WorldWideScience

Sample records for heating rate produced

  1. Thermal electron heating rate: a derivation

    International Nuclear Information System (INIS)

    Hoegy, W.R.

    1983-11-01

    The thermal electron heating rate is an important heat source term in the ionospheric electron energy balance equation, representing heating by photoelectrons or by precipitating higher energy electrons. A formula for the thermal electron heating rate is derived from the kinetic equation using the electron-electron collision operator as given by the unified theory of Kihara and Aono. This collision operator includes collective interactions to produce a finite collision operator with an exact Coulomb logarithm term. The derived heating rate O(e) is the sum of three terms, O(e) O(p) + S + O(int), which are respectively: (1) primary electron production term giving the heating from newly created electrons that have not yet suffered collisions with the ambient electrons, (2) a heating term evaluated on the energy surface m(e)/2 E(T) at the transition between Maxwellian and tail electrons at E(T), and (3) the integral term representing heating of Maxwellian electrons by energetic tail electrons at energies ET. Published ionospheric electron temperature studies used only the integral term O(int) with differing lower integration limits. Use of the incomplete heating rate could lead to erroneous conclusions regarding electron heat balance, since O(e) is greater than O(int) by as much as a factor of two

  2. 24 CFR 3280.707 - Heat producing appliances.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat producing appliances. 3280.707... Systems § 3280.707 Heat producing appliances. (a) Heat-producing appliances and vents, roof jacks and... appliance, the heating appliance shall be installed by the manufacturer of the manufactured home in...

  3. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  4. Cost estimation of hydrogen and DME produced by nuclear heat utilization system II

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2004-09-01

    Utilization and production of hydrogen has been studied in order to spread utilization of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in the world. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-ether (DME). has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced from natural gas by steam reforming. Therefore, the system would become one of the candidates of future system of nuclear heat utilization. Following the study in 2002, we performed economic evaluation of the hydrogen and DME production by nuclear heat utilization plant where heat generated by HTGR is completely consumed for the production. The results show that hydrogen price produced by nuclear was about 17% cheaper than the commercial price by increase in recovery rate of high purity hydrogen with increased in PSA process. Price of DME in indirect method produced by nuclear heat was also about 17% cheaper than the commercial price by producing high purity hydrogen in the DME producing process. As for the DME, since price of DME produced near oil land in petroleum exporting countries is cheaper than production in Japan, production of DME by nuclear heat in Japan has disadvantage economically in this time. Trial study to estimate DME price produced by direct method was performed. From the present estimation, utilization of nuclear heat for the production of hydrogen would be more effective with coupled consideration of reduction effect of CO 2 release. (author)

  5. Heating and cooling rates and their effects upon heart rate in the ...

    African Journals Online (AJOL)

    The heating and cooling rates of adult Chersina angulata were investigated to ascertain whether these tortoises can physiologically alter their rates of heat exchange. In addition, heart rates were recorded to provide an insight into the control of heat exchange. C. angulata heats significantly faster than it cools. Heart rates ...

  6. Cyclotron heating rate in a parabolic mirror

    International Nuclear Information System (INIS)

    Smith, P.K.

    1984-01-01

    Cyclotron resonance heating rates are found for a parabolic magnetic mirror. The equation of motion for perpendicular velocity is solved, including the radial magnetic field terms neglected in earlier papers. The expression for heating rate involves an infinite series of Anger's and Weber's functions, compared with a single term of the unrevised expression. The new results show an increase of heating rate compared with previous results. A simple expression is given for the ratio of the heating rates. (author)

  7. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  8. Effect of moisture content on the R{sub 70} self-heating rate of Callide coal

    Energy Technology Data Exchange (ETDEWEB)

    Beamish, B. Basil; Hamilton, Garth R. [School of Engineering, The University of Queensland, St Lucia, Qld 4072 (Australia)

    2005-10-17

    Strip samples from the Boundary Hill pit at Callide have been tested in an adiabatic oven to assess the effect of moisture on the R{sub 70} self-heating rate of coal. The two strip samples tested had R{sub 70} self-heating rate values of 10.23 and 8.61 {sup o}C/h. As the moisture content of the coal was progressively increased, from the dry state of the test, the R{sub 70} value decreased dramatically. At approximately 40-50% of the moisture holding capacity of the coal, the self-heating rate becomes measurable. Above this critical level of moisture content, the heat produced by oxidation is dissipated by moisture evaporation and coal self-heating is significantly delayed. (author)

  9. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  10. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  11. Heat transfer in a counterflow heat exchanger at low flow rates

    International Nuclear Information System (INIS)

    Hashimoto, A.; Hattori, N.; Naruke, K.

    1995-01-01

    A study was made of heat transfer in a double-tube heat exchanger at low flow rates of water. The temperatures of fluid and tube walls in the axial direction of tube were measured precisely at flow rate ratios of annulus to inner tube (or flow rate ratios of inner tube to annulus W i /W a , Re i approx. = 80 - 4000), W a /W i =0.1 - 1.1. In parallel with experiment, numerical calculation for forced-convection heat transfer was also carried out for laminar flows in the same tube configuration as experiment. Average over-all coefficients of heat transfer, obtained by experiments, indicate the same characteristics as numerical calculation in the examined range of flow rate ratio. Their experimental values, however, are somewhat larger than those of calculation at small values of flow rate ratio. (author)

  12. Inquiry on the valorisation of heat produced by methanization with co-generation in France. Energy and territory: Valorisation of heat produced by methanization

    International Nuclear Information System (INIS)

    Bazin, Florian; David, Laura; Heuraux, Thalie; Jeziorny, Thibaud; Massazza, Michael; Mosse, Noemie; Nguyen Dai, Kim Yen; Pruvost, Paul; Regimbart, Amelie; Rogee, Pierre-Emmanuel; Roy, Samuel; Segret, Emilien

    2014-01-01

    A leaflet first proposes graphs which illustrate the valorisation of heat produced by methanization with co-generation in France: material and methods, farm characterisation, plant sources, valorisation modes. The second document proposes detailed and discussed presentations of the various involved processes. Contributions address methanization as a whole, valorisation of heat produced by co-generation through heating of agricultural and domestic buildings or through digestate dehydration, digestate hygienisation, and other types of valorisation such as fodder drying, cereal drying, wood drying, compost drying, fabrication of rape seed, greenhouse crops, cultures of micro algae, and mushroom farming

  13. Optimization between heating load and entropy-production rate for endoreversible absorption heat-transformers

    International Nuclear Information System (INIS)

    Sun Fengrui; Qin Xiaoyong; Chen Lingen; Wu Chih

    2005-01-01

    For an endoreversible four-heat-reservoir absorption heat-transformer cycle, for which a linear (Newtonian) heat-transfer law applies, an ecological optimization criterion is proposed for the best mode of operation of the cycle. This involves maximizing a function representing the compromise between the heating load and the entropy-production rate. The optimal relation between the ecological criterion and the COP (coefficient of performance), the maximum ecological criterion and the corresponding COP, heating load and entropy production rate, as well as the ecological criterion and entropy-production rate at the maximum heating load are derived using finite-time thermodynamics. Moreover, compared with the heating-load criterion, the effects of the cycle parameters on the ecological performance are studied by numerical examples. These show that achieving the maximum ecological criterion makes the entropy-production rate decrease by 77.0% and the COP increase by 55.4% with only 27.3% heating-load losses compared with the maximum heating-load objective. The results reflect that the ecological criterion has long-term significance for optimal design of absorption heat-transformers

  14. Liquid-Phase Heat-Release Rates of the Systems Hydrazine-Nitric Acid and Unsymmetrical Dimethylhydrazine-Nitric Acid

    Science.gov (United States)

    Somogyi, Dezso; Feiler, Charles E.

    1960-01-01

    The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.

  15. Variation in Quantity of Heat Produced from Charcoal of Prosopis ...

    African Journals Online (AJOL)

    Data were collected using the copper calorimeter, a thermometer, an air tight burner and a weight balance. The results showed a gradual decrease in the quantity of heat produced as combustion time increased from 10 40 minutes in all wood species. Significant differences (p<0.05) in the quantity of heat produced both ...

  16. Heat release rate of wood-plastic composites

    Science.gov (United States)

    N. M. Stark; R. H. White; C. M. Clemons

    1997-01-01

    Wood-plastic composites are becoming more important as a material that fulfills recycling needs. In this study, fire performance tests were conducted on several compositions of wood and plastic materials using the Ohio State University rate of heat release apparatus. Test results included five-minute average heat release rate in kW/m2 (HRR avg) and maximum heat release...

  17. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood.

    Science.gov (United States)

    Zeng, Kuo; Minh, Doan Pham; Gauthier, Daniel; Weiss-Hortala, Elsa; Nzihou, Ange; Flamant, Gilles

    2015-04-01

    Char samples were produced from pyrolysis in a lab-scale solar reactor. The pyrolysis of beech wood was carried out at temperatures ranging from 600 to 2000°C, with heating rates from 5 to 450°C/s. CHNS, scanning electron microscopy analysis, X-ray diffractometry, Brunauer-Emmett-Teller adsorption were employed to investigate the effect of temperature and heating rate on char composition and structure. The results indicated that char structure was more and more ordered with temperature increase and heating rate decrease (higher than 50°C/s). The surface area and pore volume firstly increased with temperature and reached maximum at 1200°C then reduced significantly at 2000°C. Besides, they firstly increased with heating rate and then decreased slightly at heating rate of 450°C/s when final temperature was no lower than 1200°C. Char reactivity measured by TGA analysis was found to correlate with the evolution of char surface area and pore volume with temperature and heating rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements

    Science.gov (United States)

    Ashwal, L. D.; Morgan, P.; Kelley, S. A.; Percival, J. A.

    1987-01-01

    Concentrations of heat producing elements (Th, U, and K) in 58 samples representative of the main lithologies in a 100-km transect of the Superior Province of the Canadian Shield have been obtained. The relatively large variation in heat production found among the silicic plutonic rocks is shown to correlate with modal abundances of accessory minerals, and these variations are interpreted as premetamorphic. The present data suggest fundamental differences in crustal radioactivity distributions between granitic and more mafic terrains, and indicate that a previously determined apparently linear heat flow-heat production relationship for the Kapuskasing area does not relate to the distribution of heat production with depth.

  19. SCEPTIC, Pressure Drop, Flow Rate, Heat Transfer, Temperature in Reactor Heat Exchanger

    International Nuclear Information System (INIS)

    Kattchee, N.; Reynolds, W.C.

    1975-01-01

    1 - Nature of physical problem solved: SCEPTIC is a program for calculating pressure drop, flow rates, heat transfer rates, and temperature in heat exchangers such as fuel elements of typical gas or liquid cooled nuclear reactors. The effects of turbulent and heat interchange between flow passages are considered. 2 - Method of solution: The computation procedure amounts to a nodal of lumped parameter type of calculation. The axial mesh size is automatically selected to assure that a prescribed accuracy of results is obtained. 3 - Restrictions on the complexity of the problem: Maximum number of subchannels is 25, maximum number of heated surfaces is 46

  20. Heat pump assisted drying of agricultural produce-an overview.

    Science.gov (United States)

    Patel, Krishna Kumar; Kar, Abhijit

    2012-04-01

    This review paper included the recent progress made in heat pump assisted drying, its principle, mechanism and efficiency, type and its application for drying of agricultural produce. Heat pump assisted drying provides a controllable drying environment (temperature and humidity) for better products quality at low energy consumption. It has remarkable future prospects and revolutionaries ability. The heat pump system consists of an expansion valve, two heat exchangers (evaporator and condenser), and a compressor, which are connected by using copper tubes. In this paper we also provided a review discussion on different type of heat pump assisted drying system ready for remarkable and commercial use in different type of food industries. Here we also have given some major advantage and disadvantage of heat pump assisted drying.

  1. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  2. Characteristics of plasma in uranium atomic beam produced by electron-beam heating

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    2000-08-01

    The electron temperature of plasma and the ion flux ratio in the uranium atomic beam produced by electron-beam heating were characterized with Langmuir probes. The electron temperature was 0.13 eV, which was lower than the evaporation surface temperature. The ion flux ratio to atomic beam flux was more than 3% at higher evaporation rates. The ion flux ratio has increased with decreasing acceleration energy of the electron-beam under constant electron-beam power. This is because of an increase of electron-beam current and a large ionization cross-section of uranium by electron-impact. It was confined that the plasma is produced by electron-impact ionization of the evaporated atoms at the evaporation source. (author)

  3. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus

    Science.gov (United States)

    Olson, Sandra

    2011-01-01

    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  4. Effect of heating rate on thermal cracking characteristics and kinetics of Xinjiang oil sand bitumen by TG-FTIR

    Science.gov (United States)

    Hao, Junhui; Zhang, Jinhong; Qiao, Yingyun; Tian, Yuanyu

    2017-08-01

    This work was aimed to investigate effects of heating rate on thermal cracking behaviors, distribution of gaseous products and activation energy of the thermal cracking process of Xinjiang oil sand bitumen (OSB). The thermal cracking experiments of Xinjiang OSB were performed by using thermogravimetric analyzer (TGA) at various heating rates of 10, 20, 50, 80 and 120 K/min. The evolving characteristic of gaseous products produced from the thermal cracking process was evaluated by the Fourier transform infrared spectrometry (FTIR) connected with TG. The kinetic parameters of the thermal cracking process of Xinjiang OSB at each of heating rate were determined by the Coats-Redfern model. The result show that the temperature intervals of DE volatilization stage and main reaction stage, the ((dw/dt) max and Tmax in thermal cracking process of Xinjiang OSB all increased with the increasing heating rate. While the heating rate has not obvious effect on the coke yield of Xinjiang OSB. Furthermore, the maximum absorbance of gaseous products and corresponding temperature became larger as the heating rate increases. The activation energy of this two stage both presented increasing trend with the rising heating rate, while the increasing content of that of DE volatilization stage was weaker compared to that of main reaction stage.

  5. Effects of heat stress on bovine preimplantation embryos produced in vitro.

    Science.gov (United States)

    Sakatani, Miki

    2017-08-19

    Summer heat stress decreases the pregnancy rate in cattle and has been thought to be associated with the early embryonic death caused by the elevation of maternal body temperature. In vitro cultures have been widely used for the evaluation of effects of heat stress on oocytes, fertilization, preimplantation, and embryonic development. Susceptibility to heat stress is present in developmental stages from oocytes to cleavage-stage (before embryonic gene activation, EGA) embryos, leading to a consequent decrease in developmental competence. On the other hand, advanced-stage embryos such as morula or blastocysts have acquired thermotolerance. The mechanism for the developmental stage-dependent change in thermotolerance is considered to be the accumulation of antioxidants in embryos in response to heat-inducible production of reactive oxygen species. The supplementation of antioxidants to the culture media has been known to neutralize the detrimental effects of heat stress. Besides, EGA could be involved in acquisition of thermotolerance in later stages of embryos. Morulae or blastocysts can repair heat-induced unfolded proteins or prevent DNA damage occurring in processes such as apoptosis. Therefore, embryo transfer (ET) that can bypass the heat-sensitive stage could be a good solution to improve the pregnancy rate under heat stress. However, frozen-thawed ET could not improve the pregnancy rate as expected. Frozen-thawed blastocysts were more sensitive to heat stress and showed less proliferation upon heat exposure, compared to fresh blastocysts. Therefore, further research is required to improve the reduction in pregnancy rates due to summer heat stress.

  6. Heat transfer in intermediate heat exchanger under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, H.

    2008-01-01

    The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)

  7. Convective mechanism for inhibition of heat conduction in laser produced plasmas

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Willi, O.; Trainor, R.J.

    1984-01-01

    In laser-produced plasmas, the laser energy is absorbed only below and up to the critical density. For laser fusion applications, this energy must be transported beyond the corona via electron thermal conduction towards colder, higher density regions of the target to heat up material and cause ablation, which in turn generates an inward pressure to compress the fusion fuel. If the heat conduction is inhibited, the consequences will be a weaker ablation and therefore a weaker implosion. For many years now, the inhibition of heat conduction, i.e., the reduction of heat conduction relative to classical conduction, in laser-produced plasmas at relevant irradiances has been apparent from the large body of experimental evidence. Many mechanisms, such as dc magnetic fields, ion acoustic turbulence, and Weibel instabilities, have been proposed to be the cause of inhibition of heat conduction. Even improved calculations of the classical heat flux have been carried out to solve this problem. Nevertheless, no single one of the above mentioned mechanisms can explain the large inhibition observed in the experiments

  8. Work Rate during Self-paced Exercise is not Mediated by the Rate of Heat Storage.

    Science.gov (United States)

    Friesen, Brian J; Périard, Julien D; Poirier, Martin P; Lauzon, Martin; Blondin, Denis P; Haman, Francois; Kenny, Glen P

    2018-01-01

    To date, there have been mixed findings on whether greater anticipatory reductions in self-paced exercise intensity in the heat are mediated by early differences in rate of body heat storage. The disparity may be due to an inability to accurately measure minute-to-minute changes in whole-body heat loss. Thus, we evaluated whether early differences in rate of heat storage can mediate exercise intensity during self-paced cycling at a fixed rate of perceived exertion (RPE of 16; hard-to-very-hard work effort) in COOL (15°C), NORMAL (25°C), and HOT (35°C) ambient conditions. On separate days, nine endurance-trained cyclists exercised in COOL, NORMAL, and HOT conditions at a fixed RPE until work rate (measured after first 5 min of exercise) decreased to 70% of starting values. Whole-body heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Total exercise time was shorter in HOT (57 ± 20 min) relative to both NORMAL (72 ± 23 min, P = 0.004) and COOL (70 ± 26 min, P = 0.045). Starting work rate was lower in HOT (153 ± 31 W) compared with NORMAL (166 ± 27 W, P = 0.024) and COOL (170 ± 33 W, P = 0.037). Rate of heat storage was similar between conditions during the first 4 min of exercise (all P > 0.05). Thereafter, rate of heat storage was lower in HOT relative to NORMAL and COOL until 30 min of exercise (last common time-point between conditions; all P exercise. No differences were measured at end exercise. We show that rate of heat storage does not mediate exercise intensity during self-paced exercise at a fixed RPE in cool to hot ambient conditions.

  9. MATHEMATICAL MODELING OF HEATING RATE PRODUCT AT HIGH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    M. M. Akhmedova

    2014-01-01

    Full Text Available Methods of computing and mathematical modeling are all widely used in the study of various heat exchange processes that provide the ability to study the dynamics of the processes, as well as to conduct a reasonable search for the optimal technological parameters of heat treatment.This work is devoted to the identification of correlations among the factors that have the greatest effect on the rate of heating of the product at hightemperature heat sterilization in a stream of hot air, which are chosen as the temperature difference (between the most and least warming up points and speed cans during heat sterilization.As a result of the experimental data warming of the central and peripheral layers compote of apples in a 3 liter pot at high-temperature heat treatment in a stream of hot air obtained by the regression equation in the form of a seconddegree polynomial, taking into account the effects of pair interaction of these parameters. 

  10. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application

    Science.gov (United States)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.

    2016-06-01

    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  11. Uranium, Thorium and Potassium concentrations and volumetric heat production rates at the eastern border of the Parana basin

    International Nuclear Information System (INIS)

    Andrade, Telma C.Q.; Ribeiro, Fernando B.

    1997-01-01

    Uranium, thorium and potassium concentrations were measured and volumetric heat production rates were calculated for rocks from the exposed basement at the eastern-southeastern border of the Parana Basin between 23 deg S and 32 deg S. Heat generating element concentration data available in the literature were also used when possible, for volumetric heat production calculations. The uranium concentrations vary from below determination limit (0.51 ppm) and 16 ppm whereas the thorium concentrations vary from below the determination limit (1.26 ppm) and 68 ppm, and K concentrations vary between 0.08% and 5.6%. Volumetric heat production rates vary between 0.07 μW/m 3 to 6.2 μW/m 3 , and the obtained results show a variable heat generation rate with high heat producing bodies scattered along this Parana Basin border. The higher observed values concentrate in the Ribeira fold belt at about 23 deg S and between 30 deg S and 32 deg S in the Down Feliciano fold belt. Isolated high heat production rates can also be observed between 26 deg S and 28 deg S. (author). 11 refs., 3 tabs

  12. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Lippuner, Jonas; Roberts, Luke F., E-mail: jlippuner@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, MC 350-17, 1200 E California Boulevard, Pasadena CA 91125 (United States)

    2015-12-20

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y{sub e}, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y{sub e} ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y{sub e} lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y{sub e}, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y{sub e}, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  13. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-01-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y e , initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y e ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y e lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y e , but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y e , s, and τ to estimate whether or not the ejecta is lanthanide-rich

  14. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties.

    Science.gov (United States)

    Ter Haar, Gerrit M; Becker, Thorsten H

    2018-01-17

    Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cooling rate. Quasi-static uniaxial tensile tests were used to measure tensile behaviour of different annealed parts. It was found that elongated α'/α grains can be fragmented into equiaxial grains through applying a high temperature annealing strategy. It is shown that bi-modal microstructures achieve a superior tensile ductility to current heat treated selective laser melting produced Ti-6Al-4V samples.

  15. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion......Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  16. Heat-induced electron emission in paraelectric phase of triglycine sulfate heated with great rate

    CERN Document Server

    Sidorkin, A A; Rogazinskaya, O V; Milovidova, S D

    2002-01-01

    One recorded experimentally heat-induced electron emission in ferroelectric triglycine sulfate (TGS) crystal within temperature range exceeding the Curie point by 10-15 K. One studied cases of q = dT/dt various rates of linear heating of specimens of TGS nominally pure crystal and TGS crystal with chromium impurity. Increase of heating rate is shown to result in increase of emission current density within the whole investigated range of temperatures. Temperature of emission occurrence depends on q rate negligibly. At the same time, temperature of emission disappearance monotonically increases with q growth. At q below 1 K/min it is localized below the Curie point. At q = 4-5 K/min the mentioned temperature reaches 60-65 deg C. In TGS crystal with chromium impurity the temperature of emission occurrence is close to the case of pure TGS. In this case, the range of emission drawing in paraphase here is by about 2 times narrower in contrast to the case of pure TGS heated with the same rate

  17. Studies on Microwave Heated Drying-rate Equations of Foods

    OpenAIRE

    呂, 聯通; 久保田, 清; 鈴木, 寛一; 岡崎, 尚; 山下, 洋右

    1990-01-01

    In order to design various microwave heated drying apparatuses, we must take drying-rate equations which are based on simple drying-rate models. In a previous paper (KUBOTA, et al., 1990), we have studied a convenient microwave heated drying instrument, and studied the simple drying-rate equations of potato and so on by using the simple empirical rate equations that have been reported in previous papers (KUBOTA, 1979-1, 1979-2). In this paper, we studied the microwave drying rate of the const...

  18. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties

    Directory of Open Access Journals (Sweden)

    Gerrit M. Ter Haar

    2018-01-01

    Full Text Available Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cooling rate. Quasi-static uniaxial tensile tests were used to measure tensile behaviour of different annealed parts. It was found that elongated α’/α grains can be fragmented into equiaxial grains through applying a high temperature annealing strategy. It is shown that bi-modal microstructures achieve a superior tensile ductility to current heat treated selective laser melting produced Ti-6Al-4V samples.

  19. Influence of heating rate on corrosion behavior of Ni-base heat resistant alloys in simulated VHTR helium environment

    International Nuclear Information System (INIS)

    Kurata, Yuji; Kondo, Tatsuo

    1985-04-01

    The influence of heating rate on corrosion and carbon transfer was studied for Ni-base heat resistant alloys exposed to simulated VHTR(very high temperature reactor) coolant environment. Special attention was focused to relationship between oxidation and carburization at early stage of exposure. Tests were conducted on two heats of Hastelloy XR with different boron(B) content and the developmental alloys, 113MA and KSN. Two kinds of heating rates, i.e. 80 0 C/min and 2 0 C/min, were employed. Corrosion tests were carried out at 900 0 C up to 500 h in JAERI Type B helium, one of the simulated VHTR primary coolant specifications. Under higher heating rate, oxidation resistance of both heats of Hastelloy XR(2.8 ppmB and 40 ppmB) were equivalent and among the best, then KSN and 113MA followed in the order. Under lower heating rate only alloy, i.e. Hastelloy XR with 2.8 ppmB, showed some deteriorated oxidation resistance while all others being unaffected by the heating rate. On the other hand the carbon transfer behavior showed strong dependence on the heating rate. In case of higher heating rate, significant carburization occured at early stage of exposure and thereafter the progress of carburization was slow in all the alloys. On the other hand only slow carburization was the case throughout the exposure in case of lower heating rate. The carburization in VHTR helium environment was interpreted as to be affected by oxide film formation in the early stage of exposure. The carbon pick-up was largest in Hastelloy XR with 40 ppmB and it was followed by Hastelloy XR with 2.8 ppmB. 113MA and KSN were carburized only slightly. The observed difference of carbon pick-up among the alloys tested was interpreted to be attributed mainly to the difference of the carbon activity, the carbide precipitation characteristics among the alloys tested. (author)

  20. High temperature, high heating rate carbonisation - a route to new forms of carbon

    International Nuclear Information System (INIS)

    Wilson, M. A.

    1998-01-01

    Carbonisation (more properly called pyrolysis) of coal has long been an important process for the good of mankind. It is relevant to coke making, the production of briquettes, the formation of specialist carbons such as anodes and other more exotic carbon forms. During heating, volatiles are produced and compounds containing carbon, hydrogen and oxygen are lost. The yield of volatiles and residues (inappropriately called char) depends on the rank of the coal used, the temperature of pyrolysis, and the heating rate. Mathematical models have been devised to account for loss of weight at constant heating rate, gas evolution, plasticity, swelling and changes in density, and other physical properties. Moreover chemical models of pyrolysis have also been devised. When carbon radicals are formed they may polymerize to form, if the correct number of hexagons or pentagons are present, a closed structure, such as the soccerball molecules. An account is given on the work carried out in Australia, at the University of Technology where the scientists were successful in identifying and then preparing buckyballs from coal rather than expensive graphite, first by laser pyrolysis and then by plasma arcing

  1. Gamma ray heating rates due to chromium isotopes in stellar core during late stages of high mass stars (>10M⊙

    Directory of Open Access Journals (Sweden)

    Nabi Jameel-Un

    2017-01-01

    Full Text Available Gamma ray heating rates are thought to play a crucial role during the pre-supernova stage of high mass stars. Gamma ray heating rates, due to β±-decay and electron (positron capture on chromium isotopes, are calculated using proton-neutron quasiparticle random phase approximation theory. The electron capture significantly affects the lepton fraction (Ye and accelerates the core contraction. The gamma rays emitted as a result of weak processes heat the core and tend to hinder the cooling and contraction due to electron capture and neutrino emission. The emitted gamma rays tend to produce enormous entropy and set the convection to play its role at this stage. The gamma heating rates, on 50-60Cr, are calculated for the density range 10 < ρ (g.cm-3 < 1011 and temperature range 107 < T (K < 3.0×1010.

  2. Fissure formation in coke. 2: Effect of heating rate, shrinkage and coke strength

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jenkins; M.R. Mahoney [CSIRO, North Ryde, NSW (Australia). Mathematical and Information Sciences

    2010-07-15

    We investigate the effects of the heating rate, coke shrinkage and coke breakage strength upon the fissure pattern developed in a coke oven charge during carbonisation. This is done principally using a mechanistic model of the formation of fissures, which considers them to be an array of equally spaced fissures, whose depth follows a 'period doubling' pattern based upon the time history of the fissures. The model results are compared with pilot scale coke oven experiments. The results show that the effect of heating rate on the fissure pattern is different to the effect of coke shrinkage, while the effect of coke breakage strength on the pattern is less pronounced. The results can be seen in both the shape and size of resulting coke lumps after stabilisation. The approach gives the opportunity to consider means of controlling the carbonisation process in order to tune the size of the coke lumps produced. 7 refs., 18 figs., 4 tabs.

  3. An analysis of representative heating load lines for residential HSPF ratings

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28

  4. Cost estimation of hydrogen and DME produced by nuclear heat utilization system. Joint research

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2003-09-01

    Research of hydrogen energy has been performed in order to spread use of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in all of countries. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-either (DME) has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced by steam reforming hydrogen generation system by the use of nuclear heat. Therefore, the system would be one of the candidates of future system of nuclear heat utilization. In the present study, we focused on the production of hydrogen and DME. Economic evaluation was estimated for hydrogen and DME production in commercial and nuclear heat utilization plant. At first, heat and mass balance of each process in commercial plant of hydrogen production was estimated and commercial prices of each process were derived. Then, price was estimated when nuclear heat was used instead of required heat of commercial plant. Results showed that the production prices produced by nuclear heat were cheaper by 10% for hydrogen and 3% for DME. With the consideration of reduction effect of CO 2 release, utilization of nuclear heat would be more effective. (author)

  5. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution. All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity. An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to auroral arcs as a result of ionosphere-magnetosphere coupling, as discussed by Aikio et al. (2004 In

  6. Update heat exchanger designing principles

    International Nuclear Information System (INIS)

    Lipets, A.U.; Yampol'skij, A.E.

    1985-01-01

    Update heat exchanger design principles are analysed. Different coolant pattern in a heat exchanger are considered. It is suggested to rationally organize flow rates irregularity in it. Applying on heat exchanger designing measures on using really existing temperature and flow rate irregularities will permit to improve heat exchanger efficiency. It is expedient in some cases to artificially produce irregularities. In this connection some heat exchanger design principles must be reviewed now

  7. Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements

    Energy Technology Data Exchange (ETDEWEB)

    Ashwal, L.D.; Morgan, P.; Kelley, S.A.; Percival, J.A.

    1987-10-01

    We have measured concentrations of heat producing elements (Th, U, and K) in 58 samples representative of the main lithologies in a 100 km transect of the Superior Province of the Canadian Shield, from the Michipicoten (Wawa) greenstone belt, near Wawa, Ontario, through a domal gneiss terrane of amphibolite grade, to the granulite belt of the Kapuskasing Structural Zone, near Foleyet. (orig./SHOE).

  8. Coal-Fired Power Plant Heat Rate Reductions

    Science.gov (United States)

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  9. Heat production and storage are positively correlated with measures of body size/composition and heart rate drift during vigorous running.

    Science.gov (United States)

    Buresh, Robert; Berg, Kris; Noble, John

    2005-09-01

    The purposes of this study were to determine the relationships between: (a) measures of body size/composition and heat production/storage, and (b) heat production/storage and heart rate (HR) drift during running at 95% of the velocity that elicited lactate threshold, which was determined for 20 healthy recreational male runners. Subsequently, changes in skin and tympanic temperatures associated with a vigorous 20-min run, HR, and VO2 data were recorded. It was found that heat production was significantly correlated with body mass (r = .687), lean mass (r = .749), and body surface area (BSA, r = .699). Heat storage was significantly correlated with body mass (r = .519), fat mass (r = .464), and BSA (r = .498). The percentage of produced heat stored was significantly correlated with body mass (r = .427), fat mass (r = .455), and BSA (r = .414). Regression analysis showed that the sum of body mass, percentage of body fat, BSA, lean mass, and fat mass accounted for 30% of the variability in heat storage. It was also found that HR drift was significantly correlated with heat storage (r = .383), percentage of produced heat stored (r = .433), and core temperature change (r = .450). It was concluded that heavier runners experienced greater heat production, heat storage, and core temperature increases than lighter runners during vigorous running.

  10. Evaluation of Criticality of Self-Heating of Polymer Composites by Estimating the Heat Dissipation Rate

    Science.gov (United States)

    Katunin, A.

    2018-03-01

    The critical self-heating temperature at which the structural degradation of polymer composites under cyclic loading begins is evaluated by analyzing the heat dissipation rate. The method proposed is an effective tool for evaluating the degradation degree of such structures.

  11. The effect of heating rate on the surface chemistry of NiTi.

    Science.gov (United States)

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus

    2014-11-01

    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Heat release rate from the combustion of uranium

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1995-01-01

    Fuel treatment is planned at the Argonne National Laboratory on EBR-II spent fuel. The electrochemical treatment process is carried out in a cell with an argon atmosphere to prevent any reaction. The amount of fuel processed at any time is limited by the amount of energy which could be released by metal combustion if air is inadvertently allowed into the cell since the heat release would increase the cell pressure. The cell pressure is required to be below atmospheric even if combustion occurs to ensure no cell gas/aerosol is released to the environment. Metal fires can release large amounts of heat. In certain configurations such as fine particulate, metal can be pyrophoric at room temperature. When the metal is a nuclear fuel, it is important to be able to predict the reaction/heat release rate if the metal is inadvertently exposed to air. A realistic combustion model is needed to predict heat release rates for the many different flow and transport configurations which exist in the various fuel processing steps. A model for the combustion of uranium is developed here which compares satisfactorily to experimental data

  13. Controlling Object Heat Release Rate using Geometrical Features

    OpenAIRE

    Kraft, Stefan Marc

    2017-01-01

    An experimental study was conducted to determine the effect of complex geometries on the burning rate of materials made using additive manufacturing. Controlling heat release rate has applicability in limiting fire hazards as well as for designing fuels for optimal burning rate. The burning rate of a structure is a function of the material properties as well as the airflow through it, which is dictated by the geometry. This burning rate is generally proportional to the porosity for obj...

  14. Thermoluminescence study of X-ray irradiated muscovite mineral under various heating rate

    International Nuclear Information System (INIS)

    Kalita, J.M.; Wary, G.

    2014-01-01

    The thermoluminescence (TL) glow curves of X-ray irradiated micro-grain natural muscovite were recorded within 298–520 K at various linear heating rates (2 K/s, 4 K/s, 6 K/s, 8 K/s and 10 K/s). Natural TL of muscovite was checked, but no significant TL was observed within 298–520 K in any heating rate. Within the heating rate 2–10 K/s only a low temperature distinct peak was observed in the temperature range 348–357 K. The TL parameters such as activation energy, order of kinetic, geometrical symmetry factor and pre-exponential frequency factor were investigated from the glow peak by Peak Shape (PS) method and Computerized Glow Curve Deconvolution (CGCD) technique. At lowest heating rate the glow peak obeys non-first order kinetic and at the highest heating rate it follows the second order kinetic. The variation of peak integrals, peak maximum temperatures, FWHM and activation energy with heating rates were investigated, and the glow curves at higher rates were found to be influenced by the presence of the thermal quenching. The thermal quenching activation energy and pre-exponential factor were calculated and found to be 2.31±0.02 eV and 3.46×10 14 s −1 , respectively. -- Highlights: • Muscovite is a silicate mineral with chemical formula KAl 2 (Si 3 Al)O 10 (OH,F) 2 . • TL of natural and X-ray induced muscovite was studied under various heating rates. • TL parameters were evaluated by Peak Shape and CGCD method. • Thermal quenching parameters (W and C) of muscovite were evaluated

  15. Forsmark - System 522. Recursive linear regression for the determination of heating rate

    International Nuclear Information System (INIS)

    Carlsson, B.

    1980-01-01

    The heating rate for reactor tank and steam tubes is limited. The algorithm of the heating rate has been implemented on the computer and compared with real data from Forsmark-2. The evaluation of data shows a considerable improvement of the determination of derivata which contributes to information during heating events. (G.B.)

  16. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany

    International Nuclear Information System (INIS)

    Gabriel, Katharina M.A.; Endlicher, Wilfried R.

    2011-01-01

    In large cities such as Berlin, human mortality rates increase during intense heat waves. Analysis of relevant data from north-eastern Germany revealed that, during the heat waves that occurred between 1990 and 2006, health risks were higher for older people in both rural and urban areas, but that, during the two main heat waves within that 17-year period of time, the highest mortality rates were from the city of Berlin, and in particular from its most densely built-up districts. Adaptation measures will need to be developed, particularly within urban areas, in order to cope with the expected future intensification of heat waves due to global climate change. - Highlights: → Periods of heat stress enhance mortality rates in Berlin and Brandenburg. → Heat-related mortality is an urban as well as a rural problem. → During extreme events highest mortality rates can be found in the city centre. → Mortality rates correlate well with the distribution of sealed surfaces. → Health risks are higher for older than for younger people. - During periods of severe heat stress the pattern of mortality rates in Berlin and Brandenburg was found to correlate well with the distribution of sealed surfaces.

  17. Can reptile embryos influence their own rates of heating and cooling?

    Directory of Open Access Journals (Sweden)

    Wei-Guo Du

    Full Text Available Previous investigations have assumed that embryos lack the capacity of physiological thermoregulation until they are large enough for their own metabolic heat production to influence nest temperatures. Contrary to intuition, reptile embryos may be capable of physiological thermoregulation. In our experiments, egg-sized objects (dead or infertile eggs, water-filled balloons, glass jars cooled down more rapidly than they heated up, whereas live snake eggs heated more rapidly than they cooled. In a nest with diel thermal fluctuations, that hysteresis could increase the embryo's effective incubation temperature. The mechanisms for controlling rates of thermal exchange are unclear, but may involve facultative adjustment of blood flow. Heart rates of snake embryos were higher during cooling than during heating, the opposite pattern to that seen in adult reptiles. Our data challenge the view of reptile eggs as thermally passive, and suggest that embryos of reptile species with large eggs can influence their own rates of heating and cooling.

  18. Core-debris quenching-heat-transfer rates under top- and bottom-reflood conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Tutu, N.; Klages, J.; Schwarz, C.E.; Sanborn, Y.

    1983-02-01

    This paper presents recent experimental data for the quench-heat-transfer characteristics of superheated packed beds of spheres which were cooled, in separate experiments, by top- and bottom-flooding modes. Experiments were carried out with beds of 3-mm steel spheres of 330-mm height. The initial bed temperature was 810 K. The observed heat-transfer rates are strongly dependent on the mode of water injection. The results suggest that top-flood bed quench heat transfer is limited by the rate at which water can penetrate the bed under two-phase countercurrent-flow conditions. With bottom-reflood the heat-transfer rate is an order-of-magnitude greater than under top-flood conditions and appears to be limited by particle-to-fluid film boiling heat transfer

  19. Effect of γ-Aminobutyric Acid-producing Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress

    Directory of Open Access Journals (Sweden)

    Y. Z. Zhu

    2015-07-01

    Full Text Available Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164 at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i 0 mg/kg, ii 25 mg/kg, iii 50 mg/kg, and iv 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (p<0.05 by the increasing supplementation of the dietary GABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (p<0.05 than that of the hens fed the basal diet, whereas cholesterol level was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009 and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to

  20. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution.

    All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity.

    An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to

  1. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Science.gov (United States)

    Osten, Julia; Milkereit, Benjamin; Schick, Christoph; Kessler, Olaf

    2015-01-01

    In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181) in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed) was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC) was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  2. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Directory of Open Access Journals (Sweden)

    Julia Osten

    2015-05-01

    Full Text Available In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181 in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  3. Heat treatment of TI-6AL-4V produced by lasercusing

    Directory of Open Access Journals (Sweden)

    Becker, Thorsten

    2015-08-01

    Full Text Available LaserCUSING® is a selective laser melting (SLM process that is capable of manufacturing parts by melting powder with heat input from a laser beam. LaserCUSING demonstrates potential for producing the intricate geometries specifically required for biomedical implants and aerospace applications. One main limitation to this form of rapid prototyping is the lack of published studies on the material performance of the resulting material. Studies of the material’s performance are often complicated by dependence on several factors, including starting powder properties, laser parameters, and post-processing heat treatments. This study aims to investigate the mechanical properties of LaserCUSING-produced Ti-6Al-4V and its performance relative to the conventional wrought counterpart. A combination of conventional and LaserCUSING-tailored heat treatments is performed. The resulting microstructures are studied and linked to the properties obtained from hardness tests. The findings highlight that LaserCused Ti-6Al-4V is competitive with traditional materials, provided that optimal parameters are chosen and parts are subject to tailored post-processing. In the as-built condition, LaserCused Ti-6Al-4V displays superior strength and hardness as a result of a martensitic microstructure, and a poorer performance in ductility. However, the material performance can be improved using tailored heat treatments. Careful consideration must be given to suitable post-processing before application in critical components in the aerospace or biomedical industry can occur

  4. Critical heat flux analysis on change of plate temperature and cooling water flow rate for rectangular narrow gap with bilateral-heated cases

    International Nuclear Information System (INIS)

    M Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan

    2013-01-01

    Boiling heat transfer phenomena on rectangular narrow gap was related to the safety of nuclear reactors. Research done in order to study the safety of nuclear reactors in particular relating to boiling heat transfer and useful on the improvement of next-generation reactor designs. The research focused on calculation of the heat flux during the cooling process in rectangular narrow gap size 1.0 mm. with initial temperatures 200°C. 400°C, and 600°C, also the flow rates of cooling water 0,1 liters/second. 0,2 liters/second. and 0,3 liters/second. Experiments carried out by injecting water at a certain flow rate with the water temperature 85°C. Transient temperature measurement data recorded by the data acquisition system. Transient temperature measurement data is used to calculate the flux of heat gain is then used to obtain the heat transfer coefficient. This research aimed to obtain the correlation between critical heat flux and heat transfer coefficient to changes in temperatures and water flow rates for bilaterally-heated cases on rectangular narrow gap. The results obtained for a constant cooling water flow rate, critical heat flux will increase when hot plate temperature also increased. While on a constant hot plate temperature, coefficient heat transfer will increase when cooling water flow rate also increased. Thus it can be said that the cooling water flow rate and temperature of the hot plate has a significant effect on the critical heat flux and heat transfer coefficient resulted in quenching process of vertical rectangular narrow gap with double-heated cases. (author)

  5. An Efficient Approximation of the Coronal Heating Rate for use in Global Sun-Heliosphere Simulations

    Science.gov (United States)

    Cranmer, Steven R.

    2010-02-01

    The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfvén waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfvén wave reflection equations. A key ingredient of the turbulent heating rate is the ratio of inward-to-outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating also depends on the frequency spectrum of Alfvén waves in the open-field corona, which has not yet been measured directly. A model-based assumption is used here for the spectrum, but the results of future measurements can be incorporated easily. The resulting expression for the coronal heating rate is self-contained, computationally efficient, and applicable directly to global models of the corona and heliosphere. This paper tests and validates the approximations by comparing the results to exact solutions of the wave transport equations in several cases relevant to the fast and slow solar wind.

  6. Molecular investigations on grain filling rate under terminal heat ...

    African Journals Online (AJOL)

    Grain yield under post anthesis high temperature stress is largely influenced by grain filling rate (GFR). To investigate molecular basis of this trait, a set of 111 recombinant inbred lines (RILs) derived from Raj 4014, a heat sensitive genotype and WH 730, heat tolerant cultivar was phenotyped during 2009-2010 and ...

  7. Valorization of the energy potential of fossil and fissile fuels for heat production: dual-purpose power plants and heat-producing nuclear reactors

    International Nuclear Information System (INIS)

    Lavite, Michel.

    1975-07-01

    The heat market is analyzed briefly within the French context: present structures and characteristics of the market, current means of heat production, predictable trend of the demand. The possible applications of nuclear energy to heat production, through the agency of combined electricity-steam stations or heat-producing stations, are then examined. Nuclear solutions are compared with others from the technico-economic and ecological wiewpoints and an estimate fo their respective impacts on the energy balance is attempted [fr

  8. Estimate of the global-scale joule heating rates in the thermosphere due to time mean currents

    International Nuclear Information System (INIS)

    Roble, R.G.; Matsushita, S.

    1975-01-01

    An estimate of the global-scale joule heating rates in the thermosphere is made based on derived global equivalent overhead electric current systems in the dynamo region during geomagnetically quiet and disturbed periods. The equivalent total electric field distribution is calculated from Ohm's law. The global-scale joule heating rates are calculated for various monthly average periods in 1965. The calculated joule heating rates maximize at high latitudes in the early evening and postmidnight sectors. During geomagnetically quiet times the daytime joule heating rates are considerably lower than heating by solar EUV radiation. However, during geomagnetically disturbed periods the estimated joule heating rates increase by an order of magnitude and can locally exceed the solar EUV heating rates. The results show that joule heating is an important and at times the dominant energy source at high latitudes. However, the global mean joule heating rates calculated near solar minimum are generally small compared to the global mean solar EUV heating rates. (auth)

  9. Effect of γ-Aminobutyric Acid-producing Lactobacillus Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress.

    Science.gov (United States)

    Zhu, Y Z; Cheng, J L; Ren, M; Yin, L; Piao, X S

    2015-07-01

    Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA)-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164) at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i) 0 mg/kg, ii) 25 mg/kg, iii) 50 mg/kg, and iv) 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (pGABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (plevel was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009) and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to improve laying performance and egg quality in heat-stressed hens.

  10. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  11. Analysis of heating effect on the process of high deposition rate microcrystalline silicon

    International Nuclear Information System (INIS)

    Xiao-Dan, Zhang; He, Zhang; Chang-Chun, Wei; Jian, Sun; Guo-Fu, Hou; Shao-Zhen, Xiong; Xin-Hua, Geng; Ying, Zhao

    2010-01-01

    A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated

  12. The rate of plasma heating by harmonic ion cyclotron waves in tokamaks

    International Nuclear Information System (INIS)

    Moslehi-Fard, M.; Sobhanian, S.; Solati-Kia, F.

    2002-01-01

    In tokamaks, the toroidal magnetic field, B φ , is due to the current in coils around plasma, and the poloidal magnetic field B p results from the plasma itself. Usually B φ p , and the combination of these two fields forms a nested set of toroidal magnetic surfaces. The equilibrium Grad-Shafranov equation is investigated and it is shown that the particle products of fusion with different pitch angles on these surfaces have different orbital shapes. In the JET tokamak, the α particles with pitch angle θ smaller than 54.8 deg are passing, those with θ between 54.8 deg and 65.1 deg have trapping-passing orbits but for θ greater than 65.1 deg the orbit has a banana form. Other tokamaks such as Alcator and ITER are also considered. The passing, trapping-passing and banana orbits in these tokamaks are traced. The results obtained from this calculation are analyzed. The wave damping has been investigated produced from interaction with particles, particularly α particles, and the rate of heating for l = 1 to 8 harmonics is plotted. The results of calculation show that heating at the fourth harmonic reaches a maximum. For higher harmonics, the heating does not change much from the fourth harmonic. (author)

  13. Effect of Heating Rate on Pyrolysis Behavior and Kinetic Characteristics of Siderite

    Directory of Open Access Journals (Sweden)

    Xiaolong Zhang

    2017-11-01

    Full Text Available The pyrolysis characteristics of siderite at different heating rates under the neutral atmosphere were investigated using various tools, including comprehensive thermal analyzer, tube furnace, X-ray diffraction (XRD, scanning electron microscope (SEM, energy-dispersive spectrometry (EDS and vibrating specimen magnetometer (VSM measurements. The reaction of siderite pyrolysis followed the one-step reaction under the neutral atmosphere: FeCO3 → Fe3O4 + CO2 + CO. As the increasing of heating rate, the start and end pyrolysis temperatures and temperate where maximum weight loss rate occurred increased, while the total mass loss were essentially the same. Increasing heating rate within a certain range was in favor of shortening the time of each reaction stage, and the maximum conversion rate could be reached with a short time. The most probable mechanism function for non-isothermal pyrolysis of siderite at different heating rates was A1/2 reaction model (nucleation and growth reaction. With increasing heating rate, the corresponding activation energies and the pre-exponential factors increased, from 446.13 to 505.19 kJ∙mol−1, and from 6.67 × 10−18 to 2.40 × 10−21, respectively. All siderite was transformed into magnetite with a porous structure after pyrolysis, and some micro-cracks were formed into the particles. The magnetization intensity and specific susceptibility increased significantly, which created favorable conditions for the further effective concentration of iron ore.

