WorldWideScience

Sample records for heating quantitative survey

  1. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    International Nuclear Information System (INIS)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi; Somerville, Robert A.; Kitamoto, Tetsuyuki; Mohri, Shirou

    2013-01-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products

  2. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi [Prion Disease Research Center, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Somerville, Robert A. [The Roslin Institute and Royal (Dick) School of Veterinary Studies, Roslin, Midlothian, EH25 9PS (United Kingdom); Kitamoto, Tetsuyuki [Division of CJD Science and Technology, Department of Prion Research, Center for Translational and Advanced Animal Research on Human Diseases, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575 (Japan); Mohri, Shirou, E-mail: shirou@affrc.go.jp [Prion Disease Research Center, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)

    2013-03-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products.

  3. A literature survey on numerical heat transfer

    Science.gov (United States)

    Shih, T. M.

    1982-12-01

    Technical papers in the area of numerical heat transfer published from 1977 through 1981 are reviewed. The journals surveyed include: (1) ASME Journal of Heat Transfer, (2) International Journal of Heat and Mass Transfer, (3) AIAA Journal, (4) Numerical Heat Transfer, (5) Computers and Fluids, (6) International Journal for Numerical Methods in Engineering, (7) SIAM Journal of Numerical Analysis, and (8) Journal of Computational Physics. This survey excludes experimental work in heat transfer and numerical schemes that are not applied to equations governing heat transfer phenomena. The research work is categorized into the following areas: (A) conduction, (B) boundary-layer flows, (C) momentum and heat transfer in cavities, (D) turbulent flows, (E) convection around cylinders and spheres or within annuli, (F) numerical convective instability, (G) radiation, (H) combustion, (I) plumes, jets, and wakes, (J) heat transfer in porous media, (K) boiling, condensation, and two-phase flows, (L) developing and fully developed channel flows, (M) combined heat and mass transfer, (N) applications, (O) comparison and properties of numerical schemes, and (P) body-fitted coordinates and nonuniform grids.

  4. Michigan residential heating oil and propane price survey: 1995-1996 heating season. Final report

    International Nuclear Information System (INIS)

    Moriarty, C.

    1996-05-01

    This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan's Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy's (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply

  5. Heat Retreat Locations in Cities - The Survey-Based Location Analysis of Heat Relief

    Science.gov (United States)

    Neht, Alice; Maximini, Claudia; Prenger-Berninghoff, Kathrin

    2017-12-01

    The adaptation of cities to climate change effects is one of the major strategies in urban planning to encounter the challenges of climate change (IPCC 2014). One of the fields of climate change adaption is dealing with heat events that occur more frequently and with greater intensity. Cities in particular are vulnerable to these events due to high population and infrastructure density. Proceeding urbanization calls for the existence of sufficient heat retreat locations (HRL) to enable relief for the population from heat in summer. This is why an extensive analysis of HRL is needed. This paper aims at the development of a survey-based location analysis of heat relief by identifying user groups, locations and characteristics of HRL based on a home survey that was conducted in three German cities. Key results of the study show that the majority of the participants of the survey are users of existing HRL, are affected by heat, and perceive heat as a burden in summer. Moreover, HRL that are located in close proximity are preferred by most users while their effect depends on the regional context that has to be considered in the analysis. Hence, this research presents an approach to heat relief that underlines the importance of HRL in cities by referring to selected examples of HRL types in densely populated areas of cities. HRL should especially be established and secured in densely built-up areas of cities. According to results of the survey, most HRL are located in public spaces, and the overall accessibility of HRL turned out to be an issue.

  6. Quantitative thermographic imagery in the evaluation of antenna heating patterns

    International Nuclear Information System (INIS)

    Pearce, J.A.; Baughman, R.R.

    1984-01-01

    In quantitative thermographic imaging the temperature distribution of a surface is inferred from measurement of the radiant energy leaving the surface. Digital image processing and calibration methods allow the subtraction of preexisting temperature gradients so that precise heating patterns can be obtained. The primary limitation of quantitative thermography is that noise in the photodetector limits minimum resolvable temperature difference to around 0.5 0 C since frame integration cannot be used on the transient temperature distributions expected. The authors have developed and evaluated nonlinear smoothing operators which reduce the noise variance so that temperature differences of 0.1 0 C can be measured. They have applied digital thermographic imaging in the measurement of heating patterns obtained from two roughly orthogonal microwave antennas: a spiral antenna and a bow-tie antenna. These two antenna types are orthogonal in that the spiral has an H-field essentially normal to the phantom surface and the bow-tie has an E-field essentially normal to the surface. The resulting heating patterns clearly show the effect of non-uniform phantom electrical properties on the heating profiles obtained

  7. Urban heat stress: novel survey suggests health and fitness as future avenue for research and adaptation strategies

    Science.gov (United States)

    Schuster, Christian; Honold, Jasmin; Lauf, Steffen; Lakes, Tobia

    2017-04-01

    Extreme heat has tremendous adverse effects on human health. Heat stress is expected to further increase due to urbanization, an aging population, and global warming. Previous research has identified correlations between extreme heat and mortality. However, the underlying physical, behavioral, environmental, and social risk factors remain largely unknown and comprehensive quantitative investigation on an individual level is lacking. We conducted a new cross-sectional household questionnaire survey to analyze individual heat impairment (self-assessed and reported symptoms) and a large set of potential risk factors in the city of Berlin, Germany. This unique dataset (n = 474) allows for the investigation of new relationships, especially between health/fitness and urban heat stress. Our analysis found previously undocumented associations, leading us to generate new hypotheses for future research: various health/fitness variables returned the strongest associations with individual heat stress. Our primary hypothesis is that age, the most commonly used risk factor, is outperformed by health/fitness as a dominant risk factor. Related variables seem to more accurately represent humans’ cardiovascular capacity to handle elevated temperature. Among them, active travel was associated with reduced heat stress. We observed statistical associations for heat exposure regarding the individual living space but not for the neighborhood environment. Heat stress research should further investigate individual risk factors of heat stress using quantitative methodologies. It should focus more on health and fitness and systematically explore their role in adaptation strategies. The potential of health and fitness to reduce urban heat stress risk means that encouraging active travel could be an effective adaptation strategy. Through reduced CO2 emissions from urban transport, societies could reap double rewards by addressing two root causes of urban heat stress: population health and

  8. Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel

    Science.gov (United States)

    Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; hide

    2012-01-01

    This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.

  9. Quantitative method for measuring heat flux emitted from a cryogenic object

    Science.gov (United States)

    Duncan, R.V.

    1993-03-16

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  10. Quantitative method for measuring heat flux emitted from a cryogenic object

    International Nuclear Information System (INIS)

    Duncan, R.V.

    1993-01-01

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices

  11. The TX-model - a quantitative heat loss analysis of district heating pipes by means of IR surface temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)

    1996-11-01

    The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and

  12. Wood pellet heating plants. Market survey. 4. upd. ed.; Hackschnitzel-Heizung. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Wood pellets from the agriculture and forestry offer an enormous potential for the development of the use of bio energy in the private area as well as in industry and commerce. Within the market survey 'Wood pellet heating systems', the Fachagentur Nachwachsende Rohstoffe e.V. (Guelzow-Pruezen, Federal Republic of Germany) reported on the targets and measures of the Federal Government with respect to the heating with biomass, wood pellets as solid biofuels (standardization of solid biofuels, supply, features, evaluation), wood pellet heating plants, economic considerations, market survey on wood pellet heating plants as well as list of addresses for producers of wood pellet heating plants and suppliers of wood pellets.

  13. Development of the Quantitative Reasoning Items on the National Survey of Student Engagement

    Directory of Open Access Journals (Sweden)

    Amber D. Dumford

    2015-01-01

    Full Text Available As society’s needs for quantitative skills become more prevalent, college graduates require quantitative skills regardless of their career choices. Therefore, it is important that institutions assess students’ engagement in quantitative activities during college. This study chronicles the process taken by the National Survey of Student Engagement (NSSE to develop items that measure students’ participation in quantitative reasoning (QR activities. On the whole, findings across the quantitative and qualitative analyses suggest good overall properties for the developed QR items. The items show great promise to explore and evaluate the frequency with which college students participate in QR-related activities. Each year, hundreds of institutions across the United States and Canada participate in NSSE, and, with the addition of these new items on the core survey, every participating institution will have information on this topic. Our hope is that these items will spur conversations on campuses about students’ use of quantitative reasoning activities.

  14. Survey of heat-pipe application under nuclear environment

    International Nuclear Information System (INIS)

    Tsuyuzaki, Noriyoshi; Saito, Takashi; Okamoto, Yoshizo; Hishida, Makoto; Negishi, Kanji.

    1986-11-01

    Heat pipes today are employed in a wide variety of special heat transfer applications including nuclear reactor. In this nuclear technology area in Japan, A headway speed of the heat pipe application technique is not so high because of safety confirmation and investigation under each developing step. Especially, the outline of space craft is a tendency to increase the size. Therefore, the power supply is also tendency to increase the outlet power and keep the long life. Under SP-100 project, the development of nuclear power supply system which power is 1400 - 1600 KW thermal and 100 KW electric power is steadily in progress. Many heat pipes are adopted for thermionic conversion and coolant system in order to construct more safety and light weight system for the project. This paper describes the survey of the heat pipe applications under the present and future condition for nuclear environment. (author)

  15. Opportunities for District Heating Systems in Ukraine. Market survey. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brienen, M.

    2011-12-15

    The market survey should identify the existing and future opportunities for Dutch companies in the district heating sector in Ukraine, facilitate better understanding of the sector specifics by providing a complete picture on the whole district heating chain at specific cities mentioned and surrounding areas, and provide practical information on the best ways to enter this market segment by Dutch companies. The points of special interest are: (a) Analysis of main types of district heating chain in terms of the key stakeholders and their interest; Identification of the cases where the whole chain is under control (if any); Identification of the main directions of change within the existing set-up; (b) Analysis of the pricing model(s) and the procedures for setting up the prices for district heating; Identification of the main influencers on the decision making; (c) Identification of the main opportunities to use renewable energy for heating systems in Ukraine; and (d) Identification of the Dutch clusters with appropriate products, services and knowledge which can be used to achieve optimal results with district heating systems in Ukraine. Another important reason to execute this market survey is the 2g at-sign thereprogramme 'Ukraine-sustainable energy'. One of the consortia supported under the 2g at-sign there programme, is called NUSEP, Netherlands Ukrainian Sustainable Energy Platform. Under this platform 15-20 Dutch companies and institutes have joined forces. All of these companies and institutes are active in the field of(sustainable) energy. In short, the district heating sector in Ukraine offers many opportunities for Dutch companies. This survey will help Dutch companies to do business in Ukraine. The market research has been executed at both national level (where relevant concerns) and is specifically focused on the following cities and surrounding area: Kiev; Poltava; Kamyanets-Podilsky; Kovel; Lviv; Zhytomyr. Since the major developments in

  16. 76 FR 27384 - Agency Information Collection Activity (Veteran Suicide Prevention Online Quantitative Surveys...

    Science.gov (United States)

    2011-05-11

    ... Collection Activity (Veteran Suicide Prevention Online Quantitative Surveys) Under OMB Review AGENCY.... Abstract: VA's top priority is the prevention of Veterans suicide. It is imperative to reach these at-risk... families' awareness of VA's suicide prevention and mental health support services. In addition, the surveys...

