CRE) have spread globally and represent a serious and growing threat to public health. Rapid methods for tracking plasmids carrying carbapenemase genes could greatly benefit infection control efforts. Here, we demonstrate that real-time, direct tracking of a single plasmid in a bacterial strain responsible for an outbreak is possible using a commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system. In this case, we retrospectively tracked the bla(KPC) carbapenemase gene-bearing pKpQIL plasmid responsible for a CRE outbreak that occurred at the NIH Clinical Center in 2011. An ∼ 11,109-Da MS peak corresponding to a gene product of the bla(KPC) pKpQIL plasmid was identified and characterized using a combination of proteomics and molecular techniques. This plasmid peak was present in spectra from retrospectively analyzed K. pneumoniae outbreak isolates, concordant with results from whole-genome sequencing, and absent from a diverse control set of bla(KPC)-negative clinical Enterobacteriaceae isolates. Notably, the gene characterized here is located adjacent to the bla(KPC) Tn4401 transposon on the pKpQIL plasmid. Sequence analysis demonstrates the presence of this gene in other bla(KPC) Tn4401-containing plasmids and suggests that this signature MS peak may be useful in tracking other plasmids conferring carbapenem resistance. Plasmid identification using this MALDI-TOF MS method was accomplished in as little as 10 min from isolated colonies and 30 min from positive (spiked) blood cultures, demonstrating the potential clinical utility for real-time plasmid tracking in an outbreak. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Cancer risk from low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auvinen, A

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.).

  11. Cancer risk from low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Auvinen, A.

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.)

  12. Air filled ionization chambers and their response to high LET radiation

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Background Air filled ionization chambers (ICs) are widely used for absolute dosimetry, not only in photon beams but also in beams of heavy charged particles. Within the IC, electron hole pairs are generated by the energy deposition originating from incoming radiation. High-LET particles create......-plate ionization chamber exposed to heavy ions Phys. Med. Biol. 43 3549–58, 1998. ELSAESSER, T. et al.: Impact of track structure on biological treatment planning ion ion radiotherapy. New Journal pf Physics 10. 075005, 2008...

  13. Further considerations for damping in heavily insulated pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Lindquist, M.R.; Severud, L.K.

    1985-01-01

    Over the past several years a body of test data has been accumulated which demonstrates that damping in small diameter heavily insulated pipe systems is much larger than presently recommended by Regulatory Guide 1.61. This data is generally based on pipe systems using a stand-off insulation design with a heater annulus. Additional tests have how been completed on similar pipe systems using a strap-on insulation design without the heater annulus. Results indicate some reduction in damping over the stand-off designs. Test data has also been obtained on a larger sixteen-inch diameter heavily insulated pipe system. Results of these two additional test series are presented. Revised damping values for seismic design of heavily insulated pipe systems are then recommended

  14. Further considerations for damping in heavily insulated pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Lindquist, M.R.; Severud, L.K.

    1985-01-01

    Over the past several years a body of test data has been accumulated which demonstrates that damping in small diameter heavily insulated pipe systems is much larger than presently recommended by Regulatory Code 1.61. This data is generally based on pipe systems using a stand-off insulation design with a heater annulus. Additional tests have now been completed on similar pipe systems using a strap-on insulation design without the heater annulus. Results indicate some reduction in damping over the stand-off designs. Test data has also been obtained on a larger sixteen-inch diameter heavily insulated pipe system. Results of these two additional test series are presented. Revised damping values for seismic design for heavily insulated pipe systems are then recommended

  15. Study of the characteristics of ionizing particles record of CR-39 track detectors

    International Nuclear Information System (INIS)

    Brandao, Luis Eduardo Barreira

    1983-01-01

    The bulk and track etching proprieties of a new Solid State Nuclear Track Detector CR-39 were investigated under different etching conditions. The discussion is based on results obtained using aqueous solutions of KOH with addition of alcoholic solvent to aqueous solutions. It was found that track registration sensitivity can be dramatically changed by using the proper chemical treatment. A method to enlarge and dye etch tracks to be viewed by simple projection on a screen is discussed. The applications of CR-39 in neutron fluence measurements are shown. Graphs are presented of the densities of the registered traces by the detector as a function of etch time both for samples with and without a polycarbonate radiator. (author)

  16. Design of an ionization diffusion chamber detector

    International Nuclear Information System (INIS)

    Sugiarto, S.

    1976-01-01

    Prototype of an Ionization Diffusion Chamber detector has been made. It is a silindrical glass, 20 cm in diameter, 13,5 cm in height, air gas filled, operated at room pressure and room temperature at the top of this instrument while for the box temperature dry ice (CO 2 solid) temperature is used. This detector is ready for seeing alpha and beta particle tracks. (author)

  17. Contribution to the study, by magnetic resonance, of the properties of heavily doped silicon at low temperature

    International Nuclear Information System (INIS)

    Jerome, D.

    1965-10-01

    The magnetic properties of heavily doped silicon at low temperature have been studied in a range of concentration on either side of the Mott transition. For impurity densities less than that of the transition a magnetic double resonance method allows the exchange coupling between localized donors to be measured, and in addition the existence of paramagnetic centers (pairs of neutral and ionized donors) is demonstrated. The behaviour of the spin-lattice relaxation of 29 Ci is explained in terms of the dipolar coupling between nuclei and paramagnetic centers. In the range of concentration 10 16 -10 17 impurities/cm 3 , the concentration dependent relaxation of donors is studied experimentally. A theoretical explanation is proposed for the latter mechanism, the basis of which is the presence of ionized pairs of donors. At increasing impurity concentrations the electronic delocalization increases. For the concentration of 2.5 X 10 18 P/cm 3 the hyperfine coupling is responsible for the 29 Si relaxation. It is shown that the electron density has a very large maximum near the impurities in the metallic domain of concentrations. An estimation of the impurity band width (19 deg. K) is deduced from the measurement of the paramagnetic part of the electronic susceptibility at low temperature. (author) [fr

  18. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  19. A Monte Carlo track structure code for low energy protons

    CERN Document Server

    Endo, S; Nikjoo, H; Uehara, S; Hoshi, M; Ishikawa, M; Shizuma, K

    2002-01-01

    A code is described for simulation of protons (100 eV to 10 MeV) track structure in water vapor. The code simulates molecular interaction by interaction for the transport of primary ions and secondary electrons in the form of ionizations and excitations. When a low velocity ion collides with the atoms or molecules of a target, the ion may also capture or lose electrons. The probabilities for these processes are described by the quantity cross-section. Although proton track simulation at energies above Bragg peak (>0.3 MeV) has been achieved to a high degree of precision, simulations at energies near or below the Bragg peak have only been attempted recently because of the lack of relevant cross-section data. As the hydrogen atom has a different ionization cross-section from that of a proton, charge exchange processes need to be considered in order to calculate stopping power for low energy protons. In this paper, we have used state-of-the-art Monte Carlo track simulation techniques, in conjunction with the pub...

  20. Data needs for the track structure of alpha particles and electrons in water

    International Nuclear Information System (INIS)

    Pagnamenta, A.

    1983-01-01

    We have made calculations of the ionization spectra for alpha particle and electron tracks in water. We have also computed the number of ions created per micrometre of track length, the energy distribution of the secondaries, and the energy expended per ion pair created. Our aim is less toward theoretical derivations than to obtain a numerically accurate description of the track structure at all energies in a form suitable for biomedical applications. 13 references

  1. TAGGING, TRACKING AND LOCATING WITHOUT GPS

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Coleman, T.; Shull, D.

    2012-07-08

    The Savannah River National Laboratory (SRNL) was requested to lead a Law Enforcement Working Group that was formed to collaborate on common operational needs. All agencies represented on the working group ranked their need to tag, track, and locate a witting or unwitting target as their highest priority. Specifically, they were looking for technologies more robust than Global Positioning Satellite (GPS), could communicate back to the owner, and worked where normal cell phone communications did not work or were unreliable. SRNL brought together multiple technologies in a demonstration that was held in in various Alaska venues, including metropolitan, wilderness, and at-sea that met the working group's requirements. Using prototypical technologies from Boeing, On Ramp, and Fortress, SRNL was able to demonstrate the ability to track personnel and material in all scenarios including indoors, in heavily wooden areas, canyons, and in parking garages. In all cases GPS signals were too weak to measure. Bi-directional communication was achieved in areas that Wi-Fi, cell towers, or traditional radios would not perform. The results of the exercise will be presented. These technologies are considered ideal for tracking high value material such has nuclear material with a platform that allows seamless tracking anywhere in the world, indoors or outdoors.

  2. Determination of ultra-low levels of uranium using resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kiran Kumar, P.V.; Acharyulu, G.V.S.G.

    2015-01-01

    The determination of isotopic composition of actinides like U and Pu is important, due to their distribution in the environment as a result of nuclear weapons testing, fuel reprocessing, reactor operations and to a smaller extent from accidental releases. The analytical methods like fission track analysis (FTA), thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS) and resonance ionization mass spectrometry (RIMS) have evolved as sensitive techniques. Resonance Ionization Mass Spectrometry yields rapid isotopic signature data for material containing actinides without requiring time-consuming sample preparation and chemical separation procedures. In this paper, authors presented the details of the methodology and results for low-level detection of uranium using RIMS

  3. Dose distribution around ion track in tissue equivalent material

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Guo Yong; Luo Yisheng

    2007-01-01

    Objective: To study the energy deposition micro-specialty of ions in body-tissue or tissue equivalent material (TEM). Methods: The water vapor was determined as the tissue equivalent material, based on the analysis to the body-tissue, and Monte Carlo method was used to simulate the behavior of proton in the tissue equivalent material. Some features of the energy deposition micro-specialty of ion in tissue equivalent material were obtained through the analysis to the data from calculation. Results: The ion will give the energy by the way of excitation and ionization in material, then the secondary electrons will be generated in the progress of ionization, these electron will finished ions energy deposition progress. When ions deposited their energy, large amount energy will be in the core of tracks, and secondary electrons will devote its' energy around ion track, the ion dose distribution is then formed in TEM. Conclusions: To know biological effects of radiation , the research to dose distribution of ions is of importance(significance). (authors)

  4. Reduction in OER with LET: evidence supporting the ''oxygen-in-the-track'' hypothesis

    International Nuclear Information System (INIS)

    Bryant, P.E.

    1976-01-01

    To account for the reduction in OER with increasing LET which is observed for a wide variety of cell systems. Neary (1965) invoked the hypothesis that molecular oxygen is generated within the particle tracks of the more densely ionizing radiations. With the proviso that the product generated may be a species other than oxygen, but with similar sensitizing properties, produced by different qualities of radiation in two different organisms: the alga Chlamydomonas reinhardii and the bacterium Shigella flexneri were calculated. These effective concentrations should be the same for any given quality if the formation of the product is a function only of physico-chemical events occurring within the tracks of particles, and is independent of the biological material in which energy deposition is taking place. A prerequisite for the calculation of effective amounts of oxygen in tracks of ionizing particles is a knowledge of how radiosentivity varies with oxygen concentration at low LET

  5. Proposal for a semiconductor high resolution tracking detector

    International Nuclear Information System (INIS)

    Rehak, P.

    1983-01-01

    A 'new' concept for detection and tracking of charged particles in high energy physics experiments is proposed. It combines a well known high purity semiconductor diode detector (HPSDD) with a heterojunction structure (HJ) and a negative electron affinity (NEA) surface. The detector should be capable of providing a two dimensional view (few cm 2 ) of multi-track events with the following properties: a) position resolution down to a few μm (10 8 position elements); b) high density of information (10 2 -10 3 dots per mm of minimum ionizing track); c) high rate capabilities (few MHz); d) live operation with options to be triggered and/or the information from the detector can be used as an input for the decision to record an event. (orig.)

  6. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  7. Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers

    Science.gov (United States)

    Yuan, Kang; Sun, Yuxin; Lu, Yunhao; Liang, Xingbo; Tian, Daxi; Ma, Xiangyang; Yang, Deren

    2018-04-01

    Heavily phosphorus (P)- and arsenic (As)-doped Czochralski silicon (CZ-Si) wafers generally act as the substrates for the epitaxial silicon wafers used to fabricate power and communication devices. The mechanical properties of such two kinds of n-type heavily doped CZ silicon wafers are vital to ensure the quality of epitaxial silicon wafers and the manufacturing yields of devices. In this work, the mechanical properties including the hardness, Young's modulus, indentation fracture toughness and the resistance to dislocation motion have been comparatively investigated for heavily P- and As-doped CZ-Si wafers. It is found that heavily P-doped CZ-Si possesses somewhat higher hardness, lower Young's modulus, larger indentation fracture toughness and stronger resistance to dislocation motion than heavily As-doped CZ-Si. The mechanisms underlying this finding have been tentatively elucidated by considering the differences in the doping effects of P and As in silicon.

  8. a Study of Oxygen Precipitation in Heavily Doped Silicon.

    Science.gov (United States)

    Graupner, Robert Kurt

    Gettering of impurities with oxygen precipitates is widely used during the fabrication of semiconductors to improve the performance and yield of the devices. Since the effectiveness of the gettering process is largely dependent on the initial interstitial oxygen concentration, accurate measurements of this parameter are of considerable importance. Measurements of interstitial oxygen following thermal cycles are required for development of semiconductor fabrication processes and for research into the mechanisms of oxygen precipitate nucleation and growth. Efforts by industrial associations have led to the development of standard procedures for the measurement of interstitial oxygen in wafers. However practical oxygen measurements often do not satisfy the requirements of such standard procedures. An additional difficulty arises when the silicon wafer has a low resitivity (high dopant concentration). In such cases the infrared light used for the measurement is severely attenuated by the electrons of holes introduced by the dopant. Since such wafers are the substrates used for the production of widely used epitaxial wafers, this measurement problem is economically important. Alternative methods such as Secondary Ion Mass Spectroscopy or Gas Fusion Analysis have been developed to measure oxygen in these cases. However, neither of these methods is capable of distinguishing interstitial oxygen from precipitated oxygen as required for precipitation studies. In addition to the commercial interest in heavily doped silicon substrates, they are also of interest for research into the role of point defects in nucleation and precipitation processes. Despite considerable research effort, there is still disagreement concerning the type of point defect and its role in semiconductor processes. Studies of changes in the interstitial oxygen concentration of heavily doped and lightly doped silicon wafers could help clarify the role of point defects in oxygen nucleation and precipitation

  9. The mechanism for the primary biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Byakov, Vsevolod M; Stepanov, Sergei V

    2006-01-01

    The primary biological response of living organisms to the passage of fast charged particles is traditionally believed to be dominated by the chemical reactions of the radical products from the radiolysis of cellular water (OH, H, e aq - , O 2 - , H 2 O 2 ) and by the bioradicals that they produce (and which can also result from the direct electronic activation of biomolecules). This understanding has provided insight into how ionizing radiations affect biological systems and, most importantly, what radioprotection and radiosensibilizing effects are produced by chemical compounds introduced into an organism. However, a number of key radiobiological facts remain unexplained by the current theory, stimulating a search for other biologically active factors that may be triggered by radiation. This review examines a fact that is usually ignored in discussing the biological impact of ionizing radiation: the local increase in acidity in the water solution along the track of a charged particle. The acidity in the track is very different from its value for cellular water in a living organism. Biological processes are well-known to be highly sensitive to changes in the environmental acidity. It seems that the biological impact of ionizing radiations is dominated not by the water radiolysis products (mostly radicals) listed above but particles of a different nature, hydroxonium ions H 3 O + , where the term hydroxonium refer to protonated water molecules. This modification of the mechanism of primary radiobiological effects is in good agreement with experimental data. In particular, the extremal dependence of the relative biological efficiency (RBE) of radiations on their ionizing energy losses is accounted for in quantitative terms, as is the increase in the RBE in the relativistic energy range. (reviews of topical problems)

  10. A multi purpose 4 π counter spherical ionization chamber type

    International Nuclear Information System (INIS)

    Calin, Marian Romeo; Calin, Adrian Cantemir

    2004-01-01

    A pressurized ionization chamber detector able to measure radioactive sources in internal 2π or 4π geometry was built in order to characterize alpha and beta radioactive sources, i.e. to calibrate these sources by relative method and to test the behavior of gas mixtures in pressurized-gas radiation detectors. The detector we made is of spherical shape and works by collecting in a uniform electric field the ionization charges resulting from the interaction of ionizing radiation with gas in the sensitive volume of the chamber. An ionizing current proportional to the activity of the radioactive source to be measured is obtained. In this paper a gas counter with a spherical symmetry is described. This detector can work in a very satisfactory manner, either as a flow counter or as a ionization chamber reaching in the latter case a good α pulse height resolution, even with large emitting sources. Calculations are made in order to find the dependence of the pulse shape on the direction of emission of an α-particle by a point source in the chamber (finite track). A good agreement is found between these calculations and the experimental tests performed, which show that this dependence can be employed in high efficiency measurements of angular α-γ correlations. (authors)

  11. Problems in mechanistic theoretical models for cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    Chatterjee, Aloke; Holley, W.R.

    1992-01-01

    A mechanistic model based on yields of double strand breaks has been developed to determine the dose response curves for cell transformation frequencies. At its present stage the model is applicable to immortal cell lines and to various qualities (X-rays, Neon and Iron) of ionizing radiation. Presently, we have considered four types of processes which can lead to activation phenomena: (i) point mutation events on a regulatory segment of selected oncogenes, (ii) inactivation of suppressor genes, through point mutation, (iii) deletion of a suppressor gene by a single track, and (iv) deletion of a suppressor gene by two tracks. (author)

  12. Research and development of a gaseous detector PIM (parallel ionization multiplier) dedicated to particle tracking under high hadron rates; Recherche et developpement d'un detecteur gazeux PIM (Parallel Ionization Multiplier) pour la trajectographie de particules sous un haut flux de hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Beucher, J

    2007-10-15

    PIM (Parallel Ionization Multiplier) is a multi-stage micro-pattern gaseous detector using micro-meshes technology. This new device, based on Micromegas (micro-mesh gaseous structure) detector principle of operation, offers good characteristics for minimum ionizing particles track detection. However, this kind of detectors placed in hadron environment suffers discharges which degrade sensibly the detection efficiency and account for hazard to the front-end electronics. In order to minimize these strong events, it is convenient to perform charges multiplication by several successive steps. Within the framework of a European hadron physics project we have investigated the multi-stage PIM detector for high hadrons flux application. For this part of research and development, a systematic study for many geometrical configurations of a two amplification stages separated with a transfer space operated with the gaseous mixture Ne + 10% CO{sub 2} has been performed. Beam tests realised with high energy hadrons at CERN facility have given that discharges probability could be strongly reduced with a suitable PIM device. A discharges rate lower to 10{sup 9} by incident hadron and a spatial resolution of 51 {mu}m have been measured at the beginning efficiency plateau (>96 %) operating point. (author)

  13. Weak-field asymptotic theory of tunneling ionization: benchmark analytical results for two-electron atoms

    International Nuclear Information System (INIS)

    Trinh, Vinh H; Morishita, Toru; Tolstikhin, Oleg I

    2015-01-01

    The recently developed many-electron weak-field asymptotic theory of tunneling ionization of atoms and molecules in an external static electric field (Tolstikhin et al 2014, Phys. Rev. A 89, 013421) is extended to the first-order terms in the asymptotic expansion in field. To highlight the results, here we present a simple analytical formula giving the rate of tunneling ionization of two-electron atoms H − and He. Comparison with fully-correlated ab initio calculations available for these systems shows that the first-order theory works quantitatively in a wide range of fields up to the onset of over-the-barrier ionization and hence is expected to find numerous applications in strong-field physics. (fast track communication)

  14. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA

    International Nuclear Information System (INIS)

    Goodhead, D.T.

    1994-01-01

    Ionizing radiations produce many hundreds of different simple chemical products in DNA and also multitudes of possible clustered combinations. The simple products, including single-strand breaks, tend to correlate poorly with biological effectiveness. Even for initial double-strand breaks, as a broad class, there is apparently little or no increase in yield with increasing ionization density, in contrast with the large rise in relative biological effectiveness for cellular effects. Track structure analysis has revealed that clustered DNA damage of severity greater than simple double-strand breaks is likely to occur at biologically relevant frequencies with all ionizing radiations. Studies are in progress to describe in more detail the chemical nature of these clustered lesions and to consider the implications for cellular repair. (author)

  15. Track structure in radiation biology: theory and applications.

    Science.gov (United States)

    Nikjoo, H; Uehara, S; Wilson, W E; Hoshi, M; Goodhead, D T

    1998-04-01

    A brief review is presented of the basic concepts in track structure and the relative merit of various theoretical approaches adopted in Monte-Carlo track-structure codes are examined. In the second part of the paper, a formal cluster analysis is introduced to calculate cluster-distance distributions. Total experimental ionization cross-sections were least-square fitted and compared with the calculation by various theoretical methods. Monte-Carlo track-structure code Kurbuc was used to examine and compare the spectrum of the secondary electrons generated by using functions given by Born-Bethe, Jain-Khare, Gryzinsky, Kim-Rudd, Mott and Vriens' theories. The cluster analysis in track structure was carried out using the k-means method and Hartigan algorithm. Data are presented on experimental and calculated total ionization cross-sections: inverse mean free path (IMFP) as a function of electron energy used in Monte-Carlo track-structure codes; the spectrum of secondary electrons generated by different functions for 500 eV primary electrons; cluster analysis for 4 MeV and 20 MeV alpha-particles in terms of the frequency of total cluster energy to the root-mean-square (rms) radius of the cluster and differential distance distributions for a pair of clusters; and finally relative frequency distribution for energy deposited in DNA, single-strand break and double-strand breaks for 10MeV/u protons, alpha-particles and carbon ions. There are a number of Monte-Carlo track-structure codes that have been developed independently and the bench-marking presented in this paper allows a better choice of the theoretical method adopted in a track-structure code to be made. A systematic bench-marking of cross-sections and spectra of the secondary electrons shows differences between the codes at atomic level, but such differences are not significant in biophysical modelling at the macromolecular level. Clustered-damage evaluation shows: that a substantial proportion of dose ( 30%) is

  16. Explosive phenomena in heavily irradiated NaCl

    NARCIS (Netherlands)

    denHartog, HW; Vainshtein, DI; Matthews, GE; Williams, RT

    1997-01-01

    In heavily irradiated NaCl crystals explosive phenomena can be initiated during irradiation or afterwards when samples are heated to temperatures between 100 and 250 degrees C. During irradiation of NaCl Na and Cl-2 precipitates and void structures are produced along with the accumulation of stored

  17. Growth and characterization of heavily doped silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scala, R.; Porrini, M. [MEMC Electronic Materials SpA, via Nazionale 59, 39012 Merano (Italy); Borionetti, G. [MEMC Electronic Materials SpA, viale Gherzi 31, Novara (Italy)

    2011-08-15

    Silicon crystals grown with the Czochralski method are still the most common material used for the production of electronic devices. In recent years, a growing need of large diameter crystals with increasingly higher doping levels is observed, especially to support the expanding market of discrete devices and its trend towards lower and lower resistivity levels for the silicon substrate. The growth of such heavily doped, large-diameter crystals poses several new challenges to the crystal grower, and the presence of a high dopant concentration in the crystal affects significantly its main properties, requiring also the development of dedicated characterization techniques. This paper illustrates the recent advances in the growth and characterization of silicon crystals heavily doped with antimony, arsenic, phosphorus and boron. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Radial dose distribution around an energetic heavy ion and an ion track structure model

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ohno, Shin-ichi; Namba, Hideki; Taguchi, Mitsumasa; Watanabe, Ritsuko

    1997-03-01

    Ionization currents produced in a small wall-less ionization chamber located at varying distance from the 200 MeV Ni{sup 12+} ion`path traversing Ar gas were measured and utilized to construct a track structure model. Using the LET value of 200 MeV Ni{sup 12+} and G(Fe{sup 3+}) in Fricke solutions (= 15.4) for fast electrons, we estimate G(Fe{sup 3+}) for this ion to be 5.0. (author)

  19. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    Science.gov (United States)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  20. Progress in the application of solid-state track recorders to reactor physics experiments

    International Nuclear Information System (INIS)

    Besant, C.B.; Ipson, S.S.

    1969-03-01

    Heavily ionising particles passing through insulating materials cause tracks due to damage. These strain energy fields may be observed directly with an electron microscope or, after etching, the tracks may be seen with an optical microscope. The etching solution penetrates the damaged portion of the material and enlarges the hole if the etching is continued. This technique has been applied to detecting fission fragments from fissions taking place in a thin source of fissile material. The source, together with the insulating material is called a Solid-State Track Recorder and has been applied to the measurement of fission ratios in the fast critical assembly ZEBRA at Winfrith. The main disadvantage of the technique has been in counting tracks by eye which is laborious and subject to the human element. This has been overcome by counting tracks with a 'Quantimet' Computer Image Analyser. Absolute fission rate measurements are also discussed and it has been shown that measurements to an accuracy of better than ± 1% should be possible with this technique. (author)

  1. Waveshifters and Scintillators for Ionizing Radiation Detection

    International Nuclear Information System (INIS)

    Baumgaugh, B.; Bishop, J.; Karmgard, D.; Marchant, J.; McKenna, M.; Ruchti, R.; Vigneault, M.; Hernandez, L.; Hurlbut, C.

    2007-01-01

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments

  2. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The context of the investigations are outlined with a short review about recent flame studies at Utrecht University and a discussion about discrepancies and agreements in the literature concerning alkali ionization in flames. The measuring technique chosen is described and the general design of the radio-frequency resonance system presented. The optical track measurements and the theoretical calculations of flame rise velocity are dealt with. The collisional ionization rate constants for Na, K and Cs are determined. The collisional-ionization rate constant for lithium is treated separately by reason of the hydroxide formation. Finally a theoretical model for the conducting flame in a weak, alternating electric field is developed. The relation betaeen the admittance and the flame conductivity in first order approximations is derived. (Auth.)

  3. Three-dimensional triplet tracking for LHC and future high rate experiments

    International Nuclear Information System (INIS)

    Schöning, A

    2014-01-01

    The hit combinatorial problem is a main challenge for track reconstruction and triggering at high rate experiments. At hadron colliders the dominant fraction of hits is due to low momentum tracks for which multiple scattering (MS) effects dominate the hit resolution. MS is also the dominating source for hit confusion and track uncertainties in low energy precision experiments. In all such environments, where MS dominates, track reconstruction and fitting can be largely simplified by using three-dimensional (3D) hit-triplets as provided by pixel detectors. This simplification is possible since track uncertainties are solely determined by MS if high precision spatial information is provided. Fitting of hit-triplets is especially simple for tracking detectors in solenoidal magnetic fields. The over-constrained 3D-triplet method provides a complete set of track parameters and is robust against fake hit combinations. Full tracks can be reconstructed step-wise by connecting hit triplet combinations from different layers, thus heavily reducing the combinatorial problem and accelerating track linking. The triplet method is ideally suited for pixel detectors where hits can be treated as 3D-space points. With the advent of relatively cheap and industrially available CMOS-sensors the construction of highly granular full scale pixel tracking detectors seems to be possible also for experiments at LHC or future high energy (hadron) colliders. In this paper tracking performance studies for full-scale pixel detectors, including their optimisation for 3D-triplet tracking, are presented. The results obtained for different types of tracker geometries and different reconstruction methods are compared. The potential of reducing the number of tracking layers and - along with that - the material budget using this new tracking concept is discussed. The possibility of using 3D-triplet tracking for triggering and fast online reconstruction is highlighted

  4. Robust Myocardial Motion Tracking for Echocardiography: Variational Framework Integrating Local-to-Global Deformation

    Directory of Open Access Journals (Sweden)

    Chi Young Ahn

    2013-01-01

    Full Text Available This paper proposes a robust real-time myocardial border tracking algorithm for echocardiography. Commonly, after an initial contour of LV border is traced at one or two frames from the entire cardiac cycle, LV contour tracking is performed over the remaining frames. Among a variety of tracking techniques, optical flow method is the most widely used for motion estimation of moving objects. However, when echocardiography data is heavily corrupted in some local regions, the errors bring the tracking point out of the endocardial border, resulting in distorted LV contours. This shape distortion often occurs in practice since the data acquisition is affected by ultrasound artifacts, dropouts, or shadowing phenomena of cardiac walls. The proposed method is designed to deal with this shape distortion problem by integrating local optical flow motion and global deformation into a variational framework. The proposed descent method controls the individual tracking points to follow the local motions of a specific speckle pattern, while their overall motions are confined to the global motion constraint being approximately an affine transform of the initial tracking points. Many real experiments show that the proposed method achieves better overall performance than conventional methods.

  5. Radiation damage to DNA: The importance of track structure

    CERN Document Server

    Hill, M A

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that...

  6. Simulations of Hall reconnection in partially ionized plasmas

    Science.gov (United States)

    Innocenti, Maria Elena; Jiang, Wei; Lapenta, Giovanni

    2017-04-01

    Magnetic reconnection occurs in the Hall, partially ionized regime in environments as diverse as molecular clouds, protostellar disks and regions of the solar chromosphere. While much is known about Hall reconnection in fully ionized plasmas, Hall reconnection in partially ionized plasmas is, in comparison, still relatively unexplored. This notwithstanding the fact that partial ionization is expected to affect fundamental processes in reconnection such as the transition from the slow, fluid to the fast, kinetic regime, the value of the reconnection rate and the dimensions of the diffusion regions [Malyshkin and Zweibel 2011 , Zweibel et al. 2011]. We present here the first, to our knowledge, fully kinetic simulations of Hall reconnection in partially ionized plasmas. The interaction of electrons and ions with the neutral background is realistically modelled via a Monte Carlo plug-in coded into the semi-implicit, fully kinetic code iPic3D [Markidis 2010]. We simulate a plasma with parameters compatible with the MRX experiments illustrated in Zweibel et al. 2011 and Lawrence et al. 2013, to be able to compare our simulation results with actual experiments. The gas and ion temperature is T=3 eV, the ion to electron temperature ratio is Tr=0.44, ion and electron thermal velocities are calculated accordingly resorting to a reduced mass ratio and a reduced value of the speed of light to reduce the computational costs of the simulations. The initial density of the plasma is set at n= 1.1 1014 cm-3 and is then left free to change during the simulation as a result of gas-plasma interaction. A set of simulations with initial ionisation percentage IP= 0.01, 0.1, 0.2, 0.6 is presented and compared with a reference simulation where no background gas is present (full ionization). In this first set of simulations, we assume to be able to externally control the initial relative densities of gas and plasma. Within this parameter range, the ion but not the electron population is

  7. Efficiency of a concentric matrix track detector surface scanning

    International Nuclear Information System (INIS)

    Bek-Uzarov, Dj.; Nikezic, D.; Kostic, D.; Krstic, D.; Cuknic, O.

    1995-01-01

    Heavy particle ionizing radiation track counting on the surface of a solid state round surface detector is made using the microscope and scanning step by step by a round field of vision. The whole solid state detector surface could not be fully or completely covered by round fields of visions. Therefore detector surface could be divided on the two parts, the larger surface, being under fields of vision, really scanned and no scanned missed or omitted surface. The ratio between omitted and scanned surfaces is so called track scanning efficiency. The knowledge of really counted, or scanned surface is a important value for evaluating the real surface track density an exposed solid state track detector. In the paper a matrix of a concentric field of vision made around the first microscope field of vision placed in center of the round disc of the scanned track detector is proposed. In a such scanning matrix the real scanned surface could be easy calculated and by the microscope scanning made as well. By this way scanned surface is very precisely obtained as well. Precise knowledge of scanned and omitted surface allows to obtain more precise scanning efficiency factor as well as real surface track density, the main parameter in solid state track detection measurements. (author)

  8. Heavily nitrogen doped, graphene supercapacitor from silk cocoon

    International Nuclear Information System (INIS)

    Sahu, Vikrant; Grover, Sonia; Tulachan, Brindan; Sharma, Meenakshi; Srivastava, Gaurav; Roy, Manas; Saxena, Manav; Sethy, Niroj; Bhargava, Kalpana; Philip, Deepu; Kim, Hansung; Singh, Gurmeet; Singh, Sushil Kumar; Das, Mainak; Sharma, Raj Kishore

    2015-01-01

    Doping of graphene with nitrogen is of much interest, since it improves the overall conductivity and supercapacitive properties. Besides conductivity, nitrogen doping also enhances the pseudo-capacitance due to fast and reversible surface redox processes. In this work, we have developed a cheap and easy process for synthesizing heavily nitrogen doped graphene (15% nitrogen) from non-mulberry silk cocoon membrane (Tassar, Antheraea mylitta) by pyrolyzing the cocoon at 400 °C in argon atmosphere. Further we have investigated the performance of this heavily ‘nitrogen doped graphene’ (NDG) in a supercapacitor device. Our results suggest that NDG obtained from cocoon has improved supercapacitor performance. The improved performance is due to the high electronegativity of nitrogen that forms dipoles on the graphene surface. These dipoles consequently enhance the tendency of graphene to attract charged species to its surface. This is a green and clean synthesis approach for developing electronic materials for energy applications

  9. Monte carlo calculation of energy deposition and ionization yield for high energy protons

    International Nuclear Information System (INIS)

    Wilson, W.E.; McDonald, J.C.; Coyne, J.J.; Paretzke, H.G.

    1985-01-01

    Recent calculations of event size spectra for neutrons use a continuous slowing down approximation model for the energy losses experienced by secondary charged particles (protons and alphas) and thus do not allow for straggling effects. Discrepancies between the calculations and experimental measurements are thought to be, in part, due to the neglect of straggling. A tractable way of including stochastics in radiation transport calculations is via the Monte Carlo method and a number of efforts directed toward simulating positive ion track structure have been initiated employing this technique. Recent results obtained with our updated and extended MOCA code for charged particle track structure are presented here. Major emphasis has been on calculating energy deposition and ionization yield spectra for recoil proton crossers since they are the most prevalent event type at high energies (>99% at 14 MeV) for small volumes. Neutron event-size spectra can be obtained from them by numerical summing and folding techniques. Data for ionization yield spectra are presented for simulated recoil protons up to 20 MeV in sites of diameters 2-1000 nm

  10. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    Science.gov (United States)

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  11. Evaluation of single tracks of 17-4PH steel manufactured at different power densities and scanning speeds by selective laser melting

    CSIR Research Space (South Africa)

    Moller, Hein

    2016-11-01

    Full Text Available In Selective Laser Melting, the initial units produced are single tracks that overlap to create a single layer; from the sequence of layers, a 3D object is manufactured. The properties of the parts produced by SLM depend heavily on the properties...

  12. Track based alignment of the Mu3e detector

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, Ulrich [Institut fuer Kernphysik, Universitaet Mainz (Germany)

    2016-07-01

    The Mu3e experiment searches for the lepton flavor violating decay μ{sup +} → e{sup +}e{sup -}e{sup +} with a sensitivity goal for the branching fraction of better than 10{sup -16}. This process is heavily supressed in the standard model of particle physics (BR < 10{sup -50}) which makes an observation of this decay a clear indication of new physics. For track reconstruction, four barrel shaped layers consisting of about 3000 high-voltage monolithic active pixel sensors (HV-MAPS) are used. The position, orientation and possible deformations of these sensors must be known to greater precision than the assembly tolerances. A track based alignment via the General Broken Lines fit and the Millepede-II algorithm will be used to achieve this precision in the final detector. The talk discusses a study of the required alignment precision and preparations for aligning the detector using a detailed simulation.

  13. On the mechanism of the biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Margulis, M.A.; Margulis, I.M.

    2005-01-01

    The mechanisms of the biological effects of ionizing radiation (IR) and ultrasound (US) were considered. The current views on the nature of toxicity of IR, which is usually assigned to the formation of radicals in living tissues and to the straight-line collision of an ionizing particle with the DNA molecule, were analyzed. It was established that the amount of radicals formed in biological tissues in conditions of ultrasonically induced cavitation can be as large as that for IR; however, the biological effect of US is much softer as compared to IR. It was shown that the contribution of the indirect mechanism to the total biological effect of IR can be estimated by comparing US and IR in their chemical action; the contribution of the indirect mechanism to the biological effect of IR was found to be negligibly small. An alternative mechanism was proposed to explain the biological effect of IR. In accordance with the proposed model, IR with a high linear energy transfer (LET) value breaks through cell walls and biological membranes and causes damage to them, such that the cell can lose its regenerative capacity. Moreover, high-energy heavy ionizing particles perforate cytoplasm to form channels. Ionizing radiation with a low LET value (γ- and X-rays) causes multiple damages to biological membranes. Ionizing particles can also cause damages to membranes of mitochondria thus affecting the mechanism of cellular respiration, which will cause neoplastic diseases. The straight-line collision of an ionizing particle with a DNA molecule was found to be 5-7 orders of magnitude less probable as compared to the collision with a wall or membrane. It was shown that multiple perforations of cell walls and damages to membranes are characteristic only of ionizing particles, which have sufficiently long tracks, and do not occur upon exposure to ultrasonic waves, microwaves, UV radiation, and magnetic fields [ru

  14. Ultrafast quantum control of ionization dynamics in krypton.

    Science.gov (United States)

    Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta

    2018-02-19

    Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

  15. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  16. Radiation damage to DNA: The importance of track structure

    International Nuclear Information System (INIS)

    Hill, M.A.

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that biological response to radiation is not always restricted to the 'hit' cell but can sometimes be induced in 'un-hit' cells near by

  17. Operation of heavily irradiated silicon detectors in non-depletion mode

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Eremin, V.; Ilyashenko, I.; Li, Z.; Haerkoenen, J.; Tuovinen, E.; Luukka, P.

    2006-01-01

    The non-depletion detector operation mode has generally been disregarded as an option in high-energy physics experiments. In this paper, the non-depletion operation is examined by detailed analysis of the electric field distribution and the current pulse response of heavily irradiated silicon (Si) detectors. The previously reported model of double junction in heavily irradiated Si detector is further developed and a simulation of the current pulse response has been performed. It is shown that detectors can operate in a non-depletion mode due to the fact that the value of the electric field in a non-depleted region is high enough for efficient carrier drift. This electric field originates from the current flow through the detector and a consequent drop of the potential across high-resistivity bulk of a non-depleted region. It is anticipated that the electric field in a non-depleted region, which is still electrically neutral, increases with fluence that improves the non-depleted detector operation. Consideration of the electric field in a non-depleted region allows the explanation of the recorded double-peak current pulse shape of heavily irradiated Si detectors and definition of the requirements for the detector operational conditions. Detailed reconstruction of the electric field distribution gives new information on radiation effects in Si detectors

  18. Ionizing radiation from Chernobyl affects development of wild carrot plants

    Science.gov (United States)

    Boratyński, Zbyszek; Arias, Javi Miranda; Garcia, Cristina; Mappes, Tapio; Mousseau, Timothy A.; Møller, Anders P.; Pajares, Antonio Jesús Muñoz; Piwczyński, Marcin; Tukalenko, Eugene

    2016-12-01

    Radioactivity released from disasters like Chernobyl and Fukushima is a global hazard and a threat to exposed biota. To minimize the deleterious effects of stressors organisms adopt various strategies. Plants, for example, may delay germination or stay dormant during stressful periods. However, an intense stress may halt germination or heavily affect various developmental stages and select for life history changes. Here, we test for the consequence of exposure to ionizing radiation on plant development. We conducted a common garden experiment in an uncontaminated greenhouse using 660 seeds originating from 33 wild carrots (Daucus carota) collected near the Chernobyl nuclear power plant. These maternal plants had been exposed to radiation levels that varied by three orders of magnitude. We found strong negative effects of elevated radiation on the timing and rates of seed germination. In addition, later stages of development and the timing of emergence of consecutive leaves were delayed by exposure to radiation. We hypothesize that low quality of resources stored in seeds, damaged DNA, or both, delayed development and halted germination of seeds from plants exposed to elevated levels of ionizing radiation. We propose that high levels of spatial heterogeneity in background radiation may hamper adaptive life history responses.