  14. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter

    Science.gov (United States)

    Wood, William A.; Oliver, A. Brandon

    2011-01-01

    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  15. Critical heat flux and exit film flow rate in a flow boiling system

    International Nuclear Information System (INIS)

    Ueda, Tatsuhiro; Isayama, Yasushi

    1981-01-01

    The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)

  16. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  17. A study of the flow boiling heat transfer in a minichannel for a heated wall with surface texture produced by vibration-assisted laser machining

    International Nuclear Information System (INIS)

    Piasecka, Magdalena; Strąk, Kinga; Grabas, Bogusław; Maciejewska, Beata

    2016-01-01

    The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining. (paper)

  18. Heat rate curve approximation for power plants without data measuring devices

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (CY

    2012-07-01

    In this work, a numerical method, based on the one-dimensional finite difference technique, is proposed for the approximation of the heat rate curve, which can be applied for power plants in which no data acquisition is available. Unlike other methods in which three or more data points are required for the approximation of the heat rate curve, the proposed method can be applied when the heat rate curve data is available only at the maximum and minimum operating capacities of the power plant. The method is applied on a given power system, in which we calculate the electricity cost using the CAPSE (computer aided power economics) algorithm. Comparisons are made when the least squares method is used. The results indicate that the proposed method give accurate results.

  19. HEAT TRANSFER METHOD

    Science.gov (United States)

    Gambill, W.R.; Greene, N.D.

    1960-08-30

    A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

  20. Effect of mineral matter on coal self-heating rate

    Energy Technology Data Exchange (ETDEWEB)

    B. Basil Beamish; Ahmet Arisoy [University of Queensland, Brisbane, Qld. (Australia). School of Engineering

    2008-01-15

    Adiabatic self-heating tests have been conducted on subbituminous coal cores from the same seam profile, which cover a mineral matter content range of 11.2-71.1%. In all cases the heat release rate does not conform to an Arrhenius kinetic model, but can best be described by a third order polynomial. Assessment of the theoretical heat sink effect of the mineral matter in each of the tests reveals that the coal is less reactive than predicted using a simple energy conservation equation. There is an additional effect of the mineral matter in these cases that cannot be explained by heat sink alone. The disseminated mineral matter in the coal is therefore inhibiting the oxidation reaction due to physicochemical effects. 14 refs., 5 figs., 5 tabs.

  1. Standard Test Method for Measuring Heat Transfer Rate Using a Thin-Skin Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the design and use of a thin metallic calorimeter for measuring heat transfer rate (also called heat flux). Thermocouples are attached to the unexposed surface of the calorimeter. A one-dimensional heat flow analysis is used for calculating the heat transfer rate from the temperature measurements. Applications include aerodynamic heating, laser and radiation power measurements, and fire safety testing. 1.2 Advantages 1.2.1 Simplicity of ConstructionThe calorimeter may be constructed from a number of materials. The size and shape can often be made to match the actual application. Thermocouples may be attached to the metal by spot, electron beam, or laser welding. 1.2.2 Heat transfer rate distributions may be obtained if metals with low thermal conductivity, such as some stainless steels, are used. 1.2.3 The calorimeters can be fabricated with smooth surfaces, without insulators or plugs and the attendant temperature discontinuities, to provide more realistic flow conditions for ...

  2. Orion Heat Shield Manufacturing Producibility Improvements for the EM-1 Flight Test Program

    Science.gov (United States)

    Koenig, William J.; Stewart, Michael; Harris, Richard F.

    2018-01-01

    This paper describes how the ORION program is incorporating improvements in the heat shield design and manufacturing processes reducing programmatic risk and ensuring crew safety in support of NASA's Exploration missions. The approach for the EFT-1 heat shield utilized a low risk Apollo heritage design and manufacturing process using an Avcoat TPS ablator with a honeycomb substrate to provide a one piece heat shield to meet the mission re-entry heating environments. The EM-1 mission will have additional flight systems installed to fly to the moon and return to Earth. Heat shield design and producibility improvements have been incorporated in the EM-1 vehicle to meet deep space mission requirements. The design continues to use the Avcoat material, but in a block configuration to enable improvements in consistant and repeatable application processes using tile bonding experience developed on the Space Shuttle Transportation System Program.

  3. Measurement of specific heat and specific absorption rate by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, David H., E-mail: david.gultekin@aya.yale.edu [Department of Electrical Engineering, Yale University, New Haven, CT 06520 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States); Gore, John C. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 (United States); Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232 (United States); Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States)

    2010-05-20

    We evaluate a nuclear magnetic resonance (NMR) method of calorimetry for the measurement of specific heat (c{sub p}) and specific absorption rate (SAR) in liquids. The feasibility of NMR calorimetry is demonstrated by experimental measurements of water, ethylene glycol and glycerol using any of three different NMR parameters (chemical shift, spin-spin relaxation rate and equilibrium nuclear magnetization). The method involves heating the sample using a continuous wave laser beam and measuring the temporal variation of the spatially averaged NMR parameter by non-invasive means. The temporal variation of the spatially averaged NMR parameter as a function of thermal power yields the ratio of the heat capacity to the respective nuclear thermal coefficient, from which the specific heat can be determined for the substance. The specific absorption rate is obtained by subjecting the liquid to heating by two types of radiation, radiofrequency (RF) and near-infrared (NIR), and by measuring the change in the nuclear spin phase shift by a gradient echo imaging sequence. These studies suggest NMR may be a useful tool for measurements of the thermal properties of liquids.

  4. WAD, a program to calculate the heat produced by alpha decay

    International Nuclear Information System (INIS)

    Jarvis, R.G.; Bretzlaff, C.I.

    1982-09-01

    The FORTRAN program WAD (Watts from Alpha Decay) deals with the alpha and beta decay chains to be encountered in advanced fuel cycles for CANDU reactors. The data library covers all necessary alpha-emitting and beta-emitting nuclides and the program calculates the heat produced by alpha decay. Any permissible chain can be constructed very simply

  5. Effect of phase change material on the heat transfer rate of different building materials

    Science.gov (United States)

    Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan

    2017-12-01

    Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.

  6. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    International Nuclear Information System (INIS)

    Mothilal, T.; Pitchandi, K.

    2015-01-01

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%

  7. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Mothilal, T. [T. J. S. Engineering College, Gummidipoond (India); Pitchandi, K. [Sri Venkateswara College of Engineering, Sriperumbudur (India)

    2015-10-15

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%.

  8. The heating rate in the tropical tropopause region; Die Erwaermungsrate in der tropischen Tropopausenregion

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Ulrich

    2010-07-01

    The major part of the movement of air masses from the troposphere to the stratosphere takes place in the tropics. The conveyed air mass is transported with the Brewer-Dobson circulation poleward and therefore influences the global stratospheric composition. An important cause variable for the transport of air through the tropical tropopause layer (TTL) is the radiative heating, which is investigated in this work. The influence of trace gases, temperature, and cloudiness on the heating rate is quantified, especially the effect of the overlap of several cloud layers is discussed. The heating rate in the tropics is simulated for one year. Regional differences of the heating rate profile appear between convective and stably stratified regions. By means of trace gas concentrations, temperature, and heating rates it is determined that an enhanced transport of air through the TTL took place between January and April 2007. The comparison with previous works shows that accurate input data sets of trace gases, temperature, and cloudiness and exact methods for the simulation of the radiative transfer are indispensable for modeling of the heating rate with the required accuracy. (orig.)

  9. Research of Heating Rates Influence on Layer Coal Gasification of Krasnogorsky And Borodinsky Coal Deposit

    Directory of Open Access Journals (Sweden)

    Jankovskiy Stanislav

    2015-01-01

    Full Text Available Experimental research of heating rate influence on coal samples gasification process of Krasnogorsky and Borodinsky coal deposit ranks A and 2B was done to define optimal heating mode in high intensification of dispersal of inflammable gases conditions. Abundance ratio of carbon monoxide and nitrogen monoxide, water vapor, carbon dioxide at four values of heating rate within the range of 5 to 30 K/min. with further definition of optimal heating rate of coals was stated.

  10. Single Chain Variable Fragments Produced in Escherichia coli against Heat-Labile and Heat-Stable Toxins from Enterotoxigenic E. coli.

    Directory of Open Access Journals (Sweden)

    Christiane Y Ozaki

    Full Text Available Diarrhea is a prevalent pathological condition frequently associated to the colonization of the small intestine by enterotoxigenic Escherichia coli (ETEC strains, known to be endemic in developing countries. These strains can produce two enterotoxins associated with the manifestation of clinical symptoms that can be used to detect these pathogens. Although several detection tests have been developed, minimally equipped laboratories are still in need of simple and cost-effective methods. With the aim to contribute to the development of such diagnostic approaches, we describe here two mouse hybridoma-derived single chain fragment variable (scFv that were produced in E. coli against enterotoxins of ETEC strains.Recombinant scFv were developed against ETEC heat-labile toxin (LT and heat-stable toxin (ST, from previously isolated hybridoma clones. This work reports their design, construction, molecular and functional characterization against LT and ST toxins. Both antibody fragments were able to recognize the cell-interacting toxins by immunofluorescence, the purified toxins by ELISA and also LT-, ST- and LT/ST-producing ETEC strains.The developed recombinant scFvs against LT and ST constitute promising starting point for simple and cost-effective ETEC diagnosis.

  11. Effect of melt surface depression on the vaporization rate of a metal heated by an electron beam

    International Nuclear Information System (INIS)

    Guilbaud, D.

    1995-01-01

    In order to produce high density vapor, a metal confined in a water cooled crucible is heated by an electron beam (eb). The energy transfer to the metal causes partial melting, forming a pool where the flow is driven by temperature induced buoyancy and capillary forces. Furthermore, when the vaporization rate is high, the free surface is depressed by the thrust of the vapor. The main objective of this paper is to analyse the combined effects of liquid flow and vapor condensation back on the liquid surface. This is done with TRIO-EF, a general purpose fluid mechanics finite element code. A suitable iterative scheme is used to calculate the free surface flow and the temperature field. The numerical simulation gives an insight about the influence of the free surface in heat transfer. The depression of the free surface induces strong effects on both liquid and vapor. As liquid is concerned, buoyancy convection in the pool is enhanced, the energy flux from electron beam is spread and constriction of heat flux under the eb spot is weakened. It results that heat transfer towards the crucible is reinforced. As vapor is concerned, its fraction that condenses back on the liquid surface is increased. These phenomena lead to a saturation of the net vaporization rate as the eb spot radius is reduced, at constant eb power. (author). 8 refs., 13 figs., 2 tabs

  12. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  13. Sensitivity of tropospheric heating rates to aerosols: A modeling study

    International Nuclear Information System (INIS)

    Hanna, A.F.; Shankar, U.; Mathur, R.

    1994-01-01

    The effect of aerosols on the radiation balance is critical to the energetics of the atmosphere. Because of the relatively long residence of specific types of aerosols in the atmosphere and their complex thermal and chemical interactions, understanding their behavior is crucial for understanding global climate change. The authors used the Regional Particulate Model (RPM) to simulate aerosols in the eastern United States in order to identify the aerosol characteristics of specific rural and urban areas these characteristics include size, concentration, and vertical profile. A radiative transfer model based on an improved δ-Eddington approximation with 26 spectral intervals spanning the solar spectrum was then used to analyze the tropospheric heating rates associated with these different aerosol distributions. The authors compared heating rates forced by differences in surface albedo associated with different land-use characteristics, and found that tropospheric heating and surface cooling are sensitive to surface properties such as albedo

  14. Heat-resistant, extended-spectrum β-lactamase-producing Klebsiella pneumoniae in endoscope-mediated outbreak

    DEFF Research Database (Denmark)

    Jørgensen, S.B.; Bojer, Martin Saxtorph; Boll, E.J.

    2016-01-01

    disinfection in a decontaminator designated for such use. The genetic marker clpK, which increases microbial heat resistance, has previously been described in K. pneumoniae outbreak strains. Aim To investigate the role of clpK in biofilm formation and heat-shock stability in the outbreak strain. Methods...... construction and heat-shock assays. Findings Five patients and one intubation endoscope contained K. pneumoniae with the same amplified fragment length polymorphism pattern. The outbreak strain contained the clpK genetic marker, which rendered the strain its increased heat resistance. The survival rate....... Heat resistance of certain K. pneumoniae strains may facilitate survival in biofilms on medical equipment and hence increase the potential of those strains to persist and disperse in the hospital environment....

  15. Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Łukasz, E-mail: l.maj@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Morgiel, Jerzy; Szlezynger, Maciej [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Bała, Piotr; Cios, Grzegorz [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Kawiory St., 30-055 Kraków (Poland)

    2017-06-01

    The effect of heating rates of Ni(V)/Al NanoFoils{sup ®} was investigated with transmission electron microscopy (TEM). The Ni(V)/Al were subjected to heating by using differential scanning calorimetry (DSC), in-situ TEM or electric pulse. Local chemical analysis was carried out using energy dispersive X-ray spectroscopy (EDS). Phase analysis was done with X-ray diffractions (XRD) and selected area electron diffractions (SAED). The experiments showed that slow heating in DSC results in development of separate exothermic effects at ∼230 °C, ∼280 °C and ∼390 °C, corresponding to precipitation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl phases, respectively, i.e. like in vanadium free Ni/Al multilayers. Further heating to 700 °C allowed to obtain a single phase NiAl foil. The average grain size (g.s.) of NiAl phase produced in the DSC heat treated foil was comparable with the Ni(V)/Al multilayer period (∼50 nm), whereas in the case of reaction initiated with electric pulse the g.s. was in the micrometer range. Upon slow heating vanadium tends to segregate to zones parallel to the original multilayer internal interfaces, while in SHS process vanadium-rich phases precipitates at grain boundaries of the NiAl phase. - Highlights: • Peaks in DSC heating of Ni(V)/Al were explained by in-situ TEM observations. • Nucleation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl at slow heating of Ni(V)/Al was documented. • Near surface NiAl obtained from NanoFoil show Ag precipitates at grain boundaries.

  16. Effect of heating rate and grain size on the melting behavior of the alloy Nb-47 mass % Ti in pulse-heating experiments

    International Nuclear Information System (INIS)

    Basak, D.; Boettinger, W.J.; Josell, D.; Coriell, S.R.; McClure, J.L.; Cezairliyan, A.

    1999-01-01

    The effect of heating rate and grain size on the melting behavior of Nb-47 mass% Ti is measured and modeled. The experimental method uses rapid resistive self-heating of wire specimens at rates between ∼10 2 and ∼10 4 K/s and simultaneous measurement of radiance temperature and normal spectral emissivity as functions of time until specimen collapse, typically between 0.4 and 0.9 fraction melted. During heating, a sharp drop in emissivity is observed at a temperature that is independent of heating rate and grain size. This drop is due to surface and grain boundary melting at the alloy solidus temperature even though there is very little deflection (limited melting) of the temperature-time curve from the imposed heating rate. Above the solidus temperature, the emissivity remains nearly constant with increasing temperature and the temperature vs time curve gradually reaches a sloped plateau over which the major fraction of the specimen melts. As the heating rate and/or grain size is increased, the onset temperature of the sloped plateau approaches the alloy liquidus temperature and the slope of the plateau approaches zero. This interpretation of the shapes of the temperature-time-curves is supported by a model that includes diffusion in the solid coupled with a heat balance during the melting process. There is no evidence of loss of local equilibrium at the melt front during melting in these experiments

  17. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.

    Science.gov (United States)

    Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans

    2009-11-01

    We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.

  18. Estimation of shutdown heat generation rates in GHARR-1 due to ...

    African Journals Online (AJOL)

    Fission products decay power and residual fission power generated after shutdown of Ghana Research Reactor-1 (GHARR-1) by reactivity insertion accident were estimated by solution of the decay and residual heat equations. A Matlab program code was developed to simulate the heat generation rates by fission product ...

  19. Local linear heat rate ramps in the WWER-440 transient regimes

    International Nuclear Information System (INIS)

    Brik, A.N.; Bibilashvili, Ju.L.; Bogatyr, S.M.; Medvedev, A.V.

    1998-01-01

    The operation of the WWER-440 reactors must be accomplished in such a way that the fuel rods durability would be high enough during the whole operation period. The important factors determining the absence of fuel rod failures are the criteria limiting the core characteristics (fuel rod and fuel assembly power, local linear heat rate, etc.). For the transient and load follow conditions the limitations on the permissible local linear rate ramp are also introduced. This limitation is the result of design limit of stress corrosion cracking of the fuel cladding and depends on the local fuel burn-up. The control rod motion is accompanied by power redistribution, which, in principle, can result in violating the design and operation limitations. Consequently, this motion have to be such as the core parameters, including the local ramps of the linear heat generation rates would not exceed the permissible ones.The paper considers the problem of WWER-440 reactor control under transient and load follow conditions and the associated optimisation of local linear heat generation rate ramps. The main factors affecting the solution of the problem under consideration are discussed. Some recommendations for a more optimal reactor operation are given.(Author)

  20. Measurements of the evaporation rate upon evaporation of thin layer at different heating modes

    OpenAIRE

    Gatapova E.Ya.; Korbanova E.G.

    2017-01-01

    Technique for measurements of the evaporation rate of a heated liquid layer is presented. The local minimum is observed which is associated with the point of equilibrium of the liquid–gas interface. It is shown when no heat is applied to the heating element temperature in gas phase is larger than in liquid, and evaporation occurs with the rate of 0.014–0.018 μl/s. Then evaporation rate is decreasing with increasing the heater temperature until the equilibrium point is reached at the liquid–ga...

  1. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  2. Effect of the Heat Flux Density on the Evaporation Rate of a Distilled Water Drop

    Directory of Open Access Journals (Sweden)

    Ponomarev Konstantin

    2016-01-01

    Full Text Available This paper presents the experimental dependence of the evaporation rate of a nondeaerated distilled water drop from the heat flux density on the surfaces of non-ferrous metals (copper and brass. A drop was placed on a heated substrate by electronic dosing device. To obtain drop profile we use a shadow optical system; drop symmetry was controlled by a high-speed video camera. It was found that the evaporation rate of a drop on a copper substrate is greater than on a brass. The evaporation rate increases intensively with raising volume of a drop. Calculated values of the heat flux density and the corresponding evaporation rates are presented in this work. The evaporation rate is found to increase intensively on the brass substrate with raising the heat flux density.

  3. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...... different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  4. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)

    2014-03-01

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

  5. Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones

    Science.gov (United States)

    Irimpan, Kiran Joy; Menezes, Viren

    2018-03-01

    Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.

  6. Effect of Heating Rate on Grain Structure and Superplasticity of 7B04 Aluminum Alloy Sheets

    Directory of Open Access Journals (Sweden)

    CHEN Min

    2017-03-01

    Full Text Available Fine-grained 7B04 aluminum alloy sheets were manufactured through thermo-mechanical treatment. The effects of anneal heating rate on grain structure and superplasticity were investigated using electron back scattering diffraction(EBSD and high temperature tensile test. The results show that at the heating rate of 5.0×10-3K/s, the average grain sizes along the rolling direction(RD and normal direction(ND are 28.2μm and 13.9μm respectively, the nucleation rate is 1/1000. With the increase of heating rate, the average grain size decreases, and the nucleation rate increases. When the heating rate increases to 30.0K/s, the average grain sizes along the RD and ND decrease respectively to 9.9μm and 5.1μm, and the nucleation rate increases to 1/80. Besides, with the increase of heating rate, the elongation of sheets also increases. The elongation of the specimens increases from 100% to 730% under the deforming condition of 773K/8×10-4s-1.

  7. How can we constrain the amount of heat producing elements in the interior of Mars?

    Science.gov (United States)

    Grott, M.; Plesa, A.; Breuer, D.

    2013-12-01

    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission to be launched in 2016 will study Mars' deep interior and help improving our knowledge about the interior structure and the thermal evolution of the planet - the latter is also directly linked to its volcanic history and atmospheric evolution. Measurements planned with the two main instruments, SEIS (Seismic Experiment for Interior Structure) and HP3 (Heat Flow and Physical Properties Package) aim to constrain the main structure of the planet, i.e. core, mantle and crust as well as the rate at which the planet loses the interior heat over its surface. Since the surface heat flow depends on the amount of radiogenic heat elements (HPE) present in the interior, it offers a measurable quantity which could constrain the heat budget. Being the principal agent regulating the heat budget which in turn influences partial melting in the interior, crustal and atmospheric evolution, the heat producing elements have a major impact on the entire the present temperature thermal history of the planet. To constrain the radiogenic heat elements of the planet from the surface heat flow is possible assuming that the urey number of the planet, which describes the contribution of internal heat production to the surface heat loss, is known. We have tested this assumption by calculating the thermal evolution of the planet with fully dynamical numerical simulations and by comparing the obtained present-day urey number for a set of different models/parameters (Fig. 1). For one-plate planets like Mars, numerical models show - in contrast to models for the Earth, where plate tectonics play a major role adding more complexity to the system - that the urey ratio is mainly sensitive to two effects: the efficiency of cooling due to the temperature-dependence of the viscosity and the mean half-life time of the long lived radiogenic isotopes. The temperature-dependence of the viscosity results in the

  8. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  9. Calorimeter measures high nuclear heating rates and their gradients across a reactor test hole

    Science.gov (United States)

    Burwell, D.; Coombe, J. R.; Mc Bride, J.

    1970-01-01

    Pedestal-type calorimeter measures gamma-ray heating rates from 0.5 to 7.0 watts per gram of aluminum. Nuclear heating rate is a function of cylinder temperature change, measured by four chromel-alumel thermocouples attached to the calorimeter, and known thermoconductivity of the tested material.

  10. Leaching and heating process as alternative to produce fish protein powder from Kilka (Clupeonella cultiventris caspia

    Directory of Open Access Journals (Sweden)

    KAVEH RAHMANIFARAH

    2014-05-01

    Full Text Available Rahmanifarah K, Shabanpour B, Shaviklo AR, Aalami M. 2014. Leaching and heating process as alternative to produce fish protein powder from Kilka (Clupeonella cultiventris caspia. Nusantara Bioscience 6: 1-6. The effect of protein extraction procedures (leached mince and heated suspension on selected properties of fish protein powder (proximate composition, pH, color, density, viscosity, fat adsorption, emulsifying capacity, emulsifying stability, foaming capacity, foaming stability, WBC, protein solubility in water, hygroscopicity, Trichloroacetic acid (TCA-soluble peptides and free sulfhydryl groups was investigated. Results showed that Fish protein powder (FPP produced by leaching mince (LM have higher protein, moisture, ash, pH, L*, viscosity, emulsion capacity, emulsion stability, foam capacity, foam stability, water binding capacity (WBC, protein solubility, hygroscopicity, TCA soluble peptides and free sulfhydryl group content than heated suspension (HS (P0.05. Overall, it was observed that high temperature during heating of suspension in HS method makes possible protein denaturation and aggregation. Consequently, based on functional, chemical and physical properties, extraction of fish protein by leaching process was found to be suitable for the production of fish protein powder.

  11. Acoustic heating produced in the thermoviscous flow of a Bingham plastic

    Science.gov (United States)

    Perelomova, Anna

    2011-02-01

    This study is devoted to the instantaneous acoustic heating of a Bingham plastic. The model of the Bingham plastic's viscous stress tensor includes the yield stress along with the shear viscosity, which differentiates a Bingham plastic from a viscous Newtonian fluid. A special linear combination of the conservation equations in differential form makes it possible to reduce all acoustic terms in the linear part of of the final equation governing acoustic heating, and to retain those belonging to the thermal mode. The nonlinear terms of the final equation are a result of interaction between sounds and the thermal mode. In the field of intense sound, the resulting nonlinear acoustic terms form a driving force for the heating. The final governing dynamic equation of the thermal mode is valid in a weakly nonlinear flow. It is instantaneous, and does not imply that sounds be periodic. The equations governing the dynamics of both sounds and the thermal mode depend on sign of the shear rate. An example of the propagation of a bipolar initially acoustic pulse and the evolution of the heating induced by it is illustrated and discussed.

  12. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  13. A Study of the Mechanical Behavior of OFHC Copper in Tension at Various Strain Rates and Heating Rates Using the Two-Dimensional Integrated Speckle Measuring System

    National Research Council Canada - National Science Library

    Durant, Brian

    2000-01-01

    .... A modified dog bone specimen was heated using resistive heating techniques. The effects of high temperature, medium strain rates, and high heating rates on the stress-strain results were observed...

  14. Isothermal calorimeter for measurements of time-dependent heat generation rate in individual supercapacitor electrodes

    Science.gov (United States)

    Munteshari, Obaidallah; Lau, Jonathan; Krishnan, Atindra; Dunn, Bruce; Pilon, Laurent

    2018-01-01

    Heat generation in electric double layer capacitors (EDLCs) may lead to temperature rise and reduce their lifetime and performance. This study aims to measure the time-dependent heat generation rate in individual carbon electrode of EDLCs under various charging conditions. First, the design, fabrication, and validation of an isothermal calorimeter are presented. The calorimeter consisted of two thermoelectric heat flux sensors connected to a data acquisition system, two identical and cold plates fed with a circulating coolant, and an electrochemical test section connected to a potentiostat/galvanostat system. The EDLC cells consisted of two identical activated carbon electrodes and a separator immersed in an electrolyte. Measurements were performed on three cells with different electrolytes under galvanostatic cycling for different current density and polarity. The measured time-averaged irreversible heat generation rate was in excellent agreement with predictions for Joule heating. The reversible heat generation rate in the positive electrode was exothermic during charging and endothermic during discharging. By contrast, the negative electrode featured both exothermic and endothermic heat generation during both charging and discharging. The results of this study can be used to validate existing thermal models, to develop thermal management strategies, and to gain insight into physicochemical phenomena taking place during operation.

  15. Effect of heating rate on the mechanical properties and microstructure of Ti(C,N)-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Ai, Xing, E-mail: aixingsdu@163.com; Zhao, Jun; Zhang, Hongshan; Qin, Wenzhen; Gong, Feng

    2015-03-25

    An appropriate heating rate in the sintering process is crucial to obtain the Ti(C,N)-based cermets with superior properties. In this paper, Ti(C,N)-based cermets were sintered to investigate the influence of heating rate on the mechanical properties and microstructure of the cermet materials. The transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}) were tested. The microstructure, indention crack, fracture morphology and phase composition of the cermets were also studied by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results reveal that the heating rate has a great influence on the mechanical properties and microstructure of Ti(C,N)-based cermets. The cermets sintered at the heating rate of 3 °C/min between 1300 °C and 1430 °C have the optimum comprehensive mechanical properties with a transverse rupture strength of 1605±107 MPa, a hardness of 12.02±0.25 GPa and a fracture toughness of 10.73±0.40 MPa m{sup 1/2}. The heating rate can affect the reaction among the constituents of Ti(C,N)-based cermets and then influence the elements distribution in the core–rim microstructures and the lattice parameter of Ti(C,N) phase. When the heating rate is between 2 °C/min and 5 °C/min, the lower the heating rate is, the coarser the Ti(C,N) grains become. A higher heating rate is detrimental to the formation of core–rim microstructures, and a lower heating rate can result in grain coarsening and inhomogeneous microstructure. The observation of indention cracks and fracture surfaces show that the intergranular cracks and intergranular fractures mainly occur in the cermets with larger binder mean free path and medium grains. While the cleavage fractures appear more in the cermets with grain coarsening, and the transgranular fractures exist more in the cermets with non-fully developed fine grains.

  16. Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates

    Science.gov (United States)

    Li, Qibin; Wang, Meng; Liang, Yunpei; Lin, Liyang; Fu, Tao; Wei, Peitang; Peng, Tiefeng

    2017-06-01

    Molecular dynamics simulations were employed to investigate the heating rates' effect on aggregation of two copper nanoparticles. The aggregation can be distinguished into three distinct regimes by the contacting and melting of nanoparticles. The nanoparticles contacting at a lower temperature during the sintering with lower heating rate, meanwhile, some temporary stacking fault exists at the contacting neck. The aggregation properties of the system, i.e. neck diameter, shrinkage ratio, potential energy, mean square displacement (MSD) and relative gyration radius, experience drastic changes due to the free surface annihilation. After the nanoparticles coalesced for a stable period, the shrinkage ratio, MSD, relative gyration radius and neck diameter of the system are dramatically changed during the melting process. It is shown that the shrinkage ratio and MSD have relative larger increasing ratio for a lower heating rate. While the evolution of the relative gyration radius and neck diameter is only sensitive to the temperature.

  17. Lipolytic Changes in Fermented Sausages Produced with Turkey Meat: Effects of Starter Culture and Heat Treatment.

    Science.gov (United States)

    Karsloğlu, Betül; Çiçek, Ümran Ensoy; Kolsarici, Nuray; Candoğan, Kezban

    2014-01-01

    In this study, the effects of two different commercial starter culture mixes and processing methodologies (traditional and heat process) on the lipolytic changes of fermented sausages manufactured with turkey meat were evaluated during processing stages and storage. Free fatty acid (FFA) value increased with fermentation and during storage over 120 d in all fermented sausage groups produced with both processing methodologies (p<0.05). After drying stage, free fatty acid values of traditional style and heat processed fermented sausages were between 10.54-13.01% and 6.56-8.49%, respectively. Thiobarbituric acid (TBA) values of traditionally processed fermented sausages were between 0.220-0.450 mg·kg(-1), and TBA values of heat processed fermented sausages were in a range of 0.405-0.795 mg·kg(-1). Oleic and linoleic acids were predominant fatty acids in all fermented sausages. It was seen that fermented sausage groups produced with starter culture had lower TBA and FFA values in comparison with the control groups, and heat application inhibited the lipase enzyme activity and had an improving effect on lipid oxidation. As a result of these effects, heat processed fermented sausages had lower FFA and higher TBA values than the traditionally processed groups.

  18. Final results of the 'Benchmark on computer simulation of radioactive nuclides production rate and heat generation rate in a spallation target'

    International Nuclear Information System (INIS)

    Janczyszyn, J.; Pohorecki, W.; Domanska, G.; Maiorino, R.J.; David, J.C.; Velarde, F.A.

    2011-01-01

    A benchmark has been organized to assess the computer simulation of nuclide production and heat generation in a spallation lead target. The physical models applied for the calculation of thick lead target activation do not produce satisfactory results for the majority of analysed nuclides, however one can observe better or worse quantitative compliance with the experimental results. Analysis of the quality of calculated results show the best performance for heavy nuclides (A: 170 - 190). For intermediate nuclides (A: 60 - 130) almost all are underestimated while for A: 130 - 170 mainly overestimated. The shape of the activity distribution in the target is well reproduced in calculations by all models but the numerical comparison shows similar performance as for the whole target. The Isabel model yields best results. As for the whole target heating rate, the results from all participants are consistent. Only small differences are observed between results from physical models. As for the heating distribution in the target it looks not quite similar. The quantitative comparison of the distributions yielded by different spallation reaction models shows for the major part of the target no serious differences - generally below 10%. However, in the most outside parts of the target front layers and the part of the target at its end behind the primary protons range, a spread higher than 40 % is obtained

  19. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Science.gov (United States)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  20. An artificial intelligence heat rate/NOx optimization system for Ontario Hydro`s Lambton Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Luk, J.; Bachalo, K.; Henrikson, J. [Ontario Hydro, Toronto, ON (Canada); Roland, W.; Booth, R.C.; Parikh, N.; Radl, B. [Pegasus Technologies Ltd., Painesville, OH (United States)

    1998-12-01

    The utilization of artificial Intelligence (AI)-based software programs to optimize power plant operations by simultaneously improving heat rate performance and reducing NOx emissions was discussed. While many AI programs were initially used for demonstration purposes, they are now available for commercial use due to their promising results. In 1996, the Fossil Business Unit of Ontario Hydro initiated a study to evaluate AI technology as a tool for optimizing heat rate and NOx reduction in coal fired stations. Tests were conducted at Units 3 and 4 of the Lambton Generation Station, located just south of Sarnia, Ontario. The tests were conducted to examine three desirable options: (1) achieve at least 0.5 per cent improvement in heat rate concurrently with a NOx reduction of at least 5 per cent, (2) optimize on `heat rate` only with minimum improvement of 2 per cent, and optimize `minimal NOx` only with reduction target of 20 per cent or more, and (3) reach a collaborative agreement with a supplier to further explore and develop AI optimization applications for other advanced and more complex plant processes. Results indicated that NOx reduction and heat rate improvement are not contradictory goals. 15 refs., 1 fig.

  1. Rheology and microstructure of binary mixed gel of rice bran protein-whey: effect of heating rate and whey addition.

    Science.gov (United States)

    Rafe, Ali; Vahedi, Elnaz; Hasan-Sarei, Azadeh Ghorbani

    2016-08-01

    Rice bran protein (RBP) is a valuable plant protein which has unique nutritional and hypoallergenic properties. Whey proteins have wide applications in the food industry, such as in dairy, meat and bakery products. Whey protein concentrate (WPC), RBP and their mixtures at different ratios (1:1, 1:2, 1:5 and 1:10 w/w) were heated from 20 to 90 °C at different heating rates (0.5, 1, 5 and 10 °C min(-1) ). The storage modulus (G') and gelling point (Tgel ) of WPC were higher than those of RBP, indicating the good ability of WPC to develop stiffer networks. By increasing the proportion of WPC in mixed systems, G' was increased and Tgel was reduced. Nevertheless, the elasticity of all binary mixtures was lower than that of WPC alone. Tgel and the final G' of RBP-WPC blends were increased by raising the heating rate. The RBP-WPC mixtures developed more elastic gels than RBP alone at different heating rates. RBP had a fibrillar and lentil-like structure whose fibril assembly had smaller structures than those of WPC. The gelling structure of the mixed gel of WPC-RBP was improved by adding WPC. Indeed, by adding WPC, gels tended to show syneresis and had lower water-holding capacity. Furthermore, the gel structure was produced by adding WPC to the non-gelling RBP, which is compatible with whey and can be applied as a functional food for infants and/or adults. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Vrancken, Bey; Thijs, Lore; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2012-01-01

    Highlights: ► Responses of SLM-produced and wrought Ti6Al4V to heat treatment are compared. ► Temperature is found to be the controlling parameter for treatments in the α + β range. ► Ductility could be improved by a factor of 85%, from 7.27% to 13.59%. ► An optimal heat treatment for SLM produced Ti6Al4V is proposed. - Abstract: The present work shows that optimization of mechanical properties via heat treatment of parts produced by Selective Laser Melting (SLM) is profoundly different compared to conventionally processed Ti6Al4V. In order to obtain optimal mechanical properties, specific treatments are necessary due to the specific microstructure resulting from the SLM process. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, the effect of several heat treatments on the microstructure and mechanical properties of Ti6Al4V processed by SLM is studied. A comparison is made with the effect of these treatments on hot forged and subsequently mill annealed Ti6Al4V with an original equiaxed microstructure. For SLM produced parts, the original martensite α′ phase is converted to a lamellar mixture of α and β for heat treating temperatures below the β-transus (995 °C), but features of the original microstructure are maintained. Treated above the β-transus, extensive grain growth occurs and large β grains are formed which transform to lamellar α + β upon cooling. Post treating at 850 °C for 2 h, followed by furnace cooling increased the ductility of SLM parts to 12.84 ± 1.36%, compared to 7.36 ± 1.32% for as-built parts.

  3. The intubating laryngeal mask produces less heart rate response to ...

    African Journals Online (AJOL)

    Pc

    We compared heart rate and blood pressure changes to intubation produced by conventional laryngoscopic-guided intubation to those produced by blind intubation through the intubating laryngeal mask (ILM) in normotensive adults with normal airways. Forty paralysed, anaesthetised adults undergoing elective surgery ...

  4. Accurate label-free reaction kinetics determination using initial rate heat measurements

    Science.gov (United States)

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  5. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into considera- ... does not change the process of releasing hydrogen from titanium hydride ... from titanium hydride in a sequence of steps.

  6. Particle loading rates for HVAC filters, heat exchangers, and ducts.

    Science.gov (United States)

    Waring, M S; Siegel, J A

    2008-06-01

    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  7. Tolerence for work-induced heat stress in men wearing liquidcooled garments

    Science.gov (United States)

    Blockley, W. V.; Roth, H. P.

    1971-01-01

    An investigation of the heat tolerance in men unable to dispose of metabolic heat as fast as it is produced within the body is discussed. Examinations were made of (a) the effect of work rate (metabolic rate) on tolerance time when body heat storage rate is a fixed quantity, and (b) tolerance time as a function of metabolic rate when heat loss is terminated after a thermal quasi-equilibrium was attained under comfortable conditions of heat transfer. The nature of the physiological mechanisms involved in such heat stress situations, and the possibility of using prediction techniques to establish standard procedures in emergencies involving cooling system failures are also discussed.

  8. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    Effect of high heating rate on thermal decomposition behaviour of titanium hydride ... hydride powder, while switching it from internal diffusion to chemical reaction. ... TiH phase and oxides form on the powder surface, controlling the process.

  9. Heat generation and cooling of SSC magnets at high ramp rates

    International Nuclear Information System (INIS)

    Snitchler, G.; Capone, D.; Kovachev, V.; Schermer, R.

    1992-01-01

    This presentation will address a summary of AC loss calculations (SSCL), experimental results on cable samples (Westinghouse STC), short model magnets test results (FNAL, KEK-Japan), and recent full length magnets test data on AC losses and quench current ramp rate sensitivity (FNAL, BNL). Possible sources of the observed enhanced heat generation and quench sensitivity for some magnets will be discussed. A model for cooling conditions of magnet coils considering heat generation distribution and specific anisotropy of the heat transfer will be presented. The crossover contact resistance in cables and curing procedure influence on resistivity, currently under study, will be briefly discussed. (author)

  10. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    Science.gov (United States)

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    What is the central question of this study? Does attenuated skin blood flow diminish sweating and reduce the critical environmental limit for heat balance, which indicates maximal heat loss potential, during severe heat stress? What is the main finding and its importance? Isosmotic hypovolaemia attenuated skin blood flow by ∼20% but did not result in different sweating rates, mean skin temperatures or critical environmental limits for heat balance compared with control and volume-infusion treatments, suggesting that the lower levels of skin blood flow commonly observed in aged and diseased populations may not diminish maximal whole-body heat dissipation. Attenuated skin blood flow (SkBF) is often assumed to impair core temperature (T c ) regulation. Profound pharmacologically induced reductions in SkBF (∼85%) lead to impaired sweating, but whether the smaller attenuations in SkBF (∼20%) more often associated with ageing and certain diseases lead to decrements in sweating and maximal heat loss potential is unknown. Seven healthy men (28 ± 4 years old) completed a 30 min equilibration period at 41°C and a vapour pressure (P a ) of 2.57 kPa followed by incremental steps in P a of 0.17 kPa every 6 min to 5.95 kPa. Differences in heat loss potential were assessed by identifying the critical vapour pressure (P crit ) at which an upward inflection in T c occurred. The following three separate treatments elicited changes in plasma volume to achieve three distinct levels of SkBF: control (CON); diuretic-induced isosmotic dehydration to lower SkBF (DEH); and continuous saline infusion to maintain SkBF (SAL). The T c , mean skin temperature (T sk ), heart rate, mean laser-Doppler flux (forearm and thigh; LDF mean ), mean local sweat rate (forearm and thigh; LSR mean ) and metabolic rate were measured. In DEH, a 14.2 ± 5.7% lower plasma volume resulted in a ∼20% lower LDF mean in perfusion units (PU) (DEH, 139 ± 23 PU; CON, 176 ± 22 PU; and SAL

  11. Size distribution of salbutamol/ipratropium aerosols produced by different nebulizers in the absence and presence of heat and humidification.

    Science.gov (United States)

    Yang, Ssu-Han; Yang, Tsung-Ming; Lin, Hui-Ling; Tsai, Ying-Huang; Fang, Tien-Pei; Wan, Gwo-Hwa

    2018-02-01

    Few studies have evaluated the size distribution of inhaled and exhaled aerosolized drugs, or the effect of heated humidification on particle size and lung deposition. The present study evaluated these aspects of bronchodilator (salbutamol/ipratropium) delivery using a lung model in the absence and presence of heat and humidification. We positioned filters to collect and measure the initial drug, inhaled drug, and exhaled drug. Particle size distribution was evaluated using an 8-stage Marple personal cascade impactor with 0.2-μm polycarbonate filters. A greater inhaled drug mass was delivered using a vibrating mesh nebulizer (VMN) than by using a small volume nebulizer (SVN), when heated humidifiers were not employed. When heated and humidified medical gas was used, there was no significant difference between the inhaled drug mass delivered by the VMN and that delivered by the SVN. A significantly greater mass of inhaled 1.55-μm drug particles was produced by the VMN than with the SVN, under heated and humidified conditions. However, the mass median aerodynamic diameters (MMADs) of the aerosolized drug produced by the SVN and VMN did not differ significantly under the same conditions. The VMN produced more fine particles of salbutamol/ipratropium, and the drug particle size clearly increased in the presence of heat and humidification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Waste Heat to Power Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elson, Amelia [ICF International, Fairfax, VA (United States); Tidball, Rick [ICF International, Fairfax, VA (United States); Hampson, Anne [ICF International, Fairfax, VA (United States)

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  13. Sintering of porous silver compacts at controlled heating rates in oxygen or argon

    International Nuclear Information System (INIS)

    Oliber, E.A; Cugno, C; Moreno, M; Esquivel, M; Haberkon, N; Fiscina, J.E; Gonzalez Oliver, C.J.R

    2002-01-01

    A submicronic (- 0.4μm grain size) spherical silver powder was mixed with 2wt% PVB and pressed into pellets (body A) of relative density (ρr) close to 0.54. The pellets were given a heat treatment at 235 o C for 4 hours (body B) in static air, after which the ρr values were increased by ∼2%. The preheated pellets (B) were densified in a vertical differential dilatometer, fitted with a silica head, at heating rates (hr) of 2, 4 and 10 o C min -1 under Ar or O 2 pure atmospheres. The total lineal densification [Δl(T)/lo, ΔI=Io-1(T) instantaneous thickness and lo: the initial thickness of the pellet] of the Ag-skeletons (B, of similar starting porosity) varied significantly upon changing either the (hr) or the atmosphere. It ranged from 8 to 12% giving still porous bodies of ρr∼0.80. After a small densification (stage (i)) each curve showed a clear Ti ( o C ) at which the densification (AD(T) exhibited a rapid increase (jump; stage (ii), and had a characteristic peak in densification rate (DR(T)). Then the AD continued by another mechanism (stage (iii)), related to grain growth, till the densification rate started to decrease probably due to densification (stage (iv)) of closed pores located at 4-grain corners. For every atmosphere the Ti increased with heating rate, and the Ti values for O 2 were 79- 105 o C lower than those for Ar. From DR kinetics analysis it is concluded that under O 2 stage (ii) is due to grain boundary diffusivity (gb) whereas for stage (iii) the volume (vol) diffusion is the main process. From detail densification fits it is shown for stage (iii) there is an initial contribution to densification coming up from an initial stage controlled by (gb) diffusion, and that the main process is still the intermediate stage with simultaneous grain growth controlled by volume self-diffusivity. For the Ar case the whole densification range appears to be controlled by (gb) diffusivity. Some impurity contamination of the Ag could produce a (gb

  14. The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Cuiuri, Dominic; Li, Huijun; Pan, Zengxi, E-mail: zengxi@uow.edu.au; Shen, Chen

    2016-03-07

    Postproduction heat treatments were carried out on additively manufactured γ-TiAl alloys that were produced by using the gas tungsten arc welding (GTAW) process. The microstructural evolution and mechanical properties of both as-fabricated and heat-treated specimens were investigated to assess the effect of different heat treatment conditions, by using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Neutron Diffraction and tensile tests. The results indicated that heat treatment promotes the formation of the γ phase in the majority region after heat treatment at 1200 °C for 24 h, while a fully lamellar structure was formed in the near-substrate zone. The response to heat treatment at 1060 °C/24 h was markedly different, producing a fine lamellar structure with differing sizes in the majority region and near-substrate zone. These various microstructural characteristics determined the mechanical properties of the heat-treated samples. The heat-treated samples at 1200 °C/24 h exhibited lower UTS and microhardness values but higher ductility than the as-fabricated samples without heat treatment, while the 1060 °C/24 h heat treatment resulted in higher UTS and microhardness values but lower ductility. Due to the homogenous microstructure in the majority region after each postproduction heat treatment, the tensile properties were similar for both the build direction (Z) and travel direction (Y), thereby minimising the anisotropy that is exhibited by the as-fabricated alloy prior to heat treatment.

  15. Relationship between the shear viscosity and heating rate in metallic glasses below the glass transition

    International Nuclear Information System (INIS)

    Khonik, Vitaly A.; Kobelev, N. P.

    2008-01-01

    It has been shown that first-order irreversible structural relaxation with distributed activation energies must lead to a linear decrease of the logarithm of Newtonian shear viscosity with the logarithm of heating rate upon linear heating of glass. Such a behavior is indeed observed in the experiments on metallic glasses. Structural relaxation-induced viscous flow leads to infra-low-frequency Maxwell viscoelastic internal friction, which is predicted to increase with the heating rate

  16. Heat transfer rate within non-spherical thick grains

    Directory of Open Access Journals (Sweden)

    Huchet Florian

    2017-01-01

    Full Text Available The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  17. Heat transfer rate within non-spherical thick grains

    Science.gov (United States)

    Huchet, Florian; Richard, Patrick; Joniot, Jules; Le Guen, Laurédan

    2017-06-01

    The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  18. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  19. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    Science.gov (United States)

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assessment

    International Nuclear Information System (INIS)

    Feder, Russell E.; Youssef, Mahmoud Z.