  17. Survey of residential heat pump owner experience in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Unsoy, J

    1985-11-11

    Heat pump owners in 7 Canadian cities were surveyed to establish installation costs, repair costs and frequencies, and customer satisfaction with heat pump systems as a function of region, installing contractor, manufacturer, model, year of installation and system type. The following summarizes the major findings of the study. Most Canadian heat pumps are retrofit installations in existing homes. The majority of these heat pumps have either supplemented or replaced an oil furnace. The average age of heat pumps is 2.5 years. The median size of heat pumps installed is 2.5 tons. The three most popular brands by order of prevalence are York, Carrier and General Electric. Only about one-fifth of heat pump owners have purchased service contracts. Two-thirds of the heat pumps have never needed repairs. Eighty-three percent of heat pump owners have never incurred any repair costs; and of those that have, about half spent $100 or less. The most frequent repair problems are refrigerant leaks followed by relays and controls. Corrective actions average about 0.3 per unit year. The owners' evaluation of comfort from their heat pump is generally favourable. About 12% of the owners find the outdoor unit noisy and 10% feel maintenance costs are at a disadvantage. Overall, only 7% of heat pump owners indicated that they would not install a heat pump in their next house. Most heat pump owners are satisfied with their heat pump brand and installer. Owners with systems installed in newer homes are more satisfied with their heat pumps than those who have installed heat pumps in older homes. 3 figs., 93 tabs.

  18. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  19. A survey on the quantitative incorporation organizational factors into PSA

    International Nuclear Information System (INIS)

    Park, S. Z.; Jea, M. S.; Ahn, N. S.

    2002-01-01

    The effects of organizational factors on the human performance and safety in nuclear power plants have been known through the results of research for several years. The organizational factor, which belongs to 11 elements of PSR (Periodic Safety Review), has been an important research area. In this study the state-of-the-art of qualitative and quantitative evaluation methodologies on organizational factors has been surveyed. The results of this study may contribute to developing a quantitative evaluation methodology on organizational factors as well as the basic research for conducting the PSR research, and for incorporating the quality of organization factors into PSA

  20. Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing.

    Science.gov (United States)

    Branham, Sandra E; Stansell, Zachary J; Couillard, David M; Farnham, Mark W

    2017-03-01

    Five quantitative trait loci and one epistatic interaction were associated with heat tolerance in a doubled haploid population of broccoli evaluated in three summer field trials. Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yield. Breeding for heat tolerance in broccoli has potential to both expand viable production areas and extend the growing season but breeding efficiency is constrained by limited genetic information. A doubled haploid (DH) broccoli population segregating for heat tolerance was evaluated for head quality in three summer fields in Charleston, SC, USA. Multiple quantitative trait loci (QTL) mapping of 1,423 single nucleotide polymorphisms developed through genotyping-by-sequencing identified five QTL and one positive epistatic interaction that explained 62.1% of variation in heat tolerance. The QTL identified here can be used to develop markers for marker-assisted selection and to increase our understanding of the molecular mechanisms underlying plant response to heat stress.

  1. Toward Quantitative Understanding of the Atmospheric Heating over the Tibetan Plateau (Invited)

    Science.gov (United States)

    Koike, T.; Tamura, T.; Rasmy, M.; Seto, R.

    2010-12-01

    contradictory to the Taniguchi and Koike [2007]. The mechanism of the upper tropospheric warming is investigated using the climatology derived from the reanalysis data. Heat budget analysis of the upper troposphere revealed adiabatic subsidence plays an important role for the temperature increase from late April to mid-June. The adiabatic heating is suggested to be derived from the southerly and westerly component of the upper tropospheric circulation. Tamura, Taniguchi and Koike [2009]. To get more quantitative understanding of the atmospheric heating over the Tibetan Plateau, a satellite-based land data assimilation system coupled with a regional atmospheric model was developed.. The result of the system validation for the land surface fluxes and atmospheric parameters shows better consistency with the observed data. The role of land surface on the atmospheric heating can be quantitatively analyzed.

  2. Heat Transfer and Pressure Drop with Rough Surfaces, a Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, A

    1964-05-15

    This literature survey deals with changes in heat transfer coefficient and friction factor with varying nature and degree of roughness. Experimental data cover mainly the turbulent flow region for both air and water as flow mediums. Semiempirical analysis about changes in heat transfer coefficient due to roughness has been included. An example of how to use these data to design a heat exchanger surface is also cited. The extreme case of large fins has not been considered. Available literature between 1933 - 1963 has been covered.

  3. State heating oil and propane price survey: A review of Winter 1995/96

    International Nuclear Information System (INIS)

    1996-01-01

    Thirty heating oil dealers and fifteen propane dealers serving Massachusetts customers were surveyed on a bi-weekly basis to monitor heating oil and propane prices. Tables present high, low, and average price for heating oil and propane every two weeks from October 2nd to March 18th. The paper briefly discusses fuel shortages and weather

  4. A winter survey of domestic heating among elderly patients.

    Science.gov (United States)

    Morgan, R; Blair, A; King, D

    1996-02-01

    Elderly people have a greater need for domestic heating given the time they spend at home and the decline in the body thermoregulation that occurs with ageing. The use of domestic heating by 200 mentally competent newly admitted elderly in patients was evaluated by means of a questionnaire survey. Most patients (69%) were aware of the addition of value added tax (VAT) to their fuel bill and 31% said they had reduced the amount of heating they use because of this. A third of patients (29.5%) said they had difficulty keeping warm prior to this admission. The majority of patients said they could not manage to keep warm in the winter without financial hardship. In addition, 29% said they had reduced the amount spent on food in order to pay for fuel bills. This study suggests that cold may contribute to hospital admissions in elderly patients. This should have implications for government spending and taxation policy on domestic heating.

  5. 1995 Quantitative Survey of the Corals of American Samoa (NODC Accession 0001972)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A survey of coral communities was carried out in the American Samoa Archipelago to assess the current status of coral reefs and provide a rigorous quantitative...

  6. Quantitative survey of the corals of American Samoa, 1995 (NODC Accession 0001972)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A survey of coral communities was carried out in the American Samoa Archipelago to assess the current status of coral reefs and provide a rigorous quantitative...

  7. Examining Stress in Graduate Assistants: Combining Qualitative and Quantitative Survey Methods

    Science.gov (United States)

    Mazzola, Joseph J.; Walker, Erin J.; Shockley, Kristen M.; Spector, Paul E.

    2011-01-01

    The aim of this study was to employ qualitative and quantitative survey methods in a concurrent mixed model design to assess stressors and strains in graduate assistants. The stressors most frequently reported qualitatively were work overload, interpersonal conflict, and organizational constraints; the most frequently reported psychological…

  8. Bibliographical survey of heat exchangers for nuclear power plants and problems of HTGR

    International Nuclear Information System (INIS)

    Yamao, Hiroyuki; Okamoto, Yoshizo; Sanokawa, Konomo

    1977-04-01

    The problems in development of heat exchangers for nuclear reactors have been examined in literature survey through Annual Index Subjects of NSA (Nuclear Science Abstracts) for the past ten years. R and D on heat exchangers for LMFBR, HTGR, LWR and HWR are on the increase. In the case of HTGRs, R and D on heat resisting materials including the corrosion and on hydrogen permeation of heat exchanger walls in high temperature pressure helium environment are important. Future R and D subjects for HTGR heat exchangers in showing the high temperature endurance are presented. (auth.)

  9. Preliminary research on eddy current bobbin quantitative test for heat exchange tube in nuclear power plant

    Science.gov (United States)

    Qi, Pan; Shao, Wenbin; Liao, Shusheng

    2016-02-01

    For quantitative defects detection research on heat transfer tube in nuclear power plants (NPP), two parts of work are carried out based on the crack as the main research objects. (1) Production optimization of calibration tube. Firstly, ASME, RSEM and homemade crack calibration tubes are applied to quantitatively analyze the defects depth on other designed crack test tubes, and then the judgment with quantitative results under crack calibration tube with more accuracy is given. Base on that, weight analysis of influence factors for crack depth quantitative test such as crack orientation, length, volume and so on can be undertaken, which will optimize manufacture technology of calibration tubes. (2) Quantitative optimization of crack depth. Neural network model with multi-calibration curve adopted to optimize natural crack test depth generated in in-service tubes shows preliminary ability to improve quantitative accuracy.

  10. FY 1986 report on research and development of super heat pump energy accumulation system. R and D of total systems (Surveys on heat sources and heat-utilization systems); 1986 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. Total system no kenkyu (netsugen netsu riyokei no chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    The heat source systems and heat utilization systems are surveyed and studied for the super heat pump energy accumulation systems, in order to clarify effective application and application types of these systems in the domestic and industrial energy areas. These works include surveys on literature, both domestic and foreign, surveys on actual situations of the related facilities and plants and on-the-spot hearing, and numerical simulation to establish the basic data for some items. The FY 1986 program includes the literature surveys on heat source and heat utilization systems and on-the-spot hearing for the domestic energy areas, reviews of heat demand variation patterns, and studies on methodology for applying the data to the areas not investigated so far. For the industrial areas to which super heat pumps are potentially applicable, the chemical, refining, food manufacturing and plastic manufacturing/processing industries are selected, to study problems related to system structures and conditions of the heat pump systems in these areas. (NEDO)

  11. Urban district heating using nuclear heat - a survey

    International Nuclear Information System (INIS)

    Beresovski, T.; Oliker, I.

    1979-01-01

    The use of heat from nuclear power plants is of great interest in connection with projected future expansions of large urban district heating systems. Oil price escalation and air pollution from increased burning of fossil fuels are substantial incentivers for the adoption of nuclear heat and power plants. The cost of the hot water piping system from the nuclear plant to the city is a major factor in determining the feasibility of using nuclear heat. To achieve reasonable costs, the heat load should be at least 1500 MW(th), transport temperatures 125-200 0 C and distances preferably 50 km or less. Heat may be extracted from the turbines of conventional power reactors. Alternatively, some special-purpose smaller reactors are under development which are specially suited to production of heat with little or no power coproduct. Many countries are conducting studies of future expansions of district heating systems to use nuclear heat. Several countries are developing technology suitable for this application. Actual experience with the use of nuclear heat for district heating is currently being gained only in the USSR, however. While district heating appears to be a desirable technology at a time of increasing fossil-fuel costs, the use of nuclear heat will require siting of nuclear plants within transmission radius of cities. The institutional barries toward use of nuclear heating will have to be overcome before the energy conservation potential of this approach can be realized on a significant scale. (author)

  12. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    International Nuclear Information System (INIS)

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys

  13. North–South debate on district heating: Evidence from a household survey

    International Nuclear Information System (INIS)

    Guo, Jin; Huang, Ying; Wei, Chu

    2015-01-01

    There has been a long debate on whether South China should supply district heating for the residential sector, a system that is widely used in North China. The major concern is that it may further accelerate China's energy demand. Using a unique urban household level dataset, the China Residential Energy Consumption Survey (CRECS), we investigate residential energy consumption for heating and examine the energy intensity and energy cost of distributed heating in South China and district heating in North China during the 2012 heating season. Our results show that the total energy consumption for distributed heating system users in southern cities is significantly lower than for users of district heating systems in northern cities. However, when accounting for the heating area and heating season, the distributed heating households in the South consumed 32% more energy and paid 189% higher cost per unit area and per hour, but had lower comfort than district heating users in the North. These findings suggest promoting the district heating market in appropriate areas in South China. This not only can improve residential welfare, but also can indirectly reduce energy consumption and financial burdens. - Highlights: • The debate on whether Southern China apply district heating is present. • The household data in 2012 is used to compare the energy efficient and cost. • South resident use more energy and higher cost but less comfort than North. • Government should not prevent the district heating market.