  19. MRI-guided tumor tracking in lung cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Laura I; Jiang, Steve B [Center for Advanced Radiotherapy Technology and Department of Radiation Oncology, University of California San Diego, 3960 Health Sciences Dr., La Jolla, CA 92093-0865 (United States); Du, Jiang, E-mail: lcervino@ucsd.edu [Department of Radiology, University of California San Diego, 200 West Arbor Dr., San Diego, CA 92103-8226 (United States)

    2011-07-07

    Precise tracking of lung tumor motion during treatment delivery still represents a challenge in radiation therapy. Prototypes of MRI-linac hybrid systems are being created which have the potential of ionization-free real-time imaging of the tumor. This study evaluates the performance of lung tumor tracking algorithms in cine-MRI sagittal images from five healthy volunteers. Visible vascular structures were used as targets. Volunteers performed several series of regular and irregular breathing. Two tracking algorithms were implemented and evaluated: a template matching (TM) algorithm in combination with surrogate tracking using the diaphragm (surrogate was used when the maximum correlation between the template and the image in the search window was less than specified), and an artificial neural network (ANN) model based on the principal components of a region of interest that encompasses the target motion. The mean tracking error e and the error at 95% confidence level e{sub 95} were evaluated for each model. The ANN model led to e = 1.5 mm and e{sub 95} = 4.2 mm, while TM led to e = 0.6 mm and e{sub 95} = 1.0 mm. An extra series was considered separately to evaluate the benefit of using surrogate tracking in combination with TM when target out-of-plane motion occurs. For this series, the mean error was 7.2 mm using only TM and 1.7 mm when the surrogate was used in combination with TM. Results show that, as opposed to tracking with other imaging modalities, ANN does not perform well in MR-guided tracking. TM, however, leads to highly accurate tracking. Out-of-plane motion could be addressed by surrogate tracking using the diaphragm, which can be easily identified in the images.

  20. Laser-enhanced ionization spectroscopy around the ionization limit

    International Nuclear Information System (INIS)

    Axner, O.; Berglind, T.; Sjoestroem, S.

    1986-01-01

    Laser-induced photoionization and Laser-Enhanced collision Ionization (LEI) of Na, Tl, and Li in flames are detected by measuring the production of charges following a laser excitation. The ionization signal is investigated for excitations of the atoms from lower lying states both to Rydberg states close to the ionization limit, as well as to continuum states, i.e. the process of collision ionization is compared with that of photoionization. The qualitative behaviour of the ionization signal when scanning across the ionization limit is studied. It is shown that the ionization signal has a smooth behaviour when passing from bound states into continuum states. The laser-induced photoionization signal strength of atoms in flames is both calculated and measured and a good agreement is obtained. A calculation of wavelength dependent photoionization signal strengths for a number of elements is also presented. Photoionization is used to determine flame- and geometry-dependent parameters. An implication of photoionization in connection with LEI spectrometry for trace element analysis is that there will be a significant increase in background noise if the sample contains high concentrations of easily photoionizing elements and short wavelength light is used. (orig.)

  1. Expanding the use of real‐time electromagnetic tracking in radiation oncology

    Science.gov (United States)

    Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.

    2011-01-01

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017

  2. Detection of charged particles in thick hydrogenated amorphous silicon layers

    International Nuclear Information System (INIS)

    Fujieda, I.; Cho, G.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Ward, W.; Street, R.A.

    1988-03-01

    We show our results in detecting particles of various linear energy transfer, including minimum ionizing electrons from a Sr-90 source with 5 to 12 micron thick n-i-p and p-i-n diodes. We measured W ( average energy to produce one electron-hole pair) using 17keV filtered xray pulses with a result W = 6.0 /+-/ 0.2eV. This is consistent with the expected value for a semiconductor with band gap of 1.7 to 1.9eV. With heavily ionizing particles such as 6 MeV alphas and 1 to 2 MeV protons, there was some loss of signal due to recombination in the particle track. The minimum ionizing electrons showed no sign of recombination. Applications to pixel and strip detectors for physics experiments and medical imaging will be discussed. 7 refs., 8 figs

  3. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    Science.gov (United States)

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  4. Track structure of protons and other light ions in liquid water: applications of the LIonTrack code at the nanometer scale.

    Science.gov (United States)

    Bäckström, G; Galassi, M E; Tilly, N; Ahnesjö, A; Fernández-Varea, J M

    2013-06-01

    The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H(+), He(2+), and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. ["Electron inelastic-scattering cross sections in liquid water," Radiat. Phys. Chem. 53, 1-18 (1998); "Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water," Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C(6+) ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H(+). On average clusters of two to three EDs for 1 MeV/u H(+) and clusters of four to five EDs for 1 MeV/u C(6+) could be expected for a modeling double strand break distance of 3.4 nm.

  5. Impact of local electrostatic field rearrangement on field ionization

    Science.gov (United States)

    Katnagallu, Shyam; Dagan, Michal; Parviainen, Stefan; Nematollahi, Ali; Grabowski, Blazej; Bagot, Paul A. J.; Rolland, Nicolas; Neugebauer, Jörg; Raabe, Dierk; Vurpillot, François; Moody, Michael P.; Gault, Baptiste

    2018-03-01

    Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.

  6. Effect of the Ion Mass and Energy on the Response of 70-nm SOI Transistors to the Ion Deposited Charge by Direct Ionization

    International Nuclear Information System (INIS)

    Raine, M.; Gaillardin, M.; Sauvestre, J.E.; Flament, O.; Bournel, A.; Aubry-Fortuna, V.

    2010-01-01

    The response of SOI transistors under heavy ion irradiation is analyzed using Geant4 and Synopsys Sentaurus device simulations. The ion mass and energy have a significant impact on the radial ionization profile of the ion deposited charge. For example, for an identical LET, the higher the ion energy per nucleon, the wider the radial ionization track. For a 70-nm SOI technology, the track radius of high energy ions (≥ 10 MeV/a) is larger than the transistor sensitive volume; part of the ion charge recombines in the highly doped source or drain regions and does not participate to the transistor electric response. At lower energy (≤ 10 MeV/a), as often used for ground testing, the track radius is smaller than the transistor sensitive volume, and the entire charge is used for the transistor response. The collected charge is then higher, corresponding to a worst-case response of the transistor. Implications for the hardness assurance of highly-scaled generations are discussed. (authors)

  7. Alpha radioactivity measurement technology with ionized air type measurement. Applicability evaluation to verification of the clearance level

    International Nuclear Information System (INIS)

    Mita, Yutaka; Matsumura, Toshihiro; Yokoyama, Kaoru; Sugitsue, Noritake

    2008-10-01

    The purpose of this test is to evaluate the applicability of the clearance level measuring system by Ionized Air Type Measurement after decontaminated by sulfuric acid sample. In Ningyo-toge Environmental Engineering Center. The equipment and radioactive waste which were contaminated with uranium are generated so much in future dismantling stage. In our plan, some of equipments and radioactive waste are contaminated to a clearance level, and cut down on decommission and disposal expense. This plan needs the alpha-rays measurement technology of the very low level. We think that ionized Air transfer measurement technology is promising as of clearance verification technology. The ionized Air transfer measurement technology applied to the Ionized Air Type Measurement can measure plan radioactivity of a very low level. Moreover, as compared with a direct survey, there is the merit which can be measured in a short time. However ionized Air transfer measurement technology is new technology. Therefore, there is almost no measurement track record. Furthermore, the date about the influence of a background, a detection limit, measurement performance, and reliability is insufficient. So, this measurement test estimated applicability as clearance level verification of an Ionized Air Type Measurement. (author)

  8. Remote Excavation of Heavily Contaminated UXO Sites. The Range Master

    National Research Council Canada - National Science Library

    Crandall, Alan L

    2007-01-01

    USA Environmental, Inc., and Timberline Environmental Services, Inc., developed the Range Master, a remote controlled scraper with an integrated power screen, to excavate and sift the top 12 inches of heavily contaminated UXO sites...

  9. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    International Nuclear Information System (INIS)

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-01-01

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste

  10. Ionization effects in electronic inner-shells of ionized atoms

    International Nuclear Information System (INIS)

    Shchornak, G.

    1983-01-01

    A review of the atomic physics of ionization atoms has been presented. Interaction and structure effects in atomic shells, correlated to the occurrence of vacancies in several subshells of the atom have been considered. The methods of calculations of atomic states and wave functions have been reviewed. The energy shift of characteristic X-rays is discussed as a function of the ionization stage of the atom. The influence of inner and outer-shell vacancies on the energy of the X-rays is shown in detail. The influence of chemical effects on the parameters of X-rays is also taken into account. Further on, the change of transition probabilities in radiative and non-radiative transitions by changing stage of ionization is discussed; and among them the leading part of Auger and Coster-Kronig transitions by the arearrangement of the atomic states is shown. The influence of non-radiative electronic transitions on ionization cross-sections for multiple ionization is discussed. Using these results, ionization cross-sections for direct and indirect processes for several ionization stages are given

  11. Classifications of track structures

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1984-01-01

    When ionizing particles interact with matter they produce random topological structures of primary activations which represent the initial boundary conditions for all subsequent physical, chemical and/or biological reactions. There are two important aspects of research on such track structures, namely their experimental or theoretical determination on one hand and the quantitative classification of these complex structures which is a basic pre-requisite for the understanding of mechanisms of radiation actions. This paper deals only with the latter topic, i.e. the problems encountered in and possible approaches to quantitative ordering and grouping of these multidimensional objects by their degrees of similarity with respect to their efficiency in producing certain final radiation effects, i.e. to their ''radiation quality.'' Various attempts of taxonometric classification with respect to radiation efficiency have been made in basic and applied radiation research including macro- and microdosimetric concepts as well as track entities and stopping power based theories. In this paper no review of those well-known approaches is given but rather an outline and discussion of alternative methods new to this field of radiation research which have some very promising features and which could possibly solve at least some major classification problems

  12. Apatite fission track analysis: geological thermal history analysis based on a three-dimensional random process of linear radiation damage

    International Nuclear Information System (INIS)

    Galbraith, R.F.; Laslett, G.M.; Green, P.F.; Duddy, I.R.

    1990-01-01

    Spontaneous fission of uranium atoms over geological time creates a random process of linearly shaped features (fission tracks) inside an apatite crystal. The theoretical distributions associated with this process are governed by the elapsed time and temperature history, but other factors are also reflected in empirical measurements as consequences of sampling by plane section and chemical etching. These include geometrical biases leading to over-representation of long tracks, the shape and orientation of host features when sampling totally confined tracks, and 'gaps' in heavily annealed tracks. We study the estimation of geological parameters in the presence of these factors using measurements on both confined tracks and projected semi-tracks. Of particular interest is a history of sedimentation, uplift and erosion giving rise to a two-component mixture of tracks in which the parameters reflect the current temperature, the maximum temperature and the timing of uplift. A full likelihood analysis based on all measured densities, lengths and orientations is feasible, but because some geometrical biases and measurement limitations are only partly understood it seems preferable to use conditional likelihoods given numbers and orientations of confined tracks. (author)

  13. X-ray spectroscopy of highly ionized heavy ions as an advanced research for controlled nuclear fusion power

    International Nuclear Information System (INIS)

    Zschornack, G.; Musiol, G.

    1988-01-01

    Diagnostics and modelling of nuclear fusion plasmas require a detailed knowledge of atomic and molecular data for highly ionized heavy ions. Experimental verification of atomic data is made on the basis of IAEA recommendations using the method of high-resolution wavelength-dispersive X-ray spectroscopy in order to obtain contributions extensioning the available atomic data lists. Basic facilities for producing highly charged heavy ions are the electron-ion rings of the heavy ion collective accelerator and the electron beam ion source KRYON-2 at the Joint Institute for Nuclear Research at Dubna. For high-resolution X-ray spectroscopy with these sources a computer-aided crystal diffraction spectrometer has been developed the precision of which is achieved by using advanced principles of measurement and control. Relativistic atomic structure calculations have been carried out for a great number of elements and configurations to obtain data in ionization regions heavily accessible to the experiment. (author)

  14. Fission - track age of the Marjalahti Pallasite

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Perelygin, V.P.

    2006-01-01

    Full text: Investigation of fossil charged-particle tracks in various mineral phases of extraterrestrial samples is a powerful method for research the early stages of the solar system. Over geological time, meteorites crystals have accumulated a record of tracks produced by heavily charged energetic particles from both internal (spontaneous fission of 238U and some other extinct isotopes) and external sources (galactic cosmic rays with Z>20). The fortunate fact that meteorite grains can accumulate latent and very long-lived tracks since soon after the end of nucleosynthesis in the solar nebula enables one to decode their radiation history and to detect any thermal events in the meteorite cosmic history by revealing these tracks through suitable etching procedures. Only a few minerals in meteorites (mainly phosphates) contain small amount of uranium; the fact that 238 U undergoes fission with fission-decay constant λ f ∼ 8.2x10 -17 yr -1 allows one to use this isotope as a chronometer. By measuring the U concentration in the crystals (by reactor irradiation) and the density of the spontaneous-fission tracks it is relatively easy to calculate the 'fission-track age' if 238 U is the main source of fission tracks. However the fission-track dating of extraterrestrial samples compared with the terrestrial ones has some peculiar features due to presence of a number of other potential track sources except the spontaneous fission of 238 U, such as the spontaneous fission of presently extinct 244 Pu, heavy nuclei of cosmic rays and induced fission by cosmic ray primaries. Only tracks from the spontaneous fission of U and Pu are suitable for fission-track dating. The competing effects of these fissioning elements, whose half-lives differ by a factor of ∼50, form a basis for a fission-track chronology for samples older than ∼ 4.0 Gyr. Over small intervals in time (∼ few x10 8 yr ) the track density from spontaneous fission of 238 U is nearly constant. However, the

  15. A four-component Dirac theory of ionization of a hydrogen molecular ion in a super-intense laser field

    International Nuclear Information System (INIS)

    Faisal, F H M

    2009-01-01

    In this communication, a four-component Dirac theory of ionization of a hydrogen molecular ion, H + 2 , in a super-intense laser field is presented. Analytic expressions for the spin-specific as well as the total ionization currents emitted from the ground state of the ion are derived. The results are given for arbitrary intensity, frequency, wavenumber and polarization of the field, and for the up or down spin of the bound and ionized states of the electron. They also apply for the case of inner-shell ionization of analogous heavier diatomic molecular ions. The presence of molecular two-slit interference effect, first found in the non-relativistic case, the spin-flip ionization current, and an asymmetry of the up- and down-spin currents similar to that predicted in the atomic case, is found to hold for the present relativistic molecular ionic case as well. The possibility of controlling the spin of the dominant ionization current in any direction by simply selecting the handedness of a circularly polarized incident laser field is pointed out. Finally, we note that the present results obtained within the strong field 'KFR' ansatz open up the way for an analogous fully relativistic four-component treatment for ionization of polyatomic molecules and clusters in super-intense laser fields. (fast track communication)

  16. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    International Nuclear Information System (INIS)

    Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S 2 to S 1 is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S 2 state to the vibrationally hot S 1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S 1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding

  17. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  18. Energy dependent track structure parametrizations for protons and carbon ions based on nano-metric simulations

    International Nuclear Information System (INIS)

    Frauke, A.; Wilkens, J.J.; Villagrasa, C.; Rabus, H.

    2015-01-01

    The BioQuaRT project within the European Metrology Research Programme aims at correlating ion track structure characteristics with the biological effects of radiation and develops measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigate methods to translate track-structure quantities derived on a nanometer scale to macroscopic dimensions. Input data sets were generated by simulations of ion tracks of protons and carbon ions in liquid water using the Geant-4 Monte Carlo tool-kit with the Geant-4-DNA processes. Based on the energy transfer points - recorded with nanometer resolution - we investigated parametrizations of overall properties of ion track structure. Three different track structure parametrizations have been developed using the distances to the 10 next neighbouring ionizations, the radial energy distribution and ionisation cluster size distributions. These parametrizations of nanometer-scale track structure build a basis for deriving biologically relevant mean values which are essential in the clinical situation where each voxel is exposed to a mixed radiation field. (authors)

  19. Track reconstruction for the P2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tyukin, Alexey [JGU, Mainz (Germany); Collaboration: P2-Collaboration

    2016-07-01

    The P2 experiment at the future MESA accelerator in Mainz will measure elastically scattered electrons from a hydrogen or lead target in order to determine the parity violating asymmetry for different beam polarisations, which is created due to the weak charge of the target. The asymmetry can provide access to the Weinberg angle and the neutron skin of heavy nuclei. These quantities depend heavily on the momentum transfer Q{sup 2}, thus a reconstruction of single electron tracks in an inhomogeneous magnetic field is necessary. For this, the P2 detector will have four tracking planes of thin high voltage monolithic active pixel sensors (HV-MAPS). The scattered electrons propagate through a magnetic field and hit all four planes. In order to fit the hit positions the General Broken Lines method is used. As a fast propagator, a variation of the Runge-Kutta algorithm is applied, which solves the equation of motion in an inhomogeneous magnetic field numerically, such that the final state momentum and scattering angle can be reconstructed. The initial momentum and incident angle can vary strongly due to the thickness of the target, limiting the reconstruction quality. The average single track Q{sup 2} value of 0.006 GeV{sup 2}/c{sup 2} can be reconstructed with about 4 % uncertainty in a first analysis of the Geant4 simulation, leading to a high total precision due to large electron numbers in the experiment.

  20. Derivatization of Dextran for Multiply Charged Ion Formation and Electrospray Ionization Time-of-Flight Mass Spectrometric Analysis

    Science.gov (United States)

    Tapia, Jesus B.; Hibbard, Hailey A. J.; Reynolds, Melissa M.

    2017-10-01

    We present the use of a simple, one-pot derivatization to allow the polysaccharide dextran to carry multiple positive charges, shifting its molecular weight distribution to a lower m/ z range. We performed this derivatization because molecular weight measurements of polysaccharides by mass spectrometry are challenging because of their lack of readily ionizable groups. The absence of ionizable groups limits proton abstraction and suppresses proton adduction during the ionization process, producing mass spectra with predominantly singly charged metal adduct ions, thereby limiting the detection of large polysaccharides. To address this challenge, we derivatized dextran T1 (approximately 1 kDa) by attaching ethylenediamine, giving dextran readily ionizable, terminal amine functional groups. The attached ethylenediamine groups facilitated proton adduction during the ionization process in positive ion mode. Using the low molecular weight dextran T1, we tracked the number of ethylenediamine attachments by measuring the mass shift from underivatized to derivatized dextran T1. Using electrospray ionization time-of-flight mass spectrometry, we observed derivatized dextran chains ranging from two to nine glucose residues with between one and four attachments/charges. Our success in shifting derivatized dextran T1 toward the low m/ z range suggests potential for this derivatization as a viable route for analysis of high molecular weight polysaccharides using electrospray ionization time-of-flight mass spectrometry. [Figure not available: see fulltext.

  1. Ring magnetron ionizer

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1986-01-01

    A ring magnetron D - charge exchange ionizer has been built and tested. An H - current of 500 μA was extracted with an estimated H 0 density in the ionizer of 10 12 cm -3 . This exceeds the performance of ionizers presently in use on polarized H - sources. The ionizer will soon be tested with a polarized atomic beam

  2. Track pattern-recognition on GPGPUs in the LHCb experiment

    CERN Document Server

    Gallorini, Stefano

    2015-01-01

    The LHCb experiment is entering in its upgrading phase, with its detector and read-out system re-designed to cope with the increased LHC energy after the long shutdown of 2018. In this upgrade, a trigger-less data acquisition is being developed to read-out the full detector at the bunch-crossing rate of 40 MHz. In particular, the High Level Trigger (HLT) system has to be heavily revised. Since the small LHCb event size (about 100 kB), many-core architectures such as General Purpose Graphics Processing Units (GPGPUs) and multi-core CPUs can be used to process many events in parallel for real-time selection, and may offer a solution for reducing the cost of the HLT farm. Track reconstruction and vertex finding are the more time-consuming applications running in HLT and therefore are the first to be ported on many-core. In this talk we present our implementation of the existing tracking algorithms on GPGPU, discussing in detail the case of the VErtex LOcator detector (VELO), and we show the achieved performances...

  3. Masses and densities determination of meteoroids by radio-echo observations considering processes which influence the form of meteor ionization curves

    International Nuclear Information System (INIS)

    Bibarsov, R.Sh.; Narziev, M.; Chebotarev, R.P.

    1990-01-01

    Influence division of account and other factors (such as coefficient figure changing and methorin heat conductivity lengthways trajectories, structure and meteoroid comic structure) during of their weight and density definition on an angular ionization figure from one item on radar-tracking supervision is resulted

  4. First Limit on the Direct Detection of Lightly Ionizing Particles for Electric Charge as Low as e /1000 with the Majorana Demonstrator

    Science.gov (United States)

    Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Hehn, L.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Myslik, J.; O'Shaughnessy, C.; Othman, G.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Ruof, N. W.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Varner, R. L.; Vasilyev, S.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.; Majorana Collaboration

    2018-05-01

    The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in 76Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e /1000 .

  5. Surface-ionization field mass-spectrometry studies of nonequilibrium surface ionization

    International Nuclear Information System (INIS)

    Blashenkov, Nikolai M; Lavrent'ev, Gennadii Ya

    2007-01-01

    The ionization of polyatomic molecules on tungsten and tungsten oxide surfaces is considered for quasiequilibrium or essentially nonequilibrium conditions (in the latter case, the term nonequilibrium surface ionization is used for adsorbate ionization). Heterogeneous reactions are supposed to proceed through monomolecular decay of polyatomic molecules or fragments of multimolecular complexes. The nonequilibrium nature of these reactions is established. The dependences of the current density of disordered ions on the surface temperature, electric field strength, and ionized particle energy distribution are obtained in analytical form. Heterogeneous dissociation energies, the ionization potentials of radicals, and the magnitude of reaction departure from equilibrium are determined from experimental data, as are energy exchange times between reaction products and surfaces, the number of molecules in molecular complexes, and the number of effective degrees of freedom in molecules and complexes. In collecting the data a new technique relying on surface-ionization field mass-spectrometry was applied. (instruments and methods of investigation)

  6. Positron trapping in heavily irradiated semiconductors

    International Nuclear Information System (INIS)

    Moser, P.; Pautrat, J.L.; Corbel, C.; Hautojarvi, P.

    1985-01-01

    Vacancy processes are studied in several heavily irradiated semiconductors. Specimens are ZnTe, CdTe, CdTe (In), InP, InP (Cr), InP (Zn) and Ge. Irradiations are made at 20 K using a 3 MeV Van de Graaff electron accelerator. Doses are 4 x 10 18 e - /cm 2 . Lifetime measurements are made at 77 K at each step of an isochronal annealing (30 min 20 K). In each specimen, the results show a significant increase of the lifetime (+ 30 at + 50 ps) which anneals out in different steps restoring the initial lifetime. The steps are sharp (ΔT/T=0.3) with the exception of InP, InP(Cr), InP(Zn), (ΔT/T=0.9). Tentative interpretations are given

  7. Determination of the absolute two-photon ionization cross section of He by an XUV free electron laser

    International Nuclear Information System (INIS)

    Sato, Takahiro; Iwasaki, Atsushi; Ishibashi, Kazuki; Okino, Tomoya; Yamanouchi, Kaoru; Adachi, Junichi; Yagishita, Akira; Yazawa, Hiroki; Aoyma, Makoto; Yabashi, Makina; Nagasono, Mitsuru; Higashiya, Atsushi; Ishikawa, Tetsuya; Kannari, Fumihiko; Yamakawa, Koichi; Midorikawa, Katsumi; Nakano, Hidetoshi

    2011-01-01

    The resonant and non-resonant two-photon single ionization processes of He were investigated using intense free electron laser light in the extreme ultraviolet (XUV) region (53.4-61.4 nm) covering the 1s-2p and 1s-3p resonant transitions of He. On the basis of the dependences of the yield of He + on the XUV light-field intensity at 53.4, 58.4, 56.0 and 61.4 nm, the absolute values of the two-photon ionization cross sections of He at the four different wavelengths and their dependence on the light-field intensity were determined for the first time. (fast track communication)

  8. Clusters of DNA damage induced by ionizing radiation: Formation of short DNA fragments. I. Theoretical modeling

    International Nuclear Information System (INIS)

    Holley, W.R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber composed of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and δ rays due to knock-on collisions involving energy transfers > 100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of circ OH, circ H, e aq , etc.; circ OH attack on sugar molecules leading to strand breaks; circ OH attack on bases; direct ionization of the sugar molecules leading to strand breaks; direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 hp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the chromatin fibers in mammalian DNA. 27 refs., 7 figs

  9. Automated track recognition and event reconstruction in nuclear emulsion

    International Nuclear Information System (INIS)

    Deines-Jones, P.; Aranas, A.; Cherry, M.L.; Dugas, J.; Kudzia, D.; Nilsen, B.S.; Sengupta, K.; Waddington, C.J.; Wefel, J.P.; Wilczynska, B.; Wilczynski, H.; Wosiek, B.

    1997-01-01

    The major advantages of nuclear emulsion for detecting charged particles are its submicron position resolution and sensitivity to minimum ionizing particles. These must be balanced, however, against the difficult manual microscope measurement by skilled observers required for the analysis. We have developed an automated system to acquire and analyze the microscope images from emulsion chambers. Each emulsion plate is analyzed independently, allowing coincidence techniques to be used in order to reject background and estimate error rates. The system has been used to analyze a sample of high-multiplicity Pb-Pb interactions (charged particle multiplicities ∝ 1100) produced by the 158 GeV/c per nucleon 208 Pb beam at CERN. Automatically measured events agree with our best manual measurements on 97% of all the tracks. We describe the image analysis and track reconstruction techniques, and discuss the measurement and reconstruction uncertainties. (orig.)

  10. High-resolution tracking using large capillary bundles filled with liquid scintillator

    CERN Document Server

    Annis, P; Benussi, L; Bruski, N; Buontempo, S; Currat, C; D'Ambrosio, N; Van Dantzig, R; Dupraz, J P; Ereditato, A; Fabre, Jean-Paul; Fanti, V; Feyt, J; Frekers, D; Frenkel, A; Galeazzi, F; Garufi, F; Goldberg, J; Golovkin, S V; Gorin, A M; Grégoire, G; Harrison, K; Höpfner, K; Holtz, K; Konijn, J; Kozarenko, E N; Kreslo, I E; Kushnirenko, A E; Liberti, B; Martellotti, G; Medvedkov, A M; Michel, L; Migliozzi, P; Mommaert, C; Mondardini, M R; Panman, J; Penso, G; Petukhov, Yu P; Rondeshagen, D; Siegmund, W P; Tyukov, V E; Van Beek, G; Vasilchenko, V G; Vilain, P; Visschers, J L; Wilquet, G; Winter, Klaus; Wolff, T; Wörtche, H J; Wong, H; Zimyn, K V

    2000-01-01

    We have developed large high-resolution tracking detectors based on glass capillaries filled with organic liquid scintillator of high refractive index. These liquid-core scintillating optical fibres act simultaneously as detectors of charged particles and as image guides. Track images projected onto the readout end of a capillary bundle are visualized by an optoelectronic chain consisting of a set of image-intensifier tubes followed by a photosensitive CCD or by an EBCCD camera. Two prototype detectors, each composed of \\hbox{$\\approx 10^6$} capillaries with \\hbox{20$-$25 $\\mu$m} diameter and \\hbox{0.9$-$1.8 m} length, have been tested, and a spatial resolution of the order of \\hbox{20$-$40 $\\mu$m} has been attained. A high scintillation efficiency and a large light-attenuation length, in excess of 3 m, was achieved through special purification of the liquid scintillator. Along the tracks of minimum-ionizing particles, the hit densities obtained were $\\sim$ 8 hits/mm at the readout window, and \\hbox{$\\sim$ 3 ...

  11. Near-infrared free carrier absorption in heavily doped silicon

    International Nuclear Information System (INIS)

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-01-01

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10 18 and 3 × 10 20  cm −3 . Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis

  12. LET spectrometry with track etch detectors-Use in high-energy radiation fields

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spurny, F.

    2008-01-01

    For assessing the risk from ionizing radiation it is necessary to know not only the absorbed dose but also the quality of the radiation; radiation quality is connected with the physical quantity linear energy transfer (LET). One of the methods of determination of LET is based on chemically etched track detectors. This contribution concerns with a spectrometer of LET based on the track detectors and discusses some results obtained at: ·high-energy radiation reference field created at the SPS accelerator at CERN; and ·onboard of International Space Station where track-etch based LET spectrometer has been exposed 273 days during 'Matrjoshka - R' experiment. Results obtained are compared with the results of studies at some lower-energy neutron sources; some conclusions on the registrability of neutrons and the ability of this spectrometer to determine dose equivalent in high-energy radiation fields are formulated

  13. Forward-backward multiplicity correlations of target fragments in nucleus-emulsion collisions at a few hundred MeV/u

    International Nuclear Information System (INIS)

    Zhang Donghai; Chen Yanling; Wang Guorong; Li Wangdong; Wang Qing; Yao Jijie; Zhou Jianguo; Li Rong; Li Junsheng; Li Huiling

    2015-01-01

    The forward-backward multiplicity and correlations of a target evaporated fragment (black track particle) and target recoiled proton (grey track particle) emitted from 150 A MeV "4He, 290 A MeV "1"2C, 400 A MeV "1"2C, 400 A MeV "2"0Ne and 500 A MeV "5"6Fe induced different types of nuclear emulsion target interactions are investigated. It is found that the forward and backward averaged multiplicity of a grey, black and heavily ionized track particle increases with the increase of the target size. The averaged multiplicity of a forward black track particle, backward black track particle, and backward grey track particle do not depend on the projectile size and energy, but the averaged multiplicity of a forward grey track particle increases with an increase of projectile size and energy. The backward grey track particle multiplicity distribution follows an exponential decay law and the decay constant decreases with an increase of target size. The backward-forward multiplicity correlations follow linear law which is independent of the projectile size and energy, and the saturation effect is observed in some heavy target data sets. (authors)

  14. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuzhu, E-mail: yuzhu.liu@gmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Knopp, Gregor [Paul Scherrer Institute, Villigen 5232 (Switzerland); Qin, Chaochao [Department of Physics, Henan Normal University, Xinxiang 453007 (China); Gerber, Thomas [Paul Scherrer Institute, Villigen 5232 (Switzerland)

    2015-01-13

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S{sub 2} to S{sub 1} is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S{sub 2} state to the vibrationally hot S{sub 1} state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S{sub 1} state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  15. TrackArt: the user friendly interface for single molecule tracking data analysis and simulation applied to complex diffusion in mica supported lipid bilayers.

    Science.gov (United States)

    Matysik, Artur; Kraut, Rachel S

    2014-05-01

    Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results

  16. Ionization

    International Nuclear Information System (INIS)

    2002-01-01

    This document reprints the text of the French by-law from January 8, 2002 relative to the approval and to the controls and verifications of facilities devoted to the ionizing of food products for human beings and animals. The by-law imposes the operators of such facilities to perform measurements and dosimetric verifications all along the ionization process. (J.S.)

  17. Intercomparison study of inductively coupled plasma mass spectrometry, thermal ionization mass spectrometry and fission track analysis of μBq quantities of 239Pu in synthetic urine

    International Nuclear Information System (INIS)

    Inn, K.G.W.; McCurdy, D.; Kuruvilla, L.; Barss, N.M.; Bell III, R.T.; Pietrzak, R.; Kaplan, E.; Inkret, W.; Efurd, W.; Rokop, D.; Lewis, D.; Gautier, P.

    2001-01-01

    Even today, some Marshall Islanders are looking forward to permanently resettling their islands after five decades. The U.S. Department of Energy and the resettled residents require reasonable but cost-prudent assurance that the doses to resident from residual 239 Pu will not exceed recognized international standards or recommendations, as estimated from the excretion of 239 Pu in urine. The goal of this study was to evaluate the bias, uncertainty and sensitivity of analytical techniques that measure 3-56 μBq 239 Pu in synthetic urine. The analytical techniques studied in this work included inductively coupled plasma mass spectrometry, thermal ionization mass spectrometry and fission track analysis. The results of the intercomparison demonstrated that all three techniques were capable of marking the measurements, although not with equal degree of bias and uncertainty. The estimated minimum detectable activity was 1 μBq of 239 Pu per synthetic urine sample. This exercise is also the first effort to certify test materials of plutonium in the nBqxg -1 range. (author)

  18. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  19. Addition of sunitinib to cetuximab and irinotecan in patients with heavily pre-treated advanced colorectal cancer

    DEFF Research Database (Denmark)

    Qvortrup, Camilla; Jensen, Benny Vittrup; Jørgensen, Trine Lembrecht

    2010-01-01

    Results of continuous sunitinib, in combination with cetuximab and irinotecan every other week (SIC) for compassionate use in heavily pre-treated patients with mCRC are presented.......Results of continuous sunitinib, in combination with cetuximab and irinotecan every other week (SIC) for compassionate use in heavily pre-treated patients with mCRC are presented....

  20. Electron ionization and the Compton effect in double ionization of helium

    International Nuclear Information System (INIS)

    Samson, J.

    1994-01-01

    The author discusses ionization phenomena in helium, both photoionization and electron ionization. In particular he compares double ionization cross sections with total cross sections, as a function of electron energy, and photon energy. Data is discussed over the energy range up to 10 keV

  1. Tracking Filament Evolution in the Low Solar Corona Using Remote Sensing and In Situ Observations

    Science.gov (United States)

    Kocher, Manan; Landi, Enrico; Lepri, Susan. T.

    2018-06-01

    In the present work, we analyze a filament eruption associated with an interplanetary coronal mass ejection that arrived at L1 on 2011 August 5. In multiwavelength Solar Dynamic Observatory/Advanced Imaging Assembly (AIA) images, three plasma parcels within the filament were tracked at high cadence along the solar corona. A novel absorption diagnostic technique was applied to the filament material traveling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/Extreme Ultraviolet Imager and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements, we conclude that the core plasma was in near ionization equilibrium, and the ionization states were still evolving at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.

  2. Gemcitabine and capecitabine for heavily pre-treated metastatic colorectal cancer patients

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise G; Pallisgaard, Niels; Andersen, Rikke F

    2014-01-01

    AIM: We investigated the efficacy and safety of capecitabine and gemcitabin (GemCap) in heavily pre-treated, therapy-resistant metastatic colorectal cancer (mCRC) patients and the clinical importance of cell-free DNA (cfDNA) measurement. PATIENTS AND METHODS: Patients' inclusion criteria included...

  3. Evaluation of single tracks of 17-4PH steel manufactured at different power densities and scanning speeds by selective laser melting

    Directory of Open Access Journals (Sweden)

    Makoana, N. W.

    2016-11-01

    Full Text Available In Selective Laser Melting, the initial units produced are single tracks that overlap to create a single layer; from the sequence of layers, a 3D object is manufactured. The properties of the parts produced by SLM depend heavily on the properties of each single track and each layer formed by these tracks. This study evaluates the effect of processing parameters on the geometrical characteristics of single tracks manufactured from 17-4PH stainless steel powder. A single-mode continuous-wave ytterbium fibre laser was used to manufacture single tracks at laser powers in the range of 100-300 W with a constant spot size of ∼80μm. The single tracks produced were subjected to standard metallographic preparation techniques for further analysis with an optical microscope. Deep molten pool shapes were observed at low scan speeds, while shallow molten pool shapes were observed at high scan speeds. At higher laser power densities, under-cutting and humping effects were also observed. The dimensions of single tracks processed without powder generally decrease with increasing scan speed at constant laser power. However, the geometrical features of the single tracks processed with powder revealed pronounced irregularities believed to be caused by non-homogeneity in the deposited powder layer.

  4. Initial recombination in the track of heavy charged particles: Numerical solution for air filled ionization chambers

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    2012-01-01

    ). The investigated charge carrier distributions are based on track structure models, which follow a 1/r2 behavior at larger radii and show a constant value at small radii. The results of the calculations are compared to the initial formulation and to data obtained in experiments using carbon ion beams. Results...... The comparison between the experimental data and the calculations shows that the initial approach made by Jaffe is able to reproduce the effects of initial recombination. The amorphous track structure based charge carrier distribution do not reproduce the experimental data well. A small additional correction...

  5. A scintillation method for measurement of the bioeffectiveness of ionizing radiation by simulation of the cellular response

    International Nuclear Information System (INIS)

    McDougall, I.C.; Alkharam, A.S.; Watt, D.E.; Thomas, G.E.

    1998-01-01

    A new type of radiation detector giving an absolute assessment of the bio-effectiveness of any ionizing radiation field is proposed. The spectrometer consists of a plastic scintillator disc 2.5 cm in diameter and 20 μm thick, interfaced to a hybrid photomultiplier. A close analogy exists between the major features of the track action in the scintillator and the track action which determines the radiation response in the mammalian cell. As the spectrometer should be capable to measure the equilibrium of charged particle fluence simultaneously, it has the potential of serving as a complete bioeffect dosemeter in a fluence-based system. (M.D.)

  6. Ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A safe and reliable apparatus for detecting products of combustion and aerosols in the atmosphere was developed which uses a beta source. It is easy to adjust for optimum performance. The ionization detector comprises a double chamber; one of the chambers is the basic sensing chamber. The sensing chamber is ported to both the secondary chambers to account for slow ambient changes in the atmosphere outside of the chamber. The voltages from the ionization chamber are adjusted with electrodes in each chamber. The ionization chamber contains baffles to direct the air to be sensed as well as an electrostatic screen. A unique electronic circuit provides an inexpensive and reliable means for detecting the signal change which occurs in the ionization chamber. The decision level of the alarm circuit can be adjusted to allow for any desired sensitivity. (D.N.)

  7. Particularisation of Alpha Contamination using CR-39 Track Detectors

    International Nuclear Information System (INIS)

    Zakia, M.F.; El-Shaer, Y.H.

    2008-01-01

    Solid-state nuclear track detectors have found wide use in various domains of science and technology, e.g. in environmental experiments. The measurement of alpha activity on sources in an environment, such as air is not easy because of short penetration range of the alpha particles. Furthermore, the measurement of alpha activity by most gas ionization detectors suffers from the high background induced by the accompanying gamma radiation. Solid State Nuclear Track Detectors (SSNTDs) have been used successfully as detecting devices as passive system to detect the alpha contamination different surfaces. This work presents the response of CR-39 (for two types) to alpha particles from two sources, 238 Pu with energy 5 MeV and 241 Am with energy 5.4 MeV. The methods of etching and counting are investigated, along with the achievable linearity, efficiency and reproducibility. The sensitivity to low activity and energy resolution are studied

  8. The feasibility of epidemiologic investigations of the health effects of low-level ionizing radiation. Final report, 3 July 1979-30 October 1980

    International Nuclear Information System (INIS)

    Dreyer, N.A.; Kohn, H.I.; Clapp, R.W.; Covino, S.J. Jr.; Fahey, F.H.