    2009-01-01

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA(reg s ign) and SEVERIAN(reg s ign) (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER 'Brand Model' MCNP benchmark model. A biased quadrature set equivalent to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 (micro)Sv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 (micro)Sv/hr but fell below the limit to 90 (micro)Sv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1

  1. A chemical heat pump based on the reaction of calcium chloride and methanol for solar heating, cooling and storage

    Science.gov (United States)

    Offenhartz, P. O.

    1981-03-01

    An engineering development test prototype of the CaCl2-CheOH chemical heat pump was tested. The unit, which has storage capacity in excess of 100,000 BTU, completed over 100 full charge-discharge cycles. Cycling data show that the rate of heat pumping depends strongly on the absorber-evaporator temperature difference. These rates are more than adequate for solar heating or for solar cooling using dry ambient air heat rejection. Performance degradation after 100 cycles, expressed as a contact resistance, was less than 2 C. The heat exchangers showed some warpage due to plastic flow of the salt, producing the contact resistance. The experimental COP for cooling was 0.52, close to the theoretically predicted value.

  2. Analysis of Water Recovery Rate from the Heat Melt Compactor

    Science.gov (United States)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    any remaining free water in the trash by evaporation. The temperature settings of the heated surfaces are usually kept above the saturation temperature of water but below the melting temperature of the plastic in the waste during this step to avoid any encapsulation of wet trash which would reduce the amount of recovered water by blocking the vapor escape. In this paper, we analyze the water recovery rate during Phase B where the trash is heated and water leaves the waste chamber as vapor, for operation of the HMC in reduced gravity. We pursue a quasi-one-dimensional model with and without sidewall heating to determine the water recovery rate and the trash drying time. The influences of the trash thermal properties, the amount of water loading, and the distribution of the water in the trash on the water recovery rates are determined.

  3. Inverse problem of estimating transient heat transfer rate on external wall of forced convection pipe

    International Nuclear Information System (INIS)

    Chen, W.-L.; Yang, Y.-C.; Chang, W.-J.; Lee, H.-L.

    2008-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space and time dependent heat transfer rate on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat transfer rate; hence, the procedure is classified as function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space and time dependent heat transfer rate can be obtained for the test case considered in this study

  4. Prediction of the heat transfer rate of a single layer wire-on-tube type heat exchanger using ANFIS

    Energy Technology Data Exchange (ETDEWEB)

    Hayati, Mohsen [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Computational Intelligence Research Center, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Rezaei, Abbas; Seifi, Majid [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran)

    2009-12-15

    In this paper, we applied an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for prediction of the heat transfer rate of the wire-on-tube type heat exchanger. Limited experimental data was used for training and testing ANFIS configuration with the help of hybrid learning algorithm consisting of backpropagation and least-squares estimation. The predicted values are found to be in good agreement with the actual values from the experiments with mean relative error less than 2.55%. Also, we compared the proposed ANFIS model to an ANN approach. Results show that the ANFIS model has more accuracy in comparison to ANN approach. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling heat exchangers for heat transfer analysis. (author)

  5. Thermal Death Kinetics of Conogethes Punctiferalis (Lepidoptera: Pyralidae) as Influenced by Heating Rate and Life Stage.

    Science.gov (United States)

    Hou, Lixia; Du, Yanli; Johnson, Judy A; Wang, Shaojin

    2015-10-01

    Thermal death kinetics of Conogethes punctiferalis (Guenée) (Lepidoptera: Pyralidae) at different life stages, heating rate, and temperature is essential for developing postharvest treatments to control pests in chestnuts. Using a heating block system (HBS), the most heat-tolerant life stage of C. punctiferalis and the effects of heating rate (0.1, 0.5, 1, 5, and 10°C/min) on insect mortality were determined. The thermal death kinetic data of fifth-instar C. punctiferalis were obtained at temperatures between 44 and 50°C at a heating rate of 5°C/min. The results showed that the relative heat tolerance of C. punctiferalis was found to be fifth instars>pupae> third instars> eggs. To avoid the enhanced thermal tolerance of C. punctiferalis at low heating rates (0.1 or 0.5°C/min), a high heating rate of 5°C/min was selected to simulate the fast radio frequency heating in chestnuts and further determine the thermal death kinetic data. Thermal death curves of C. punctiferalis followed a 0th-order kinetic reaction model. The minimum exposure time to achieve 100% mortality was 55, 12, 6, and 3 min at 44, 46, 48, and 50°C, respectively. The activation energy for controlling C. punctiferalis was 482.15 kJ/mol with the z value of 4.09°C obtained from the thermal death-time curve. The information provided by thermal death kinetics for C. punctiferalis is useful in developing effective postharvest thermal treatment protocols for disinfesting chestnuts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. On-line tritium production and heat deposition rate measurements at the Lotus facility

    International Nuclear Information System (INIS)

    Joneja, O.P.; Scherrer, P.; Anand, R.P.

    1994-01-01

    Integral tritium production and heat deposition measurement in a prototype fusion blanket would enable verification of the computational codes and the data based employed for the calculations. A large number of tritium production rate measurements have been reported for different type of blankets, whereas the direct heat deposition due to the mixed radiation field in the fusion environment, is still in its infancy. In order to ascertain the kerma factors and the photon production libraries, suitable techniques must be developed to directly measure the nuclear heat deposition rates in the materials required for the fusion systems. In this context, at the Lotus facility, we have developed an extremely efficient double ionizing chamber, for the on-line tritium production measurements and employed a pure graphite calorimeter to measure the nuclear heat deposition due to the mixed radiation field of the 14 MeV, Haefely neutron generator. This paper presents both systems and some of the recent measurements. (authors). 8 refs., 13 figs

  7. Fitness-related differences in the rate of whole-body evaporative heat loss in exercising men are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Louie, Jeffrey C; Poirier, Martin P; Kenny, Glen P

    2018-01-01

    What is the central question of this study? Aerobic fitness modulates heat loss, but the heat-load threshold at which fitness-related differences in heat loss occur in young healthy men remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that aerobic fitness modulates heat loss in a heat-load-dependent manner, with fitness-related differences occurring between young men who have low and high fitness when the heat load is ∼≥500 W. Although aerobic fitness has been known for some time to modulate heat loss, our findings define the precise heat-load threshold at which fitness-related differences occur. The effect of aerobic fitness (defined as rate of peak oxygen consumption) on heat loss during exercise is thought to be related to the level of heat stress. However, it remains unclear at what combined exercise and environmental (net) heat-load threshold these fitness-related differences occur. To identify this, we assessed whole-body heat exchange (dry and evaporative) by direct calorimetry in young (22 ± 3 years) men matched for physical characteristics with low (Low-fit; 39.8 ± 2.5 ml O 2  kg -1  min -1 ), moderate (Mod-fit; 50.9 ± 1.2 ml O 2  kg -1  min -1 ) and high aerobic fitness (High-fit; 62.0 ± 4.4 ml O 2  kg -1  min -1 ; each n = 8), during three 30 min bouts of cycling in dry heat (40°C, 12% relative humidity) at increasing rates of metabolic heat production of 300 (Ex1), 400 (Ex2) and 500 W (Ex3), each followed by a 15 min recovery period. Each group was exposed to a similar net heat load (metabolic plus ∼100 W dry heat gain; P = 0.83) during each exercise bout [∼400 (Ex1), ∼500 (Ex2) and ∼600 W (Ex3); P fit (Ex2, 466 ± 21 W; Ex3, 557 ± 26 W) compared with the Low-fit group (Ex2, 439 ± 22 W; Ex3, 511 ± 20 W) during Ex2 and Ex3 (P ≤ 0.03). Conversely, evaporative heat loss for the Mod-fit group did not differ from either the High-fit or Low

  8. Modeling the influence of potassium content and heating rate on biomass pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Surup, Gerrit; Shapiro, Alexander

    2017-01-01

    This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing...

  9. Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier

    International Nuclear Information System (INIS)

    Mann, M.K.

    1995-08-01

    The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus trademark to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product

  10. Average Rate of Heat-Related Hospitalizations in 23 States, 2001-2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map shows the 2001–2010 average rate of hospitalizations classified as “heat-related” by medical professionals in 23 states that participate in CDC’s...

  11. STEADY-STATE HEAT REJECTION RATES FOR A COAXIAL BOREHOLE HEAT EXCHANGER DURING PASSIVE AND ACTIVE COOLING DETERMINED WITH THE NOVEL STEP THERMAL RESPONSE TEST METHOD

    Directory of Open Access Journals (Sweden)

    Marija Macenić

    2018-01-01

    Full Text Available At three locations in Zagreb, classical and extended thermal response test (TRT was conducted on installed coaxial heat exchangers. With classic TR test, thermogeological properties of the ground and thermal resistance of the borehole were determined at each location. It is seen that thermal conductivity of the ground varies, due to difference in geological profile of the sites. In addition, experimental research of steady-state thermal response step test (SSTRST was carried out to determine heat rejection rates for passive and active cooling in steady state regime. Results showed that heat rejection rate is only between 8-11 W/m, which indicates that coaxial system is not suitable for passive cooling demands. Furthermore, the heat pump in passive cooling mode uses additional plate heat exchanger where there is additional temperature drop of working fluid by approximately 1,5 °C. Therefore, steady-state rejection rate for passive cooling is even lower for a real case project. Coaxial heat exchanger should be always designed for an active cooling regime with an operation of a heat pump compressor in a classical vapour compression refrigeration cycle.

  12. Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Tianyou; Jia, Yao; Wang, Hong; Su, Chun-Yi

    2017-07-09

    The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperature are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.

  13. Cosmic-ray-produced stable nuclides: various production rates and their implications

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1981-01-01

    The rates for a number of reactions producing certain stable nuclides, such as 3 He and 4 He, and fission in the moon are calculated for galactic-cosmic-ray particles and for solar protons. Solar-proton-induced reactions with bromine usually are not an important source of cosmogenic Kr isotopes. The 130 Ba(n,p) reaction cannot account for the undercalculation of 130 Xe production rates. Calculated production rates of 15 N, 13 C, and 2 H agree fairly well with rates inferred from measured excesses of these isotopes in samples with long exposure ages. Cosmic-ray-induced fission of U and Th can produce significant amounts of fission tracks and of 86 Kr, 134 Xe, and 136 Xe, especially in samples with long exposures to cosmic-ray particles

  14. Process of producing fuels from slates or bituminous shales. [distillation at incandescent heat

    Energy Technology Data Exchange (ETDEWEB)

    Huppenbauer, M

    1902-07-31

    A process of producing a fuel from slates or bituminous shales by saturating or impregnating them after preliminary distillation with the vapors of tars, resins, oils, etc., is given. The process is characterized by the bituminous shale being submitted in the form of fragments to distillation at incandescent heat to make the shale porous and able to absorb the vapors of the substances already mentioned.

  15. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  16. A study of the rates of heat transfer and bubble site density for nucleate boiling on an inclined heating surface

    International Nuclear Information System (INIS)

    Bonamy, S.E.; Symons, J.G.

    1974-08-01

    Nucleate pool boiling of distilled water from an electrically heated surface at atmospheric pressure is studied for varying heating surface inclinations. The constants of the accepted boiling equation phi = K Tsup(B) and the Rohsenow Correlation Coefficient are found to be dependent on surface orientation. Convection cooling is observed to play a major role in pool boiling phenomena and causes large changes in the heat transfer rates for a given excess of temperature of the heated surface. Active nucleation site density is studied and found to be independent of surface inclination. Empirical relations are presented to provide an understanding of the effects of inclination on other boiling parameters. (author)

  17. Three dimensional modeling on airflow, heat and mass transfer in partially impermeable enclosure containing agricultural produce during natural convective cooling

    International Nuclear Information System (INIS)

    Chourasia, M.K.; Goswami, T.K.

    2007-01-01

    A three dimensional model was developed to simulate the transport phenomena in heat and mass generating porous medium cooled under natural convective environment. Unlike the previous works on this aspect, the present model was aimed for bulk stored agricultural produce contained in a permeable package placed on a hard surface. This situation made the bottom of the package impermeable to fluid flow as well as moisture transfer and adiabatic to heat transfer. The velocity vectors, isotherms and contours of rate of moisture loss were presented during transient cooling as well as at steady state using the commercially available computational fluid dynamics (CFD) code based on the finite volume technique. The CFD model was validated using the experimental data on the time-temperature history as well as weight loss obtained from a bag of potatoes kept in a cold store. The simulated and experimental values on temperature and moisture loss of the product were found to be in good agreement

  18. Experimental study on steam gasification of coal using molten blast furnace slag as heat carrier for producing hydrogen-enriched syngas

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wu, Tianwei; Yang, Fan; Qin, Qin

    2016-01-01

    Highlights: • New method for producing HRG by gasification using BFS as heat carrier was proposed. • The continuous experiment of steam gasification in molten BFS was conducted. • The hydrogen-enriched syngas was produced by this method. • The molten BFS waste heat was utilized effectively by steam gasification. • This method could be widely used in steam gasification of different types of coal. - Abstract: The new method for producing hydrogen-enriched syngas (HRG) by steam gasification of coal using molten blast furnace slag (BFS) as heat carrier was established. In order to achieve the HRG production, a gasification system using this method was proposed and constructed. The carbon gasification efficiency (CE), hydrogen yield (YH_2) and cold gasification efficiency (CGE) in the molten slag reactor were measured, and the effects of temperature, S/C (steam to coal) ratio and coal type on the reaction performance were accessed. The results indicated that the preferred temperature was 1350 °C, which ensured the miscibility of coal–steam–slag, the diffusion of reactant in molten BFS as well as recovering waste heat. The optimal S/C ratio was 1.5–2.0 for producing HRG. Under these conditions, the hydrogen fraction was higher than 63% and the gas yield reached to 1.89 Nm"3/kg. The CE and CGE were higher than 96% and 102%, respectively. The YH_2 also reached to 1.20 Nm"3/kg. Meanwhile, different types of coal were successfully gasified in molten BFS reactor for producing HRG. The proposed method enhanced the gasification efficiency of different types of coal, recovered the BFS waste heat effectively, and had important guidance for industrial manufacture.

  19. Effect of heating and cooling rate on the kinetics of allotropic phase changes in uranium: A differential scanning calorimetry study

    International Nuclear Information System (INIS)

    Rai, Arun Kumar; Raju, S.; Jeyaganesh, B.; Mohandas, E.; Sudha, R.; Ganesan, V.

    2009-01-01

    The kinetic aspects of allotropic phase changes in uranium are studied as a function of heating/cooling rate in the range 10 0 -10 2 K min -1 by isochronal differential scanning calorimetry. The transformation arrest temperatures revealed a remarkable degree of sensitivity to variations of heating and cooling rate, and this is especially more so for the transformation finish (T f ) temperatures. The results obtained for the α → β and β → γ transformations during heating confirm to the standard Kolmogorov-Johnson-Mehl-Avrami (KJMA) model for a nucleation and growth mediated process. The apparent activation energy Q eff for the overall transformation showed a mild increase with increasing heating rate. In fact, the heating rate normalised Arrhenius rate constant, k/β reveals a smooth power law decay with increasing heating rate (β). For the α → β phase change, the observed DSC peak profile for slower heating rates contained a distinct shoulder like feature, which however is absent in the corresponding profiles found for higher heating rates. The kinetics of γ → β phase change on the other hand, is best described by the two-parameter Koistinen-Marburger empirical relation for the martensitic transformation

  20. Ion cyclotron-resonance heating in a toroidal octupole

    International Nuclear Information System (INIS)

    Barter, J.D.; Sprott, J.C.

    1975-01-01

    rf power near the ion cyclotron-resonance frequency has been used to produce a hundredfold increase (from approximately-less-than1 to approx.100 eV) in the ion temperature in a toroidal octupole device. The heating produces no noticeable instabilities or other deleterious effects except for a high reflux of neutrals from the walls. The heating rate is consistent with theory and the limiting ion temperature is determined by charge-exchange losses

  1. A real-time heat strain risk classifier using heart rate and skin temperature

    International Nuclear Information System (INIS)

    Buller, Mark J; Latzka, William A; Yokota, Miyo; Tharion, William J; Moran, Daniel S

    2008-01-01

    Heat injury is a real concern to workers engaged in physically demanding tasks in high heat strain environments. Several real-time physiological monitoring systems exist that can provide indices of heat strain, e.g. physiological strain index (PSI), and provide alerts to medical personnel. However, these systems depend on core temperature measurement using expensive, ingestible thermometer pills. Seeking a better solution, we suggest the use of a model which can identify the probability that individuals are 'at risk' from heat injury using non-invasive measures. The intent is for the system to identify individuals who need monitoring more closely or who should apply heat strain mitigation strategies. We generated a model that can identify 'at risk' (PSI ≥ 7.5) workers from measures of heart rate and chest skin temperature. The model was built using data from six previously published exercise studies in which some subjects wore chemical protective equipment. The model has an overall classification error rate of 10% with one false negative error (2.7%), and outperforms an earlier model and a least squares regression model with classification errors of 21% and 14%, respectively. Additionally, the model allows the classification criteria to be adjusted based on the task and acceptable level of risk. We conclude that the model could be a valuable part of a multi-faceted heat strain management system. (note)

  2. Influence of product thickness, chamber pressure and heating conditions on production rate of freeze-dried yoghurt

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, N.K. [G.B. Pant Univ., of Agriculture and Technology (India). Dept. of Mechanical Engineering; Arora, C.P. [Indian Inst. of Tech., New Delhi (India)

    1995-06-01

    The effects of product thickness, chamber pressure and heating conditions on product temperature profiles and production rate of freeze-dried yoghurt were investigated experimentally. Three sample thicknesses - 3.8 mm, 6.2 mm and 9.4 mm - were tested at chamber pressures of 0.01 and 0.5 mmHg. The production rate increased by decreasing product thickness in contact heating through the bottom of the frozen layer, whereas no significant change was observed in radiant heating. A reduction in chamber pressure from 0.50 to 0.01 mmHg increased the drying time in radiant heating. Maximum production rate was obtained when the thickness of dried product was 6.2 mm, when heat was transferred simultaneously through the frozen and dried layers, and the chamber pressure was at 0.01 mmHg. Use of the product tray developed in this study prevents the growth of dry layers at the contact surfaces. (Author)

  3. Inventories of Asian textile producers, US cotton exports, and the exchange rate

    Directory of Open Access Journals (Sweden)

    Durmaz Nazif

    2014-01-01

    Full Text Available The present paper develops a model with US cotton exports depending on the stock-to-use ratio, trade weighted exchange rates, and the relative cotton prices. The role of inventories in cotton consumption is examined in five textile producing cotton importers, China, Indonesia, Thailand, South Korea, and Taiwan. Cotton inventory dynamics is diverse among Asian textile producers. Relative prices have negative effect in all markets as expected. Exchange rate elasticities show that effects should be examined for each separate market. Changes in rates of depreciation also have stronger effects than exchange rate. Results reveal that these countries are not all that homogenous.

  4. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  5. [Environmental and health impacts of wood combustion to produce heat and power].

    Science.gov (United States)

    Valerio, Federico

    2012-01-01

    Toxic chemicals such as benzene, polycyclic aromatic hydrocarbons, dioxins, and ultra fine particles were found in the smoke produced by wood combustion. Emission factors confirm that, to produce the same energy amount, many more pollutants are emitted by wood than by natural gas. Biomass burning produces a relevant deterioration of air quality inside and outside houses, notably due to emissions of fine and ultra fine dust (PM10, PM2.5) according to reviewed studies. Important improvements in emission quality are obtained with the use of more efficient household heating systems, both in developed and in developing countries. Numerous studies have assessed the possible health effects produced by wood smoke, providing sufficient evidence that the indoor exposure to wood smoke, even in developed countries, can have adverse effects on human health. In 2010 IARC classified wood smoke as a possible human carcinogen. In Europe, electricity generation from biomass combustion is increasing (12% each year) thanks to incentives provided to reduce greenhouse gas emissions and use of fossil fuels.Today adequate studies to assess the environmental and health effects of emissions from power plants fuelled by solid biomasses are still needed.

  6. Heart rate variability during exertional heat stress: effects of heat production and treatment.

    Science.gov (United States)

    Flouris, Andreas D; Bravi, Andrea; Wright-Beatty, Heather E; Green, Geoffrey; Seely, Andrew J; Kenny, Glen P

    2014-04-01

    We assessed the efficacy of different treatments (i.e., treatment with ice water immersion vs. natural recovery) and the effect of exercise intensities (i.e., low vs. high) for restoring heart rate variability (HRV) indices during recovery from exertional heat stress (EHS). Nine healthy adults (26 ± 3 years, 174.2 ± 3.8 cm, 74.6 ± 4.3 kg, 17.9 ± 2.8 % body fat, 57 ± 2 mL·kg·(-1) min(-1) peak oxygen uptake) completed four EHS sessions incorporating either walking (4.0-4.5 km·h(-1), 2 % incline) or jogging (~7.0 km·h(-1), 2 % incline) on a treadmill in a hot-dry environment (40 °C, 20-30 % relative humidity) while wearing a non-permeable rain poncho for a slow or fast rate of rectal temperature (T re) increase, respectively. Upon reaching a T re of 39.5 °C, participants recovered until T re returned to 38 °C either passively or with whole-body immersion in 2 °C water. A comprehensive panel of 93 HRV measures were computed from the time, frequency, time-frequency, scale-invariant, entropy and non-linear domains. Exertional heat stress significantly affected 60/93 HRV measures analysed. Analyses during recovery demonstrated that there were no significant differences between HRV measures that had been influenced by EHS at the end of passive recovery vs. whole-body cooling treatment (p > 0.05). Nevertheless, the cooling treatment required statistically significantly less time to reduce T re (p whole-body immersion in 2 °C water results in faster cooling, there were no observed differences in restoration of autonomic heart rate modulation as measured by HRV indices with whole-body cold-water immersion compared to passive recovery in thermoneutral conditions.

  7. Effects of Heating Rate on the Dynamic Tensile Mechanical Properties of Coal Sandstone during Thermal Treatment

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available The effects of coal layered combustion and the heat injection rate on adjacent rock were examined in the process of underground coal gasification and coal-bed methane mining. Dynamic Brazilian disk tests were conducted on coal sandstone at 800°C and slow cooling from different heating rates by means of a Split Hopkinson Pressure Bar (SHPB test system. It was discovered that thermal conditions had significant effects on the physical and mechanical properties of the sandstone including longitudinal wave velocity, density, and dynamic linear tensile strength; as the heating rates increased, the thermal expansion of the sandstone was enhanced and the damage degree increased. Compared with sandstone at ambient temperature, the fracture process of heat-treated sandstone was more complicated. After thermal treatment, the specimen had a large crack in the center and cracks on both sides caused by loading; the original cracks grew and mineral particle cracks, internal pore geometry, and other defects gradually appeared. With increasing heating rates, the microscopic fracture mode transformed from ductile fracture to subbrittle fracture. It was concluded that changes in the macroscopic mechanical properties of the sandstone were result from changes in the composition and microstructure.

  8. A study on the characteristics of the decay heat removal capacity for a large thermal rated LMR design

    International Nuclear Information System (INIS)

    Uh, J. H.; Kim, E. K.; Kim, S. O.

    2003-01-01

    The design characteristics and the decay heat removal capacity according to the type of DHR (Decay Heat Removal) system in LMR are quantitatively analyzed, and the general relationship between the rated core thermal power and decay heat removal capacity is created in this study. Based on these analyses results, a feasibility of designing a larger thermal rating KALIMER plant is investigated in view of decay heat removal capacity, and DRC (Direct Reactor Cooling) type DHR system which rejects heat from the reactor pool to air is proper to satisfy the decay heat removal capacity for a large thermal rating plant above 1,000 MWth. Some defects, however, including the heat loss under normal plant operation and the lack of reliance associated with system operation should be resolved in order to adopt the total passive concept. Therefore, the new concept of DHR system for a larger thermal rating KALIMER design, named as PDRC (passive decay heat removal circuit), is established in this study. In the newly established concept of PDRC, the Na-Na heat exchanger is located above the sodium cold pool and is prevented from the direct sodium contact during normal operation. This total passive feature has the superiority in the aspect of the minimizing the normal heat loss and the increasing the operation reliance of DHR system by removing either any operator action or any external operation signal associated with system operation. From this study, it is confirmed that the new concept of PDRC is useful to the designing of a large thermal rating power plant of KALIMER-600 in view of decay heat removal capability

  9. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  10. Study of the Al-Si-X system by different cooling rates and heat treatment

    Directory of Open Access Journals (Sweden)

    Miguel Angel Suarez

    2012-10-01

    Full Text Available The solidification behavior of the Al-12.6% Si (A1, the hypereutectic Al-20%Si (A2 and the Al-20%Si-1.5% Fe-0.5%Mn (A3 (in wt. (% alloys, at different cooling rates is reported and discussed. The cooling rates ranged between 0.93 °C/s and 190 °C/s when cast in sand and copper wedge-shaped molds, respectively. A spheroidization heat treatment was carried out to the alloys in the as-cast condition at 540 °C for 11 hours and quench in water with a subsequent heat treatment at 170 °C for 5 hours with the purpose of improving the mechanical properties. The samples were characterized by optical microscopy, scanning electron microscopy and mechanically by tensile test, in order to evaluate the response of the heat treatment on the different starting microstructures and mechanical properties. It was found that alloys cooled at rates greater than 10.8 °C/s had a smaller particle size and better distribution, also showed a greater response to spheroidization heat treatment of all silicon (Si phases. The spheroidization heat treatment caused an increase in the ultimate tensile stress (UTS and elongation when compared with the alloys in the as-cast condition. The highest UTS value of 174 MPa was obtained for the (A1 alloy.

  11. CHF during flow rate, pressure and power transients in heated channels

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.

    1987-01-01

    The behaviour of forced two-phase flows following inlet flow rate, pressure and power transients is presented here with reference to experiments performed with a R-12 loop. A circular duct, vertical test section (L = 2300 mm; D = 7.5 mm) instrumented with fluid (six) and wall (twelve) thermocouples has been employed. Transients have been carried out performing several values of flow decays (exponential decrease), depressurization rates (exponential decrease) and power inputs (step-wise increase). Experimental data have shown the complete inadequacy of steady-state critical heat flux correlations in predicting the onset of boiling crisis during fast transients. Data analysis for a better theoretical prediction of CHF occurrence during transient conditions has been accomplished, and design correlations for critical heat flux and time-to-crisis predictions have been proposed for the different types of transients

  12. Life Cycle Analysis of High Quality Recycled Aggregate Produced byHeating and Rubbing Method

    Science.gov (United States)

    Shima, Hirokazu; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Tateyashiki, Hisashi

    Most of demolished concrete is recycled as road subbase, but its generation is expected to increase rapidly and exceed the demand of road subbase in a near future. To promote the recycling of concrete, the technology to produce high quality recycled aggregate by the heating and rubbing method has been developed. In this method, demolished concrete is heated up to about 300°C in a heater to make cement paste brittle with its dehydration. The heated concrete is then rubbed in two mills to recover the recycled aggregate, while the paste is removed from the surface of aggregate and collected as cement fine powder. In this method, much energy is consumed to heat and rub concrete; however, the cement fine powder is utilized for a soil stabilizer and cement raw materials, so that the environmental load is reduced in cement manufacturing. The life cycle analysis of the recycled aggregate is carried out to evaluate this technology. As a result, the life cycle CO2 is a negative value because the deduction of CO2 emission in cement manufacturing by the powder is much large. This technology is proved to be very effective to reduce CO2.

  13. Influence of short heat pulses on the helium boiling heat transfer rate

    International Nuclear Information System (INIS)

    Andreev, V.K.; Deev, V.I.; Savin, A.N.; Kutsenko, K.V.

    1987-01-01

    Investigation results on heat transfer in the process of helium boiling on a heated wall under conditions of pulsed heat effect are described. Results of the given study point to one of possible ways of heat exchange intensification in boiling helium by supplying short heat pulse to the heater. Even short-time noncontrolled or incidental increase in the heater capacity during experiment with boiling helium can result in a considerable disagreement of experimental data on heat transfer

  14. The influence of heating rate on reheat-cracking in a commercial 2 1/4Cr1Mo steel

    International Nuclear Information System (INIS)

    Hippsley, C.A.

    1983-03-01

    The effects of elevated heating rate on stress-relief cracking in a commercial 2 1/4 Cr1Mo steel have been investigated. A SEN bend-specimen stress-relaxation test was used to assess reheat cracking susceptibility and fracture mechanisms for an initial post-weld heating rate of 1000 Kh - 1 . Two factors controlling the influence of heating rate on the final severity of cracking were identified, i.e. the rate of stress-relaxation with respect to temperature, and the time available for crack-growth. The factors were found to counteract each other, but in the case of commercial 2 1/4 Cr1Mo steel, the crack-growth factor outweighed the relaxation factor, resulting in a reduction in the propensity to stress-relief cracking at the elevated heating rate. However, by reference to the results of a separate investigation concerning A508/2 MnMoNiCr steel it was demonstrated that the balance between these two factors may be reversed in other alloy systems, with the consequence that reheat cracking is exacerbated by increasing the initial heating rate. A computer model was addressed to the stress-relaxation test conditions using data from the commercial 2 1/4 Cr1Mo steel. The model predictions exhibited reasonable agreement with experimental test results for both 100 Kh - 1 and 1000 Kh - 1 heating rates. (author)

  15. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.

    Science.gov (United States)

    Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F

    2009-09-01

    To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heatedheatedheated. The cytotoxicity evaluation revealed that none of the alkaline heat treated Mg-Ca alloy samples induced toxicity to L-929 cells during 7days culture.

  16. Evaluation of induced activity, decay heat and dose rate distribution after shutdown in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Koichi [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Satoh, Satoshi; Hayashi, Katsumi; Yamada, Koubun; Takatsu, Hideyuki; Iida, Hiromasa

    1997-03-01

    Induced activity, decay heat and dose rate distributions after shutdown were estimated for 1MWa/m{sup 2} operation in ITER. The activity in the inboard blanket one day after shutdown is 1.5x10{sup 11}Bq/cm{sup 3}, and the average decay heating rate 0.01w/cm{sup 3}. The dose rate outside the 120cm thick concrete biological shield is two order higher than the design criterion of 5{mu}Sv/h. This indicates that the biological shield thickness should be enhanced by 50cm in concrete, that is, total thickness 170cm for workers to enter the reactor room and to perform maintenance. (author)

  17. Influence of Strain Rate on Heat Release under Quasi-Static Stretching of Metals. Experiment

    Science.gov (United States)

    Zimin, B. A.; Sventitskaya, V. E.; Smirnov, I. V.; Sud'enkov, Yu. V.

    2018-04-01

    The paper presents the results of experimental studies of energy dissipation during a quasi-static stretching of metals and alloys at room temperature. The strain rates varied in the range of 10-3-10-2 s-1. Samples of M1 copper, AZ31B magnesium alloy, BT6 titanium, 12Cr18Ni10Ti steel, and D16AM aluminum alloy were analyzed. The experimental results demonstrated a significant dependence of the heat release on the strain rate in the absence of its influence on stress-strain diagrams for all the metals studied in this range of strain rates. The correlation of the changes in the character of heat release with the processes of structural transformations at various stages of plastic flow is shown on the qualitative level. A difference in the nature of the processes of heat release in materials with different ratios of the plasticity and strength is noted.

  18. Extension of the master sintering curve for constant heating rate modeling

    Science.gov (United States)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative

  19. Heat pump cycle by hydrogen-absorbing alloys to assist high-temperature gas-cooled reactor in producing hydrogen

    International Nuclear Information System (INIS)

    Satoshi, Fukada; Nobutaka, Hayashi

    2010-01-01

    A chemical heat pump system using two hydrogen-absorbing alloys is proposed to utilise heat exhausted from a high-temperature source such as a high-temperature gas-cooled reactor (HTGR), more efficiently. The heat pump system is designed to produce H 2 based on the S-I cycle more efficiently. The overall system proposed here consists of HTGR, He gas turbines, chemical heat pumps and reaction vessels corresponding to the three-step decomposition reactions comprised in the S-I process. A fundamental research is experimentally performed on heat generation in a single bed packed with a hydrogen-absorbing alloy that may work at the H 2 production temperature. The hydrogen-absorbing alloy of Zr(V 1-x Fe x ) 2 is selected as a material that has a proper plateau pressure for the heat pump system operated between the input and output temperatures of HTGR and reaction vessels of the S-I cycle. Temperature jump due to heat generated when the alloy absorbs H 2 proves that the alloy-H 2 system can heat up the exhaust gas even at 600 deg. C without any external mechanical force. (authors)

  20. Influence of heating rate and temperature firing on the properties of bodies of red ceramic

    International Nuclear Information System (INIS)

    Silva, B.J. da; Goncalves, W.P.; Cartaxo, J.M.; Macedo, R.S.; Neves, G.A.; Santana, L.N.L.; Menezes, R.R.

    2011-01-01

    In the red ceramic industry, the firing is one of the main stages of the production process. There are two heating rates prevailing at this stage: the slow (traditional ceramics) and fast. The slow rate more used in Brazil, is considered delayed. This study aims to evaluate the influence of particle size and chemical composition of three mixture of clay, used in the manufacture of red ceramic products and to study the influence of the firing temperature on their technological properties. When subjected to heating rates slow and fast. Initially, the mixtures were characterized subsequently were extruded, dried and subjected to firing at temperatures of 900 and 1000 ° C with heating rates of 5, 20 and 30 °C/min. The results indicated that the chemical composition and particle size influenced significantly the technological properties and that the bodies obtained with the paste that had lower levels of flux showed better stability. (author)

  1. Molecular dynamics study on the effect of boundary heating rate on the phase change characteristics of thin film liquid

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Morshed, A. K. M. Monjur, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com; Haque, Mominul, E-mail: mominulmarup@gmail.com [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 (Bangladesh)

    2016-07-12

    In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90 K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250 K/130 K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×10{sup 9} K/s to 8×10{sup 9} K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.

  2. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates.

    Science.gov (United States)

    Yin, Tao; Park, Jae W

    2015-08-01

    Textural and rheological properties of Pacific whiting (PW) surimi were investigated at various heating rates with the use of nano-scaled fish bone (NFB) and calcium chloride. Addition of NFB and slow heating improved gel strength significantly. Activity of endogenous transglutaminase (ETGase) from PW surimi was markedly induced by both NFB calcium and calcium chloride, showing an optimal temperature at 30°C. Initial storage modulus increased as NFB calcium concentration increased and the same trend was maintained throughout the temperature sweep. Rheograms with temperature sweep at slow heating rate (1°C/min) exhibited two peaks at ∼ 35°C and ∼ 70°C. However, no peak was observed during temperature sweep from 20 to 90°C at fast heating rate (20°C/min). Protein patterns of surimi gels were affected by both heating rate and NFB calcium concentration. Under slow heating, myosin heavy chain intensity decreased with NFB calcium concentration, indicating formation of ε-(γ-glutamyl) lysine cross-links by ETGase and NFB calcium ion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; R. Gupta; B. Moghtaderi [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering

    2005-07-01

    The knowledge of biomass char gasification kinetics has considerable importance in the design of advanced biomass gasifiers, some of which operate at high pressure. The char gasification kinetics themselves are influenced by char structure. In this study, the effects of pyrolysis pressure and heating rate on the char structure were investigated using scanning electron microscopy (SEM) analysis, digital cinematography, and surface area analysis. Char samples were prepared at pressures between 1 and 20 bar, temperatures ranging from 800 to 1000{degree}C, and heating rates between 20 and 500{degree}C/s. Our results indicate that pyrolysis conditions have a notable impact on the biomass char morphology. Pyrolysis pressure, in particular, was found to influence the size and the shape of char particles while high heating rates led to plastic deformation of particles (i.e. melting) resulting in smooth surfaces and large cavities. The global gasification reactivities of char samples were also determined using thermogravimetric analysis (TGA) technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. 22 refs., 8 figs., 2 tabs.

  4. Estimating cumulative soil accumulation rates with in situ-produced cosmogenic nuclide depth profiles

    International Nuclear Information System (INIS)

    Phillips, William M.

    2000-01-01

    A numerical model relating spatially averaged rates of cumulative soil accumulation and hillslope erosion to cosmogenic nuclide distribution in depth profiles is presented. Model predictions are compared with cosmogenic 21 Ne and AMS radiocarbon data from soils of the Pajarito Plateau, New Mexico. Rates of soil accumulation and hillslope erosion estimated by cosmogenic 21 Ne are significantly lower than rates indicated by radiocarbon and regional soil-geomorphic studies. The low apparent cosmogenic erosion rates are artifacts of high nuclide inheritance in cumulative soil parent material produced from erosion of old soils on hillslopes. In addition, 21 Ne profiles produced under conditions of rapid accumulation (>0.1 cm/a) are difficult to distinguish from bioturbated soil profiles. Modeling indicates that while 10 Be profiles will share this problem, both bioturbation and anomalous inheritance can be identified with measurement of in situ-produced 14 C

  5. Devolatilization characteristics of biomass at flash heating rate

    Energy Technology Data Exchange (ETDEWEB)

    Xiu Shuangning; Li Zhihe; Li Baoming; Yi Weiming; Bai Xueyuan [China Agricultural University, Beijing (China). College of Water Conservancy and Civil Engineering

    2006-03-15

    The devolatilization characteristics of biomass (wheat straw, coconut shell, rice husk and cotton stalk) during flash pyrolysis has been investigated on a plasma heated laminar entrained flow reactor (PHLEFR) with average heating rates of 10{sup 4} K/s. These experiments were conducted with steady temperatures between 750 and 900 K, and the particle residence time varied from about 0.115 to 0.240 s. The ash tracer method was introduced to calculate the yield of volatile products at a set temperature and the residence time. This experimental study showed that the yield of volatile products depends both on the final pyrolysis temperature and the residence time. From the results, a comparative analysis was done for the biomasses, and a one-step global model was used to simulate the flash pyrolytic process and predict the yield of volatile products during pyrolysis. The corresponding kinetic parameters of the biomasses were also analyzed and determined. These results were essential for designing a suitable pyrolysis reactor. 24 refs., 5 figs., 5 tabs.

  6. Nuclear district heating. 1. Process heat reactors and transmission and distribution networks

    International Nuclear Information System (INIS)

    Caizergues, R.

    1979-01-01

    Three kinds of production station are considered: joint electricity and heat-producing stations, heat-producing stations with CAS reactors and heat-producing stations with Thermos reactors. The thermal energy supply possibilities of these stations, the cost price of this energy and the cost price per therm produced by the district heating source and conveyed to the user are studied [fr

  7. Effect of tunnel cross section on gas temperatures and heat fluxes in case of large heat release rate

    International Nuclear Information System (INIS)

    Fan, Chuan Gang; Li, Ying Zhen; Ingason, Haukur; Lönnermark, Anders

    2016-01-01

    Highlights: • The effect of tunnel cross section together with ventilation velocity was studied. • Ceiling temperature varies clearly with tunnel height, but little with tunnel width. • Downstream temperature decreases with increasing tunnel dimensions. • HRR is an important factor that influences decay rate of excess gas temperature. • An equation considering both tunnel dimensions and HRR was developed. - Abstract: Tests with liquid and solid fuels in model tunnels (1:20) were performed and analysed in order to study the effect of tunnel cross section (width and height) together with ventilation velocity on ceiling gas temperatures and heat fluxes. The model tunnel was 10 m long with varying width (0.3 m, 0.45 m and 0.6 m) and height (0.25 m and 0.4 m). Test results show that the maximum temperature under the ceiling is a weak function of heat release rate (HRR) and ventilation velocity for cases with HRR more than 100 MW at full scale. It clearly varies with the tunnel height and is a weak function of the tunnel width. With a lower tunnel height, the ceiling is closer to the base of continuous flame zone and the temperatures become higher. Overall, the gas temperature beneath the ceiling decreases with the increasing tunnel dimensions, and increases with the increasing longitudinal ventilation velocity. The HRR is also an important factor that influences the decay rate of excess gas temperature, and a dimensionless HRR integrating HRR and other two key parameters, tunnel cross-sectional area and distance between fuel centre and tunnel ceiling, was introduced to account for the effect. An equation for the decay rate of excess gas temperature, considering both the tunnel dimensions and HRR, was developed. Moreover, a larger tunnel cross-sectional area will lead to a smaller heat flux.

  8. Control system for a nuclear power producing unit

    International Nuclear Information System (INIS)

    Durrant, O.W.

    1978-01-01

    The invention provides in a control system for a nuclear power producing unit comprising a pressurized water reactor, a once-through steam generator provided with feedwater supply means, a turbine-generator supplied with steam from the steam generator and means maintaining a flow of pressurized water through the reactor and steam generator. The combination comprising; means generating a feed forward control signal proportional to the desired power output of the power producing unit, a second means for adjusting the reactor heat release, a third means for adjusting the rate of flow of feedwater to the steam generator, the second and third means solely responsive to and operated in parallel from the feed forward control signal whereby the reactor heat release and the rate of flow of feedwater to the steam generator are each maintained in a discrete functional relationship to the feed forward control signal

  9. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  10. Analysis of read-out heating rate effects on the glow peaks of TLD-100 using WinGCF software

    Energy Technology Data Exchange (ETDEWEB)

    Bauk, Sabar, E-mail: sabar@usm.my [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hussin, Siti Fatimah [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Alam, Md. Shah [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Physics Department, Shahjalal University of Science and Technology, Sylhet (Bangladesh)

    2016-01-22

    This study was done to analyze the effects of the read-out heating rate on the LiF:Mg,Ti (TLD-100) thermoluminescent dosimeters (TLD) glow peaks using WinGCF computer software. The TLDs were exposed to X-ray photons with a potential difference of 72 kVp and 200 mAs in air and were read-out using a Harshaw 3500 TLD reader. The TLDs were read-out using four read-out heating rates at 10, 7, 4 and 1 °C s{sup −1}. It was observed that lowering the heating rate could separate more glow peaks. The activation energy for peak 5 was found to be lower than that for peak 4. The peak maximum temperature and the integral value of the main peak decreased as the heating rate decreases.

  11. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  12. Heat production during contraction in skeletal muscle of hypothyroid mice

    International Nuclear Information System (INIS)

    Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G.

    1987-01-01

    The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was 2+ cycling, these findings suggest that ATP splitting due to the Ca 2+ cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported 45 Ca 2+ -uptake activity and 45 Ca 2+ -loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state

  13. Heat dissipation does not suppress an immune response in laboratory mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Książek, Aneta; Konarzewski, Marek

    2016-05-15

    The capacity for heat dissipation is considered to be one of the most important constraints on rates of energy expenditure in mammals. To date, the significance of this constraint has been tested exclusively under peak metabolic demands, such as during lactation. Here, we used a different set of metabolic stressors, which do not induce maximum energy expenditures and yet are likely to expose the potential constraining effect of heat dissipation. We compared the physiological responses of mice divergently selected for high (H-BMR) and low basal metabolic rate (L-BMR) to simultaneous exposure to the keyhole limpet haemocyanin (KLH) antigen and high ambient temperature (Ta). At 34°C (and at 23°C, used as a control), KLH challenge resulted in a transient increase in core body temperature (Tb) in mice of both line types (by approximately 0.4°C). Warm exposure did not produce line-type-dependent differences in Tb (which was consistently higher by ca. 0.6°C in H-BMR mice across both Ta values), nor did it result in the suppression of antibody synthesis. These findings were also supported by the lack of between-line-type differences in the mass of the thymus, spleen or lymph nodes. Warm exposure induced the downsizing of heat-generating internal organs (small intestine, liver and kidneys) and an increase in intrascapular brown adipose tissue mass. However, these changes were similar in scope in both line types. Mounting a humoral immune response in selected mice was therefore not affected by ambient temperature. Thus, a combined metabolic challenge of high Ta and an immune response did not appreciably compromise the capacity to dissipate heat, even in the H-BMR mice. © 2016. Published by The Company of Biologists Ltd.

  14. Heat accumulation during high repetition rate ultrafast laser interaction: Waveguide writing in borosilicate glass

    International Nuclear Information System (INIS)

    Zhang, Haibin; Eaton, Shane M; Li, Jianzhao; Herman, Peter R

    2007-01-01

    During high repetition rate (>200 kHz) ultrafast laser waveguide writing, visible heat modified zones surrounding the formed waveguide occur as a result of heat accumulation. The radii of the heat-modified zones increase with the laser net fluence, and were found to correlate with the formation of low-loss and cylindrically symmetric optical waveguides. A numerical thermal model based on the finite difference method is applied here to account for cumulative heating and diffusion effects. The model successfully shows that heat propagation and accumulation accurately predict the radius of the 'heat modified' zones observed in borosilicate glass waveguides formed across a wide range of laser exposure conditions. Such modelling promises better control of thermal effects for optimizing the fabrication and performance of three-dimensional optical devices in transparent materials

  15. Method for producing uranium atomic beam source

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1976-01-01

    A method is described for producing a beam of neutral uranium atoms by vaporizing uranium from a compound UM/sub x/ heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared with that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe 2 . An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced

  16. Heat production during contraction in skeletal muscle of hypothyroid mice

    Energy Technology Data Exchange (ETDEWEB)

    Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G. (Free Univ., Amsterdam (Netherlands))

    1987-08-01

    The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was <30%. Straight lines were used to fit the relation between heat production and force. Hypothyroidism significantly decreases tension-independent heat during contraction of EDL and soleus muscle. Because the tension-independent heat is considered to be related to the Ca{sup 2+} cycling, these findings suggest that ATP splitting due to the Ca{sup 2+} cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported {sup 45}Ca{sup 2+}-uptake activity and {sup 45}Ca{sup 2+}-loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state.

  17. Effect of heating rate on caustic stress corrosion cracking

    International Nuclear Information System (INIS)

    Indig, M.E.; Hoffman, N.J.

    1977-01-01

    To evaluate effects of a large water leak into the sodium side of a steam generator in a Liquid Metal Fast Breeder Reactor the Liquid Metal Engineering Center (LMEC) at Canoga Park, California, is performing a series of tests in a Large Leak Test Rig (LLTR). This test series involves heating a large steam generator that possibly contains localized pockets of aqueous caustic retained from a previous sodium-water reaction. Such pockets of caustic solution could be in contact with welds and other components that contain residual stresses up to the yield point. The LMEC and General Electric (GE) ran a series of tests to evaluate the effect of heating rate on caustic stress corrosion cracking (SCC) for alloys either used or considered for the LLTR. A summary of the temperatures and caustic concentration ranges that can result in caustic SCC for carbon steel and Type-304 stainless steel is given

  18. Evidence of an Unidentified Extracellular Heat-Stable Factor Produced by Lysobacter enzymogenes (OH11) that Degrade Fusarium graminearum PH1 Hyphae.