  14. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  15. Coping with heat in the city: what can we learn from a survey immediately after a hot weather period for future heat waves?

    Science.gov (United States)

    Kunz-Plapp, Tina; Schipper, Hans; Hackenbruch, Julia

    2015-04-01

    Karlsruhe is one of the hottest cities in Germany with a temperature record of 40.2°C in August 2003. In 2013, two hot weather periods with continuous heat warnings by the German Weather Service for 7 and 8 days occurred during the second half of July and first 10 days of August 2013, and in early August the temperatures in Karlsruhe almost reached again the record of 40.2°C. To understand how citizens experienced the heat and what strategies they used to cope with the heat, we conducted a questionnaire survey on subjective heat stress and coping strategies immediately after the hot weather period. Based on a holistic approach the questionnaire included questions on heat stress experience in different contexts of daily life, health impacts of the heat, coping measures, housing conditions, urban environment, living conditions, and socio-demographic characteristics. The responses of the 323 survey participants living and working in Karlsruhe show that they on average experienced the heat as rather stressful event, whereby the heat stress experienced at home was significant lower than heat stress experienced at work or in general. Regression analyses show that, among the factors included in the questionnaire, the health impairments suffered during the heat, the control belief and the coping measures implemented mainly determine heat stress experienced in general and at work. For the subjective heat stress at home, factors of the built urban environment such as heat loading of district, living in the attic or the ground floor, and heat protection elements of the inhabited building also played a role. At the same time, the way the respondents used different coping strategies in context of their daily activities and routines during heat suggests lessons to learn from this event how individual response to heat differs from responses to other types of natural hazards.

  16. Bayesian analysis of heat pipe life test data for reliability demonstration testing

    International Nuclear Information System (INIS)

    Bartholomew, R.J.; Martz, H.F.

    1985-01-01

    The demonstration testing duration requirements to establish a quantitative measure of assurance of expected lifetime for heat pipes was determined. The heat pipes are candidate devices for transporting heat generated in a nuclear reactor core to thermoelectric converters for use as a space-based electric power plant. A Bayesian analysis technique is employed, utilizing a limited Delphi survey, and a geometric mean accelerated test criterion involving heat pipe power (P) and temperature (T). Resulting calculations indicate considerable test savings can be achieved by employing the method, but development testing to determine heat pipe failure mechanisms should not be circumvented

  17. State of Maine residential heating oil survey: 1995--1996 season summary

    International Nuclear Information System (INIS)

    Elder, B.

    1996-05-01

    In Maine the cash price is surveyed, as opposed to lthe retail or charge price, as it has been identified as the price most often paid by Maine consumers. As one can see from the chart in this report, the 1995-1996 cash prices for No. 2 heating oil can be characterized as having an upward trend and much more fluctuation than last years' relatively flat line. The 1995-96 heating season started at the closing price of the previous season and for the first few weeks prices were lower than most of the 1994-95 trendline. When the weather became cooler, however, prices were on a steady incline until well into the winter. Prices leveled off for most of the rest of the season with a dramatic surge on the last week of the survey. The average statewide cash price for No. 2 heating oil this year was .861 1 cents, approximately ten cents higher than the average for 1994-1995 which was .7661 cents per gallon. It has been the observation of the SPO that during most of the 1995-1996 season, Maine's prices showed a direct correspondence with New England rack or wholesale prices. It appeared that they never fluctuated more than 3-4 cents from each other

  18. 76 FR 9637 - Proposed Information Collection (Veteran Suicide Prevention Online Quantitative Surveys) Activity...

    Science.gov (United States)

    2011-02-18

    ... Collection (Veteran Suicide Prevention Online Quantitative Surveys) Activity: Comment Request AGENCY... prevention of suicide among Veterans and their families. DATES: Written comments and recommendations on the.... Abstract: VA's top priority is the prevention of Veterans suicide. It is imperative to reach these at-risk...

  19. Literature survey of heat transfer enhancement techniques in refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  20. Survey of bayesian belif nets for quantitative reliability assessment of safety critical software used in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eom, H.S.; Sung, T.Y.; Jeong, H.S.; Park, J.H.; Kang, H.G.; Lee, K

    2001-03-01

    As part of the Probabilistic Safety Assessment of safety grade digital systems used in Nuclear Power plants research, measures and methodologies applicable to quantitative reliability assessment of safety critical software were surveyed. Among the techniques proposed in the literature we selected those which are in use widely and investigated their limitations in quantitative software reliability assessment. One promising methodology from the survey is Bayesian Belief Nets (BBN) which has a formalism and can combine various disparate evidences relevant to reliability into final decision under uncertainty. Thus we analyzed BBN and its application cases in digital systems assessment area and finally studied the possibility of its application to the quantitative reliability assessment of safety critical software.

  1. Survey of bayesian belif nets for quantitative reliability assessment of safety critical software used in nuclear power plants

    International Nuclear Information System (INIS)

    Eom, H. S.; Sung, T. Y.; Jeong, H. S.; Park, J. H.; Kang, H. G.; Lee, K.

    2001-03-01

    As part of the Probabilistic Safety Assessment of safety grade digital systems used in Nuclear Power plants research, measures and methodologies applicable to quantitative reliability assessment of safety critical software were surveyed. Among the techniques proposed in the literature we selected those which are in use widely and investigated their limitations in quantitative software reliability assessment. One promising methodology from the survey is Bayesian Belief Nets (BBN) which has a formalism and can combine various disparate evidences relevant to reliability into final decision under uncertainty. Thus we analyzed BBN and its application cases in digital systems assessment area and finally studied the possibility of its application to the quantitative reliability assessment of safety critical software

  2. Quantitative dissolution of (U, Pu)O2 MOX (0.4% to 44% PuO2) using microwave heating technique

    International Nuclear Information System (INIS)

    Malav, R.K.; Fulzele, Ajit K.; Prakash, Amrit; Afzal, Md.; Panakkal, J.P.

    2011-01-01

    AFFF has fabricated the (U, Pu)O 2 mixed oxide fuels for PHWRs, BWRs, PFBRs and FBTRs. The quantitative dissolution of the fuel samples are required within time for accurate determination of uranium-plutonium in chemical quality control laboratory. This paper describes the use of microwave heating technique in quantitative dissolution of (U, Pu)O 2 MOX (from 0.4% to 44% PuO 2 ). (author)

  3. Quantitative research.

    Science.gov (United States)

    Watson, Roger

    2015-04-01

    This article describes the basic tenets of quantitative research. The concepts of dependent and independent variables are addressed and the concept of measurement and its associated issues, such as error, reliability and validity, are explored. Experiments and surveys – the principal research designs in quantitative research – are described and key features explained. The importance of the double-blind randomised controlled trial is emphasised, alongside the importance of longitudinal surveys, as opposed to cross-sectional surveys. Essential features of data storage are covered, with an emphasis on safe, anonymous storage. Finally, the article explores the analysis of quantitative data, considering what may be analysed and the main uses of statistics in analysis.

  4. Trace Metal Levels in Raw and Heat Processed Nigerian Staple ...

    African Journals Online (AJOL)

    The levels of some trace metals (Fe, Zn, Cu, Ni, Cd) were quantitatively determined in raw and heat processed staple food cultivars (yam, cassava, cocoyam and maize) from oil producing areas of part of the Niger Delta and compared with a non-oil producing area of Ebonyi State as control. The survey was conducted to ...

  5. Laser heat stimulation of tiny skin areas adds valuable information to quantitative sensory testing in postherpetic neuralgia.

    Science.gov (United States)

    Franz, Marcel; Spohn, Dorothee; Ritter, Alexander; Rolke, Roman; Miltner, Wolfgang H R; Weiss, Thomas

    2012-08-01

    Patients suffering from postherpetic neuralgia often complain about hypo- or hypersensation in the affected dermatome. The loss of thermal sensitivity has been demonstrated by quantitative sensory testing as being associated with small-fiber (Aδ- and C-fiber) deafferentation. We aimed to compare laser stimulation (radiant heat) to thermode stimulation (contact heat) with regard to their sensitivity and specificity to detect thermal sensory deficits related to small-fiber dysfunction in postherpetic neuralgia. We contrasted detection rate of laser stimuli with 5 thermal parameters (thresholds of cold/warm detection, cold/heat pain, and sensory limen) of quantitative sensory testing. Sixteen patients diagnosed with unilateral postherpetic neuralgia and 16 age- and gender-matched healthy control subjects were tested. Quantitative sensory testing and laser stimulation of tiny skin areas were performed in the neuralgia-affected skin and in the contralateral homologue of the neuralgia-free body side. Across the 5 thermal parameters of thermode stimulation, only one parameter (warm detection threshold) revealed sensory abnormalities (thermal hypoesthesia to warm stimuli) in the neuralgia-affected skin area of patients but not in the contralateral area, as compared to the control group. In contrast, patients perceived significantly less laser stimuli both in the affected skin and in the contralateral skin compared to controls. Overall, laser stimulation proved more sensitive and specific in detecting thermal sensory abnormalities in the neuralgia-affected skin, as well as in the control skin, than any single thermal parameter of thermode stimulation. Thus, laser stimulation of tiny skin areas might be a useful diagnostic tool for small-fiber dysfunction. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  6. Icebase: A suborbital survey to map geothermal heat flux under an ice sheet

    Science.gov (United States)

    Purucker, Michael E.; Connerney, John E. P.; Blakely, Richard J.; Bracken, Robert E.; Nowicki, Sophie; Le, Guan; Sabaka, Terence J.; Bonalsky, Todd M.; Kuang, Weijia; Ravat, Dhananjay; Ritz, Catherine; Vaughan, Alan P. M.; Gaina, Carmen; McEnroe, Suzanne; Lesur, Vincent

    2013-04-01

    NASA will solicit suborbital missions as part of its Earth Venture program element in the coming year. These missions are designed as complete PI-led investigations to conduct innovative hypothesis or scientific question-driven approaches to pressing questions in Earth System science. We propose to carry out a suborbital magnetic survey of Greenland using NASA's Global Hawk unmanned aerial vehicle to produce the first-ever map of the geothermal heat flux under an ice sheet. Better constraints on geothermal heat flux will reduce the uncertainty in future sea level rise, in turn allowing a more informed assessment of its impact on society. The geothermal heat flux depends on conditions such as mantle heat flux, and the tectonic history and heat production of the crust, all of which vary spatially. Underneath ice sheets, the geothermal heat flux influences the basal ice. Therefore heat flux is an important boundary condition in ice sheet modeling. Using magnetic data to constrain heat flux is possible because the magnetic properties of rocks are temperature dependent until they reach the Curie temperature. The technique has applications to understanding the response of Greenland ice sheet to climate forcing because the basal heat flux provides one of the boundary conditions. The technique also helps to locate the oldest ice. The oldest ice in Greenland should be found in areas of very low heat flux, and the identification of those areas is provided by this technique. Ice cores from the areas of oldest ice help to decipher past temperatures and CO2 contents. Our latest model of the geothermal heat flux under the Greenland ice sheet (http://websrv.cs.umt.edu/isis/index.php/Greenland_Basal_Heat_Flux) is based on low- resolution satellite observations collected by the CHAMP satellite between 2000 and 2010. Those observations will be enhanced by the upcoming Swarm gradient satellite mission, but the resolution will improve by less than a factor of two, from 400 km

  7. Lack of quantitative training among early-career ecologists: a survey of the problem and potential solutions

    Directory of Open Access Journals (Sweden)

    Frédéric Barraquand

    2014-03-01

    Full Text Available Proficiency in mathematics and statistics is essential to modern ecological science, yet few studies have assessed the level of quantitative training received by ecologists. To do so, we conducted an online survey. The 937 respondents were mostly early-career scientists who studied biology as undergraduates. We found a clear self-perceived lack of quantitative training: 75% were not satisfied with their understanding of mathematical models; 75% felt that the level of mathematics was “too low” in their ecology classes; 90% wanted more mathematics classes for ecologists; and 95% more statistics classes. Respondents thought that 30% of classes in ecology-related degrees should be focused on quantitative disciplines, which is likely higher than for most existing programs. The main suggestion to improve quantitative training was to relate theoretical and statistical modeling to applied ecological problems. Improving quantitative training will require dedicated, quantitative classes for ecology-related degrees that contain good mathematical and statistical practice.