    1980-11-01

    This is the final report of 'A Study to Determine the Feasibility of Conducting Epidemiologic Investigations of the Health Effects of Low-Level Ionizing Radiation', begun July 3, 1979. The study defines low-level ionizing radiation as a single dose of 5 rem (whole-body) or less and chronic doses that accumulate at the rate of less than 5 rem per year. The objective of this project was to determine whether or not further epidemiologic research (either expansion of current projects or initiation of new ones) would be useful at this time for quantitating the health effects due to low-level ionizing radiation. No outstanding candidate population is recommended for study since, even if the largest available populations are studied, the chance of finding a definite positive result is very small. However, the decision to conduct a study must rest heavily on social and political considerations rather than on purely scientific ones. Therefore, four populations are tentatively proposed for prospective cohort studies, with nested case-control studies as needed. Overall, the most practical approach would be to conduct a study through a national worker registry, with cancer as the endpoint of interest

  9. Ionizing radiation in environment

    International Nuclear Information System (INIS)

    Jandl, J.; Petr, I.

    1988-01-01

    The basic terms are explained such as the atom, radioactivity, nuclear reaction, interaction of ionizing radiation with matter, etc. The basic dosimetric variables and units and properties of radionuclides and ionizing radiation are given. Natural and artificial sources of ionizing radiation are discussed with regard to the environment and the propagation and migration of radionuclides is described in the environment to man. The impact is explained of ionizing radiation on the cell and the somatic and genetic effects of radiation on man are outlined. Attention is devoted to protection against ionizing radiation and to radiation limits, also to the detection, dosimetry and monitoring of ionizing radiation in the environment. (M.D.). 92 figs., 40 tabs. 74 refs

  10. A many particle-tracking detector with drift planes and segmented cathode readout

    International Nuclear Information System (INIS)

    Fischer, J.; Lissauer, D.; Ludlam, T.; Makowiecki, D.; O'Brien, E.; Radeka, V.; Rescia, S.; Rogers, L.; Smith, G.C.; Stephani, D.; Yu, B.; Greene, S.V.; Hemmick, T.K.; Mitchell, J.T.; Shivakumar, B.

    1990-01-01

    We describe the design and performance of a detector system for tracking charged particles in an environment of high track density and rates up to 1 MHz. The system operates in the forward spectrometer of the BNL Heavy Ion experiment E814 and uses principles of general interest in high rate, high multiplicity applications such as at RHIC or SSC. We require our system to perform over a large dynamic range, detecting singly charged particles as well as fully ionized relativistic 28 Si. Results on gas gain saturation, δ-ray suppression, and overall detector performance in the presence of a 14.6 GeV/nucleon 28 Si beam and a 14 GeV proton beam are presented. 6 refs., 9 figs

  11. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    Science.gov (United States)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  12. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained

  13. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  14. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. V. ALFVÉN IONIZATION

    International Nuclear Information System (INIS)

    Stark, C. R.; Helling, Ch.; Rimmer, P. B.; Diver, D. A.

    2013-01-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (≥10 –7 ) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10 –6 -1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H 2 , or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks

  15. Mid-infrared plasmonic resonances exploiting heavily-doped Ge on Si

    Science.gov (United States)

    Biagioni, P.; Sakat, E.; Baldassarre, L.; Calandrini, E.; Samarelli, A.; Gallacher, K.; Frigerio, J.; Isella, G.; Paul, D. J.; Ortolani, M.

    2015-03-01

    We address the behavior of mid-infrared localized plasmon resonances in elongated germanium antennas integrated on silicon substrates. Calculations based on Mie theory and on the experimentally retrieved dielectric constant allow us to study the tunability and the figures of merit of plasmon resonances in heavily-doped germanium and to preliminarily compare them with those of the most established plasmonic material, gold.

  16. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  17. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  18. The ionizing treatment of food

    International Nuclear Information System (INIS)

    1998-01-01

    This book of proceedings contains the talks given by the members of the Society of chemical experts of France (SECF) and by various specialists of the ionizing treatment during the scientific days of September 25-26, 1997. The aim of this meeting was to reconsider the effects of ionization from a scientific point of view and apart from the polemics generated by this domain. The following topics were discussed successively: source and characterization of a ionizing treatment, biological effects of ionization on food and the expected consequences, the ionizing treatment and the reduction of the vitamin C content of fruits and vegetables, is it safe to eat irradiated food?, the organoleptic modifications of food after ionization, quality assurance of dosimetry measurements in an industrial installation of food ionization, the French and European regulations in food ionization, the detection of irradiated foodstuffs, processed food and complex lipid matrices, sterilization of dishes for immuno-depressed patients using ionization. (J.S.)

  19. A novel method to estimate the impact parameter on a drift cell by using the information of single ionization clusters

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); D' Onofrio, A. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Venturini, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2016-07-11

    Measuring the time of each ionization cluster in drift chambers has been proposed to improve the single hit resolution, especially for very low mass tracking systems. Ad hoc formulae have been developed to combine the information from the single clusters. We show that the problem falls in a wide category of problems that can be solved with an algorithm called Maximum Possible Spacing (MPS) which has been demonstrated to find the optimal estimator. We show that the MPS approach is applicable and gives the expected results. Its application in a real tracking device, namely the MEG II cylindrical drift chamber, is discussed.

  20. 'Saddle-point' ionization

    International Nuclear Information System (INIS)

    Gay, T.J.; Hale, E.B.; Irby, V.D.; Olson, R.E.; Missouri Univ., Rolla; Berry, H.G.

    1988-01-01

    We have studied the ionization of rare gases by protons at intermediate energies, i.e., energies at which the velocities of the proton and the target-gas valence electrons are comparable. A significant channel for electron production in the forward direction is shown to be 'saddle-point' ionization, in which electrons are stranded on or near the saddle-point of electric potential between the receding projectile and the ionized target. Such electrons yield characteristic energy spectra, and contribute significantly to forward-electron-production cross sections. Classical trajectory Monte Carlo calculations are found to provide qualitative agreement with our measurements and the earlier measurements of Rudd and coworkers, and reproduce, in detail, the features of the general ionization spectra. (orig.)

  1. Heating and ionization in MHD shock waves propagating into partially ionized plasma

    International Nuclear Information System (INIS)

    Bighel, L.; Collins, A.R.; Cramer, N.F.; Watson-Munro, C.N.

    1975-09-01

    A model of the structure of MHD switch-on shocks propagating in a partially ionized plasma, in which the primary dissipation mechanism is friction between ions and neutrals, is here compared favourably with experimental results. Four degrees of upstream ionization were studied, ranging from almost complete to very small ionization. (author)

  2. Heating and ionization in MHD shock wave propagating into partially ionized plasma

    International Nuclear Information System (INIS)

    Bighel, L.; Collins, A.R.; Cramer, N.F.; Watson-Munro, C.N.

    1975-09-01

    A model of the structure of MHD switch-on shocks propagating in a partially ionized plasma, in which the primary dissipation mechanism is friction between ions and neutrals, is here compared favourably with experimental results. Four degrees of upstream ionization were studied, ranging from almost complete to very small ionization. (author)

  3. Five-photon ionization of atomic hydrogen at wavelengths around the threshold for four-photon ionization

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.; Wolff-Rottke, B.; Rottke, H.; Welge, K.H.; Feldmann, D.

    1992-01-01

    Theoretical and experimental studies show the strong influence of the three-photon nearly resonant 2p state on four- and five-photon ionization of atomic hydrogen near the threshold for four-photon ionization. Changes in five-photon ionization occur when the four-photon ionization channel opens. The angular distributions of photoelectrons from five-photon ionization of H are studied at five wavelengths which cover the range from four-photon resonance with high-lying Rydberg states (n≥10) to direct four-photon ionization into the continuum. The role of resonances in this ionization process is discussed. A fair agreement is found in comparing experimental and theoretical results

  4. Equipment for handling ionization chamber

    International Nuclear Information System (INIS)

    Altmann, J.

    1988-01-01

    The device consists of an ionization channel with an ionization chamber, of a support ring, axial and radial bearings, a sleeve, a screw gear and an electric motor. The ionization chamber is freely placed on the bottom of the ionization channel. The bottom part of the channel deviates from the vertical axis. The support ring propped against the axial bearing in the sleeve is firmly fixed to the top part of the ionization channel. The sleeve is fixed to the reactor lid. Its bottom part is provided with a recess for the radial bearing which is propped against a screw wheel firmly connected to the ionization channel. In measuring neutron flux, the screw wheel is rotated by the motor, thus rotating the whole ionization channel such that the ionization chamber is displaced into the reactor core.(J.B.). 1 fig

  5. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Nealy, J.E.; Shinn, J.L.

    1991-02-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space

  6. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    Science.gov (United States)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.

    1991-01-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.

  7. Foodstuffs preservation by ionization

    International Nuclear Information System (INIS)

    1991-12-01

    This document contains all the papers presented at the meeting on foodstuffs preservation by ionization. These papers deal especially with the food ionization process, its development and the view of the food industry on ionization. Refs and figs (F.M.)

  8. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  9. Ambient ionization mass spectrometry: A tutorial

    International Nuclear Information System (INIS)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu; Shiea, Jentaie

    2011-01-01

    Highlights: → Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. → We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. → The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  10. Evolution of heavy ions (He{sup 2+}, H{sup +}) radiolytic yield of molecular hydrogen vs. ''Track-Segment'' LET values

    Energy Technology Data Exchange (ETDEWEB)

    Crumiere, Francis; Vandenborre, Johan; Blain, Guillaume; Fattahi, Massoud [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Haddad, Ferid [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Cyclotron Arronax, Saint Herblain (France)

    2017-08-01

    Ionizing radiation's effects onto water molecules lead to the ionization and/or the excitation of them. Then, these phenomena are followed by the formation of radicals and molecular products. The linear energy transfer (LET), which defines the energy deposition density along the radiation length, is different according to the nature of ionizing particles. Thus, the values of radiolytic yields, defined as the number of radical and molecular products formed or consumed by unit of deposited energy, evolve according to this parameter. This work consists in following the evolution of radiolytic yield of molecular hydrogen and ferric ions according to the ''Track-Segment'' LET of ionizing particles (protons, helions). Concerning G(Fe{sup 3+}) values, it seems that the energy deposited into the Bragg peak does not play the main role for the Fe{sup 3+} radiolytic formation, whereas for the G(H{sub 2}) it is the case with a component around 40% of the Bragg peak in the dihydrogen production. Therefore, as main results of this work, for high energetic Helion and Proton beams, the G(Fe{sup 3+}) values, which can be used for further dosimetry studies for example during the α radiolysis experiments, and the primary g(H{sub 2}) values for the Track-Segment LET, which can be used to determine the dihydrogen production by α-emitters, are published.

  11. Ionization of food products

    International Nuclear Information System (INIS)

    Vasseur, J.P.

    1991-01-01

    After general remarks on foods preservation, on international works and on ionization future prospects, main irradiation sources are described. Recalls on radioactivity, on radiation-matter interaction, on toxicology of ionized foods and on ionized foods detection are given. Ionization applications to various products are reviewed, especially in: - Poultry meat - Fishing products - Fresh fruits and vegetables - Dry fruits and vegetables - spices, tea, infusion - prepacked products... An evaluation of economics and sociocultural impacts is presented in connection with recent experiments [fr

  12. Cluster analysis for the probability of DSB site induced by electron tracks

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Y. [Biological Research, Education and Instrumentation Center, Sapporo Medical University, Sapporo 060-8556 (Japan); Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Sasaki, K. [Faculty of Health Sciences, Hokkaido University of Science, Sapporo 006-8585 (Japan); Matsuya, Y. [Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Date, H., E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan)

    2015-05-01

    To clarify the influence of bio-cells exposed to ionizing radiations, the densely populated pattern of the ionization in the cell nucleus is of importance because it governs the extent of DNA damage which may lead to cell lethality. In this study, we have conducted a cluster analysis of ionization and excitation events to estimate the number of double-strand breaks (DSBs) induced by electron tracks. A Monte Carlo simulation for electrons in liquid water was performed to determine the spatial location of the ionization and excitation events. The events were divided into clusters by using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The algorithm enables us to sort out the events into the groups (clusters) in which a minimum number of neighboring events are contained within a given radius. For evaluating the number of DSBs in the extracted clusters, we have introduced an aggregation index (AI). The computational results show that a sub-keV electron produces DSBs in a dense formation more effectively than higher energy electrons. The root-mean square radius (RMSR) of the cluster size is below 5 nm, which is smaller than the chromatin fiber thickness. It was found that this size of clustering events has a high possibility to cause lesions in DNA within the chromatin fiber site.

  13. Do the VOCs that evaporate from a heavily polluted river threaten the health of riparian residents?

    International Nuclear Information System (INIS)

    Juang, Der-Fong; Lee, Chao-Hsien; Chen, Wei-Chin; Yuan, Chung-Shin

    2010-01-01

    To understand the potential threat of volatile organic compounds (VOCs) to the health of residents living close to a heavily polluted river, this study investigated the species and the concentration of VOCs evaporating from a river and surveyed the health condition of the nearby residents. Air samples were taken seasonally at the upstream, midstream, and downstream water surfaces of the river, and at different locations at certain distances from the river. These samples were analyzed qualitatively and quantitatively through gas chromatography and electron capture detector (GC/ECD) for chlorinated organic compounds, and through gas chromatography and flame ionization detector (GC/FID) for ordinary hydrocarbons. The health data obtained from valid health questionnaires of 908 residents were analyzed through Statistical Package for Social Science (SPSS) software. Twenty-six species of VOCs were identified in the environment adjacent the river, many of which are carcinogenic or believed to be carcinogenic to humans. However, results of this study shows that the VOCs evaporating from the polluted river have not been definitively identified as a major factor of cancer in the residents. However, the risk of suffering from certain chronic diseases may increase in residents living less than 225 m away from the river due to the high levels of evaporated VOCs. Residents living less than 225 m away from the river and with nearby specific industries are 3.130 times more at risk of suffering from chronic diseases than those with no nearby specific industries.

  14. Chemical data on ionizing and non-ionizing angiographic contrast materials

    International Nuclear Information System (INIS)

    Bonati, F.

    1980-01-01

    The cardiovascular effects of ionizing and non-ionizing contrast media are compared in experimental animals and in isolated heart preparations. The following parameters were recorded: peripheric arterial diastolic pressure, heart rate, duration of asystolic period, respiratory rate, contractility of the myocardium (dp/dt, LVSP, Vsub(max), EDV, ESV, SV). The observed changes are mainly due to the higher osmotic activity of the contrast media, as similar alterations were recorded after the injection of hyperosmotic glucose solution. It is concluded that administration of non-ionizing contrast media results in significantly less cardiovascular side effects. (L.E.)

  15. Ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This is an update about the radiological monitoring in base nuclear installations. A departmental order of the 23. march 1999 (J.O.28. april, p.6309) determines the enabling rules by the Office of Protection against Ionizing Radiations of person having at one's disposal the results with names of individual exposure of workers put through ionizing radiations. (N.C.)

  16. A study of commercially-available polyethylene terephthalate (PET) and polycarbonate as nuclear track detector materials

    Science.gov (United States)

    Espinosa, G.; Golzarri, J. I.; Vazquez-Lopez, C.; Trejo, R.; Lopez, K.; Rickards, J.

    2014-07-01

    In the study of the sensitivity of materials to be used as nuclear track detectors, it was found that commercial polyethylene terephthalate (PET) from Ciel® water bottles, commercial roof cover polycarbonate, and recycled packaging strips (recycled PET), can be used as nuclear track detectors. These three commercial materials present nuclear tracks when bombarded by 2.27 MeV nitrogen ions produced in a Pelletron particle accelerator, and by fission fragments from a 252Cf source (79.4 and 103.8 MeV), after a chemical etching with a 6.25M KOH solution, or with a 6.25M KOH solution with 20% methanol, both solutions at 60±1°C. As an example, the nitrogen ions deposit approximately 1 keV/nm in the form of ionization and excitation at the surface of PET, as calculated using the SRIM code. The fission fragments deposit up to 9 keV/nm at the surface, in both cases generating sufficient free radicals to initiate the track formation process. However, 5 MeV alpha particles, typical of radon (222Rn) emissions, deposit only 0.12 keV/nm, do not present tracks after the chemical etching process. This valuable information could be very useful for further studies of new materials in nuclear track methodology.

  17. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  18. NuSTAR observations of heavily obscured quasars at z ~ 0.5

    DEFF Research Database (Denmark)

    Lansbury, G. B.; Alexander, D. M.; Del Moro, A.

    2014-01-01

    We present NuSTAR hard X-ray observations of three Type 2 quasars at z ≈ 0.4-0.5, optically selected from the Sloan Digital Sky Survey. Although the quasars show evidence for being heavily obscured, Compton-thick systems on the basis of the 2-10 keV to [O III] luminosity ratio and multiwavelength...

  19. Biological effects of low-level ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    1986-01-01

    Early in this century it was recognized that large doses of ionizing radiation could injure almost any tissue in the body, but small doses were generally thought to be harmless. By the middle of the century however it came to be suspected that even the smallest doses of ionizing radiation to the gonads might increase the risk of hereditary disease in subsequently-conceived offspring. Since then the hypothesis that carcinogenic and teratogenic effects also have no threshold has been adopted for purposes of radiological protection. It is estimated nevertheless that the risks that may be associated with natural background levels of ionizing irradiation are too small to be detectable. Hence validation of such risk estimates will depend on further elucidation of the dose-effect relationships and mechanisms of the effects in question, through studies at higher dose levels. In contrast to the situation with ionizing radiation, exposure to natural background levels of ultraviolet radiation has been implicated definitively in the etiology of skin cancers in fair-skinned individuals. Persons with inherited effects in DNA repair capacity are particularly susceptible. Non-ionizing radiations of other types can also affect health at high dose levels, but whether they can cause injury at low levels of exposure is not known

  20. The Search for Highly Ionizing Particles in e$^{+}$e$^{-}$ Collisions at LEP using (MODAL) (MOnopole Detector At Lep)

    CERN Multimedia

    2002-01-01

    The experiment is designed to search for highly ionizing particles such as the monopole and the dyon. On the assumption that monopole-antimonopole pairs are produced via a virtual photon intermediate state, and have a mass in the range 0-100~GeV, a direct search for Dirac monopoles using e$^+$e$^-$ annihilation carries a distinct cross-sectional advantage over a search using hadron colliders.\\\\ \\\\ The MODAL detector is formed from Lexan/CR-39 dielectric track detector modules arranged in a polyhedral configuration outside of the vacuum pipe and around the intersection region, as shown on the opposite page. Etchable track detectors are more sensitive to particles at normal incidence, the shape of the detector was chosen with this fact in mind to allow for maximum acceptance of monopoles which leave the beam pipe. These dielectric track detectors will enable us to detect particles with magnetic charge: 20e$<$g$ _{d}

  1. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    International Nuclear Information System (INIS)

    Machida, S.; Goertz, C.K.; Lu, G.

    1988-01-01

    Simulations of the Critical Ionization Velocity (CIV) for a neutral gas cloud moving across the static magnetic field are made. We treat a low-β plasma and use a 2-1/2 D electrostatic code linked with our Plasma and Neutral Interaction Code (PANIC). Our study is focused on the understanding of the interface between the neutral gas cloud and the surrounding plasma where the strong interaction takes place. We assume the existence of some hot electrons in the ambient plasma to provide a seed ionization for CIV. When the ionization starts a sheath-like structure is formed at the surface of the neutral gas (Ionizing Front). In that region the crossfield component of the electric field causes the electron to E x B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. Thus the kinetic energy of the drifting electrons can be large enough for electron impact ionization. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the ionization front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating and additional ionization. The overall structure is studied by developing a simple analytic model as well as making simulation runs. (author)

  2. Introduction to ionizing radiation physics

    International Nuclear Information System (INIS)

    Musilek, L.

    1979-01-01

    Basic properties are described of the atom, atomic nucleus and of ionizing radiation particles; nuclear reactions, ionizing radiation sources and ionizing radiation interaction with matter are explained. (J.P.)

  3. Collisional ionization

    International Nuclear Information System (INIS)

    Arnaud, M.

    1985-07-01

    In low density, thin plasmas (such as stellar coronae, interstellar medium, intracluster medium) the ionization process is governed by collision between electrons and ions in their ground state. In view of the recent improvements we thought an updating of ionization rates was really needed. The work is based on both experimental data and theoretical works and give separate estimates for the direct and autoionization rates

  4. Preparation of cellulose nitrate films using a spinning disc for solid state nuclear track detection (SSNTD) applications

    International Nuclear Information System (INIS)

    Raghunath, B.; Iyer, M.R.; Samant, S.D.

    1995-01-01

    Solid state nuclear track detectors (SSNTD) are widely used in the detection and measurement of ionizing particles. Cellulose nitrate (CN) films are commonly used as SSNTD for the measurement of radon/thoron gases and their decay products. A simple method for making uniform thin CN films of various thickness has been developed. Performance of these films is compared with commercially available film. (Author)

  5. Preparation of cellulose nitrate films using a spinning disc for solid state nuclear track detection (SSNTD) applications

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, B.; Iyer, M.R. [Bhabha Atomic Research Centre, Bombay (India); Samant, S.D. [Bombay Univ. (India). Dept. of Chemical Technology

    1995-01-01

    Solid state nuclear track detectors (SSNTD) are widely used in the detection and measurement of ionizing particles. Cellulose nitrate (CN) films are commonly used as SSNTD for the measurement of radon/thoron gases and their decay products. A simple method for making uniform thin CN films of various thickness has been developed. Performance of these films is compared with commercially available film. (Author).

  6. The bipolar silicon microstrip detector: A proposal for a novel precision tracking device

    International Nuclear Information System (INIS)

    Horisberger, R.

    1990-01-01

    It is proposed to combine the technology of fully depleted microstrip detectors fabricated on n doped high resistivity silicon with the concept of the bipolar transistor. This is done by adding a n ++ doped region inside the normal p + implanted region of the reverse biased p + n diode. The resulting structure has amplifying properties and is referred to as bipaolar pixel transistor. The simplest readout scheme of a bipolar pixel array by an aluminium strip bus leads to the bipolar microstrip detector. The bipolar pixel structure is expected to give a better signal-to-noise performance for the detection of minimum ionizing charged particle tracks than the normal silicon diode strip detector and therefore should allow in future the fabrication of thinner silicon detectors for precision tracking. (orig.)

  7. First successful ionization of Lr (Z = 103) by a surface-ionization technique

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tetsuya K., E-mail: sato.tetsuya@jaea.go.jp; Sato, Nozomi; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Ooe, Kazuhiro; Miyashita, Sunao; Schädel, Matthias [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kaneya, Yusuke; Nagame, Yuichiro [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512 (Japan); Osa, Akihiko [Department of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Ichikawa, Shin-ichi [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Stora, Thierry [ISOLDE, CERN, CH-1211 Geneva 23 (Switzerland); Kratz, Jens Volker [Institut für Kernchemie, Universität Mainz, D-55099 Mainz (Germany)

    2013-02-15

    We have developed a surface ionization ion-source as part of the JAEA-ISOL (Isotope Separator On-Line) setup, which is coupled to a He/CdI{sub 2} gas-jet transport system to determine the first ionization potential of the heaviest actinide lawrencium (Lr, Z = 103). The new ion-source is an improved version of the previous source that provided good ionization efficiencies for lanthanides. An additional filament was newly installed to give better control over its operation. We report, here, on the development of the new gas-jet coupled surface ion-source and on the first successful ionization and mass separation of 27-s {sup 256}Lr produced in the {sup 249}Cf + {sup 11}B reaction.

  8. Ionization chamber

    International Nuclear Information System (INIS)

    Jilbert, P.H.

    1975-01-01

    The invention concerns ionization chambers with particular reference to air-equivalent ionization chambers. In order to ensure that similar chambers have similar sensitivities and responses the surface of the chamber bounding the active volume carries a conducting material, which may be a colloidal graphite, arranged in the form of lines so that the area of the conducting material occupies only a small proportion of the area of said surface. (U.S.)

  9. Plasma production via field ionization

    Directory of Open Access Journals (Sweden)

    C. L. O’Connell

    2006-10-01

    Full Text Available Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch, or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam’s bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  10. Ionization mechanisms in capillary supercritical fluid chromatography-chemical ionization mass spectrometry

    NARCIS (Netherlands)

    Houben, R.J.; Leclercq, P.A.; Cramers, C.A.M.G.

    1991-01-01

    Ionization mechanisms have been studied for supercritical fluid chromatography (SFC) with mass spectrometric (MS) detection. One of the problems associated with SFC-MS is the interference of mobile phase constituents in the ionization process, which complicates the interpretation of the resulting

  11. Ionizing radiation in hospitals

    International Nuclear Information System (INIS)

    Blok, K.; Ginkel, G. van; Leun, K. van der; Muller, H.; Oude Elferink, J.; Vesseur, A.

    1985-10-01

    This booklet dels with the risks of the use of ionizing radiation for people working in a hospital. It is subdivided in three parts. Part 1 treats the properties of ionizing radiation in general. In part 2 the various applications are discussed of ionizing radiation in hospitals. Part 3 indicates how a not completely safe situation may be improved. (H.W.). 14 figs.; 4 tabs

  12. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  13. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  14. Increased ionization rate in laser enrichment

    International Nuclear Information System (INIS)

    Janes, G.S.; Pike, G.T.

    1977-01-01

    A system employing multiple, upper excitation levels in a technique for isotopically selective ionization to improve the ionization efficiency is described. Laser radiation is employed to excite particles with isotopic selectivity. Excitation is produced to a plurality of excited states below the ionization level with the result of increasing the number of available excited particles for ionization and thereby increasing the ionization cross section for improved system efficiency

  15. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Svensson, B; Roepstorff, P

    1996-01-01

    Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy is presen......Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy...... is presented encompassing protein characterization prior to and after cloning of the corresponding gene....

  16. Track detection on the cells exposed to high Linear Energy Transfer heavy-ions by Cr-39 plastic and terminal deoxynucleotidyl transferase(Td T)

    International Nuclear Information System (INIS)

    Mehnati, P.; Keshtkar, A.; Mesbahi, A.; Sasaki, H.

    2006-01-01

    The fatal effect of ionizing radiation on cells depends on Linear Energy Transfer level. The distribution of ionizing radiation is sparse and homogeneous for low Linear Energy Transfer radiations such as X or y, but it is dense and concentrated for high Linear Energy Transfer radiation such as heavy-ions radiation. Materials and Methods: Chinese hamster ovary cells (CHO-K1) were exposed to 4 Gy Fe-ion 2000 keV/μm. The Cr-39 is a special and sensitive plastic used to verify exact position of heavy-ions traversal. Terminal deoxynucleotidyl transferase is an enzyme labeled with [3 H ] d ATP for detection of cellular DNA damage by autoradiography assay. Results: The track of heavy ions traversals presented by pit size was almost similar for all different doses of radiation. No pits to show the track of traversal were found in 20% of the cell nuclei of the irradiation. Apparently these fractions of cells wave not hit by heavy ions. Conclusion: This study indicated the possible usefulness of both the Cr-39 plastics and DNA labeling with Terminal deoxynucleotidyl transferase method for evaluating the biological effect of heavy-ions in comparison with low Linear Energy Transfer ionizing radiation

  17. Conductivity and superconductivity in heavily vacant diamond

    Directory of Open Access Journals (Sweden)

    S A Jafari

    2009-08-01

    Full Text Available   Motivated by the idea of impurity band superconductivity in heavily Boron doped diamond, we investigate the doping of various elements into diamond to address the question, which impurity band can offer a better DOS at the Fermi level. Surprisingly, we find that the vacancy does the best job in producing the largest DOS at the Fermi surface. To investigate the effect of disorder in Anderson localization of the resulting impurity band, we use a simple tight-binding model. Our preliminary study based on the kernel polynomial method shows that the impurity band is already localized at the concentration of 10-3. Around the vacancy concentration of 0.006 the whole spectrum of diamond becomes localized and quantum percolation takes place. Therefore to achieve conducting bands at concentrations on the scale of 5-10 percent, one needs to introduce correlations such as hopping among the vacancies .

  18. Effect of track etch rate on geometric track characteristics for polymeric track detectors

    International Nuclear Information System (INIS)

    Abdel-Naby, A.A.; El-Akkad, F.A.

    2001-01-01

    Analysis of the variable track etch rate on geometric track characteristic for polymeric track detectors has been applied to the case of LR-155 II SSNTD. Spectrometric characteristics of low energy alpha particles response by the polymeric detector have been obtained. The track etching kinematics theory of development of minor diameter of the etched tracks has been applied. The calculations show that, for this type of detector, the energy dependence of the minor track diameter d is linear for small-etched removal layer h. The energy resolution gets better for higher etched removal layer

  19. On the ionization of interstellar magnesium

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1977-01-01

    It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionization Ssub(H); and external, with a radius greater than Ssub(H), by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and BO class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%). (Auth.)

  20. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  1. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  2. Resonance ionization scheme development for europium

    Energy Technology Data Exchange (ETDEWEB)

    Chrysalidis, K., E-mail: katerina.chrysalidis@cern.ch; Goodacre, T. Day; Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Naubereit, P. [Johannes Gutenberg-Universität, Institiut für Physik (Germany); Rothe, S.; Seiffert, C. [CERN (Switzerland); Kron, T.; Wendt, K. [Johannes Gutenberg-Universität, Institiut für Physik (Germany)

    2017-11-15

    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  3. K-shell ionization by antiprotons

    International Nuclear Information System (INIS)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.

    1987-01-01

    We present first calculations for the impact parameter dependence of K-shell ionization rates in anti pCu and in anti pAg collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the anti-binding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross-sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross-sections for protons. (orig.)

  4. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    Science.gov (United States)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  5. Yield strength of a heavily drawn Cu-20% Nb filamentary microcomposite

    International Nuclear Information System (INIS)

    Hong, S.I.

    1998-01-01

    It has been well documented that heavily-drawn, copper-niobium microcomposites possess high strength and high conductivity. Since niobium has little solubility in copper, the conductivity of the copper is not strongly affected by the addition of niobium. Following extensive mechanical deformation of Cu-Nb, niobium dendrites transform into fine niobium ribbons as a result of the niobium texture upon drawing. This nanostructure contributes to the ultrahigh strength of Cu-Nb microcomposites. The strength of heavily deformed Cu-Nb exceeds that predicted by the rule-of-mixtures (ROM), and a fundamental understanding of the strengthening mechanisms involved has been the subject of much discussion. Spitzig and his coworkers suggests a barrier strengthening model while Funkenbusch and Courtney believe that stored dislocations have a role in substructural hardening. Hangen and Raabe recently proposed an analytical model for the calculation of the yield strength of Cu-Nb microcomposite. The model of Hangen and Raabe and that of Spitzig and his coworkers have a great deal of resemblance since both models attribute the strength to the difficulty of propagating plastic flow through the interface. The purpose of this study was to enhance the understanding of the strengthening mechanisms associated with Cu-Nb microcomposites by examining the previous studies on mechanical and microstructural stability of Cu-based microcomposites

  6. Microbiological safety of tenderized, proteinaceous, semi-processed and processed food prepared from poultry treated with ionizing radiation and other processes

    International Nuclear Information System (INIS)

    Klinger, I.; Lapidot, M.

    1998-01-01

    From a microbiological point of view, poultry meat is considered to be one of the most contaminated raw foods, harbouring bacteria, including pathogens such as Salmonella spp., Staphylococcus aureus, Listeria monocytogenes and Campylobacter spp. Some of these pathogens can survive the heat treatment used during the further processing of poultry meat into ready to eat products such as sausages and patties, and thus endanger consumer health, particularly in the young, the elderly and the immunocompromised. L. monocytogenes is of particular concern. This Gram positive, non-spore forming, psychrotrophic pathogen has been recognized as one of the causes of a severe food borne illness. The organism is relatively heat stable and can multiply under refrigeration conditions, but is sensitive to ionizing radiation. A survey conducted in Israel demonstrated that raw poultry meat was heavily contaminated with L. monocytogenes and that the pathogen could also be recovered from ready to eat poultry products. It was proposed that treatment of the raw meat with ionizing radiation prior to heating and use of the hazard analysis critical control point concept in the further processing plant would result in the elimination of contamination in ready to eat products. (author)

  7. Latent tracks in polymeric etched track detectors

    International Nuclear Information System (INIS)

    Yamauchi, Tomoya

    2013-01-01

    Track registration properties in polymeric track detectors, including Poly(allyl diglycol carbonate), Bispenol A polycarbonate, Poly(ethylen terephtarate), and Polyimide, have been investigated by means of Fourie transform Infararede FT-IR spectrometry. Chemical criterion on the track formation threshold has been proposes, in stead of the conventional physical track registration models. (author)

  8. Quality of Slab Track Construction - Track Alignment Design and Track Geometry

    Science.gov (United States)

    Šestáková, Janka

    2015-05-01

    The slab track superstructure design (without ballast) is a perspective construction especially for building tunnels and bridges in the modernized sections of railway tracks in Slovakia. Monitoring of the structure described in this article is focused on the transition areas between standard structure with ballast and slab track construction.

  9. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    Science.gov (United States)

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  10. AFM of metallic nano-particles and nano-structures in heavily irradiated NaCl

    NARCIS (Netherlands)

    Gaynutdinov, R; Vainshtein, DI; Hak, SJ; Tolstikhina, A; Den Hartog, HW

    2003-01-01

    AFM investigations are reported for heavily, electron irradiated NaCl crystals in ultra high vacuum (UHV) in the non-contact mode-with an UHV AFM/STM Omicron system. To avoid chemical reactions between the radiolytic Na and oxygen and water, the irradiated samples were cleaved and prepared for the

  11. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements

    Energy Technology Data Exchange (ETDEWEB)

    Prior, Sara; Miousse, Isabelle R. [Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nzabarushimana, Etienne [Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Department of Bioinformatics, School of Informatics and Computing, Indiana University, Bloomington, IN 47405 (United States); Pathak, Rupak [Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Skinner, Charles; Kutanzi, Kristy R. [Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Allen, Antiño R. [Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Raber, Jacob [Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239 (United States); Tackett, Alan J. [Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Hauer-Jensen, Martin [Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nelson, Gregory A. [Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, CA 92350 (United States); and others

    2016-10-15

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.

  12. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements

    International Nuclear Information System (INIS)

    Prior, Sara; Miousse, Isabelle R.; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R.; Allen, Antiño R.; Raber, Jacob; Tackett, Alan J.; Hauer-Jensen, Martin; Nelson, Gregory A.

    2016-01-01

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.

  13. Theoretical investigation of the heavily-doped semiconductor aspect of ultra-dilute GaAsN

    Science.gov (United States)

    Sukpitak, Jessada; Sa-yakanit, Virulh

    2015-12-01

    The model of GaAs1- y N y ( y = 0.001) as a heavily-doped semiconductor in the ultra-dilute region is attentively examined. The model enables GaAsN to be viewed as a disordered assembly of three-dimensional quantum dots (potential wells) caused by random potential fluctuations from nitrogen pairs in the system. Consequently, Feynman's path-integration technique is applied in order to quantify the density of states (DOS) in the vicinity of the conduction band edge. The obtained DOS tail, even though overestimated, still clearly shows a much shorter tail than that the experimental result does. This shows that the heavily-doped semiconductor viewpoint is not proper for GaAsN, not even in the ultra-dilute region. Furthermore, this also suggests that the impurity wave function overlap is not a basic mechanism of band gap reduction.

  14. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle

  15. Technical sheets of ionizing radiations. 2. Non-ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The biological effects of different non-ionizing radiations are studied: ultra-violet radiation, visible radiation, infrared radiation, micrometric waves, ultrasonics. In spite of their apparent diversity these radiations are similar in their physico-chemical effects, but in view of their widely varying production methods and types of application each type is considered separately. It is pointed out that no organization resembling the CIPR exists in the field of non-ionizing radiations, the result being a great disparity amongst the different legislations in force [fr

  16. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    Science.gov (United States)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  17. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  18. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    International Nuclear Information System (INIS)

    He, X.N.; Xie, Z.Q.; Gao, Y.; Hu, W.; Guo, L.B.; Jiang, L.; Lu, Y.F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  19. MAGNETIC RECONNECTION IN NON-EQUILIBRIUM IONIZATION PLASMA

    International Nuclear Information System (INIS)

    Imada, S.; Shimizu, T.; Murakami, I.; Watanabe, T.; Hara, H.

    2011-01-01

    We have studied the effect of time-dependent ionization and the recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths was also calculated for comparison with Hinode or other observations in future. We found the following: (1) iron is mostly in non-equilibrium ionization in the reconnection region; (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that determined from the ionization equilibrium assumption; (3) the effect of time-dependent ionization is sensitive to the electron density in the case where the electron density is less than 10 10 cm –3 ; (4) the effect of thermal conduction lessens the time-dependent ionization effect; and (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization.

  20. Method of plastic track detector electrochemical etching

    International Nuclear Information System (INIS)

    D'yakov, A.A.

    1984-01-01

    The review of studies dealing with the development of the method for the electro-chemical etching (ECE) of the plastic track detectors on the base of polyethy-leneterephthalate (PET) and polycarbonate (PC) is given. Physical essence of the method, basic parameters of the processes, applied equipment and methods of measurement automation are considered. The advantages of the method over the traditional chemical etching are pointed out. Recommendations on the detector operation modes when detecting fission fragments, α-particles and fast neutrons are given. The ECE method is based on the condition that during chemical etching the high-voltage sound frequency alternating electric field is applied to the detector. In this case the detector serves as an isolating layer betWeen two vessels with etching solution in which high-voltage electrode are submerged. At a fixed electric field potential higher (over than the threshold value) at the end of the etching track cone atree-like discharge spot arises. It is shown that when PET is used for fast neutron detection it is advisable to apply for ECE the PEW solution (15g KOH+40 g C 2 H 2 OH + 45g H 2 O) the field potential should constitute 30 kVxcm -1 at the freqUency of 9 kHz. In the case of fission fragment detection Using ECE and PC the following ECE conditions are recommended: 30% KOH etcher, field potential of 10 kVxcm -1 , 2-4 kHz frequency. It is concluded that the ECE method permits considerably eXtend the sphere of plastic track detector application for detecting ionizing particles,

  1. ICOOL: A Simulation Code for Ionization Cooling of Muon Beams

    International Nuclear Information System (INIS)

    Fernow, R. C.

    1999-01-01

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of ∼50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user

  2. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    Science.gov (United States)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  3. Ionization front accelerator

    International Nuclear Information System (INIS)

    Olson, C.L.