    Science.gov (United States)

    Odhiambo, Benard Omondi; Xu, Gaoge; Qian, Guoliang; Liu, Fengquan

    2017-04-01

    Lysobacter enzymogenes OH11 produces heat-stable antifungal factor (HSAF) and lytic enzymes possessing antifungal activity. This study bio-prospected for other potential antifungal factors besides those above. The cells and extracellular metabolites of L. enzymogenes OH11 and the mutants ΔchiA, ΔchiB, ΔchiC, Δclp, Δpks, and ΔpilA were examined for antifungal activity against Fusarium graminearum PH1, the causal agent of Fusarium head blight (FHB). Results evidenced that OH11 produces an unidentified extracellular heat-stable degrading metabolite (HSDM) that exhibit degrading activity on F. graminearum PH1 chitinous hyphae. Interestingly, both heat-treated and non-heat-treated extracellular metabolites of OH11 mutants exhibited hyphae-degrading activity against F. graminearum PH1. Enzyme activity detection of heat-treated metabolites ruled out the possibility of enzyme degradation activity. Remarkably, the PKS-NRPS-deficient mutant Δpks cannot produce HSAF or analogues, yet its metabolites exhibited hyphae-degrading activity. HPLC analysis confirmed no HSAF production by Δpks. Δclp lacks hyphae-degrading ability. Therefore, clp regulates HSDM and extracellular lytic enzymes production in L. enzymogenes OH11. ΔpilA had impaired surface cell motility and significantly reduced antagonistic properties. ΔchiA, ΔchiB, and ΔchiC retained hyphae-degrading ability, despite having reduced abilities to produce chitinase enzymes. Ultimately, L. enzymogenes OH11 can produce other unidentified HSDM independent of the PKS-NRPS genes. This suggests HSAF and lytic enzymes production are a fraction of the antifungal mechanisms in OH11. Characterization of HSDM, determination of its biosynthetic gene cluster and understanding its mode of action will provide new leads in the search for effective drugs for FHB management.

  19. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Guo, Mingxing, E-mail: mingxingguo@skl.ustb.edu.cn; Cao, Lingyong; Luo, Jinru; Zhang, Jishan; Zhuang, Linzhong

    2015-01-05

    The effect of heating rate on the mechanical properties, microstructure and texture of Al–Mg–Si–Cu alloy during solution treatment was investigated through tensile testing, scanning electron microscope, scanning transmission electron microscope, metallographic observation and EBSD measurement. The experimental results reveal that there are great differences in the mechanical properties, microstructures and textures after the solution treatment with two different heating rates. Compared with the alloy sheet solution treated with slow heating rate, the alloy sheet solution treated with rapid heating rate possesses weak mechanical property anisotropy and higher average r value. The equiaxed grain is the main recrystallization microstructure for the case of rapid heating rate, while the elongated grain appears in the case of slow heating rate. The texture components are also quite different in the two cases, Cube{sub ND} orientation is the main texture component for the former case, while the latter one includes Cube, R, Goss, P and Brass orientations. The relationship between r value, texture components and microstructure has also been established in this paper.

  20. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment

    International Nuclear Information System (INIS)

    Wang, Xiaofeng; Guo, Mingxing; Cao, Lingyong; Luo, Jinru; Zhang, Jishan; Zhuang, Linzhong

    2015-01-01

    The effect of heating rate on the mechanical properties, microstructure and texture of Al–Mg–Si–Cu alloy during solution treatment was investigated through tensile testing, scanning electron microscope, scanning transmission electron microscope, metallographic observation and EBSD measurement. The experimental results reveal that there are great differences in the mechanical properties, microstructures and textures after the solution treatment with two different heating rates. Compared with the alloy sheet solution treated with slow heating rate, the alloy sheet solution treated with rapid heating rate possesses weak mechanical property anisotropy and higher average r value. The equiaxed grain is the main recrystallization microstructure for the case of rapid heating rate, while the elongated grain appears in the case of slow heating rate. The texture components are also quite different in the two cases, Cube ND orientation is the main texture component for the former case, while the latter one includes Cube, R, Goss, P and Brass orientations. The relationship between r value, texture components and microstructure has also been established in this paper

  1. Effect of free swirl flow on the rate of mass and heat transfer at the bottom of a vertical cylindrical container and possible applications

    International Nuclear Information System (INIS)

    Konsowa, A.H.; Abdel-Aziz, M.H.; Abdo, M.S.E.; Hassan, M.S.; Sedahmed, G.H.

    2017-01-01

    Highlights: • Mass transfer at the bottom of a cylindrical container was studied under decaying swirl flow. • Parameters studied are swirl flow velocity, diameter of the inlet nozzle and solution properties. • A dimensionless equation was obtained using the significant parameters. • The present results were compared with the results obtained using perpendicular inlet nozzle. • Relevance of study to the design of membrane processes was highlighted. - Abstract: Rates of mass transfer at the base of a vertical cylindrical container were determined under decaying swirl flow by the electrochemical technique. Variables studied were swirl flow solution velocity, diameter of the tangential inlet nozzle and physical properties of the solution. The data were correlated by a dimensionless mass transfer equation. The equation can be used to predict the rate of heat loss from the bottom of swirl flow equipment as well as the rate of diffusion controlled corrosion of the bottom. The importance of the derived equation in the design and scale up of a cylindrical batch recirculating catalytic or electrochemical reactor with a catalyst layer or electrode at the bottom and a cooling jacket around the vertical wall suitable for conducting exothermic liquid – solid diffusion controlled reactions which need rapid temperature control to avoid the loss of heat sensitive catalysts or heat sensitive products was pointed out. Comparison of the present results with the results obtained using perpendicular inlet nozzle which generates parallel flow at the bottom and axial flow along the cylindrical container revealed the fact that although swirl flow produces higher rates of heat and mass transfer at the cylindrical wall than axial flow and the reverse is true at the container base. Relevance of the present study to the design and operation of membrane processes and heat recovery from hot pools of liquid metals and low melting alloys in the production stage was highlighted.

  2. Measuring the linear heat generation rate of a nuclear reactor fuel pin

    International Nuclear Information System (INIS)

    Smith, R.D.

    1981-01-01

    A miniature gamma thermometer is described which is capable of travelling through bores distributed in an array through a nuclear reactor core and measure the linear heat generation rate of the fuel pins. (U.K.)

  3. Calculation of heat rating and burn-up for test fuel pins irradiated in DR 3

    International Nuclear Information System (INIS)

    Bagger, C.; Carlsen, H.; Hansen, K.

    1980-01-01

    A summary of the DR 3 reactor and HP1 rig design is given followed by a detailed description of the calculation procedure for obtaining linear heat rating and burn-up values of fuel pins irradiated in HP1 rigs. The calculations are carried out rather detailed, especially regarding features like end pellet contribution to power as a function of burn-up, gamma heat contributions, and evaluation of local values of heat rating and burn-up. Included in the report is also a description of the fast flux- and cladding temperature calculation techniques currently used. A good agreement between measured and calculated local burn-up values is found. This gives confidence to the detailed treatment of the data. (author)

  4. Heating rate effect on the evolution of texture in (Bi,Pb)2Sr2Ca2Cu3O10 Ag-sheathed tapes

    DEFF Research Database (Denmark)

    Grivel, J.C.; Raittila, J.; Xu, G.J.

    2005-01-01

    Bi2223/Ag tapes have been produced by the powder-in-tube technique. The evolution of texture during the first heat treatment has been studied by means of in situ synchrotron radiation diffraction. Using various heating rates (1, 2 and 4 degrees C min(-1)), it wag found that the kinetics of prefer...

  5. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  6. Thermoluminescent response of LiF before variation of the heating rate

    International Nuclear Information System (INIS)

    Barrios, R.; Avila, O.

    2003-01-01

    Comparisons of glow curves of lithium fluoride dosemeters TLD-100 measured to two heating rates with the purpose of quantifying the change in the temperature of the peaks 5 and 7 for the thermoluminescent reader equipment Harshaw 4000 of the thermoluminescence laboratory of the ININ were carried out. (Author)

  7. The combustion heat of power producing shale based on individual deliveries for the years 1968 to 1981

    Energy Technology Data Exchange (ETDEWEB)

    Yyspuu, L M; Rayur, K W; Sits, Kh I

    1983-01-01

    The results are cited of a retrospective study of the specific combustion heat of power producing shale relative to the geological and mining technological conditions for nine mines and four open pits of the Baltic Sea Basin. In 1981 the maximal mean annual combustion heatQsigma-c of 12.44 megajoules per kilogram was held by the shales from the Tammiku mine, while the minimum of 10.12 megajoules per kilogram was held by the shales from the Leningradskaya mine. The results are used in a predictive evaluation of the heat creativity of the total fuel of the Baltic Sea region and the Estonian state regional electric power plants (GRES) for the coming years.

  8. Enhancement of heat transfer rate with structural modification of double pipe heat exchanger by changing cylindrical form of tubes into conical form

    International Nuclear Information System (INIS)

    Hashemian, Mehran; Jafarmadar, Samad; Nasiri, Javid; Sadighi Dizaji, Hamed

    2017-01-01

    Highlights: • An improved geometry is presented by changing tubes form into conical. • Enhancement of heat transfer rate is investigated. • Frictional characteristics for novel geometry are studied. • For a proper understanding of the subject, the exact physical interpretation is added. • The effect of flow, geometry and thermodynamic parameters is considered. - Abstract: In this paper, cylindrical tubes of a double pipe heat exchanger were changed into the conical tubes as an innovative design which causes improvement of thermal performance of heat exchanger without increment of its weight. Utilization of conical tube instead of cylindrical tube can impress both thermal and frictional characteristics of heat exchanger. Hence, the effect of conical tubes on Nusselt number, friction factor and thermal performance factor are evaluated in present research which was not covered already. Moreover, the effects of hydrodynamic, thermodynamic and geometrical characteristics are analyzed. All said parameters are numerically investigated for nine different combinations of flow direction and conical tubes geometry. The results of simulations of the said configurations are presented to compare the cases from different points of view and determine the most thermally efficient case. The results reveal modified geometry makes 63% increment in Nu number and 54% increment in heat transfer rate at optimum condition.

  9. Can producer currency pricing models generate volatile real exchange rates?

    OpenAIRE

    Povoledo, L.

    2012-01-01

    If the elasticities of substitution between traded and nontraded and between Home and Foreign traded goods are sufficiently low, then the real exchange rate generated by a model with full producer currency pricing is as volatile as in the data.

  10. Influence of composition and rate heating on formation of black core in bodies obtained with red ceramic

    International Nuclear Information System (INIS)

    Santana, L.N.L.; Goncalves, W.P.; Silva, B.J. da; Macedo, R.S.; Santos, R.C.; Lisboa, D.

    2011-01-01

    In the heating of pieces of red pottery can the defect known as black core, this may deteriorate the technical and aesthetic characteristics of the final product. This study evaluated the influence of chemical composition and heating rate on the formation of black core in bodies red ceramic. The masses were treated and samples were extruded, dried, sintered at 900 °C, with heating rates of 5, 10, 15, 20 and 30 °C / min. and determined the following properties: water absorption, linear shrinkage and flexural strength. The pieces made with the mass containing lower content of iron oxide showed better resistance to bending when subjected to rapid heating. The presence of the black core was identified through visual analysis of the pieces after the break, being more apparent in parts subject to rates above 5 °C / min. (author)

  11. Thermometry, calorimetry, and mean body temperature during heat stress.

    Science.gov (United States)

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  12. Evaluation of linear heat rates for the power-to-melt tests on 'JOYO' using the Monte-Carlo code 'MVP'

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Ishikawa, Makoto

    2000-04-01

    The linear heat rates of the power-to-melt (PTM) tests, performed with B5D-1 and B5D-2 subassemblies on the Experimental Fast Reactor 'JOYO', are evaluated with the continuous energy Monte-Carlo code, MVP. We can apply a whole core model to MVP, but it takes very long time for the calculation. Therefore, judging from the structure of B5D subassembly, we used the MVP code to calculate the radial distribution of linear heat rate and used the deterministic method to calculate the axial distribution. We also derived the formulas for this method. Furthermore, we evaluated the error of the linear heat rate, by evaluating the experimental error of the reactor power, the statistical error of Monte-Carlo method, the calculational model error of the deterministic method and so on. On the other hand, we also evaluated the burnup rate of the B5D assembly and compared with the measured value in the post-irradiation test. The main results are following: B5D-1 (B5101, F613632, core center). Linear heat rate: 600 W/cm±2.2%. Burnup rate: 0.977. B5D-2 (B5214, G80124, core center). Linear heat rate: 641 W/cm±2.2%. Burnup rate: 0.886. (author)

  13. Methods and systems for producing syngas

    Science.gov (United States)

    Hawkes, Grant L; O& #x27; Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D

    2013-02-05

    Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.

  14. A thermoelectric power generating heat exchanger: Part I – Experimental realization

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Sarhadi, Ali; Pryds, Nini

    2016-01-01

    An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transfer fluids and for three different thermal...

  15. Influence of heat treatments on the microstructure and tensile behaviour of selective laser melting-produced TI-6AL-4V parts

    Directory of Open Access Journals (Sweden)

    Ter Haar, Gerrit Matthys

    2016-11-01

    Full Text Available In industry, post-process heat treatments of Ti-6Al-4V are performed with the aim of improving its tensile behaviour. While heat treatments of wrought Ti6Al4V have been standardised (e.g., Aerospace Material Specification H-81200, heat treatments of selective laser melting (SLM-produced Ti-6Al-4V lacks research and understanding. Significant concern exists about SLM Ti6-Al-4V’s achievable ductility attributed to its martensitic (α’ phase. In this research, heat treatments at a range of temperatures are applied to SLM-produced Ti-6Al-4V tensile samples. Microstructural analysis (both optically and through electron backscatter diffraction was used to identify links between heat treatments and microstructure. Subsequently, uniaxial tensile tests were performed to determine the respective tensile properties of all samples. Correlations in the data show a significant loss in strength with respect to an increase in annealing temperature due to grain growth, while no noticeable trend was observed for fracture strain with regard to annealing temperatures.

  16. Optimum heat power cycles for specified boundary conditions

    International Nuclear Information System (INIS)

    Ibrahim, O.M.; Klein, S.A.; Mitchell, J.W.

    1991-01-01

    In this paper optimization of the power output of Carnot and closed Brayton cycles is considered for both finite and infinite thermal capacitance rates of the external fluid streams. The method of Lagrange multipliers is used to solve for working fluid temperatures that yield maximum power. Analytical expressions for the maximum power and the cycle efficiency at maximum power are obtained. A comparison of the maximum power from the two cycles for the same boundary conditions, i.e., the same heat source/sink inlet temperatures, thermal capacitance rates, and heat exchanger conductances, shows that the Brayton cycle can produce more power than the Carnot cycle. This comparison illustrates that cycles exist that can produce more power than the Carnot cycle. The optimum heat power cycle, which will provide the upper limit of power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger conductances is considered. The optimum heat power cycle is identified by optimizing the sum of the power output from a sequence of Carnot cycles. The shape of the optimum heat power cycle, the power output, and corresponding efficiency are presented. The efficiency at maximum power of all cycles investigated in this study is found to be equal to (or well approximated by) η = 1 - sq. root T L.in /φT H.in where φ is a factor relating the entropy changes during heat rejection and heat addition

  17. Effect of heating rates of crystallization behaviour of amorphous Fe/sub 83/01/B/sub 17/ alloy

    International Nuclear Information System (INIS)

    Ashfaq, A.; Shamim, A.

    1993-01-01

    The electric resistivity of amorphous Fe/sub 83/01/B/sub 17/ alloy has been measured to study its crystallization behaviour from room temperature to about 900 K at the constant heating rates of 40, 60 and 80 K/hr. The crystallization temperature was observed to increase with the increase of heating g rate. However amorphous to crystalline path of RT-curve between the maximum and the minimum decreases with heating rate. The Resistivity Temperature (RT) curves exhibit different steps which are shown to correspond to the phase change stages of the alloy. The slope of the rt-curve after the previous step increases with the rise in heating rate and finally passes through a board peak and then rises again. From the peak shift dta of first crystallization stage activation energy was calculated by applying various peak shift equations. The values so obtained were in good agreement with those obtained with DSC measurement for (FeM)/sub 83/01/B/sub 17/ amorphous alloys where M=Mo, Ni, Cr, and V. (author)

  18. Method of extracting heat from dry geothermal reservoirs

    Science.gov (United States)

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  19. Fast-wave ion cyclotron heating in the Princeton Large Torus

    International Nuclear Information System (INIS)

    Hosea, J.; Boyd, D.; Bretz, N.

    1981-01-01

    Recent experimental results for ICRF heating in PLT are presented. For the two-ion regime in D-H or D- 3 He plasmas minority H and 3 He ions are found to absorb the RF power and transfer it to the deuterons and electrons in accordance with Fokker-Planck theory. The deuteron heating rate is approximately 3eVx10 13 cm -3 .kW for H and approximately 6eVx10 13 cm -3 .kW for 3 He minorities. Neutron fluxes of approximately 3x10 11 s -1 corresponding to a Tsub(d) approximately 2keV (ΔTsub(d) approximately 1.2keV) have been produced with Psub(RF) approximately 620kW at anti nsub(e) approximately 2.9x10 13 cm -3 . Neutron energy spectra and mass-sensitive charge-exchange spectra indicate Maxwellian deuteron distributions. In addition, D- 3 He fusion reaction rates approximately >10 12 s -1 have been produced by the energetic 3 He ions. For the second-harmonic regime, initial heating results for an H plasma at Psub(RF) approximately 140kW are consistent with the Fokker-Planck theory, and the bulk heating rate is comparable with that of D-heating in the D-H minority regime. (author)

  20. Estimation of fuel burning rate and heating value with highly variable properties for optimum combustion control

    International Nuclear Information System (INIS)

    Hsi, C.-L.; Kuo, J.-T.

    2008-01-01

    Estimating solid residue gross burning rate and heating value burning in a power plant furnace is essential for adequate manipulation to achieve energy conversion optimization and plant performance. A model based on conservation equations of mass and thermal energy is established in this work to calculate the instantaneous gross burning rate and lower heating value of solid residue fired in a combustion chamber. Comparing the model with incineration plant control room data indicates that satisfactory predictions of fuel burning rates and heating values can be obtained by assuming the moisture-to-carbon atomic ratio (f/a) within the typical range from 1.2 to 1.8. Agreement between mass and thermal analysis and the bed-chemistry model is acceptable. The model would be useful for furnace fuel and air control strategy programming to achieve optimum performance in energy conversion and pollutant emission reduction

  1. Time and spatial heat transfer performance around an isothermally heated sphere placed in a uniform, downwardly directed flow (in relation to the enhancement of latent heat storage rate in a spherical capsule)

    International Nuclear Information System (INIS)

    Koizumi, H.

    2004-01-01

    The aim of this study is to reveal the temporal and spatial heat transfer performance of an isothermally heated sphere placed in a uniform, downwardly directed flow using a micro-foil heat flow sensor (HFS). A HFS, whose response time is about 0.02 s, was pasted on the surface of a heated copper sphere. Experiments were carried out using air with a Grashof number of 3.3 x 10 5 and with several Reynolds numbers (Re) up to 1800. Three flow patterns appeared: a chaotic flow at Re<240; a two-dimensional steady separated flow at 240 ≤ Re<500, and a three-dimensional unsteady separated flow at Re ≥ 500. In addition, the instantaneous and time-averaged heat transfer performance around the sphere in each of the three regions was clarified. Next, enhancement of the latent heat storage rate of a solid phase change material (PCM) in a spherical capsule was performed. The flow around the spherical capsule, in which the solid PCM was filled and placed in a heated, upwardly directed flow, is the approximate adverse flow phenomenon around the heated sphere which was placed in a downwardly directed flow. In other words, the buoyant flow and the forced flow are in the opposite directions in these two cases. Tests of latent heat storage were run for two Reynolds numbers which represented different flow characteristics in the heat transfer experiments, Re=150 and 1800. Furthermore, copper plates were inserted into the solid PCM, of which thermal conductivity was considerably low, to enhance the latent heat storage rate for the two Reynolds number flows

  2. Acoustic properties of naturally produced clear speech at normal speaking rates

    Science.gov (United States)

    Krause, Jean C.; Braida, Louis D.

    2004-01-01

    Sentences spoken ``clearly'' are significantly more intelligible than those spoken ``conversationally'' for hearing-impaired listeners in a variety of backgrounds [Picheny et al., J. Speech Hear. Res. 28, 96-103 (1985); Uchanski et al., ibid. 39, 494-509 (1996); Payton et al., J. Acoust. Soc. Am. 95, 1581-1592 (1994)]. While producing clear speech, however, talkers often reduce their speaking rate significantly [Picheny et al., J. Speech Hear. Res. 29, 434-446 (1986); Uchanski et al., ibid. 39, 494-509 (1996)]. Yet speaking slowly is not solely responsible for the intelligibility benefit of clear speech (over conversational speech), since a recent study [Krause and Braida, J. Acoust. Soc. Am. 112, 2165-2172 (2002)] showed that talkers can produce clear speech at normal rates with training. This finding suggests that clear speech has inherent acoustic properties, independent of rate, that contribute to improved intelligibility. Identifying these acoustic properties could lead to improved signal processing schemes for hearing aids. To gain insight into these acoustical properties, conversational and clear speech produced at normal speaking rates were analyzed at three levels of detail (global, phonological, and phonetic). Although results suggest that talkers may have employed different strategies to achieve clear speech at normal rates, two global-level properties were identified that appear likely to be linked to the improvements in intelligibility provided by clear/normal speech: increased energy in the 1000-3000-Hz range of long-term spectra and increased modulation depth of low frequency modulations of the intensity envelope. Other phonological and phonetic differences associated with clear/normal speech include changes in (1) frequency of stop burst releases, (2) VOT of word-initial voiceless stop consonants, and (3) short-term vowel spectra.

  3. Additive effects of heating and exercise on baroreflex control of heart rate in healthy males.

    Science.gov (United States)

    Peçanha, Tiago; Forjaz, Cláudia L M; Low, David A

    2017-12-01

    This study assessed the additive effects of passive heating and exercise on cardiac baroreflex sensitivity (cBRS) and heart rate variability (HRV). Twelve healthy young men (25 ± 1 yr, 23.8 ± 0.5 kg/m 2 ) randomly underwent two experimental sessions: heat stress (HS; whole body heat stress using a tube-lined suit to increase core temperature by ~1°C) and normothermia (NT). Each session was composed of a preintervention rest (REST1); HS or NT interventions; postintervention rest (REST2); and 14 min of cycling exercise [7 min at 40%HR reserve (EX1) and 7 min at 60%HR reserve (EX2)]. Heart rate and finger blood pressure were continuously recorded. cBRS was assessed using the sequence (cBRS SEQ ) and transfer function (cBRS TF ) methods. HRV was assessed using the indexes standard deviation of RR intervals (SDNN) and root mean square of successive RR intervals (RMSSD). cBRS and HRV were not different between sessions during EX1 and EX2 (i.e., matched heart rate conditions: EX1 = 116 ± 3 vs. 114 ± 3 and EX2 = 143 ± 4 vs. 142 ± 3 beats/min but different workloads: EX1 = 50 ± 9 vs. 114 ± 8 and EX2 = 106 ± 10 vs. 165 ± 8 W; for HS and NT, respectively; P heat stress to exercise does not affect cBRS and HRV. Alternatively, in workload-matched conditions, the addition of heat to exercise results in reduced cBRS and HRV compared with exercise in normothermia. NEW & NOTEWORTHY The present study assessed cardiac baroreflex sensitivity during the combination of heat and exercise stresses. This is the first study to show that prior whole body passive heating reduces cardiac baroreflex sensitivity and autonomic modulation of heart rate during exercise. These findings contribute to the better understanding of the role of thermoregulation on cardiovascular regulation during exercise.

  4. Producing tantalum or columbium powder

    International Nuclear Information System (INIS)

    Rerat, C.F.

    1979-01-01

    A process is described for the production of tantalum or columbium powder with a high yield within a desired range of particle sizes. A molten salt bath of a double salt comprising either an alkali metal tantalum fluoride or an alkali metal columbium fluoride and a relatively large amount of alkali metal halide diluent salt to act as a heat sink is initially maintained at a temperature a little above the liquidus temperature of the salt mixture. A liquid alkali metal at a comparatively low temperature is added to the continuously stirred bath at a high mass flow rate, and reduces the double salt, producing tantalum or columbium. The reaction is exothermic and causes the temperature to rise rapidly to a desired final reaction temperature within the range 760 to 1000 0 . The liquid alkali metal is thereafter fed at a high mass flow rate to complete the reaction quickly at the final reaction temperature. Forced cooling at a heat extraction rate not less than 42 kilojoules/min./kg. of double salt is used during at least a portion of the reaction cycle at a rate sufficient to maintain the final reaction temperature within a desired range. (author)

  5. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    Science.gov (United States)

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  6. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  7. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.

  8. Global and local Joule heating effects seen by DE 2

    Science.gov (United States)

    Heelis, R. A.; Coley, W. R.

    1988-01-01

    In the altitude region between 350 and 550 km, variations in the ion temperature principally reflect similar variations in the local frictional heating produced by a velocity difference between the ions and the neutrals. Here, the distribution of the ion temperature in this altitude region is shown, and its attributes in relation to previous work on local Joule heating rates are discussed. In addition to the ion temperature, instrumentation on the DE 2 satellite also provides a measure of the ion velocity vector representative of the total electric field. From this information, the local Joule heating rate is derived. From an estimate of the height-integrated Pedersen conductivity it is also possible to estimate the global (height-integrated) Joule heating rate. Here, the differences and relationships between these various parameters are described.

  9. Rapid rate sintering of nanocrystalline ZrO2-3 mol% Y2O3

    International Nuclear Information System (INIS)

    Chen, D.J.; Mayo, M.J.

    1996-01-01

    Conventional ramp-and-hold sintering with a wide range of heating rates was conducted on submicrometer and nanocrystalline ZrO 2 -3 mol% Y 2 O 3 powder compacts. Although rapid heating rates have been reported to produce high density/fine grain size products for many submicrometer and smaller starting powders, the application of this technique to ZrO 2 -3 mol% Y 2 O 3 produced mixed results. In the case of submicrometer ZrO 2 -3 mol% Y 2 O 3 , neither densification nor grain growth was affected by the heating rate used. In the case of nanocrystalline ZrO 2 -3 mol% Y 2 O 3 , fast heating rates severely retarded densification and had a minimal effect on grain growth. The large adverse effect of fast heating rates on the densification of the nanocrystalline powder was traced to a thermal gradient/differential densification effect. Microstructural evidence suggests that the rate of densification greatly exceeded the rate of heat transfer in this material; consequently, the sample interior was not able to densify before being geometrically constrained by a fully dense shell which formed at the sample exterior. This finding implies that rapid rate sintering will meet severe practical constraints in the manufacture of bulk nanocrystalline ZrO 2 -3 mol% Y 2 O 3 specimens

  10. Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn

    Directory of Open Access Journals (Sweden)

    Anura Fernando

    2013-03-01

    Full Text Available This paper presents a study conducted on the thermo-mechanical properties of knitted structures, the methods of manufacture, effect of contact pressure at the structural binding points, on the degree of heating. The test results also present the level of heating produced as a function of the separation between the supply terminals. The study further investigates the rate of heating and cooling of the knitted structures. The work also presents the decay of heating properties of the yarn due to overheating. Thermal images were taken to study the heat distribution over the surface of the knitted fabric. A tensile tester having constant rate of extension was used to stretch the fabric. The behavior of temperature profile of stretched fabric was observed. A comparison of heat generation by plain, rib and interlock structures was studied. It was observed from the series of experiments that there is a minimum threshold force of contact at binding points of a knitted structure is required to pass the electricity. Once this force is achieved, stretching the fabric does not affect the amount of heat produced.

  11. Optimal Management of Geothermal Heat Extraction

    Science.gov (United States)

    Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.

    2015-12-01

    Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that

  12. Conception rate of artificially inseminated Holstein cows affected by cloudy vaginal mucus, under intense heat conditions

    OpenAIRE

    Miguel Mellado; Laura Maricela Lara; Francisco Gerardo Veliz; María Ángeles de Santiago; Leonel Avendaño-Reyes; Cesar Meza-Herrera; José Eduardo Garcia

    2015-01-01

    The objective of this work was to obtain prevalence estimates of cloudy vaginal mucus in artificially inseminated Holstein cows raised under intense heat, in order to assess the effect of meteorological conditions on its occurrence during estrus and to determine its effect on conception rate. In a first study, an association was established between the occurrence of cloudy vaginal mucus during estrus and the conception rate of inseminated cows (18,620 services), raised under intense heat (mea...

  13. A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process

    International Nuclear Information System (INIS)

    Arivazhagan, B.; Srinivasan, G.; Albert, S.K.; Bhaduri, A.K.

    2011-01-01

    Reduced activation ferritic martensitic (RAFM) steel is a major structural material for test blanket module (TBM) to be incorporated in International Thermonuclear Experimental Reactor (ITER) programme to study the breeding of tritium in fusion reactors. This material has been mainly developed to achieve significant reduction in the induced radioactivity from the structural material used. Fabrication of TBM involves extensive welding, and gas tungsten arc welding (GTAW) process is one of the welding processes being considered for this purpose. In the present work, the effect of heat input on microstructure of indigenously developed RAFM steel weld metal produced by GTAW process has been studied. Autogenous bead-on-plate welding, autogenous butt-welding, butt-welding with filler wire addition, and pulsed welding on RAFMS have been carried out using GTAW process respectively. The weld metal is found to contain δ-ferrite and its volume fraction increased with increase in heat input. This fact suggests that δ-ferrite content in the weld metal is influenced by the cooling rate during welding. It was also observed that the hardness of the weld metal decreased with increase in δ-ferrite content. This paper highlights the effect of heat input and PWHT duration on microstructure and hardness of welds.

  14. The scientific base of heating water by microwave

    Energy Technology Data Exchange (ETDEWEB)

    Akdoğan, Ender, E-mail: ender.akdogan@tpe.gov.tr [Department of Physics Engineering, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey); Çiftçi, Muharrem, E-mail: muharrem-ciftci@windowslive.com [Author" 1 Department of Physics, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey)

    2016-03-25

    This article is based on the master thesis [4] related to our invention which was published in World Intellectual Property Organization (WO/2011/048506) as a microwave water heater. In the project, a prototype was produced to use microwave in industrial heating. In order to produce the prototype, the most appropriate material kind for microwave-water experiments was determined by a new energy loss rate calculation technique. This new energy loss calculation is a determinative factor for material permeability at microwave frequency band (1-100 GHz). This experimental series aim to investigate the rationality of using microwave in heating industry. Theoretically, heating water by microwave (with steady frequency 2.45 GHz) is analyzed from sub-molecular to Classical Mechanic results of heating. In the study, we examined Quantum Mechanical base of heating water by microwave experiments. As a result, we derived a Semi-Quantum Mechanical equation for microwave-water interactions and thus, Wien displacement law can be derived to verify experimental observations by this equation.

  15. Combined Effect of Heating Rate and Microalloying Elements on Recrystallization During Annealing of Dual-Phase Steels

    Science.gov (United States)

    Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe

    2018-05-01

    Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.

  16. PATCHY BLAZAR HEATING: DIVERSIFYING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Lamberts, Astrid; Chang, Philip; Pfrommer, Christoph; Puchwein, Ewald; Broderick, Avery E.; Shalaby, Mohamad

    2015-01-01

    TeV-blazars potentially heat the intergalactic medium (IGM) as their gamma rays interact with photons of the extragalactic background light to produce electron–positron pairs, which lose their kinetic energy to the surrounding medium through plasma instabilities. This results in a heating mechanism that is only weakly sensitive to the local density, and therefore approximately spatially uniform, naturally producing an inverted temperature–density relation in underdense regions. In this paper we go beyond the approximation of uniform heating and quantify the heating rate fluctuations due to the clustered distribution of blazars and how this impacts the thermal history of the IGM. We analytically compute a filtering function that relates the heating rate fluctuations to the underlying dark matter density field. We implement it in the cosmological code GADGET-3 and perform large-scale simulations to determine the impact of inhomogeneous heating. We show that because of blazar clustering, blazar heating is inhomogeneous for z ≳ 2. At high redshift, the temperature–density relation shows an important scatter and presents a low temperature envelope of unheated regions, in particular at low densities and within voids. However, the median temperature of the IGM is close to that in the uniform case, albeit slightly lower at low redshift. We find that blazar heating is more complex than initially assumed and that the temperature–density relation is not unique. Our analytic model for the heating rate fluctuations couples well with large-scale simulations and provides a cost-effective alternative to subgrid models

  17. Analysis of Functional Constituents in Mulberry (Morus alba L.) Twigs by Different Cultivars, Producing Areas, and Heat Processings

    Science.gov (United States)

    Choi, Sang Won; Jang, Yeon Jeong; Lee, Yu Jin; Leem, Hyun Hee; Kim, Eun Ok

    2013-01-01

    Four functional constituents, oxyresveratrol 3′-O-β-D-glucoside (ORTG), oxyresveratrol (ORT), t-resveratrol (RT), and moracin (MC) were isolated from the ethanolic extract of mulberry (Morus alba L.) twigs by a series of isolation procedures, including solvent fractionation, and silica-gel, ODS-A, and Sephadex LH-20 column chromatographies. Their chemical structures were identified by NMR and FABMS spectral analysis. Quantitative changes of four phytochemicals in mulberry twigs were determined by HPLC according to cultivar, producing area, and heat processing. ORTG was a major abundant compound in the mulberry twigs, and its levels ranged from 23.7 to 105.5 mg% in six different mulberry cultivars. Three other compounds were present in trace amounts (<1 mg/100 g) or were not detected. Among mulberry cultivars examined, “Yongcheon” showed the highest level of ORTG, whereas “Somok” had the least ORTG content. Levels of four phytochemicals in the mulberry twigs harvested in early September were higher than those harvested in early July. Levels of ORTG and ORT in the “Cheongil” mulberry twigs produced in the Uljin area were higher than those produced in other areas. Generally, levels of ORTG and ORT in mulberry twigs decreased with heat processing, such as steaming, and microwaving except roasting, whereas those of RT and MC did not considerably vary according to heat processing. These results suggest that the roasted mulberry twigs may be useful as potential sources of functional ingredients and foods. PMID:24551827

  18. Heating analysis of cobalt adjusters in reactor core

    International Nuclear Information System (INIS)

    Mei Qiliang; Li Kang; Fu Yaru

    2011-01-01

    In order to produce 60 Co source for industry and medicine applications in CANDU-6 reactor, the stainless steel adjusters were replaced with the cobalt adjusters. The cobalt rod will generate the heat when it is irradiated by neutron and γ ray. In addition, 59 Co will be activated and become 60 Co, the ray released due to 60 Co decay will be absorbed by adjusters, and then the adjusters will also generate the heat. So the heating rate of adjusters to be changed during normal operation must be studied, which will be provided as the input data for analyzing the temperature field of cobalt adjusters and the relative heat load of moderator. MCNP code was used to simulate whole core geometric configuration in detail, including reactor fuel, control rod, adjuster, coolant and moderator, and to analyze the heating rate of the stainless steel adjusters and the cobalt adjusters. The maximum heating rate of different cobalt adjuster based on above results will be provided for the steady thermal hydraulic and accident analysis, and make sure that the reactor is safe on the thermal hydraulic. (authors)

  19. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  20. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    Science.gov (United States)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  1. Heat Conduction of Air in Nano Spacing

    Directory of Open Access Journals (Sweden)

    Zhang Yao-Zhong

    2009-01-01

    Full Text Available Abstract The scale effect of heat conduction of air in nano spacing (NS is very important for nanodevices to improve their life and efficiency. By constructing a special technique, the changes of heat conduction of air were studied by means of measuring the heat conduction with heat conduction instrument in NS between the hot plate and the cooling plate. Carbon nanotubes were used to produce the nano spacing. The results show that when the spacing is small down to nanometer scale, heat conduction plays a prominent role in NS. It was found that the thickness of air is a non-linear parameter for demarcating the heat conduction of air in NS and the rate of heat conduction in unit area could be regard as a typical parameter for the heat conduction characterization at nanometer scale.

  2. Physiological and performance adaptations to an in-season soccer camp in the heat: Associations with heart rate and heart rate variability

    DEFF Research Database (Denmark)

    Buchheit, M; Voss, S C; Nybo, Lars

    2011-01-01

    The aim of the present study was to examine the associations between adaptive responses to an in-season soccer training camp in the heat and changes in submaximal exercising heart rate (HRex, 5-min run at 9 ¿km/h), postexercise HR recovery (HRR) and HR variability (HRV). Fifteen well-trained but ......The aim of the present study was to examine the associations between adaptive responses to an in-season soccer training camp in the heat and changes in submaximal exercising heart rate (HRex, 5-min run at 9 ¿km/h), postexercise HR recovery (HRR) and HR variability (HRV). Fifteen well......-trained but non-heat-acclimatized male adult players performed a training week in Qatar (34.6¿±¿1.9°C wet bulb globe temperature). HRex, HRR, HRV (i.e. the standard deviation of instantaneous beat-to-beat R-R interval variability measured from Poincaré plots SD1, a vagal-related index), creatine kinase (CK...... at the beginning and at the end of the training week. Throughout the intervention, HRex and HRV showed decreasing (P¿...

  3. Process heat supply requirements on HTGRs

    International Nuclear Information System (INIS)

    Schad, M.K.

    1989-01-01

    Since it has been claimed that the MHTGR is competitive with coal in producing electricity, the MHTGR must be competitive in producing process heat. There is a huge process heat market and there are quite a number of processes where the industrial MHTGR = HTRI could supply the necessary process heat and energy. However, to enhance its introduction on the market and to conquer a reasonable share of the market, the HTRI should fulfill the following major requirements: Unlimited constant and flexible heat supply, no secondary heat transport system at higher temperatures and low radioactive contamination level of the primary helium. Unlimited constant and flexible heat supply could be achieved with smaller HTRIs having heat generation capacities below 100 MW-th. The process heat generated by smaller HTRIs need not be more expensive since the installed necessary heat supply redundancy is smaller and the excess power density lower. The process heat at elevated temperatures generated by a HTRI with a secondary heat transfer system is much more expensive due to the additional investment and operating cost as well as the reduced helium temperature span available. For some processes, the HTRI is not able to cover the total process heat requirement while other processes can consume only part of the heat offered. These limitations could be reduced by using higher core outlet and inlet temperatures or both. Due to the considerably lower heat transfer rates and the resulting larger heat transfer areas in process plants, the diffusion of nuclear activity at elevated temperatures may increase so that a more efficient helium cleaning system may be required. (author). 5 figs, 3 tabs

  4. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  5. Gaussian model for emission rate measurement of heated plumes using hyperspectral data

    Science.gov (United States)

    Grauer, Samuel J.; Conrad, Bradley M.; Miguel, Rodrigo B.; Daun, Kyle J.

    2018-02-01

    This paper presents a novel model for measuring the emission rate of a heated gas plume using hyperspectral data from an FTIR imaging spectrometer. The radiative transfer equation (RTE) is used to relate the spectral intensity of a pixel to presumed Gaussian distributions of volume fraction and temperature within the plume, along a line-of-sight that corresponds to the pixel, whereas previous techniques exclusively presume uniform distributions for these parameters. Estimates of volume fraction and temperature are converted to a column density by integrating the local molecular density along each path. Image correlation velocimetry is then employed on raw spectral intensity images to estimate the volume-weighted normal velocity at each pixel. Finally, integrating the product of velocity and column density along a control surface yields an estimate of the instantaneous emission rate. For validation, emission rate estimates were derived from synthetic hyperspectral images of a heated methane plume, generated using data from a large-eddy simulation. Calculating the RTE with Gaussian distributions of volume fraction and temperature, instead of uniform distributions, improved the accuracy of column density measurement by 14%. Moreover, the mean methane emission rate measured using our approach was within 4% of the ground truth. These results support the use of Gaussian distributions of thermodynamic properties in calculation of the RTE for optical gas diagnostics.

  6. Green heat is in the pipe

    International Nuclear Information System (INIS)

    Talpin, J.

    2011-01-01

    In France almost one third of the energy conveyed by heating distribution systems comes from green sources: waste incineration (23%), biomass (3%) and geothermal energy (3%). Because of incentive measures like low tax rates, subsidies and guarantees for the development of the network, the number of accommodations linked to a heat network is expected to more than double in the next 10 years. For intermediate size towns, heat distribution networks based on wood are developing. 110 networks totaling 260 MW were operating in 2009: 400.000 tonnes of wood were burnt producing 730 GWh. The 151 km long heat distribution network of Grenoble relies on a 43 MW wood boiler. Since 1985 the city of Alfortville has developed a heating distribution network based on geothermal energy. (A.C.)

  7. Phase change heat transfer device for process heat applications

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred

    2010-01-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  8. Performance of heat engines with non-zero heat capacity

    International Nuclear Information System (INIS)

    Odes, Ron; Kribus, Abraham

    2013-01-01

    Highlights: ► Finite heat capacity is a second irreversibility mechanism in addition to thermal resistance. ► Heat capacity introduces thermal transients and reverse heat flow. ► Engine maximum power and efficiency are lower for finite heat capacity. ► Implementing the optimal engine cycle requires active control. - Abstract: The performance of a heat engine is analyzed subject to two types of irreversibility: a non-zero heat capacity, together with the more common finite heat transfer rate between the engine and the external heat reservoirs. The heat capacity represents an engine body that undergoes significant temperature variations during the engine cycle. An option to cut off the heat exchange between the engine and the external surrounding for part of the engine cycle is also explored. A variational approach was taken to find the engine’s internal temperature profile (which defines the internal thermodynamic cycle) that would produce maximum power. The maximum power is shown to be lower than the case of zero heat capacity, due to a loss of heat that is stored in the engine body and then lost, bypassing the thermodynamic cycle. The maximum efficiency and the efficiency at maximum power are also lower than the zero heat capacity case. Similar to the Curzon–Ahlborn analysis, power can be traded for increased efficiency, but for high heat capacity, the range of efficiency that is available for such a trade is diminished. Isolating the engine during part of the cycle reduces maximum power, but the efficiency at maximum power and the maximum efficiency are improved, due to better exploitation of heat stored in the engine body. This might be useful for real engines that are limited by the internal energy change during a single engine cycle or by the operating frequency, leading to a broader power–efficiency curve.

  9. Fast-wave ion-cyclotron heating in the Princeton Large Torus

    International Nuclear Information System (INIS)

    Hosea, J.; Boyd, D.; Bretz, N.

    1981-02-01

    Recent experimental results for ICRF heating in PLT are presented. For the two-ion regime in D-H or D- 3 He plasmas minority H and 3 He ions are found to absorb the rf power and transfer it to the deuterons and electrons in accordance with Fokker-Planck theory. The deuteron heating rate is approx. 3 eV x 10 13 cm -3 /kW for H and approx. 6 eV x 10 13 cm -3 /kW for 3 He minorities. Neutron fluxes of approx. 3 x 10 11 sec -1 corresponding to a T/sub d/ approx. 2 keV (ΔT/sub d/ approx. 1.2 keV) have been produced with P/sub rf/ approx. = 620 kW at anti n/sub e/ approx. = 2.9 x 10 13 cm -3 . Neutron energy spectra and mass sensitive charge exchange spectra indicate Maxwellian deuteron distributions. In addition, D- 3 He fusion reaction rates greater than or equal to 10 12 sec -1 have been produced by the energetic 3 He ions. For the second harmonic regime, initial heating results for an H plasma at P/sub rf/ approx. = 140 kW are consistent with the Fokker-Planck theory and the bulk heating rate is comparable to that of D heating in the D-H minority regime

  10. Heat transfer in a sodium-to-sodium heat exchanger under conditions of combined force and free convection

    International Nuclear Information System (INIS)

    Jackson, J.D.; Axcell, B.P.; Johnston, S.E.

    1987-01-01

    A combined experimental and theoretical investigation of heat transfer in a vertical tube and annulus, countercurrent flow heat exchanger is reported. The working fluid was liquid sodium. Included in the range of conditions covered were those which are of interest in connection with the low flow rate operation of fast reactor intermediate heat exchanger systems. The heat transfer process ranged from that of pure forced convection to combined forced and free convection. By changing the direction of fluid flow or the direction of heat flow four different configurations were studied. In two cases the convection process was buoyancy aided and in the other two it was buoyancy opposed. Results are presented showing the influence of flow rate and temperature difference on overall heat transfer coefficient for each case. A theoretical model of turbulent flow and heat transfer incorporating influences of buoyancy was used to produce results for the range of conditions covered in the experiments. The predictions of overall heat transfer coefficient were found to be in reasonable general agreement with the measurements. It was clear from these calculations that the influence of buoyancy on heat transfer stemmed largely, under the conditions of the present experiment, from the modification of the convection process due to the distortion of the velocity field. This led to an enhancement of the heat transfer for the buoyancy-aided process and an impairment for the buoyancy-opposed process. The contribution of the turbulent diffusion of heat was relatively small. (author)

  11. Producing standard damaged DNA samples by heating: pitfalls and suggestions.

    Science.gov (United States)

    Fattorini, Paolo; Marrubini, Giorgio; Bonin, Serena; Bertoglio, Barbara; Grignani, Pierangela; Recchia, Elisa; Pitacco, Paola; Procopio, Francesca; Cantoni, Carolina; Pajnič, Irena Zupanič; Sorçaburu-Cigliero, Solange; Previderè, Carlo

    2018-05-15

    Heat-mediated hydrolysis of DNA is a simple and inexpensive method for producing damaged samples in vitro. Despite heat-mediated DNA hydrolysis is being widely used in forensic and clinical validation procedures, the lack of standardized procedures makes it impossible to compare the intra and inter-laboratory outcomes of the damaging treatments. In this work, a systematic approach to heat induced DNA hydrolysis was performed at 70 °C for 0-18 h to test the role both of the hydrolysis buffer and of the experimental conditions. Specifically, a trial DNA sample, resuspended in three different media (ultrapure water, 0.1% DEPC-water and, respectively, TE) was treated both in Eppendorf tubes ("Protocol P") and in Eppendorf tubes provided with screwcaps ("Protocol S"). The results of these comparative tests were assessed by normalization of the qPCR results. DEPC-water increased the degradation of the samples up to about 100 times when compared to the ultrapure water. Conversely, the TE protected the DNA from degradation whose level was about 1700 times lower than in samples treated in ultrapure water. Even the employment of the "Protocol S" affected the level of degradation, by consistently increasing it (up to about 180 times in DEPC-water). Thus, this comparative approach showed that even seemingly apparently trivial and often underestimated parameters modify the degradation level up to 2-3 orders of magnitude. The chemical-physical reasons of these findings are discussed together with the role of potential factors such as enhanced reactivity of CO 2 , ROS, NO x and pressure, which are likely to be involved. Since the intra and inter-laboratory comparison of the outcomes of the hydrolytic procedure is the first step toward its standardization, the normalization of the qPCR data by the UV/qPCR ratio seems to be the simplest and most reliable way to allow this. Finally, the supplying (provided with the commercial qPCR kits) of a DNA sample whose degree of

  12. Lipolytic Changes in Fermented Sausages Produced with Turkey Meat: Effects of Starter Culture and Heat Treatment

    OpenAIRE

    Karslo?lu, Bet?l; ?i?ek, ?mran Ensoy; Kolsarici, Nuray; Cando?an, Kezban

    2014-01-01

    In this study, the effects of two different commercial starter culture mixes and processing methodologies (traditional and heat process) on the lipolytic changes of fermented sausages manufactured with turkey meat were evaluated during processing stages and storage. Free fatty acid (FFA) value increased with fermentation and during storage over 120 d in all fermented sausage groups produced with both processing methodologies (p

  13. Startup analysis for a high temperature gas loaded heat pipe

    Science.gov (United States)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  14. Potassium nutrition of heat-stressed lactating

    African Journals Online (AJOL)

    dairy cattle performance annually over a 5 month period. When Black Globe Temperature (BGT), an integrated measure of dry bulb air temperature, wind velocity and solar radiation, rises above 29"C, feed intake and produc- tion are reduced. Many responses to heat stress, such as increased respiration and sweating rates, ...