  8. Quantitative Survey of Laypersons' Attitudes Toward Organ Transplantation in Japan.

    Science.gov (United States)

    Okita, T; Hsu, E; Aizawa, K; Nakada, H; Toya, W; Matsui, K

    In comparison with foreign countries, living-organ transplantations (LOT) have been performed more frequently than dead organ transplants, including brain-dead organ transplantation (BOT) in Japan. This situation has given rise to organ transplantation tourism. Therefore, we clarify laypersons' preferences regarding organ transplantation that are producing the current situation in Japan, to suggest a possible framework for further efforts. Voluntary completion of a quantitative and anonymous survey was promoted online (a sample size of 1030). The questionnaire had two types of variables concerning demographic characteristics and organ transplantation-related issues. LOT was favored over BOT. However, for willingness to donate to family members, the participants showed a significantly more positive attitude toward brain-dead organ donors (BODs) than living organ donors (LODs). In the evaluation of each transplantation technology, BOT and LOT were positioned in the middle, between transplantation that does not depend on others and the utilization of animal organs. Although LOT was favored over BOT, for participants hypothesized to be in a position to donate and receive organs, BODs received a conversely better reputation than LODs. Our survey and discussion suggest that the present conditions of organ transplantation in Japan might be because there is a lack of deliberation on transplantation tourism and LOT. Therefore, more surveys concerning LOT cases and the implications of avoidance of organs from brain-dead bodies, coupled with more discussions based on these surveys, are necessary to formulate a Japanese transplantation policy for the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Workers’ perceptions of climate change related extreme heat exposure in South Australia: a cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Jianjun Xiang

    2016-07-01

    Full Text Available Abstract Background Occupational exposure to extreme heat without sufficient protection may not only increase the risk of heat-related illnesses and injuries but also compromise economic productivity. With predictions of more frequent and intense bouts of hot weather, workplace heat exposure is presenting a growing challenge to workers’ health and safety. This study aims to investigate workers’ perceptions and behavioural responses towards extreme heat exposure in a warming climate. Methods A cross-sectional questionnaire survey was conducted in 2012 in South Australia among selected outdoor industries. Workers’ heat risk perceptions were measured in the following five aspects: concerns about heat exposure, attitudes towards more training, policy and guideline support, the adjustment of work habits, and degree of satisfaction of current preventive measures. Bivariate and multivariate logistic regression analyses were used to identify factors significantly associated with workers’ heat perceptions. Results A total of 749 respondents participated in this survey, with a response rate of 50.9 %. A little more than half (51.2 % of respondents were moderately or very much concerned about workplace heat exposure. Factors associated with workers’ heat concerns included age, undertaking very physically demanding work, and the use of personal protective equipment, heat illness history, and injury experience during hot weather. Less than half (43.4 % of the respondents had received heat-related training. Workers aged 25–54 years and those with previous heat-related illness/injury history showed more supportive attitudes towards heat-related training. The provision of cool drinking water was the most common heat prevention measure. A little more than half (51.4 % of respondents were satisfied with the current heat prevention measures. About two-thirds (63.8 % of respondents agreed that there should be more heat-related regulations and

  10. Conductive heat flow at the TAG Active Hydrothermal Mound: Results from 1993-1995 submersible surveys

    Science.gov (United States)

    Becker, K.; Von Herzen, R.; Kirklin, J.; Evans, R.; Kadko, D.; Kinoshita, M.; Matsubayashi, O.; Mills, R.; Schultz, A.; Rona, P.

    We report 70 measurements of conductive heat flow at the 50-m-high, 200-m-diameter TAG active hydrothermal mound, made during submersible surveys with Alvin in 1993 and 1995 and Shinkai 6500 in 1994. The stations were all measured with 5-thermistor, 0.6- or 1-m-long Alvin heat flow probes, which are capable of determining both gradient and thermal conductivity, and were transponder-navigated to an estimated accuracy of ±5-10 m relative to the 10-m-diameter central complex of black smokers. Within 20 m of this complex, conductive heat flow values are extremely variable (0.1- > 100 W/m²), which can only be due to local spatial and possible temporal variability in the immediate vicinity of the vigorous discharge sites. A similar local variability is suggested in the “Kremlin” area of white smokers to the southeast of the black smoker complex. On the south and southeast side of the mound, there is very high heat flow (3.7- > 25 W/m²) on the sedimented terraces that slope down from the Kremlin area. Heat flow is also high (0.3-3 W/m²) in the pelagic carbonate sediments on the surrounding seafloor within a few tens of meters of the southwest, northwest, and northeast sides of the mound. On the west side of the sulfide rubble plateau that surrounds the central black smoker peak, there is a coherent belt of very low heat flow (smokers, suggestive of local, shallow recharge of bottom water. The three submersible surveys spanned nearly two years, but showed no indication of any temporal variability in conductive heat flow over this time scale, whether natural or induced by ODP drilling in 1994.

  11. Heating networks and domestic central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  12. Heat roadmap China

    DEFF Research Database (Denmark)

    Xiong, Weiming; Wang, Yu; Mathiesen, Brian Vad

    2015-01-01

    District heating is regarded as a key element of energy saving actions in the Chinese national energy strategy, while space heating in China is currently still dominated by coal boilers. However, there is no existing quantitative study to analyse the future heat strategy for China. Therefore...

  13. Qualities of a psychiatric mentor: a quantitative Singaporean survey.

    Science.gov (United States)

    Tor, Phern-Chern; Goh, Lee-Gan; Ang, Yong-Guan; Lim, Leslie; Winslow, Rasaiah-Munidasa; Ng, Beng-Yeong; Wong, Sze-Tai; Ng, Tse-Pin; Kia, Ee-Heok

    2011-11-01

    Psychiatric mentors are an important part of the new, seamless training program in Singapore. There is a need to assess the qualities of a good psychiatric mentor vis-à-vis those of a good psychiatrist. An anonymous survey was sent out to all psychiatry trainees and psychiatrists in Singapore to assess quantitatively the relative importance of 40 qualities for a good psychiatrist and a good mentor. The response rate was 48.7% (74/152). Factor analysis showed four themes among the qualities assessed (professional, personal values, relationship, academic-executive). A good mentor is defined by professional, relationship, and personal-values qualities. Mentors have significantly higher scores than psychiatrists for two themes (relationship and academic-executive). Being a good mentor, in Asia, means being a good psychiatrist first and foremost but also requires additional relationship and academic-executive skills. Mentors should be formally trained in these additional skills that were not part of the psychiatric curriculum.

  14. FY 1989 Report on heat pump/storage markets in Australia and New Zealand by the survey team; 1989 nendo Australia New Zealand heat pump chikunetsu shijo chosadan hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    Inspections/surveys are conducted on the markets of heat pumps and heat storage systems in Australia and New Zealand, spread of these systems, R and D situations, energy-related problems and policies, and so on. In Australia, heat pumps are mainly used for air conditioning. Several heat pump units are in service in NSW, including the one in Grosvnor Place Building, which is combined with an ice heat storage system. It seems that no waste heat is utilized. Use of heat pumps in this country is possible, in particular for industrial purposes. Use of fluorochlorohydrocarbons is restricted in Australia, in spite of their small quantities actually used, which is accepted as a political consideration. No system of discounted late-nigh rate is adopted in this country, but heat storage is planned as a measure to level power consumption, because the power rate is increased when the consumption exceeds the contracted level. Water is replaced by ice as the heat storage medium. (NEDO)

  15. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  16. Quantitative survey on health and violence endured by refugees during their journey and in Calais, France.

    Science.gov (United States)

    Bouhenia, Malika; Farhat, Jihane Ben; Coldiron, Matthew E; Abdallah, Saif; Visentin, Delphine; Neuman, Michaël; Berthelot, Mathilde; Porten, Klaudia; Cohuet, Sandra

    2017-11-01

    In 2015, more than 1 million refugees arrived in Europe. During their travels, refugees often face harsh conditions, violence and torture in transit countries, but there is a lack of quantitative evidence on their experiences. We present the results of a retrospective survey among refugees in the 'Jungle' of Calais, France, to document their health problems and the violence they endured during their journeys. We conducted a cross-sectional population-based survey in November and December 2015. The sample size was set at 402 individuals, and geospatial simple random sampling was used. We collected data on demographics, routes travelled, health status, violence and future plans. Departures from the country of origin increased beginning in September 2015. Sixty-one percent of respondents reported having at least one health problem, especially while in Calais. Overall, 65.6% (95% CI 60.3-70.6) experienced at least one violent event en route; 81.5% of refugees wanted to go to the UK. This first quantitative survey conducted among refugees in Europe provides important socio-demographic data on refugees living in Calais and describes the high rate of violence they encountered during their journeys. Similar documentation should be repeated throughout Europe in order to better respond to the needs of this vulnerable population. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  17. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress.

    Science.gov (United States)

    Van Goor, Angelica; Ashwell, Christopher M; Persia, Michael E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2016-04-14

    Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the

  18. Barriers to global health development: An international quantitative survey.

    Directory of Open Access Journals (Sweden)

    Bahr Weiss

    Full Text Available Global health's goal of reducing low-and-middle-income country versus high-income country health disparities faces complex challenges. Although there have been discussions of barriers, there has not been a broad-based, quantitative survey of such barriers.432 global health professionals were invited via email to participate in an online survey, with 268 (62% participating. The survey assessed participants' (A demographic and global health background, (B perceptions regarding 66 barriers' seriousness, (C detailed ratings of barriers designated most serious, (D potential solutions.Thirty-four (of 66 barriers were seen as moderately or more serious, highlighting the widespread, significant challenges global health development faces. Perceived barrier seriousness differed significantly across domains: Resource Limitations mean = 2.47 (0-4 Likert scale, Priority Selection mean = 2.20, Corruption, Lack of Competence mean = 1.87, Social and Cultural Barriers mean = 1.68. Some system-level predictors showed significant but relatively limited relations. For instance, for Global Health Domain, HIV and Mental Health had higher levels of perceived Social and Cultural Barriers than other GH Domains. Individual-level global health experience predictors had small but significant effects, with seriousness of (a Corruption, Lack of Competence, and (b Priority Selection barriers positively correlated with respondents' level of LMIC-oriented (e.g., weeks/year spent in LMIC but Academic Global Health Achievement (e.g., number of global health publications negatively correlated with overall barrier seriousness.That comparatively few system-level predictors (e.g., Organization Type were significant suggests these barriers may be relatively fundamental at the system-level. Individual-level and system-level effects do have policy implications; e.g., Priority Selection barriers were among the most serious, yet effects on seriousness of how LMIC-oriented a professional

  19. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate...... climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...... and quantitative genetics in particular, plant phenotyping based quantitative trait loci (QTL) discovery for a physiological trait under heat stress. Chlorophyll a fluorescence trait, Fv/Fm was used as a phenotyping tool, as it reflects the effect of heat stress on maximum photochemical efficiency of photosystem...