    1975-01-01

    In a recently proposed linear collective accelerator, ions are accelerated in a steep, moving potential well created at the head of an intense relativistic electron beam. The steepness of the potential well and its motion are controlled by the external ionization of a suitable background gas. Calculations concerning optimum choices for the background gas and the ionization method are presented; a two-step photoionization process employing Cs vapor is proposed. In this process, a super-radiant light source is used to excite the gas, and a UV laser is used to photoionize the excited state. The appropriate line widths and coupled ionization growth rate equations are discussed. Parameter estimates are given for a feasibility experiment, for a 1 GeV proton accelerator, and for a heavy ion accelerator (50 MeV/nucleon uranium). (auth)

  4. Foundations of ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Pereslegin, I.A.

    1985-01-01

    Foundations of dosimetry in application to radiotherapy are presented. General characteristics of ionizing radiations and main characteristics of ionizing radiation sources, mostly used in radiotherapy, are given. Values and units for measuring ionizing radiation (activity of a radioactive substance, absorbed dose, exposure dose, integral dose and dose equivalent are considered. Different methods and instruments for ionizing radiation dosimetry are discussed. The attention is paid to the foundations of clinical dosimetry (representation of anatomo-topographic information, choice of radiation conditions, realization of radiation methods, corrections for a configuration and inhomogeneity of a patient's body, account of biological factors of radiation effects, instruments of dose field formation, control of irradiation procedure chosen)

  5. Ionization of xenon by electrons: Partial cross sections for single, double, and triple ionization

    International Nuclear Information System (INIS)

    Mathur, D.; Badrinathan, C.

    1987-01-01

    High-sensitivity measurements of relative partial cross sections for single, double, and triple ionization of Xe by electron impact have been carried out in the energy region from threshold to 100 eV using a crossed-beam apparatus incorporating a quadrupole mass spectrometer. The weighted sum of the relative partial cross sections at 50 eV are normalized to the total ionization cross section of Rapp and Englander-Golden to yield absolute cross-section functions. Shapes of the partial cross sections for single and double ionization are difficult to account for within a single-particle picture. Comparison of the Xe + data with 4d partial photoionization cross-section measurements indicates the important role played by many-body effects in describing electron-impact ionization of high-Z atoms

  6. Privatization of Brazil's petroleum sector on track despite scandal

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the push to privatize Brazil's petroleum sector remains on track despite the taint of scandal that hit state oil company Petroleos Brasileiro SA and the ensuing political crisis for the administration of President Fernando Collor de Mello. Collor's efforts to reform Brazil's beleaguered economy have focused heavily on privatizing state-owned companies by selling assets or ending monopolies. Nowhere is that task more daunting than with Petrobras, one of the world's biggest petroleum companies, which has an entrenched monopoly over most upstream and downstream operations in the country. Collor and the energy ministers and chiefs of Petrobras during his administration have pressed measured to inject free market principles in Brazil's petroleum sector. The Collor administration earlier this year sent a bill to Brazil's Congress calling for a constitutional amendment to end Petrobras monopoly over exploration, production, transportation, refining, and exports and imports of oil and gas. The amendment is expected to be voted upon in 1993

  7. Effect of cross-correlation on track-to-track fusion

    Science.gov (United States)

    Saha, Rajat K.

    1994-07-01

    Since the advent of target tracking systems employing a diverse mixture of sensors, there has been increasing recognition by air defense system planners and other military system analysts of the need to integrate these tracks so that a clear air picture can be obtained in a command center. A popular methodology to achieve this goal is to perform track-to-track fusion, which performs track-to-track association as well as kinematic state vector fusion. This paper seeks to answer analytically the extent of improvement achievable by means of kinetic state vector fusion when the tracks are obtained from dissimilar sensors (e.g., Radar/ESM/IRST/IFF). It is well known that evaluation of the performance of state vector fusion algorithms at steady state must take into account the effects of cross-correlation between eligible tracks introduced by the input noise which, unfortunately, is often neglected because of added computational complexity. In this paper, an expression for the steady-state cross-covariance matrix for a 2D state vector track-to-track fusion is obtained. This matrix is shown to be a function of the parameters of the Kalman filters associated with the candidate tracks being fused. Conditions for positive definiteness of the cross-covariance matrix have been derived and the effect of positive definiteness on performance of track-to-track fusion is also discussed.

  8. NucliTrack: an integrated nuclei tracking application.

    Science.gov (United States)

    Cooper, Sam; Barr, Alexis R; Glen, Robert; Bakal, Chris

    2017-10-15

    Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack's interactive, graphical interface makes it significantly more user friendly. NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. sam@socooper.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  9. RITRACKS: A Software for Simulation of Stochastic Radiation Track Structure, Micro and Nanodosimetry, Radiation Chemistry and DNA Damage for Heavy Ions

    Science.gov (United States)

    Plante, I; Wu, H

    2014-01-01

    The code RITRACKS (Relativistic Ion Tracks) has been developed over the last few years at the NASA Johnson Space Center to simulate the effects of ionizing radiations at the microscopic scale, to understand the effects of space radiation at the biological level. The fundamental part of this code is the stochastic simulation of radiation track structure of heavy ions, an important component of space radiations. The code can calculate many relevant quantities such as the radial dose, voxel dose, and may also be used to calculate the dose in spherical and cylindrical targets of various sizes. Recently, we have incorporated DNA structure and damage simulations at the molecular scale in RITRACKS. The direct effect of radiations is simulated by introducing a slight modification of the existing particle transport algorithms, using the Binary-Encounter-Bethe model of ionization cross sections for each molecular orbitals of DNA. The simulation of radiation chemistry is done by a step-by-step diffusion-reaction program based on the Green's functions of the diffusion equation]. This approach is also used to simulate the indirect effect of ionizing radiation on DNA. The software can be installed independently on PC and tablets using the Windows operating system and does not require any coding from the user. It includes a Graphic User Interface (GUI) and a 3D OpenGL visualization interface. The calculations are executed simultaneously (in parallel) on multiple CPUs. The main features of the software will be presented.

  10. Ionization particle detector

    International Nuclear Information System (INIS)

    Ried, L.

    1982-01-01

    A new device is claimed for detecting particles in a gas. The invention comprises a low cost, easy to assemble, and highly accurate particle detector using a single ionization chamber to contain a reference region and a sensing region. The chamber is designed with the radioactive source near one electrode and the second electrode located at a distance less than the distance of maximum ionization from the radioactive source

  11. An X-ray wave theory for heavily distorted crystals. 1

    International Nuclear Information System (INIS)

    Ohkawa, T.; Hashimoto, H.

    1985-01-01

    An X-ray diffraction theory is developed of monochromatic waves having spherical wave front, which is applicable to an interpretation of divergent X-ray diffraction images of crystals containing arbitral types of strain field. The theory is divided into two parts. In part I, Takagi's theory is expanded by introducing amplitude and phase correction functions and a new improved representation for the X-ray diffraction theory is given. In part II dispersion surfaces in heavily distorted crystals are discussed, and in the discussion the resonance shift functions are introduced. These formulations can lead to a complete understanding of the extinction phenomena. (author)

  12. Ionization detection system for aerosols

    International Nuclear Information System (INIS)

    Jacobs, M.E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber. 8 claims, 7 figures

  13. Quality of Slab Track Construction – Track Alignment Design and Track Geometry

    Directory of Open Access Journals (Sweden)

    Šestáková Janka

    2015-05-01

    Full Text Available The slab track superstructure design (without ballast is a perspective construction especially for building tunnels and bridges in the modernized sections of railway tracks in Slovakia. Monitoring of the structure described in this article is focused on the transition areas between standard structure with ballast and slab track construction.

  14. News about ionized food identification

    International Nuclear Information System (INIS)

    Raffi, J.

    1995-01-01

    The ionizing radiations are used to clean food and increase their preservation life. If a lot of countries permits ionized products commercialization, others are opposed to it. To control the commercial exchanges, check the applied treatment aim and give to the consumers a better information, several ionized food identification methods were perfected and several are about to be recognized as european standards. 4 refs. 3 figs, 1 tab

  15. An antinucleus detector with unprecedented collecting power and resolution

    International Nuclear Information System (INIS)

    Ahlen, S.P.; Price, P.B.; Salamon, M.H.; Tarle, G.; California Univ., Berkeley

    1982-01-01

    We describe the details of a novel technique to detect the presence of antimatter in cosmic rays by taking advantage of the presence of higher order quantum electrodynamic effects involving the interactions of relativistic, heavily ionizing particles with plastic scintillators, track etch detectors and Cherenkov counters. We review the relevant physics, summarize the experimental status involving the response mechanisms of the different types of particle detectors, and give a detailed description of the construction and anticipated performance characteristics of the instrument. By extending the sensitivity of previous antimatter searches by two orders of magnitude, this experiment should be the first to be sensitive to extragalactic antimatter, should the universe contain substantial quantities of antimatter. (orig.)

  16. What is ''ionizing radiation''?

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1997-01-01

    The scientific background of radiation protection and hence ''ionizing radiation'' is undergoing substantial regress since a century. Radiations as we are concerned with are from the beginning defined based upon their effects rather than upon the physical origin and their properties. This might be one of the reasons why the definition of the term ''ionizing radiation'' in radiation protection is still weak from an up to date point of view in texts as well as in international and national standards. The general meaning is unambiguous, but a numerical value depends on a number of conditions and the purpose. Hence, a clear statement on a numerical value of the energy threshold beyond a radiation has to be considered as ''ionizing'' is still missing. The existing definitions are, therefore, either correct but very general or theoretical and hence not applicable. This paper reviews existing definitions and suggests some issues to be taken into account for possible improvement of the definition of ''ionizing radiation''. (author)

  17. Silicon-based tracking system: Mechanical engineering and design

    International Nuclear Information System (INIS)

    Miller, W.O.; Gamble, M.T.; Thompson, T.C.; Woloshun, K.A.; Reid, R.S.; Hanlon, J.A.; Michaud, F.D.; Dransfield, G.D.; Ziock, H.J.; Palounek, A.P.

    1992-01-01

    The Silicon Tracking System (STS) is composed of silicon strip detectors arranged by both in a cylindrical array and an array of flat panels about the interaction region. The cylindrical array is denoted the central region and the flat panel arrays, which are normal to the beam axis, we denoted the forward regions. The overall length of the silicon array is 5.16 m and the maximum diameter is 0.93 m. The Silicon Tracking System Conceptual Design Report, should be consulted for the body of analysis performed to quantify the present design concept. For the STS to achieve its physics goals, the mechanical structures and services must support 17 m 2 of silicon detectors and stabilize their positions to within 5 μm, uniformly cool the detector the system to O degrees C and at the same time potentially remove up to 13 kW of waste heat generated by the detector electronics, provide up to 3400 A of current to supply the 6.5 million electronics channels, and supply of control and data transmission lines for those channels. These objectives must be achieved in a high ionizing radiation environment, using virtually no structural mass and only low-Z materials. The system must be maintainable during its 10 year operating life

  18. Loss of ions in cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.; Tran, N.T.; Kim, E.; Marsoem, P.; Kurosawa, T.; Koyama, Y.

    2005-01-01

    Ion losses due to initial recombination, volume recombination, and back diffusion were each determined by measurements and calculations for different size cylindrical ionization chambers and spherical ionization chambers. By measuring signal currents from these ionization chambers irradiated with 60 Co gamma rays, two groups of ion losses were obtained. (Group 1) Ion loss due to initial recombination and diffusion, which changes proportionally to the inverse of the voltage applied to the ionization chambers; (and group 2) ion loss due to volume recombination, which changes proportionally to the inverse of the square of the applied voltage. The diffusion loss was obtained separately by computing electric field distributions in the ionization chambers. It was found that diffusion loss is larger than initial recombination loss for the cylindrical ionization chambers and vise versa for the spherical ionization chambers

  19. An improved tracking framework for ultrasound probe localization in image-guided radiosurgery

    Directory of Open Access Journals (Sweden)

    Ipsen Svenja

    2016-09-01

    Full Text Available Real-time target localization with ultrasound holds high potential for image guidance and motion compensation in radiosurgery due to its non-invasive image acquisition free from ionizing radiation. However, a two-step localization has to be performed when integrating ultrasound into the existing radiosurgery workflow. In addition to target localization inside the ultrasound volume, the probe itself has to be localized in order to transform the target position into treatment room coordinates. By adapting existing camera calibration tools, we have developed a method to extend the stereoscopic X-ray tracking system of a radiosurgery platform in order to locate objects such as marker geometries with six degrees of freedom. The calibration was performed with 0.1 mm reprojection error. By using the full area of the flat-panel detectors without pre-processing the extended software increased the tracking volume and resolution by up to 80%, substantially improving patient localization and marker detectability. Furthermore, marker-tracking showed sub-millimeter accuracy and rotational errors below 0.1°. This demonstrates that the developed extension framework can accurately localize marker geometries using an integrated X-ray system, establishing the link for the integration of real-time ultrasound image guidance into the existing system.

  20. Development and tests of an anode readout TPC with high track separability for large solid angle relativistic ion experiments

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Foley, K.J.; Eiseman, S.E.

    1988-01-01

    We have developed, constructed and tested an anode readout TPC with high track separability which is suitable for large solid angle relativistic ion experiments. The readout via rows of short anode wires parallel to the beam has been found in tests to allow two-track separability of ∼2-3 mm. The efficiency of track reconstruction for events from a target, detected inside the MPS 5 KG magnet, is estimated to be >90% for events made by incident protons and pions. 15 GeV/c x A Si ion beams at a rate of ∼25 K per AGS pulse were permitted to course through the chamber and did not lead to any problems. When the gain was reduced to simulate the total output of a minimum ionizing particle, many Si ion tracks were also detected simultaneously with high efficiency. The resolution along the drift direction (parallel to the MPS magnetic field and perpendicular to the beam direction) was <1 mm and the resolution along the other direction /perpendicular/ to the beam direction was <1 mm also. 3 refs., 5 figs

  1. Laser-induced ionization of Na vapor

    International Nuclear Information System (INIS)

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na 2 + ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na 2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na 2 D 1 PIμ Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na 2 + ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na 2 + through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na 2 molecules

  2. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  3. 29 CFR 1926.53 - Ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...

  4. RILIS-ionized mercury and tellurium beams at ISOLDE CERN

    Energy Technology Data Exchange (ETDEWEB)

    Day Goodacre, T., E-mail: thomas.day.goodacre@cern.ch [CERN (Switzerland); Billowes, J. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Chrysalidis, K. [CERN (Switzerland); Fedorov, D. V. [Petersburg Nuclear Physics Institute (Russian Federation); Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Molkanov, P. L. [Petersburg Nuclear Physics Institute (Russian Federation); Rossel, R. E.; Rothe, S.; Seiffert, C. [CERN (Switzerland); Wendt, K. D. A. [Johannes Gutenberg Universität, Institut für Physik (Germany)

    2017-11-15

    This paper presents the results of ionization scheme development for application at the ISOLDE Resonance Ionization Laser Ion Source (RILIS). Two new ionization schemes for mercury are presented: a three-step three-resonance ionization scheme, ionizing via an excitation to a Rydberg level and a three-step two-resonance ionization scheme, with a non-resonant final step to the ionization continuum that corresponded to a factor of four higher ionization efficiency. The efficiency of the optimal mercury ionization scheme was measured, together with the efficiency of a new three-step three resonance ionization scheme for tellurium. The efficiencies of the mercury and tellurium ionization schemes were determined to be 6 % and >18 % respectively.

  5. Light focusing from large refractive indices in ionized air

    International Nuclear Information System (INIS)

    Robledo-Martinez, A.; Sobral, H.; Villagran-Muniz, M.; Bredice, F.

    2008-01-01

    The sheath that surrounds a laser-induced plasma in air was investigated with a light probe. The sheath is a 3-mm-thick halo of ionized gas created by ultraviolet light emitted from the plasma core. A beam of laser light tracked with a streak camera was employed to probe it. It was found that in the first hundreds of a nanosecond after plasma inception, the beam is deflected towards the plasma center. This result points to a high refractive index inside the sheath. The index values obtained (up to 2.0) are due to an increased susceptibility caused by a bulk electric polarization. Using previous results on the sheath's electric polarizability values, the refractive index was calculated and was found to agree with the observed indices. The application of the electric polarization model to the guiding of laser beams and to plasma lenses is also discussed.

  6. Thin films deposited by laser ablation for the measurement of the ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Villarreal B, J.E.; Escobar A, L.; Camps, E.; Romero, S.; Gonzalez, P.; Salinas, B.

    2001-01-01

    In this work the obtained results to synthesize thin films of amorphous carbon with incorporated nitrogen and hydrogen are presented, as well as thin films of aluminium oxide using the laser ablation technique. The thin films were exposed to ionizing radiation (gamma rays of a 60 Co source, beta radiation of a 90 Sr source) and a non-ionizing radiation (UV radiation). The obtained results show that it is possible to obtain materials in thin film form with thickness of hundreds of nanometers, which present thermoluminescent response when being irradiated with ionizing radiation and non-ionizing radiation. (Author)

  7. Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2018-04-07

    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.

  8. Ionizing radiations

    International Nuclear Information System (INIS)

    Newton, W.

    1984-01-01

    The purpose of this article is to simplify some of the relevant points of legislation, biological effects and protection for the benefit of the occupational health nurse not familiar with the nuclear industries. The subject is dealt with under the following headings; Understanding atoms. What is meant by ionizing radiation. Types of ionizing radiation. Effects of radiation: long and short term somatic effects, genetic effects. Control of radiation: occupational exposure, women of reproductive age, medical aspects, principles of control. The occupational health nurse's role. Emergency arrangements: national arrangements for incidents involving radiation, action to be taken by the nurse. Decontamination procedures: external and internal contamination. (U.K.)

  9. New constraints on the escape of ionizing photons from starburst galaxies using ionization-parameter mapping

    International Nuclear Information System (INIS)

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael

    2013-01-01

    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (≳3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (≲5 Myr) that the ionizing stars are still present.

  10. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org; Sahoo, Narayan [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030 (United States); Ferreira, Felisberto A. [Department of Nuclear Physics, University of Sao Paulo, SP 05508-090 (Brazil); McFadden, Conor H. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Hallacy, Timothy M. [Biophysics Program, Harvard University, Cambridge, Massachusetts 02138 (United States); Granville, Dal A. [Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Ontario K1H 8L6 (Canada); Akselrod, Mark S. [Crystal Growth Division, Landauer, Inc., Stillwater, Oklahoma 74074 (United States)

    2016-05-15

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.

  11. Comparative system identification of flower tracking performance in three hawkmoth species reveals adaptations for dim light vision.

    Science.gov (United States)

    Stöckl, Anna L; Kihlström, Klara; Chandler, Steven; Sponberg, Simon

    2017-04-05

    Flight control in insects is heavily dependent on vision. Thus, in dim light, the decreased reliability of visual signal detection also prompts consequences for insect flight. We have an emerging understanding of the neural mechanisms that different species employ to adapt the visual system to low light. However, much less explored are comparative analyses of how low light affects the flight behaviour of insect species, and the corresponding links between physiological adaptations and behaviour. We investigated whether the flower tracking behaviour of three hawkmoth species with different diel activity patterns revealed luminance-dependent adaptations, using a system identification approach. We found clear luminance-dependent differences in flower tracking in all three species, which were explained by a simple luminance-dependent delay model, which generalized across species. We discuss physiological and anatomical explanations for the variance in tracking responses, which could not be explained by such simple models. Differences between species could not be explained by the simple delay model. However, in several cases, they could be explained through the addition on a second model parameter, a simple scaling term, that captures the responsiveness of each species to flower movements. Thus, we demonstrate here that much of the variance in the luminance-dependent flower tracking responses of hawkmoths with different diel activity patterns can be captured by simple models of neural processing.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  12. 29 CFR 1910.1096 - Ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Ionizing radiation. 1910.1096 Section 1910.1096 Labor... Ionizing radiation. (a) Definitions applicable to this section. (1) Radiation includes alpha rays, beta... the quantity of ionizing radiation absorbed, per unit of mass, by the body or by any portion of the...

  13. Potential benefits of dosimetric VMAT tracking verified with 3D film measurements

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Depuydt, Tom; Haustermans, Karin [Laboratory of Experimental Radiotherapy, KU Leuven Department of Oncology, Herestraat 49, 3000 Leuven (Belgium); Radiation Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Defraene, Gilles [Laboratory of Experimental Radiotherapy, KU Leuven Department of Oncology, Herestraat 49, 3000 Leuven, Belgium and KU Leuven Medical Imaging Research Center, Herestraat 49, 3000 Leuven (Belgium); Van Herck, Hans [KU Leuven Medical Imaging Research Center, Herestraat 49, 3000 Leuven, Belgium and KU Leuven Department of Electrical Engineering (ESAT)–PSI, Center for Processing Speech and Images, 3000 Leuven (Belgium); Maes, Frederik [KU Leuven Medical Imaging Research Center, Herestraat 49, 3000 Leuven (Belgium); KU Leuven Department of Electrical Engineering (ESAT)–PSI, Center for Processing Speech and Images, 3000 Leuven (Belgium); Medical IT Department, KU Leuven iMinds, 3000 Leuven (Belgium); Van den Heuvel, Frank [Department of Oncology, MRC-CR-UK Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford OX1 2JD (United Kingdom)

    2016-05-15

    Purpose: To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. Methods: A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Results: Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution’s position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously

  14. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-11-15

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  15. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed

  16. A Role for Bioelectric Effects in the Induction of Bystander Signals by Ionizing Radiation?

    Science.gov (United States)

    Mothersill, C.; Moran, G.; McNeill, F.; Gow, M.D.; Denbeigh, J.; Prestwich, W.; Seymour, C.B.

    2007-01-01

    The induction of “bystander effects” i.e. effects in cells which have not received an ionizing radiation track, is now accepted but the mechanisms are not completely clear. Bystander effects following high and low LET radiation exposure are accepted but mechanisms are still not understood. There is some evidence for a physical component to the signal. This paper tests the hypothesis that bioelectric or biomagnetic phenomena are involved. Human immortalized skin keratinocytes and primary explants of mouse bladder and fish skin, were exposed directly to ionizing radiation or treated in a variety of bystander protocols. Exposure of cells was conducted by shielding one group of flasks using lead, to reduce the dose below the threshold of 2mGy 60Cobalt gamma rays established for the bystander effect. The endpoint for the bystander effect in the reporter system used was reduction in cloning efficiency (RCE). The magnitude of the RCE was similar in shielded and unshielded flasks. When cells were placed in a Faraday cage the magnitude of the RCE was less but not eliminated. The results suggest that liquid media or cell-cell contact transmission of bystander factors may be only part of the bystander mechanism. Bioelectric or bio magnetic fields may have a role to play. To test this further, cells were placed in a Magnetic Resonance Imaging (MRI) machine for 10min using a typical head scan protocol. This treatment also induced a bystander response. Apart from the obvious clinical relevance, the MRI results further suggest that bystander effects may be produced by non-ionizing exposures. It is concluded that bioelectric or magnetic effects may be involved in producing bystander signaling cascades commonly seen following ionizing radiation exposure. PMID:18648606

  17. Modeling ionization by helicon waves

    International Nuclear Information System (INIS)

    Degeling, A.W.; Boswell, R.W.

    1997-01-01

    The response of the electron distribution function in one dimension to a traveling wave electric field is modeled for parameters relevant to a low-pressure helicon wave plasma source, and the resulting change in the ionization rate calculated. This is done by calculating the trajectories of individual electrons in a given wave field and assuming no collisions to build up the distribution function as the distance from the antenna is increased. The ionization rate is calculated for argon by considering the ionization cross section and electron flux at a specified position and time relative to the left-hand boundary, where the distribution function is assumed to be Maxwellian and the wave travels to the right. The simulation shows pulses in the ionization rate that move away from the antenna at the phase velocity of the wave, demonstrating the effect of resonant electrons trapped in the wave close-quote s frame of reference. It is found that the ionization rate is highest when the phase velocity of the wave is between 2 and 3x10 6 m/s, where the electrons interacting strongly with the wave (i.e., electrons with velocities inside the wave close-quote s open-quotes trapping widthclose quotes) have initial energies just below the ionization threshold. Results from the model are compared with experimental data and show reasonable qualitative agreement. copyright 1997 American Institute of Physics

  18. Tissue macrophage activation: a shared sign of exposure to ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Petrenyov, D.R.

    2012-01-01

    The features of oxidative metabolism of peritoneal macrophages were studied in rats exposed to ionizing and non-ionizing radiation. An increased RNS and ROS production reported in animals exposed to both source of radiation showing non-specific response of organism. (authors)

  19. Ionization efficiency calculations for cavity thermoionization ion source

    International Nuclear Information System (INIS)

    Turek, M.; Pyszniak, K.; Drozdziel, A.; Sielanko, J.; Maczka, D.; Yuskevich, Yu.V.; Vaganov, Yu.A.

    2009-01-01

    The numerical model of ionization in a thermoionization ion source is presented. The review of ion source ionization efficiency calculation results for various kinds of extraction field is given. The dependence of ionization efficiency on working parameters like ionizer length and extraction voltage is discussed. Numerical simulations results are compared to theoretical predictions obtained from a simplified ionization model

  20. Tracking errors in a prototype real-time tumour tracking system

    International Nuclear Information System (INIS)

    Sharp, Gregory C; Jiang, Steve B; Shimizu, Shinichi; Shirato, Hiroki

    2004-01-01

    In motion-compensated radiation therapy, radio-opaque markers can be implanted in or near a tumour and tracked in real-time using fluoroscopic imaging. Tracking these implanted markers gives highly accurate position information, except when tracking fails due to poor or ambiguous imaging conditions. This study investigates methods for automatic detection of tracking errors, and assesses the frequency and impact of tracking errors on treatments using the prototype real-time tumour tracking system. We investigated four indicators for automatic detection of tracking errors, and found that the distance between corresponding rays was most effective. We also found that tracking errors cause a loss of gating efficiency of between 7.6 and 10.2%. The incidence of treatment beam delivery during tracking errors was estimated at between 0.8% and 1.25%

  1. Dual Inhibition of EGFR and VEGF in Heavily Pretreated Patients with Metastatic Colorectal Cancer

    DEFF Research Database (Denmark)

    Larsen, Finn Ole; Markussen, Alice; Nielsen, Dorte

    2017-01-01

    : The combination of irinotecan, bevacizumab, and cetuximab/panitumumab is safe and shows a toxicity profile corresponding to what is expected from the agents alone. The results indicate that the combination in the 4th line may result in a high rate of disease control in heavily pretreated patients with metastatic...

  2. Improvements in ionization chambers

    International Nuclear Information System (INIS)

    Whetten, N.R.; Zubal, C.

    1980-01-01

    A method of reducing mechanical vibrations transmitted to the parallel plate electrodes of ionization chamber x-ray detectors, commonly used in computerized x-ray axial tomography systems, is described. The metal plate cathodes and anodes are mounted in the ionizable gas on dielectric sheet insulators consisting of a composite of silicone resin and glass fibres. (UK)

  3. The Nature of the Torus in the Heavily Obscured AGN Markarian 3: an X-Ray Study

    Science.gov (United States)

    Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S.E; Brandt, W. N.; Brightman, M.; Christensen, F. E.; hide

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMMNewton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N(sub H) approx. 0.8-1.1 x 10(exp 24)/sq cm). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle approx. 66deg, and is seen at a grazing angle through its upper rim (inclination angle approx. 70deg). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [approx. (4.9 +/- 1.5) x 10(exp 22)/ sq cm]. The comparison of IR and X-ray spectroscopic results with state-of-the art torus models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.

  4. New ionization fractions for the lithium- and helium-like ionization stages of calcium and iron

    International Nuclear Information System (INIS)

    Doyle, J.G.; Raymond, J.C.

    1981-01-01

    The high resolution X-ray spectra of Ca XIX and Fe XXV observed during a solar flare on 1979 March 25 have been re-interpreted using new ionization fractions for Ca XVIII, Ca XIX, Fe XXIV and Fe XXV. These new calculations substantially change the interpretation of the spectra, implying the flare to be ionizing during the rise phase and recombining during the decay phase. The results favour the ECIP ionization rates over those of Lotz, though other interpretations are possible. (author)

  5. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  6. Photoionization effects in ionization fronts

    International Nuclear Information System (INIS)

    Arrayas, Manuel; Fontelos, Marco A; Trueba, Jose L

    2006-01-01

    In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work

  7. Photoionization effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Fontelos, Marco A [Departamento de Matematicas, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain); Trueba, Jose L [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2006-12-21

    In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work.

  8. A semi-empirical concept for the calculation of electron-impact ionization cross sections of neutral and ionized fullerenes

    International Nuclear Information System (INIS)

    Deutsch, H.; Scheier, P.; Maerk, T.D.; Becker, K.

    2002-01-01

    A semi-empirical approach to the calculation of cross section functions (absolute value and energy dependence) for the electron-impact ionization of several neutral and ionized fullerenes C 60 n+ (n =0-3) was developed, for which reliable experimental data have been reported. In particular, it is proposed a modification of the simplistic assumption that the ionization cross section of a cluster/fullerene is given as the product of the monomer ionization cross section and a factor m a , where 'm' is the number of monomers in the ensemble and 'a' is a constant. A comparison between these calculations and the available experimental data reveals good agreement for n = 0,103. In the case of ionization of C 60 2+ (n = 2) the calculation lies significantly below the measured cross section which it was interpret as an indication that additional indirect ionization processes are present for this charge state. (nevyjel)

  9. Large angle tracking and high discriminating tracking in nuclear emulsion

    International Nuclear Information System (INIS)

    Matsuo, Tomokazu; Shibuya, Hiroshi; Ogawa, Satoru; Fukuda, Tsutomu; Mikado, Shoji

    2015-01-01

    Nuclear emulsion is a high resolution and re-analyzable detector. Conventional “Track Selector” which have angle acceptance |tan θ|<0.6 are widely used to find tracks in emulsion. We made a new track selector “Fine Track Selector” (FTS) which has large angle acceptance and high discriminating ability. The FTS reduces fake tracks using new algorithms, navigation etc. FTS also keeps finding efficiency of tracks around 90% in an angle range of |tan θ| < 3.5. FTS was applied to the τ candidate in OPERA and no additional tracks found. FTS will be useful to our new J-PARC emulsion experiment.

  10. On possible structures of transverse ionizing shock waves

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1978-01-01

    The possible structures of ionizing shock waves propagating in gases across the magnetic field are investigated taking account of both ionization kinetics and the non-isothermality of the plasma which is formed within the shock front. It is shown that a definite factor in shaping the structure of the transverse ionizing shock wave is photo-ionization of the neutral gas across the front. The paper includes a study of the evolution of the transverse ionizing shock front with regard to photo-ionization, disclosing that a stable stationary shock structure emerges only in boundary conditions which are close to magnetohydrodynamic ones, i.e. upsilon 1 H 1 = upsilon 2 H 2 . In the case of strong transverse ionizing shock waves, when the flux of ionizing radiation across the front is great, the shock structure is obviously magnetohydrodynamic. (author)

  11. The ship-borne infrared searching and tracking system based on the inertial platform

    Science.gov (United States)

    Li, Yan; Zhang, Haibo

    2011-08-01

    As a result of the radar system got interferenced or in the state of half silent ,it can cause the guided precision drop badly In the modern electronic warfare, therefore it can lead to the equipment depended on electronic guidance cannot strike the incoming goals exactly. It will need to rely on optoelectronic devices to make up for its shortcomings, but when interference is in the process of radar leading ,especially the electro-optical equipment is influenced by the roll, pitch and yaw rotation ,it can affect the target appear outside of the field of optoelectronic devices for a long time, so the infrared optoelectronic equipment can not exert the superiority, and also it cannot get across weapon-control system "reverse bring" missile against incoming goals. So the conventional ship-borne infrared system unable to track the target of incoming quickly , the ability of optoelectronic rivalry declines heavily.Here we provide a brand new controlling algorithm for the semi-automatic searching and infrared tracking based on inertial navigation platform. Now it is applying well in our XX infrared optoelectronic searching and tracking system. The algorithm is mainly divided into two steps: The artificial mode turns into auto-searching when the deviation of guide exceeds the current scene under the course of leading for radar.When the threshold value of the image picked-up is satisfied by the contrast of the target in the searching scene, the speed computed by using the CA model Least Square Method feeds back to the speed loop. And then combine the infrared information to accomplish the closed-loop control of the infrared optoelectronic system tracking. The algorithm is verified via experiment. Target capturing distance is 22.3 kilometers on the great lead deviation by using the algorithm. But without using the algorithm the capturing distance declines 12 kilometers. The algorithm advances the ability of infrared optoelectronic rivalry and declines the target capturing

  12. Electrostatic perturbations in partially ionized plasma with the effects of ionization and recombination

    International Nuclear Information System (INIS)

    Vranjes, J.; Tanaka, M.Y.; Kono, M.; Poedts, S.

    2004-01-01

    The behavior of the electrostatic ion acoustic mode in a partially ionized plasma is studied in the presence of collisions which involve processes of ionization and recombination, taking into account the dynamics of the neutrals caused by elastic and inelastic collisions with ions. The application of the model to space plasmas, which are usually subject to gravity, is discussed in detail. A dispersion equation which includes the effects of ionization and recombination is derived and the stability/instability conditions are discussed. Parameters applicable to a region of the upper solar chromosphere are used and the increment of the ion sound wave is calculated yielding an unstable ion sound wave for wavelengths larger than 20 km

  13. Estimation of the contribution of ionization and excitation to the lethal effect of ionizing radiation

    International Nuclear Information System (INIS)

    Petin, V.G.; Komarov, V.P.

    1982-01-01

    A simple theoretical model is proposed for estimating the differential contribution of ionization and excitation to the lethal effect of ionizing radiation. Numerical results were obtained on the basis of published experimental data on the ability of bacterial cells Escherichia coli to undergo photoreactivation of radiation-induced damage. It was shown that inactivation by excitation may be highly significant for UV-hypersensitive cells capable of photoreactivation; inactivation by excitation increased with the energy of ionizing radiation and the volume of irradiated suspensions. The data are in qualitative agreement with the assumption of a possible contribution of the UV-component of Cerenkov radiation to the formation of excitations responsible for the lethal effect and the phenomenon of photoreactivation after ionizing radiation. Some predictions from the model are discussed. (orig.)

  14. Myeloid leukaemia frequency after protracted exposure to ionizing radiation: experimental confirmation of the flat dose-response found in ankylosing spondylitis after a single treatment course with x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Mole, R H; Major, I R [Medical Research Council, Harwell (UK). Radiobiological Research Unit

    1983-01-01

    The dose-response for leukaemia induction by exposure to ionizing radiation protracted over several weeks was largely independent of dose not only in X-rayed patients with ankylosing spondylitis but also in experimentally ..gamma..-rayed CBA/H mice. In the experiment the induced leukaemia frequency of acute myeloid leukaemia was independent of a several thousand-fold variation in physical dose rate. Any difference in leukaemia induction between brief and protracted exposures must therefore depend on specifically biological consequences of protracted exposures. Experimental analysis is required to provide the guides for inference about risks of low level exposure from observations on relatively heavily irradiated populations.

  15. Iron oxide nanomatrix facilitating metal ionization in matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Obena, Rofeamor P; Lin, Po-Chiao; Lu, Ying-Wei; Li, I-Che; del Mundo, Florian; Arco, Susan dR; Nuesca, Guillermo M; Lin, Chung-Chen; Chen, Yu-Ju

    2011-12-15

    The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples.

  16. Modeling of Plutonium Ionization Probabilities for Use in Nuclear Forensic Analysis by Resonance Ionization Mass Spectrometry

    Science.gov (United States)

    2016-12-01

    masses collide, they form a supercritical mass . Criticality refers to the neutron population within the system. A critical system is one that can...Spectrometry, no. 242, pp. 161–168, 2005. [9] S. Raeder, “Trace analysis of actinides in the environment by means of resonance ionization mass ...first ionization potential of actinide elements by resonance ionization mass spectrometry.” Spectrochimica Acta part B: Atomic Spectroscopy. vol. 52

  17. The Impact of the Geometrical Structure of the DNA on Parameters of the Track-Event Theory for Radiation Induced Cell Kill.

    Directory of Open Access Journals (Sweden)

    Uwe Schneider

    Full Text Available When fractionation schemes for hypofractionation and stereotactic body radiotherapy are considered, a reliable cell survival model at high dose is needed for calculating doses of similar biological effectiveness. An alternative to the LQ-model is the track-event theory which is based on the probabilities for one- and two two-track events. A one-track-event (OTE is always represented by at least two simultaneous double strand breaks. A two-track-event (TTE results in one double strand break. Therefore at least two two-track-events on the same or different chromosomes are necessary to produce an event which leads to cell sterilization. It is obvious that the probabilities of OTEs and TTEs must somehow depend on the geometrical structure of the chromatin. In terms of the track-event theory the ratio ε of the probabilities of OTEs and TTEs includes the geometrical dependence and is obtained in this work by simple Monte Carlo simulations.For this work it was assumed that the anchors of loop forming chromatin are most sensitive to radiation induced cell deaths. Therefore two adjacent tetranucleosomes representing the loop anchors were digitized. The probability ratio ε of OTEs and TTEs was factorized into a radiation quality dependent part and a geometrical part: ε = εion ∙ εgeo. εgeo was obtained for two situations, by applying Monte Carlo simulation for DNA on the tetranucleosomes itself and for linker DNA. Low energy electrons were represented by randomly distributed ionizations and high energy electrons by ionizations which were simulated on rays. εion was determined for electrons by using results from nanodosimetric measurements. The calculated ε was compared to the ε obtained from fits of the track event model to 42 sets of experimental human cell survival data.When the two tetranucleosomes are in direct contact and the hits are randomly distributed εgeo and ε are 0.12 and 0.85, respectively. When the hits are simulated on rays

  18. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    International Nuclear Information System (INIS)

    Tu, Nguyen Thanh; Hai, Pham Nam; Anh, Le Duc; Tanaka, Masaaki

    2016-01-01

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga_1_−_x,Fe_x)Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  19. Influence of tracks densities in solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Guedes O, S.; Hadler N.; Lunes, P.; Saenz T, C.

    1996-01-01

    When Solid State Nuclear Track Detectors (SSNTD) is employed to measure nuclear tracks produced mainly by fission fragments and alpha particles, it is considered that the tracks observation work is performed under an efficiency, ε 0 , which is independent of the track density (number of tracks/area unit). There are not published results or experimental data supporting such an assumption. In this work the dependence of ε 0 with track density is studied basing on experimental data. To perform this, pieces of CR-39 cut from a sole 'mother sheet' were coupled to thin uranium films for different exposition times and the resulting ratios between track density and exposition time were compared. Our results indicate that ε 0 is constant for track densities between 10 3 and 10 5 cm -2 . At our etching conditions track overlapping makes impossible the counting for densities around 1.7 x 10 5 cm -2 . For track densities less than 10 3 cm -2 , ε 0 , was not observed to be constant. (authors). 4 refs., 2 figs

  20. Einstein's photoemission emission from heavily-doped quantized structures

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2015-01-01

    This monograph solely investigates the Einstein's Photoemission(EP) from Heavily Doped(HD) Quantized Structures on the basis of newly formulated electron dispersion laws. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The EP in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields  that control the studies of such quantum effect devices. The suggestions for the experimental determinations of different important physical quantities in HD 2D and 3D materials  and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring   physical properties in the presence of intense light waves w...

  1. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... Non-Ionizing Radiation Used in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual ... can do Where to learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens ...

  2. WE-H-BRA-08: A Monte Carlo Cell Nucleus Model for Assessing Cell Survival Probability Based On Particle Track Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B [Northwestern Memorial Hospital, Chicago, IL (United States); Georgia Institute of Technology, Atlanta, GA (Georgia); Wang, C [Georgia Institute of Technology, Atlanta, GA (Georgia)

    2016-06-15

    Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities. These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing cell

  3. Effect of the track potential on the motion and energy flow of secondary electrons created from heavy-ion irradiation

    Science.gov (United States)

    Moribayashi, Kengo

    2018-05-01

    Using simulations, we have evaluated the effect of the track potential on the motion and energy flow of secondary electrons, with the goal of determining the spatial distribution of energy deposition due to irradiation with heavy ions. We have simulated this effect as a function of the mean path τ between the incident ion-impact-ionization events at ion energies Eion. Here, the track potential is the potential formed from electric field near this incident ion path. The simulations indicate that this effect is mainly determined by τ and hardly depends on Eion. To understand heavy ion beam science more deeply and to reduce the time required by simulations, we have proposed simple approximation methods that almost reproduce the simulation results here.