  15. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  16. Heat-Assisted Machining for Material Removal Improvement

    Science.gov (United States)

    Mohd Hadzley, A. B.; Hafiz, S. Muhammad; Azahar, W.; Izamshah, R.; Mohd Shahir, K.; Abu, A.

    2015-09-01

    Heat assisted machining (HAM) is a process where an intense heat source is used to locally soften the workpiece material before machined by high speed cutting tool. In this paper, an HAM machine is developed by modification of small CNC machine with the addition of special jig to hold the heat sources in front of the machine spindle. Preliminary experiment to evaluate the capability of HAM machine to produce groove formation for slotting process was conducted. A block AISI D2 tool steel with100mm (width) × 100mm (length) × 20mm (height) size has been cut by plasma heating with different setting of arc current, feed rate and air pressure. Their effect has been analyzed based on distance of cut (DOC).Experimental results demonstrated the most significant factor that contributed to the DOC is arc current, followed by the feed rate and air pressure. HAM improves the slotting process of AISI D2 by increasing distance of cut due to initial cutting groove that formed during thermal melting and pressurized air from the heat source.

  17. Heat exchanger for transfering heat produced in a high temperature reactor to an intermediate circuit gas

    International Nuclear Information System (INIS)

    Barchewitz, E.; Baumgaertner, H.

    1985-01-01

    The invention is concerned with improving the arrangement of a heat exchanger designed to transfer heat from the coolant gas circuit of a high temperature reactor to a gas which is to be used for a process heat plant. In the plant the material stresses are to be kept low at high differential pressures and temperatures. According to the invention the tube bundles designed as boxes are fixed within the heat exchanger closure by means of supply pipes having got loops. For conducting the hot gas the heat exchanger has got a central pipe leading out of the reactor vessel through the pod closure and having got only one point of fixation, lying in this closure. Additional advantageous designs are mentioned. (orig./PW)

  18. Relationship between ash content and R{sub 70} self-heating rate of Callide Coal

    Energy Technology Data Exchange (ETDEWEB)

    Beamish, B. Basil; Blazak, Darren G. [School of Engineering, The University of Queensland, St Lucia, Qld 4072 (Australia)

    2005-10-17

    Borecore samples from the Trap Gully pit at Callide have been assessed using the R{sub 70} self-heating test. The highest R{sub 70} self-heating rate value was 16.22 {sup o}C/h, which is consistent with the subbituminous rank of the coal. R{sub 70} decreases significantly with increasing mineral matter content, as defined by the ash content of the coal. This effect is due to the mineral matter in the coal acting as a heat sink. A trendline equation has been fitted to the borecore data from the Trap Gully pit: R{sub 70}=0.0029xash{sup 2}-0.4889xash+20.644, where all parameters are on a dry-basis. This relationship can be used to model the self-heating hazard of the pit, both vertically and laterally. (author)

  19. High radiogenic heat-producing Caenozoic granites: implications for the origin of Quman geothermal field in Taxkorgan, northwestern China

    Science.gov (United States)

    Shuai, W.; Shihua, Q.

    2017-12-01

    As a new found geothermal field, Quman geothermal field (Taxkorgan, China) holds a wellhead temperature of 144 ° and a shallow buried depth of heat reservoir. The heat source of the geothermal field is thought to be the heat flow from the upper mantle, which is disputable with the average Pamir Moho depth of 70 km. The new geochemical data of Taxkorgan alkaline complex, which is located to the west of the geothermal field and is exposed for 60 km along the western side of the Taxkorgan Valley, shed a light on the origin of Quman geothermal field. Together with the lithological association, the geochemical results present that Taxkorgan alkaline complex are mainly composed of alkaline syenites and subalkaline granitoids. Based on the contents of Th, U and K of 25 rock samples, the average radioactive heat generation of the complex (9.08 μW/m3) is 2 times of the standard of high heat production granites (HHPGs) (5 μW/m3), and 4 times of the average upper continental crust (UCC) heat production (2.7 μW/m3). According to U-Pd dating of zircon in aegirine-augite syenite, the crystallization age of the complex is 11 Ma. The complex has incompatible element abundances higher than generally observed for the continental crust, therefore a mantle source should be considered. The results of apatite fission track ange and track length of the complex indicate a low uplift rate (0.11 mm/a) in 3 5 Ma and a high uplift rate (2 3 mm/a) since ca. 2Ma, which indicates a low exposed age of the complex. Therefore, combined with previous studies, we propose that radioactive heat production of the complex and afterheat of magma cooling are the heat source of Quman geothermal field. With a shallow buried heat source, the geothermal field is potential for EGS development.

  20. Computation of single- and two-phase heat transfer rates suitable for water-cooled tubes and subchannels

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Cheng, S.C.; Nguyen, C.

    1989-01-01

    A computational method for predicting heat transfer, valid for a wide range of flow conditions (from pool boiling and laminar flow conditions to highly turbulent flow), has been developed. It correctly identifies the heat transfer modes and predicts the heat transfer rates as well as transition points (such as the critical heat flux point) on the boiling curve. The computational heat transfer method consists of a combination of carefully chosen heat transfer equations for each heat transfer mode. Each of these equations has been selected because of their accuracy, wide range of application, and correct asymptotic trends. Using a mechanistically-based heat transfer logic, these equations have been combined in a convenient software package suitable for PC or mainframe application. The computational method has been thoroughly tested against many sets of experimental data. The parametric and asymptotic trends of the prediction method have been examined in detail. Correction factors are proposed for extending the use of individual predictive techniques to various geometric configurations and upstream conditions. (orig.)

  1. Development of a plasma assisted ITER level controlled heat source and observation of novel micro/nanostructures produced upon exposure of tungsten targets

    Energy Technology Data Exchange (ETDEWEB)

    Aomoa, N.; Sarmah, Trinayan; Sah, Puspalata [CIMPLE-PSI Laboratory, Centre of Plasma Physics-Institute for Plasma Research, Sonapur 782 402 Assam (India); Chaudhuri, P.; Khirwarker, S.; Ghosh, J. [Institute for Plasma Research, Gandhinagar 382428 Gujarat (India); Satpati, B. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Kakati, M., E-mail: mayurkak@rediffmail.com [CIMPLE-PSI Laboratory, Centre of Plasma Physics-Institute for Plasma Research, Sonapur 782 402 Assam (India); De Temmerman, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046 Saint Paul Lez Durance, Cedex (France)

    2016-05-15

    Highlights: • Developed a plasma assisted ITER level high heat flux device for material testing. • The beam deposits over 10 MW/m{sup 2} flux uniformly over a remote material target. • Hopper micro-crystals were growing while exposing Plansee tungsten in the device. • CIMPLE-PSI being developed for exact reproduction of Tokomak Divertor conditions. - Abstract: This paper reports on the development of a simple, low-cost, segmented plasma torch assisted high-heat flux device for material testing, which can simulate the extreme heat flux expected in future fusion devices. Calorimetric measurements confirmed uniform heat deposition by the well collimated argon plasma beam over a target surface with power fluxes in excess of 10 MW/m{sup 2} during high current, high gas flow rate operations. To understand the outcome of possible melting of first wall material in an ITER like machine, an Plansee tungsten target was exposed in this device, which witnessed growth of micrometer level Hopper crystals and their aggregation to vertical grains in central exposed region. Increase in viscosity of the metal during high under-cooling is believed to have lead to the skeletal patterns, observed for the first time for tungsten here. Transmission electron microscopy confirmed that re-solidified grains on the target actually had crystalline substructures in the nanometer level. This laboratory is in the process of developing an exact linear Tokamak Divertor simulator, where a magnetized hydrogen/helium collimated plasma jet will be produced at higher vacuum, for plasma material interaction studies with direct relevance to modern plasma fusion machines.

  2. Memory behaviors of entropy production rates in heat conduction

    Science.gov (United States)

    Li, Shu-Nan; Cao, Bing-Yang

    2018-02-01

    Based on the relaxation time approximation and first-order expansion, memory behaviors in heat conduction are found between the macroscopic and Boltzmann-Gibbs-Shannon (BGS) entropy production rates with exponentially decaying memory kernels. In the frameworks of classical irreversible thermodynamics (CIT) and BGS statistical mechanics, the memory dependency on the integrated history is unidirectional, while for the extended irreversible thermodynamics (EIT) and BGS entropy production rates, the memory dependences are bidirectional and coexist with the linear terms. When macroscopic and microscopic relaxation times satisfy a specific relationship, the entropic memory dependences will be eliminated. There also exist initial effects in entropic memory behaviors, which decay exponentially. The second-order term are also discussed, which can be understood as the global non-equilibrium degree. The effects of the second-order term are consisted of three parts: memory dependency, initial value and linear term. The corresponding memory kernels are still exponential and the initial effects of the global non-equilibrium degree also decay exponentially.

  3. Effect of various refining processes for Kenaf Bast non-wood pulp fibers suspensions on heat transfer coefficient in circular pipe heat exchanger

    Science.gov (United States)

    Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan

    2018-03-01

    Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.

  4. Effect of cooling rates on the weld heat affected zone coarse grain microstructure

    Directory of Open Access Journals (Sweden)

    Roman Celin

    2018-04-01

    Full Text Available The effect of a cooling rate on the S690Q quenched and tempered steel welded joint coarse grain heat affected zone microstructure was investigated using a dilatometer with controlled heating and cooling fixture. Steel samples were heated to a peak temperature of 1350 °C and cooled at the different cooling time Dt8/5. A dilatometric analysis and hardness measurements of the simulated thermal cycle coarse grain samples were done. Transformation start and finish temperature were determined using dilatation vs. temperature data analysis. The microstructure of the sample with a cooling time 5 s consists of martensite, whereas at cooling time 80 s a bainitic microstructure was observed. The investigated steel cooling cycle using simulation approach makes possible to determine the range of an optimum CG HAZ cooling time for the welding.

  5. Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery

    International Nuclear Information System (INIS)

    Ma, Hongting; Yin, Lihui; Shen, Xiaopeng; Lu, Wenqian; Sun, Yuexia; Zhang, Yufeng; Deng, Na

    2016-01-01

    Highlights: • A heat pipe heat exchanger (HPHE) was used to recycle the waste heat in a slag cooling process of steel industry. • An specially designed on-line cleaning device was construed and used to enhance the heat transfer of HPHE. • The performance characteristics of a HPHE has been assessed by integrating the first and second law of thermodynamics. • The optimum operation conditions was determined by integrating the first and the second law of thermodynamics. - Abstract: Steel industry plays an important role economically in China. A great amount of hot waste liquids and gases are discharged into environment during many steelmaking processes. These waste liquids and gases have crucial energy saving potential, especially for steel slag cooling process. It could be possible to provide energy saving by employing a waste heat recovery system (WHRS). The optimum operation condition was assessed by integrating the first and the second law of thermodynamics for a water–water heat pipe heat exchanger (HPHE) for a slag cooling process in steel industry. The performance characteristics of a HPHE has been investigated experimentally by analyzing heat transfer rate, heat transfer coefficient, effectiveness, exergy efficiency and number of heat transfer units (NTU). A specially designed on-line cleaning device was used to clean the heat exchange tubes and enhance heat transfer. The results indicated that the exergy efficiency increased with the increment of waste water mass flow rate at constant fresh water mass flow rate, while the effectiveness decreased at the same operation condition. As the waste water mass flow rate varied from 0.83 m"3/h to 1.87 m"3/h, the effectiveness and exergy efficiency varied from 0.19 to 0.09 and from 34% to 41%, respectively. In the present work, the optimal flow rates of waste water and fresh water were 1.20 m"3/h and 3.00 m"3/h, respectively. The on-line cleaning device had an obvious effect on the heat transfer, by performing

  6. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere.

    Science.gov (United States)

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang

    2012-11-01

    It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere

  7. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagel, Todd C.

    2014-06-09

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  8. Decay heat and gamma dose-rate prediction capability in spent LWR fuel

    International Nuclear Information System (INIS)

    Neely, G.J.; Schmittroth, F.

    1982-08-01

    The ORIGEN2 code was established as a valid means to predict decay heat from LWR spent fuel assemblies for decay times up to 10,000 year. Calculational uncertainties ranged from 8.6% to a maximum of 16% at 2.5 years and 300 years cooling time, respectively. The calculational uncertainties at 2.5 years cooling time are supported by experiment. Major sources of uncertainty at the 2.5 year cooling time were identifed as irradiation history (5.7%) and nuclear data together with calculational methods (6.3%). The QAD shielding code was established as a valid means to predict interior and exterior gamma dose rates of spent LWR fuel assemblies. A calculational/measurement comparison was done on two assemblies with different irradiation histories and supports a 35% calculational uncertainty at the 1.8 and 3.0 year decay times studied. Uncertainties at longer times are expected to increase, but not significantly, due to an increased contribution from the actinides whose inventories are assigned a higher uncertainty. The uncertainty in decay heat rises to a maximum of 16% due to actinide uncertainties. A previous study was made of the neutron emission rate from a typical Turkey Point Unit 3, Region 4 spent fuel assembly at 5 years decay time. A conservative estimate of the neutron dose rate at the assembly surface was less than 0.5 rem/hr

  9. Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min Ye [Chonbuk National Univ., Chonju (Korea, Republic of)

    2016-02-15

    In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

  10. Pupil responses and pain ratings to heat stimuli: Reliability and effects of expectations and a conditioning pain stimulus.

    Science.gov (United States)

    Eisenach, James C; Curry, Regina; Aschenbrenner, Carol A; Coghill, Robert C; Houle, Timothy T

    2017-03-01

    The locus coeruleus (LC) signals salience to sensory stimuli and these responses can modulate the experience of pain stimuli. The pupil dilation response (PDR) to noxious stimuli is thought to be a surrogate for LC responses, but PDR response to Peltier-controlled noxious heat stimuli, the most commonly used method in experimental pain research, has not been described. Healthy volunteers were presented with randomly presented heat stimuli of 5 sec duration and provided pain intensity ratings to each stimulus. Pupillometry was performed and a method developed to quantify the PDR relevant to these stimuli. The stimulus response, reliability, and effect of commonly used manipulations on pain experience were explored. A method of artifact removal and adjusting for lag from stimulus initiation to PDR response was developed, resulting in a close correlation between pain intensity rating and PDR across a large range of heat stimuli. A reliable assessment of PDR within an individual was achieved with fewer presentations as heat stimulus intensity increased. The correlation between pain rating and PDR was disrupted when cognitive load is increased by manipulating expectations or presenting a second pain stimulus. The PDR began later after skin heating than electrical stimuli and this is the first examination of the PDR using standard nociceptive testing and manipulations of expectations and competing noxious stimulation. A method is described applying PDR to standard heat nociceptive testing, demonstrating stimulus response, reliability, and disruption by cognitive manipulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Analysis on Operating Parameter Design to Steam Methane Reforming in Heat Application RDE

    Science.gov (United States)

    Dibyo, Sukmanto; Sunaryo, Geni Rina; Bakhri, Syaiful; Zuhair; Irianto, Ign. Djoko

    2018-02-01

    The high temperature reactor has been developed with various power capacities and can produce electricity and heat application. One of heat application is used for hydrogen production. Most hydrogen production occurs by steam reforming that operated at high temperature. This study aims to analyze the feasibility of heat application design of RDE reactor in the steam methane reforming for hydrogen production using the ChemCAD software. The outlet temperature of cogeneration heat exchanger is analyzed to be applied as a feed of steam reformer. Furthermore, the additional heater and calculating amount of fuel usage are described. Results show that at a low mass flow rate of feed, its can produce a temperature up to 480°C. To achieve the temperature of steam methane reforming of 850°C the additional fired heater was required. By the fired heater, an amount of fuel usage is required depending on the Reformer feed temperature produced from the heat exchanger of the cogeneration system.

  12. Dynamic crystallization of a eucrite basalt. [achondrite textural features produced by superheating and differing cooling rates

    Science.gov (United States)

    Walker, D.; Powell, M. A.; Hays, J. F.; Lofgren, G. E.

    1978-01-01

    The textural features produced in Stannern, a non-porpyritic representative of the eucrite basaltic achondrite class of meteorite, at differing cooling rates and various degrees of initial superheating were studied. Textures produced from mildly superheated melts were found to be fasciculate rather than porphyritic as the result of the cosaturated bulk chemistry of Stannern. The qualitative type of texture apparently depends mainly on the degree of initial superheating, whereas cooling rate exerts a strong influence on the coarseness of texture. Increasing the degree of superheating produces textures from intergranular/subophitic to fasciculate/porphyritic. With initial superheating to 1200 deg C the transition to quasi-porphyritic is controlled by cooling rate, but the development of phenocrysts is merely an overprint on the fasciculate background texture of the groundmass. The suppression of fasciculate texture is completed by a decrease of the degree of initial superheating below the plagioclast entry and suppression of quasi-porphyritic texture is completed by decrease of the degree of initial superheating below pyroxene entry; these qualitative changes do not seem to be produced by changes of cooling rate. A grain size/cooling rate dependence has been used to deduce the cooling rate of fasciculate-textured Stannern clasts (10.1 to 100 deg C/hr).

  13. Effect of the rate of heating on the quality of the primary tar in low-temperature coal-carbonization process

    Energy Technology Data Exchange (ETDEWEB)

    Turskii, Y I

    1956-01-01

    Two stages are observed. The first stage yields products of the primary and partial decomposition of coal, mainly water, CO/sub 2/, and CO as decomposition products of functional groups (-COOH, > CO, - OH, and so forth). No tar is formed in this stage. The structural decomposition and tar formation occur in the second stage. The rate of heating is important for the quality of the tar obtained. The slow rate of heating with both stages following each other yields a good-quality tar, richer in C and H, with lower O content. In case of high rate of heating both stages overlap. The tar is of poorer quality with higher specific gravity, and contains more O and asphaltenes. The complete experimental data are given in detail.

  14. Noise in attractor networks in the brain produced by graded firing rate representations

    OpenAIRE

    Webb, Tristan J.; Rolls, Edmund T; Deco, Gustavo; Feng, Jianfeng

    2011-01-01

    Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate\\ud probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as\\ud decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given\\ud mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribut...

  15. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    Science.gov (United States)

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Estimating Nitrogen Availability of Heat-Dried Bio solids

    International Nuclear Information System (INIS)

    Cogger, C.G.; Bary, A.I.; Myhre, E.A.

    2011-01-01

    As heat-dried bio solids become more widely produced and marketed, it is important to improve estimates of N availability from these materials. Objectives were to compare plant-available N among three different heat-dried bio solids and determine if current guidelines were adequate for estimating application rates. Heat-dried bio solids were surface applied to tall fescue (Festuca arundinacea Schreb.) in Washington State, USA, and forage yield and N uptake measured for two growing seasons following application. Three rates of urea and a zero-N control were used to calculate N fertilizer efficiency regressions. Application year plant-available N (estimated as urea N equivalent) for two bio solids exceeded 60% of total N applied, while urea N equivalent for the third bio solids was 45%. Residual (second-year) urea N equivalent ranged from 5 to 10%. Guidelines for the Pacific Northwest USA recommend mineralization estimates of 35 to 40% for heat-dried bio solids, but this research shows that some heat-dried materials fall well above that range.

  17. Angular distributions of atomic vapor stream produced by electron beam heating

    International Nuclear Information System (INIS)

    Ohba, Hironori; Amekawa, Kazuhiro; Shibata, Takemasa

    1997-03-01

    The angular distributions were measured as a function of deposition rate for aluminium, copper, gadolinium and cerium vapor stream produced by an electron beam gun with water-cooled copper crucible. The distributions were recorded on the mounted on a semicircular (120mm in radius) mask over the evaporation source. The measured distributions were able to be described by a simple cosine law, that is cos n θ, except for the case of extremely high evaporation rate with a porous material, where n is a rate-dependent beaming exponent, θ is the angle from the vertical. For many kinds of evaporants, it was confirmed that the beaming exponents increase continuously from unity to 3 or 4 with increasing deposition rate and are approximately proportional to R 0.25 where R is the deposition rate. Moreover, it was found that the beaming exponents n are able to be expressed as n = α Kn 0 -0.25 , where Kn 0 -1 is the inverse of Knudsen number, which is defined by the mean free path of evaporated atoms and the evaporation spot size, and α is the constant. (author)

  18. Angular distributions of atomic vapor stream produced by electron beam heating

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Amekawa, Kazuhiro; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The angular distributions were measured as a function of deposition rate for aluminium, copper, gadolinium and cerium vapor stream produced by an electron beam gun with water-cooled copper crucible. The distributions were recorded on the mounted on a semicircular (120mm in radius) mask over the evaporation source. The measured distributions were able to be described by a simple cosine law, that is cos{sup n} {theta}, except for the case of extremely high evaporation rate with a porous material, where n is a rate-dependent beaming exponent, {theta} is the angle from the vertical. For many kinds of evaporants, it was confirmed that the beaming exponents increase continuously from unity to 3 or 4 with increasing deposition rate and are approximately proportional to R{sup 0.25} where R is the deposition rate. Moreover, it was found that the beaming exponents n are able to be expressed as n = {alpha} Kn{sub 0}{sup -0.25}, where Kn{sub 0}{sup -1} is the inverse of Knudsen number, which is defined by the mean free path of evaporated atoms and the evaporation spot size, and {alpha} is the constant. (author)

  19. Utilising heat from nuclear waste for space heating

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A heating unit utilising the decay heat from irradiated material comprises a storage envelope for the material associated with a heat exchange system, means for producing a flow of air over the heat exchange system to extract heat from the material, an exhaust duct capable of discharging the heated air to the atmosphere, and means for selectively diverting at least some of the heated air to effect the required heating. With the flow of air over the heat exchange system taking place by a natural thermosyphon process the arrangement is self regulating and inherently reliable. (author)

  20. Effect of ohmic heating processing conditions on color stability of fungal pigments.

    Science.gov (United States)

    Aguilar-Machado, Diederich; Morales-Oyervides, Lourdes; Contreras-Esquivel, Juan C; Aguilar, Cristóbal; Méndez-Zavala, Alejandro; Raso, Javier; Montañez, Julio

    2017-06-01

    The aim of this work was to analyze the effect of ohmic heating processing conditions on the color stability of a red pigment extract produced by Penicillium purpurogenum GH2 suspended in a buffer solution (pH 6) and in a beverage model system (pH 4). Color stability of pigmented extract was evaluated in the range of 60-90 ℃. The degradation pattern of pigments was well described by the first-order (fractional conversion) and Bigelow model. Degradation rate constants ranged between 0.009 and 0.088 min -1 in systems evaluated. Significant differences in the rate constant values of the ohmic heating-treated samples in comparison with conventional thermal treatment suggested a possible effect of the oscillating electric field generated during ohmic heating. The thermodynamic analysis also indicated differences in the color degradation mechanism during ohmic heating specifically when the pigment was suspended in the beverage model system. In general, red pigments produced by P. purpurogenum GH2 presented good thermal stability under the range of the evaluated experimental conditions, showing potential future applications in pasteurized food matrices using ohmic heating treatment.

  1. Environmental and energy efficiency evaluation of residential gas and heat pump heating

    International Nuclear Information System (INIS)

    Ganji, A.R.

    1993-01-01

    Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NO x , and comparable CO 2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NO x production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NO x production from electric heat pumps. Gas engine heat pumps produce about one-half CO 2 compared to electric heat pumps

  2. Heat transfer in composite materials disintegrating under high-rate one-sided heating

    Science.gov (United States)

    Isaev, K. B.

    1993-12-01

    A mathematical model of heat transfer in heat-protective materials is suggested with the proviso of a squarelaw temperature depence of the material density in the zone of thermal destruction of its binder. The influence of certain factors on the experimental temperature field and thermal conductivity of a glass-reinforced epoxy plastic material is shown.

  3. 40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Hg mass emissions and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Hg Mass Emission Provisions § 75.83 Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass emissions...

  4. Enhanced performance of high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Christiansen, J.P.

    1989-01-01

    The performance of high current discharges can be improved by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Long sawtooth-free periods have been obtained which result in a transiently-enhanced discharge performance. High T c (0) = 9-10.5 keV with peaked profile T e (0)/ e > = 3-4 were obtained giving values of N e (0)T e (0) up to 6 x 10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A best value of n Dd (0)T i (0)τ E = 1.65 x 10 20 (m -3 keV s) was achieved. Local transport simulation shows that the electron and ion thermal diffusivities do not differ substantially in the two cases of current-rise (CR) and flat-top (FT) heating, the performance of the central plasma region being enhanced, in the case of current-rise, entirely by the elimination of the sawtooth instability. The maximum D-D reaction rate is enhanced by a factor of 2 compared to the flat-top value. An appreciable part of the reaction rate is attributed to 2nd harmonic deuterium (2ω CD ) heating. In all current-rise discharges radiation amounts to 25-50% of total power and Ζ eff remains roughly constant. (author)

  5. Development of heat pipe technology for permanent mold casting of magnesium alloys

    International Nuclear Information System (INIS)

    Elalem, K.; Mucciardi, F.; Gruzleski, J.E.; Carbonneau, Y.

    2002-01-01

    One of the key techniques for producing sound permanent mold castings is to use controlled mold cooling such as air cooling, water cooling and heat pipe cooling. Air-cooling has limited applications in permanent mold casting due to its low cooling capability and high cost. Water-cooling is widely used in permanent mold casting, but has some disadvantages such as safety issues and the facilities required. The early applications of heat pipes in permanent mold casting have shown tremendous results due to their high cooling rates, low cost and safety. In this work, a permanent mold for magnesium casting has been designed with the intention of producing shrinkage defects in the castings. Novel heat pipes that can generate high cooling rates have been constructed and used to direct the solidification in order to reduce the shrinkage. In this paper, the design of the mold and that of the heat pipes are presented. The results of some of the computer simulations that were conducted to determine casting conditions along with the potential of using heat pipes to direct the solidification are also presented. Moreover, a preliminary evaluation of the performance of heat pipes in the permanent mold casting of magnesium will also be discussed. (author)

  6. District heating in Switzerland

    International Nuclear Information System (INIS)

    Herzog, F.

    1991-01-01

    District heating has been used in Switzerland for more than 50 years. Its share of the heat market is less than 3% today. An analysis of the use of district heating in various European countries shows that a high share of district heating in the heat market is always dependent on ideal conditions for its use. Market prospects and possible future developments in the use of district heating in Switzerland are described in this paper. The main Swiss producers and distributors of district heating are members of the Association of District Heating Producers and Distributors. This association supports the installation of district heating facilities where ecological, energetical and economic aspects indicate that district heating would be a good solution. (author) 2 tabs., 6 refs

  7. Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa

    Directory of Open Access Journals (Sweden)

    C. Lema^itre

    2010-09-01

    Full Text Available The radiative heating rate due to mineral dust over West Africa is investigated using the radiative code STREAMER, as well as remote sensing and in situ observations gathered during the African Monsoon Multidisciplinary Analysis Special Observing Period (AMMA SOP. We focus on two days (13 and 14 June 2006 of an intense and long lasting episode of dust being lifted in remote sources in Chad and Sudan and transported across West Africa in the African easterly jet region, during which airborne operations were conducted at the regional scale, from the southern fringes of the Sahara to the Gulf of Guinea. Profiles of heating rates are computed from airborne LEANDRE 2 (Lidar Embarqué pour l'étude de l'Atmosphère: Nuages Dynamique, Rayonnement et cycle de l'Eau and space-borne CALIOP (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar observations using two mineral dust model constrained by airborne in situ data and ground-based sunphotometer obtained during the campaign. Complementary spaceborne observations (from the Moderate-resolution Imaging Spectroradiometer-MODIS and in-situ observations such as dropsondes are also used to take into account the infrared contribution of the water vapour. We investigate the variability of the heating rate on the vertical within a dust plume, as well as the contribution of both shortwave and longwave radiation to the heating rate and the radiative heating rate profiles of dust during daytime and nighttime. The sensitivity of the so-derived heating rate is also analyzed for some key variables for which the associated uncertainties may be large. During daytime, the warming associated with the presence of dust was found to be between 1.5 K day−1 and 4 K day−1, on average, depending on altitude and latitude. Strong warming (i.e. heating rates as high as 8 K day−1 was also observed locally in some limited part of the dust plumes. The uncertainty on the

  8. Heating and conduction in laser-produced plasmas

    International Nuclear Information System (INIS)

    Shay, H.D.; Zimmerman, G.B.; Nuckolls, J.H.

    1974-01-01

    A series of experiments conducted by G. McCall of LASL provides important clues concerning the electron distributions heated in the absorption of intense (less than or approximately equal to 10/sup lb/ W/cm 2 ) laser radiation and the thermal transport of energy. Presented here is a tentative interpretation of these experiments obtained from LASNEX calculations. (U.S.)

  9. Decay heat rates calculated using ORIGEN-S and CINDER10 with common data libraries

    International Nuclear Information System (INIS)

    Brady, M.C.; Hermann, O.W.; Beard, C.A.; Bohnhoff, W.J.; England, T.R.

    1991-01-01

    A set of two benchmark problems were proposed as part of an international comparison of decay heat codes. Problem specifications included explicit fission-yield, decay and capture data libraries to be used in the calculations. This paper describes the results obtained using these common data to perform the benchmark calculations with two popular depletion codes, ORIGEN-S and CINDER10. Short descriptions of the methods used by each of these codes are also presented. Results from other contributors to the international comparison are discussed briefly. This comparison of decay heat codes using common data libraries demonstrates that discrepant results in calculated decay heat rates are the result of differences in the nuclear data input to the codes and not the method of solution. 15 refs., 2 figs., 8 tabs

  10. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    Science.gov (United States)

    Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.

    2013-07-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.

  11. Resistive Heating and Ion Drag in Saturn's Thermosphere

    Science.gov (United States)

    Vriesema, Jess William; Koskinen, Tommi; Yelle, Roger V.

    2017-10-01

    One of the most puzzling observations of the jovian planets is that the thermospheres of Jupiter, Saturn, Uranus and Neptune are all several times hotter than solar heating can account for (Strobel and Smith 1973; Yelle and Miller 2004; Muller-Wodarg et al. 2006). On Saturn, resistive heating appears sufficient to explain these temperatures in auroral regions, but the particular mechanism(s) responsible for heating the lower latitudes remains unclear. The most commonly proposed heating mechanisms are breaking gravity waves and auroral heating at the poles followed by redistribution of energy to mid-and low latitudes. Both of these energy sources are potentially important but also come with significant problems. Wave heating would have to be continuous and global to produce consistently elevated temperatures and the strong Coriolis forces coupled with polar ion drag appear to hinder redistribution of auroral energy (see Strobel et al. 2016 for review). Here we explore an alternative: wind-driven electrodynamics that can alter circulation and produce substantial heating outside of the auroral region. Smith (2013) showed this in-situ mechanism to be potentially significant in Jupiter’s thermosphere. We present new results from an axisymmetric, steady-state model that calculates resistive (Joule) heating rates through rigorous solutions of the electrodynamic equations for the coupled neutral atmosphere and ionosphere of Saturn. At present, we assume a dipole magnetic field and neglect any contributions from the magnetosphere. We use ion mixing ratios from the model of Kim et al. (2014) and the observed temperature-pressure profile from Koskinen et al. (2015) to calculate the generalized conductivity tensor as described by Koskinen et al. (2014). We calculate the current density under the assumption that it has no divergence and use it to calculate the resistive heating rates and ion drag. Our results suggest that resistive heating and ion drag at low latitudes likely

  12. The effect of sampling rate on interpretation of the temporal characteristics of radiative and convective heating in wildland flames

    Science.gov (United States)

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Michael Harrington

    2012-01-01

    Time-resolved radiative and convective heating measurements were collected on a prescribed burn in coniferous fuels at a sampling frequency of 500 Hz. Evaluation of the data in the time and frequency domain indicate that this sampling rate was sufficient to capture the temporal fluctuations of radiative and convective heating. The convective heating signal contained...

  13. Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL

    International Nuclear Information System (INIS)

    Ahn, B.; Akasofu, S.; Kamide, Y.

    1983-01-01

    As a part of the joint efforts of operating six meridian chains of magnetometers during the IMS, magnetic records from 71 stations are used to deduce the distribution of electric fields and currents in the polar ionosphere for March 17, 18, and 19, 1978. As a continuation of this project, we have constructed hourly distribution maps of the Joule heat production rate and their sum over the entire polar region on the three days. For this purpose the conductivity distribution is inferred at each instant partially on the basis of an empirical method devised by Ahn et al. (1982). The particle energy injection rate is estimated similarly by using an empirical method. The data set thus obtained allows us to estimate also the global Joule heat production rate U/sub J/, the global particle energy injection rate U/sub A/ and the sum U/sub Gamma/ of the two quantities. It is found that three global quantities (watt) are related almost linearly to the AE(nT) and AL(nT) indices. Our present estimates give the following relationships: U/sub J/ = 2.3 times 10 8 x AE 8 U/sub A/ = 0.6 times 10 8 x AE 8 and U/sub I/ = 2.9 times 10 8 x AE: U/sub J/ = 3.0 times 10 8 x AL 8 U/sub A/ = 0.8 times 10 8 x AL, and U/sub I/ = 3.8 times 10 8 x AL

  14. Mixing in heterogeneous internally-heated convection

    Science.gov (United States)

    Limare, A.; Kaminski, E. C.; Jaupart, C. P.; Farnetani, C. G.; Fourel, L.; Froment, M.

    2017-12-01

    Past laboratory experiments of thermo chemical convection have dealt with systems involving fluids with different intrinsic densities and viscosities in a Rayleigh-Bénard setup. Although these experiments have greatly improved our understanding of the Earth's mantle dynamics, they neglect a fundamental component of planetary convection: internal heat sources. We have developed a microwave-based method in order to study convection and mixing in systems involving two layers of fluid with different densities, viscosities, and internal heat production rates. Our innovative laboratory experiments are appropriate for the early Earth, when the lowermost mantle was likely enriched in incompatible and heat producing elements and when the heat flux from the core probably accounted for a small fraction of the mantle heat budget. They are also relevant to the present-day mantle if one considers that radioactive decay and secular cooling contribute both to internal heating. Our goal is to quantify how two fluid layers mix, which is still very difficult to resolve accurately in 3-D numerical calculations. Viscosities and microwave absorptions are tuned to achieve high values of the Rayleigh-Roberts and Prandtl numbers relevant for planetary convection. We start from a stably stratified system where the lower layer has higher internal heat production and density than the upper layer. Due to mixing, the amount of enriched material gradually decreases to zero over a finite time called the lifetime. Based on more than 30 experiments, we have derived a scaling law that relates the lifetime of an enriched reservoir to the layer thickness ratio, a, to the density and viscosity contrasts between the two layers, and to their two different internal heating rates in the form of an enrichment factor beta=1+2*a*H1/H, where H1 is the heating rate of the lower fluid and H is the average heating rate. We find that the lifetime of the lower enriched reservoir varies as beta**(-7/3) in the low

  15. Void fraction distribution in a heated rod bundle under flow stagnation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, V.A.; Guido-Lavalle, G.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    1995-09-01

    An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.

  16. Biophoton emission induced by heat shock.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kobayashi

    Full Text Available Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.

  17. Global distribution of moisture, evaporation-precipitation, and diabatic heating rates

    Science.gov (United States)

    Christy, John R.

    1989-01-01

    Global archives were established for ECMWF 12-hour, multilevel analysis beginning 1 January 1985; day and night IR temperatures, and solar incoming and solar absorbed. Routines were written to access these data conveniently from NASA/MSFC MASSTOR facility for diagnostic analysis. Calculations of diabatic heating rates were performed from the ECMWF data using 4-day intervals. Calculations of precipitable water (W) from 1 May 1985 were carried out using the ECMWF data. Because a major operational change on 1 May 1985 had a significant impact on the moisture field, values prior to that date are incompatible with subsequent analyses.

  18. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Science.gov (United States)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  19. Theoretical studies of rate chemistry in radiative heating of aerobraking spacecraft

    International Nuclear Information System (INIS)

    Lengsfield, B.H. III.

    1993-04-01

    A multi-reference CI gradient algorithm has been implemented in which the computation of orbital derivatives is efficiently undertaken in the atomic orbital basis. This development circumvents the need to store large numbers of derivatives integrals on disk when one uses multi-reference CI derivative techniques to characterize ground and excited states of polyatomic molecules. With this type of algorithm accurate heats of formation and reactions rate can be ascertained for a much broader range molecular systems. The limitations of these types of studies thus reverts to the feasibility of performing the underlying CI calculation and not the computation of the derivatives of the CI energy. This technique can also be efficiently utilized in the computation of nonadiabatic coupling matrix elements. Finally, the β (B 2 Π - X 2 Π transition) system in NO was investigated. Interest in the B 2 Π state of NO stems from the important role it plays in air after-glow and shock heated air

  20. Induction heating of rotating nonmagnetic billet in magnetic field produced by high-parameter permanent magnets

    Directory of Open Access Journals (Sweden)

    Ivo Doležel

    2014-04-01

    Full Text Available An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathematical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic formulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element method. The most important results are verified experimentally on our own laboratory device.

  1. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  2. Equipment for the emplacement of heat-producing waste in long horizontal boreholes

    International Nuclear Information System (INIS)

    Young, K.D.; Scully, L.W.; Fisk, A.; deBakker, P.; Friant, J.; Anderson, A.

    1983-01-01

    Emplacement of heat-producing waste in long horizontal holes may offer several technical and economic advantages over shallow vertical hole emplacement. Less of the host rock suffers damage as a result of drift construction; the heat from the waste can be isolated from the access drifts for long periods of time; and the amount of rock which must be excavated is much less than in traditional disposal scenarios. One of the major reasons that has been used to reject the long hole concept in the past and adhere to the shallow vertical hole concept is the equipment required to drill the holes and to emplace and retrieve the waste. Such equipment does not currently exist. It clearly is more difficult to drill a 600 to 1000 foot horizontal hole, possibly 3 to 4 feet in diameter, and place a canister of waste at the end of it than to drill a 30 foot vertical hole and lower the waste to the bottom. A liner, for emplacement hole stabilization, appears to be feasible by adapting existing technology for concrete slip forming or jacking in a steel liner. The conceptual design of the equipment to drill long horizontal holes, emplace waste and retrieve waste will be discussed. Various options in concept will be presented as well as their advantages and disadvantages. The operating scenario of the selected concept will be described as well as solutions to potential problems encountered

  3. Equipment for the emplacement of heat-producing waste in long horizontal boreholes

    International Nuclear Information System (INIS)

    Young, K.D.; Fisk, A.; Friant, J.; Scully, L.W.

    1983-01-01

    Emplacement of heat-producing waste in long horizontal holes may offer several technical and economic advantages over shallow vertical hole emplacement. Less of the host rock suffers damage as a resul of drift construction; the heat from the waste can be isolated from the access drifts for long periods of time; and the amount of rock which must be excavated is much less than in traditional disposal scenarios. One of the major reasons that has been used to reject the long hole concept in the past and adhere to the shallow vertical hole concept is the equipment required to drill the holes and to emplace and retrieve the waste. Such equipment does not currently exist. It clearly is more difficult to drill a 600 to 100 foot horizontal hole, possibly 3 to 4 feet in diameter, and place a canister of waste at the end of it than to drill a 30 foot vertical hole and lower the waste to the bottom. A liner, for emplacement hole stabilization, appears to be feasible by adapting existing technology for concrete slip forming or jacking in a steel liner. The conceptual design of the equipment to drill long horizontal holes, emplace waste and retrieve waste is discussed. Various options in concept are presented as well as their advantages and disadvantages. The operating scenario of the selected concept is described as well as solutions to potential problems encountered

  4. Safety characteristics of small heat producing reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1987-10-01

    The primary objectives of protection in nuclear power plants are the possibility to shut the reactor down in case of emergency and keep it subcritical in the long run, the existence of a heat sink for post-decay heat removal in order to avoid overheating, let alone core meltdown, and the containment of radioactivity within the barriers designed for this purpose, thus preventing significant activity release. In principle, these objectives can be met in various ways, namely by active, passive or inherent technical safeguards systems. In practice, a mixture of these approaches is employed in almost all cases. What matters in the end is the assessment of the overall concept, not of some outstanding feature. Inherent characteristics are easier to achieve in small reactors. However, also in this case, inherent safety does not mean absolute safety. If inherent safety characteristics were all encompassing, they would have to include self-healing effects. However, inanimate matter is incapable of such self-organization. Consequently, inherent characteristics in nuclear technology by definition should include the increased use of dissipative processes in the thermal part of the plant. (author)

  5. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Poirier, Martin P; Kenny, Glen P

    2018-03-01

    What is the central question of this study? Aerobic fitness modulates heat loss, albeit the heat load at which fitness-related differences occur in young healthy women remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that fitness modulates heat loss in a heat-load dependent manner, with differences occurring between young women of low and high fitness and matched physical characteristics when the metabolic heat load is at least 400 W in hot, dry conditions. Although fitness has been known for some time to modulate heat loss, our findings define the metabolic heat load at which fitness-related differences occur. Aerobic fitness has recently been shown to alter heat loss capacity in a heat-load dependent manner in young men. However, given that sex-related differences in heat loss capacity exist, it is unclear whether this response is consistent in women. We therefore assessed whole-body total heat loss in young (21 ± 3 years old) healthy women matched for physical characteristics, but with low (low-fit; 35.8 ± 4.5 ml O 2  kg -1  min -1 ) or high aerobic fitness (high-fit; 53.1 ± 5.1 ml O 2  kg -1  min -1 ; both n = 8; indexed by peak oxygen consumption), during three 30 min bouts of cycling performed at increasing rates of metabolic heat production of 250 (Ex1), 325 (Ex2) and 400 W (Ex3), each separated by a 15 min recovery, in hot, dry conditions (40°C, 11% relative humidity). Whole-body total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat content was measured as the temporal summation of heat production and loss. Total heat loss did not differ during Ex1 (low-fit, 215 ± 16 W; high-fit, 231 ± 20 W; P > 0.05) and Ex2 (low-fit, 278 ± 15 W; high-fit, 301 ± 20 W; P > 0.05), but was lower in the low-fit (316 ± 21 W) compared with the high-fit women (359 ± 32

  6. Smoke Movement in an Atrium with a Fire with Low Rate of Heat Release

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Brohus, Henrik; Petersen, A. J.

    2008-01-01

    Results from small-scale experiments on smoke movement in an atrium are given, both with and without a vertical temperature gradient, and expressions for the smoke movement are developed on the basis of these experiments. Comparisons with a general analytical expression used for calculating...... the height to the location of the smoke layer are given. Furthermore, the paper discusses the air movement in a typical atrium exposed to different internal and external heat loads to elaborate on the use of the "flow element" expressions developed for smoke movement from a fire with a low rate of heat...

  7. Investigation on the effect of blending ratio and airflow rate on syngas profile produced from co-gasification of blended feedstock

    Directory of Open Access Journals (Sweden)

    Inayat Muddasser

    2017-01-01

    Full Text Available Shortages of feedstock supply due to seasonal availability, high transportation costs, and lack of biomass market are creating serious problems in continues operation of bioenergy industry. Aiming at this problem, utilization of blended feedstock is proposed. In this work blends of two different biomasses (wood and coconut shells were co-gasified using externally heated downdraft gasifier. The effects of varying biomass blending ratio and airflow rate on gaseous components of syngas and its heating value were investigated. The results obtained from the experiments revealed that W20:CS80 blend yielded higher values for H2 (20 Vol.% and HHV (18 MJ/Nm3 as compared to the other blends. The higher airflow rate has a negative effect on syngas profile and heating value. The CO and CH4 were observed higher at the start of the process, however, CO was observed decreasing afterward, and the CH4 dropped to 5.0 Vol.%. The maximum H2 and CH4 were obtained at 2.5 LPM airflow rate. The process was noticed more stable at low air flow rates. The HHV was observed higher at the start of process at low airflow rate. It is concluded that low airflow rate and a higher ratio of coconut shells can improve the syngas quality during co-gasification.