  20. Quantitative Laughter Detection, Measurement, and Classification-A Critical Survey.

    Science.gov (United States)

    Cosentino, Sarah; Sessa, Salvatore; Takanishi, Atsuo

    2016-01-01

    The study of human nonverbal social behaviors has taken a more quantitative and computational approach in recent years due to the development of smart interfaces and virtual agents or robots able to interact socially. One of the most interesting nonverbal social behaviors, producing a characteristic vocal signal, is laughing. Laughter is produced in several different situations: in response to external physical, cognitive, or emotional stimuli; to negotiate social interactions; and also, pathologically, as a consequence of neural damage. For this reason, laughter has attracted researchers from many disciplines. A consequence of this multidisciplinarity is the absence of a holistic vision of this complex behavior: the methods of analysis and classification of laughter, as well as the terminology used, are heterogeneous; the findings sometimes contradictory and poorly documented. This survey aims at collecting and presenting objective measurement methods and results from a variety of different studies in different fields, to contribute to build a unified model and taxonomy of laughter. This could be successfully used for advances in several fields, from artificial intelligence and human-robot interaction to medicine and psychiatry.

  1. Quantitative thermography and methods for in-situ determination of heat losses from district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B. [ed.

    1996-11-01

    The course and seminar summarizing application of infrared thermography in district heating systems control gathered Danish specialists with 5 contributions on the subject. Maintenance of the heat distribution pipelines and thermographic inspection of the systems are essential in order to avoid heat losses. (EG)

  2. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  3. Survey of European Community efforts in RF heating

    International Nuclear Information System (INIS)

    Consoli, T.

    1981-01-01

    The present paper briefly reviews the efforts made over the last 10 years, with particular emphasis on the period from 1978 to 1980. The RF heating experiments within EC are presented: low frequency heating; heating at medium frequencies (ICRH); RF heating at low hybrid frequency; heating at the ECR frequency. The plan of Tore-Supra is given

  4. Geologic survey of a geothermal heating plant at the Hovdejordet, Bodoe tenant association, Bodoe

    International Nuclear Information System (INIS)

    Elvebakk, Harald; Midttoemme, Kirsti; Skarphagen, Helge

    2002-01-01

    The Norwegian Geological Survey (NGU) has investigated the possibilities of finding a suitable heating source for heat pump based heating for the Bodoe tenant association's new housing at the Hovdejordet in central Bodoe. Energy extraction from solid rock was found to be possible. A 170 m deep well was drilled and studied by use of optic televiewer. In addition, the temperature, electrical conductivity and natural gamma radiation were logged. Heat conductivity in mineral test samples from the area was measured as well. The heat conductivity in the ground rock was good i.e. it would be possible to get relatively much heat from each drilled meter of well. The clay covering above the rock is less than 10 m which implies that large drill costs for drilling in large uncompacted material covers may be avoided. The drill hole logging with the televiewer showed a significant main fracture direction which coincided with the rock stri ata and fall in the area. There are many mineralised fractures but fractures with measurable openings were not observed. This may imply small ground water flows and a sizeable contribution from this source may therefore not be counted on. The temperature gradient is small. The drilling of deep wells would then not lead to significant energy gains. A temporary conclusion is that it would be profitable to combine energy extraction from outdoor air and energy wells. Preliminary suggestions are prepared for drill hole based energy storage

  5. Seaglider surveys at Ocean Station Papa: Diagnosis of upper-ocean heat and salt balances using least squares with inequality constraints

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2017-06-01

    Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.

  6. Enrichment of water solube substances at heat transfer surfaces in steam boilers and steam generators - a literature survey

    International Nuclear Information System (INIS)

    Kelen, T.

    1975-03-01

    A literature survey has been made to determine the possible need for investigations into enrichment at heat transport surfaces. The survey shows that enrichment in furnace tubes of carbon steel has led both to hydrogen embrittlement as a result of a reduction of pH and to local tube wall thinning and alkaline stress corrosion following an increase of pH. Damage caused by enrichment has occurred also in the steam generators of PWR's. Information concerning measured enrichment, observed hide-out, occurrence of normally easily soluble deposits as well as of corrosion damage requiring high concentrations lead to the conclusion that enrichment factors of the order of 10 000 are to be expected in some instances. The relationship between operational conditions and enrichment in specific cases is, however, poorly documented. The tendency to hide out varies for different substances. This is however not evidently equivalent to variation of the corresponding enrichment factor in the solution. Enrichment at heat transfer surfaces can arise as the result of one or several of the following effects: - formation of porous deposits - poor circulation - high densities of heat flow rate - departure from nucleate boiling leading to dry-out - steam blanketing. The conclusion reached from the literature survey is that knowledge of the degree of enrichment produced under specific operational conditions is extremely inadequate. (author)

  7. Quantitative determination of the specific heat and the glass transition of moist samples by temperature modulated differential scanning calorimetry.

    Science.gov (United States)

    Schubnell, M; Schawe, J E

    2001-04-17

    In differential scanning calorimetry (DSC), remnant moisture loss in samples often overlaps and distorts other thermal events, e.g. glass transitions. To separate such overlapping processes, temperature modulated DSC (TMDSC) has been widely used. In this contribution we discuss the quantitative determination of the heat capacity of a moist sample from TMDSC measurements. The sample was a spray-dried pharmaceutical compound run in different pans (hermetically-sealed pan, pierced lid pan [50 microm] and open pan). The apparent heat capacity was corrected for the remaining amount of moisture. Using this procedure we could clearly identify the glass transition of the dry and the moist sample. We found that a moisture content of about 6.2% shifts the glass transition by about 50 degrees C.

  8. Survey of high-temperature nuclear heat application

    International Nuclear Information System (INIS)

    Kirch, N.; Schaefer, M.

    1984-01-01

    Nuclear heat application at high temperatures can be divided into two areas - use of high-temperature steam up to 550 deg. C and use of high-temperature helium up to about 950 deg. C. Techniques of high-temperature steam and heat production and application are being developed in several IAEA Member States. In all these countries the use of steam for other than electricity production is still in a project definition phase. Plans are being discussed about using steam in chemical industries, oil refineries and for new synfuel producing plants. The use of nuclear generated steam for oil recovery from sands and shale is also being considered. High-temperature nuclear process heat production gives new possibilities for the application of nuclear energy - hard coals, lignites, heavy oils, fuels with problems concerning transport, handling and pollution can be converted into gaseous or liquid energy carriers with no loss of their energy contents. The main methods for this conversion are hydrogasification with hydrogen generated by nuclear heated steam reformers and steam gasification. These techniques will allow countries with large coal resources to replace an important part of their natural gas and oil consumption. Even countries with no fossil fuels can benefit from high-temperature nuclear heat - hydrogen production by thermochemical water splitting, nuclear steel making, ammonia production and the chemical heat-pipe system are examples in this direction. (author)

  9. A cross-sectional, randomized cluster sample survey of household vulnerability to extreme heat among slum dwellers in ahmedabad, india.

    Science.gov (United States)

    Tran, Kathy V; Azhar, Gulrez S; Nair, Rajesh; Knowlton, Kim; Jaiswal, Anjali; Sheffield, Perry; Mavalankar, Dileep; Hess, Jeremy

    2013-06-18

    Extreme heat is a significant public health concern in India; extreme heat hazards are projected to increase in frequency and severity with climate change. Few of the factors driving population heat vulnerability are documented, though poverty is a presumed risk factor. To facilitate public health preparedness, an assessment of factors affecting vulnerability among slum dwellers was conducted in summer 2011 in Ahmedabad, Gujarat, India. Indicators of heat exposure, susceptibility to heat illness, and adaptive capacity, all of which feed into heat vulnerability, was assessed through a cross-sectional household survey using randomized multistage cluster sampling. Associations between heat-related morbidity and vulnerability factors were identified using multivariate logistic regression with generalized estimating equations to account for clustering effects. Age, preexisting medical conditions, work location, and access to health information and resources were associated with self-reported heat illness. Several of these variables were unique to this study. As sociodemographics, occupational heat exposure, and access to resources were shown to increase vulnerability, future interventions (e.g., health education) might target specific populations among Ahmedabad urban slum dwellers to reduce vulnerability to extreme heat. Surveillance and evaluations of future interventions may also be worthwhile.

  10. High-performance heat pipes for heat recovery applications

    Science.gov (United States)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained.

  11. Specific heat, polarization and heat conduction in microwave heating systems: A nonequilibrium thermodynamic point of view

    International Nuclear Information System (INIS)

    Bergese, Paolo

    2006-01-01

    A microwave (MW) field can induce in a dielectric material an oscillatory polarization. By this mechanism part of the energy carried by the waves is converted into chaotic agitation, and the material heats up. MW heating is a nonequilibrium phenomenon, while conventional heating can generally be considered as quasi-static. Excess (or nonthermal) effects of MWs with respect to conventional heating lie in this difference. Macroscopically, MW heating can be described in the framework of linear nonequilibrium thermodynamics (NET). This approach indicates that in a dielectric material under MW heating the specific heat has a dynamic component linked to the variation of polarization with temperature, and that polarization and heat conduction are intertwined. In particular, linear NET provides a new phenomenological equation for heat conduction that is composed of the classic Fourier's law and an additional term due to polarization relaxation. This term quantitatively describes the excess effect of MWs on thermal conduction

  12. Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min Ye [Chonbuk National Univ., Chonju (Korea, Republic of)

    2016-02-15

    In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

  13. FY 1977 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Heat-storage subsystems); 1977 nendo taiyo energy riyo system chosa kenkyu. Chikunetsu sub system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at surveys and researches on materials for heat-storage systems for solar thermal power generation systems and solar energy systems for air conditioning and hot water supply; analysis of current status of heat-storage subsystems and extraction of problems involved therein; and sorting out the research themes. Surveyed are the tower type light-collecting systems under development for solar thermal power generation systems, heat-storage subsystems with flat- and curved-surface type light-collecting systems; heat-storage systems being developed by the Electrotechnical Laboratory; heat-storage materials for solar thermal power generation techniques; regenerative heat exchangers; thermodynamic considerations for heat storage and molten salt techniques; and relationship between heat storage material properties and containers. Problems involved in each item are also extracted. The heat-storage subsystems for solar energy systems for air conditioning and hot water supply are now being under development, some being already commercialized, and the classification of and surveys on the related techniques are conducted. At the same time, problems involved in the heat-storage subsystems, being developed for residential buildings, condominiums and large-size buildings, are also extracted. The research themes for the heat-storage subsystems for solar air conditioning and hot water supply systems are sorted out, and case studies are conducted, based on the discussions on, e.g., thermal properties of heat-storage materials, behavior and heat transfer characteristics of latent heat type heat-storage materials, and corrosion of the heat-storage materials. (NEDO)

  14. Use of residential wood heating in a context of climate change: a population survey in Québec (Canada

    Directory of Open Access Journals (Sweden)