  4. The relationship between fission track length and track density in apatite

    International Nuclear Information System (INIS)

    Laslett, G.M.; Gleadow, A.J.W.; Duddy, I.R.

    1984-01-01

    Fission track dating is based upon an age equation derived from a random line segment model for fission tracks. This equation contains the implicit assumption of a proportional relationship between the true mean length of fission tracks and their track density in an isotropic medium. Previous experimental investigation of this relationship for both spontaneous and induced tracks in apatite during progressive annealment model in an obvious fashion. Corrected equations relating track length and density for apatite, an anisotropic mineral, show that the proportionality in this case is between track density and a length factor which is a generalization of the mean track length combining the actual length and crystallographic orientation of the track. This relationship has been experimentally confirmed for induced tracks in Durango apatite, taking into account bias in sampling of the track lengths, and the effect of the bulk etching velocity. (author)

  5. Ionizing energy in food processing and pest control. 1. Wholesomeness of food treated with ionizing energy

    International Nuclear Information System (INIS)

    Wierbicki, Eugen

    1986-01-01

    Congressional concerns about the use of ionizing energy for food preservation and to control pests in food products for export and domestic use promoted the preparation of this report by a special task force of the Council for Agricultural Science and Technology (CAST). An overview surveys research conducted on the toxicological safety, nutritional quality, and microbiological safety of foods treated with ionizing energy. Background information is provided on various types of electromagnetic radiation, effects of ionizing energy level and dose, sources of natural background radiation and induced radioactivity, and the nature and safety of various radiolytic products. Objectives, methodologies, and problems associated with feeding studies of toxicological safety are outlined; results of scientific studies, U.S. government wholesomeness studies, and international feeding studies are summarized. Studies on the nutritional value of food products processed using ionized energy have examined the effects of ionizing energy on 1) composite diets, 2) carbohydrates, 3) fats, 4) proteins and amino acids, 5) vitamins (potatoes, onions, fruits, meat, seafood, cereals, vegetables, dairy products, oils), 6) antivitamins, and 7) minerals. The report concludes that currently available scientific evidence indicates that foods exposed to ionizing energy under the conditions proposed for commercial application are 1) wholesome (safe to eat) and 2) comparable in nutritional adequacy to fresh or conventionally processed foods

  6. Ionizing radiation promotes protozoan reproduction

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1986-01-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism

  7. The critical ionization velocity

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  8. Ionizing and non-ionizing radiation and the risk of childhood cancer-illustrated with domestic radon and radio frequency electromagnetic field exposure

    OpenAIRE

    Hauri, Dimitri

    2013-01-01

    Background Children are exposed to many different environmental factors, including exposure to low-dose ionizing radiation and to non-ionizing radiation. Low-dose ionizing radiation comprises anthropogenic modified radiation and natural ionizing radiation from cosmic rays from the atmosphere, terrestrial gamma radiation from radionuclides in rocks and soils and radiation from radon. Non-ionizing radiation comprises optical radiation and radiation from electromagnetic fields. The la...

  9. A Versatile Integrated Ambient Ionization Source Platform

    Science.gov (United States)

    Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei

    2018-04-01

    The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. [Figure not available: see fulltext.

  10. Symplectic Tracking of Multi-Isotopic Heavy-Ion Beams in SixTrack

    CERN Document Server

    Hermes, Pascal; De Maria, Riccardo

    2016-01-01

    The software SixTrack provides symplectic proton tracking over a large number of turns. The code is used for the tracking of beam halo particles and the simulation of their interaction with the collimators to study the efficiency of the LHC collimation system. Tracking simulations for heavy-ion beams require taking into account the mass to charge ratio of each particle because heavy ions can be subject to fragmentation at their passage through the collimators. In this paper we present the derivation of a Hamiltonian for multi-isotopic heavy-ion beams and symplectic tracking maps derived from it. The resulting tracking maps were implemented in the tracking software SixTrack. With this modification, SixTrack can be used to natively track heavy-ion beams of multiple isotopes through a magnetic accelerator lattice.

  11. Possibilities to reduce the effect of ionizing radiation by interaction of two types of radiation into a matter: ionized and non-ionized radiation

    International Nuclear Information System (INIS)

    Tanvir

    2007-01-01

    Full text: At present it has been accepted that ionized radiation can cause biological effects on the human body and the only way of preventing this effect, is by shielding the source of radiation by absorbing materials. On the other hand, the technology of non-ionizing radiation is upgraded. The canalization of radiation through the wave-guide based structures and optical fiber is well established. This reminds us that passing through benzene non-ionized radiation give the 'Raman' effect, which can ensure the secondary generation of non-ionized radiation with the wave length of nanometer and so far. These types of non-ionized radiation can easily be correlated with the gamma radiation, which is ionized. We know that high-energized photon usually interacts with matter and reduces its energy to the matter and generate electro-magnetic waves into the molecules of the matter. It is also well known that through the wave-guide based structures and optical fiber; the path of energy distribution of photon is likely to be optical energetic modes. If two types of photon from two types of radiation (ionized and non-ionized) interact with matter and pass through the optical fiber, they can generate optical modes with various wavelengths and phase velocities. With 'Raman' effect we can generate secondary electromagnetic waves of nanometer; as well as optical modes into the optical fiber. These optical modes from two types of radiation with various phase velocities, having the similar wavelength, can decrease or accelerate some modes. On the view of signal distribution, we can assume that if two similar signals pass through the circuit with phase difference 180P 0 P, then the result posses no signal. We are also reminded that photon of γ - radiation can spread from 0 deg. to 180 deg. C, where the 'Compton' loss of radiation is minimum. In view of the electro-magnetic theory of Maxwell we can assume the energetic field of optical modes, which are generated into the optical

  12. Inner shell ionization accompanying nuclear collisions

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1987-01-01

    Selected phenomena leading to inner shell ionization and being of relevance for nuclear physics are discussed. The selection emphasizes the K-shell ionization induced in head-on collisions by fast light and medium-heavy ions. Cross-sections are reviewed. Effects of multiple inner shell ionization on the K X-ray spectra are illustrated with recent results. Implications for nuclear experiments are noted. Use of atomic observables as clocks for proton induced nuclear reactions is reviewed. Prospects for H.I. reactions are discussed. Preliminary experimental results on the direct K-shell ionization accompanying H.I. fusion reactions are presented. The post-collisional K-shell ionization due to internal conversion of γ-rays is discussed as the dominating contribution to the ionization for residues of dissipative nuclear reactions with Z > 40. Systematics of the corresponding K X-ray multiplicities are presented for rotational nuclei. These multiplicity values can be used for determining cross-sections for e.g. incomplete fusion reactions. Examples of such applications are given. Also discussed is the use of target K X-rays for normalization purposes and of the post-collisional, residue K X-rays in the studies of high spin phenomena. 96 references, 35 figures, 3 tables

  13. Long-Term Stability of Oxide Nanowire Sensors via Heavily Doped Oxide Contact.

    Science.gov (United States)

    Zeng, Hao; Takahashi, Tsunaki; Kanai, Masaki; Zhang, Guozhu; He, Yong; Nagashima, Kazuki; Yanagida, Takeshi

    2017-12-22

    Long-term stability of a chemical sensor is an essential quality for long-term collection of data related to exhaled breath, environmental air, and other sources in the Internet of things (IoT) era. Although an oxide nanowire sensor has shown great potential as a chemical sensor, the long-term stability of sensitivity has not been realized yet due to electrical degradation under harsh sensing conditions. Here, we report a rational concept to accomplish long-term electrical stability of metal oxide nanowire sensors via introduction of a heavily doped metal oxide contact layer. Antimony-doped SnO 2 (ATO) contacts on SnO 2 nanowires show much more stable and lower electrical contact resistance than conventional Ti contacts for high temperature (200 °C) conditions, which are required to operate chemical sensors. The stable and low contact resistance of ATO was confirmed for at least 1960 h under 200 °C in open air. This heavily doped oxide contact enables us to realize the long-term stability of SnO 2 nanowire sensors while maintaining the sensitivity for both NO 2 gas and light (photo) detections. The applicability of our method is confirmed for sensors on a flexible polyethylene naphthalate (PEN) substrate. Since the proposed fundamental concept can be applied to various oxide nanostructures, it will give a foundation for designing long-term stable oxide nanomaterial-based IoT sensors.

  14. Ionizing radiation and life.

    Science.gov (United States)

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology. © Mary Ann Liebert, Inc.

  15. PolarTrack: Optical Outside-In Device Tracking that Exploits Display Polarization

    DEFF Research Database (Denmark)

    Rädle, Roman; Jetter, Hans-Christian; Fischer, Jonathan

    2018-01-01

    PolarTrack is a novel camera-based approach to detecting and tracking mobile devices inside the capture volume. In PolarTrack, a polarization filter continuously rotates in front of an off-the-shelf color camera, which causes the displays of observed devices to periodically blink in the camera feed....... The periodic blinking results from the physical characteristics of current displays, which shine polarized light either through an LC overlay to produce images or through a polarizer to reduce light reflections on OLED displays. PolarTrack runs a simple detection algorithm on the camera feed to segment...... displays and track their locations and orientations, which makes PolarTrack particularly suitable as a tracking system for cross-device interaction with mobile devices. Our evaluation of PolarTrack's tracking quality and comparison with state-of-the-art camera-based multi-device tracking showed a better...

  16. Fiducial-Based Translational Localization Accuracy of Electromagnetic Tracking System and On-Board Kilovoltage Imaging System

    International Nuclear Information System (INIS)

    Santanam, Lakshmi; Malinowski, Kathleen; Hubenshmidt, James; Dimmer, Steve; Mayse, Martin L.; Bradley, Jeffrey; Chaudhari, Amir; Lechleiter, Kirsten; Goddu, Sree Krishna Murty; Esthappan, Jacqueline; Mutic, Sasa; Low, Daniel A.; Parikh, Parag

    2008-01-01

    Purpose: The Calypso medical four-dimensional localization system uses AC electromagnetics, which do not require ionizing radiation, for accurate, real-time tumor tracking. This investigation compared the static and dynamic tracking accuracy of this system to that of an on-board imaging kilovoltage X-ray system for concurrent use of the two systems. Methods and Materials: The localization accuracies of a kilovoltage imaging system and a continuous electromagnetic tracking system were compared. Using an in-house developed four-dimensional stage, quality-assurance fixture containing three radiofrequency transponders was positioned at a series of static locations and then moved through the ellipsoidal and nonuniform continuous paths. The transponder positions were tracked concurrently by the Calypso system. For static localization, the transponders were localized using portal images and digitally reconstructed radiographs by commercial matching software. For dynamic localization, the transponders were fluoroscopically imaged, and their positions were determined retrospectively using custom-written image processing programs. The localization data sets were synchronized with and compared to the known quality assurance fixture positions. The experiment was repeated to retrospectively track three transponders implanted in a canine lung. Results: The root mean square error of the on-board imaging and Calypso systems was 0.1 cm and 0.0 cm, respectively, for static localization, 0.22 mm and 0.33 mm for dynamic phantom positioning, and 0.42 mm for the canine study. Conclusion: The results showed that both localization systems provide submillimeter accuracy. The Calypso and on-board imaging tracking systems offer distinct sets of advantages and, given their compatibility, patients could benefit from the complementary nature of the two systems when used concurrently

  17. Ionization of Interstellar Hydrogen

    Science.gov (United States)

    Whang, Y. C.

    1996-09-01

    Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.

  18. Automatic respiration tracking for radiotherapy using optical 3D camera

    Science.gov (United States)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  19. Physics of partially ionized plasmas

    CERN Document Server

    Krishan, Vinod

    2016-01-01

    Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynam...

  20. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    Science.gov (United States)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  1. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physics, Ho Chi Minh City University of Pedagogy, 280, An Duong Vuong Street, District 5, Ho Chi Minh City 748242 (Viet Nam); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Anh, Le Duc [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-05-09

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  2. Possible ionization ''ignition'' in laser-driven clusters

    International Nuclear Information System (INIS)

    Rose-Petruck, C.; Schafer, K.J.; Barty, C.P.J.

    1995-01-01

    The authors use Classical Trajectory Monte Carlo (CTMC) simulations to study the ionization of small rare gas clusters in short pulse, high intensity laser fields. They calculate, for a cluster of 25 neon atoms, the ionization stage reached and the average kinetic energy of the ionized electrons as functions of time and peak laser intensity. The CTMC calculations mimic the results of the much simpler barrier suppression model in the limit of isolated atoms. At solid density the results give much more ionization in the cluster than that predicted by the barrier suppression model. They find that when the laser intensity reaches a threshold value such that on average one electron is ionized from each atom, the cluster atoms rapidly move to higher ionization stages, approaching Ne +8 in a few femtoseconds. This ignition process creates an ultrafast pulse of energetic electrons in the cluster at quite modest laser intensities

  3. Becoming a Heavily Tattooed Young Body: From a Bodily Experience to a Body Project

    Science.gov (United States)

    Ferreira, Vitor Sérgio

    2014-01-01

    Why some young people start to tattoo their bodies? And why some of them keep going on with this practice, until having all body tattooed? What doing so means to them? These are some of the questions that underlie a qualitative research project carried out in Portugal on heavily tattooed young people. In this article, the author discusses their…

  4. Electrical activation of nitrogen heavily implanted 3C-SiC(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fan, E-mail: f.li.1@warwick.ac.uk [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Sharma, Yogesh; Shah, Vishal; Jennings, Mike [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Pérez-Tomás, Amador [ICN2 – Institut Catala de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Myronov, Maksym [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Fisher, Craig [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Leadley, David [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Mawby, Phil [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-10-30

    Highlights: • Nitrogen is fully activated by 1175 °C annealing for 1.5 × 10{sup 19} cm{sup −3} doped 3C-SiC. • Free donor concentration is found to readily saturate in 3C-SiC at ∼7 × 10{sup 19} cm{sup −3}. • 3C-SiC is found to have complete donor thermal ionization above 150 K. • Donor in 1.5 × 10{sup 19} cm{sup −3} nitrogen implanted 3C-SiC has an energy level ∼15 meV. • The SiO{sub 2} cap is found to have a bigger influence on low and medium doped samples. - Abstract: A degenerated wide bandgap semiconductor is a rare system. In general, implant levels lie deeper in the band-gap and carrier freeze-out usually takes place at room temperature. Nevertheless, we have observed that heavily doped n-type degenerated 3C-SiC films are achieved by nitrogen implantation level of ∼6 × 10{sup 20} cm{sup −3} at 20 K. According to temperature dependent Hall measurements, nitrogen activation rates decrease with the doping level from almost 100% (1.5 × 10{sup 19} cm{sup −3}, donor level 15 meV) to ∼12% for 6 × 10{sup 20} cm{sup −3}. Free donors are found to saturate in 3C-SiC at ∼7 × 10{sup 19} cm{sup −3}. The implanted film electrical performances are characterized as a function of the dopant doses and post implantation annealing (PIA) conditions by fabricating Van der Pauw structures. A deposited SiO{sub 2} layer was used as the surface capping layer during the PIA process to study its effect on the resultant film properties. From the device design point of view, the lowest sheet resistivity (∼1.4 mΩ cm) has been observed for medium doped (4 × 10{sup 19} cm{sup −3}) sample with PIA 1375 °C 2 h without a SiO{sub 2} cap.

  5. Electron-impact single and double ionization of W

    International Nuclear Information System (INIS)

    Pindzola, M S; Loch, S D; Foster, A R

    2017-01-01

    Electron-impact single and double ionization cross sections for the W atom are calculated using a semi-relativistic distorted-wave method. The cross sections include contributions from single direct ionization, double direct ionization and excitation-autoionization. Branching ratio calculations are made to determine whether an excitation may contribute to single or double ionization. We check the accuracy of the semi-relativistic distorted-wave calculations for direct ionization of various subshells by comparison with fully-relativistic distorted-wave calculations. We also check the accuracy of the perturbative distorted-wave calculations for direct ionization of the outer most subshells by comparison with non-perturbative time-dependent close-coupling calculations. (paper)

  6. Study of ionization process of matrix molecules in matrix-assisted laser desorption ionization

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kazumasa; Sato, Asami; Hashimoto, Kenro; Fujino, Tatsuya, E-mail: fujino@tmu.ac.jp

    2013-06-20

    Highlights: ► Proton transfer and adduction reaction of matrix in MALDI were studied. ► Hydroxyl group forming intramolecular hydrogen bond was related to the ionization. ► Intramolecular proton transfer in the electronic excited state was the initial step. ► Non-volatile analytes stabilized protonated matrix in the ground state. ► A possible mechanism, “analyte support mechanism”, has been proposed. - Abstract: Proton transfer and adduction reaction of matrix molecules in matrix-assisted laser desorption ionization were studied. By using 2,4,6-trihydroxyacetophenone (THAP), 2,5-dihydroxybenzoic acid (DHBA), and their related compounds in which the position of a hydroxyl group is different, it was clarified that a hydroxyl group forming an intramolecular hydrogen bond is related to the ionization of matrix molecules. Intramolecular proton transfer in the electronic excited state of the matrix and subsequent proton adduction from a surrounding solvent to the charge-separated matrix are the initial steps for the ionization of matrix molecules. Nanosecond pump–probe NIR–UV mass spectrometry confirmed that the existence of analyte molecules having large dipole moment in their structures is necessary for the stabilization of [matrix + H]{sup +} in the electronic ground state.

  7. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1982-01-01

    A neutron accelerator tube is described having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least one cathode member located in the tube adjacent to th replenisher section may have a protuberant portion extending axially into the ionization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  8. Comparison between radiological protection against ionizing radiation and non ionizing radiation

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1992-01-01

    Protection against IR and NIR developed in completely different ways because of the very different evolution of the techniques they involve. While as soon as 1928, the International Society of Radiology created the International Commission of Radiological Protection, we had to wait until 1977 to see the creation of the International Committee for NIR (INIRC) by IRPA. To compare protection against Ionizing Radiations and Non Ionizing Radiations we will first carry out a general analysis of its components and then we will draw the general conclusions leading to a quite comparable evolution. (author)

  9. Comparison between radiological protection against ionizing radiation and non-ionizing radiation

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1988-01-01

    The comparison of doctrines concerning protection against ionizing and non-ionizing radiation is a difficult task, because of the many areas in which it is applied. Radiological pollution has grown during the century, but its evolution has not been concomitant. This has resulted in a distortion that can be identified in the successive steps of the evaluation and protection against such radiation. For a better understanding, this discussion deals with the differences in interaction with matter and the induction of the related risks, on the varieties of protection systems and monitoring procedures

  10. Nonlinear modulation of ionization waves

    International Nuclear Information System (INIS)

    Bekki, Naoaki

    1981-01-01

    In order to investigate the nonlinear characteristics of ionization waves (moving-striations) in the positive column of glow discharge, a nonlinear modulation of ionization waves in the region of the Pupp critical current is analysed by means of the reductive perturbation method. The modulation of ionization waves is described by a nonlinear Schroedinger type equation. The coefficients of the equation are evaluated using the data of the low pressure Argon-discharge, and the simple solutions (plane wave and envelope soliton type solutions) are presented. Under a certain condition an envelope soliton is propagated through the positive column. (author)

  11. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Pathak, B.

    1989-12-01

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  12. Ionization equilibrium in dense plasmas

    International Nuclear Information System (INIS)

    Ying, R.

    1987-01-01

    The average degree of ionization for a strongly coupled plasma is investigated and calculated. Two widely used approaches: the Saha equation method and the Thomas-Fermi (TF) statistical atomic model are adopted to determine the degree of ionization. Both methods are modified in a number of ways to include the strong-coupling effect in the plasma. In the Saha equation approach, the strong-coupling effects are introduced through: (i) a replacement of the Coulomb potential by a screened Debye potential; (ii) adoption of the Planck-Larkin partition function; (iii) description of the electron component by Fermi-Dirac statistics. The calculated degree of ionization exceeds that obtained from the original Saha equation, exhibits a minimum as a function of the density and shows an abrupt phase transition from weakly ionized to a fully ionized state. The zero-temperature TF model for compressed ions and the finite-temperature TF model for ions are investigated for the first time. In order to take into account the strong-coupling effect in a systematic way, a strong-coupling TF model is set up. Favorable results with the relatively simple approximations indicate that the newly established strong-coupling TF model is a more systematic and physically consistent approach

  13. Electron-impact ionization of Mo+

    International Nuclear Information System (INIS)

    Ludlow, J.A.; Loch, S.D.; Pindzola, M.S.

    2005-01-01

    The electron-impact direct ionization cross section for Mo + is calculated using both nonperturbative close-coupling and perturbative distorted-wave methods. When distorted-wave calculations for 4d 5 →4d 4 direct ionization are added to distorted-wave calculations for 4p→nl excitation-autoionization, the experimental measurements are found to be 60% lower than the theoretical predictions. Inclusion of nonperturbative three-body Coulomb effects, present in time-dependent close-coupling calculations, are found to reduce the distorted-wave 4d 5 →4d 4 direct ionization cross section by 25%. This is by far the largest reduction yet seen when comparing the two methods for direct subshell ionization of an atomic positive ion in the ground state. However, when the close-coupling calculations for 4d 5 →4d 4 direct ionization are added to distorted-wave calculations for 4p→nl excitation-autoionization, the experimental measurements are still 45% lower than the theoretical predictions. Although we further investigate correlation effects in the initial target state and term-dependent potential effects in the ejected electron state in an attempt to understand the small magnitude of the experimental measurements, the discrepancy between theory and experiment remains unexplained

  14. Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance.

    Science.gov (United States)

    Wu, Xinyun; Oleschuk, Richard D; Cann, Natalie M

    2012-09-21

    Full-dimensional computational fluid dynamics (CFD) simulations are presented for nano electrospray ionization (ESI) with various emitter designs. Our CFD electrohydrodynamic simulations are based on the Taylor-Melcher leaky-dielectric model, and the volume of fluid technique for tracking the fast-changing liquid-gas interface. The numerical method is first validated for a conventional 20 μm inner diameter capillary emitter. The impact of ESI voltage, flow rate, emitter tapering, surface hydrophobicity, and fluid conductivity on the nano-ESI behavior are thoroughly investigated and compared with experiments. Multi-electrospray is further simulated with 2-hole and 3-hole emitters with the latter having a linear or triangular hole arrangement. The simulations predict multi-electrospray behavior in good agreement with laboratory observations.

  15. The study of the effects of ionizing and non-ionizing radiations on birth weight of newborns to exposed mothers

    OpenAIRE

    Mortazavi, S. M. J.; Shirazi, K. R.; Mortazavi, G.

    2013-01-01

    Objectives: Life evolved in an environment filled with a wide variety of ionizing and non-ionizing radiation. It was previously reported that medical exposures to pregnant women increases the risk of low birth weight. This study intends to investigate the relationship between exposure to ionizing and non-ionizing radiation and the risk of low birth weight. Materials and Methods: One thousand two hundred mothers with their first-term labor (vaginal or cesarean) whose newborns? history had been...

  16. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  17. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  18. Determination of the first ionization potential of actinides by resonance ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Koehler, S.; Albus, F.; Dibenberger, R.; Erdmann, N.; Funk, H.; Hasse, H.; Herrmann, G.; Huber, G.; Kluge, H.; Nunnemann, M.; Passler, G.; Rao, P.M.; Riegel, J.; Trautmann, N.; Urban, F.

    1995-01-01

    Resonance ionization mass spectroscopy (RIMS) is used for the precise determination of the first ionization potential of transuranium elements. The first ionization potentials (IP) of americium and curium have been measured for the first time to IP Am =5.9738(2) and IP Cm =5.9913(8) eV, respectively, using only 10 12 atoms of 243 Am and 248 Cm. The same technique was applied to thorium, neptunium, and plutonium yielding IP T H =6.3067(2), IP N P =6.2655(2), and IP Pu =6.0257(8) eV. The good agreement of our results with the literature data proves the precision of the method which was additionally confirmed by the analysis of Rydberg seris of americium measured by RIMS. copyright American Institute of Physics 1995

  19. Effects of ionizing radiation on vitamins

    International Nuclear Information System (INIS)

    Thayer, D.W.; Fox, J.B. Jr.; Lakritz, L.

    1991-01-01

    Vitamins are known to be sensitive to the effects of ionizing radiation. Since most foods contain a large proportion of water, the most probable reaction of the ionizing radiation would be with water; and as vitamins are present in very small amounts compared with other substances in the food they will be affected indirectly by the radiation. This chapter discusses the effect of ionizing radiation on water soluble vitamins and fat soluble vitamins. (author)

  20. The study of the effects of ionizing and non-ionizing radiations on birth weight of newborns to exposed mothers.

    Science.gov (United States)

    Mortazavi, S M J; Shirazi, K R; Mortazavi, G

    2013-01-01

    Life evolved in an environment filled with a wide variety of ionizing and non-ionizing radiation. It was previously reported that medical exposures to pregnant women increases the risk of low birth weight. This study intends to investigate the relationship between exposure to ionizing and non-ionizing radiation and the risk of low birth weight. One thousand two hundred mothers with their first-term labor (vaginal or cesarean) whose newborns' history had been registered in neonates' screening program in Shiraz were interviewed and surveyed. Data collection was performed by the assessment of mother's history of radiography before and during pregnancy, physical examination of the mother for height and weight and weighing and examining the newborn for any diagnosis of disease and anomalies. There were no statistical significant differences between the mean weight of newborns whose mothers had been exposed to some common sources of ionizing and non-ionizing radiations such as dental or non dental radiographies, mobile phone, cordless phone and cathode ray tube (CRT) and those of non-exposed mothers. The findings of this study cast doubt on previous reports, which indicated that exposure to ionizing radiation during pregnancy increased the risk of low birth weight.

  1. GPS Tracking of Free-Ranging Pigs to Evaluate Ring Strategies for the Control of Cysticercosis/Taeniasis in Peru.

    Directory of Open Access Journals (Sweden)

    Ian W Pray

    2016-04-01

    Full Text Available Taenia solium, a parasitic cestode that affects humans and pigs, is the leading cause of preventable epilepsy in the developing world. T. solium eggs are released into the environment through the stool of humans infected with an adult intestinal tapeworm (a condition called taeniasis, and cause cysticercosis when ingested by pigs or other humans. A control strategy to intervene within high-risk foci in endemic communities has been proposed as an alternative to mass antihelminthic treatment. In this ring strategy, antihelminthic treatment is targeted to humans and pigs residing within a 100 meter radius of a pig heavily-infected with cysticercosis. Our aim was to describe the roaming ranges of pigs in this region, and to evaluate whether the 100 meter radius rings encompass areas where risk factors for T. solium transmission, such as open human defecation and dense pig activity, are concentrated.In this study, we used Global Positioning System (GPS devices to track pig roaming ranges in two rural villages of northern Peru. We selected 41 pigs from two villages to participate in a 48-hour tracking period. Additionally, we surveyed all households to record the locations of open human defecation areas. We found that pigs spent a median of 82.8% (IQR: 73.5, 94.4 of their time roaming within 100 meters of their homes. The size of home ranges varied significantly by pig age, and 93% of the total time spent interacting with open human defecation areas occurred within 100 meters of pig residences.These results indicate that 100 meter radius rings around heavily-infected pigs adequately capture the average pig's roaming area (i.e., home range and represent an area where the great majority of exposure to human feces occurs.

  2. GPS Tracking of Free-Ranging Pigs to Evaluate Ring Strategies for the Control of Cysticercosis/Taeniasis in Peru.

    Science.gov (United States)

    Pray, Ian W; Swanson, Dallas J; Ayvar, Viterbo; Muro, Claudio; Moyano, Luz M; Gonzalez, Armando E; Garcia, Hector H; O'Neal, Seth E

    2016-04-01

    Taenia solium, a parasitic cestode that affects humans and pigs, is the leading cause of preventable epilepsy in the developing world. T. solium eggs are released into the environment through the stool of humans infected with an adult intestinal tapeworm (a condition called taeniasis), and cause cysticercosis when ingested by pigs or other humans. A control strategy to intervene within high-risk foci in endemic communities has been proposed as an alternative to mass antihelminthic treatment. In this ring strategy, antihelminthic treatment is targeted to humans and pigs residing within a 100 meter radius of a pig heavily-infected with cysticercosis. Our aim was to describe the roaming ranges of pigs in this region, and to evaluate whether the 100 meter radius rings encompass areas where risk factors for T. solium transmission, such as open human defecation and dense pig activity, are concentrated. In this study, we used Global Positioning System (GPS) devices to track pig roaming ranges in two rural villages of northern Peru. We selected 41 pigs from two villages to participate in a 48-hour tracking period. Additionally, we surveyed all households to record the locations of open human defecation areas. We found that pigs spent a median of 82.8% (IQR: 73.5, 94.4) of their time roaming within 100 meters of their homes. The size of home ranges varied significantly by pig age, and 93% of the total time spent interacting with open human defecation areas occurred within 100 meters of pig residences. These results indicate that 100 meter radius rings around heavily-infected pigs adequately capture the average pig's roaming area (i.e., home range) and represent an area where the great majority of exposure to human feces occurs.

  3. Cytogenetic abnormalities of the descendants of permanent residents of heavily contaminated East Kazakhstan.

    Science.gov (United States)

    Chaizhunusova, Nailya; Madiyeva, Madina; Tanaka, Kimio; Hoshi, Masaharu; Kawano, Noriyuki; Noso, Yoshihiro; Takeichi, Nobuo; Rakhypbekov, Tolebay; Urazalina, Nailya; Dovgal, Galina; Rymbaeva, Tamara; Tokanova, Sholpan; Beisengazina, Meruert; Kembayeva, Kulypash; Inoue, Ken

    2017-11-01

    More than 400 nuclear explosion tests were conducted at the Semipalatinsk Nuclear Test Site (SNTS) and significant radioactive substances were released. The long-term consequences of the activities at the SNTS and the appearance of any hereditary effects remain insufficiently studied about 25 years after the test site was closed. The population living in villages near the SNTS are considered to have been heavily exposed to external and internal radiation. This study aims to perform an assessment and comprehensive cytogenetic analysis of the inhabitants living near the SNTS, and their first-(F1) and second-(F2) generation children. Residents of the East Kazakhstan region living in the area covered by the former SNTS were included in the study. To evaluate the hereditary effects of nuclear testing, comprehensive chromosome analyses were performed in lymphocytes using conventional Giemsa and fluorescent in situ hybridization methods in 115 F1 and F2 descendants in the villages of Dolon and Sarzhal, which were heavily contaminated. The parents of the subjects had permanently lived in the villages. A higher number of stable-type chromosome aberrations such as translocations was found in these residents than in 80 residents of the control area, Kokpecty, which indicates the possibility that radiation had biological effects on the exposed subjects.

  4. Track reconstruction at the ILC: the ILD tracking software

    International Nuclear Information System (INIS)

    Gaede, Frank; Aplin, Steven; Rosemann, Christoph; Voutsinas, Georgios; Glattauer, Robin

    2014-01-01

    One of the key requirements for Higgs physics at the International Linear Collider ILC is excellent track reconstruction with very good momentum and impact parameter resolution. ILD is one of the two detector concepts at the ILC. Its central tracking system comprises of an outer Si-tracker, a highly granular TPC, an intermediate silicon tracker and a pixel vertex detector, and it is complemented by silicon tracking disks in the forward direction. Large hit densities from beam induced coherent electron-positron pairs at the ILC pose an additional challenge to the pattern recognition algorithms. We present the recently developed new ILD tracking software, the pattern recognition algorithms that are using clustering techniques, Cellular Automatons and Kalman filter based track extrapolation. The performance of the ILD tracking system is evaluated using a detailed simulation including dead material, gaps and imperfections.

  5. Clinical decision-making tools for exam selection, reporting and dose tracking

    International Nuclear Information System (INIS)

    Brink, James A.

    2014-01-01

    Although many efforts have been made to reduce the radiation dose associated with individual medical imaging examinations to ''as low as reasonably achievable,'' efforts to ensure such examinations are performed only when medically indicated and appropriate are equally if not more important. Variations in the use of ionizing radiation for medical imaging are concerning, regardless of whether they occur on a local, regional or national basis. Such variations among practices can be reduced with the use of decision support tools at the time of order entry. These tools help reduce radiation exposure among practices through the appropriate use of medical imaging. Similarly, adoption of best practices among imaging facilities can be promoted through tracking the radiation exposure among imaging patients. Practices can benchmark their aggregate radiation exposures for medical imaging through the use of dose index registries. However several variables must be considered when contemplating individual patient dose tracking. The specific dose measures and the variation among them introduced by variations in body habitus must be understood. Moreover the uncertainties in risk estimation from dose metrics related to age, gender and life expectancy must also be taken into account. (orig.)

  6. Clinical decision-making tools for exam selection, reporting and dose tracking

    Energy Technology Data Exchange (ETDEWEB)

    Brink, James A. [Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2014-10-15

    Although many efforts have been made to reduce the radiation dose associated with individual medical imaging examinations to ''as low as reasonably achievable,'' efforts to ensure such examinations are performed only when medically indicated and appropriate are equally if not more important. Variations in the use of ionizing radiation for medical imaging are concerning, regardless of whether they occur on a local, regional or national basis. Such variations among practices can be reduced with the use of decision support tools at the time of order entry. These tools help reduce radiation exposure among practices through the appropriate use of medical imaging. Similarly, adoption of best practices among imaging facilities can be promoted through tracking the radiation exposure among imaging patients. Practices can benchmark their aggregate radiation exposures for medical imaging through the use of dose index registries. However several variables must be considered when contemplating individual patient dose tracking. The specific dose measures and the variation among them introduced by variations in body habitus must be understood. Moreover the uncertainties in risk estimation from dose metrics related to age, gender and life expectancy must also be taken into account. (orig.)

  7. Electron-impact ionization of atomic ions: Theoretical results

    Energy Technology Data Exchange (ETDEWEB)

    Loch, S D; Burgos, J M Munoz; Ballance, C P; Ludlow, J; Lee, T-G; Fogle, M; Pindzola, M S [Auburn University, Auburn, AL 36849 (United States); Griffin, D C [Rollins College, Winter Park, FL 32789 (United States); Yumak, A; Yavuz, I; Altun, Z, E-mail: loch@physics.auburn.ed [Marmara University, Istanbul (Turkey)

    2009-11-15

    A brief overview is given of theoretical results for electron-impact ionization of atoms and ions. A description is given of the main theoretical methods, along with the databases where the data are archived. It is shown that for light species, ground and metastable ionization cross sections are in reasonable agreement with experiment when non-perturbative data are used for the near neutrals and distorted wave data are used for ions greater than a few times ionized. Some discrepancies between theory and experiment still remain for systems with open d and open p subshells. The sensitivity of ionization rate coefficients to the near threshold part of the ionization cross section is shown. The role of excited states in effective ionization rate coefficients is demonstrated and recent excited state ionization cross section results for H, He, He{sup +}, B{sup 2+} and Ne are presented.

  8. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  9. The radiochromic dye film dose meter as a possible test of particle track theory

    International Nuclear Information System (INIS)

    Hansen, J.W.; Jensen, M.; Katz, R.

    1980-09-01

    The response characteristic of the thin-film radiometric dye cyanide plastic dose meter to ionizing radiation of electrons and heavy charged particles is investigated as a possible test of the particle track theory worked out by Robert Katz and coworkers. Dose response curves for low-LET radiation have been investigated and are used for a quality estimation of the response for protons and oxygen ions at 16 and 4 MeV/amu, respectively. A bleaching effect on the colouration at high doses intimates that the target cannot be interpreted lieerally, but it might still be possinle to transfer the function of the macroscopic dose response to a theoretical dose response curve in a microscopic scale for a single ion. From this relation the macroscopic dose response curve can be determined qhen the film is irradiated with heavy ions. It will be shown theoretically that for protons there is no saturation in the track core, whereas calculations for oxygen ions show a heavy saturation in the track core, which means that a part of the ions loose their energy ineffectively. We can conclude that itis possible qualitatively to predict the dose response curve for high-LET particles by means of the dose response curve for low-LET radiation. (author)

  10. MEASURING THE SOURCES OF THE INTERGALACTIC IONIZING FLUX

    International Nuclear Information System (INIS)

    Cowie, L. L.; Barger, A. J.; Trouille, L.

    2009-01-01

    We use a wide-field (0.9 deg 2 ) X-ray sample with optical and Galaxy Evolution Explorer (GALEX) ultraviolet observations to measure the contribution of active galactic nuclei (AGNs) to the ionizing flux as a function of redshift. Our analysis shows that the AGN contribution to the metagalactic ionizing background peaks at around z = 2. The measured values of the ionizing background from the AGNs are lower than previous estimates and confirm that ionization from AGNs is insufficient to maintain the observed ionization of the intergalactic medium (IGM) at z > 3. We show that only X-ray sources with broad lines in their optical spectra have detectable ionizing flux and that the ionizing flux seen in an AGN is not correlated with its X-ray color. We also use the GALEX observations of the GOODS-N region to place a 2σ upper limit of 0.008 on the average ionization fraction f ν (700 A)/f ν (1500 A) for 626 UV selected galaxies in the redshift range z = 0.9-1.4. We then use this limit to estimate an upper bound to the galaxy contribution in the redshift range z = 0-5. If the z ∼ 1.15 ionization fraction is appropriate for higher-redshift galaxies, then contributions from the galaxy population are also too low to account for the IGM ionization at the highest redshifts (z > 4).

  11. Ionization probes of molecular structure and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.M. [State Univ. of New York, Stony Brook (United States)

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  12. Calcium - ionized

    Science.gov (United States)

    ... diuretics Thrombocytosis (high platelet count) Tumors Vitamin A excess Vitamin D excess Lower-than-normal levels may be due to: Hypoparathyroidism Malabsorption Osteomalacia Pancreatitis Renal failure Rickets Vitamin D deficiency Alternative Names Free calcium; Ionized calcium ...

  13. Deep-down ionization of protoplanetary discs

    Science.gov (United States)

    Glassgold, A. E.; Lizano, S.; Galli, D.

    2017-12-01

    The possible occurrence of dead zones in protoplanetary discs subject to the magneto-rotational instability highlights the importance of disc ionization. We present a closed-form theory for the deep-down ionization by X-rays at depths below the disc surface dominated by far-ultraviolet radiation. Simple analytic solutions are given for the major ion classes, electrons, atomic ions, molecular ions and negatively charged grains. In addition to the formation of molecular ions by X-ray ionization of H2 and their destruction by dissociative recombination, several key processes that operate in this region are included, e.g. charge exchange of molecular ions and neutral atoms and destruction of ions by grains. Over much of the inner disc, the vertical decrease in ionization with depth into the disc is described by simple power laws, which can easily be included in more detailed modelling of magnetized discs. The new ionization theory is used to illustrate the non-ideal magnetohydrodynamic effects of Ohmic, Hall and Ambipolar diffusion for a magnetic model of a T Tauri star disc using the appropriate Elsasser numbers.