  8. Campaign for A-rated circulator pumps - a proven strategy

    Energy Technology Data Exchange (ETDEWEB)

    Lueders, Christian; Wilke, Goeran (The Danish Electricity Saving Trust (Denmark)); Dam Wied, Martin (Wormslev - NRGi Raadgivning A/S (Denmark))

    2009-07-01

    1.2 million households in Denmark have a central heating circulator pump. An estimated 800,000 pumps installed are old and inefficient. Potential savings per year of 400 GWh and 200,000 tons of CO{sub 2} can be achieved by replacing these obsolete pumps. However, many consumers and installers have neither an opinion about, nor play an active role in choosing a circulator pump. This paper documents how it is possible to promote the wider use of A-rated circulator pumps via an offensive campaign strategy to get both consumers and installers to participate actively in the choice of pump, thereby increasing the market share of A-rated pumps sold. The campaign is based on a broadly-based push-pull strategy which aims to influence both consumers and suppliers simultaneously. The strategy consists of the following elements: Involvement of the supply side via voluntary agreements with producers, wholesalers, installers, and their trade organisations; Partnerships with installers in order to secure fixed price installations for A-rated pumps; Influencing consumers through magazine advertisements and TV commercials. The market share for A-rated circulator pumps in Denmark grew from 15-60% in the period January 2006 to the end of October 2008. In a new phase, the strategy is switching the focus to OEM and boiler producers, and producers of heat exchangers for district and underfloor heating systems. The aim of the current phase was for A pumps to have accounted for 60% of the Danish market by the end of 2008

  9. Heat exchangers selection, rating, and thermal design

    CERN Document Server

    Kakaç, Sadik; Pramuanjaroenkij, Anchasa

    2012-01-01

    Praise for the Bestselling Second EditionThe first edition of this work gathered in one place the essence of important information formerly scattered throughout the literature. The second edition adds the following new information: introductory material on heat transfer enhancement; an application of the Bell-Delaware method; new correlation for calculating heat transfer and friction coefficients for chevron-type plates; revision of many of the solved examples and the addition of several new ones.-MEMagazine

  10. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    Science.gov (United States)

    Rezania, A.; Rosendahl, L. A.

    2012-06-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The three-dimensional governing equations for the fluid flow and the heat transfer are solved using the finite-volume method for a wide range of pressure drop laminar flows along the heat sink. The temperature and the mass flow rate distribution in the heat sink are discussed. The results, which are in good agreement with previous computational studies, show that using suggested heat sink configurations reduces the coolant pumping power in the system.

  11. Heat Exchange and Fouling Analysis on a Set of Hydrogen Sulphide Gas Coolers

    Directory of Open Access Journals (Sweden)

    Andrés Adrian Sánchez-Escalona

    2017-07-01

    Full Text Available The sulphide acid coolers are tube and shell jacketed heat exchangers designed to cool down the produced gas from 416,15 K to 310,15 K in addition to separate the sulphur carried over by the outlet gas from the reactor tower. The investigation was carried out by applying the passive experimentation process in an online cooler set in order to determine the heat transfer rates and fouling based on heat resistance. It was corroborated that the operation of this equipment outside design parameters increases outlet gas temperature and liquid sulphur carryovers. Efficiency loss is caused by fouling elements in the fluid, which results in changes in the overall heat transfer rate. The linear tendency of the fouling heat resistance based on time for three gas flowrates.

  12. Development of producing equipment of mixed butane-air with low dew point. Energy saving dewatering apparatus and 6A-Gas producing apparatus utilizing vaporization latent heat of butane and potential heat of air

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Jin; Okada, Hiroto; Taniue, Nobuo; Tanoue, Keiju; Yamada, Tatsuhiko; Maekawa, Hisami; Murakami, Keiji

    1988-02-10

    A producing equipment of mixed butane-air with low dew point was developed. The dewatering was made during the period from the middle of May to the middle of October with high atmospheric humidity. The production capacity of the mixed gas is 3000 Nm/sup 3/ of 22% of butane and 78% of air per hour. The designed dew point is 18/sup 0/C or less under the pressure of 0.7 kg/cm/sup 2/G. The saturation temperature is 7.5/sup 0/C after the liquid butane is evacuated by a regulating valve. The air introduced into the dehumidifier through finned tubes is cooled to dewater based on those data. The partially vaporized butane is completely gasified by hot water in a vaporizer and mixed with the dewatered air by a venture mixer to produce the mixed butane-air. When the dewatering is incomplete, the spray nozzle must be just exchanged. The dew point of the produced gas was sufficiently below the designed value. The investment cost is low. The total operating cost is reduced by the remarkably decreased fuel cost though the power cost is increased. The noise level is low and the heat control is easy. (11 figs, 4 tabs, 1 photo)

  13. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  14. High Gastrointestinal Colonization Rate with Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Hospitalized Patients: Emergence of Carbapenemase-Producing K. pneumoniae in Ethiopia

    Science.gov (United States)

    Desta, Kassu; Woldeamanuel, Yimtubezinash; Azazh, Aklilu; Mohammod, Halima; Desalegn, Dawit; Shimelis, Damte; Gulilat, Dereje; Lamisso, Biruk; Makonnen, Eyasu; Worku, Alemayehu; Mannerqvist, Kerstin; Struwe, Johan; Aspevall, Olov; Aklillu, Eleni

    2016-01-01

    We investigated the gastrointestinal colonization rate and antibiotic resistance patterns of Extended-Spectrum Beta-Lactamase (ESBL)- producing Escherichia coli and Klebsiella pneumoniae in hospitalized patients admitted at Ethiopia’s largest tertiary hospital. Fecal samples/swabs from 267 patients were cultured on chrome agar. ESBL. Bacterial species identification, verification of ESBL production and antibiotic susceptibility testing were done using Vitek 2 system (bioMérieux, France). Phenotype characterization of ESBL-E.coli and ESBL- K.pneumoniae was done using Neo-Sensitabs™. ESBL positivity rate was much higher in K. pneumoniae (76%) than E. coli (45%). The overall gastrointestinal colonization rate of ESBL producing Enterobacteriaceae (ESBL-E) in hospitalized patients was 52% (95%CI; 46%–58%) of which, ESBL-E. coli and K.pneumoniae accounted for 68% and 32% respectively. Fecal ESBL-E carriage rate in neonates, children and adults was 74%, 59% and 46% respectively. Gastrointestinal colonization rate of ESBL-E.coli in neonates, children and adults was 11%, 42% and 42% respectively. Of all E. coli strains isolated from adults, children and neonates, 44%, 49% and 22% were ESBL positive (p = 0.28). The prevalence of ESBL-K.pneumoniae carriage in neonates, children and adults was 68%, 22% and 7% respectively. All K. pneumoniae isolated from neonates (100%) and 88% of K. pneumoniae isolated from children were ESBL positive, but only 50% of K.pneumoniae isolated from adults were ESBL positive (p = 0.001). Thirteen patients (5%) were carriers of both ESBL-E.coli and ESBL-KP. The overall carrier rate of ESBL producing isolates resistant to carbapenem was 2% (5/267), all detected in children; three with E.coli HL cephalosporinase (AmpC), resistant to ertapenem and two with K. pneumoniae Carbapenemase (KPC) resistant to meropenem, ertapenem and impenem. We report a high gastrointestinal colonization rate with ESBL-E and the emergence of carbapenems-resistant K

  15. Supercritical heat transfer in an annular channel with external heating

    International Nuclear Information System (INIS)

    Remizov, O.V.; Gal'chenko, Eh.F.; Shurkin, N.G.; Sergeev, V.V.

    1980-01-01

    Results are presented of experimental studies of the burnout heat transfer in a 32x28x3000 mm annular channel with a uniform distribution of a heat flow at pressures of 6.9-19.6 MPa and mass rates of 350-1000 kg/m 2 xs. The heating is electrical, external, one-sided. It is shown that dependencies of the heat-transfer coefficient on rated parameters in the annular channel and tube are similar. An empirical equation has been obtained for the calculation of the burnout heat transfer in the annual channels with external heating in the following range: pressure, 6.9 -13.7 MPa; mass rate 350-700 kg/m 2 xs, and steam content ranging from Xsub(crit) to 1

  16. Tick resistance and heat tolerance characteristics in cattle. III. Sweating rate

    Directory of Open Access Journals (Sweden)

    Cecília José Veríssimo

    2012-12-01

    Full Text Available Cattle in a sustainable tropical livestock should be heat tolerant and resistant to ticks. The relationship between Rhipicephalus (Boophilus microplus infestation and sweating rate, an important heat tolerance characteristic, was studied in six Nellore and four Holstein steers of seven-month-old. They were artificial infested (a.i. with 10,000 (Holstein and 20,000 (Nellore larvae in 16/Apr/2011. In days 20, 23 and 24 after the infestation, the 10 bigger females ticks found in whole animal were weighed and put in a chamber (27 oC and 80% RH, weighing the egg mass of each female tick fourteen days after. The sweating rate (SRskin, measured by Scheleger and Turner, 1963, method, in a shaved area of shoulder skin was evaluated in 14/Apr (2 days before the a.i. and in 05/May (19 days after a.i.. In 14/Apr the Scheleger and Turner, 1963, method was done on the coat not shaved (SRcoat. The sweating rate was measured in the afternoon (from 2 P.M., after 30 minutes of direct sunlight, on April. On May, the animals remained 60 minutes in direct sunlight because this day was colder. The experimental design was a non-probability sample restricted to the 10 available animals. Data from the steers’ sweating rate were analyzed using the General linear models of the SPSS® statistical package (version 12.0 using SRskin as dependent variable and breed and sampling date as independent variables. For SRcoat breed was the independent variable. Nellore, a tropical cattle breed, had higher SRskin (1,000.82 ± 64.59 g m-2 h-1, P< 0.001 than Holstein (620.45 ± 79.10 g m-2 h-1. SRskin was higher on May (1,187.33 ± 71.49 g m-2 h-1, P< 0.001 than on April (433.93 ± 71.49 g m-2 h-1. The correlation between the two different measurements of SR was positive and significant (r= 0,545, P<0,01, Pearson correlation. But in SRcoat the breed effect disappeared because the Holstein SRcoat increased (Holstein: 884.95 ± 472.12 g m-2 h-1 and Nellore: 1,060.72 ± 318.21 g m-2 h-1

  17. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  18. Heat and mass transfer analogies for evaporation models at high evaporation rate

    OpenAIRE

    Trontin , P.; Villedieu , P.

    2014-01-01

    International audience; In the framework of anti and deicing applications, heated liquid films can appear above the ice thickness, or directly above the wall. Then, evaporation plays a major role in the Messinger balance and evaporated mass has to be predicted accurately. Unfortunately, it appears that existing models under-estimate evaporation at high temperature. In this study, different evaporation models at high evaporation rates are studied. The different hypothesis on which these models...

  19. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    International Nuclear Information System (INIS)

    McKellar, Michael G.

    2011-01-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  20. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  1. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    Science.gov (United States)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-01-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  2. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    Science.gov (United States)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  3. Theoretical prediction of the effect of heat transfer parameters on cooling rates of liquid-filled plastic straws used for cryopreservation of spermatozoa.

    Science.gov (United States)

    Sansinen, M; Santos, M V; Zaritzky, N; Baez, R; Chirife, J

    2010-01-01

    Heat transfer plays a key role in cryopreservation of liquid semen in plastic straws. The effect of several parameters on the cooling rate of a liquid-filled polypropylene straw when plunged into liquid nitrogen was investigated using a theoretical model. The geometry of the straw containing the liquid was assimilated as two concentric finite cylinders of different materials: the fluid and the straw; the unsteady-state heat conduction equation for concentric cylinders was numerically solved. Parameters studied include external (convection) heat transfer coefficient (h), the thermal properties of straw manufacturing material and wall thickness. It was concluded that the single most important parameter affecting the cooling rate of a liquid column contained in a straw is the external heat transfer coefficient in LN2. Consequently, in order to attain maximum cooling rates, conditions have to be designed to obtain the highest possible heat transfer coefficient when the plastic straw is plunged in liquid nitrogen.

  4. Heat generation in lithium/thionyl chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gibbard, H.F.

    1980-01-01

    The flow of heat from lithium/thionyl chloride batteries has been measured in two conduction calorimeters. Several types of cells have been studied, both at rest and during low- and high-rate discharge. In contrast with other reports in the literature, no conditions were found under which the discharge of lithium/thionyl chloride batteries was endothermic. Results at low currents, which are described in terms of the thermodynamic formalism developed previously, are consistent with measurements of the temperature dependence of the open-circuit potential. Cells discharged at higher currents produced more heat flux than predicted by the simple thermodynamic treatment. The current and time variation of the additional heat is consistent with a current-dependent corrosion of the lithium electrode. 14 refs.

  5. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  6. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat......The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... heat sink configurations reduces the coolant pumping power in the system....

  7. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle.

    Science.gov (United States)

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L

    2017-08-01

    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Processing summary report: Fabrication of cesium and strontium heat and radiation sources

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.; Surma, J.E.; Allen, R.P.

    1989-02-01

    The Pacific Northwest Laboratory (PNL), has produced 30 isotopic heat sources (canisters) for the Federal Republic of Germany (FRG) to be used as part of a repository testing program in the Asse Salt Mine. PNL program work involved the filling, closure, and decontamination of the 30 canisters. The canisters were fabricated (filled) in three separate processing campaigns using the radioactive liquid-fed ceramic melter to produce a borosilicate glass. Within the borosilicate glass matrix radiochemical constituents ( 137 Cs and 90 Sr) were immobilized to yield a product with a predetermined decay heat and surface radiation exposure rate

  9. Environment-friendly heat supply with natural refrigerants. Large heat pumps use industrial waste heat and waste water; Umweltschonende Waermeversorgung mit natuerlichen Kaeltemitteln. Grosswaermepumpen nutzen industrielle Abwaerme und Abwaesser

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-01-15

    Everywhere, where industrial processes occur or coldness is produced, simultaneously heat is produced. While many private houses use geothermal energy or ambient air for the production of heat, waste water and waste heat prove to be optimal energy sources for the industrial need due to higher output temperatures. By means of large heat pumps the residual heat is used for heating or the supply of hot water for example in local heat supply grids and makes an important contribution to climate protection.

  10. Thermodynamic performance analysis of sequential Carnot cycles using heat sources with finite heat capacity

    International Nuclear Information System (INIS)

    Park, Hansaem; Kim, Min Soo

    2014-01-01

    The maximum efficiency of a heat engine is able to be estimated by using a Carnot cycle. Even though, in terms of efficiency, the Carnot cycle performs the role of reference very well, its application is limited to the case of infinite heat reservoirs, which is not that realistic. Moreover, considering that one of the recent key issues is to produce maximum work from low temperature and finite heat sources, which are called renewable energy sources, more advanced theoretical cycles, which can present a new standard, and the research about them are necessary. Therefore, in this paper, a sequential Carnot cycle, where multiple Carnot cycles are connected in parallel, is studied. The cycle adopts a finite heat source, which has a certain initial temperature and heat capacity, and an infinite heat sink, which is assumed to be ambient air. Heat transfer processes in the cycle occur with the temperature difference between a heat reservoir and a cycle. In order to resolve the heat transfer rate in those processes, the product of an overall heat transfer coefficient and a heat transfer area is introduced. Using these conditions, the performance of a sequential Carnot cycle is analytically calculated. Furthermore, as the efforts for enhancing the work of the cycle, the optimization research is also conducted with numerical calculation. - Highlights: • Modified sequential Carnot cycles are proposed for evaluating low grade heat sources. • Performance of sequential Carnot cycles is calculated analytically. • Optimization study for the cycle is conducted with numerical solver. • Maximum work from a heat source under a certain condition is obtained by equations

  11. Hydration rate and strength development of low-heat type portland cement mortar mixed with pozzolanic materials

    International Nuclear Information System (INIS)

    Matsui, Jun

    1998-01-01

    Recently, low-heat type Portland cement was specified in Japan Industrial Standards (JIS). Its hydration proceeds slowly. The results of the research so far obtained indicate that slow hydration of cement and mixing of pozzolanic materials with cement make micro-structure of harded cement paste dense and durable. In this study, a blended cement using low-heat type Portland cement and some of pozzolanic materials has been newly developed and its strength property and hydration ratio were checked. The followings are conclusion. (1) Hydration rate of cement paste varies with the replacement ratio of pozzolanic materials. (2) A good liner relationship between strength and total hydration rate of cement paste was observed. (3) A proper replacement ratio of both base-cement and pozzolanic material for manufacturing a blended cement is 50%. (author)

  12. Impact of heat stress on health and performance of dairy animals: A review

    Directory of Open Access Journals (Sweden)

    Ramendra Das

    2016-03-01

    Full Text Available Sustainability in livestock production system is largely affected by climate change. An imbalance between metabolic heat production inside the animal body and its dissipation to the surroundings results to heat stress (HS under high air temperature and humid climates. The foremost reaction of animals under thermal weather is increases in respiration rate, rectal temperature and heart rate. It directly affect feed intake thereby, reduces growth rate, milk yield, reproductive performance, and even death in extreme cases. Dairy breeds are typically more sensitive to HS than meat breeds, and higher producing animals are, furthermore, susceptible since they generates more metabolic heat. HS suppresses the immune and endocrine system thereby enhances susceptibility of an animal to various diseases. Hence, sustainable dairy farming remains a vast challenge in these changing climatic conditions globally.

  13. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    Science.gov (United States)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  14. Industrial Heat Pump for a High Temperature District Heating Application

    DEFF Research Database (Denmark)

    Poulsen, Claus Nørgaard

    by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  15. Enhanced performance on high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Cotrell, G.; Corti, S.; Christiansen, J.P.; Hellsten, T.; Jacquinot, J.; Lallia, P.; Lomas, P.; O'Rourke, J.; Taroni, A.; Tibone, F.; Start, D.F.H.

    1989-01-01

    The performance of high current discharges can be increased by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Sawtooth-free periods have been obtained resulting in the enhanced discharge performance. High T e (0) 9 - 10.5 keV with peaked profiles T e (0)/ e > = 3 - 4 were obtained giving values of n e (0)T e (0) up to 6x10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A 60 % enhancement in D-D reaction rate from 2nd harmonic deuterium (2ω CD ) heating appears to be present. In all current rise (CR) discharges radiation amounts to 25-50 % of total power. (author) 4 refs., 6 figs

  16. Transformation of deformation martensite into austenite in stainless steels at various heating rates

    International Nuclear Information System (INIS)

    Gojkhenberg, Yu.N.; Shtejnberg, M.M.

    1978-01-01

    Under isothermal conditions and with continuous preheating at defferent rates, the inverse transformation of deformation martensite that is obtained through reductions to small, medium and great degrees, has been studied. It has been established that depending on the preheat rate, the temperature of the end α → ν of rebuilding varies according to a curve having a maximum. The ascending branch of that curve is connected with the diffusion-controlled shear transformation, whereas the descending branch with the transition to the martensite reaction of austenite formation. As the deformation degree increases, the temperature of the end of the inverse transformation decreases. As a result, recrystallization of austenite proceeds only after completing α → ν transition, when heating the steels deformed to the medium degree at rates of at least 25 deg/sec and after high reductions at rates of at least 0.8 deg/sec

  17. Heat transfer performance of heat pipe for passive cooling of spent fuel pool

    International Nuclear Information System (INIS)

    Wang Minglu; Xiong Zhengqin; Gu Hanyang; Ye Cheng; Cheng Xu

    2014-01-01

    A large-scale loop heat pipe has no electricity driven component and high efficiency of heat transfer. It can be used for the passive cooling of the SFP after SBO to improve the safety performance of nuclear power plants. In this paper, such a large-scale loop heat pipe is studied experimentally. The heat transfer rate, evaporator average heat transfer coefficient operating temperature, operating pressure and ammonia flow rate have been obtained with the water flow ranging from 0.007 m/s to 0.02 m/s outside the evaporator section, heating water temperature in the range of 50 to 90℃, air velocity outside the condensation section ranging from 0.5 to 2.5 m/s. It is found that the heat transfer rate reaches as high as 20.1 kW. Parametric analysis indicates that, the heat transfer rate and ammonia flow rate are influenced significantly by hot water inlet temperature and velocity, while beyond 1.5 m/s, the effect of air velocity outside the condensation section is minor. (authors)

  18. Consistency between Sweat Rate and Wet Bulb Globe Temperature for the Assessment of Heat Stress of People Working Outdoor in Arid and Semi-arid Regions

    Directory of Open Access Journals (Sweden)

    Hamidreza Heidari

    2018-01-01

    Full Text Available Background: Heat stress is common among workers in arid and semi-arid areas. In order to take every preventive measure to protect exposed workers against heat-related disorders, it is crucial to choose an appropriate index that accurately relates environmental parameters to physiological responses. Objective: To investigate the consistency between 2 heat stress and strain indices, ie, sweat rate and wet bulb globe temperature (WBGT, for the assessment of heat stress of people working outdoor in arid and semi-arid regions in Iran. Methods: During spring and summer, 136 randomly selected outdoor workers were enrolled in this study. Using a defined protocol, the sweat rate of these workers was measured 3 times a day. Simultaneously, the environmental parameters including WBGT index were recorded for each working station. Results: The level of agreement between sweat rate and WBGT was poor (κ<0.2. Based on sweat rate, no case exceeding the reference value was observed during the study. WBGT overestimated the heat stress in outdoor workers compared to sweat rate. Conclusion: It seems that the sweat rate standards may need some modifications related to real condition of work in arid and semi-arid regions in Iran. Moreover, it seems that judging workers solely based on monitoring their sweat rate in such regions, can probably result in underestimation of heat stress.

  19. Possible role of oceanic heat transport in early Eocene climate

    Science.gov (United States)

    Sloan, L. C.; Walker, J. C.; Moore, T. C. Jr

    1995-01-01

    Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an approximately 30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.

  20. Stokes flow heat transfer in an annular, rotating heat exchanger

    International Nuclear Information System (INIS)

    Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.

    2011-01-01

    The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.

  1. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Directory of Open Access Journals (Sweden)

    Chin-Ming Huang

    2011-01-01

    Full Text Available This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP and heart rate variability (HRV. The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25±4 yr; 29 men and 31 women were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF and high-frequency (HF components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr (P<.05, but the cold stress significantly increased AIr (P<.01. The spectral energy of RPP did not show any statistical difference in 0∼10 Hz region under both conditions, but in the region of 10∼50 Hz, there was a significant increase (P<.01 in the heat test and a significant decrease in the cold test (P<.01. The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10∼50 Hz (SE10−50 Hz but not in the region of 0∼10 Hz (SE0−10 Hz. The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses.

  2. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Science.gov (United States)

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou

    2011-01-01

    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292

  3. A study on the effects of system pressure on heat and mass transfer rates of an air cooler

    International Nuclear Information System (INIS)

    Jung, Hyung Ho

    2002-01-01

    In the present paper, the effects of inlet pressure on the heat and mass transfer rates of an air cooler are numerically predicted by a local analysis method. The pressures of the moist air vary from 2 to 4 bars. The psychometric properties such as dew point temperature, relative humidity and humidity ratio are employed to treat the condensing water vapor in the moist air when the surface temperatures are dropped below the dew point. The effects of the inlet pressures on the heat transfer rate, the dew point temperature, the rate of condensed water, the outlet temperature of air and cooling water are calculated. The condensation process of water vapor is discussed in detail. The results of present calculations are compared with the test data and shows good agreements

  4. An iterative regularization method in estimating the transient heat-transfer rate on the surface of the insulation layer of a double circular pipe

    International Nuclear Information System (INIS)

    Chen, W.-L.; Yang, Y.-C.

    2009-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space- and time-dependent heat-transfer rate on the surface of the insulation layer of a double circular pipe heat exchanger using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat-transfer rate; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation on the space- and time-dependent heat-transfer rate can be obtained for the test case considered in this study.

  5. Application of probabilistic event attribution in the summer heat extremes in the western US to emissions traced to major industrial carbon producers

    Science.gov (United States)

    Mera, R. J.; Allen, M. R.; Mote, P.; Ekwurzel, B.; Frumhoff, P. C.; Rupp, D. E.

    2015-12-01

    Heat waves in the western US have become progressively more severe due to increasing relative humidity and nighttime temperatures, increasing the health risks of vulnerable portions of the population, including Latino farmworkers in California's Central Valley and other socioeconomically disadvantaged communities. Recent research has shown greenhouse gas emissions doubled the risk of the hottest summer days during the 2000's in the Central Valley, increasing public health risks and costs, and raising the question of which parties are responsible for paying these costs. It has been argued that these costs should not be taken up solely by the general public through taxation, but that additional parties can be considered, including multinational corporations who have extracted and marketed a large proportion of carbon-based fuels. Here, we apply probabilistic event attribution (PEA) to assess the contribution of emissions traced to the world's 90 largest major industrial carbon producers to the severity and frequency of these extreme heat events. Our research uses very large ensembles of regional climate model simulations to calculate fractional attribution of policy-relevant extreme heat variables. We compare a full forcings world with observed greenhouse gases, sea surface temperatures and sea ice extent to a counter-factual world devoid of carbon pollution from major industrial carbon producers. The results show a discernable fraction of record-setting summer temperatures in the western US during the 2000's can be attributed to emissions sourced from major carbon producers.

  6. Technical support for a proposed decay heat guide using SAS2H/ORIGEN-S data

    International Nuclear Information System (INIS)

    Hermann, O.W.; Parks, C.V.; Renier, J.P.

    1994-09-01

    Major revisions are proposed to the current US Nuclear Regulatory Commission decay heat rate guide entitled ''Regulatory Guide 3.54, Spent Fuel Heat Generation in an Independent Spent Fuel Storage Installation,'' using a new data base produced by the SAS2H analysis sequence of the SCALE-4 system. The data base for the proposed guide revision has been significantly improved by increasing the number and range of parameters that generally characterize pressurized-water-reactor (PWR) and boiling-water-reactor (BWR) spent fuel assemblies. Using generic PWR and BWR assembly models, calculations were performed with each model for six different burnups at each of three separate specific powers to produce heat rates at 20 cooling times in the range of 1 to 110 y. The proposed procedure specifies proper interpolation formulae for the tabulated heat generation rates. Adjustment formulae for the interpolated values are provided to account for differences in initial 235 U enrichment and changes in the specific power of a cycle from the average value. Finally, safety factor formulae were derived as a function of burnup, cooling time, and type of reactor. The proposed guide revision was designed to be easier to use. Also, the complete data base and guide procedure is incorporated into an interactive code called LWRARC which can be executed on a personal computer. The report shows adequate comparisons of heat rates computed by SAS2H/ORIGEN-S and measurements for 10 BWR and 10 PWR fuel assemblies. The average differences of the computed minus the measured heat rates of fuel assemblies were -07 ± 2.6% for the BWR and 1.5 ± 1.3% for the PWR. In addition, a detailed analysis of the proposed procedure indicated the method and equations to be valid

  7. Use of waste heat from a dairy for heating of a community house

    Energy Technology Data Exchange (ETDEWEB)

    Rehn, C

    1976-01-01

    In a dairy, a lot of cooling capacity is needed. This article describes how this waste heat can be used for heating a community house including a sport establishment and producing hot water for that house. Four different technical solutions are discussed; (1) floor heat, (2) heat transfer connected to the ventilation, (3) regenerative heat exchanger, and (4) use of heat pumps.

  8. The roles of turbulence on plasma heating

    International Nuclear Information System (INIS)

    Kawamura, Takaichi; Kawabe, Takaya.

    1976-06-01

    In this paper, the characteristic features of the turbulent heating are reviewed, which is considered to be one of the strong candidates of the further heating method in fusion reactor systems, referring to the works in the Institute of Plasma Physics, Nagoya University. The roles of turbulence in plasma heating including toroidal plasma heating are discussed from several points of view. The relation between the heating rate of plasma particles and the thermalization (randomization) frequency is theoretically investigated and the role of plasma turbulence in the fast thermalization is shown. The experimental results on fluctuation and heating of electrons and ions in turbulently heated plasmas are presented. The influence of turbulence, which is responsible for the particle heating, on the diffusion across the confinement magnetic field is considered for the application in the toroidal plasmas. It is pointed out that the turbulent fields in the fast turbulent heating give only a minor effect to the loss of particles across the magnetic field. It can be said that the enhanced fluctuation in turbulent plasma gives its field energy to the plasma particles while it can play the role of the fast thermalization of the ordered motion of particles that is produced in the plasma by some acceleration process. (Kato, T.)

  9. Direct currents produced by hf heating of plasma

    International Nuclear Information System (INIS)

    Klima, R.

    1974-01-01

    In addition to the well-known diffusion currents, toroidal direct currents arise in h.f. heated plasmas as a result of a momentum transfer from the h.f. field to plasma particles. The estimates of steady-state conditions are given for these currents. Particularly, the possibility of stationary operation of a Tokamak device is analyzed. (author)

  10. Research of Heat Rates Effect on the Process Of Fuel-Bed Gasification Of “Balakhtinskoe”, “Osinnikovskoe”, “Krasnogorskoe” and “Borodinskoe” Coal Deposits

    Directory of Open Access Journals (Sweden)

    Zenkov Andrey

    2016-01-01

    Full Text Available Experimental research of fuel-bed gasification at different heating rates was conducted. Release of four gases (CO, NO, H2O, CO2 was determined. Optimal heating rate mode for this method of gasification was established.

  11. Resetting of Quartz OSL (optically stimulated luminescence) Signals by Frictional Heating in Experimentally Sheared Gouges at Seismic Slip Rates.

    Science.gov (United States)

    Kim, J. H.; Choi, J. H.; Chauhan, N.; Lee, S.; Hirose, T.; Ree, J. H.

    2014-12-01

    Recent studies on natural and experimental seismic faults have revealed that frictional heating plays an important role in earthquake dynamics as well as in producing mineralogical and microstructural signatures of seismic faulting. Here, we report changes in OSL signals in quartz by frictional heating in experimental fault gouges. The gouges (80% of quartz and 20% of bentonite by weight) with a thickness of 1 mm were sheared between sandstone cylinders (diameter: 25 mm) at a normal stress of 1 MPa and slip rate of 1.31 m/s. The quartz grains from a sand dune on the western coast of South Korea were sieved to select size fractions between 90 and 250 μm. The equivalent dose (De) of the undeformed quartz grains was 8.0 ± 0.3 Gy. Upon displacement, the friction abruptly increases to the 1st peak (with friction coefficient μ ≈ 0.75) followed by slip weakening. Then the fault zones show two more peak frictions (μ ≈ 0.53~0.75) and finally reach a steady-state friction (μ ≈ 0.2~0.35). The fault can be divided into three zones based grain size (thus slip rate); slip localization (SLZ), intermediate slip-rate (ISZ) and low slip-rate (LSZ) zones. SLZ develops adjacent to the moving side of the sandstone cylinder with P-foliation and shear band. The size of quartz (Dq) in ISZ and LSZ is 5-30 μm and 50-250 μm, respectively. SEM and TEM analyses indicate that the fault gouge of SLZ consists of subangular quartz clasts (Dq ≈ 3 μm) and matrix of nano-scale quartz, unidentified silicate minerals and amorphous material. The fault zones were sectioned into six layers (~160 µm thick for each layer) parallel to the fault zone boundary for OSL analyses. Quartz grains from all the layers except the one immediately adjacent to the stationary side of the sandstone cylinder show De of 'effectively' 0 Gy indicating a full resetting of OSL signals. The partial resetting of OSL signal in the layer adjacent to the stationary side of the cylinder indicates the temperature (T

  12. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    Science.gov (United States)

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  13. Analysis of heat and mass transfer to determine heat loss and the rate of condensation of the MVSTs off-gas ducts

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Yang, G.; Bigzadeh, E.; Walker, J.F.; Abraham, T.J.

    1992-01-01

    Reduction of the existing nuclear waste in the Melton Valley Storage Tanks (MVSTs) at the Oak Ridge National Laboratory (ORNL) is of utmost concern to the scientists at this facility. This paper provides proof that a combination of vault heating, sparged air heating, and prevention of condensation is the best alternative to achieve this goal. Therefore, in this study a general system of mathematical equations has been developed taking into account all of the parameters affecting evaporation and condensation. This evaporation process has been analyzed by the careful modeling of a bubble chain through the extremely viscous, radioactive liquid contained in the storage tanks. This paper discusses in detail the evaporation procedure using bubble formation, air velocity, and determining the rate at which this liquid waste can be removed from the MVSTs by evaporation under different conditons of the sparging air. An additional objective is to study the heating/cooling of the condensation process of the off-gas piping inside the vault. A laboratory scale model has also been assembled for this purpose at ORNL to verify the accuracy of the mathematical modeling. A comparison of the experimental findings with the mathematical modeling shows excellent agreement. (orig.)

  14. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery

    Science.gov (United States)

    Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung

    2018-02-01

    In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.

  15. The effect of wind on the rate of heat loss from avian cup-shaped nests.

    Science.gov (United States)

    Heenan, Caragh B; Seymour, Roger S

    2012-01-01

    Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis) and yellow-throated miner (Manorina flavigula), were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.

  16. The effect of wind on the rate of heat loss from avian cup-shaped nests.

    Directory of Open Access Journals (Sweden)

    Caragh B Heenan

    Full Text Available Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis and yellow-throated miner (Manorina flavigula, were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.

  17. Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes the measurement of heat transfer rate using a thermal capacitance-type calorimeter which assumes one-dimensional heat conduction into a cylindrical piece of material (slug) with known physical properties. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Note 1—For information see Test Methods E 285, E 422, E 458, E 459, and E 511.

  18. Experimental investigation of heat transfer performance for a novel microchannel heat sink

    International Nuclear Information System (INIS)

    Wang, Y; Ding, G-F

    2008-01-01

    We demonstrated a novel microchannel heat sink with a high local heat transfer efficiency contributed by a complicated microchannel system, which comprises parallel longitudinal microchannels etched in a silicon substrate and transverse microchannels electroplated on a copper heat spreader. The thermal boundary layer develops in transverse microchannels. Meanwhile, the heat transfer area is increased compared with the conventional microchannel heat sink only having parallel longitudinal microchannels. Both benefits yield high local heat transfer efficiency and enhance the overall heat transfer, which is attractive for the cooling of high heat flux electronic devices. Infrared tests show the temperature distribution in the test objects. The effects of flow rate and heat flux levels on heat transfer characteristics are presented. A uniform temperature distribution is obtained through the heating area. The reference temperatures decrease with the increasing flow rate from 0.64 ml min −1 to 6.79 ml min −1 for a constant heat flux of 10.4 W cm −2 . A heat flux of 18.9 W cm −2 is attained at a flow rate of 6.79 ml min −1 for assuring the maximum temperature of the microchannel heat sink less than the maximum working temperature of electronic devices

  19. Standard Test Method for Measuring Extreme Heat-Transfer Rates from High-Energy Environments Using a Transient, Null-Point Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of the heat-transfer rate or the heat flux to the surface of a solid body (test sample) using the measured transient temperature rise of a thermocouple located at the null point of a calorimeter that is installed in the body and is configured to simulate a semi-infinite solid. By definition the null point is a unique position on the axial centerline of a disturbed body which experiences the same transient temperature history as that on the surface of a solid body in the absence of the physical disturbance (hole) for the same heat-flux input. 1.2 Null-point calorimeters have been used to measure high convective or radiant heat-transfer rates to bodies immersed in both flowing and static environments of air, nitrogen, carbon dioxide, helium, hydrogen, and mixtures of these and other gases. Flow velocities have ranged from zero (static) through subsonic to hypersonic, total flow enthalpies from 1.16 to greater than 4.65 × 101 MJ/kg (5 × 102 to greater than 2 × 104 ...

  20. Influence of heating rates on in situ resistance measurements of a bronze route Nb-Sn-Cu-Ta multifilamentary conductor

    International Nuclear Information System (INIS)

    Tan, K.S.; Hopkins, S.C.; Glowacki, B.A.

    2004-01-01

    The superconducting properties of a bronze process multifilamentary conductor are controlled by the structure, dimensions and composition of the intermetallic layers, which are strongly influenced by the details of the heat treatments applied to the conductor. It has previously been reported that the electrical resistivity of a Vacuumschmelze bronze process conductor varies during heat treatment, and that analysis of the conductor as a set of parallel resistors allows the features of the resistivity variation to be assigned to the progress of Nb 3 Sn intermetallic phase formation. The behaviour of NSP2 Nb-Sn-Cu-Ta bronze process multifilamentary conductors (Imperial Metal Industries) is now reported as a function of the heating rate, in preparation for more complex non-isothermal heat treatment procedures. It is shown that the resistance of the wire measured in situ by an alternating current (AC) technique can be used to observe the progress of the formation of Nb 3 Sn, and that the comparison of resistometric measurements at different heating rates can give an indication of other processes (such as recovery and recrystallisation) occurring at lower temperatures during the heating up process prior to isothermal annealing. In addition, this wire containing only about 1% of copper was carefully chosen because of the broken tantalum barriers around individual copper filaments. Therefore, the resistometric measurements were used to attempt to detect the diffusion of tin from the bronze matrix into the copper filaments at lower temperatures without noticeable influence on Nb 3 Sn phase formation. Treating the NSP2 wire as a set of parallel resistors also permits estimates to be made of the intermetallic layer thicknesses from resistometric measurements, and these are shown to be in good agreement with estimates from scanning electron microscopy. The difference in critical temperature, T c , between wires heated at different rates, with the presence of the bronze matrix

  1. Conception rate of artificially inseminated Holstein cows affected by cloudy vaginal mucus, under intense heat conditions

    Directory of Open Access Journals (Sweden)

    Miguel Mellado

    2015-06-01

    Full Text Available The objective of this work was to obtain prevalence estimates of cloudy vaginal mucus in artificially inseminated Holstein cows raised under intense heat, in order to assess the effect of meteorological conditions on its occurrence during estrus and to determine its effect on conception rate. In a first study, an association was established between the occurrence of cloudy vaginal mucus during estrus and the conception rate of inseminated cows (18,620 services, raised under intense heat (mean annual temperature of 22°C, at highly technified farms, in the arid region of northern Mexico. In a second study, data from these large dairy operations were used to assess the effect of meteorological conditions throughout the year on the occurrence of cloudy vaginal mucus during artificial insemination (76,899 estruses. The overall rate of estruses with cloudy vaginal mucus was 21.4% (16,470/76,899; 95% confidence interval = 21.1-21.7%. The conception rate of cows with clean vaginal mucus was higher than that of cows with abnormal mucus (30.6 vs. 22%. Prevalence of estruses with cloudy vaginal mucus was strongly dependent on high ambient temperature and markedly higher in May and June. Acceptable conception rates in high milk-yielding Holstein cows can only be obtained with cows showing clear and translucid mucus at artificial insemination.

  2. Flexibility of Large-Scale Solar Heating Plant with Heat Pump and Thermal Energy Storage

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Heller, Alfred; Rode, Carsten

    2017-01-01

    to decrease biomass use in a district heating system. The paper focuses on the renewable energy-based district heating system in Marstal, Denmark, with heat produced in central solar heating plant, wood pellet boiler, heat pump and bio-oil boiler. The plant has been the object of research and developments...

  3. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  4. Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate.

    Directory of Open Access Journals (Sweden)

    Dustyn Roberts

    Full Text Available A subject-specific model of instantaneous cost of transport (ICOT is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters-mass, height, (estimated maximum oxygen uptake, and (estimated maximum joint torques-are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90 inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326-0.348 of the experimental total COT (0.311-0.358 across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic energy pathway similar to that of steady-state walking.

  5. Heat Production by the Denitrifying Bacterium Pseudomonas fluorescens and the Dissimilatory Ammonium-Producing Bacterium Pseudomonas putrefaciens during Anaerobic Growth with Nitrate as the Electron Acceptor

    OpenAIRE

    Samuelsson, M.-O.; Cadez, P.; Gustafsson, L.

    1988-01-01

    The heat production rate and the simultaneous nitrate consumption and production and consumption of nitrite and nitrous oxide were monitored during the anaerobic growth of two types of dissimilatory nitrate reducers. Pseudomonas fluorescens, a denitrifier, consumed nitrate and accumulated small amounts of nitrite or nitrous oxide. The heat production rate increased steadily during the course of nitrate consumption and decreased rapidly concomitant with the depletion of the electron acceptors....

  6. Review on advanced of solar assisted chemical heat pump dryer for agriculture produce

    International Nuclear Information System (INIS)

    Fadhel, M.I.; Sopian, K.; Daud, W.R.W.; Alghoul, M.A.

    2011-01-01

    Over the past three decades there has been nearly exponential growth in drying R and D on a global scale. Improving of the drying operation to save energy, improve product quality as well as reduce environmental effect remained as the main objectives of any development of drying system. A solar assisted chemical heat pump dryer is a new solar drying system, which have contributed to better cost-effectiveness and better quality dried products as well as saving energy. A solar collector is adapted to provide thermal energy in a reactor so a chemical reaction can take place. This reduces the dependency of the drying technology on fossil energy for heating. In this paper a review on advanced of solar assisted chemical heat pump dryer is presented (the system model and the results from experimental studies on the system performance are discussed). The review of heat pump dryers and solar assisted heat pump dryer is presented. Description of chemical heat pump types and the overview of chemical heat pump dryer are discussed. The combination of chemical heat pump and solar technology gives extra efficiency in utilizing energy. (author)

  7. NLP modeling for the optimization of LiBr-H2O absorption refrigeration systems with exergy loss rate, heat transfer area, and cost as single objective functions

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Gernaey, Krist; Morosuk, Tatiana

    2016-01-01

    exergy loss rate, the total heat transfer area, and the total annual cost of the system. It was found that the optimal solution obtained by minimization of the total exergy loss rate provides “theoretical” upper bounds not only for the total heat transfer area of the system but also for each process unit...... and all stream temperatures, while the optimal solution obtained by minimization of the total heat transfer area provides the lower bounds for these model variables, to solve a cost optimization problem. The minimization of the total exergy loss rate by varying parametrically the available total heat...... transfer area between these bounds was also performed, allowing to see how the optimal distribution of the available total heat transfer area among the system components, as well as the operating conditions (stream temperature, pressure, composition, and mass flow rate) and heat loads, vary qualitatively...

  8. Average Heating Rate of Hot Atmospheres in Distant Galaxy Clusters by Radio AGN: Evidence for Continuous AGN Heating

    Science.gov (United States)

    Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.

    2011-09-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.

  9. Comparative Evaluation of Marginal Adaptation and Fracture Strength of Different Ceramic Inlays Produced by CEREC Omnicam and Heat-Pressed Technique

    Directory of Open Access Journals (Sweden)

    F. D. Oz

    2018-01-01

    Full Text Available Objective. The aim of this in vitro study was to evaluate marginal adaptation and fracture strength of inlays produced by CEREC Omnicam using different types of blocs and heat-pressed technique. Methods: Seventy-five extracted human mandibular molars were divided randomly into 5 groups (n=15. 60 molars in four groups received MOD inlay preparations. Experimental groups were CO: Intact teeth, EC: IPS e.max CAD and CEREC, LU: Lava Ultimate and CEREC, EL: IPS Empress CAD and CEREC, EP: IPS Empress Esthetic ingots and heat-pressed technique. Marginal gap measurements were taken with a stereomicroscope. Restorations were cemented with Variolink N and stored in distilled water at 37°C for 24 hours. All samples were subjected to thermocycling. The fracture strength of specimens was determined at a 0.5 mm/min crosshead speed until fracture. Fracture modes were determined. Statistical analyses were performed using one-way analysis of variance for fracture strength data and Kruskal–Wallis for marginal gap data (p=0.05. Results. The mean marginal gap size of EC, LU, EL, and EP were 33.54 µm, 33.77 µm, 34.23 µm, and 85.34 µm, respectively. EP had statistically higher values than other groups. The fracture strength values were significantly higher in the intact teeth group (3959,00 ± 1279,79 N than those of restored groups EC (2408,00 ± 607,97 N, LU (2206,73 ± 675,16, EL (2573.27 ± 644,73 ve EP (2879,53 ± 897,30. Conclusion. Inlays fabricated using CEREC Omnicam demonstrated better marginal adaptation than inlays produced with heat-pressed technique, whereas fracture strength values of inlays fabricated with different type of blocks using CEREC Omnicam exhibited similarity to those fabricated with heat-pressed technique.

  10. Comparative Evaluation of Marginal Adaptation and Fracture Strength of Different Ceramic Inlays Produced by CEREC Omnicam and Heat-Pressed Technique.

    Science.gov (United States)

    Oz, F D; Bolay, S

    2018-01-01

    The aim of this in vitro study was to evaluate marginal adaptation and fracture strength of inlays produced by CEREC Omnicam using different types of blocs and heat-pressed technique. Methods: Seventy-five extracted human mandibular molars were divided randomly into 5 groups ( n =15). 60 molars in four groups received MOD inlay preparations. Experimental groups were CO: Intact teeth, EC: IPS e.max CAD and CEREC, LU: Lava Ultimate and CEREC, EL: IPS Empress CAD and CEREC, EP: IPS Empress Esthetic ingots and heat-pressed technique. Marginal gap measurements were taken with a stereomicroscope. Restorations were cemented with Variolink N and stored in distilled water at 37°C for 24 hours. All samples were subjected to thermocycling. The fracture strength of specimens was determined at a 0.5 mm/min crosshead speed until fracture. Fracture modes were determined. Statistical analyses were performed using one-way analysis of variance for fracture strength data and Kruskal-Wallis for marginal gap data ( p =0.05). The mean marginal gap size of EC, LU, EL, and EP were 33.54  µ m, 33.77  µ m, 34.23  µ m, and 85.34  µ m, respectively. EP had statistically higher values than other groups. The fracture strength values were significantly higher in the intact teeth group (3959,00 ± 1279,79 N) than those of restored groups EC (2408,00 ± 607,97 N), LU (2206,73 ± 675,16), EL (2573.27 ± 644,73) ve EP (2879,53 ± 897,30). Inlays fabricated using CEREC Omnicam demonstrated better marginal adaptation than inlays produced with heat-pressed technique, whereas fracture strength values of inlays fabricated with different type of blocks using CEREC Omnicam exhibited similarity to those fabricated with heat-pressed technique.

  11. Effects of Injection Rate Profile on Combustion Process and Emissions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fuqiang Bai

    2017-01-01

    Full Text Available When multi-injection is implemented in diesel engine via high pressure common rail injection system, changed interval between injection pulses can induce variation of injection rate profile for sequential injection pulse, though other control parameters are the same. Variations of injection rate shape which influence the air-fuel mixing and combustion process will be important for designing injection strategy. In this research, CFD numerical simulations using KIVA-3V were conducted for examining the effects of injection rate shape on diesel combustion and emissions. After the model was validated by experimental results, five different shapes (including rectangle, slope, triangle, trapezoid, and wedge of injection rate profiles were investigated. Modeling results demonstrate that injection rate shape can have obvious influence on heat release process and heat release traces which cause different combustion process and emissions. It is observed that the baseline, rectangle (flat, shape of injection rate can have better balance between NOx and soot emissions than the other investigated shapes. As wedge shape brings about the lowest NOx emissions due to retarded heat release, it produces the highest soot emissions among the five shapes. Trapezoid shape has the lowest soot emissions, while its NOx is not the highest one. The highest NOx emissions were produced by triangle shape due to higher peak injection rate.