    Valois Pierre

    2008-05-01

    Full Text Available Abstract Background Wood heating is recommended in several countries as a climate change (CC adaptation measure, mainly to increase the autonomy of households during power outages due to extreme climatic events. The aim of this study was to examine various perceptions and individual characteristics associated with wood heating through a survey about CC adaptations. Methods A telephone survey (n = 2,545 of adults living in the southern part of the province of Québec (Canada was conducted in the early fall season of 2005. The questionnaire used closed questions and measured the respondents' beliefs and current adaptations about CC. Calibration weighting was used to adjust the data analysis for the respondent's age and language under stratified sampling based on health regions. Results More than three out of four respondents had access to a single source of energy at home, which was mainly electricity; 22.2% combined two sources or more; 18.5% heated with wood occasionally or daily during the winter. The prevalence of wood heating was higher in the peripheral regions than in the more urban regions, where there was a higher proportion of respondents living in apartments. The prevalence was also higher with participants completely disagreeing (38.5% with the eventual prohibition of wood heating when there is smog in winter, compared to respondents somewhat disagreeing (24.2% or agreeing (somewhat: 17.5%; completely: 10.4% with the adoption of this strategy. It appears that the perception of living in a region susceptible to winter smog, smog warnings in the media, or the belief in the human contribution to CC, did not influence significantly wood heating practices. Conclusion Increased residential wood heating could very well become a maladaptation to climate change, given its known consequences on winter smog and respiratory health. It would thus be appropriate to implement a long-term national program on improved and controlled residential wood

  15. A survey of tools for the analysis of quantitative PCR (qPCR) data.

    Science.gov (United States)

    Pabinger, Stephan; Rödiger, Stefan; Kriegner, Albert; Vierlinger, Klemens; Weinhäusel, Andreas

    2014-09-01

    Real-time quantitative polymerase-chain-reaction (qPCR) is a standard technique in most laboratories used for various applications in basic research. Analysis of qPCR data is a crucial part of the entire experiment, which has led to the development of a plethora of methods. The released tools either cover specific parts of the workflow or provide complete analysis solutions. Here, we surveyed 27 open-access software packages and tools for the analysis of qPCR data. The survey includes 8 Microsoft Windows, 5 web-based, 9 R-based and 5 tools from other platforms. Reviewed packages and tools support the analysis of different qPCR applications, such as RNA quantification, DNA methylation, genotyping, identification of copy number variations, and digital PCR. We report an overview of the functionality, features and specific requirements of the individual software tools, such as data exchange formats, availability of a graphical user interface, included procedures for graphical data presentation, and offered statistical methods. In addition, we provide an overview about quantification strategies, and report various applications of qPCR. Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  16. A quantitative analysis on latent heat of an aqueous binary mixture.

    Science.gov (United States)

    Han, Bumsoo; Choi, Jeung Hwan; Dantzig, Jonathan A; Bischof, John C

    2006-02-01

    The latent heat during phase change of water-NaCl binary mixture was measured using a differential scanning calorimeter, and the magnitude for two distinct phase change events, water/ice and eutectic phase change, were analyzed considering the phase change characteristics of a binary mixture. During the analysis, the latent heat associated with each event was calculated by normalizing the amount of each endothermic peak with only the amount of sample participating in each event estimated from the lever rule for the phase diagram. The resulting latent heat of each phase change measured is 303.7 +/- 2.5 J/g for water/ice phase change, and 233.0 +/- 1.6 J/g for eutectic phase change, respectively regardless of the initial concentration of mixture. Although the latent heats of water/ice phase change in water-NaCl mixtures are closely correlated, further study is warranted to investigate the reason for smaller latent heat of water/ice phase change than that in pure water (335 J/g). The analysis using the lever rule was extended to estimate the latent heat of dihydrate as 115 J/g with the measured eutectic and water/ice latent heat values. This new analysis based on the lever rule will be useful to estimate the latent heat of water-NaCl mixtures at various concentrations, and may become a framework for more general analysis of latent heat of various biological solutions.

  17. Heat pumps in urban space heating systems: Energy and environmental aspects

    International Nuclear Information System (INIS)

    Carlini, M.; Impero Abenavoli, R.; Rome Univ. La Sapienza

    1991-01-01

    A statistical survey is conducted of air pollution in the city of Rome (Italy) due to conventional building space heating systems burning fossil fuels. The survey identifies the annual consumption of the different fuels and the relative amounts of the various pollutants released into the atmosphere by the heating plants, e.g., sulfur and nitrogen oxides, carbon monoxide, etc. Comparisons are then made between the ratios of urban heating plant air pollutants produced per tonne of fuel employed and those for ENEL (Italian National Electricity Board) coal, oil and natural gas fired power plants, in order to demonstrate the better environmental performances of the utility operated energy plants. The building space heating system energy consumption and pollution data are then used in a cost benefit analysis favouring the retrofitting of conventional heating systems with heat pump systems to obtain substantial reductions in energy consumption, heating bills and urban air pollution. The use of readily available, competitively priced and low polluting (in comparison with fuel oil and coal) methane as the energy source for space heating purposes is recommended. The paper also notes the versatility of the heat pump systems in that they could also be used for summer air conditioning

  18. QUANTITATIVE CHANGES IN REGIONAL CEREBRAL BLOOD FLOW INDUCED BY COLD, HEAT AND ISCHEMIC PAIN: A CONTINUOUS ARTERIAL SPIN LABELING STUDY

    Science.gov (United States)

    Frölich, Michael A.; Deshpande, Hrishikesh; Ness, Timothy; Deutsch, Georg

    2012-01-01

    Background The development of arterial spin labeling methods, has allowed measuring regional cerebral blood flow (rCBF) quantitatively and to show the pattern of cerebral activity associated with any state such as a sustained pain state or changes due to a neurotropic drug. Methods We studied the differential effects of three pain conditions in ten healthy subjects on a 3T scanner during resting baseline, heat, cold and ischemic pain using continuous arterial spin labeling. Results Cold pain showed the greatest absolute rCBF increases in left anterior cingulate cortex, left amygdala, left angular gyrus, and Brodmann Area 6, and a significant rCBF decrease in the cerebellum. Changes in rCBF were characteristic of the type of pain condition: cold and heat pain showed increases, while the ischemic condition showed a reduction in mean absolute gray matter flow compared to rest. An association of subjects’ pain tolerance and cerebral blood flow was noted. Conclusions The observation that quantitative rCBF changes are characteristic of the pain task employed and that there is a consistent rCBF change in Brodman area 6, an area responsible for the integration of a motor response to pain, should provide extremely useful information in the quest to develop an imaging biomarker of pain. Conceivably, response in BA6 may serve as an objective measure of analgesic efficacy. PMID:22913924

  19. Quantitative changes in regional cerebral blood flow induced by cold, heat and ischemic pain: a continuous arterial spin labeling study.

    Science.gov (United States)

    Frölich, Michael A; Deshpande, Hrishikesh; Ness, Timothy; Deutsch, Georg

    2012-10-01

    The development of arterial spin labeling methods has allowed measuring regional cerebral blood flow (rCBF) quantitatively and to show the pattern of cerebral activity associated with any state such as a sustained pain state or changes due to a neurotropic drug. The authors studied the differential effects of three pain conditions in 10 healthy subjects on a 3 Tesla scanner during resting baseline, heat, cold, and ischemic pain using continuous arterial spin labeling. Cold pain showed the greatest absolute rCBF increases in left anterior cingulate cortex, left amygdala, left angular gyrus, and Brodmann area 6, and a significant rCBF decrease in the cerebellum. Changes in rCBF were characteristic of the type of pain condition: cold and heat pain showed increases, whereas the ischemic condition showed a reduction in mean absolute gray matter flow compared with rest. An association of subjects' pain tolerance and cerebral blood flow was noted. The observation that quantitative rCBF changes are characteristic of the pain task used and that there is a consistent rCBF change in Brodman area 6, an area responsible for the integration of a motor response to pain, should provide extremely useful information in the quest to develop an imaging biomarker of pain. Conceivably, response in BA6 may serve as an objective measure of analgesic efficacy.

  20. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  1. Educational needs of epileptologists regarding psychiatric comorbidities of the epilepsies: a descriptive quantitative survey.

    Science.gov (United States)

    Mula, Marco; Cavalheiro, Esper; Guekht, Alla; Kanner, Andres M; Lee, Hyang Woon; Özkara, Çiğdem; Thomson, Alfredo; Wilson, Sarah J

    2017-06-01

    Psychiatric disorders are relatively frequent comorbidities in epilepsy and they have an impact on morbidity, mortality, and quality of life. This is a report from the Task Force on Education of the ILAE Commission on Neuropsychiatry based on a survey about educational needs of epileptologists regarding management of the psychiatric comorbidities of epilepsy. The Task Force designed a quantitative questionnaire to survey the self-perceived confidence of child and adult epileptologists and psychiatrists in managing major psychiatric comorbidities of epilepsy to identify: (1) critical areas of improvement from a list of skills that are usually considered necessary for effective management of these conditions, and (2) the preferred educational format for improving these skills. A total of 211 respondents from 36 different countries participated in the survey. Confidence and usefulness scores suggest that responders would most value education and training in the management of specific clinical scenarios. Child neurologists identified major Axis I disorders, such as mood and anxiety disorders, while adult neurologists identified attention deficit hyperactivity disorder, intellectual disabilities, and autistic spectrum disorder as key areas. Both adult and child neurologists identified screening skills as the priority. Psychiatrists mainly valued specific training in the management of psychiatric complications of epilepsy surgery or psychiatric adverse events of antiepileptic drugs. Sessions during congresses and face-to-face meetings represent the preferred educational format, while e-learning modules and review papers were chosen by a minority of respondents. Results of this survey identify key areas for improvement in managing the psychiatric comorbidities of epilepsy and suggest specific strategies to develop better training for clinicians involved in epilepsy care.

  2. Geothermal survey handbook

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The objective of this handbook is to publicize widely the nature of geothermal surveys. It covers geothermal survey planning and measurement as well as measurement of thermal conductivity. Methods for the detection of eruptive areas, the measurement of radiative heat using snowfall, the measurement of surface temperature using infrared radiation and the measurement of thermal flow are described. The book also contains information on physical detection of geothermal reservoirs, the measurement of spring wells, thermographic measurement of surface heat, irregular layer surveying, air thermographics and aerial photography. Isotope measurement techniques are included.