  14. Rapid enhancement of nodal quasiparticle mass with heavily underdoping in Bi2212

    Science.gov (United States)

    Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shin-ichi; Ino, Akihiro

    2018-05-01

    We report substantial advance of our low-energy angle-resolved photoemission study of nodal quasiparticles in Bi2Sr2CaCu2O8+δ. The new data cover the samples from underdoped down to heavily underdoped levels. We also present the nodal Fermi velocities that determined by using an excitation-photon energy of hν = 7.0 eV over a wide doping range. The consistency between the results with hν = 8.1 and 7.0 eV allows us to rule out the effect of photoemission matrix elements. In comparison with the data previously reported, the nodal effective mass increases by a factor of ∼ 1.5 in going from optimally doped to heavily underdoped levels. We find a rapid enhancement of the nodal quasiparticle mass at low doping levels near the superconductor-to-insulator transition. The effective coupling spectrum, λ (ω) , is extracted directly from the energy derivatives of the quasiparticle dispersion and scattering rate, as a causal function of the mass enhancement factor. A steplike increase in Reλ (ω) around ∼ 65 meV is demonstrated clearly by the Kramers-Kronig transform of Imλ (ω) . To extract the low-energy renormalization effect, we calculated a simple model for the electron-boson interaction. This model reveals that the contribution of the renormalization at | ω | ≤ 15 meV to the quasiparticle mass is larger than that around 65 meV in underdoped samples.

  15. Down syndrome and ionizing radiation.

    Science.gov (United States)

    Verger, P

    1997-12-01

    This review examines the epidemiologic and experimental studies into the possible role ionizing radiation might play in Down Syndrome (trisomy 21). It is prompted by a report of a temporal cluster of cases of this chromosomal disorder observed in West Berlin exactly 9 mo after the radioactive cloud from Chernobyl passed. In approximately 90% of cases, Down Syndrome is due to the nondisjunction of chromosome 21, most often in the oocyte, which may be exposed to ionizing radiation during two separate periods: before the completion of the first meiosis or around the time of ovulation. Most epidemiologic studies into trisomies and exposure to ionizing radiation examine only the first period; the Chernobyl cluster is related to the second. Analysis of these epidemiologic results indicates that the possibility that ionizing radiation might be a risk factor in Down Syndrome cannot be excluded. The experimental results, although sometimes contradictory, demonstrate that irradiation may induce nondisjunction in oogenesis and spermatogenesis; they cannot, however, be easily extrapolated to humans. The weaknesses of epidemiologic studies into the risk factors for Down Syndrome at birth (especially the failure to take into account the trisomy cases leading to spontaneous abortion) are discussed. We envisage the utility and feasibility of new studies, in particular among women exposed to prolonged or repeated artificially-produced ionizing radiation.

  16. An Investigation of Chemical Landscapes in Aqueous Electrosprays by Tracking Oligomerization of Isoprene

    KAUST Repository

    Junior, Adair Gallo

    2017-12-01

    Electrospray ionization mass spectrometry (ESIMS) is widely used to characterize neutral and ionic species in solvents. Typically, electrical, thermal, and pneumatic potentials are applied to create electrosprays from which charged ionic species are ejected for downstream analysis by mass spectrometry. Most recently, ESIMS has been exploited to investigate ambient proton transfer reactions at air-water interfaces in real time. We assessed the validity of these experiments via complementary laboratory experiments. Specifically, we characterized the products of two reaction scenarios via ESIMS and proton nuclear magnetic resonance (1H-NMR): (i) emulsions of pH-adjusted water and isoprene (C5H8) that were mechanically agitated, and (ii) electrosprays of pH-adjusted water that were collided with gas-phase isoprene. Our experiments unambiguously demonstrate that, while isoprene does not oligomerize in emulsions, it does undergo protonation and oligomerization in electrosprays, both with and without pH-adjusted water, confirming that C-C bonds form along myriad high-energy pathways during electrospray ionization. We also compared our experimental results with some quantum mechanics simulations of isoprene molecules interacting with hydronium at different hydration levels (gas versus liquid phase). In agreement with our experiments, the kinetic barriers to protonation and oligomerization of isoprene were inaccessible under ambient conditions. Rather, the gas-phase chemistries during electrospray ionization drove the oligomerization of isoprene. Therefore, we consider that ESIMS could induce artifacts in interfacial reactions. These findings warrant a reassessment of previous reports on tracking chemistries under ambient conditions at liquid-vapor interfaces via ESIMS. Further, we took some high-speed images of electrosprays where it was possible to observe the main characteristics of the phenomena, i.e. Taylor cone, charge separation, and Coulomb fission. Finally, we took

  17. Comparison among different CT ionization chambers

    International Nuclear Information System (INIS)

    Castro, Maysa C. de; Xavier, Marcos; Caldas, Linda V.E.

    2015-01-01

    The dosimetry in computed tomography (CT) is carried out by the use of a pencil type ionization-chamber, because it has a uniform response at all angles relative to the incident beam of radiation, which is essential for CT equipment since the X-ray tube executes a circular movement around the table during irradiation. The commercial ionization chamber used to perform quality control procedures of this kind of equipment has a length of the sensitive volume of 10 cm. In the Calibration Laboratory of Instruments (LCI) of the IPEN there were already developed some prototypes with small differences in construction, when compared to commercially available ionization chambers. They have been used in previous studies and showed results within internationally acceptable limits. The ionization chambers tested in this study present the sensitive volume lengths of 1 cm, 3 cm and 10 cm. The objective of this study was to present results on the stability test of the three homemade ionization chambers and a commercial chamber, as well to obtain the calibration coefficients for each of them in CT standard X radiation beams. The obtained results for both characterization tests are within the recommended limits, except for the homemade ionization chambers with sensitive volume lengths of 3 cm and 1 cm in the case of the stability test. (author)

  18. Ionization of H2O molecules through second order collisions in an argon-filled flow ionization chamber

    International Nuclear Information System (INIS)

    Leonhardt, J.

    1976-01-01

    In an argon-filled ionization chamber with a constant radionuclide radiation source, the ionization of H 2 O through second order collisions with 3sub(p) 2 states of argon excited by field-accelerated electrons is considered within the range of discharge caused by external potentials under atmospheric pressure. It is found that the logarithm of the change of ionization current is proportional to power 3/2 of the electric field strength. Possible formation mechanisms are discussed. Most probable is the ionization of H 2 O through collision with Ar 2 argon dimers originating from excited metastable atoms as a result of triple collision. The production cross section for H 2 O + has been estimated to be sigmasub(H 2 O) approximately 5x10 -15 . (author)

  19. Automatic system for evaluation of ionizing field

    International Nuclear Information System (INIS)

    Pimenta, N.L.; Calil, S.J.

    1992-01-01

    A three-dimensional cartesian manipulator for evaluating the ionizing field and able to position a ionization chamber in any point of the space is developed. The control system is made using a IBM microcomputer. The system aimed the study of isodose curves from ionizing sources, verifying the performance of radiotherapeutic equipment. (C.G.C.)

  20. Worldwide exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1993-01-01

    All of mankind is exposed to ionizing radiation from natural sources, from human practices that release natural and artificial radionuclides to the environment, and from medical radiation procedures. This paper reviews the assessment in the UNSCEAR 1993 Report of the exposures of human populations worldwide to the various sources of ionizing radiation

  1. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    NARCIS (Netherlands)

    Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M.

    2016-01-01

    We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former

  2. Electronic energy loss of the latent track in heavy ion-irradiated polyimide

    International Nuclear Information System (INIS)

    Sun Youmei; Liu Jie; Zhang Chonghong; Wang Zhiguang; Jin Yunfan; Duan Jinglai; Song Yin

    2005-01-01

    In the interaction process of a swift heavy ion (SHI) and polymer, a latent track with radius of several nanometers appears near the ion trajectory due to the dense ionization and excitation. To describe the role of electronic energy loss (dE/dX) e , multi-layer stacks (with different dE/dX) of polyimide (PI) films were irradiated by different SHIs (1.158 GeV Fe 56 and 1.755 GeV Xe 136 ) under vacuum at room temperature. Chemical changes of modified PI films were studied by Fourier Transform Infrared (FTIR) spectroscopy. The main feature of SHI irradiation is the degradation of the functional group and creation of alkyne. The chain disruption rate of PI was investigated in the fluence range from 1 x 10 11 to 6 x 10 12 ions/cm 2 and a wider energy stopping power range (2.2 to 5.2 keV/nm for Fe 56 ions and 8.6 to 11.3 keV/nm for Xe 136 ions). Alkyne formation was observed over the electronic energy loss range of interest. Assuming the saturated track model (the damage process only occur in a cylinder of area σ), the mean degradation and alkyne formation radii in tracks were deduced for Fe and Xe ion irradiation, respectively. The results were validated by the thermal spike model and the threshold electronic energy loss of track formation S et in PI was deduced. The analysis of the irradiated PI films shows that the predictions of the thermal spike model are in qualitative agreement with the curve shape of experimental results. (authors)

  3. Health Effects of Non-Ionizing Radiation on Human

    International Nuclear Information System (INIS)

    Zubaidah-Alatas; Yanti Lusiyanti

    2001-01-01

    Increases of development and use of equipment that procedures non-ionizing radiant energy such as laser, radar, microwave ovens, power lines and hand phones, bring about public concern about the possible health effects owing to the non-ionizing radiation exposure. Non ionizing electromagnetic radiation compared to ionizing radiation, has longer wavelength, lower frequency, and lower photon energy in its interaction with body tissues. The term on non-ionizing radiation refers to the groups of electromagnetic radiations with energies less than about 10 eV corresponding to wavelengths in the ultraviolet, visible, infra red microwave and radiofrequency spectral regions. This paper describes the current state of knowledge about types of non-ionizing radiation and the health effects at molecular and cellular levels as well as its effects on human health. (author)

  4. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    Science.gov (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  5. Non-ionizing radiation

    International Nuclear Information System (INIS)

    Fischer, P.G.

    1983-01-01

    The still growing use of non-ionizing radiation such as ultraviolet radiation laser light, ultrasound and infrasound, has induced growing interest in the effects of these types of radiation on the human organism, and in probable hazards emanating from their application. As there are up to now no generally approved regulations or standards governing the use of non-ionizing radiation and the prevention of damage, it is up to the manufacturers of the relevant equipment to provide for safety in the use of their apparatus. This situation has led to a feeling of incertainty among manufacturers, as to how which kind of damage should be avoided. Practice has shown that there is a demand for guidelines stating limiting values, for measuring techniques clearly indicating safety thresholds, and for safety rules providing for safe handling. The task group 'Non-ionizing radiation' of the Radiation Protection Association started a programme to fulfill this task. Experts interested in this work have been invited to exchange their knowledge and experience in this field, and a collection of loose leaves will soon be published giving information and recommendations. (orig./HP) [de

  6. Liquid ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Liquid ionization chambers [1] (LICs) have have been used in the last decades as background dosemeters. Since a few years LICs are also commercially available for dosimetry and are used for measurements of dose distributions where a high spatial distribution is necessary. Also in the last decades...... a differential equation applying several simplifications and approximations leading to discrepancies between theory and experiments [3]. The theory predicts the collection efficiency as a function of the electrical field and was applied for both air filled ionization chambers and liquid filled ionization...... chambers. For liquids the LET can be roughly deduced from the collection efficiency dependency on the electrical field inside a liquid ionization chambers [4] using an extrapolation method. We solved the fundamental differential equation again presented by Jaffe numerically, but now taking into account...

  7. Non-perturbative methods applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-09-01

    The use of non-perturbative methods in the treatment of atomic ionization is discussed. Particular attention is given to schemes of the type proposed by Keldysh where multiphoton ionization and tunnel auto-ionization occur for high intensity fields. These methods are shown to correspond to a certain type of expansion of the T-matrix in the intra-atomic potential; in this manner a criterium concerning the range of application of these non-perturbative schemes is suggested. A brief comparison between the ionization rate of atoms in the presence of linearly and circularly polarized light is presented. (Author) [pt

  8. A liquid ionization chamber using tetramethylsilane

    International Nuclear Information System (INIS)

    Engler, J.; Keim, H.

    1983-12-01

    First results with a liquid ionization chamber using tetramethylsilane (TMS) are presented. A stack of iron plates was tested with cosmic ray muons and the charge output for minimum ionizing particles was measured. (orig.) [de

  9. Endoergic chemi-ionization in N-O collisions

    International Nuclear Information System (INIS)

    Nielsen, S.E.; Dahler, J.S.

    1979-01-01

    A semiclassical theory of endoergic chemi-ionization is developed and applied to the ionizing events that occur when ground state oxygen atoms collide with nitrogen atoms in the ground and first excited states. The approach used is an adaptation and extension of earlier theories due to Bardsley, Nakamura, and Miller. The theory relates the experimental associative (AI) and Penning ionization (PI) cross sections to the following events: formation of a stable diatomic ion (AI), neutral and ionized atomic fragments (PI), or of a metastable diatomic rotational resonance (DI, delayed ionization). The heavy particle motions are treated classically in terms of adiabatic potential energy functions, while localized nonadiabatic transitions also are taken into account by using the Landau-Zener approximation. Finally, the theoretical predictions compare well with the results of Ringer and Gentry's (1978) merged beam experiments

  10. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1981-01-01

    A neutron accelerator tube having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emmission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least 2. One cathode member located in the tube adjacent to the replenisher section may have a protuberant portion extending axially into the ioization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  11. Regulation on protection against ionizing radiations

    International Nuclear Information System (INIS)

    1995-01-01

    This regulation has as the objective to establish the criteria tending toward protecting the health of the population of the radiologic risks that can be derive from the employment of the ionizing radiations and similar activities. It establishes the requirements to comply with the radiactive installations, equipment transmitters of ionizing radiations, personal that works in them, operate the equipment and carry out any another similar activity such as: production, importation, exportation, transportation, transference of radioactive material or equipment generators of radiations ionizing. (S. Grainger) [es

  12. Ionized Outflows in 3-D Insights from Herbig-Haro Objects and Applications to Nearby AGN

    Science.gov (United States)

    Cecil, Gerald

    1999-01-01

    HST shows that the gas distributions of these objects are complex and clump at the limit of resolution. HST spectra have lumpy emission-line profiles, indicating unresolved sub-structure. The advantages of 3D over slits on gas so distributed are: robust flux estimates of various dynamical systems projected along lines of sight, sensitivity to fainter spectral lines that are physical diagnostics (reddening-gas density, T, excitation mechanisms, abundances), and improved prospects for recovery of unobserved dimensions of phase-space. These advantages al- low more confident modeling for more profound inquiry into underlying dynamics. The main complication is the effort required to link multi- frequency datasets that optimally track the energy flow through various phases of the ISM. This tedium has limited the number of objects that have been thoroughly analyzed to the a priori most spectacular systems. For HHO'S, proper-motions constrain the ambient B-field, shock velocity, gas abundances, mass-loss rates, source duty-cycle, and tie-ins with molecular flows. If the shock speed, hence ionization fraction, is indeed small then the ionized gas is a significant part of the flow energetics. For AGN'S, nuclear beaming is a source of ionization ambiguity. Establishing the energetics of the outflow is critical to determining how the accretion disk loses its energy. CXO will provide new constraints (especially spectral) on AGN outflows, and STIS UV-spectroscopy is also constraining cloud properties (although limited by extinction). HHO's show some of the things that we will find around AGN'S. I illustrate these points with results from ground-based and HST programs being pursued with collaborators.

  13. Ionization Efficiency in the Dayside Martian Upper Atmosphere

    Science.gov (United States)

    Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.

    2018-04-01

    Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.

  14. Ionizing radiation

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1982-01-01

    The subject is discussed under the headings: characteristics of ionizing radiations; biological effects; comparison of radiation and other industrial risks; principles of protection; cost-benefit analysis; dose limits; the control and monitoring of radiation; reference levels; emergency reference levels. (U.K.)

  15. In-Source Laser Resonance Ionization at ISOL Facilities

    CERN Document Server

    Marsh, Bruce; Feddosseev, Valentin

    Resonance ionization laser ion source development has been carried out at two radioactive ion beam facilities: ISOLDE (CERN, Switzerland) and the IGISOL facility (Jyvaskyla, Finland). The scope of the Resonance Ionization Laser Ion Source has been extended to 27 elements with the development of new three-step ionization schemes for Sb, Sc, Dy, Y and Au. The efficiencies were determined to be in the range of 2 - 20 %. Additionally, a new two-step ionization scheme has been developed for bismuth in an off-line atomic beam unit. The scheme relies on ionization via a strong and broad auto-ionizing resonance at an energy of 63196.79 cm$^{−1}$. This scheme may offer an improvement over the existing RILIS efficiency and will be more convenient for use during resonance ionization spectroscopy of Bi isotopes. The RILIS can be used as a spectroscopic tool to probe features such as the hyperfine structures and the isotope-shifts of radioisotopes with low production rates. By coupling a laser scanning process that dire...

  16. Extremely-high vacuum pressure measurement by laser ionization

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  17. Display of charged ionizing particles

    International Nuclear Information System (INIS)

    Cano S, D.; Ortiz A, M. D.; Amarillas S, L. E.; Vega C, H. R.

    2017-10-01

    The human being is exposed to sources of ionizing and non-ionizing radiation, both of natural or anthropogenic origin. None of these, except non-ionizing such as visible light and infrared radiation, can be detected by the sense of sight and touch respectively. The sun emits charged particles with speeds close to the light that interact with the atoms of the gases present in the atmosphere, producing nuclear reactions that in turn produce other particles that reach the surface of the Earth and reach the living beings. On Earth there are natural radioisotopes that, when they disintegrate, emit ionizing radiation that contributes to the dose we receive. A very old system that allows the visualization of the trajectories of the charged ionizing particles is the Fog Chamber that uses a saturated steam that when crossed by particles with mass and charge, as alpha and beta particles produce condensation centers along its path leaves a trace that can be seen. The objective of this work was to build a fog chamber using easily accessible materials. To measure the functioning of the fog chamber, cosmic rays were measured, as well as a source of natural metal uranium. The fog chamber allowed seeing the presence of traces in alcohol vapor that are produced in a random way. Introducing the uranium foil inside the fog chamber, traces of alpha particles whose energy varies from 4 to 5 MeV were observed. (Author)

  18. Characteristics of a Dry Fog Ionizer

    International Nuclear Information System (INIS)

    Murata, Y; Kudo, Y; Yonezawa, M

    2008-01-01

    The newly developed 'Dry Fog Ionizer' generates charged dry fog. The dry fog consists of very fine water droplets 8μm in mean diameter. This system consists of a dry fog nozzle (H.Ikeuchi and Co., LTD.), a ring electrode for induction charging (50mm outside diameter, and 10mm thick) in front of the nozzle, and a fan for dissipating charged dry fog. The ring electrode is DC or AC-biased and fine droplets ejected from the nozzle are electrified by induction charging. The particle size of the charged water droplets are reduced through evaporation during the transporting process by air flow, and completely evaporate approximately 2m from the nozzle under normal atmospheric conditions (25 deg. C, 60%R.H.) leaving high density ions. Using this system, high density ionic space charge can be realized in a remote spot from the ionizer. By this principle, the Dry Fog Ionizer shows strong charge-eliminating ability in the region away from the ionizer. When a dc bias of 5kV was applied to a ring electrode with the rate of water flow from the nozzle being 21/h, an ionic space-charge density of 1200nC /m 3 was able to be obtained at a distance 2m away from the ionizer, which was 10 2 times the value produced by an ordinary corona-type ionizer with an air blower.

  19. Visualization of complex DNA damage along accelerated ions tracks

    Science.gov (United States)

    Kulikova, Elena; Boreyko, Alla; Bulanova, Tatiana; Ježková, Lucie; Zadneprianetc, Mariia; Smirnova, Elena

    2018-04-01

    The most deleterious DNA lesions induced by ionizing radiation are clustered DNA double-strand breaks (DSB). Clustered or complex DNA damage is a combination of a few simple lesions (single-strand breaks, base damage etc.) within one or two DNA helix turns. It is known that yield of complex DNA lesions increases with increasing linear energy transfer (LET) of radiation. For investigation of the induction and repair of complex DNA lesions, human fibroblasts were irradiated with high-LET 15N ions (LET = 183.3 keV/μm, E = 13MeV/n) and low-LET 60Co γ-rays (LET ≈ 0.3 keV/μm) radiation. DNA DSBs (γH2AX and 53BP1) and base damage (OGG1) markers were visualized by immunofluorecence staining and high-resolution microscopy. The obtained results showed slower repair kinetics of induced DSBs in cells irradiated with accelerated ions compared to 60Co γ-rays, indicating induction of more complex DNA damage. Confirming previous assumptions, detailed 3D analysis of γH2AX/53BP1 foci in 15N ions tracks revealed more complicated structure of the foci in contrast to γ-rays. It was shown that proteins 53BP1 and OGG1 involved in repair of DNA DSBs and modified bases, respectively, were colocalized in tracks of 15N ions and thus represented clustered DNA DSBs.

  20. Conceptual basis of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Payne, M.G.

    1984-04-01

    Resonance Ionization Spectroscopy (RIS) can b defined as a state-selective detection process in which tunable lasers are used to promote transitions from the selected state of the atoms or molecules in question to higher states, one of which will be ionized by the absorption of another photon. At least one resonance step is used in the stepwise ionization process, and it has been shown that the ionization probability of the spectroscopically selected species can nearly always be made close to unity. Since measurements of the number of photoelectrons or ions can be made very precisely and even one electron (or under vacuum conditions, one ion) can be detected, the technique can be used to make quantitative measurements of very small populations of the state-selected species. Counting of individual atoms has special meaning for detection of rare events. The ability to make saturated RIS measurements opens up a wide variety of applications to both basic and applied research. We view RIS as a specific type of multi-photon ionization in which the goal is to make quantitative measurements of quantum-selected populations in atomic or molecular systems. 16 references

  1. A large streamer chamber muon tracking detector in a high-flux fixed-target application

    CERN Document Server

    Adams, D; Adeva, B; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garabatos, C; Garzón, J A; Gaussiran, T; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Golutvin, I A; Gómez-Tato, A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiryushin, Yu T; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Lau, K; Layda, T; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Pereira, H; Penzo, Aldo L; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Rädel, G; Reyhancan, I; Reicherz, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Sanders, D; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sergeev, S; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Thers, D; Tlaczala, W; Trentalange, S; Tripet, A; Tzamouranis, Yu; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zamiatin, N I; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    Arrays of limited streamer tubes of the Iarocci type were deployed in our experiment at CERN as part of a forward muon detector system with provisions for the beam to pass through the center of each panel in the array. A total of sixteen 4 m x 4 m panels were assembled with inductive readout strips on both sides of each panel. An active feedback system was deployed to regulate the high voltage to the streamer tubes to insure a constant efficiency for minimum ionizing particles. The arrays were operated in this environment for over five years of data taking. Streamer tube track-reconstruction efficiencies and tube replacement rates are reported.

  2. Electronegative Plasma Equilibria with Spatially-Varying Ionization

    Science.gov (United States)

    Lieberman, M. A.; Kawamura, E.; Lichtenberg, A. J.

    2012-10-01

    Electronegative inductive discharges in higher pressure ranges typically exhibit localized ionization near the coil structure, with decay of the ionization into the central discharge. We use a two-dimensional fluid code [1] with chlorine feedstock to determine the spatial profiles of the plasma parameters in a cylindrical transformer-coupled plasma device excited by a planar coil. To compare with one-dimensional (1D) analytic modeling, the results are area-averaged. The ionization is found to decay roughly exponentially along the axial direction, allowing the ansatz of an exponentially decaying ionization to be used in a 1D computational model. The model captures the main features of the axial variations of the area-averaged fluid simulation, indicating that the main diffusion mechanisms act along the axial direction. A simple analytic global discharge model is developed, accounting for the asymmetric density and ionization profiles. The global model gives the scalings with power and pressure of volume-averaged densities, electron temperature, and ionization decay rate, also in reasonable agreement with the scalings obtained by averaging the simulation results. [4pt] [1] E. Kawamura, D.B. Graves, and M.A. Lieberman, Plasma Sources Sci. Technol. 20, 035009 (2012)

  3. Commercial applications of food ionization in France

    International Nuclear Information System (INIS)

    Santos, Pierre-Louis

    1994-01-01

    Due to the long history of nuclear energy in France, French public is not frightened by nuclear applications in its everyday life. The first industrial initiative on food ionization dates back to 1956. In 1980, the Joint Expert Committee on Food Ionization concluded that food ionization up to a certain maximum dose presented neither toxicological nor nutritional hazard. This opened the new era for the industrial development. But in 1988, a draft directive to harmonize national legislations was issued by the Commission of European Communities. This stopped many industrial initiatives due to uncertainty. It is estimated that nearly 14,000 tons of various food items have been ionized in France in 1991. About 40% are spices, followed by dry fruit, vegetables, and deboned poultry meat. Most of the present applications are intended to eliminate microorganisms. In 1992, 8 industrial facilities were in operation, mostly using gamma sources. Local research associations were founded to promote food ionization. Food ionization development in the past 30 years has been rapid and important, but the future of this process depends on the European harmonization of legislations. (K.I.)

  4. A simplified Track Assembler I/O for the Muon Trigger Track Finder

    CERN Document Server

    Dallavalle, Gaetano-Marco; Genchev, Vladimir; Grandi, Claudio; Neumeister, Norbert; Porth, Paul; Rohringer, Herbert

    1998-01-01

    One of the architectural concerns in the present design of the Muon Trigger Track Finder ( MTTF) is the large number of inputs to the Track Assembler ( TA). In the TA block, input track segment pairs from many Extrapolation Units ( EU) are associated into tracks. The relative contribution of these inputs to the assembled tracks is studied with simulated track patterns for low and high pt muons over the entire eta, phi acceptance of the CMS barrel. A pruning of the EUs is proposed which does not alter the performance of the Track Finder and minimizes the interconnections between azimuthal wedges.

  5. Addition of photosensitive dopants to the D0 liquid argon calorimeter

    International Nuclear Information System (INIS)

    Amos, N.A.; Anderson, D.F.

    1992-10-01

    The addition of photosensitive dopants to liquid argon greatly enhances the signal from heavily ionizing particles. Since binding energy losses we correlated with the heavily ionizing component in hadronic showers, the addition of photosensitive dopants has been suggested as a mechanism to tune the e/π ratio in liquid argon calorimeters. A measurement was performed at the FNAL test beam, adding 4 ppM tetramethylgermanium to the Dφ uranium-liquid argon calorimeter. An increase in response for electromagnetic and hadronic showers was observed, with no net change in the e/π ratio

  6. Labeling Human Mesenchymal Stem Cells with Gold Nanocages for in vitro and in vivo Tracking by Two-Photon Microscopy and Photoacoustic Microscopy

    Science.gov (United States)

    Zhang, Yu Shrike; Wang, Yu; Wang, Lidai; Wang, Yucai; Cai, Xin; Zhang, Chi; Wang, Lihong V.; Xia, Younan

    2013-01-01

    Stem cell tracking is a highly important subject. Current techniques based on nanoparticle-labeling, such as magnetic resonance imaging, fluorescence microscopy, and micro-computed tomography, are plagued by limitations including relatively low sensitivity or penetration depth, involvement of ionizing irradiation, and potential cytotoxicity of the nanoparticles. Here we introduce a new class of contrast agents based on gold nanocages (AuNCs) with hollow interiors and porous walls to label human mesenchymal stem cells (hMSCs) for both in vitro and in vivo tracking using two-photon microscopy and photoacoustic microscopy. As demonstrated by the viability assay, the AuNCs showed negligible cytotoxicity under a reasonable dose, and did not alter the differentiation potential of the hMSCs into desired lineages. We were able to image the cells labeled with AuNCs in vitro for at least 28 days in culture, as well as to track the cells that homed to the tumor region in nude mice in vivo. PMID:23946820

  7. Absorbed dose measurement by using tissue equivalent ionization chamber (pair ionization chamber) in the Yayoi reactor

    International Nuclear Information System (INIS)

    Sasuga, N.; Okamura, K.; Terakado, T.; Mabuchi, Y.; Nakagawa, T.; Sukegawa, Toshio; Aizawa, C.; Saito, I.; Oka, Yoshiaki

    1998-01-01

    Each dose rate of neutron and gamma ray in the thermal column of the Yayoi reactor, in which an epithermal neutron field will be used for the boron neutron capture therapy, was measured by using a tissue equivalent ionization chamber and a graphite chamber. The tissue equivalent ionization chamber has some response to both neutron and gamma ray, but the graphite chamber has a few response to the neutron, so called pair ionization chamber method. The epithermal neutron fluxes of the thermal column were calculated by ANISN (one dimensional neutron-gamma transport code). A measured value for gamma dose rate by the pair ionization chamber agrees relevantly with a calculated result. For neutron dose rate, however, the measured value was too much small in comparison with the calculated result. The discrepancy between the measured value and the calculated result for neutron dose rate is discussed in detail in the report. (M. Suetake)

  8. Ionizing radiation

    Science.gov (United States)

    Tobias, C. A.; Grigoryev, Y. G.

    1975-01-01

    The biological effects of ionizing radiation encountered in space are considered. Biological experiments conducted in space and some experiences of astronauts during space flight are described. The effects of various levels of radiation exposure and the determination of permissible dosages are discussed.

  9. Progress on untargeted effects of ionizing irradiation

    International Nuclear Information System (INIS)

    Liu Jing; Chen Jihong; Li Wenjian

    2010-01-01

    The side effect of ionizing irradiation has been paid more attention with its widely using in tumor treating and mutation breeding. In recent years, untargeted effects induced by ionizing irradiation have become a hotspot of radiobiology. Here, according to reported results, we reviewed the types (genomic instability, bystander effect and adaptive response) and mechanisms of untargeted effects of ionizing irradiation in this paper. (authors)

  10. Solar tracking system

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  11. Apparatus for reading and recharging condenser ionization chambers

    International Nuclear Information System (INIS)

    McCall, R.C.

    1977-01-01

    A metering circuit for a condenser ionization chamber is disclosed for simultaneously recharging the ionization chamber and reading out the amount of charge required to recharge the chamber. During the recharging process, the amount of charge necessary to recharge the ionization chamber capacitor is placed on an integrating capacitor in the metering apparatus. The resultant voltage across the integrating capacitor is a measure of the radiation to which the ionization chamber was exposed. 9 claims, 1 figure

  12. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  13. Transport processes in ionized gases

    International Nuclear Information System (INIS)

    Kremer, G.M.

    1997-01-01

    Based on kinetic theory of gases and on the combined of Chapman-Enskog and Grad, the laws of Ohm, Fourier and Navier-Stokes are derived for a non-relativistic fully ionized gas. Moreover, the combined method is applied to the BGK model of the relativistic Boltzmann equation and the Ohm's law is derived for a relativistic fully ionized gas. (author)

  14. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors.

    Science.gov (United States)

    Karas, M; Glückmann, M; Schäfer, J

    2000-01-01

    A new model for the ionization processes in UV matrix-assisted laser desorption/ionization (MALDI) which accounts for the major phenomena observed is presented and discussed. The model retains elements of earlier approaches, such as photoionization and photochemical reactions, but it redefines these in the light of new working questions, most importantly why only singly charged ions are detected. Based on experimental evidence, the formation of singly and multiply charged clusters by a deficiency/excess of ions and also by photoionization and subsequent photochemical processes is pointed out to be the major ionization processes, which typically occur in parallel. The generation of electrons and their partial loss into the surrounding vacuum and solid, on the one hand, results in a positively charged ion-neutral plume facilitating a high overall ionization yield. On the other hand, these electrons, and also the large excess of protonated matrix ions in the negative ion mode, induce effective ion reneutralization in the plume. These neutralization processes are most effective for the highly charged cluster ions initially formed. Their fragmentation behaviour is evidenced in fast metastable fragmentation characteristics and agrees well with an electron capture dissociation mechanism and the enthalpy transfer upon neutralization forms the rationale for the prominent fragmentation and intense chemical noise accompanying successful MALDI. Within the course of the paper, cross-correlations with other desorption/ionization techniques and with earlier discussions on their mechanisms are drawn. Copyright 2000 John Wiley & Sons, Ltd.

  15. Ionizing energy treatment of poultry

    International Nuclear Information System (INIS)

    Mulder, R.W.A.W.

    1983-01-01

    The application of an ionizing energy treatment to poultry carcasses results in a decrease of the number of potentially pathogenic microorganisms, e.g. Salmonellae. At the same time the refrigerated shelf life of treated poultry products is considerably increased. To achieve these beneficial effects doses ranging from 2.00 to 9.00 kGy are needed, but in poultry doses over 5.00 kGy may cause undesirable side-effects. To asses the microbiological quality of ionizing radiation treated end-products adequate isolation methods should be used to include all sublethally injured microorganisms in the colony counts. The assessment of the required lethality of an ionizing energy treatment is difficult as D 10 (decimal reduction) - values depend greatly on several parameters

  16. Tenure-Track Science Faculty and the 'Open Access Citation Effect'

    Directory of Open Access Journals (Sweden)

    R. Christopher Doty

    2013-02-01

    Full Text Available INTRODUCTION The observation that open access (OA articles receive more citations than subscription-based articles is known as the OA citation effect (OACE. Implicit in many OACE studies is the belief that authors are heavily invested in the number of citations their articles receive. This study seeks to determine what influence the OACE has on the decision-making process of tenure-track science faculty when they consider where to submit a manuscript for publication. METHODS Fifteen tenure-track faculty members in the Departments of Biology and Chemistry at the University of North Carolina at Chapel Hill participated in semi-structured interviews employing a variation of the critical incident tecnique. RESULTS Seven of the fifteen faculty members said they would consider making a future article freely-available based on the OACE. Due to dramatically different expectations with respect to the size of the OACE, however, only one of them is likely to seriously consider the OACE when deciding where to submit their next manuscript for publication. DISCUSSION Journal reputation and audience, and the quality of the editorial and review process are the most important factors in deciding where to submit a manuscript for publication. Once a subset of journals has satisfied these criteria, financial and access issues compete with the OACE in making a final decision. CONCLUSION In order to increase the number of OA materials, librarians should continue to emphasize depositing pre- and post-prints in disciplinary and institutional repositories and retaining the author rights prior to publication in order to make it possible to do so.

  17. AFM of metallic nano-particles and nano-structures in heavily irradiated NaCl

    OpenAIRE

    Gaynutdinov, R; Vainshtein, DI; Hak, SJ; Tolstikhina, A; Den Hartog, HW

    2003-01-01

    AFM investigations are reported for heavily, electron irradiated NaCl crystals in ultra high vacuum (UHV) in the non-contact mode-with an UHV AFM/STM Omicron system. To avoid chemical reactions between the radiolytic Na and oxygen and water, the irradiated samples were cleaved and prepared for the experiments in UHV At the surface of freshly cleaved samples, we have observed sodium nano-precipitates with shapes, which depend on the irradiation dose and the volume fraction of the radiolytic Na...

  18. Stored energy and annealing behavior of heavily deformed aluminium

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Kondo, Yuka

    2012-01-01

    It has been demonstrated in previous work that a two-step annealing treatment, including a low-temperature, long-time annealing and a subsequent high-temperature annealing, is a promising route to control the microstructure of a heavily deformed metal. In the present study, structural parameters...... are quantified such as boundary spacing, misorientation angle and dislocation density for 99.99% aluminium deformed by accumulative roll-bonding to a strain of 4.8. Two different annealing processes have been applied; (i) one-step annealing for 0.5 h at 100-400°C and (ii) two-step annealing for 6 h at 175°C...... followed by 0.5 h annealing at 200-600°C, where the former treatment leads to discontinuous recrystallization and the latter to uniform structural coarsening. This behavior has been analyzed in terms of the relative change during annealing of energy stored as elastic energy in the dislocation structure...

  19. Laser ablation/ionization studies in a glow discharge

    International Nuclear Information System (INIS)

    Hess, K.R.; Harrison, W.W.

    1985-01-01

    The pin cathode glow discharge is used in the laboratory as an atomization/ionization source for a variety of applications, including solids mass spectrometry. Coupled with a tunable dye laser, the glow discharge may also serve as an atom reservoir for resonance ionization mass spectrometry in which the laser ionizes the discharge sputtered atoms. By tightly focusing the laser onto solid samples, various ablation effects may also be investigated. The laser may be used to generate an ionized plasma which may be directly analyzed by mass spectrometry. Alternatively, the ablated neutral atoms may be used in post-ablation excitation/ionization processes, in this case the glow discharge. The results of these investigations are the basis of this paper

  20. Atom ionization in a nonclassical intense electromagnetic field

    International Nuclear Information System (INIS)

    Popov, A.M.; Tikhonova, O.V.

    2002-01-01

    The atoms ionization process in the intense nonclassical electromagnetic field is considered. It is shown that depending on the field quantum state the probability of ionization may essentially change even by one and the same average quantum number in the radiation mode, whereby the difference in the ionization rates is especially significant in the case, when the ionization process is of a multiphoton character. It is demonstrates in particular, that the nonclassical field may be considerably more intensive from the viewpoint of the atoms ionization, than the classical field with the same intensity. The peculiarities of the decay, related to the atomic system state in the strong nonclassical field beyond the perturbation theory frames are studied [ru

  1. Ghost peaks observed after atmospheric pressure matrix-assisted laser desorption/ionization experiments may disclose new ionization mechanism of matrix-assisted hypersonic velocity impact ionization.

    Science.gov (United States)

    Moskovets, Eugene

    2015-08-30

    Understanding the mechanisms of matrix-assisted laser desorption/ionization (MALDI) promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample had been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laser-less matrix-assisted ionization. An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser had been turned off and the MALDI sample removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly and doubly charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. The observations were partially consistent

  2. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  3. Surface ionization mass spectrometry of opiates

    International Nuclear Information System (INIS)

    Usmanov, D.T.

    2009-07-01

    Key words: surface ionization, adsorption, heterogeneous reactions, surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy, thermoemitter, opiates, extracts of biosamples. Subjects of study. The mass - spectrometric study of thermal - ion emission: surface ionization of opiates by on the surface of oxidized refractory metals. Purpose of work is to establish the regularities of surface ionization (SI) of multi-atomic molecule opiates and their mixtures develop the scientific base of SI methods for high sensitive and selective detection and analysis of these substances in the different objects, including biosamples. Methods of study: surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy. The results obtained and their novelty. For the first time, SI of molecule opiates on the oxidized tungsten surface has been studied and their SI mass-spectra and temperature dependences of ion currents have been obtained, the characteristic heterogeneous reactions of an adsorbed molecules and the channels of monomolecular decays vibrationally-excited ions on their way in mass-spectrometry have been revealed, sublimation energy has been defined, the activation energy of E act , of these decays has been estimated for given period of time. Additivity of the SI mass-spectra of opiate mixtures of has been established under conditions of joint opiate adsorption. High selectivity of SI allows the extracts of biosamples to be analyzed without their preliminary chromatographic separation. The opiates are ionized by SI with high efficiency (from 34 C/mol to 112 C/mol), which provides high sensitivity of opiate detection by SI/MS and APTDSIS methods from - 10 -11 g in the samples under analysis. Practical value. The results of these studies create the scientific base for novel SI methods of high sensitive detection and analysis of the trace amounts of opiates in complicated mixtures, including biosamples without their preliminary

  4. Gas ionization by focused laser beams

    International Nuclear Information System (INIS)

    Brito, A.L. de.