  12. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  13. An artificial intelligence (AI) NOx/heat rate optimization system for Ontario Hydro`s fossil generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Luk, J.; Frank, A.; Bodach, P. [Ontario Hydro, Toronto, ON (Canada); Warriner, G. [Radian International, Tucker, GA (United States); Noblett, J. [Radian International, Austin, TX (United States); Slatsky, M. [Southern Company, Birmingham, AL (United States)

    1999-08-01

    Artificial intelligence (AI)-based software packages which can optimize power plant operations that improves heat rate and also reduces nitrogen oxide emissions are now commonly available for commercial use. This paper discusses the implementation of the AI-based NOx and Heat Rate Optimization System at Ontario Hydro`s generation stations, emphasizing the current AI Optimization Project at Units 5 and 6 of the Lakeview Generating Station. These demonstration programs are showing promising results in NOx reduction and plant performance improvement. The availability of the plant Digital Control System (DCS) in implementing AI optimization in a closed-loop system was shown to be an important criterion for success. Implementation of AI technology at other Ontario Hydro fossil generating units as part of the overall NOx emission reduction system is envisaged to coincide with the retrofit of the original plant control system with the latest DCS systems. 14 refs., 3 figs.

  14. Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Y.D.; Lee, K.B.; Islam, S.Z.; Ko, S.B. [Kongju National University, Kong Ju (Republic of Korea). Dept. for Mechanical Engineering

    2008-07-01

    In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.

  15. Acute cell death rate of vascular smooth muscle cells during or after short heating up to 20s ranging 50 to 60°C as a basic study of thermal angioplasty

    Science.gov (United States)

    Shinozuka, Machiko; Shimazaki, Natsumi; Ogawa, Emiyu; Machida, Naoki; Arai, Tsunenori

    2014-02-01

    We studied the relations between the time history of smooth muscle cells (SMCs) death rate and heating condition in vitro to clarify cell death mechanism in heating angioplasty, in particular under the condition in which intimal hyperplasia growth had been prevented in vivo swine experiment. A flow heating system on the microscope stage was used for the SMCs death rate measurement during or after the heating. The cells were loaded step-heating by heated flow using a heater equipped in a Photo-thermo dynamic balloon. The heating temperature was set to 37, 50-60°C. The SMCs death rate was calculated by a division of PI stained cell number by Hoechst33342 stained cell number. The SMCs death rate increased 5-10% linearly during 20 s with the heating. The SMCs death rate increased with duration up to 15 min after 5 s heating. Because fragmented nuclei were observed from approximately 5 min after the heating, we defined that acute necrosis and late necrosis were corresponded to within 5 min after the heating and over 5 min after the heating, respectively. This late necrosis is probably corresponding to apoptosis. The ratio of necrotic interaction divided the acute necrosis rate by the late necrosis was calculated based on this consideration as 1.3 under the particular condition in which intimal hyperplasia growth was prevented in vivo previous porcine experiment. We think that necrotic interaction rate is larger than expected rate to obtain intimal hyperplasia suppression.

  16. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  17. Short communication: Effect of heat stress on nonreturn rate of Italian Holstein cows.

    Science.gov (United States)

    Biffani, S; Bernabucci, U; Vitali, A; Lacetera, N; Nardone, A

    2016-07-01

    The data set consisted of 1,016,856 inseminations of 191,012 first, second, and third parity Holstein cows from 484 farms. Data were collected from year 2001 through 2007 and included meteorological data from 35 weather stations. Nonreturn rate at 56 d after first insemination (NR56) was considered. A logit model was used to estimate the effect of temperature-humidity index (THI) on reproduction across parities. Then, least squares means were used to detect the THI breakpoints using a 2-phase linear regression procedure. Finally, a multiple-trait threshold model was used to estimate variance components for NR56 in first and second parity cows. A dummy regression variable (t) was used to estimate NR56 decline due to heat stress. The NR56, both for first and second parity cows, was significantly (unfavorable) affected by THI from 4 d before 5 d after the insemination date. Additive genetic variances for NR56 increased from first to second parity both for general and heat stress effect. Genetic correlations between general and heat stress effects were -0.31 for first parity and -0.45 for second parity cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat.

    Science.gov (United States)

    de Melo-Marins, Denise; Souza-Silva, Ana Angélica; da Silva-Santos, Gabriel Lucas Leite; Freire-Júnior, Francisco de Assis; Lee, Jason Kai Wei; Laitano, Orlando

    2018-01-01

    The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL), or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH) where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE) trials in the heat with different hydration strategies: personalized volume (PVO), where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON) trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR), rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials ( p  = 0.801). Body mass decreased after ADL ( p  = 0.008) and CON ( p  skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p  = 0.0038). HR was lower toward the end of TTE in PVO (162 ± 8 bpm) in comparison with ADL (168 ± 12 bpm) and CON (167 ± 10 bpm), p  hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin temperature. Despite these advantages, cycling capacity in the heat remained unchanged.

  19. A study of the changes during heating of paracetamol.

    Science.gov (United States)

    de Wet, F N; Gerber, J J; Lötter, A P; van der Watt, J G; Dekker, T G

    1998-05-01

    The orthorhombic form of paracetamol has been shown to exhibit greater compressibility and faster dissolution than the monoclinic form. The orthorhombic form is produced by melting of monoclinic crystals of paracetamol followed by cooling at specific rates. Cooling rate, although a very important factor, is not the only factor influencing the formation of either of the two morphs. To study the cooling rate required for production of form II, paracetamol samples were melted in a differential scanning calorimeter, cooled at three specific rates, and melted again. In all of the samples, cooling resulted in the glassy form followed by recrystallization and the melting of form II. On the hot-stage microscope both forms were produced in one sample. Standardizing conditions for prediction of the resulting form remains a problem. There seems to be a great deal of overlap of the two forms' transition phases, which would make it difficult to force the crystallization of one form by keeping the solution or melt at a specific temperature. The thermal behavior of paracetamol during the heating and cooling phases must be understood in order to manipulate the process. A video camera mounted on a hot-stage microscope was used to follow the changes during heating and cooling of both forms. Nucleation, crystal growth, habit transformation, sublimation, and the final melt are shown on snap shots taken from the video.

  20. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids

    Science.gov (United States)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John

    2017-11-01

    Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ~25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and the

  1. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids

    International Nuclear Information System (INIS)

    Lahiri, B B; Ranoo, Surojit; Philip, John

    2017-01-01

    Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ∼25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and

  2. Modeling and Control of Heat Networks with Storage : the Single-Producer Multiple-Consumer Case

    NARCIS (Netherlands)

    Scholten, Tjeert Wobko; De Persis, Claudio; Tesi, Pietro

    2015-01-01

    In heat networks, energy storage is a viable approach to balance demand and supply. In such a network, a heat carrier is used in the form of water, where heat is injected and extracted through heat exchangers. The network can transport and store heated water in stratification tanks to shift loads in

  3. Modeling and control of heat networks with storage: The single-producer multiple-consumer case.

    NARCIS (Netherlands)

    Scholten, Tjardo; De Persis, Claudio; Tesi, Pietro

    2015-01-01

    In heat networks, energy storage is a viable approach to balance demand and supply. In such a network, a heat carrier is used in the form of water, where heat is injected and extracted through heat exchangers. The network can transport and store heated water in stratification tanks to shift loads in

  4. Atmospheric solar heating rate in the water vapor bands

    Science.gov (United States)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  5. Temperature and heat flux scaling laws for isoviscous, infinite Prandtl number mixed heating convection.

    Science.gov (United States)

    Vilella, Kenny; Deschamps, Frederic

    2018-04-01

    Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, e.g., generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2D and 3D-Cartesian geometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean

  6. Modification of the Ti40Cu36Zr10Pd14 BMG Crystallization Mechanism with Heating Rates 10-140 K/min

    Science.gov (United States)

    Czeppe, T.; Sypien, A.; Wierzbicka-Miernik, A.

    2016-12-01

    The article presents investigations of Ti40Cu36Zr10Pd14 bulk metallic glass crystallization process heated with the rates of 10, 60, 100 and 140 K/min. High heating rates experiments were performed in a new type of differential scanning calorimeter equipped with a fast responding thermal sensor. Phase composition and microstructure were studied with x-ray diffraction and transmission electron microscopy. The observed crystallization proceeded in two separate steps. Applied high rates of heating/cooling resulted in the crystallization of only one CuTi phase, replacing typical multi-phase crystallization. The microstructure after crystallization was polycrystalline with some amount of amorphous phase retained. Kinetic parameters were determined with the use of the Kissinger and Friedman iso-conversional analysis and Matusita-Sakka iso-kinetic model. The kinetic analysis supplies results concerning autocatalytically activated mechanism of primary crystallization with decreasing activation energy and small density of quenched-in nuclei, in good agreement with previous structural investigations. The mechanism of secondary crystallization required dense nuclei site, increasing activation energy and large nucleation frequency. The amorphous phase of Ti40Cu36Zr10Pd14 BMG revealed high thermal stability against crystallization. Application of high heating rates in DSC experiments might be useful for the determination of mechanism and kinetic parameters in investigations of metallic glasses crystallization, giving reasonable results.

  7. Double-effect absorption heat pump, phase 3

    Science.gov (United States)

    Cook, F. B.; Cremean, S. P.; Jatana, S. C.; Johnson, R. A.; Malcosky, N. D.

    1987-06-01

    The RD&D program has resulted in design, development and testing of a packaged prototype double-effect generator cycle absorption gas heat pump for the residential and small commercial markets. The 3RT heat pump prototype has demonstrated a COPc of 0.82 and a COPh of 1.65 at ARI rating conditions. The heat pump prototype includes a solid state control system with built-in diagnostics. The absorbent/refrigerant solution thermophysical properties were completely characterized. Commercially available materials of construction were identified for all heat pump components. A corrosion inhibitor was identified and tested in both static and dynamic environments. The safety of the heat pump was analyzed by using two analytical approaches. Pioneer Engineering estimated the factory standard cost to produce the 3RT heat pump at $1,700 at a quantity of 50,000 units/year. One United States patent was allowed covering the heat pump technology, and two divisional applications and three Continuation-in-Park Applications were filed with the U.S.P.T.O. Corresponding patent coverage was applied for in Canada, the EEC, Australia, and Japan. Testing of the prototype heat pump is continuing, as are life tests of multiple pump concepts amd long-term dynamic corrosion tests. Continued development and commercialization of gas absorption heat pumps based on the technology are recommended.

  8. Heat transfer studies on spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Rajavel Rangasamy

    2008-01-01

    Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.

  9. Enhancement of Condensation Heat Transfer Rate of the Air-Steam Mixture on a Passive Condenser System Using Annular Fins

    Directory of Open Access Journals (Sweden)

    Yeong-Jun Jang

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the enhancement of the heat transfer rate of steam condensation on the external surfaces of a vertical tube with annular fins. A cylindrical condenser tube, which is 40 mm in outer diameter and 1000 mm in length, with annular disks of uniform cross-sectional area is fabricated in the manner of ensuring perfect contact between the base surface and fins. A total of 13 annular fins of 80 mm diameter were installed along the tube height in order to increase the effective heat transfer area by 85%. Through a series of condensation tests for the air-steam mixture under natural convection conditions, the heat transfer data was measured in the pressure range of between 2 and 5 bar, and the air mass fraction from 0.3 to 0.7. The rates of heat transfer of the finned tube are compared to those that are measured on a bare tube to demonstrate the enhanced performance by extended surfaces. In addition, based on the experimental results and the characteristics of steam condensation, the applicability of finned tubes to a large condenser system with a bundle layout is evaluated.

  10. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    Science.gov (United States)

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  11. FTR europia gamma heating

    International Nuclear Information System (INIS)

    Ward, J.T. Jr.

    1975-01-01

    Calculated and experimental gamma heating rates of europia in the Engineering Mockup Critical Assembly (EMC) were correlated. A calculated to experimental (C/E) ratio of 1.086 was established in validating the theoretical approach and computational technique applied in the calculations. Gamma heat deposition rates in the FTR with Eu 2 O 3 control absorbers were determined from three-dimensional calculations. Maximum gamma heating was found to occur near the tip of a half-inserted row 5 control rod assembly--12.8 watts/gm of europia. Gamma heating profiles were established for a single half-inserted europia absorber assembly. Local heat peaking was found not to alter significantly heating rates computed in the FTR core model, where larger mesh interval sizes precluded examination of spatially-limited heating gradients. These computations provide the basis for thermal-hydraulic analyses to ascertain temperature profiles in the FTR under europia control

  12. Window Energy Rating System and Calculation of Energy Performance of Windows

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    The goal of reducing the energy consumption in buildings is the background for the introduction of an energy rating system of fenestration products in Denmark. The energy rating system requires that producers declare, among other things, the heat loss coefficient, U, and the total solar energy...... development, e.g. when the resulting effects of a reduced frame area are evaluated....

  13. A mathematical model of heat flow in a thermopile for measuring muscle heat production: implications for design and signal analysis.

    Science.gov (United States)

    Barclay, C J

    2015-09-01

    Contracting muscles produce heat which largely arises from the biochemical reactions that provide the energy for contraction. Measurements of muscle heat production have made, and continue to make, important contributions to our understanding of the bases of contraction. Most measurements of muscle heat production are made using a thermopile, consisting of a series of thermocouples arranged so that alternate thermocouples are in thermal contact with the muscle and with an isothermal reference. In this study, a mathematical model was constructed of a muscle lying on a thermopile consisting of antimony-bismuth thermocouples sandwiched between polymer sheets. The validity of the model was demonstrated by its ability to accurately predict thermopile outputs in response to applying heat to the thermopile surface, to generating heat in the thermocouples using the Peltier effect and to adding heat capacity on the thermopile surface. The model was then used to show how practical changes to thermopile construction could minimise response time and thermopile heat capacity and allow measurement of very low rates of heat production. The impulse response of a muscle-thermopile system was generated using the model and used to illustrate how a measured signal can be deconvolved with the impulse response to correct for lag introduced by the thermopile.

  14. Reply to comments on-The effect of the heating rate on the characteristics of some experimental thermoluminescence glow curves by Rasheedy et al

    International Nuclear Information System (INIS)

    Rasheedy, M S; Zahran, E M

    2006-01-01

    In the paper by Kumar et al, some criticism is advanced to the analysis of the glow curves measured under different heating rates in the laboratory, which appeared in our recent paper [M.S. Rasheedy and E.M. Zahran, 2006 Phys. Scr., 73 98-102]. According to this analysis the area under the glow curve is conserved in both TL-time plots and TL-temperature plots. On the contrary, Kumar et al supposed increase of the area under the glow curve with increasing the heating rate in the case of TL-temperature plots. Since this criticism discredits a physical reason for conservation of the area under the glow curves due to conservation of the imparted dose at different heating rates, a reply appears to be timely

  15. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    Science.gov (United States)

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  16. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames.

    Science.gov (United States)

    Singh, Ajay V; Gollner, Michael J

    2016-06-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.

  17. Behavior of a PCM at Varying Heating Rates: Experimental and Theoretical Study with an Aim at Temperature Moderation in Radionuclide Concrete Encasements

    Science.gov (United States)

    Medved', Igor; Trník, Anton

    2018-07-01

    Phase-change materials (PCMs) can store/release thermal energy within a small temperature range. This is of interest in various industrial applications, for example, in civil engineering (heating/cooling of buildings) or cold storage applications. Another application may be the moderation of temperature increases in concrete encasements of radionuclides during their decay. The phase-change behavior of a material is determined by its heat capacity and the peak it exhibits near a phase change. We analyze the behavior of such peaks for a selected PCM at heating rates varying between 0.1°C\\cdot min^{-1} and 1°C\\cdot min^{-1}, corresponding in real situations to different decay rates of radionuclides. We show that experimentally measured peaks can be plausibly described by an equilibrium theory that enables us to calculate the latent heat and phase-change temperature from experimental data.

  18. Development of a nonazeotropic heat pump for crew hygiene water heating

    Science.gov (United States)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.

  19. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  20. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Abbady, Adel G.E.; El-Arabi, A.M.; Abbady, A.

    2006-01-01

    Radioactive heat-production data of Igneous and Metamorphic outcrops in the Eastern Desert are presented. Samples were analysed using a low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 μW m -3 (granite). In metamorphic rocks it varies from 0.28 (serpentinite ) to 0.91 μW m -3 (metagabbro). The contribution due to U is about 51%, as that from Th is 31% and 18% from K. The corresponding values in igneous rocks are 76%, 19% and 5%, respectively. The calculated values showed good agreement with global values except in some areas containing granites

  1. Heat production rate from radioactive elements in igneous and metamorphic rocks in eastern desert, Egypt

    International Nuclear Information System (INIS)

    Abbady, A G.E.; Arabi, A.M.; Abbay, A.

    2005-01-01

    Radioactive heat - production data of igneous and metamorphic rocks cropping out from the eastern desert are presented. Samples were analysed using low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 Μ Wm-3 (granite). In metamorphic rocks it varies from 0.28 (serpentinite) to 0.91 (metagabroo) Μ W.m-3. The contribution due to U is about (51%), whereas that of Th (31%) and (18%) by K. The corresponding values in igneous rocks are 76%: 19%: 5%, respectively. The calculated values showed good agreement with global values expect in some areas contained granite rocks

  2. Economic and safety aspects of using moderator heat for feed water heating in a nuclear power plant

    International Nuclear Information System (INIS)

    Patwegar, I.A.; Dutta, Anu; Chaki, S.K.; Venkat Raj, V.

    2002-01-01

    Full text: In the proposed advanced heavy water reactor (AHWR), coolant and moderator are separated by the coolant channel. The coolant absorbs most of the fission heat produced in the reactor core. However, the moderator absorbs about 5 to 6 % of the fission heat. In a reactor producing 750 MW(th) power, this moderator heat is about 40 MW. In the present Indian PHWR (pressurized heavy water reactor) systems, this moderator heat is lost to a sink through the moderator heat exchangers, which are cooled by process water. This paper presents the results of the steam cycle analysis carried out for AHWR using moderator heat exchangers as part of the feed heating system. The present study is an attempt to determine the gain in electrical output (MW) if moderator heat is utilized for feed water heating. The operational and safety aspects of using moderator heat are also discussed in the paper

  3. Differences of hormones involved in adipose metabolism and lactation between high and low producing Holstein cows during heat stress

    Directory of Open Access Journals (Sweden)

    Mingzi Qu

    2015-12-01

    Full Text Available The experiment was conducted to evaluate hormonal involvement in the adipose metabolism and lactation between high and low producing dairy cows in a hot environment. Forty Holstein healthy cows with a similar parity were used and assigned into high producing group (average production 41.44 ± 2.25 kg/d and low producing group (average production 29.92 ± 1.02 kg/d with 20 cows in each group. Blood samples were collected from caudal vein to determine the difference of hormones related to adipose metabolism and lactation. The highest, lowest, and average temperature humidity index (THI, recorded as 84.02, 79.35 and 81.89, respectively, indicated that cows were at the state of high heat stress. No significant differences between high and low producing groups were observed in the levels of nonestesterified fatty acid (NEFA, β-hydroxybutyrate (β-OHB, total cholesterol (TCHO, and insulin (INS (P > 0.05. However, the very low density lipoprotein (VLDL, apolipoprotein B100 (apoB-100, high-density lipoprotein (HDL-C and estrogen (E2 concentrations in high producing group were significantly higher than those of low producing group (P  0.05, whereas high producing group had a rise in the insulin-like growth factor-1 (IGF-1 level compared with low producing group (P < 0.05. These results indicated that, during summer, high and low producing dairy cows have similar levels of lipid catabolism, but high producing dairy cows have advantages in outputting hepatic triglyceride (TG.

  4. Possible generation of heat from nuclear fusion in Earth's inner core.

    Science.gov (United States)

    Fukuhara, Mikio

    2016-11-23

    The cause and source of the heat released from Earth's interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: 2 D +  2 D +  2 D → 2 1 H +  4 He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 10 12  J/m 3 , based on the assumption that Earth's primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth's interior to the universe, and pass through Earth, respectively.

  5. Thermodynamic criterions for heat exchanger networks design

    Energy Technology Data Exchange (ETDEWEB)

    Guiglion, C.; Farhat, S.; Pibouleau, L.; Domenech, S. (Ecole Nationale Superieure d' Ingenieurs de Genie Chimique, 31 - Toulouse (France))

    1994-03-01

    This problem under consideration consists in selecting a heat exchanger network able to carry out a given request in heatings and coolings, in steady-state behaviour with constant pressure, by using if necessary cold and hot utilities, and under the constraint [Delta] T [>=] e in order to restrict investment costs. The exchanged energy and the produced entropy are compared in terms of operating costs. According to the request to be satisfied and the constraints of utility consumption, it is shown that the goal to minimize the produced entropy more or less agrees with the goal to minimize the exchanged energy. In the last part, the case where the cost of utility use is assumed to be proportional to the flow rate, with a proportionality constant only depending on the input thermodynamic state, is studied thoroughly. Under this assumption, the minimization of operating costs is compatible with the minimization of exchanged energy, and can be obtained via the maximization of the difficulty of the request part, made without using utilities. This point is based on the notion of a request easier than another, which explicits the quite vague idea that a request is all the more easier because it involves less heatings at high temperatures and less coolings at low temperatures. (author). 5 refs., 1 fig.

  6. Myowater dynamics and protein secondary structural changes as affected by heating rate in three pork qualities: a combined FT-IR microspectroscopic and 1H NMR relaxometry study.

    Science.gov (United States)

    Wu, Zhiyun; Bertram, Hanne Christine; Böcker, Ulrike; Ofstad, Ragni; Kohler, Achim

    2007-05-16

    The objective of this study was to investigate the influence of heating rate on myowater dynamics and protein secondary structures in three pork qualities by proton NMR T2 relaxation and Fourier transform infrared (FT-IR) microspectroscopy measurements. Two oven temperatures at 100 degrees C and 200 degrees C corresponding to slow and fast heating rates were applied on three pork qualities (DFD, PSE, and normal) to an internal center temperature of 65 degrees C. The fast heating induced a higher cooking loss, particularly for PSE meat. The water proton T21 distribution representing water entrapped within the myofibrillar network was influenced by heating rate and meat quality. Fast heating broadened the T21 distribution and decreased the relaxation times of the T21 peak position for three meat qualities. The changes in T21 relaxation times in meat can be interpreted in terms of chemical and diffusive exchange. FT-IR showed that fast heating caused a higher gain of random structures and aggregated beta-sheets at the expense of native alpha-helixes, and these changes dominate the fast-heating-induced broadening of T21 distribution and reduction in T21 times. Furthermore, of the three meat qualities, PSE meat had the broadest T21 distribution and the lowest T21 times for both heating rates, reflecting that the protein aggregation of PSE caused by heating is more extensive than those of DFD and normal, which is consistent with the IR data. The present study demonstrated that the changes in T2 relaxation times of water protons affected by heating rate and raw meat quality are well related to the protein secondary structural changes as probed by FT-IR microspectroscopy.

  7. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    Science.gov (United States)

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  8. Photovoltaic cell electrical heating system for removing snow on panel including verification.

    Science.gov (United States)

    Weiss, Agnes; Weiss, Helmut

    2017-11-16

    Small photovoltaic plants in private ownership are typically rated at 5 kW (peak). The panels are mounted on roofs at a decline angle of 20° to 45°. In winter time, a dense layer of snow at a width of e.g., 10 cm keeps off solar radiation from the photovoltaic cells for weeks under continental climate conditions. Practically, no energy is produced over the time of snow coverage. Only until outside air temperature has risen high enough for a rather long-time interval to allow partial melting of snow; the snow layer rushes down in an avalanche. Following this proposal, snow removal can be arranged electrically at an extremely positive energy balance in a fast way. A photovoltaic cell is a large junction area diode inside with a threshold voltage of about 0.6 to 0.7 V (depending on temperature). This forward voltage drop created by an externally driven current through the modules can be efficiently used to provide well-distributed heat dissipation at the cell and further on at the glass surface of the whole panel. The adhesion of snow on glass is widely reduced through this heating in case a thin water film can be produced by this external short time heating. Laboratory experiments provided a temperature increase through rated panel current of more than 10 °C within about 10 min. This heating can initiate the avalanche for snow removal on intention as described before provided the clamping effect on snow at the edge of the panel frame is overcome by an additional heating foil. Basics of internal cell heat production, heating thermal effects in time course, thermographic measurements on temperature distribution, power circuit opportunities including battery storage elements and snow-removal under practical conditions are described.

  9. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat

    Directory of Open Access Journals (Sweden)

    Denise de Melo-Marins

    2018-04-01

    Full Text Available The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL, or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE trials in the heat with different hydration strategies: personalized volume (PVO, where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR, rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials (p = 0.801. Body mass decreased after ADL (p = 0.008 and CON (p < 0.001 and was maintained in PVO trials (p = 0.171. Participants consumed 0 ml in CON, 166 ± 167 ml in ADL, and 1,080 ± 166 ml in PVO trials. The increase in mean body temperature was similar among trials despite a lower increase in skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p = 0.0038. HR was lower toward the end of TTE in PVO (162 ± 8 bpm in comparison with ADL (168 ± 12 bpm and CON (167 ± 10 bpm, p < 0.001. In conclusion, a personalized hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin

  10. Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity.

    Science.gov (United States)

    Loggia, Marco L; Juneau, Mylène; Bushnell, M Catherine

    2011-03-01

    In human pain experiments, as well as in clinical settings, subjects are often asked to assess pain using scales (eg, numeric rating scales). Although most subjects have little difficulty in using these tools, some lack the necessary basic cognitive or motor skills (eg, paralyzed patients). Thus, the identification of appropriate nonverbal measures of pain has significant clinical relevance. In this study, we assessed heart rate (HR), skin conductance (SC), and verbal ratings in 39 healthy male subjects during the application of twelve 6-s heat stimuli of different intensities on the subjects' left forearm. Both HR and SC increased with more intense painful stimulation. However, HR but not SC, significantly correlated with pain ratings at the group level, suggesting that HR may be a better predictor of between-subject differences in pain than is SC. Conversely, changes in SC better predicted variations in ratings within a given individual, suggesting that it is more sensitive to relative changes in perception. The differences in findings derived from between- and within-subject analyses may result from greater within-subject variability in HR. We conclude that at least for male subjects, HR provides a better predictor of pain perception than SC, but that data should be averaged over several stimulus presentations to achieve consistent results. Nevertheless, variability among studies, and the indication that gender of both the subject and experimenter could influence autonomic results, lead us to advise caution in using autonomic or any other surrogate measures to infer pain in individuals who cannot adequately report their perception. Skin conductance is more sensitive to detect within-subject perceptual changes, but heart rate appears to better predict pain ratings at the group level. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  11. Numerical Studies on Heat Release Rate in Room Fire on Liquid Fuel under Different Ventilation Factors

    Directory of Open Access Journals (Sweden)

    N. Cai

    2012-01-01

    Full Text Available Heat release rate (HRR of the design fire is the most important parameter in assessing building fire hazards. However, HRR in room fire was only studied by computational fluid dynamics (CFD in most of the projects determining fire safety provisions by performance-based design. In contrast to ten years ago, officers in the Far East are now having better knowledge of CFD. Two common questions are raised on CFD-predicted results on describing free boundaries; and on computing grid size. In this work, predicting HRR by the CFD model was justified with experimental room pool fire data reported earlier. The software fire dynamics simulator (FDS version 5 was selected as the CFD simulation tool. Prescribed input heating rate based on the experimental results was used with the liquid fuel model in FDS. Five different free boundary conditions were investigated to predict HRR. Grid sensitivity study was carried out using one stretched mesh and multiple uniform meshes with different grid sizes. As it is difficult to have the entire set of CFD predicted results agreed with experiments, macroscopic flow parameters on the mass flow rate through door opening predicted by CFD were also justified by another four conditions with different ventilation factors.

  12. Effects of heat stimulation and l-ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs.

    Science.gov (United States)

    Ikeda, Kazushi; Ito, Akira; Sato, Masanori; Kanno, Shota; Kawabe, Yoshinori; Kamihira, Masamichi

    2017-05-01

    Although skeletal muscle tissue engineering has been extensively studied, the physical forces produced by tissue-engineered skeletal muscles remain to be improved for potential clinical utility. In this study, we examined the effects of mild heat stimulation and supplementation of a l-ascorbic acid derivative, l-ascorbic acid 2-phosphate (AscP), on myoblast differentiation and physical force generation of tissue-engineered skeletal muscles. Compared with control cultures at 37°C, mouse C2C12 myoblast cells cultured at 39°C enhanced myotube diameter (skeletal muscle hypertrophy), whereas mild heat stimulation did not promote myotube formation (differentiation rate). Conversely, AscP supplementation resulted in an increased differentiation rate but did not induce skeletal muscle hypertrophy. Following combined treatment with mild heat stimulation and AscP supplementation, both skeletal muscle hypertrophy and differentiation rate were enhanced. Moreover, the active tension produced by the tissue-engineered skeletal muscles was improved following combined treatment. These findings indicate that tissue culture using mild heat stimulation and AscP supplementation is a promising approach to enhance the function of tissue-engineered skeletal muscles. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Temporary heat storage by using combined heat and power in supplementary lighted greenhouses Proceedings of the Third International Symposium on Artificial Lighting in Horticulture

    NARCIS (Netherlands)

    Huijs, J.P.G.

    1997-01-01

    Because of better utilization possibilities of the produced heat, decentrally located combined heat and power installations achieve a higher energetic efficiency than producing heat and power separately. However, efficiency depends considerably on synchronism of heat and electricity demand. Using a

  14. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant.

    Science.gov (United States)

    Liu, Leili; Li, Jie; Zhang, Lingyao; Tian, Siyu

    2018-01-15

    MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 were prepared, and their structure and hydrogen storage properties were determined through X-ray photoelectron spectroscopy and thermal analyzer. The effects of MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant were subsequently studied. Results indicated that MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 can decrease the thermal decomposition peak temperature and increase the total released heat of decomposition. These compounds can improve the effect of thermal decomposition of the propellant. The burning rates of the propellant increased using Mg-based hydrogen storage materials as promoter. The burning rates of the propellant also increased using MgH 2 instead of Al in the propellant, but its explosive heat was not enlarged. Nonetheless, the combustion heat of MgH 2 was higher than that of Al. A possible mechanism was thus proposed. Copyright © 2017. Published by Elsevier B.V.

  15. Comparative Study for Evaluation of Mass Flow Rate for Simple Solar Still and Active with Heat Pump

    Directory of Open Access Journals (Sweden)

    Hidouri Khaoula

    2017-07-01

    Full Text Available In isolated and arid areas, especially in the almost Maghreb regions, the abundant solar radiation intensity along the year and the available brackish water resources are the two favorable conditions for using solar desalination technology to produce fresh water. The present study is based on the use of three groups of correlation, for evaluating mass transfer. Theoretical results are compared with those obtained experimentally for a Simple Solar Distiller (SSD and a Simple Solar Distiller Hybrid with a Heat Pump (SSDHP stills. Experimental results and those calculated by Lewis number correlation show good agreements. Results obtained by Dunkle, Kumar and Tiwari correlations are not satisfactory with the experimental ones. Theoretical results, as well as statistical analysis, are presented. The model with heat pump ( for two configurations (111 and (001 give more output compared with the model without heat pump ((000 and (110. This results where agree for the use of the statistic results, the error it less with Lewis number as compared with the different correlation.

  16. Investigation of heat transfer inside a PCM-air heat exchanger: a numerical parametric study

    Science.gov (United States)

    Herbinger, Florent; Bhouri, Maha; Groulx, Dominic

    2017-07-01

    In this paper, the use of PCMs for thermal storage of energy in HVAC applications was investigated by studying numerically the thermal performance of a PCM-air heat exchanger. The PCM used in this study was dodecanoic acid. A symmetric 3D model, incorporating conductive and convective heat transfer (air only) as well as laminar flow, was created in COMSOL Multiphysics 5.0. Simulations examined the dependence of the heat transfer rate on the temperature and velocity of the incoming air as well as the size of the channels in the heat exchanger. Results indicated that small channels size lead to a higher heat transfer rates. A similar trend was also obtained for high incoming air temperature, whereas the heat transfer rate was less sensitive to the incoming air velocity.

  17. Carbonate Precipitates During Heat Evolution in FP-Type Cells

    International Nuclear Information System (INIS)

    Bruce L. Cain

    2000-01-01

    In previous work, we reported measurement of large amounts of heat generated during experiments using an FP-type open cell with concentrated LiOH/D 2 O electrolytes and thin-film Pd cathodes. During the heat evolution in several runs, which produced >100 W for more than 20 h, we consistently observed the concomitant evolution of gases from the electrolyte and the precipitation of large amounts of lithium carbonate. The carbonate production was clearly visible during production of heat, creating an opaque electrolyte even during long periods with no electrolysis current. These results indicated an unusual chemical reaction, either catalyzed by the heating process or possibly creating the heat itself. The total energy released during the earlier experiments was ∼7 MJ, while the heat of formation for the lithium carbonate in the cell was only 0.8 MJ. Hence, only ∼10% of the heat signatures from these experiments can be attributed to the precipitate formation, the balance of the heat presumably arising from nonchemical sources in the cells. The earlier experiments that produced heat also suffered from problems of reproducibility, with only 5 of 38 runs producing any heat at all. The unsuccessful runs also did not produce precipitates, and the only gas produced in these cells was due to the normal electrolysis of D 2 O to produce oxygen and deuterium in the electrodes. Recent work has focused on recreating the chemical precipitation reaction, in efforts to understand and/or trigger the heat production process. With findings from these experiments, new experiments were conducted using larger (1 L LiOH/D 2 O) cells with Pt anodes and Pd film cathodes immersed but left open-circuited. After the addition of H 2 O 2 , and subsequent heating and cooling, these cells visually reproduced the precipitation and gas evolution of the earlier heat-producing runs. However, these new runs only produced a few watts of power for several minutes, consistent with the normal exothermal

  18. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. (general)

  19. Thermal Profile of the Lunar Interior Constrained by Revised Estimates of Concentrations of Heat Producing Elements

    Science.gov (United States)

    Fuqua-Haviland, H.; Panovska, S.; Mallik, A.; Bremner, P. M.; McDonough, W. F.

    2017-12-01

    Constraining the heat producing element (HPE) concentrations of the Moon is important for understanding the thermal state of the interior. The lunar HPE budget is debated to be suprachondritic [1] to chondritic [2]. The Moon is differentiated, thus, each reservoir has a distinct HPE signature complicating this effort. The thermal profile of the lunar interior has been constructed using HPE concentrations of an ordinary chondrite (U = 0.0068 ppm; Th = 0.025 ppm; K = 17 ppm) which yields a conservative low estimate [2, 3, 4]. A later study estimated the bulk lunar mantle HPE concentrations (U = 0.039 ppm; Th = 0.15 ppm; K = 212 ppm) based on measurements of Apollo pyroclastic glasses [5] assuming that these glasses represent the least fractionated, near-primary lunar mantle melts, hence, are the best proxies for capturing mantle composition. In this study, we independently validate the revised estimate by using HPE concentrations [5] to construct a conductive lunar thermal profile, or selenotherm. We compare our conductive profile to the range of valid temperatures. We demonstrate the HPE concentrations reported by [5], when used in a simple 1D spherical thermal conduction equation, yield an impossibly hot mantle with temperatures in excess of 4,000 K (Fig 1). This confirms their revised estimate is not representative of the bulk lunar mantle, and perhaps only representative of a locally enriched mantle domain. We believe that their Low-Ti avg. source estimate (Th = 0.055 ppm, Th/U=4; K/U=1700), with the least KREEP assimilation is the closest representation of the bulk lunar mantle, producing 3E-12 W/kg of heat. This estimate is close to that of the Earth (5E-12 W/kg), indicating that the bulk Earth and lunar mantles are similar in their HPE constituents. We have used the lunar mantle heat production, in conjunction with HPE estimates of the Fe-Ti-rich cumulates (high Ti-source estimate from [5]) and measurements of crustal ferroan anorthite [6], to capture the

  20. Compression Pad Cavity Heating Augmentation on Orion Heat Shield

    Science.gov (United States)

    Hollis, Brian R.

    2011-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  1. Crawl space assisted heat pump. [using stored ground heat

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    A variety of experiments and simulations, currently being designed or underway, to determine the feasibility of conditioning the source air of an air to air heat pump using stored ground heat or cool to produce higher seasonal COP's and net energy savings are discussed. The ground would condition ambient air as it is drawn through the crawl space of a house. Tests designed to evaluate the feasibility of the concept, to determine the amount of heat or cool available from the ground, to study the effect of the system on the heating and cooling loads of the house, to study possible mechanisms which could enhance heat flow through the ground, and to determine if diurnal temperature swings are necessary to achieve successful system performance are described.

  2. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    Science.gov (United States)

    Kou, Xiao-xi; Li, Rui; Hou, Li-xia; Huang, Zhi; Ling, Bo; Wang, Shao-jin

    2016-01-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances. PMID:27465120

  3. Heat generation and heating limits for the IRUS LLRW disposal facility

    International Nuclear Information System (INIS)

    Donders, R.E.; Caron, F.

    1995-10-01

    Heat generation from radioactive decay and chemical degradation must be considered when implementing low-level radioactive waste (LLRW) disposal. This is particularly important when considering the management of spent radioisotope sources. Heating considerations and temperature calculations for the proposed IRUS (Intrusion Resistant Underground Structure) near-surface disposal facility are presented. Heat transfer calculations were performed using a finite element code with realistic but somewhat conservative heat transfer parameters and environmental boundary conditions. The softening-temperature of the bitumen waste-form (38 deg C) was found to be the factor that limits the heat generation rate in the facility. This limits the IRUS heat rate, assuming a uniform source term, to 0.34 W/m 3 . If a reduced general heat-limit is considered, then some higher-heat packages can be accepted with restrictions placed on their location within the facility. For most LLRW, heat generation from radioactive decay and degradation are a small fraction of the IRUS heating limits. However, heating restrictions will impact on the disposal of higher-activity radioactive sources. High activity 60 Co sources will require decay-storage periods of about 70 years, and some 137 Cs will need to bed disposed of in facilities designed for higher-heat waste. (author). 21 refs., 8 tabs., 2 figs

  4. Nuclear power plant waste heat utilization

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2/sup 0/F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60/sup 0/F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability.

  5. Nuclear power plant waste heat utilization

    International Nuclear Information System (INIS)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2 0 F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60 0 F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability

  6. Pulse induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, A S; Kachanov, B Y; Kogan, B V

    1993-12-31

    Induction heating and three types of pulse processes were studied. It was found that in pulse processes the frequency and pulse duration of heat treatments do not remain constant. High frequency pulse heat treatments can be used on sprayed coatings; such treatments will result in stronger surfaces with no cracks. For induction hardening, the rate of specific power was 1 to 1.5 kW/sq.cm, for forging it was 0.2 to 0.3 kW/sq.cm and for melting it was 0.05 to 0.1 kW/sq.cm. The application of pulse heating will result in higher rates of specific power.

  7. Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid

    International Nuclear Information System (INIS)

    Faw, R.E.; Baker, L. Jr.

    1976-01-01

    Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process

  8. Solar air heating system: design and dynamic simulation

    Science.gov (United States)

    Bououd, M.; Hachchadi, O.; Janusevicius, K.; Martinaitis, V.; Mechaqrane, A.

    2018-05-01

    The building sector is one of the big energy consumers in Morocco, accounting for about 23% of the country’s total energy consumption. Regarding the population growth, the modern lifestyle requiring more comfort and the increase of the use rate of electronic devices, the energy consumption will continue to increase in the future. In this context, the introduction of renewable energy systems, along with energy efficiency, is becoming a key factor in reducing the energy bill of buildings. This study focuses on the design and dynamic simulation of an air heating system for the mean categories of the tertiary sector where the area exceeds 750 m3. Heating system has been designed via a dynamic simulation environment (TRNSYS) to estimate the produced temperature and airflow rate by one system consisting of three essential components: vacuum tube solar collector, storage tank and water-to-air finned heat exchanger. The performances estimation of this system allows us to evaluate its capacity to meet the heating requirements in Ifrane city based on the prescriptive approach according to the Moroccan Thermal Regulation. The simulation results show that in order to maintain a comfort temperature of 20°C in a building of 750m3, the places requires a thermal powers of approximately 21 kW, 29 kW and 32 kW, respectively, for hotels, hospitals, administrative and public-school. The heat generation is ensured by a solar collector areas of 5 m², 7 m² and 10 m², respectively, for hotels, hospitals, administrative and public-school spaces, a storage tank of 2 m3 and a finned heat exchanger with 24 tubes. The finned tube bundles have been modelled and integrated into the system design via a Matlab code. The heating temperature is adjusted via two controllers to ensure a constant air temperature of 20°C during the heating periods.

  9. Electrospun magnetic nanofibre mats – A new bondable biomaterial using remotely activated magnetic heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yi [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai (China); Leung, Victor; Yuqin Wan, Lynn [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Dutz, Silvio [Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau (Germany); Department of Nano Biophotonics, Leibniz Institute of Photonic Technology, Jena (Germany); Ko, Frank K., E-mail: frank.ko@ubc.ca [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Häfeli, Urs O., E-mail: urs.hafeli@ubc.ca [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver (Canada)

    2015-04-15

    A solvothermal process was adopted to produce hydrophilic magnetite (Fe{sub 3}O{sub 4}) nanoparticles which were subsequently emulsified with a chloroform/methanol (70/30 v/v) solution of poly(caprolactone) (PCL) and then electrospun into a 0.2 mm thick PCL mat. The magnetic heating of the mats at a field amplitude of 25 kA/m and frequency of 400 kHz exhibited promising efficiency for magnetic hyperthermia, with a specific absorption rate of about 40 W/g for the magnetic mat. The produced heat was used to melt the magnetic mat onto the surrounding non-magnetic polymer mat from within, without destroying the nanostructure of the non-magnetic polymer more than 0.5 mm away. Magnetic nanofibre mats might thus be useful for internal heat sealing applications, and potentially also for thermotherapy.

  10. Determination of mass flow rate and quality distributions between the subchannels of a heated bundle. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Bayoumi, M.; Charlot, R.; Ricque, R.

    1976-05-01

    For analyzing, correlating and extrapolating experimental burn-out results obtained with LWR rod bundles, it is necessary to know the distributions of mass flow rate and quality between the subchannels. A description is presented of an experimental study in progress at the CEN-Grenoble for determining and adjusting the laws of mixing in the FLICA Code which is used to predict these distributions. The experiments are performed on the FRENESIE loop with Freon 12. The test section, in vertical position, consists of a four rod bundle in a channel with square section. The heat flux is axially uniform. The flow of each subchannel can be sampled in ''isokinetic conditions,'' at the end of the heating length. Thermodynamic quality and mass flow rate of the samplings are measured in steady state conditions by using respectively a calorimeter and a turbine flow meter. The test facility is described and experimental data are presented and discussed.

  11. The Heating of Solar Coronal Loops by Alfvén Wave Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Van Ballegooijen, A. A. [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Asgari-Targhi, M.; Voss, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-11-01

    In this paper we further develop a model for the heating of coronal loops by Alfvén wave turbulence (AWT). The Alfvén waves are assumed to be launched from a collection of kilogauss flux tubes in the photosphere at the two ends of the loop. Using a three-dimensional magnetohydrodynamic model for an active-region loop, we investigate how the waves from neighboring flux tubes interact in the chromosphere and corona. For a particular combination of model parameters we find that AWT can produce enough heat to maintain a peak temperature of about 2.5 MK, somewhat lower than the temperatures of 3–4 MK observed in the cores of active regions. The heating rates vary strongly in space and time, but the simulated heating events have durations less than 1 minute and are unlikely to reproduce the observed broad differential emission measure distributions of active regions. The simulated spectral line nonthermal widths are predicted to be about 27 km s{sup −1}, which is high compared to the observed values. Therefore, the present AWT model does not satisfy the observational constraints. An alternative “magnetic braiding” model is considered in which the coronal field lines are subject to slow random footpoint motions, but we find that such long-period motions produce much less heating than the shorter-period waves launched within the flux tubes. We discuss several possibilities for resolving the problem of producing sufficiently hot loops in active regions.

  12. Effect of Filling Type and Heating Method on Prevalence of Listeria species and Listeria monocytogenes in Dumplings Produced in Poland.

    Science.gov (United States)

    Szymczak, Barbara; Dąbrowski, Waldemar

    2015-05-01

    The count of Listeria monocytogenes was determined, before and after heat treatment, in 200 samples of dumplings of 9 brands and with different types of stuffing. Analyses were conducted according to ISO 11290-1 standard and with real-time PCR method. The highest count of L. monocytogenes was found in meat dumplings (10(2) to 10(4) CFU/g), whereas products with white cheese-potato stuffing and vegetable-mushroom stuffing contained significantly less Listeria, 20 to 80 and 5 to 32 CFU/g, respectively. In cooled meat dumplings the extent of contamination depended significantly on the producer. In addition, a significant (P monocytogenes in meat dumplings. In contrast, the microwave heating applied for 2 min at 600 W only reduced the count of L. monocytogenes by 1 to 2 logs. Hence, the microwave heating failed to reduce the risk of infection with this pathogen below the level permissible in the EU regulation, especially in the most contaminated samples. In this case, the efficacy of microwave heating was significantly (P monocytogenes (rho = 0.626), then by meat content in the stuffing (0.476), and to the lowest extent--by the type of meat (0.415 to 0.425). However, no Listeria sp. and L. monocytogenes were isolated from cooked dumplings with fruits (strawberries or blueberries). © 2015 Institute of Food Technologists®

  13. Effects of oxygen content and heating rate on phase transition behavior in Bi2(V0.95Ti0.05)O5.475-x

    International Nuclear Information System (INIS)

    Taninouchi, Yu-ki; Uda, Tetsuya; Ichitsubo, Tetsu; Awakura, Yasuhiro; Matsubara, Eiichiro

    2011-01-01

    Highlights: → Phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and physical forms. → At the same heating rate of 10 K min -1 , Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. → α f directly transformed to β f at fast heating rates. At a slower heating rate of 2 K min -1 , β f precipitated from α f due to the sufficient diffusion of Ti and oxygen vacancies. - Abstract: The phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and sample forms, has been studied by means of differential scanning calorimetry. Thermogravimetric analysis revealed that the oxygen content per compositional formula varied with the applied thermal treatment, although no significant structural difference was observed by X-ray diffraction (XRD) analysis. The phase transition behavior from α f to β f and from β f to γ f , observed at a heating rate of 10 K min -1 , are markedly affected by the sample preparation. For example, the endothermic peak of the transition from α f to β f appeared at around 400 deg. C for quenched powder and at around 320 deg. C for powder cooled at 0.5 K min -1 . The trend of the transition temperatures can be qualitatively explained in terms of oxygen content, i.e., Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits the transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. We confirmed the two types of transition behavior from α f to β f depending on heating rate of DSC and high-temperature X-ray diffraction (HT-XRD) analysis. At rapid heating rates of 10 and 40 K min -1 , α f transformed to β f directly. Meanwhile, at a slow heating rate of 2 K min -1 , the β f precipitated from α f because slow heating

  14. Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy......, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates....