  3. Influencing Swedish homeowners to adopt district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Akademigatan 1, 831 25 Oestersund (Sweden)

    2009-02-15

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Oestersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey. (author)

  4. Influencing Swedish homeowners to adopt district heating system

    International Nuclear Information System (INIS)

    Mahapatra, Krushna; Gustavsson, Leif

    2009-01-01

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Ostersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey

  5. Influencing Swedish homeowners to adopt district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Akademigatan 1, 831 25 Oestersund (Sweden)

    2009-02-15

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Oestersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey. (author)

  6. Is ambient heat exposure levels associated with miscarriage or stillbirths in hot regions? A cross-sectional study using survey data from the Ghana Maternal Health Survey 2007

    Science.gov (United States)

    Asamoah, Benedict; Kjellstrom, Tord; Östergren, Per-Olof

    2018-03-01

    It is well established that high ambient heat could cause congenital abnormalities resulting in miscarriage or stillbirth among certain species of mammals. However, this has not been systematically studied in real field settings among humans, despite the potential value of such knowledge for estimating the impact of global warming on the human species. This study sought to test the hypothesis that maternal heat exposure during pregnancy in hot regions is associated with increased prevalence of spontaneous abortions or stillbirths and to develop an analytical strategy to use existing data from maternal health surveys and existing data on historical heat levels at a geographic grid cell level. A subsample of the Ghana Maternal Health Survey 2007 was used in this study. This study sample consisted of 1136 women with pregnancy experiences between 2004 and 2007, out of which 141 women had a pregnancy that terminated in miscarriage or stillbirth. Induced-abortion cases were excluded. The linkage between ambient heat exposure and pregnancy outcome followed the epidemiological time-place-person principle, by linking timing of pregnancy outcome with historical data of local area heat levels for each month, as estimated in an international database. Maternal heat exposure level was estimated using calculated levels of the wet-bulb globe temperature (WBGT), which takes into account temperature, humidity, heat radiation, and air movement over the skin (wind speed). The values we used applied to exposure in the shade or in buildings without cooling (no solar heat radiation) and a standard air movement of 1 m/s. We applied two exposure durations: yearly average and monthly average for second month of pregnancy. In one analysis, we restricted the sample to four regions with time-homogeneous ambient heat. Analysis was made using logistic regression. About 12% of the latest pregnancies ended in either miscarriage (9.6%) or stillbirth (2.8%). The odds ratios indicated 12 to 15

  7. Iowa state heating oil and propane program: 1996--1997 winter heating season. Final report

    International Nuclear Information System (INIS)

    1997-05-01

    The objective of the Iowa State Heating Oil and Propane Program is to develop a state-level, company-specific data collection effort so that retail price information on fuel oil and propane is collected by the staff of the Iowa Department of Natural Resources during the winter heating season. The second objective is to provide specific volume and retail price information to the US Department of Energy's (DOE's) Energy Information Administration on No. 2 heating oil and propane on a semi-monthly basis. This report summarizes the results of the residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) price survey over the 1996--1997 winter heating season in Iowa. The Iowa Department of Natural Resources conducted the survey under a cooperative financial assistance grant with the DOE Energy Information Administration (EIA)

  8. 78 FR 64202 - Quantitative Messaging Research

    Science.gov (United States)

    2013-10-28

    ... COMMODITY FUTURES TRADING COMMISSION Quantitative Messaging Research AGENCY: Commodity Futures... survey will follow qualitative message testing research (for which CFTC received fast- track OMB approval... comments. Please submit your comments using only one method and identify that it is for the ``Quantitative...

  9. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  10. The social structure of heat consumption in Denmark

    DEFF Research Database (Denmark)

    Hansen, Anders Rhiger

    2016-01-01

    The role of households in relation to heat and energy consumption has been well-described in both quantitative and qualitative studies. However, where practice theory has developed as the main theoretical framework within qualitative studies on energy consumption, the more recent quantitative...... of the qualitative studies, emphasising how energy consumption is a result of energy-consuming practices. Focusing on heat consumption used for space heating and heating of water in single-family detached houses in Denmark, it is found that sociocultural differences between households such as income, education......, occupation, and immigration status influence the amount of heat consumed by a household; directly as an indicator of household practices and indirectly through type of building and household characteristics. New interpretations based on theories of practice show that factors such as the social structure...

  11. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  12. Reactions of lactose during heat treatment of milk : a quantitative study

    NARCIS (Netherlands)

    Berg, H.E.

    1993-01-01

    The kinetics of the chemical reactions of lactose during heat treatment of milk were studied. Skim milk and model solutions resembling milk were heated. Reaction products were determined and the influence of varying lactose, casein and fat concentration on the formation of these products

  13. Heat and salt budgets over the Gulf Stream North Wall during LatMix survey in winter 2012.

    Science.gov (United States)

    Sanchez-Rios, A.; Shearman, R. K.; D'Asaro, E. A.; Lee, C.; Gula, J.; Klymak, J. M.

    2016-02-01

    As part of the ONR-sponsored LatMix Experiment, ship-based and glider-based observations following a Lagrangian float are used to examine the evolution of temperature, salinity and density along the Gulf Stream north wall in wintertime. Satellite observations during the survey and the in-situ measurements showed the presence of submesoscale (1) calculated for this regions corroborates the possibility of submesoscale dynamics. Using a heat and salinity budget, we show that surface forcing, entrainment from below and advection by the mean flow velocities are not sufficient to explain the observed rate of change of heat and salinity in the mixed layer. Although confidence estimates prevent an accurate flux divergence calculation, Reynold flux estimates are consistent with a cross-frontal exchange that can reproduce the observed temporal trends.

  14. Evaluation of Interfacial Heat Transfer Models for Flashing Flow with Two-Fluid CFD

    Directory of Open Access Journals (Sweden)

    Yixiang Liao

    2018-06-01

    Full Text Available The complexity of flashing flows is increased vastly by the interphase heat transfer as well as its coupling with mass and momentum transfers. A reliable heat transfer coefficient is the key in the modelling of such kinds of flows with the two-fluid model. An extensive literature survey on computational modelling of flashing flows has been given in previous work. The present work is aimed at giving a brief review on available theories and correlations for the estimation of interphase heat transfer coefficient, and evaluating them quantitatively based on computational fluid dynamics simulations of bubble growth in superheated liquid. The comparison of predictions for bubble growth rate obtained by using different correlations with the experimental as well as direct numerical simulation data reveals that the performance of the correlations is dependent on the Jakob number and Reynolds number. No generally applicable correlations are available. Both conduction and convection are important in cases of bubble rising and translating in stagnant liquid at high Jakob numbers. The correlations combining the analytical solution for heat diffusion and the theoretical relation for potential flow give the best agreement.

  15. Surveys and questionnaires in nursing research.

    Science.gov (United States)

    Timmins, Fiona

    2015-06-17

    Surveys and questionnaires are often used in nursing research to elicit the views of large groups of people to develop the nursing knowledge base. This article provides an overview of survey and questionnaire use in nursing research, clarifies the place of the questionnaire as a data collection tool in quantitative research design and provides information and advice about best practice in the development of quantitative surveys and questionnaires.

  16. Literature survey of heat transfer and hydraulic resistance of water, carbon dioxide, helium and other fluids at supercritical and near-critical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Pioro, I.L.; Duffey, R.B

    2003-04-01

    This survey consists of 430 references, including 269 Russian publications and 161 Western publications devoted to the problems of heat transfer and hydraulic resistance of a fluid at near-critical and supercritical pressures. The objective of the literature survey is to compile and summarize findings in the area of heat transfer and hydraulic resistance at supercritical pressures for various fluids for the last fifty years published in the open Russian and Western literature. The analysis of the publications showed that the majority of the papers were devoted to the heat transfer of fluids at near-critical and supercritical pressures flowing inside a circular tube. Three major working fluids are involved: water, carbon dioxide, and helium. The main objective of these studies was the development and design of supercritical steam generators for power stations (utilizing water as a working fluid) in the 1950s, 1960s, and 1970s. Carbon dioxide was usually used as the modeling fluid due to lower values of the critical parameters. Helium, and sometimes carbon dioxide, were considered as possible working fluids in some special designs of nuclear reactors. (author)

  17. Quantitative study on the effect of high-temperature curing at an early age on strength development of concrete. Experiment with mortar using moderate-heat portland cement

    International Nuclear Information System (INIS)

    Sugiyama, Hisashi; Chino, Shigeo

    1999-01-01

    The effect of high-temperature curing at an early age on the strength development of concrete using moderate-heat portland cement was quantitatively studied. High-temperature curing conditions were set so as to give systematic variations in the temperature-time factors. As a result, the integrated value of curing temperature during the period having a significant effect on the strength development was proposed as a parameter that expressed the degree of high-temperature curing. The effect of high-temperature curing on the strength development of concrete using moderate-heat portland cement could be exactly predicted with the integrated value of curing temperature during the period from 0 to 3 days. (author)

  18. New journal selection for quantitative survey of infectious disease research: application for Asian trend analysis

    Directory of Open Access Journals (Sweden)

    Okabe Nobuhiko

    2009-10-01

    Full Text Available Abstract Background Quantitative survey of research articles, as an application of bibliometrics, is an effective tool for grasping overall trends in various medical research fields. This type of survey has been also applied to infectious disease research; however, previous studies were insufficient as they underestimated articles published in non-English or regional journals. Methods Using a combination of Scopus™ and PubMed, the databases of scientific literature, and English and non-English keywords directly linked to infectious disease control, we identified international and regional infectious disease journals. In order to ascertain whether the newly selected journals were appropriate to survey a wide range of research articles, we compared the number of original articles and reviews registered in the selected journals to those in the 'Infectious Disease Category' of the Science Citation Index Expanded™ (SCI Infectious Disease Category during 1998-2006. Subsequently, we applied the newly selected journals to survey the number of original articles and reviews originating from 11 Asian countries during the same period. Results One hundred journals, written in English or 7 non-English languages, were newly selected as infectious disease journals. The journals published 14,156 original articles and reviews of Asian origin and 118,158 throughout the world, more than those registered in the SCI Infectious Disease Category (4,621 of Asian origin and 66,518 of the world in the category. In Asian trend analysis of the 100 journals, Japan had the highest percentage of original articles and reviews in the area, and no noticeable increase in articles was revealed during the study period. China, India and Taiwan had relatively large numbers and a high increase rate of original articles among Asian countries. When adjusting the publication of original articles according to the country population and the gross domestic product (GDP, Singapore and

  19. Standard Reference Line Combined with One-Point Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) to Quantitatively Analyze Stainless and Heat Resistant Steel.

    Science.gov (United States)

    Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong

    2018-01-01

    Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.

  20. MATHEMATICAL MODELLING OF OPERATION HEAT NETWORKS IN VIEW OF HEAT LOSS

    Directory of Open Access Journals (Sweden)

    ZBARAZ L. I.

    2016-08-01

    Full Text Available Goal. In recent years, due to a significant rise in price of energy, the reduction of direct costs for heating becomes a priority. In the utilities especially important to optimization of energy heating system equipment. During transport of thermal energy in the distribution networks thermal losses occur along the length of the hydraulic pipes and the coolant pumping losses. These loss-dependence of the particular distribution network. Changing temperature and the hydraulic regime at the source necessary to achieve the minimum cost of transport for today acting tariffs for energy. Scientific novelty. The studies received law changes head to the source at the qualitative and quantitative methods of regulation. Results. A mathematical model of an extensive network of decentralized heat source heating, which are analyzed using different methods of regulating and found the best.

  1. Estimation of the Relationship Between Remotely Sensed Anthropogenic Heat Discharge and Building Energy Use

    Science.gov (United States)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.

  2. A survey of geothermal process heat applications in Guatemala: An engineering survey

    Energy Technology Data Exchange (ETDEWEB)

    Altseimer, J.H.; Edeskuty, F.J.

    1988-08-01

    This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

  3. Assessment of ASME code examinations on regenerative, letdown and residual heat removal heat exchangers

    International Nuclear Information System (INIS)

    Gosselin, Stephen R.; Cumblidge, Stephen E.; Anderson, Michael T.; Simonen, Fredric A.; Tinsley, G A.; Lydell, B.; Doctor, Steven R.