    1984-01-01

    It is shown that the effect of line broadening by focusing may considerably contribute to the observed laser-induced ionization of gases when the ionization energy of the gas molecules is well above the mean photon energy of the laser radiation. (Author) [pt

  5. The theory of ionizing shock waves in a magnetic field

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1981-01-01

    The general theory of ionizing shock waves in a magnetic field is constructed. The theory takes into account precursor ionization of a neutral gas ahead of the shock wave front, caused by photo-ionization, as well as by the impact ionization with electrons accelerated by a transverse electric field induced by the shock front in the incident flow of a neutral gas. The concept of shock wave ionization stability, being basic in the theory of ionizing shock waves in a magnetic field, is introduced. The ionizing shock wave structures are shown to transform from the GD regime at a low shock velocity to the MHD regime at an enhanced intensity of the shock wave. The abruptness of such a transition is determined by precursor photo-ionization. (author)

  6. Molecular single photon double K-shell ionization

    International Nuclear Information System (INIS)

    Penent, F.; Nakano, M.; Tashiro, M.; Grozdanov, T.P.; Žitnik, M.; Carniato, S.; Selles, P.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Shigemasa, E.; Iwayama, H.; Hikosaka, Y.; Soejima, K.; Suzuki, I.H.; Kouchi, N.; Ito, K.

    2014-01-01

    We have studied single photon double K-shell ionization of small molecules (N 2 , CO, C 2 H 2n (n = 1–3), …) and the Auger decay of the resulting double core hole (DCH) molecular ions thanks to multi-electron coincidence spectroscopy using a magnetic bottle time-of-flight spectrometer. The relative cross-sections for single-site (K −2 ) and two-site (K −1 K −1 ) double K-shell ionization with respect to single K-shell (K −1 ) ionization have been measured that gives important information on the mechanisms of single photon double ionization. The spectroscopy of two-site (K −1 K −1 ) DCH states in the C 2 H 2n (n = 1–3) series shows important chemical shifts due to a strong dependence on the C-C bond length. In addition, the complete cascade Auger decay following single site (K −2 ) ionization has been obtained

  7. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Yunguang Huang

    2015-01-01

    Full Text Available A vacuum ultraviolet lamp based single photon ionization- (SPI- photoelectron ionization (PEI portable reflecting time-of-flight mass spectrometer (TOFMS was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX, SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1 with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear.

  8. Experimental comparison of models for ultrafast impact ionization is silicon

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Jepsen, Peter Uhd

    2016-01-01

    We compare experimentally the exponential and quadratic (Keldysh formula) impact ionization models using THz induced impact ionization in silicon. We demonstrate that the exponential model offers the best description of impact ionization process for ultrashort electric filed pulses.......We compare experimentally the exponential and quadratic (Keldysh formula) impact ionization models using THz induced impact ionization in silicon. We demonstrate that the exponential model offers the best description of impact ionization process for ultrashort electric filed pulses....

  9. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  10. Ionizing radiations, detection, dosimetry, spectrometry

    International Nuclear Information System (INIS)

    Blanc, D.

    1997-10-01

    A few works in French language are devoted to the detection of radiations. The purpose of this book is to fill a gap.The five first chapters are devoted to the properties of ionizing radiations (x rays, gamma rays, leptons, hadrons, nuclei) and to their interactions with matter. The way of classification of detectors is delicate and is studied in the chapter six. In the chapter seven are studied the statistics laws for counting and the spectrometry of particles is treated. The chapters eight to thirteen study the problems of ionization: charges transport in a gas, ionization chambers (theory of Boag), counters and proportional chambers, counters with 'streamers', chambers with derive, spark detectors, ionization chambers in liquid medium, Geiger-Mueller counters. The use of a luminous signal is the object of the chapters 14 to 16: conversion of a luminous signal in an electric signal, scintillators, use of the Cerenkov radiation. Then, we find the neutron detection with the chapter seventeen and the dosimetry of particles in the chapter eighteen. This book does not pretend to answer to specialists questions but can be useful to physicians, engineers or physics teachers. (N.C.)

  11. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopesa

    OpenAIRE

    Kudryavtsev, Yuri; Ferrer, Rafael; Huyse, Mark; Van den Bergh, Paul; Van Duppen, Piet; Vermeeren, L.

    2014-01-01

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented. © 2013 AIP Publishing LLC.

  12. Resonantly-enhanced two-photon ionization and mass-analyzed threshold ionization (MATI) spectroscopy of 2-hydroxypyridine

    CERN Document Server

    Lee, D H; Choi, K W; Choi, Y S; Kim, S K

    2002-01-01

    Mass-analyzed threshold ionization (MATI) spectra of 2-hydroxypyridines existing as lactims (2-pyridionl) in a molecular beam are obtained via (1+1') two-photon process to give accurate ionization energies of 8.9344 +- 0.0005 and 8.9284 +- 0.0005 eV for 2-pyridinol (2Py-OH) and its deuterated analogue (2Py-OD), respectively. Resonantly-enhanced two-photon ionization spectra of these compounds are also presented to give vibrational structures of their S sub 1 states. Vibrational frequencies of 2Py-OH and 2Py-OD in ionic ground states are accurately determined from MATI spectra taken via various S sub 1 intermediate states, and associated vibrational modes are assigned with the aid of ab initio calculations.

  13. Electron impact ionization of large krypton clusters

    Institute of Scientific and Technical Information of China (English)

    Li Shao-Hui; Li Ru-Xin; Ni Guo-Quan; Xu Zhi-Zhan

    2004-01-01

    We show that the detection of ionization of very large van der Waals clusters in a pulsed jet or a beam can be realized by using a fast ion gauge. Rapid positive feedback electron impact ionization and fragmentation processes,which are initially ignited by electron impact ionization of the krypton clusters with the electron current of the ion gauge, result in the appearance of a progressional oscillation-like ion spectrum, or just of a single fast event under critical conditions. Each line in the spectrum represents a correlated explosion or avalanche ionization of the clusters.The phenomena have been analysed qualitatively along with a Rayleigh scattering experiment of the corresponding cluster jet.

  14. The role of multiple ionization and subshell coupling effects in L-shell ionization of Au by oxygen ions

    International Nuclear Information System (INIS)

    Banas, D.; Braziewicz, J.; Pajek, M.; Semaniak, J.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2002-01-01

    The ionization of L-subshell electrons in gold by the impact of 0.4-2.2 MeV amu -1 O ions was studied by observing excited Lγ(L-N, O) x-rays. We demonstrate that both the multiple ionization in outer M- and N-shells as well as the coupling effects in the L-shell play an important role in understanding the measured L-subshell ionization cross sections. The multiple ionization was found to be important in two aspects: first, the analysis of x-ray energy shifts and line broadening was crucial for proper interpretation of measured x-ray spectra; second, the additional vacancies in the M- and N-shells substantially influenced the L 1 -subshell fluorescence and Coster-Kronig (CK) yields, mainly by closing strong L 1 -L 3 M 4,5 CK transitions. The data are compared with the simplified coupled-channels calculations using the 'coupled-subshell model' (CSM) based on the semiclassical approximation (SCA), which describes both direct Coulomb ionization as well as the L-subshell couplings within the same theoretical approach. A good agreement of the present data with the theoretical predictions based on the discussed SCA-CSM approach is observed. Present findings partly explain the long-standing problem of inadequate theoretical description of L-shell ionization by heavy ion impact. (author)

  15. Study of surface ionization and LASER ionization processes using the SOMEIL ion source: application to the Spiral 2 laser ion source development

    Energy Technology Data Exchange (ETDEWEB)

    Bajeat, O., E-mail: bajeat@ganil.fr; Lecesne, N.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M. [GANIL (France); Maitre, A.; Pradeilles, N. [Laboratoire Science des Procedes Ceramiques et de Traitements de Surface (SPCTS) 12 (France)

    2013-04-15

    SPIRAL2 is the new project under construction at GANIL to provide radioactive ion beams to the Nuclear Physics Community and in particular neutron rich ion beams. For the production of condensable radioactive elements, a resonant ionization laser ion source is under development at GANIL. In order to generate the ions of interest with a good selectivity and purity, our group is studying the way to minimize surface ionization process by using refractory materials with low work function as ionizer tube. To do those investigations a dedicated ion source, called SOMEIL (Source Optimisee pour les Mesures d'Efficacite d'Ionisation Laser) is used. Numerous types of ionizer tubes made in various materials and geometry are tested. Surface ionization and laser ionization efficiencies can be measured for each of them.

  16. A computer program TRACK_P for studying proton tracks in PADC detectors

    Directory of Open Access Journals (Sweden)

    D. Nikezic

    2016-01-01

    Full Text Available A computer program for studying proton tracks in solid state nuclear track detectors was developed and described in this paper. The program was written in Fortran 90, with an additional tool for visualizing the track appearance as seen under the optical microscope in the transmission mode, which was written in the Python programming language. Measurable track parameters were determined and displayed in the application window and written in a data file. Three-dimensional representation of tracks was enabled. Examples of calculated tracks were also given in the present paper.

  17. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-04-13

    In this thesis, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the rst evaluation of many state of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. We also present a simulator that can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV "in the field", as well as, generate synthetic but photo-realistic tracking datasets with free ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator will be made publicly available to the vision community to further research in the area of object tracking from UAVs. Additionally, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by \\'handing over the camera\\' from one UAV to another. We integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  18. Effects of ionizing radiation on life

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    Radiobiology in the last years was able to find detailed explanations for the effects of ionizing radiation on living organisms. But it is still impossible to make exact statements concerning the damages by radiation. Even now, science has to content itself with probability data. Moreover no typical damages of ionizing radiation can be identified. Therefore, the risks of ionizing radiation can only be determined by comparison with the spontaneous rate of cancerous or genetic defects. The article describes the interaction of high-energy radiation with the molecules of the organism and their consequences for radiation protection. (orig.)

  19. Resonantly enhanced collisional ionization measurements of radionuclides

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1986-01-01

    The authors developed a new laser technique to analyze for radionuclides at extremely low levels. The technique, called resonantly enhanced collisional ionization (RECI), uses two nitrogen-laser pumped dye lasers to excite the target isotope to a high-energy Rydberg state. Atoms in these Rydberg states (within a few hundred wavenumbers in energy from the ionization threshold) efficiently ionize upon colliding with an inert gas and the ions can be detected by conventional means. The principal advantage of resonantly-enhanced collisional ionization is the extreme sensitivity coupled with its relative simplicity and low cost. Actinides typically have an ionization potential of about 6eV (uranium I.P. = 6.2 eV, plutonium I.P. = 5.7 eV). Two-step laser excitation to a state just below threshold requires wavelengths in the blue region of the visible spectrum. They showed that when both steps in the excitation process are resonant steps, relatively low-power lasers can populate the Rydberg state with almost unit efficiency. This is because the resonant excitations have much larger cross-sections than do photoionization processes. They also demonstrated that a few torr of a buffer gas will cause most of the excited-state atoms to be ionized

  20. Ionizing Radiation Processing Technology

    International Nuclear Information System (INIS)

    Rida Tajau; Kamarudin Hashim; Jamaliah Sharif; Ratnam, C.T.; Keong, C.C.

    2017-01-01

    This book completely brief on the basic concept and theory of ionizing radiation in polymers material processing. Besides of that the basic concept of polymerization addition, cross-linking and radiation degradation also highlighted in this informative book. All of the information is from scientific writing based on comprehensive scientific research in polymerization industry which using the radiation ionizing. It is very useful to other researcher whose study in Nuclear Sciencea and Science of Chemical and Material to use this book as a guideline for them in future scientific esearch.

  1. Radiation dependent ionization model

    International Nuclear Information System (INIS)

    Busquet, M.

    1991-01-01

    For laser created plasma simulation, hydrodynamics codes need a non-LTE atomic physics package for both EOS and optical properties (emissivity and opacity). However in XRL targets as in some ICF targets, high Z material can be found. In these cases radiation trapping can induce a significant departure from the optically thin ionization description. The authors present a method to change an existing LTE code into a non-LTE code with coupling of ionization to radiation. This method has very low CPU cost and can be used in 2D simulations

  2. Measurement of indoor background ionizing radiation in some ...

    African Journals Online (AJOL)

    Certain types of building materials are known to be radioactive. Exposure to indoor ionizing radiation like exposure to any other type of ionizing radiation results in critical health challenges. Measurement of the background ionizing radiation profile within the Chemistry Research Laboratory and Physics Laboratory III all of ...

  3. State of the Art of Hard and Soft Ionization Mass Spectrometry

    International Nuclear Information System (INIS)

    Helal, A.I.

    2008-01-01

    The principles of hard and soft ionization sources, providing some details on the practical aspects of their uses as well as ionization mechanisms are discussed. The conditions and uses of hard ionization methods such as electron impact, thermal ionization and inductively coupled plasma techniques are discussed. Moreover, new generation of soft ionization methods such as matrix-assisted laser desorption/ionization, electro spray ionization and direct analysis in real time are illustrated

  4. In situ observation of triple junction motion during recovery of heavily deformed aluminum

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hughes, Darcy A.; Hansen, Niels

    2015-01-01

    -junctions are pinned by deformation-induced interconnecting and lamellar boundaries, which slow down the recovery process and lead to a stop-go migration pattern. This pinning mechanism stabilizes the deformation microstructure, i.e. the structure is stabilized by balancing the driving and pinning forces controlling......Microstructural evolution during in situ annealing of heavily cold-rolled aluminum has been studied by transmission electron microscopy, confirming that an important recovery mechanism is migration of triple junctions formed by three lamellar boundaries (Y-junctions). The migrating Y...

  5. Nice Guys Finish Last: Are People with Higher Tax Morale Taxed more Heavily?

    OpenAIRE

    Philipp Doerrenberg; Denvil Duncan; Clemens Fuest; Andreas Peichl

    2012-01-01

    This paper is the first to provide evidence of efficient taxation of groups with heterogeneous levels of 'tax morale'. We set up an optimal income tax model where high tax morale implies a high subjective cost of evading taxes. The model predicts that 'nice guys finish last': groups with higher tax morale will be taxed more heavily, simply because taxing them is less costly. Based on unique cross-country micro data and an IV approach to rule out reverse causality, we find empirical support fo...

  6. Online 4D ultrasound guidance for real-time motion compensation by MLC tracking.

    Science.gov (United States)

    Ipsen, Svenja; Bruder, Ralf; O'Brien, Rick; Keall, Paul J; Schweikard, Achim; Poulsen, Per R

    2016-10-01

    With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation. The authors report the first results of combining these promising techniques-online 4D ultrasound guidance and MLC tracking-in a phantom. A software framework for real-time target localization was installed directly on a 4D ultrasound station and used to detect a 2 mm spherical lead marker inside a water tank. The lead marker was rigidly attached to a motion stage programmed to reproduce nine characteristic tumor trajectories chosen from large databases (five prostate, four lung). The 3D marker position detected by ultrasound was transferred to a computer program for MLC tracking at a rate of 21.3 Hz and used for real-time MLC aperture adaption on a conventional linear accelerator. The tracking system latency was measured using sinusoidal trajectories and compensated for by applying a kernel density prediction algorithm for the lung traces. To measure geometric accuracy, static anterior and lateral conformal fields as well as a 358° arc with a 10 cm circular aperture were delivered for each trajectory. The two-dimensional (2D) geometric tracking error was measured as the difference between marker position and MLC aperture center in continuously acquired portal images. For dosimetric evaluation, VMAT treatment plans with high and low modulation were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using 3%/3 mm and 2

  7. Historical survey of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1984-04-01

    We have recently celebrated the 10th birthday of Resonance Ionization Spectroscopy (RIS), and this seems an appropriate time to review the history of its development. Basically, RIS is a photophysics process in which tunable light sources are used to remove a valence electron from an atom of selected atomic number, Z. If appropriate lasers are used as the light source, one electron can be removed from each atom of the selected Z in the laser pulse. This implies that RIS can be a very efficient, as well as selective, ionization process. In what we normally call RIS, laser schemes are employed which preserve both of these features. In contrast, multiphoton ionization (MPI) is more general, although not necessarily Z selective or very efficient because resonances are often not used. Early research completed in the USSR and described as selective two-step photoionization, employed resonances to ionize the rubidium atom and served to guide work on laser isotope separation. 29 references, 8 figures

  8. Flagged uniform particle splitting for variance reduction in proton and carbon ion track-structure simulations

    Science.gov (United States)

    Ramos-Méndez, José; Schuemann, Jan; Incerti, Sebastien; Paganetti, Harald; Schulte, Reinhard; Faddegon, Bruce

    2017-08-01

    Flagged uniform particle splitting was implemented with two methods to improve the computational efficiency of Monte Carlo track structure simulations with TOPAS-nBio by enhancing the production of secondary electrons in ionization events. In method 1 the Geant4 kernel was modified. In method 2 Geant4 was not modified. In both methods a unique flag number assigned to each new split electron was inherited by its progeny, permitting reclassification of the split events as if produced by independent histories. Computational efficiency and accuracy were evaluated for simulations of 0.5-20 MeV protons and 1-20 MeV u-1 carbon ions for three endpoints: (1) mean of the ionization cluster size distribution, (2) mean number of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) classified with DBSCAN, and (3) mean number of SSBs and DSBs classified with a geometry-based algorithm. For endpoint (1), simulation efficiency was 3 times lower when splitting electrons generated by direct ionization events of primary particles than when splitting electrons generated by the first ionization events of secondary electrons. The latter technique was selected for further investigation. The following results are for method 2, with relative efficiencies about 4.5 times lower for method 1. For endpoint (1), relative efficiency at 128 split electrons approached maximum, increasing with energy from 47.2  ±  0.2 to 66.9  ±  0.2 for protons, decreasing with energy from 51.3  ±  0.4 to 41.7  ±  0.2 for carbon. For endpoint (2), relative efficiency increased with energy, from 20.7  ±  0.1 to 50.2  ±  0.3 for protons, 15.6  ±  0.1 to 20.2  ±  0.1 for carbon. For endpoint (3) relative efficiency increased with energy, from 31.0  ±  0.2 to 58.2  ±  0.4 for protons, 23.9  ±  0.1 to 26.2  ±  0.2 for carbon. Simulation results with and without splitting agreed within 1% (2 standard

  9. Electron impact ionization of the gas-phase sorbitol

    Science.gov (United States)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto

    2015-03-01

    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.

  10. UV Ionizer for Neutral Wind Mass Spectrometers

    Data.gov (United States)

    National Aeronautics and Space Administration — Current neutral particle instrumentation relies on hot cathode filaments or an electron gun for ionizing the target medium.  These ionization sources represent a...

  11. State and trends of ionization gas analysis. 1

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Grosse, H.J.; Popp, P.

    1980-01-01

    The ionization gas analysis makes use of the fact that the ionization-induced conductivity of gases and gas mixtures changes with the composition of such mixtures. A general description is given of ionization detectors based on this principle and theory, properties, and main fields of application of electron capture detectors are discussed

  12. Kalman Filter Track Fits and Track Breakpoint Analysis

    CERN Document Server

    Astier, Pierre; Cousins, R D; Letessier-Selvon, A A; Popov, B A; Vinogradova, T G; Astier, Pierre; Cardini, Alessandro; Cousins, Robert D.; Letessier-Selvon, Antoine; Popov, Boris A.; Vinogradova, Tatiana

    2000-01-01

    We give an overview of track fitting using the Kalman filter method in the NOMAD detector at CERN, and emphasize how the wealth of by-product information can be used to analyze track breakpoints (discontinuities in track parameters caused by scattering, decay, etc.). After reviewing how this information has been previously exploited by others, we describe extensions which add power to breakpoint detection and characterization. We show how complete fits to the entire track, with breakpoint parameters added, can be easily obtained from the information from unbroken fits. Tests inspired by the Fisher F-test can then be used to judge breakpoints. Signed quantities (such as change in momentum at the breakpoint) can supplement unsigned quantities such as the various chisquares. We illustrate the method with electrons from real data, and with Monte Carlo simulations of pion decays.

  13. Safe use of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    1973-01-01

    Based on the ''Code of Practice for the protection of persons against ionizing radiations arising from medical and dental use'' (CIS 74-423), this handbook shows how hospital staff can avoid exposing themselves and others to these hazards. It is designed particularly for junior and student nurses. Contents: ionizing radiations, their types and characteristics; their uses and dangers; basic principles in their safe use; safe use in practice; explanation of terms.

  14. Experiments on Coulomb ionization by charged particles

    International Nuclear Information System (INIS)

    Andersen, J.U.; Laegsgaard, E.; Lund, M.

    1978-01-01

    Inner-shell ionization by light projectiles, i.e., in very asymmetric collisions, is often denoted 'Coulomb ionization' because it is caused by the Coulomb interaction between the electron and the projectile. Although with little justification, the term is also used to distinquish such processes, in which the projectile Coulomb field is a small perturbation, from ionization in more violent, nearly symmetric ion-atom collisions. A discussion of Coulomb ionization of atomic K shells is given, with emphasis on experimental methods and results. The discussion is not intended as a review of the field but rather as a progress report on the anthor's work on the subject. A more detailed account was recently presented at the ICPEAC meeting in Paris. (Auth.)

  15. CIFOG: Cosmological Ionization Fields frOm Galaxies

    Science.gov (United States)

    Hutter, Anne

    2018-03-01

    CIFOG is a versatile MPI-parallelised semi-numerical tool to perform simulations of the Epoch of Reionization. From a set of evolving cosmological gas density and ionizing emissivity fields, it computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The code accounts for HII, HeII, HeIII recombinations, and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. This tool has been designed to be coupled to semi-analytic galaxy formation models or hydrodynamical simulations. The modular fashion of the code allows the user to easily introduce new descriptions for recombinations and the photoionization rate.

  16. Propagation of ionizing waves in glow discharge

    International Nuclear Information System (INIS)

    Suzuki, T.

    1977-01-01

    Ionizing waves were produced along the positive column of a glow discharge in air by applying an impulse voltage to an electrode at one end of the column. Five photomultipliers and three current-sensing coils were used to observe how the waves were affected by the rise time and the magnitude of the applied impulses and by the electron density in the positive column of the glow discharge. It is shown that the speed of the ionizing waves increases with the slope of the applied impulses and with the preexisting electron density. The electron density is augmented about 100--200 times due to the buildup of ionization at the front of the waves. The theory was developed to explain the property of ionizing waves

  17. The release of stored energy in heavily irradiated NaCl explosive reactions

    NARCIS (Netherlands)

    Vainshtein, D.; Bemt, M. van den; Seinen, J.; Datema, H.C.; Hartog, H.W. den

    1995-01-01

    During irradiation of NaCl with ionizing radiation at moderate temperatures (50-150 degrees C) irregular structures of very fine Na and Cl nano-precipitates are formed. The increase of the temperature to a value between 50 and 250 degrees C might induce explosive reactions between radiolytic Na and

  18. Framework conditions for tracking electricity in Europe. E-TRACK WP2 report

    International Nuclear Information System (INIS)

    Lise, W.; Boots, M.G.; De Joode, J.; Ten Donkelaar, M.; Timpe, C.; Vrolijk, C.

    2006-03-01

    The analysis of this report shows that context matters for tracking generation attributes. On the one hand, there are factors that enable the introduction of tracking, like previous experiences with green certificates. Some Member States have already gained experience with tracking generation attributes, which is required to disclose the generation mix to the consumer. On the other hand, there are factors that are making the introduction of tracking generation attributes in Europe more difficult, like the widely varying initiatives among Member States with respect to legislation on GOs and disclosure. Also the market conditions can be of influence. The varying degree of market opening matters, because the usefulness of tracking is lower in a market where a customer cannot switch among suppliers. The amount of electricity traded makes it difficult to link generation to consumption under contract-based tracking, while this is of no concern under certificate-based tracking. One of the ways towards overcoming the aforementioned barriers is harmonisation of schemes for tracking generation attributes

  19. Effects of ionizing radiation and steady magnetic field on erythrocytes

    International Nuclear Information System (INIS)

    Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.

    1996-01-01

    A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)

  20. Theory of steady-state plane tunneling-assisted impact ionization waves

    International Nuclear Information System (INIS)

    Kyuregyan, A. S.

    2013-01-01

    The effect of band-to-band and trap-assisted tunneling on the properties of steady-state plane ionization waves in p + -n-n + structures is theoretically analyzed. It is shown that such tunneling-assisted impact ionization waves do not differ in a qualitative sense from ordinary impact ionization waves propagating due to the avalanche multiplication of uniformly distributed seed electrons and holes. The quantitative differences of tunneling-assisted impact ionization waves from impact ionization waves are reduced to a slightly different relation between the wave velocity u and the maximum field strength E M at the front. It is shown that disregarding impact ionization does not exclude the possibility of the existence of tunneling-assisted ionization waves; however, their structure radically changes, and their velocity strongly decreases for the same E M . A comparison of the dependences u(E M ) for various ionization-wave types makes it possible to determine the conditions under which one of them is dominant. In conclusion, unresolved problems concerning the theory of tunneling-assisted impact ionization waves are discussed and the directions of further studies are outlined

  1. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    Science.gov (United States)

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  2. Global Lunar Gravity Field Determination Using Historical and Recent Tracking Data in Preparation for SELENE

    Science.gov (United States)

    Goossens, S.; Matsumoto, K.; Namiki, N.; Hanada, H.; Iwata, T.; Tsuruta, S.; Kawano, N.; Sasaki, S.

    2006-12-01

    In the near future, a number of satellite missions are planned to be launched to the Moon. These missions include initiatives by China, India, the USA, as well as the Japanese SELENE mission. These missions will gather a wealth of lunar data which will improve the knowledge of the Moon. One of the main topics to be addressed will be the lunar gravity field. Especially SELENE will contribute to improving the knowledge of the gravity field, by applying 4-way Doppler tracking between the main satellite and a relay satellite, and by applying a separate differential VLBI experiment. These will improve the determination of the global gravity field, especially over the far side and at the lower degrees (mostly for degrees lower than 30), as is shown by extensive simulations of the SELENE mission. This work focuses on the determination of the global lunar gravity field from all available tracking data to this date. In preparation for the SELENE mission, analysis using Lunar Prospector tracking data, as well as Clementine data and historical data from the Apollo and Lunar Orbiter projects is being conducted at NAOJ. Some SMART-1 tracking data are also included. The goal is to combine the good-quality data from the existing lunar missions up to this date with the tracking data from SELENE in order to derive a new lunar gravity field model. The focus therefore currently lies on processing the available data and extracting lunar gravity field information from them. It is shown that the historical tracking data contribute especially to the lower degrees of the global lunar gravity field model. Due to the large gap in tracking data coverage over the far side for the historical data, the higher degrees are almost fully determined by the a priori information in the form of a Kaula rule. The combination with SELENE data is thus expected to improve the estimate for the lower degrees even further, including coverage of the far side. Since historical tracking data are from orbits with

  3. Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA-MS.

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Hoffmann, Thorsten

    2016-02-01

    Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric-pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. [M + H](+) and [M - H](-) in the positive and the negative mode, respectively. It was found that FAPA-MS is best suited for polar analytes containing nitrogen and/or oxygen functionalities, e.g. carboxylic acids, with low molecular weights and relatively high vapor pressures. In addition, the source was used in proof-of-principle studies, illustrating the capabilities and limitations of the technique: Firstly, traces of cocaine were detected and unambiguously identified on euro banknotes using FAPA ionization in combination with tandem MS, suggesting a correlation between cocaine abundance and age of the banknote. Secondly, FAPA-MS was used for the identification of acidic marker compounds in organic aerosol samples, indicating yet-undiscovered matrix and sample surface effects of ionization pathways in the afterglow region. Copyright © 2016 John Wiley & Sons, Ltd.

  4. The ratio of double to single ionization of helium: The relationship of photon and bare charged particle impact ionization

    International Nuclear Information System (INIS)

    Manson, S.T.

    1994-01-01

    In this paper the author derives expressions for the ratio of double to single ionization of helium from its ground state, by both single photons, and charged particle impact. He shows that in the limit of large reduced incident energy T of a charged particle, that the ratio of the double to single ionization cross sections at some energy transfer ΔE is equal to the ratio of photoionization cross sections for a photon of energy hν = ΔE, independent of T. He then goes on to find a relationship for this ionization ratio which is not restricted to some specific energy transfer, and shows that the double to single ionization cross section ratio approaches an asymtotic limit for large enough T

  5. Tracks: Nurses and the Tracking Network

    Centers for Disease Control (CDC) Podcasts

    2012-06-06

    This podcast highlights the utility of the National Environmental Public Health Tracking Network for nurses in a variety of work settings. It features commentary from the American Nurses Association and includes stories from a public health nurse in Massachusetts.  Created: 6/6/2012 by National Center for Environmental Health (NCEH)/Division of Environmental Hazards and Health Effects (DEHHE)/Environmental Health Tracking Branch (EHTB).   Date Released: 6/6/2012.

  6. A History of the International Commission on Non-Ionizing Radiation Protection.

    Science.gov (United States)

    Repacholi, M H

    2017-10-01

    Concern about health risks from exposure to non-ionizing radiation (NIR) commenced in the 1950s after tracking radars were first introduced during the Second World War. Soon after, research on possible biological effects of microwave radiation in the former Soviet Union and the U.S. led to public and worker exposure limits being much lower in Eastern European than in Western countries, mainly because of different protection philosophies. As public concern increased, national authorities began introducing legislation to limit NIR exposures from domestic microwave ovens and workplace devices such as visual display units. The International Radiation Protection Association (IRPA) was formed in 1966 to represent national radiation protection societies. To address NIR protection issues, IRPA established a Working Group in 1974, then a Study Group in 1975, and finally the International NIR Committee (INIRC) in 1977. INIRC's publications quickly became accepted worldwide, and it was logical that it should become an independent commission. IRPA finally established the International Commission on Non-Ionizing Radiation Protection (ICNIRP), chartering its remit in 1992, and defining NIR as electromagnetic radiation (ultraviolet, visible, infrared), electromagnetic waves and fields, and infra- and ultrasound. ICNIRP's guidelines have been incorporated into legislation or adopted as standards in many countries. While ICNIRP has been subjected to criticism and close scrutiny by the public, media, and activists, it has continued to issue well-received, independent, science-based protection advice. This paper summarizes events leading to the formation of ICNIRP, its key activities up to 2017, ICNIRP's 25th anniversary year, and its future challenges.

  7. Spectroscopy of highly ionized atoms

    International Nuclear Information System (INIS)

    Livingston, A.E.

    1987-01-01

    The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions

  8. Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset

    Science.gov (United States)

    Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi

    2017-11-01

    Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.

  9. Elastic tracking versus neural network tracking for very high multiplicity problems

    International Nuclear Information System (INIS)

    Harlander, M.; Gyulassy, M.

    1991-04-01

    A new Elastic Tracking (ET) algorithm is proposed for finding tracks in very high multiplicity and noisy environments. It is based on a dynamical reinterpretation and generalization of the Radon transform and is related to elastic net algorithms for geometrical optimization. ET performs an adaptive nonlinear fit to noisy data with a variable number of tracks. Its numerics is more efficient than that of the traditional Radon or Hough transform method because it avoids binning of phase space and the costly search for valid minima. Spurious local minima are avoided in ET by introducing a time-dependent effective potential. The method is shown to be very robust to noise and measurement error and extends tracking capabilities to much higher track densities than possible via local road finding or even the novel Denby-Peterson neural network tracking algorithms. 12 refs., 2 figs

  10. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    International Nuclear Information System (INIS)

    Hong, Sung-Ha; Jenkins, A Toby A; Szili, Endre J; Short, Robert D

    2014-01-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine. (fast track communication)

  11. Efficient ionizer for polarized H- formation

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1985-01-01

    An ionizer is under development for a polarized H - source based on the resonant charge exchange reaction polarized H 0 + D - → polarized H - + D 0 . The polarized H 0 beam passes through the center of a magnetron surface-plasma source having an annular geometry, where it crosses a high current (approx.0.5 A), 200 eV D - beam. Calculations predict an H 0 → H - ionization efficiency of approx.7%, more than an order of magnitude higher than that obtained on present ground state atomic beam sources. In initial experiments using an unpolarized H 0 beam, H - currents in excess of 100 μA have been measured. While the ionization efficiency is now only about the same as other methods (Cs beam, for example), the results are encouraging since it appears that by injecting positive ions to improve the space-charge neutralization, and by improving the extraction optics, considerable gains in intensity will be made. We will then use this ionizer with a polarized H 0 beam, and measure the polarization of the resulting H - beam. If no depolarization is observed this ionizer will be combined with an atomic beam, cooled to 5 to 6 K, to give a polarized H - beam expected to be in the milliampere range for use in the AGS

  12. Ionization dual-zone static detector having single radioactive source

    International Nuclear Information System (INIS)

    Ried, L. Jr.; Wade, A.L.

    1977-01-01

    This ionization detector or combustion product detector includes a single radioactive source located in an ionization chamber, and the ionization chamber includes portions comprising a reference zone and a signal zone. Electrical circuitry connected to the reference and signal zones provides an output signal directly related to changes in voltages across the signal zone in relation to the amount of particulates of combustion present in the ionization chamber

  13. Ambient ionization mass spectrometry

    International Nuclear Information System (INIS)

    Lebedev, A T

    2015-01-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references

  14. Contact ionization ion source

    International Nuclear Information System (INIS)

    Hashmi, N.; Van Der Houven Van Oordt, A.J.

    1975-01-01

    An ion source in which an apertured or foraminous electrode having a multiplicity of openings is spaced from one or more active surfaces of an ionisation electrode, the active surfaces comprising a material capable of ionising by contact ionization a substance to be ionized supplied during operation to the active surface or surfaces comprises means for producing during operation a magnetic field which enables a stable plasma to be formed in the space between the active surface or surfaces and the apertured electrode, the field strength of the magnetic field being preferably in the range between 2 and 8 kilogauss. (U.S.)

  15. Development of large-volume, high-resolution tracking detectors based on capillaries filled with liquid scintillator

    International Nuclear Information System (INIS)

    Buontempo, S.; Fabre, J.P.; Frenkel, A.; Gregoire, G.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Kushnirenko, A.; Martellotti, G.; Michel, L.; Mondardini, M.R.; Penso, G.; Siegmund, W.P.; Strack, R.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.; Zymin, K.

    1995-01-01

    Searches for the decay of short-lived particles require real time, high-resolution tracking in active targets, which in the case of neutrino physics should be of large volume. The possibility of achieving this by using glass capillaries filled with organic liquid scintillator is being investigated in the framework of the CHORUS experiment at CERN. In this paper, after outlining the application foreseen, advances in the tracking technique are discussed and results from tests are reported. An active target of dimensions 180x2x2 cm 3 has been assembled from capillaries with 20 μm diameter pores. The readout scheme currently in operation allows the reading of similar 5x10 5 channels using a single chain of image intensifiers having a resolution of σ similar 20 μm. Following the development of new liquid scintillators and purification methods an attenuation length of similar 3 m has been obtained. This translates into a hit density of 3.5 per mm for a minimum-ionizing particle that crosses the active target at a distance of 1 m from the readout end. (orig.)

  16. Spin and Angular Momentum in Strong-Field Ionization

    Science.gov (United States)

    Trabert, D.; Hartung, A.; Eckart, S.; Trinter, F.; Kalinin, A.; Schöffler, M.; Schmidt, L. Ph. H.; Jahnke, T.; Kunitski, M.; Dörner, R.

    2018-01-01

    The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at 6 ×1013 W /cm2 has been measured. At this photon energy of 3.14 eV the above-threshold ionization peaks connected to Xe+ ions in the ground state (J =3 /2 , ionization potential Ip=12.1 eV ) and the first excited state (J =1 /2 , Ip=13.4 eV ) are clearly separated in the electron energy distribution. These two combs of above-threshold ionization peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of 2 higher for the J =1 /2 than for the J =3 /2 final ionic state. In turn, the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.

  17. Non-ionizing and ionizing dosimetry in a space radiation environment with GaAs and SiC LEDs

    International Nuclear Information System (INIS)

    Houdayer, A.; Hinrichsen, P.F.; Barry, A.L.; Ng, A.C.; Carlone, C.; Simard, JF.

    1996-01-01

    This paper describes a dosimetry experiment that will be carried onboard the Russian MIR space station. The experiment will compare the ionizing and Non-ionizing Energy Loss (NEL) in semiconductors of the radiation encountered in space. The ionizing dose will be detected using ThermoLuminescent Dosimeter (TLD) whereas SiC and GaAs LEDs will be used to measure the nonionizing component. The tray will be mounted on the outside of the station for a minimum period of 4 months. The goal of the experiment is to determine the feasibility of using SiC and GaAs LEDs as NEL dosimeters in space. (author)

  18. Penning ionization processes studied by electron spectroscopy

    International Nuclear Information System (INIS)

    Yencha, A.J.

    1978-01-01

    The technique of measuring the kinetic energy of electrons ejected from atomic or molecular species as a result of collisional energy transfer between a metastable excited rare gas atom and an atom or molecule is known as Penning ionization spectroscopy. Like the analogous photoionization process of photoelectron spectroscopy, a considerable amount of information has been gained about the ionization potentials of numerous molecular systems. It is, in fact, through the combined analyses of photoelectron and Penning electron spectra that affords a probe of the particle-particle interactions that occur in the Penning process. In this paper a short survey of the phenomenon of Penning ionization, as studied by electron spectroscopy, will be presented as it pertains to the ionization processes of simple molecules by metastable excited atoms. (author)

  19. Is ionizing radiation regulated more stringently than chemical carcinogens

    International Nuclear Information System (INIS)

    Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.

    1989-01-01

    It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals and ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens

  20. Neural network tracking and extension of positive tracking periods

    Science.gov (United States)

    Hanan, Jay C.; Chao, Tien-Hsin; Moreels, Pierre

    2004-04-01

    Feature detectors have been considered for the role of supplying additional information to a neural network tracker. The feature detector focuses on areas of the image with significant information. Basically, if a picture says a thousand words, the feature detectors are looking for the key phrases (keypoints). These keypoints are rotationally invariant and may be matched across frames. Application of these advanced feature detectors to the neural network tracking system at JPL has promising potential. As part of an ongoing program, an advanced feature detector was tested for augmentation of a neural network based tracker. The advance feature detector extended tracking periods in test sequences including aircraft tracking, rover tracking, and simulated Martian landing. Future directions of research are also discussed.