  15. Effect of the heating rate on the microstructure of in situ Al2O3 particle-reinforced Al matrix composites prepared via displacement reactions in an Al/CuO system

    International Nuclear Information System (INIS)

    Zhao, Ge; Shi, Zhiming; Ta, Na; Ji, Guojun; Zhang, Ruiying

    2015-01-01

    Highlights: • The heating rate has a significant effect on the microstructures of composites. • The microstructure is determined by the diffusion rate of O and Cu in the heating stage. • The diffusion of Cu and O atoms is influenced by the heating rate. • With increasing heating rate, the Al 2 O 3 particle distribution becomes more uniformly. • With increasing heating rate, the form of Al 2 Cu changes from network to block-like. - Abstract: In this study, an in situ Al 2 O 3 particle-reinforced Al(Cu) matrix composite was successfully synthesized using a displacement reaction between Al and CuO powders. The powders were mixed at a weight ratio of 4:1 Al to CuO, cold-pressed and holding time at 900 °C for 1 h using varying heating rates. The effects of the heating rate on the microstructures of the composites were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), optical microscopy (MO), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results indicate that all of the composites contain Al, Al 2 O 3 particles and Al 2 Cu phases. Although the heating rate does not significantly affect the phase compositions of the composites, it has a significant effect on their microstructures, most likely because it strongly influences the diffusion rates of the Cu and O atoms. As the heating rate is increased, the Al 2 O 3 particles become more dispersed, and they have a more uniform particle size distribution. Meanwhile, the Al 2 Cu structure transforms from the network (Al + Al 2 Cu) eutectic to the block-like Al 2 Cu phase. The ∼2 μm Al 2 O 3 particles and the block-like Al 2 Cu phase are distributed uniformly in the Al matrix when the sample is placed directly into a 900 °C furnace. This sample has a relative higher Rockwell hardness B (HRB) value of 87

  16. The Heat of Combustion of Tobacco and Carbon Oxide Formation

    Directory of Open Access Journals (Sweden)

    Norman AB

    2014-12-01

    Full Text Available Recent studies demonstrated a relationship between mass burn rates of straight-grade cigarettes and heats of combustion of the tobacco materials. In the present work, relationships between measured heats of combustion and elemental composition of the tobacco materials were further analyzed. Heats of combustion measured in oxygen were directly correlated with the carbon and hydrogen content of the tobacco materials tested. Ash content of the materials was inversely related to the heats of combustion. The water insoluble residues from exhaustively extracted tobacco materials showed higher heats of combustion and higher carbon content than the non-extracted materials, confirming a direct relationship between carbon content and heat of combustion. A value for the heat of formation of tobacco was estimated (1175 cal/g from the heat of combustion data and elemental analysis results. The estimated value for heat of formation of tobacco appears to be constant regardless of the material type. Heat values measured in air were uniformly lower than the combustion heats in oxygen, suggesting formation of CO and other reaction products. Gases produced during bomb calorimetry experiments with five tobacco materials were analyzed for CO and CO2 content. When the materials were burned in oxygen, no CO was found in the gases produced. Measured heats of combustion matched estimates based on CO2 found in the gas and conversion of the sample hydrogen content to water. Materials burned in air produced CO2 (56% to 77% of the sample carbon content and appreciable amounts of CO (7% to 16% of the sample carbon content. Unburned residue containing carbon and hydrogen was found in the air combustion experiments. Estimated heat values based on amounts of CO and CO2 found in the gas and water formed from the hydrogen lost during combustion in air were higher than the measured values. These observations indicate formation of products containing hydrogen when the materials

  17. Heat Pipes

    Science.gov (United States)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  18. Experimental study on heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.S.; Monde, Masanori [Saga Univ. (Japan); Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio

    1997-07-01

    Frictional pressure drop and heat transfer performance in a very narrow rectangular channel having one-sided constant heat flux and repeated-ribs for turbulent flow have been investigated experimentally, and their experimental correlations were obtained using the least square method. The rib pitch-to-height ratios(p/k) were 10 and 20 while holding the rib height constant at 0.2mm, the Reynolds number(Re) from 2,414 to 98,458 under different channel heights of 1.2mm, 2.97mm, and 3.24mm, the rib height-to-channel equivalent diameter(k/De) of 0.03, 0.04, and 0.09 respectively. The results show that the rib-roughened surface augments heat transfer 2-3 times higher than that of the smooth surface with the expense of 2.8-4 times higher frictional pressure drop under Re=5000-10{sup 5}, p/k=10, and H=1.2mm. Experimental results obtained by channel height, H=1.2mm shows a little bit higher heat transfer and friction factor performance than the higher channel height, H=3.24mm. The effect of fin and consequently higher turbulence intensity are responsible for producing higher heat transfer rates. The obtained correlations could be used to design the cooling passages between the target plates to remove high heat flux up to 12MW/m{sup 2} generated at target plates in a high-intensity proton accelerator system. (author). 54 refs.

  19. Experimental study on heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    International Nuclear Information System (INIS)

    Islam, M.S.; Monde, Masanori; Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio.

    1997-07-01

    Frictional pressure drop and heat transfer performance in a very narrow rectangular channel having one-sided constant heat flux and repeated-ribs for turbulent flow have been investigated experimentally, and their experimental correlations were obtained using the least square method. The rib pitch-to-height ratios(p/k) were 10 and 20 while holding the rib height constant at 0.2mm, the Reynolds number(Re) from 2,414 to 98,458 under different channel heights of 1.2mm, 2.97mm, and 3.24mm, the rib height-to-channel equivalent diameter(k/De) of 0.03, 0.04, and 0.09 respectively. The results show that the rib-roughened surface augments heat transfer 2-3 times higher than that of the smooth surface with the expense of 2.8-4 times higher frictional pressure drop under Re=5000-10 5 , p/k=10, and H=1.2mm. Experimental results obtained by channel height, H=1.2mm shows a little bit higher heat transfer and friction factor performance than the higher channel height, H=3.24mm. The effect of fin and consequently higher turbulence intensity are responsible for producing higher heat transfer rates. The obtained correlations could be used to design the cooling passages between the target plates to remove high heat flux up to 12MW/m 2 generated at target plates in a high-intensity proton accelerator system. (author). 54 refs

  20. Design heating test section HeaTiNG-02

    International Nuclear Information System (INIS)

    Riswan Djambiar; Sagino; Dedy Haryanto; Joko Prasetio Witoko

    2013-01-01

    HeaTiNG-02 is a component test loop BETA which serves as a heater in conducting experimental heat transfer processes in two-phase flow in narrow slit-shaped plate, considering this phenomenon is one of the conditions postulated accident scenarios a NPP type PWR. To produce heat for the heating component takes the AC power the source voltage can be set from 0 Volts to 220 Volts with no more than a maximum power of 25 KVA. To obtain the thermal conditions on HeaTiNG-02 heating wire dimensions need to be determined and the corresponding voltage so that it will an expected power. Determination of the dimensions of the heater wire through calculations using electricity formulations. Retrieved draft heater test BETA (UUB) HeaTiNG-02 use material super kanthal (FeCuAl) in diameter (Ø) = 2 mm and wire length 3770 mm. Voltage regulators with a maximum power of 25 kVA with a minimum voltage of 0 volts and a maximum of 220 volts. Heater is used as the base to form refractory stone trench. (author)

  1. Post-Heat Treatment and Mechanical Assessment of Polyvinyl Alcohol Nanofiber Sheet Fabricated by Electrospinning Technique

    Directory of Open Access Journals (Sweden)

    Mahir Es-saheb

    2014-01-01

    Full Text Available Polyvinyl alcohol (PVA sheets based nanofibers were produced by electrospinning technique. Postheat treatment of the produced PVA sheets with temperatures both below and above Tg to improve the mechanical properties of this material is conducted. The morphology, microstructures, and thermal degradation of the nanofibers sheets produced were investigated using scanning electron microscopy (SEM, transmission electron microscope (TEM, and thermal gravimetric analysis (TGA. Produced nanofibers are compact, and entangled with each other, with diameters from around 150 to 210. Some mechanical characteristics of the successfully produced PVA sheets, and heat-treated, are then conducted and assessed employing uniaxial tensile tests at different speeds ranging from 1 mm/min to 100 mm/min. The tensile test results obtained show that the PVA sheets are strain rate sensitive with increasing strength as the speed (i.e., strain rate increases. The yield tensile stress ranges from 2.411 to 6.981 MPa, the ductility (i.e., elongation percent from ∼21 to 60%, and Young modulus ranges from 103 to 0.137 KPa. However, for heat-treated samples, it is found that the yield strength increases almost by ∼35–40% more than the values of untreated cases with values reaching up to about 3.627–9.63 MPa.

  2. An Approximate Solution for Predicting the Heat Extraction and Preventing Heat Loss from a Closed-Loop Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Bisheng Wu

    2017-01-01

    Full Text Available Approximate solutions are found for a mathematical model developed to predict the heat extraction from a closed-loop geothermal system which consists of two vertical wells (one for injection and the other for production and one horizontal well which connects the two vertical wells. Based on the feature of slow heat conduction in rock formation, the fluid flow in the well is divided into three stages, that is, in the injection, horizontal, and production wells. The output temperature of each stage is regarded as the input of the next stage. The results from the present model are compared with those obtained from numerical simulator TOUGH2 and show first-order agreement with a temperature difference less than 4°C for the case where the fluid circulated for 2.74 years. In the end, a parametric study shows that (1 the injection rate plays dominant role in affecting the output performance, (2 higher injection temperature produces larger output temperature but decreases the total heat extracted given a specific time, (3 the output performance of geothermal reservoir is insensitive to fluid viscosity, and (4 there exists a critical point that indicates if the fluid releases heat into or absorbs heat from the surrounding formation.

  3. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Science.gov (United States)

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-06-18

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.

  4. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Directory of Open Access Journals (Sweden)

    Alan Cross

    Full Text Available The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be

  5. Heat simulation via Scilab programming

    Science.gov (United States)

    Hasan, Mohammad Khatim; Sulaiman, Jumat; Karim, Samsul Arifin Abdul

    2014-07-01

    This paper discussed the used of an open source sofware called Scilab to develop a heat simulator. In this paper, heat equation was used to simulate heat behavior in an object. The simulator was developed using finite difference method. Numerical experiment output show that Scilab can produce a good heat behavior simulation with marvellous visual output with only developing simple computer code.

  6. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices.

    Science.gov (United States)

    Schüller, L K; Burfeind, O; Heuwieser, W

    2014-05-01

    The objectives of this retrospective study were to investigate the relationship between temperature-humidity index (THI) and conception rate (CR) of lactating dairy cows, to estimate a threshold for this relationship, and to identify periods of exposure to heat stress relative to breeding in an area of moderate climate. In addition, we compared three different heat load indices related to CR: mean THI, maximum THI, and number of hours above the mean THI threshold. The THI threshold for the influence of heat stress on CR was 73. It was statistically chosen based on the observed relationship between the mean THI at the day of breeding and the resulting CR. Negative effects of heat stress, however, were already apparent at lower levels of THI, and 1 hour of mean THI of 73 or more decreased the CR significantly. The CR of lactating dairy cows was negatively affected by heat stress both before and after the day of breeding. The greatest negative impact of heat stress on CR was observed 21 to 1 day before breeding. When the mean THI was 73 or more in this period, CR decreased from 31% to 12%. Compared with the average maximum THI and the total number of hours above a threshold of more than or 9 hours, the mean THI was the most sensitive heat load index relating to CR. These results indicate that the CR of dairy cows raised in the moderate climates is highly affected by heat stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    Science.gov (United States)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  8. Cyclic process for producing methane from carbon monoxide with heat removal

    Science.gov (United States)

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  9. Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

    Directory of Open Access Journals (Sweden)

    Zonghao Yang

    2017-12-01

    Full Text Available In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

  10. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  11. Resorption heat pump

    International Nuclear Information System (INIS)

    Vasiliev, L.L.; Mishkinis, D.A.; Antukh, A.A.; Kulakov, A.G.; Vasiliev, L.L.

    2004-01-01

    Resorption processes are based on at least two solid-sorption reactors application. The most favorable situation for the resorption heat pumps is the case, when the presence of a liquid phase is impossible. From simple case--two reactors with two salts to complicated system with two salts + active carbon fiber (fabric) and two branch of the heat pump acting out of phase to produce heat and cold simultaneously, this is the topic of this research program

  12. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.

    2009-01-01

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  13. Isotope heating block

    International Nuclear Information System (INIS)

    Wenk, E.

    1976-01-01

    A suggestion is made not to lead the separated nuclear 'waste' from spent nuclear fuel elements directly to end storage, but to make use of the heat produced from the remaining radiation, e.g. for seawater desalination. According to the invention, the activated fission products are to be processed, e.g. by calcination or vitrification, so that one can handle them. They should then be arranged in layers alternately with plate-shaped heat conducting pipes to form a homogeneous block; the heat absorbed by the thermal plates should be further passed on to evaporators or heat exchangers. (UWI) [de

  14. Tests of an experimental steam generator heated by sodium-potassium flow

    International Nuclear Information System (INIS)

    Robin, M.G.; Duchatelle, L.; Nucheze, L. de

    1974-01-01

    The first boiler heated by liquid alkaline metal flow, installed at the C.E.A. Heat Test Centre at Grand-Quevilly, near Rouen, was a double-walled 5MW model fed with water at 220 deg C and producing superheated steam at 545 deg C and at an effective pressure of 125 bar. From 1965 to 1967, in the course of more than 8,000 hours of operation under varied conditions (specific water flow rates between 110 and 1,200kg/sq.m./sec., steam pressures of 85 and 125 bar), some 200 results of stationary operating conditions were obtained. These were compared with calculated predictions. After specifying the laws of exchange utilized, the authors discuss the heat transfer results and pressure loss values [fr

  15. Thermal responses in a coronal loop maintained by wave heating mechanisms

    Science.gov (United States)

    Matsumoto, Takuma

    2018-05-01

    A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.

  16. Estimation of heat transfer and heat source in a molten pool

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J.I.; Suh, K.Y.; Kang, C.S. [Seoul National Univ., Dept. of Nuclear Engineering (Korea, Republic of)

    2001-07-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine (29) elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry, 1.45 m in radius and 32,700 kg in mass. The change of pool geometry during the numerical calculation was neglected. The peak temperature sizably decreased by about 60 K as the fission products were released from the pool. (author)

  17. Estimation of heat transfer and heat source in a molten pool

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2001-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine (29) elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry, 1.45 m in radius and 32,700 kg in mass. The change of pool geometry during the numerical calculation was neglected. The peak temperature sizably decreased by about 60 K as the fission products were released from the pool. (author)

  18. Analysis of the behavior of an experimental absorption heat transformer for water purification for different mass flux rates in the generator

    International Nuclear Information System (INIS)

    Huicochea, Armando; Rivera, Wilfrido; Martínez, Hiram; Siqueiros, Javier; Cadenas, Erasmo

    2013-01-01

    In the present study, first and second laws of thermodynamics have been used to analyse the performance of an experimental absorption heat transformer for water purification. Irreversibilities, coefficients of performance (COP) and exergy coefficients of performance (ECOP) were determined as function of the mass flow of hot water supplied to the generator and as function of the overall thermal specific energy consumption (OSTEC) parameter defined in this paper. The results showed that the system irreversibilities increase meanwhile the coefficients of performance and the exergy coefficient of performance decrease with an increment of the mass flow of hot water supplied to the generator. Also it was shown that the system performance is better when the production of purified water increases due to the increment of the heat recycled to the generator and evaporator. -- Highlights: ► Exergetic performance of an absorption heat transformer for purifying water to different mass flux rates in the generator. ► The irreversibilities are increasing when the mass flow rate in the generator is major. ► The mass flow rates in the generator plays a decisive role in the whole system efficiency

  19. Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS

    Science.gov (United States)

    Wang, Yongwei; Huai, Xiulan

    2018-04-01

    The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.

  20. Biological effects of intracorporeal radioisotope heat sources

    International Nuclear Information System (INIS)

    Gillis, M.F.; Decker, J.R.; Karagianes, M.T.

    1976-01-01

    A surface heat flux of 0.04 watts/cm 2 from a retroperitoneal implant with healthy surface ingrowth of tissue prior to generation of heat is intolerable, producing gross tissue necrosis. Percutaneous cooling of hot implants during the post-operative healing period is a feasible technique, but our current plutonium heat source implant design has been proven of inadequate size and a new design is described. Rough calculations based on tissue conductivity and conductance values suggest that even with this larger device, added heat to proximate tissues may produce long-term changes even though the heat burden may be tolerable over relatively short periods

  1. Heat and fluid flow during rapid solidification of non-equilibrium materials

    International Nuclear Information System (INIS)

    Negli, S.C.; Eddingfield, D.L.; Brower, W.E. Jr.

    1990-01-01

    Rapid solidification technology (RST) is an advanced solidification process which is being utilized to produce non-equilibrium structures with properties not previously available with conventionally cast materials. An iron based alloy rapidly quenched to form a metallic glass is being installed on a large scale in electric power transformers where it cuts heat losses dramatically. The formation of a non-equilibrium structure usually requires a cooling rate of at least a million degrees per second. Achieving this high a cooling rate depends not only on the heat transfer conditions during the quenching process, but also on the fluid flow conditions in the molten metal before and during solidification. This paper presents a model of both heat and fluid flow during RST by the hammer and anvil method. The symmetry of two sided cooling permits analysis which is still applicable to the one sided cooling that occurs during melt spinning, the prevalent method of RST. The heat flow is modeled as one dimensional, normal to the quench surface. Previous models have shown the heat flow in the plane of the quench surface not to be significant. The fluid flow portion of the model utilizes the squeeze film solution for flow between two parallel flat plates. The model predicts the effects of superheat of the melt and of the quench hammer speed upon cooling rate during the formation of nonequilibrium phases. An unexpected result is that increased superheat results in much higher cooling rates, due to fluid flow before a potential transformation would take place; this enhanced liquid metal flow results in a thinner section casting which in turn has a dominant effect on the cooling rate. The model also predicts an expanded regime of Newtonian (interface controlled) cooling by about a factor of ten as compared to previous model of RST

  2. District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, P.K.; Rao, C.R.

    1978-10-01

    A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

  3. 3D numerical simulation of fluid–solid coupled heat transfer with variable property in a LBE-helium heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); North China University of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou, Henan 450011 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Wang, Yongwei, E-mail: wangyongwei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China)

    2014-07-01

    Highlights: • Heat transfer in heat exchanger can be improved by increasing helium's flow rate. • The outlet temperature of helium decreases with increasing helium's flow rate. • Balance is necessary between good heat transfer and high helium outlet temperature. - Abstract: LBE-helium experimental loop of ADS (LELA) and LBE-helium heat exchanger have been designed and constructed with the supporting of the “ADS Transmutation System” project of Chinese Academy of Sciences. In order to investigate the flow and heat transfer characteristics between LBE and helium, 3D numerical simulation of fluid–solid coupled heat transfer with variable property in the LBE-helium heat exchanger is conducted in the present study. The effects of mass-flow-rates of helium and LBE in the shell-side and tube-side on the heat transfer performance are addressed. It is found that the heat transfer performance can be significantly improved by increasing helium mass-flow-rate in the shell-side. In order to easily and quickly obtain the outlet temperatures of helium and LBE, a concept of modified effectiveness is introduced and correlated as the function of tube-side to shell-side heat capacity rate ratio. The results show that the outlet temperature of helium decreases with increasing helium mass-flow-rate. Therefore, considering the utilization of high-temperature helium in the future, for example power generation, there should be a tradeoff between good heat transfer performance and high outlet helium temperature when confirming helium mass-flow-rate.

  4. Self-heating of dried industrial wastewater sludge: lab-scale investigation of supporting conditions.

    Science.gov (United States)

    Della Zassa, M; Biasin, A; Zerlottin, M; Refosco, D; Canu, P

    2013-06-01

    We studied the reactivity of dried sludge produced by treatment of wastewater, mainly from tanneries. The solids transformations have been first characterized with thermal analysis (TGA and DSC) proving that exothermic transformation takes place at fairly low temperature, before the total organic combustion that occurs in air above 400°C. The onset of low temperature reactions depends on the heating rate and it can be below 100°C at very small heating rate. Then, we reproducibly determined the conditions to trigger dried sludge self-heating at the laboratory scale, on samples in the 0.2-0.3 kg size. Thermal insulation, some aeration and addition of water are key factors. Mastering the self-heating at this scale allows more detailed investigations as well as manipulation of conditions, to understand its nature, course and remediation. Here we report proves and discussions on the role of air, water, particle size, porosity and biological activity, as well as proving that also dried sludge from similar sources lead to self-heating. Tests demonstrate that air and water are simultaneously required for significant self-heating to occur. They act in diverging directions, both triggering the onset of the reactions and damping the temperature rise, by supporting heat loss. The higher the O2 concentration, the higher the solids heating rate. More added water prolongs the exothermic phase. Further additions of water can reactivate the material. Water emphasizes the exothermic processes, but it is not sufficient to start it in an air-free atmosphere. The initial solid moisture concentration (between 8% and 15%) affects the onset of self-heating as intuitive. The sludge particles size strongly determines the strength and extent of the heat release, indicating that surface reactions are taking place. In pelletized particles, limitations to water and air permeability mitigates the reaction course. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. NLP modeling for the optimization of LiBr-H_2O absorption refrigeration systems with exergy loss rate, heat transfer area, and cost as single objective functions

    International Nuclear Information System (INIS)

    Mussati, Sergio F.; Gernaey, Krist V.; Morosuk, Tatiana; Mussati, Miguel C.

    2016-01-01

    Highlights: • A NLP model is used for simultaneous optimization of sizes and operating conditions. • Total exergy loss rate and transfer area are optimized as single objective functions. • Theoretical and practical bounds for cost optimization problems are computed. • A systematic solution strategy is proposed for total annual cost optimization. • Relevance of components is ranked by heat transfer area, exergy loss rate, and cost. - Abstract: Based on a nonlinear mathematical programming model, the sizes and operating conditions of the process units of single-effect absorption refrigeration systems operating with a LiBr–H_2O solution are optimized for a specified cooling capacity by minimizing three single objective functions: the total exergy loss rate, the total heat transfer area, and the total annual cost of the system. It was found that the optimal solution obtained by minimization of the total exergy loss rate provides “theoretical” upper bounds not only for the total heat transfer area of the system but also for each process unit and all stream temperatures, while the optimal solution obtained by minimization of the total heat transfer area provides the lower bounds for these model variables, to solve a cost optimization problem. The minimization of the total exergy loss rate by varying parametrically the available total heat transfer area between these bounds was also performed, allowing to see how the optimal distribution of the available total heat transfer area among the system components, as well as the operating conditions (stream temperature, pressure, composition, and mass flow rate) and heat loads, vary qualitatively and quantitatively with increasing available total heat transfer area. These optimization results allowed to find a “practical” value of the total heat transfer area, i.e. no benefits can be obtained by increasing the available total heat transfer area above this value since the minimal total exergy loss value cannot

  6. Improvements in or relating to heat exchangers

    International Nuclear Information System (INIS)

    Taylor, P.A.

    1978-01-01

    According to the present invention there is provided a method of producing superheated steam by use of the heat in liquid sodium, in which liquid sodium is caused to flow through a space having boundaries of which no part is common with the boundaries of a space in which vapour is produced, a fluid that is inert to sodium is heated by heat exchange at the boundaries of the space through which the liquid sodium flows and serves as the heating medium for the production of vapour, and the vapour is subsequently heated to the final degree of superheat by heat exchange with liquid sodium in a space that has a common boundary with a space through which liquid sodium is passed. (U.K.)

  7. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    Science.gov (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  8. Compact flat-panel gas-gap heat switch operating at 295 K

    Science.gov (United States)

    Krielaart, M. A. R.; Vermeer, C. H.; Vanapalli, S.

    2015-11-01

    Heat switches are devices that can change from a thermally conducting (on-) state to an insulating (off-) state whenever the need arises. They enable adaptive thermal management strategies in which cooling rates are altered either spatially or temporally, leading to a substantial reduction in the energy and mass budget of a large range of systems. State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the on- and off-state heat conductance). Using selective laser melting additive manufacturing technology, also known as 3D printing, we developed a compact flat-panel gas-gap heat switch that offers superior thermal performance, is simpler and more economic to produce and assemble, contains no moving parts, and is more reliable because it lacks welded joints. The manufactured rectangular panel heat switch has frontal device dimensions of 10 cm by 10 cm, thickness of 3.2 mm and weighs just 121 g. An off heat conductance of 0.2 W/K and on-off heat conductance ratio of 38 is observed at 295 K.

  9. Sleeving repair of heat exchanger tubes

    International Nuclear Information System (INIS)

    Street, Michael D.; Schafer, Bruce W.

    2000-01-01

    Defective heat exchanger tubes can be repaired using techniques that do not involve the cost and schedule penalties of component replacement. FTI's years of experience repairing steam generator tubes have been successfully applied to heat exchangers. Framatome Technologies heat exchanger sleeves can bridge defective areas of the heat exchanger tubes, sleeves have been designed to repair typical heat exchanger tube defects caused by excessive tube vibration, stress corrosion cracking, pitting or erosion. By installing a sleeve, the majority of the tube's heat transfer and flow capacity is maintained and the need to replace the heat exchanger can be delayed or eliminated. Both performance and reliability are improved. FTI typically installs heat exchanger tube sleeves using either a roll expansion or hydraulic expansion process. While roll expansion of a sleeve can be accomplished very quickly, hydraulic expansion allows sleeves to be installed deep within a tube where a roll expander cannot reach. Benefits of FTI's heat exchanger tube sleeving techniques include: - Sleeves can be positioned any where along the tube length, and for precise positioning of the sleeve eddy current techniques can be employed. - Varying sleeve lengths can be used. - Both the roll and hydraulic expansion processes are rapid and both produce joints that do not require stress relief. - Because of low leak rates and speed of installations, sleeves can be used to preventatively repair likely-to-fail tubes. - Sleeves can be used for tube stiffening and to limit leakage through tube defects. - Because of installation speed, there is minimal impact on outage schedules and budgets. FTI's recently installed heat exchanger sleeving at the Kori-3 Nuclear Power Station in conjunction with Korea Plant Service and Engineering Co., Ltd. The sleeves were installed in the 3A and 3B component cooling water heat exchangers. A total of 859 tubesheet and 68 freespan sleeves were installed in the 3A heat

  10. Thermal behavior of a heat exchanger module for seasonal heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Andersen, Elsa

    2012-01-01

    Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change...... material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the presence of crystallization is studied experimentally. Fluid flow and heat transfer in the PCM module......, recommendations on how best to transfer heat to and from the seasonal heat storage module are given....

  11. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-01-28

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  12. Comparative Evaluation of Marginal Adaptation and Fracture Strength of Different Ceramic Inlays Produced by CEREC Omnicam and Heat-Pressed Technique

    OpenAIRE

    Oz, F. D.; Bolay, S.

    2018-01-01

    Objective. The aim of this in vitro study was to evaluate marginal adaptation and fracture strength of inlays produced by CEREC Omnicam using different types of blocs and heat-pressed technique. Methods: Seventy-five extracted human mandibular molars were divided randomly into 5 groups (n=15). 60 molars in four groups received MOD inlay preparations. Experimental groups were CO: Intact teeth, EC: IPS e.max CAD and CEREC, LU: Lava Ultimate and CEREC, EL: IPS Empress CAD and CEREC, EP: IPS Empr...

  13. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  14. Greenhouse cooling and heat recovery using fine wire heat exchangers in a closed pot plant greenhouse: design of an energy producing greenhouse

    NARCIS (Netherlands)

    Bakker, J.C.; Zwart, de H.F.; Campen, J.B.

    2006-01-01

    A greenhouse cooling system with heat storage for completely closed greenhouses has been designed, based on the use of a fine wire heat exchanger. The performance of the fine wire heat exchangers was tested under laboratory conditions and in a small greenhouse compartment. The effects of the system

  15. Responses to tonic heat pain in the ongoing EEG under conditions of controlled attention.

    Science.gov (United States)

    Giehl, Janet; Meyer-Brandis, Gesa; Kunz, Miriam; Lautenbacher, Stefan

    2014-03-01

    To confirm the existence of an ongoing electroencephalogram (EEG) pattern that is truly suggestive of pain, tonic heat pain was induced by small heat pulses at 1 °C above the pain threshold and compared to slightly less intense tonic non-painful heat pulses at 1 °C below the pain threshold. Twenty healthy subjects rated the sensation intensity during thermal stimulation. Possible confounding effects of attention were thoroughly controlled for by testing in four conditions: (1) focus of attention directed ipsilateral or (2) contralateral to the side of the stimulation, (3) control without a side preference, and (4) no control of attention at all. EEG was recorded via eight leads according to the 10/20 convention. Absolute power was computed for the frequency bands delta (0.5-4 Hz), theta (4-8 Hz), alpha1 (8-11 Hz), alpha2 (11-14 Hz), beta1 (14-25 Hz), and beta2 (25-35 Hz). Ratings were clearly distinct between the heat and pain conditions and suggestive for heat and pain sensations. Manipulation of attention proved to be successful by producing effects on the ratings and on the EEG activity (with lower ratings and lower EEG activity (theta, beta1, 2) over central areas for side-focused attention). During pain stimulation, lower central alpha1 and alpha2 activity and higher right-parietal and right-occipital delta power were observed compared to heat stimulation. This EEG pattern was not influenced by the manipulation of attention. Since the two types of stimuli (pain, heat) were subjectively felt differently although stimulation intensities were nearby, we conclude that this EEG pattern is clearly suggestive of pain.

  16. Reducing uranium and thorium level in Zircon: effect of heat treatment on rate of leaching

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2002-01-01

    Considerable amount of uranium and thorium are found in Malaysian zircon and the level is much higher than the minimum value adopted by many importing countries. Selective leaching had been applied as an important technique to reduce these elements. An initial study was carried out using hydrochloric acid leaching system but the result was not favourable. The rate of uranium and thorium leached can be further improved by introducing a heat pretreatment process prior to leaching (Author)

  17. Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows.

    Science.gov (United States)

    De Rensis, F; Garcia-Ispierto, I; López-Gatius, F

    2015-09-15

    Heat stress has consequences on both the physiology and reproductive performance of cows, but the most dramatic effect for dairy producers is the decrease produced in fertility. The effects of heat stress on fertility include an increased number of days open, reduced conception rate, and larger number of cows suffering different types of anestrus. Once becomes pregnant, heat stress affects also the reproductive success of the cow through its direct effects on the ovary, uterus, gametes, embryo, and early fetus. This article reviews current knowledge of the effects of heat stress on fertility in dairy cows and the hormonal strategies used to mitigate these effects at the farm level. Administration of GnRH at the moment of artificial insemination can improve the conception rate. Breeding synchronization protocols for fixed-time insemination may reduce the calving conception interval and the number of services per conception. Progesterone-based protocols seem resolve better the reproductive disorders related to a hot environment (anestrus) than GnRH-based protocols. The use of combinations of GnRH, eCG, and hCG in progesterone-based protocols can improve results. Progesterone supplementation during the late embryonic and/or early fetal period would be useful in curtailing pregnancy losses, mainly in single pregnancies, whereas a more positive effect of treatment with GnRH than progesterone has been found in twin pregnancies. Melatonin therapy is emerging as a promising strategy to improve the natural reproductive performance of cows suffering conditions of heat stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. BRIGITTE, Dose Rate and Heat Source and Energy Flux for Self-Absorbing Rods

    International Nuclear Information System (INIS)

    Jegu, M.; Clement, M.

    1978-01-01

    1 - Nature of physical problem solved: Calculation of dose rate, heat sources or energy flux. The sources are self-absorbing radioactive rods. The shielding consists of blocks of which the cross section can be defined. 2 - Method of solution: Exponential attenuation and build-up factor between source points and detector points. Source integration with error estimate. Automatic or controlled build-up with monitor print-out. 3 - Restrictions on the complexity of the problem: Number of energy points, regions, detector points, abscissa points of the rod, vertical position of the rod, are all limited to ten. The maximum total number of vertical steps is 124

  19. Noise in attractor networks in the brain produced by graded firing rate representations.

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    Full Text Available Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions. The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can increase the speed of operation of cortical circuitry.

  20. Local business models for district heat production; Kaukolaemmoen paikalliset liiketoimintamallit

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, L.; Pesola, A.; Vanhanen, J.

    2012-12-15

    Local district heating business, outside large urban centers, is a profitable business in Finland, which can be practiced with several different business models. In addition to the traditional, local district heating business, local district heat production can be also based on franchising business model, on integrated service model or on different types of cooperation models, either between a local district heat producer and industrial site providing surplus heat or between a local district heat producer and a larger district heating company. Locally available wood energy is currently utilized effectively in the traditional district heating business model, in which a local entrepreneur produces heat to consumers in the local area. The franchising model is a more advanced version of the traditional district heating entrepreneurship. In this model, franchisor funds part of the investments, as well as offers centralized maintenance and fuel supply, for example. In the integrated service model, the local district heat producer offers also energy efficiency services and other value-added services, which are based on either the local district heat suppliers or his partner's expertise. In the cooperation model with industrial site, the local district heating business is based on the utilization of the surplus heat from the industrial site. In some cases, profitable operating model approach may be a district heating company outsourcing operations of one or more heating plants to a local entrepreneur. It can be concluded that all business models for district heat production (traditional district heat business model, franchising, integrated service model, cooperative model) discussed in this report can be profitable in Finnish conditions, as well for the local heat producer as for the municipality - and, above all, they produce cost-competitive heat for the end-user. All the models were seen as viable and interesting and having possibilities for expansion Finland

  1. Urban Heat Wave Hazard Assessment

    Science.gov (United States)

    Quattrochi, D. A.; Jedlovec, G.; Crane, D. L.; Meyer, P. J.; LaFontaine, F.

    2016-12-01

    Heat waves are one of the largest causes of environmentally-related deaths globally and are likely to become more numerous as a result of climate change. The intensification of heat waves by the urban heat island effect and elevated humidity, combined with urban demographics, are key elements leading to these disasters. Better warning of the potential hazards may help lower risks associated with heat waves. Moderate resolution thermal data from NASA satellites is used to derive high spatial resolution estimates of apparent temperature (heat index) over urban regions. These data, combined with demographic data, are used to produce a daily heat hazard/risk map for selected cities. MODIS data are used to derive daily composite maximum and minimum land surface temperature (LST) fields to represent the amplitude of the diurnal temperature cycle and identify extreme heat days. Compositing routines are used to generate representative daily maximum and minimum LSTs for the urban environment. The limited effect of relative humidity on the apparent temperature (typically 10-15%) allows for the use of modeled moisture fields to convert LST to apparent temperature without loss of spatial variability. The daily max/min apparent temperature fields are used to identify abnormally extreme heat days relative to climatological values in order to produce a heat wave hazard map. Reference to climatological values normalizes the hazard for a particular region (e.g., the impact of an extreme heat day). A heat wave hazard map has been produced for several case study periods and then computed on a quasi-operational basis during the summer of 2016 for Atlanta, GA, Chicago, IL, St. Louis, MO, and Huntsville, AL. A hazard does not become a risk until someone or something is exposed to that hazard at a level that might do harm. Demographic information is used to assess the urban risk associated with the heat wave hazard. Collectively, the heat wave hazard product can warn people in urban

  2. Developing the use of renewable heat

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2013-01-01

    The author reports a study in which he shows that the heat production by means of renewable energies is an efficient method to reach the objective of 23 per cent of renewable energies in the French final energy consumption. He browses the different techniques of renewable heat production (solar heat, wood-fuel, surface geothermal) and indicates the associated potential resources. He proposes a cost analysis which compares the use of gas and electricity with three techniques of production of renewable heat: solar heat to produce hot water, biomass combustion (more particularly wood), solar heat extracted with fuel cells. He also assesses tariffs and CO 2 emissions. Then, he elaborates a strategy to phase out fossil energies: a modification of the RT 2012 thermal regulation, to give up the purchase obligation for electricity produced by wind and photovoltaic energy, to extend the CSPE calculation basis, to put oil-fuel and gas boilers out of the market, to support the development of renewable heat production, to improve the competitiveness of the different techniques of renewable heat production. He finally gives a brief overview of industrial perspectives created by such a development of renewable heat

  3. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Directory of Open Access Journals (Sweden)

    Jandačka J.

    2013-04-01

    Full Text Available Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe. Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  4. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Science.gov (United States)

    Kaduchová, K.; Lenhard, R.; Gavlas, S.; Jandačka, J.

    2013-04-01

    Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe). Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  5. Refrigeration waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    UK Super A Stores was built in 1972 and is part of a small indoor shopping complex linked together by a heated mall. The store has a public floor area of approximately 1,232 m{sup 2} (13,261 ft.{sup 2}) and sells the usual variety of food produce including a large selection of frozen foods. There are five lengths of refrigerated display cabinets with a total area of approximately 78 m{sup 2}. There are also some frozen food storage rooms at the back of the store. This report provides a description of a waste heat recovery system within a medium sized food store. It details how the waste heat that is produced by the conventional frozen food display cabinets, can be reused by the store's space heating system. Recommended uses for this waste heat include: diverting to the loading bays which would make the reheat coil unnecessary, diverting to the front of the shop, and heating the adjacent shopping mall. The CREDA (Conservation and Renewable Energy Demonstration Assistance) program contributed $17,444 towards the total project cost of $30,444. The project was initiated by the store owner, who is now realizing a lower annual fuel consumption, with the resulting financial savings. 11 figs., 1 tab.

  6. DETERMINING HEATING RATES IN RECONNECTION FORMED FLARE LOOPS OF THE M8.0 FLARE ON 2005 MAY 13

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenjuan; Qiu Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Caspi, Amir [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States)

    2013-06-20

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 A emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 A bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in

  7. Inverse Problem and Variation Method to Optimize Cascade Heat Exchange Network in Central Heating System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin; WEI Zhiyuan; ZHANG Yinping; WANG Xin

    2017-01-01

    Urban heating in northern China accounts for 40% of total building energy usage.In central heating systems,heat is often transfened from heat source to users by the heat network where several heat exchangers arc installed at heat source,substations and terminals respectively.For given overall heating capacity and heat source temperarure,increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving.In this paper,the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established.Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity,the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method.The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger.It also indicates that in order to improve the thernmal performance of the whole system,more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small.This work is important for guiding the optimization design of practical cascade heating systems.

  8. Exact analytical thermodynamic expressions for a Brownian heat engine

    Science.gov (United States)

    Taye, Mesfin Asfaw

    2015-09-01

    The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t . Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.

  9. MODEL OF HEAT SIMULATOR FOR DATA CENTERS

    Directory of Open Access Journals (Sweden)

    Jan Novotný

    2016-08-01

    Full Text Available The aim of this paper is to present a design and a development of a heat simulator, which will be used for a flow research in data centers. The designed heat simulator is based on an ideological basis of four-processor 1U Supermicro server. The designed heat simulator enables to control the flow and heat output within the range of 10–100 %. The paper covers also the results of testing measurements of mass flow rates and heat flow rates in the simulator. The flow field at the outlet of the server was measured by the stereo PIV method. The heat flow rate was determined, based on measuring the temperature field at the inlet and outlet of the simulator and known mass flow rate.

  10. Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings

    DEFF Research Database (Denmark)

    Kjellsson, Elisabeth; Hellström, Göran; Perers, Bengt

    2010-01-01

    The use of ground-source heat pumps for heating and domestic hot water in dwellings is common in Sweden. The combination with solar collectors has been introduced to reduce the electricity demand in the system. In order to analyze different systems with combinations of solar collectors and ground......-source heat pumps, computer simulations have been carried out with the simulation program TRNSYS. Large differences were found between the system alternatives. The optimal design is when solar heat produces domestic hot water during summertime and recharges the borehole during wintertime. The advantage...... is related to the rate of heat extraction from the borehole as well as the overall design of the system. The demand of electricity may increase with solar recharging, because of the increased operating time of the circulation pumps. Another advantage with solar heat in combination with heat pumps is when...

  11. Desalination using low grade heat sources

    Science.gov (United States)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of

  12. Heat transfer model for quenching by submerging

    International Nuclear Information System (INIS)

    Passarella, D N; Varas, F; MartIn, E B

    2011-01-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  13. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  14. Application of multivariate adaptive regression spine-assisted objective function on optimization of heat transfer rate around a cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Prasenjit; Dad, Ajoy K. [Mechanical Engineering Department, National Institute of Technology, Agartala (India)

    2016-12-15

    The present study aims to predict the heat transfer characteristics around a square cylinder with different corner radii using multivariate adaptive regression splines (MARS). Further, the MARS-generated objective function is optimized by particle swarm optimization. The data for the prediction are taken from the recently published article by the present authors [P. Dey, A. Sarkar, A.K. Das, Development of GEP and ANN model to predict the unsteady forced convection over a cylinder, Neural Comput. Appl. (2015). Further, the MARS model is compared with artificial neural network and gene expression programming. It has been found that the MARS model is very efficient in predicting the heat transfer characteristics. It has also been found that MARS is more efficient than artificial neural network and gene expression programming in predicting the forced convection data, and also particle swarm optimization can efficiently optimize the heat transfer rate.

  15. Effect of frequency and waveform on inactivation of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in salsa by ohmic heating.

    Science.gov (United States)

    Lee, Su-Yeon; Ryu, Sangryeol; Kang, Dong-Hyun

    2013-01-01

    The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform.

  16. Heat transfer characteristics evaluation of heat exchangers of mock-up test facility with full-scale reaction tube for HTTR hydrogen production system (Contract research)

    International Nuclear Information System (INIS)

    Shimizu, Akira; Ohashi, Hirofumi; Kato, Michio; Hayashi, Koji; Aita, Hideki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Morisaki, Norihiro; Sakaki, Akihiro; Maeda, Yukimasa; Sato, Hiroyuki; Inagaki, Yoshiyuki; Hanawa, Hiromi; Fujisaki, Katsuo; Yonekawa, Hideo

    2005-06-01

    Connection of hydrogen production system by steam reforming of methane to the High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) has been surveyed until now. Mock-up test facility of this steam reforming system with full-scale reaction tube was constructed in FY 2001 and hydrogen of 120 Nm 3 /h was successfully produced in overall performance test. Totally 7 times operational tests were performed from March 2002 to December 2004. A lot of operational test data on heat exchanges were obtained in these tests. In this report specifications and structures of steam reformer, steam superheater, steam generator, condenser, helium gas cooler, feed gas heater and feed gas superheater were described. Heat transfer correlation equations for inside and outside tube were chosen from references. Spreadsheet programs were newly made to evaluate heat transfer characteristics from measured test data such as inlet and outlet temperature pressure and flow-rate. Overall heat-transfer coefficients obtained from the experimental data were compared and evaluated with the calculated values with heat transfer correlation equation. As a result, actual measurement values of all heat exchangers gave close agreement with the calculated values with correlation equations. Thermal efficiencies of the heat exchangers were adequate as they were well accorded with design value. (author)

  17. Heat and power from combustibles

    International Nuclear Information System (INIS)

    Zogg, M.

    2002-01-01

    This article compares four ways of generating heat and power from liquid and gaseous fuels. Various combinations of conventional boilers, heat pumps, combined heat and power units and combined-cycle power plants are considered and the ratio of heat to electrical power produced is discussed. Fuel requirements for the four combinations are looked at and net emissions of carbon dioxide, oxides of nitrogen and carbon monoxide presented in graphical form. The author makes recommendations on the choice of the technology to be used to generate heat and electricity for different heat/power ratios and criticises the all too slack emission limits for small combined heat and power units

  18. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    Science.gov (United States)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  19. Exergoeconomic performance optimization of an endoreversible intercooled regenerative Brayton combined heat and power plant coupled to variable-temperature heat reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    An endoreversible intercooled regenerative Brayton combined heat and power (CHP) plant model coupled to variable-temperature heat reservoirs is established. The exergoeconomic performance of the CHP plant is investigated using finite time thermodynamics. The analytical formulae about dimensionless profit rate and exergy efficiency of the CHP plant with the heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are deduced. By taking the maximum profit rate as the objective, the heat conductance allocation among the five heat exchangers and the choice of intercooling pressure ratio are optimized by numerical examples, the characteristic of the optimal dimensionless profit rate versus corresponding exergy efficiency is investigated. When the optimization is performed further with respect to the total pressure ratio, a double-maximum profit rate is obtained. The effects of the design parameters on the double-maximum dimensionless profit rate and corresponding exergy efficiency, optimal total pressure ratio and optimal intercooling pressure ratio are analyzed in detail, and it is found that there exist an optimal consumer-side temperature and an optimal thermal capacitance rate matching between the working fluid and the heat reservoir, respectively, corresponding to a thrice-maximum dimensionless profit rate.

  20. A state-of-the-art review on hybrid heat pipe latent heat storage systems

    International Nuclear Information System (INIS)

    Naghavi, M.S.; Ong, K.S.; Mehrali, M.; Badruddin, I.A.; Metselaar, H.S.C.

    2015-01-01

    The main advantage of latent heat thermal energy storage systems is the capability to store a large quantity of thermal energy in an isothermal process by changing phase from solid to liquid, while the most important weakness of these systems is low thermal conductivity that leads to unsuitable charging/discharging rates. Heat pipes are used in many applications – as one of the most efficient heat exchanger devices – to amplify the charging/discharging processes rate and are used to transfer heat from a source to the storage or from the storage to a sink. This review presents and critically discusses previous investigations and analysis on the incorporation of heat pipe devices into latent heat thermal energy storage with heat pipe devices. This paper categorizes different applications and configurations such as low/high temperature solar, heat exchanger and cooling systems, analytical approaches and effective parameters on the performance of hybrid HP–LHTES systems.