  1. Scientific colloquium on medical supervision of workers exposed to ionizing and non ionizing radiations

    International Nuclear Information System (INIS)

    1975-01-01

    The general principles of medical surveillance for workers exposed to ionizing radiation were defined in the Euratom Basic Standards in 1959. These principles, which are in accordance with the early IGRP publications, have been adopted by the national authorities and implemented without difficulty. However, because of the forthcoming publication of the revised Basic Standards- in accordance with recent IGRP recommendations, the Commission decided to organize a meeting of doctors responsible for the medical surveillance of workers exposed to ionizing radiation in order to disseminate as widely as possible the results of experience gained in the field of radiological protection and to pinpoint the practical difficulties which might arise when the principles were applied. The Commission also considered it important to inform doctors specializing in radiological protection about the principles to be followed by those responsible for the health protection of workers exposed to non-ionizing radiation, particularly microwaves and Laser beams. The complete text of each report in the original language is given in this volume

  2. Effects of buffer ionization in protein transition volumes.

    Science.gov (United States)

    Lee, Soyoung; Heerklotz, Heiko; Chalikian, Tigran V

    2010-05-01

    Protein denaturation events are generally associated with a change in the state of ionization of abnormally titrating groups and, therefore, are coupled with changes in buffer ionization/neutralization equilibria. Consequently, buffer ionization should influence the measured change in volume accompanying protein denaturation. Changes in volume accompanying protein denaturation reflect the differential packing and hydration of polypeptide chains in their native and denatured conformations while also describing the pressure stability of proteins. A characteristic feature of conformational transitions of globular proteins is a near zero change in volume that is comparable in magnitude with the volume of ionization of biologically relevant buffers. Thus, the impact of buffer ionization on the volume of protein denaturation could be very significant with the potential to affect not only its magnitude but also its sign. To investigate this point quantitatively, we performed pressure perturbation calorimetric (PPC) studies of lysozyme and ribonuclease A at pH 3.0 in four buffers differing in their ionization volumes. Our results identify buffer ionization as an important determinant of protein transition volume that needs to be carefully taken into account. We emphasize that the importance of our results is not limited to PPC measurements but is more general and applies to all volumetric investigations, in particular, extending to the derivation of the pressure-temperature phase diagram of protein stability.

  3. CO_2 evaporative cooling: The future for tracking detector thermal management

    International Nuclear Information System (INIS)

    Tropea, P.; Daguin, J.; Petagna, P.; Postema, H.; Verlaat, B.; Zwalinski, L.

    2016-01-01

    In the last few years, CO_2 evaporative cooling has been one of the favourite technologies chosen for the thermal management of tracking detectors at LHC. ATLAS Insertable B-Layer and CMS Pixel phase 1 upgrade have adopted it and their systems are now operational or under commissioning. The CERN PH-DT team is now merging the lessons learnt on these two systems in order to prepare the design and construction of the cooling systems for the new Upstream Tracker and the Velo upgrade in LHCb, due by 2018. Meanwhile, the preliminary design of the ATLAS and CMS full tracker upgrades is started, and both concepts heavily rely on CO_2 evaporative cooling. This paper highlights the performances of the systems now in operation and the challenges to overcome in order to scale them up to the requirements of the future generations of trackers. In particular, it focuses on the conceptual design of a new cooling system suited for the large phase 2 upgrade programmes, which will be validated with the construction of a common prototype in the next years.

  4. K-shell ionization and double-ionization of Au atoms with 1.33 MeV photons

    International Nuclear Information System (INIS)

    Belkacem, A.; Dauvergne, D.; Feinberg, B.; Ionescu, D.; Maddi, J.; Sorensen, A.H.

    2000-01-01

    At relativistic energies, the cross section for the atomic photoelectric effect drops off as does the cross section for liberating any bound electron through Compton scattering. However, when the photon energy exceeds twice the rest mass of the electron, ionization may proceed via electron-positron pair creation. We used 1.33 MeV photons impinging on Au thin foils to study double K-shell ionization and vacuum-assisted photoionization. The preliminary results yield a ratio of vacuum-assisted photoionization and pair creation of 2x10 -3 , a value that is substantially higher than the ratio of photo double ionization to single photoionization that is found to be 0.5-1x10 -4 . Because of the difficulties and large error bars associated with the small cross sections additional measurements are needed to minimize systematic errors

  5. Multiple ionization of noble gases by 2.0 MeV proton impact: comparison with equi-velocity electron impact ionization

    International Nuclear Information System (INIS)

    Melo, W.S.; Santos, A.C.F.; Sant'Anna, M.M.; Sigaud, G.M.; Montenegro, E.C.

    2002-01-01

    Absolute single- and multiple-ionization cross sections of rare gases (He, Ne, Ar, Kr and Xe) have been measured for collisions with 2.0 MeV p + . A comparison is made with equi-velocity electron impact ionization cross sections as well as with the available proton impact data. For the light rare gases the single-ionization cross sections are essentially the same for both proton and electron impacts, but increasing differences appear for the heavier targets. (author). Letter-to-the-editor

  6. The nature of the torus in the heavily obscured AGN Markarian 3: an X-ray study

    DEFF Research Database (Denmark)

    Guainazzi, M.; Risaliti, G.; Awaki, H.

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMM–Newton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probe...

  7. Guided ionization waves: Theory and experiments

    International Nuclear Information System (INIS)

    Lu, X.; Naidis, G.V.; Laroussi, M.; Ostrikov, K.

    2014-01-01

    This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves–streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures—sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures—plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g., He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path—the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology

  8. Ionization of atoms by bare ion projectiles

    International Nuclear Information System (INIS)

    Tribedi, L.C.

    1997-01-01

    The double differential cross sections (DDCS) for low energy electron emission can provide stringent tests to the theoretical models for ionization in ion-atom collision. The two-center effects and the post collision interactions play a major role in ionization by highly charged, high Z projectiles. We close-quote ll review the recent developments in this field and describe our efforts to study the energy and angular distributions of the low energy electrons emitted in ion-atom ionization. copyright 1997 American Institute of Physics

  9. Ionizing radiation effects on floating gates

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Visconti, A.; Bonanomi, M.

    2004-01-01

    Floating gate (FG) memories, and in particular Flash, are the dominant among modern nonvolatile memory technologies. Their performance under ionizing radiation was traditionally studied for the use in space, but has become of general interest in recent years. We are showing results on the charge loss from programmed FG arrays after 10 keV x-rays exposure. Exposure to ionizing radiation results in progressive discharge of the FG. More advanced devices, featuring smaller FG, are less sensitive to ionizing radiation that older ones. The reason is identified in the photoemission of electrons from FG, since at high doses it dominates over charge loss deriving from electron/hole pairs generation in the oxides

  10. Ionization of nitrogen cluster beam

    International Nuclear Information System (INIS)

    Yano, Katsuki; Be, S.H.; Enjoji, Hiroshi; Okamoto, Kosuke

    1975-01-01

    A nitrogen cluster beam (neutral particle intensity of 28.6 mAsub(eq)) is ionized by electron collisions in a Bayard-Alpert gauge type ionizer. The extraction efficiency of about 65% is obtained at an electron current of 10 mA with an energy of 50 eV. The mean cluster size produced at a pressure of 663 Torr and temperature of 77.3 K is 2x10 5 molecules per cluster. By the Coulomb repulsion force, multiply ionized cluster ions are broken up into smaller fragments and the cluster ion size reduces to one-fourth at an electron current of 15 mA. Mean neutral cluster sizes depend strongly on the initial degree of saturation PHI 0 and are 2x10 5 , 7x10 4 and 3x10 4 molecules per cluster at PHI 0 's of 0.87, 0.66 and 0.39, respectively. (auth.)

  11. Development of etched nuclear tracks

    International Nuclear Information System (INIS)

    Somogyi, G.

    1980-01-01

    The theoretical description of the evolution of etched tracks in solid state nuclear track detectors is considered for different initial conditions, for the cases of constant and varying track etch rates, isotropic and anisotropic bulk etching as well as for thick and thin detectors. It is summarized how one can calculate the main parameters of etch-pit geometry, the track length, the axes of a surface track opening, track profile and track contour. The application of the theory of etch-track evolution is demonstrated with selected practical problems. Attention is paid to certain questions related to the determination of unknown track parameters and calculation of surface track sizes. Finally, the theory is extended to the description of the perforation and etch-hole evolution process in thin detectors, which is of particular interest for track radiography and nuclear filter production. (orig.)

  12. Development of etched nuclear tracks

    International Nuclear Information System (INIS)

    Somogyi, G.

    1979-01-01

    The theoretical description of the evolution of etched tracks in solid state nuclear track detectors is considered for different initial conditions, for the cases of constant and varying track etch rates, isotopic and unisotropic bulk etching as well as for thick and thin detectors. It is summarized how the main parameters of etch-pit geometry, the track length, the axes of a surface track opening, the track profile and the track contour can be calculated. The application of the theory of etch-track evolution is demonstrated with selected practical problems. Attention is paid to certain questions related to the determination of unknown track parameters and calculation of surface track sizes. Finally, the theory is extended to the description of the perforation and etch-hole evolution process in thin detectors, which is of particular interest for track radiography and nuclear filter production. (author)

  13. Circuitry for use with an ionizing-radiation detector

    International Nuclear Information System (INIS)

    Marshall, J.H. III; Harrington, T.M.

    1976-01-01

    An improved system of circuitry for use in combination with an ionizing-radiation detector over a wide range of radiation levels includes a current-to-frequency converter together with a digital data processor for respectively producing and measuring a pulse repetition frequency which is proportional to the output current of the ionizing-radiation detector, a dc-to-dc converter for providing closely regulated operating voltages from a rechargeable battery and a bias supply for providing high voltage to the ionization chamber. The ionizing-radiation detector operating as a part of this system produces a signal responsive to the level of ionizing radiation in the vicinity of the detector, and this signal is converted into a pulse frequency which will vary in direct proportion to such level of ionizing-radiation. The data processor, by counting the number of pulses from the converter over a selected integration interval, provides a digital indication of radiation dose rate, and by accumulating the total of all such pulses provides a digital indication of total integrated dose. Ordinary frequency-to-voltage conversion devices or digital display techniques can be used as a means for providing audible and visible indications of dose and dose-rate levels

  14. Antioxidant Approaches to Management of Ionizing Irradiation Injury

    Directory of Open Access Journals (Sweden)

    Joel Greenberger

    2015-01-01

    Full Text Available Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1 radiation counter measures against total or partial body irradiation; (2 normal tissue protection against acute organ specific ionizing irradiation injury; and (3 prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response.

  15. Optical Imaging of Ionizing Radiation from Clinical Sources.

    Science.gov (United States)

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Surface ionization ion source with high current

    International Nuclear Information System (INIS)

    Fang Jinqing; Lin Zhizhou; Yu Lihua; Zhan Rongan; Huang Guojun; Wu Jianhua

    1986-04-01

    The working principle and structure of a surface ionization ion source with high current is described systematically. Some technological keypoints of the ion source are given in more detail, mainly including: choosing and shaping of the material of the surface ionizer, heating of the ionizer, distributing of working vapour on the ionizer surface, the flow control, the cooling problem at the non-ionization surface and the ion optics, etc. This ion source has been used since 1972 in the electromagnetic isotope separator with 180 deg angle. It is suitable for separating isotopes of alkali metals and rare earth metals. For instance, in the case of separating Rubidium, the maximum ion current of Rbsup(+) extracted from the ion source is about 120 mA, the maximum ion current accepted by the receiver is about 66 mA, the average ion current is more than 25 mA. The results show that our ion source have advantages of high ion current, good characteristics of focusing ion beam, working stability and structure reliability etc. It may be extended to other fields. Finally, some interesting phenomena in the experiment are disccused briefly. Some problems which should be investigated are further pointed out

  17. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    Energy Technology Data Exchange (ETDEWEB)

    Isselhardt, Brett H. [Univ. of California, Berkeley, CA (United States)

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  18. Sampling strong tracking nonlinear unscented Kalman filter and its application in eye tracking

    International Nuclear Information System (INIS)

    Zu-Tao, Zhang; Jia-Shu, Zhang

    2010-01-01

    The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and much more time spent on calculation in practical applications. In this paper, we present a novel sampling strong tracking nonlinear unscented Kalman filter, aiming to overcome the difficulty in nonlinear eye tracking. In the above proposed filter, the simplified unscented transform sampling strategy with n + 2 sigma points leads to the computational efficiency, and suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking. Compared with the related unscented Kalman filter for eye tracking, the proposed filter has potential advantages in robustness, convergence speed, and tracking accuracy. The final experimental results show the validity of our method for eye tracking under realistic conditions. (classical areas of phenomenology)

  19. PHYSICS OF A PARTIALLY IONIZED GAS RELEVANT TO GALAXY FORMATION SIMULATIONS—THE IONIZATION POTENTIAL ENERGY RESERVOIR

    International Nuclear Information System (INIS)

    Vandenbroucke, B.; De Rijcke, S.; Schroyen, J.; Jachowicz, N.

    2013-01-01

    Simulation codes for galaxy formation and evolution take on board as many physical processes as possible beyond the standard gravitational and hydrodynamical physics. Most of this extra physics takes place below the resolution level of the simulations and is added in a ''sub-grid'' fashion. However, these sub-grid processes affect the macroscopic hydrodynamical properties of the gas and thus couple to the ''on-grid'' physics that is explicitly integrated during the simulation. In this paper, we focus on the link between partial ionization and the hydrodynamical equations. We show that the energy stored in ions and free electrons constitutes a potential energy term which breaks the linear dependence of the internal energy on temperature. Correctly taking into account ionization hence requires modifying both the equation of state and the energy-temperature relation. We implemented these changes in the cosmological simulation code GADGET2. As an example of the effects of these changes, we study the propagation of Sedov-Taylor shock waves through an ionizing medium. This serves as a proxy for the absorption of supernova feedback energy by the interstellar medium. Depending on the density and temperature of the surrounding gas, we find that up to 50% of the feedback energy is spent ionizing the gas rather than heating it. Thus, it can be expected that properly taking into account ionization effects in galaxy evolution simulations will drastically reduce the effects of thermal feedback. To the best of our knowledge, this potential energy term is not used in current simulations of galaxy formation and evolution.

  20. Multiple ionization of atoms by ion impact

    International Nuclear Information System (INIS)

    DuBois, R.D.

    1988-01-01

    In order to model the energy deposition of fast ions as they slow down in gaseous media, information about the ionization occurring in collisions between ions and target atoms/molecules is required. Our measurements of doubly differential electron emission cross sections provide detailed information about the ionization process but do not provide any information about the final states of the target. They also do not distinguish between the emission of one or more target electrons in a single collision. It is important to know the relative importance of multiple-, with respect to single-, target ionization in order to accurately model the energy deposition. To date, multiple ionization of He, Ne, Ar, Kr, and Xe targets has been studied. Primarily, H and He ions were used, although some data for heavier ions (C,N and O) have also been obtained

  1. Naturally etched tracks in apatites and the correction of fission track dating

    CERN Document Server

    Tien, J L

    1999-01-01

    Naturally etched tracks have been found in apatites from the rapid cooled, high-level Kunon pluton in the Zhangzhou Igneous Complex, SE China. This is manifested by the fact that the apatite fission track (FT) age derived from conventional counting of spontaneous and induced tracks yields a result of 140.6+-6.5 Ma, which is much older than the ages determined using other methods on different minerals from the same rock. When tracks are observed after etching the polished inner sections of the apatite grains, the naturally etched tracks characterized by having hazy boundaries can be distinguished from the normal tracks with sharp boundaries. The age obtained by omitting these fading-resistant hazy tracks, 76.5+-4.0 Ma, indicates the time of the Kunon pluton cooling down to approx 100 deg. C. The corrected peak age (73.8 Ma) is consistent with the other apatite FT peak ages (79.2 to 70.2 Ma) of the nearly contemporaneous plutons in the same igneous complex.

  2. Hand and shoe monitor using air ionization probes

    International Nuclear Information System (INIS)

    Fergus, R.W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes

  3. Radionuclide measurements using resonantly enhanced collisional ionization

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1987-01-01

    This report describes development of a laser-enhanced collisional ionization method for direct radionuclide measurements that are independent of radioactive decay. The technique uses two nitrogen-laser-pumped dye lasers to selectively excite the target isotope to an electronic state near the ionization threshold. The excited actinide atoms then undergo collisions with a buffer gas and are efficiently ionized. The resulting ions can be detected by conventional methods. The attributes of this approach include highly sensitive isotope analysis with relatively inexpensive lasers and a simple vacuum system. 9 refs., 3 figs

  4. Exciton ionization in multilayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer

    2016-01-01

    Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy...

  5. Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning

    Science.gov (United States)

    Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon

    2018-01-01

    Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient’s chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.

  6. Ionization of amphiphilic acidic block copolymers.

    Science.gov (United States)

    Colombani, Olivier; Lejeune, Elise; Charbonneau, Céline; Chassenieux, Christophe; Nicolai, Taco

    2012-06-28

    The ionization behavior of an amphiphilic diblock copolymer poly(n-butyl acrylate(50%)-stat-acrylic acid(50%))(100)-block-poly(acrylic acid)(100) (P(nBA(50%)-stat-AA(50%))(100)-b-PAA(100), DH50) and of its equivalent triblock copolymer P(nBA(50%)-stat-AA(50%))(100)-b-PAA(200)-b-P(nBA(50%)-stat-AA(50%))(100) (TH50) were studied by potentiometric titration either in pure water or in 0.5 M NaCl. These polymers consist of a hydrophilic acidic block (PAA) connected to a hydrophobic block, P(nBA(50%)-stat-AA(50%))(100), whose hydrophobic character has been mitigated by copolymerization with hydrophilic units. We show that all AA units, even those in the hydrophobic block could be ionized. However, the AA units within the hydrophobic block were less acidic than those in the hydrophilic block, resulting in the preferential ionization of the latter block. The preferential ionization of PAA over that of P(nBA(50%)-stat-AA(50%))(100) was stronger at higher ionic strength. Remarkably, the covalent bonds between the PAA and P(nBA(50%)-stat-AA(50%))(100) blocks in the diblock or the triblock did not affect the ionization of each block, although the self-association of the block copolymers into spherical aggregates modified the environment of the PAA blocks compared to when PAA was molecularly dispersed.

  7. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  8. Near-Field Imaging of Free Carriers in ZnO Nanowires with a Scanning Probe Tip Made of Heavily Doped Germanium

    Science.gov (United States)

    Sakat, Emilie; Giliberti, Valeria; Bollani, Monica; Notargiacomo, Andrea; Pea, Marialilia; Finazzi, Marco; Pellegrini, Giovanni; Hugonin, Jean-Paul; Weber-Bargioni, Alexander; Melli, Mauro; Sassolini, Simone; Cabrini, Stefano; Biagioni, Paolo; Ortolani, Michele; Baldassarre, Leonetta

    2017-11-01

    A novel scanning probe tip made of heavily doped semiconductor is fabricated and used instead of standard gold-coated tips in infrared scattering-type near-field microscopy. Midinfrared near-field microscopy experiments are conducted on ZnO nanowires with a lateral resolution better than 100 nm, using tips made of heavily electron-doped germanium with a plasma frequency in the midinfrared (plasma wavelength of 9.5 μ m ). Nanowires embedded in a dielectric matrix are imaged at two wavelengths, 11.3 and 8.0 μ m , above and below the plasma wavelength of the tips. An opposite sign of the imaging contrasts between the nanowire and the dielectric matrix is observed at the two infrared wavelengths, indicating a clear role of the free-electron plasma in the heavily doped germanium tip in building the imaging contrast. Electromagnetic simulations with a multispherical dipole model accounting for the finite size of the tip are well consistent with the experiments. By comparison of the simulated and measured imaging contrasts, an estimate for the local free-carrier density in the investigated ZnO nanowires in the low 1019 cm-3 range is retrieved. The results are benchmarked against the scattering intensity and phase maps obtained on the same sample with a gold-coated probe tip in pseudoheterodyne detection mode.

  9. Sign tracking, but not goal tracking, is resistant to outcome devaluation

    Directory of Open Access Journals (Sweden)

    Sara E. Morrison

    2015-12-01

    Full Text Available During Pavlovian conditioning, a conditioned stimulus (CS may act as a predictor of a reward to be delivered in another location. Individuals vary widely in their propensity to engage with the CS (sign tracking or with the site of eventual reward (goal tracking. It is often assumed that sign tracking involves the association of the CS with the motivational value of the reward, resulting in the CS acquiring incentive value independent of the outcome. However, experimental evidence for this assumption is lacking. In order to test the hypothesis that sign tracking behavior does not rely on a neural representation of the outcome, we employed a reward devaluation procedure. We trained rats on a classic Pavlovian paradigm in which a lever CS was paired with a sucrose reward, then devalued the reward by pairing sucrose with illness in the absence of the CS. We found that sign tracking behavior was enhanced, rather than diminished, following reward devaluation; thus, sign tracking is clearly independent of a representation of the outcome. In contrast, goal tracking behavior was decreased by reward devaluation. Furthermore, when we divided rats into those with high propensity to engage with the lever (sign trackers and low propensity to engage with the lever (goal trackers, we found that nearly all of the effects of devaluation could be attributed to the goal trackers. These results show that sign tracking and goal tracking behavior may be the output of different associative structures in the brain, providing insight into the mechanisms by which reward-associated stimuli – such as drug cues – come to exert control over behavior in some individuals.

  10. Sign Tracking, but Not Goal Tracking, is Resistant to Outcome Devaluation

    Science.gov (United States)

    Morrison, Sara E.; Bamkole, Michael A.; Nicola, Saleem M.

    2015-01-01

    During Pavlovian conditioning, a conditioned stimulus (CS) may act as a predictor of a reward to be delivered in another location. Individuals vary widely in their propensity to engage with the CS (sign tracking) or with the site of eventual reward (goal tracking). It is often assumed that sign tracking involves the association of the CS with the motivational value of the reward, resulting in the CS acquiring incentive value independent of the outcome. However, experimental evidence for this assumption is lacking. In order to test the hypothesis that sign tracking behavior does not rely on a neural representation of the outcome, we employed a reward devaluation procedure. We trained rats on a classic Pavlovian paradigm in which a lever CS was paired with a sucrose reward, then devalued the reward by pairing sucrose with illness in the absence of the CS. We found that sign tracking behavior was enhanced, rather than diminished, following reward devaluation; thus, sign tracking is clearly independent of a representation of the outcome. In contrast, goal tracking behavior was decreased by reward devaluation. Furthermore, when we divided rats into those with high propensity to engage with the lever (sign trackers) and low propensity to engage with the lever (goal trackers), we found that nearly all of the effects of devaluation could be attributed to the goal trackers. These results show that sign tracking and goal tracking behavior may be the output of different associative structures in the brain, providing insight into the mechanisms by which reward-associated stimuli—such as drug cues—come to exert control over behavior in some individuals. PMID:26733783

  11. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  12. Multiphoton ionization of H2+ in xuv laser pulses

    International Nuclear Information System (INIS)

    Guan Xiaoxu; Secor, Ethan B.; Bartschat, Klaus; Schneider, Barry I.

    2011-01-01

    We consider the ionization of the hydrogen molecular ion after one-, two-, and three-photon absorption over a large range of photon energies between 9 and 40 eV in the fixed-nuclei approximation. The temporal development of the system is obtained in a fully ab initio time-dependent grid-based approach in prolate spheroidal coordinates. The alignment dependence of the one-photon ionization amplitude is highlighted in the framework of time-dependent perturbation theory. For one-photon ionization as a function of the nuclear separation, the calculations reveal a significant minimum in the ionization probability. The suppressed ionization is attributed to a Cooper-type minimum, which is similar, but not identical, to the cancellation effect observed in photoionization cross sections of some noble-gas atoms. The effect of the nonspherical two-center Coulomb potential is analyzed. For two- and three-photon ionization, the angle-integrated cross sections clearly map out intermediate-state resonances, and the predictions of the current computations agree very well with those from time-independent calculations. The dominant emission modes for two-photon ionization are found to be very similar in both resonance and off-resonance regions.

  13. Biomedical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Rosiak, J.M.; Pietrzak, M.

    1997-01-01

    Application of ionizing radiation for sterilization of medical devices, hygienization of cosmetics products as well as formation of biomaterials have been discussed. The advantages of radiation sterilization over the conventional methods have been indicated. The properties of modern biomaterials, hydrogels as well as some ways of their formation and modification under action of ionizing radiation were presented. Some commercial biomaterials of this kind produced in accordance with original Polish methods by means of radiation technique have been pointed out. (author)

  14. Ionizing radiation sources. Ionizing radiation interaction with matter

    International Nuclear Information System (INIS)

    Popits, R.

    1976-01-01

    Fundamentals of nuclear physics are reviewed under the headings: obtaining of X-rays and their properties; modes of radioactive decay of natural or man-made radionuclides; radioactive neutron sources; nuclear fission as basis for devising nuclear reactors and weapons; thermonuclear reactions; cosmic radiation. Basic aspects of ionizing radiation interactions with matter are considered with regard to charged particles, photon radiation, and neutrons. (A.B.)

  15. Turbulent Dynamics of Partially-Ionized Fluids in 2D

    Science.gov (United States)

    Benavides, S.; Flierl, G.

    2017-12-01

    Ionization occurs in the upper atmospheres of Hot Jupiters, as well asthe interiors of Gas Giants, leading to Magnetohydrodynamic (MHD) effectswhich can significantly alter the flow. The interactions of these MHDregions with the non-ionized atmosphere will occur in transitionregions where only a fraction of the fluid is ionized. We areexploring the dynamics of Partially-Ionized MHD (PIMHD) using a twofluid model - one neutral and one ionized and subject to MHD -coupled by a collision, or Joule heating, term proportional to thedifference in velocities. By varying both the ionization fraction aswell as the collision frequency (coupling), we examine the parameterspace of 2D PIMHD turbulence in hopes of better understanding itscharacteristics in certain, possibly realistic, regimes. We payparticular attention to the Joule heating term and its role indissipation and energy exchange between the two species. Thisknowledge will serve as the basis to further studies in which we lookat, in a more realistic setting, the PIMHD dynamics in Gas Giant orHot Jupiter atmospheres.

  16. Ionization of a multilevel atom by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Andreev, A. V.; Stremoukhov, S. Yu.; Shutova, O. A.

    2010-01-01

    Specific features of ionization of single atoms by laser fields of a near-atomic strength are investigated. Calculations are performed for silver atoms interacting with femtosecond laser pulses with wavelengths λ = 800 nm (Ti:Sapphire) and λ = 1.064 μm (Nd:YAG). The dependences of the probability of ionization and of the form of the photoelectron energy spectra on the field of laser pulses for various values of their duration are considered. It is shown that the behavior of the probability of ionization in the range of subatomic laser pulse fields is in good agreement with the Keldysh formula. However, when the field strength attains values close to the atomic field strength, the discrepancies in these dependences manifested in a decrease in the ionization rate (ionization stabilization effect) or in its increase (accelerated ionization) are observed. These discrepancies are associated with the dependence of the population dynamics of excited discrete energy levels of the atom on the laser pulse field amplitude.

  17. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    Science.gov (United States)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  18. A novel strong tracking finite-difference extended Kalman filter for nonlinear eye tracking

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZuTao; ZHANG JiaShu

    2009-01-01

    Non-Intrusive methods for eye tracking are Important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust-ness of external interference and accuracy of eye tracking poses the primary obstacle to the integration of eye movements into today's interfaces. In this paper, we present a strong tracking finite-difference extended Kalman filter algorithm, aiming to overcome the difficulty In modeling nonlinear eye tracking. In filtering calculation, strong tracking factor is introduced to modify a priori covariance matrix and im-prove the accuracy of the filter. The filter uses finite-difference method to calculate partial derivatives of nonlinear functions for eye tracking. The latest experimental results show the validity of our method for eye tracking under realistic conditions.

  19. Targeted and non-targeted effects of ionizing radiation

    Directory of Open Access Journals (Sweden)

    Omar Desouky

    2015-04-01

    Full Text Available For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT, possible risks from exposure to low dose ionizing radiation (below 100 mSv are estimated by extrapolating from data obtained after exposure to higher doses of radiation. This model has been challenged by numerous observations, in which cells that were not directly traversed by the ionizing radiation exhibited responses similar to those of the directly irradiated cells. Therefore, it is nowadays accepted that the detrimental effects of ionizing radiation are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects.

  20. Physiological benefits from low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1982-01-01

    Extensive literature indicates that minute doses of ionizing radiation benefit animal growth and development, fecundity, health and longevity. Specific improvements appear in neurologic function, growth rate and survival of young, wound healing, immune competence, and resistance to infection, radiation morbidity, and tumor induction and growth. Decreased mortality from these debilitating factors results in increased average life span following exposure to minute doses of ionizing radiation. The above phenomena suggest the possibility that ionizing radiation may be essential for life. Limited data with protozoa suggest that reproduction rates decrease when they are maintained in subambient radiation environments. This may be interpreted to be a radiation deficiency. Evidence must now be obtained to determine whether or not ionizing radiation is essential for growth, development, nutrient utilization, fecundity, health and longevity of higher animals. Whether or not ionizing radiation is found to be essential for these physiologic functions, the evidence reviewed indicates that the optimal amount of this ubiquitous agent is imperceptibly above ambient levels. (author)

  1. Quantitative analysis of copolymers : influence of the structure of the monomer on the ionization efficiency in electrospray ionization FTMS

    NARCIS (Netherlands)

    Koster, S.; Mulder, B.; Duursma, M.C.; Boon, J.J.; Philipsen, H.J.A.; Velde, J.W.; Nielen, M.W.F.; Koster, de C.G.; Heeren, R.M.A.

    2002-01-01

    The influence of the ionization efficiency on the measured copolymer sequence distribution is presented. Large differences in ionization efficiency were observed for mixtures of homopolyesters containing dipropoxylated bisphenol A/adipic acid and dipropoxylated bisphenol A/isophthalic acid and the

  2. Range measurements and track kinetics in Dielectric Nuclear Track Detectors (DNTDs)

    Energy Technology Data Exchange (ETDEWEB)

    Aframian, A

    1981-01-01

    Observations of nuclear track development profiles and the kinetics of etched tracks in sensitive dielectric nuclear track detectors indicate three separate phases: the inception phase or the cone phase, the transition phase and the sphere phase. Continued etching of the sphere phase to through-tracks yields accurate range data for particles of different masses and energies and minimum critical angles of registration for each particle. The present results show an energy resolution of 40 keV (fwhm) for 5.48 MeV alpha-particles emitted from Am-241.

  3. Comparison of two equation-of-state models for partially ionized aluminum: Zel'dovich and Raizer's model versus the activity expansion code

    Science.gov (United States)

    Harrach, Robert J.; Rogers, Forest J.

    1981-09-01

    Two equation-of-state (EOS) models for multipy ionized matter are evaluated for the case of an aluminum plasma in the temperature range from about one eV to several hundred eV, spanning conditions of weak to strong ionization. Specifically, the simple analytical mode of Zel'dovich and Raizer and the more comprehensive model comprised by Rogers' plasma physics avtivity expansion code (ACTEX) are used to calculate the specific internal energy ɛ and average degree of ionization Z¯*, as functons of temperature T and density ρ. In the absence of experimental data, these results are compared against each other, covering almost five orders-of-magnitude variation in ɛ and the full range of Z¯* We find generally good agreement between the two sets of results, especially for low densities and for temperatures near the upper end of the rage. Calculated values of ɛ(T) agree to within ±30% over nearly the full range in T for densities below about 1 g/cm3. Similarly, the two models predict values of Z¯*(T) which track each other fairly well; above 20 eV the discrepancy is less than ±20% fpr ρ≲1 g/cm3. Where the calculations disagree, we expect the ACTEX code to be more accurate than Zel'dovich and Raizer's model, by virtue of its more detailed physics content.

  4. Modeling strong-field above-threshold ionization

    International Nuclear Information System (INIS)

    Sundaram, B.; Armstrong, L. Jr.

    1990-01-01

    Above-threshold ionization (ATI) by intense, short-pulse lasers is studied numerically, using the stretched hydrogen atom Hamiltonian. Within our model system, we isolate several mechanisms that contribute to the ATI process. These mechanisms, which involve both excited bound states and continuum states, all invoke intermediate, off-energy shell transitions. In particular, the importance of excited bound states and off-energy shell bound-free processes to the ionization mechanism are shown to relate to a simple physical criterion. These processes point to importance differences in the interpretation of ionization characteristics for short pulses from that for longer pulses. Our analysis concludes that although components of ATI admit of simple, few-state modeling, the ultimate synthesis points to a highly complex mechanism

  5. Progress in zirconium resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Page, R.H.; Dropinski, S.C.; Worden, E.F.; Stockdale, J.A.D.

    1993-01-01

    The authors have examined the stepwise-resonant three-photon-ionization spectrum of neutral zirconium atoms using three separately-tunable pulsed visible dye lasers. The ground-level (first-step) transitions were chosen on the basis of demonstrated 91 Zr selectivity. Lifetimes of even-parity levels around 36,000 cm -1 , measured with the delayed-photoionization technique, range from 10 to 100 nsec. Direct ionization cross sections appear to be less than 10 -17 cm 2 ; newly-detected autoionizing levels give peak ionization cross sections (inferred from saturation fluences) up to 10 -15 cm 2 . Portions of Rydberg series converging to the 315 and 763 cm -1 levels of Zr + were identified. Clumps of autoionizing levels are thought to be due to Rydberg-valence mixing

  6. Basic symbol for ionizing radiations (second revision)

    International Nuclear Information System (INIS)

    1992-01-01

    Includes a detailed description of basic symbol for ionizing radiations to be used to prevent about the presence, or possibility of presence, of ionizing radiations (X-ray, gamma radiation, particles, electrons, neutrons and protons), as well as to identify radioactive devices and materials

  7. Large scale tracking algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ross L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Joshua Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melgaard, David Kennett [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pitts, Todd Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zollweg, Joshua David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Dylan Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nandy, Prabal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitlow, Gary L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bender, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  8. Inorganic trace analysis by laser ionization mass spectrometry

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.

    1991-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytic method with a wide coverage. In the LIMS the sample material is evaporated and ionized by means of a focused pulsed laser beam in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The formed ions are separated according to mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments, and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  9. Laser ionization mass spectrometry in inorganic trace analysis

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietze, H.J.

    1992-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytical method. With the LIMS technique the sample material is evaporated and ionized by means of a focused pulsed laser in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The ions formed are separated according to their mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  10. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-01-01

    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  11. Ionization techniques in capillary electrophoresis-mass spectrometry: principles, design, and application.

    Science.gov (United States)

    Hommerson, Paul; Khan, Amjad M; de Jong, Gerhardus J; Somsen, Govert W

    2011-01-01

    A major step forward in the development and application of capillary electrophoresis (CE) was its coupling to ESI-MS, first reported in 1987. More than two decades later, ESI has remained the principal ionization technique in CE-MS, but a number of other ionization techniques have also been implemented. In this review the state-of-the-art in the employment of soft ionization techniques for CE-MS is presented. First the fundamentals and general challenges of hyphenating conventional CE and microchip electrophoresis with MS are outlined. After elaborating on the characteristics and role of ESI, emphasis is put on alternative ionization techniques including sonic spray ionization (SSI), thermospray ionization (TSI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), matrix-assisted laser desorption ionization (MALDI) and continuous-flow fast atom bombardment (CF-FAB). The principle of each ionization technique is outlined and the experimental set-ups of the CE-MS couplings are described. The strengths and limitations of each ionization technique with respect to CE-MS are discussed and the applicability of the various systems is illustrated by a number of typical examples. Copyright © 2011 Wiley Periodicals, Inc.

  12. Electron-impact-ionization dynamics of S F6

    Science.gov (United States)

    Bull, James N.; Lee, Jason W. L.; Vallance, Claire

    2017-10-01

    A detailed understanding of the dissociative electron ionization dynamics of S F6 is important in the modeling and tuning of dry-etching plasmas used in the semiconductor manufacture industry. This paper reports a crossed-beam electron ionization velocity-map imaging study on the dissociative ionization of cold S F6 molecules, providing complete, unbiased kinetic energy distributions for all significant product ions. Analysis of these distributions suggests that fragmentation following single ionization proceeds via formation of S F5 + or S F3 + ions that then dissociate in a statistical manner through loss of F atoms or F2, until most internal energy has been liberated. Similarly, formation of stable dications is consistent with initial formation of S F4 2 + ions, which then dissociate on a longer time scale. These data allow a comparison between electron ionization and photoionization dynamics, revealing similar dynamical behavior. In parallel with the ion kinetic energy distributions, the velocity-map imaging approach provides a set of partial ionization cross sections for all detected ionic fragments over an electron energy range of 50-100 eV, providing partial cross sections for S2 +, and enables the cross sections for S F4 2 + from S F+ to be resolved.

  13. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark; Badu-Tawiah, Abraham K.; Li, Anyin; Soparawalla, Santosh; Roqan, Iman S.; Cooks, Robert Graham

    2013-01-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  14. Plasma concentration of ionized calcium in healthy iguanas.

    Science.gov (United States)

    Dennis, P M; Bennett, R A; Harr, K E; Lock, B A

    2001-08-01

    To measure plasma concentration of ionized calcium in healthy green iguanas. Prospective study. 9 juvenile and 21 (10 male, 11 female) adult iguanas. Blood samples were obtained from each iguana, and plasma calcium, glucose, phosphorus, uric acid, total protein, albumin, globulin, potassium, and ionized calcium concentrations, aspartate transaminase (AST) activity, and pH were measured. Heparinized blood was used for measurement of ionized calcium concentration and blood pH. A CBC was also performed to assess the health of the iguanas. Significant differences were not detected among the 3 groups (juveniles, males, and females) with regard to ionized calcium concentration. Mean ionized calcium concentration measured in blood was 1.47 +/- 0.105 mmol/L. Significant differences were detected between juveniles and adults for values of phosphorus, glucose, total protein, albumin, globulin, and AST activity. Ionized calcium concentration provides a clinical measurement of the physiologically active calcium in circulation. Evaluation of physiologically active calcium in animals with suspected calcium imbalance that have total plasma calcium concentrations within reference range or in gravid animals with considerably increased total plasma calcium concentrations is vital for determining a therapeutic plan. Accurate evaluation of calcium status will provide assistance in the diagnosis of renal disease and seizures and allow for better evaluation of the health status of gravid female iguanas.

  15. On the SIMS Ionization Probability of Organic Molecules.

    Science.gov (United States)

    Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-06-01

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α + ) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10 -5 . Our lab has developed a method for the direct determination of α + in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C 24 H 12 ), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C 60 cluster projectiles is of the order of 10 -3 , with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract GRAPHICAL ABSTRACT TEXT HERE] -->.

  16. Electron ionization and dissociation of aliphatic amino acids

    Science.gov (United States)

    Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.

    2012-09-01

    We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.

  17. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  18. Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan

    2018-04-01

    In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.

  19. Measurement of surface recombination velocity on heavily doped indium phosphide

    International Nuclear Information System (INIS)

    Jenkins, P.; Ghalla-Goradia, M.; Faur, M.; Bailey, S.

    1990-01-01

    The controversy surrounding the published low values of surface recombination velocity (SRV) in n-InP, solidified in recent years when modeling of existing n/p InP solar cells revealed that the front surface SRV had to be higher than 1 x 10 6 cm/sec in order to justify the poor blue response that is characteristic of all n/p InP solar cells. In this paper, SRV on heavily doped (>10 18 cm -3 )n-type and p-type InP is measured as a function of surface treatment. For the limited range of substrates and surface treatments studied, SRV and surface stability depend strongly on the surface treatment. SRVs of ∼10 5 cm/sec in both p-type and n-type InP are obtainable, but in n-type the low SRV surfaces were unstable, and the only stable surfaces on n-type had SRVs of >10 6 cm/sec

  20. Heavily-doped 2D-quantized structures and the Einstein relation

    CERN Document Server

    Ghatak, Kamakhya P

    2015-01-01

    This book presents the Einstein Relation(ER) in two-dimensional (2-D) Heavily Doped(HD) Quantized Structures. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The ER in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The suggestion for the experimental determination of HD 2D and 3D ERs and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nanodevices and strong external photo excitation (for measuring photon induced physical properties) are also discussed in this context. The influence of crossed electric and quantizing ma...