    2005-01-01

    Inservice inspection requirements for pressure retaining welds in the regenerative, letdown, and residual heat removal heat exchangers are prescribed in Section XI Articles IWB and IWC of the ASME Boiler and Pressure Vessel Code. Accordingly, volumetric and/or surface examinations are performed on heat exchanger shell, head, nozzle-to-head, and nozzle-to-shell welds. Inspection difficulties associated with the implementation of these Code-required examinations have forced operating nuclear power plants to seek relief from the U.S. Nuclear Regulatory Commission. The nature of these relief requests are generally concerned with metallurgical, geometry, accessibility, and radiation burden. Over 60% of licensee requests to the NRC identify significant radiation exposure burden as the principle reason for relief from the ASME Code examinations on regenerative heat exchangers. For the residual heat removal heat exchangers, 90% of the relief requests are associated with geometry and accessibility concerns. Pacific Northwest National Laboratory was funded by the NRC Office of Nuclear Regulatory Research to review current practice with regard to volumetric and/or surface examinations of shell welds of letdown heat exchangers regenerative heat exchangers and residual (decay) heat removal heat exchangers Design, operating, common preventative maintenance practices, and potential degradation mechanisms are reviewed. A detailed survey of domestic and international PWR-specific operating experience was performed to identify pressure boundary failures (or lack of failures) in each heat exchanger type and NSSS design. The service data survey was based on the PIPExp- database and covers PWR plants worldwide for the period 1970-2004. Finally a risk assessment of the current ASME Code inspection requirements for residual heat removal, letdown, and regenerative heat exchangers is performed. The results are then reviewed to discuss the examinations relative to plant safety and

  4. Heat exchanger cleaning

    International Nuclear Information System (INIS)

    Gatewood, J.R.

    1980-01-01

    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  5. Pellet fired appliances. Market survey. 7. rev. ed.; Pelletheizungen. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    The market survey under consideration reports on pellet central heating systems and pellet fired appliances. The main chapters of this market survey are concerned to: (1) Information on wood pellets and pellet fired appliances; (2) Information about the interpretation of the market survey; (3) Survey of all compared pellet fired appliances with respect to the nominal power; (4) Price lists of pellet fired appliances and pellet central heating systems; (5) Type sheets of the compared pellet fired appliances and pellet central heating systems. Finally, this brochure contains the addresses of the produces and distribution partners of pellet fired appliances and pellet central heating systems.

  6. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system; 1976 nendo taiyonetsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1974-76 research result on solar cooling/heating and hot water supply systems. Research was made on survey and analysis of current R and D states, system analysis, energy impact analysis, installation sites of solar collectors, diffusion policy, profitability, and performance evaluation method. Main research results obtained are as follows. The effect of solar cooling/heating and hot water supply on the Japanese energy demand in 2000 is estimated to be 13% for residences and 5% for the other buildings. Environment pollution derived from solar cooling/heating is extremely less than that from conventional energy quantitatively. The facility cost is estimated to be probably 27,000yen/m{sup 2} in collector cost, and nearly 100,000yen/t in heat storage tank cost. As design data for solar cooling/heating systems, the estimation method of heat collection for every solar radiation rank, performance comparison of honeycomb type collectors, and various data for air heat collection systems are presented. (NEDO)

  7. Radiation drive in laser heated hohlraums

    International Nuclear Information System (INIS)

    Suter, L.J.; Kauffman, R.L.; Darrow, C.B.

    1995-01-01

    Nearly 10 years of Nova experiments and analysis have lead to a relatively detailed quantitative and qualitative understanding of radiation drive in laser heated hohlraums. Our most successful quantitative modelling tool is 2D Lasnex numerical simulations. Analysis of the simulations provides us with insight into the details of the hohlraum drive. In particular we find hohlraum radiation conversion efficiency becomes quite high with longer pulses as the accumulated, high Z blow-off plasma begins to radiate. Extensive Nova experiments corroborate our quantitative and qualitative understanding

  8. Residential fuelwood assessment, state of Minnesota, 2007-2008 heating season

    Science.gov (United States)

    Mimi Barzen; Ronald Piva; Chun Yi Wy; Rich. Dahlman

    2009-01-01

    During the spring and summer of 2008, the cooperating partners conducted a survey to determine the volume of residential fuelwood burned during the 2007-2008 heating season. Similar surveys were conducted for the 1960, 1969-1970, 1979-1980, 1984-1985, 1988-1989, 1995-1996, and 2002-2003 heating seasons. These surveys are part of a long-term effort to monitor trends in...

  9. Measuring relationships between self-compassion, compassion fatigue, burnout and well-being in student counsellors and student cognitive behavioural psychotherapists: a quantitative survey.

    OpenAIRE

    Beaumont, Elaine.; Durkin, Mark.; Hollins Martin, Caroline J.; Carson, Jerome.

    2016-01-01

    Background: Prolonged deficiency in self-care strategies puts counsellors and psychotherapists at risk of burnout and compassion fatigue. Aim: To measure associations between self-compassion, compassion fatigue, wellbeing and burnout in student counsellors and student cognitive behavioural psychotherapists. Method: A quantitative survey using four validated data collection instruments: (1) Professional Quality of Life Scale; (2) Self-Compassion Scale; (3) short Warwick and Edinburgh Mental We...

  10. Joint analyses of open comments and quantitative data: Added value in a job satisfaction survey of hospital professionals.

    Directory of Open Access Journals (Sweden)

    Ingrid Gilles

    Full Text Available To obtain a comprehensive understanding of the job opinions of hospital professionals by conducting qualitative analyses of the open comments included in a job satisfaction survey and combining these results with the quantitative results.A cross-sectional survey targeting all Lausanne University Hospital professionals was performed in the fall of 2013.The survey considered ten job satisfaction dimensions (e.g. self-fulfilment, workload, management, work-related burnout, organisational commitment, intent to stay and included an open comment section. Computer-assisted qualitative analyses were conducted on these comments. Satisfaction rates on the included dimensions and professional groups were entered as predictive variables in the qualitative analyses.Of 10 838 hospital professionals, 4978 participated in the survey and 1067 provided open comments. Data from 1045 respondents with usable comments constituted the analytic sample (133 physicians, 393 nurses, 135 laboratory technicians, 247 administrative staff, including researchers, 67 logistic staff, 44 psycho-social workers, and 26 unspecified.Almost a third of the comments addressed scheduling issues, mostly related to problems and exhaustion linked to shifts, work-life balance, and difficulties with colleagues' absences and the consequences for quality of care and patient safety. The other two-thirds related to classic themes included in job satisfaction surveys. Although some comments were provided equally by all professional groups, others were group specific: work and hierarchy pressures for physicians, healthcare quality and patient safety for nurses, skill recognition for administrative staff. Overall, respondents' comments were consistent with their job satisfaction ratings.Open comment analysis provides a comprehensive understanding of hospital professionals' job experiences, allowing better consideration of quality initiatives that match the needs of professionals with reality.

  11. Joint analyses of open comments and quantitative data: Added value in a job satisfaction survey of hospital professionals.

    Science.gov (United States)

    Gilles, Ingrid; Mayer, Mauro; Courvoisier, Nelly; Peytremann-Bridevaux, Isabelle

    2017-01-01

    To obtain a comprehensive understanding of the job opinions of hospital professionals by conducting qualitative analyses of the open comments included in a job satisfaction survey and combining these results with the quantitative results. A cross-sectional survey targeting all Lausanne University Hospital professionals was performed in the fall of 2013. The survey considered ten job satisfaction dimensions (e.g. self-fulfilment, workload, management, work-related burnout, organisational commitment, intent to stay) and included an open comment section. Computer-assisted qualitative analyses were conducted on these comments. Satisfaction rates on the included dimensions and professional groups were entered as predictive variables in the qualitative analyses. Of 10 838 hospital professionals, 4978 participated in the survey and 1067 provided open comments. Data from 1045 respondents with usable comments constituted the analytic sample (133 physicians, 393 nurses, 135 laboratory technicians, 247 administrative staff, including researchers, 67 logistic staff, 44 psycho-social workers, and 26 unspecified). Almost a third of the comments addressed scheduling issues, mostly related to problems and exhaustion linked to shifts, work-life balance, and difficulties with colleagues' absences and the consequences for quality of care and patient safety. The other two-thirds related to classic themes included in job satisfaction surveys. Although some comments were provided equally by all professional groups, others were group specific: work and hierarchy pressures for physicians, healthcare quality and patient safety for nurses, skill recognition for administrative staff. Overall, respondents' comments were consistent with their job satisfaction ratings. Open comment analysis provides a comprehensive understanding of hospital professionals' job experiences, allowing better consideration of quality initiatives that match the needs of professionals with reality.

  12. Pungency Quantitation of Hot Pepper Sauces Using HPLC

    Science.gov (United States)

    Betts, Thomas A.

    1999-02-01

    A class of compounds known as capsaicinoids are responsible for the "heat" of hot peppers. To determine the pungency of a particular pepper or pepper product, one may quantify the capsaicinoids and relate those concentrations to the perceived heat. The format of the laboratory described here allows students to collectively develop an HPLC method for the quantitation of the two predominant capsaicinoids (capsaicin and dihydrocapsaicin) in hot-pepper products. Each small group of students investigated one of the following aspects of the method: detector wavelength, mobile-phase composition, extraction of capsaicinoids, calibration, and quantitation. The format of the lab forced students to communicate and cooperate to develop this method. The resulting HPLC method involves extraction with acetonitrile followed by solid-phase extraction clean-up, an isocratic 80:20 methanol-water mobile phase, a 4.6 mm by 25 cm C-18 column, and UV absorbance detection at 284 nm. The method developed by the students was then applied to the quantitation of capsaicinoids in a variety of hot pepper sauces. Editor's Note on Hazards in our April 2000 issue addresses the above.

  13. Heat dispersion in rivers

    International Nuclear Information System (INIS)

    Shaw, T.L.

    1974-01-01

    One of the tasks of the Sonderforschungsbereich 80 is to study the dispersion of heat discharged into rivers and other bodies of water and to develop methods which permit prediction of detrimental effects caused by the heated discharges. In order to help the SFB 80 to specify this task, Dr. Shaw, lecturer of Civil Engineering at the Bristol University, conducted a literature survey on heat-dispersion studies during the two months which he spent as a visiting research fellow with the SFB 80 at the University of Karlsruhe in the summer of 1973. The following report is the outcome of this survey. It gives Dr. Shaw's assessment of the present state of knowledge - based almost exclusively on literature in the English language - and compares this with the knowledge required by river planners. The apparent discrepancy leads to suggestions for future research. Selected references as well as a representative bibliography can be found at the end of the report. (orig.) [de

  14. Quantitative Thermochronology

    Science.gov (United States)

    Braun, Jean; van der Beek, Peter; Batt, Geoffrey

    2006-05-01

    Thermochronology, the study of the thermal history of rocks, enables us to quantify the nature and timing of tectonic processes. Quantitative Thermochronology is a robust review of isotopic ages, and presents a range of numerical modeling techniques to allow the physical implications of isotopic age data to be explored. The authors provide analytical, semi-analytical, and numerical solutions to the heat transfer equation in a range of tectonic settings and under varying boundary conditions. They then illustrate their modeling approach built around a large number of case studies. The benefits of different thermochronological techniques are also described. Computer programs on an accompanying website at www.cambridge.org/9780521830577 are introduced through the text and provide a means of solving the heat transport equation in the deforming Earth to predict the ages of rocks and compare them directly to geological and geochronological data. Several short tutorials, with hints and solutions, are also included. Numerous case studies help geologists to interpret age data and relate it to Earth processes Essential background material to aid understanding and using thermochronological data Provides a thorough treatise on numerical modeling of heat transport in the Earth's crust Supported by a website hosting relevant computer programs and colour slides of figures from the book for use in teaching

  15. Leadership training in a family medicine residency program: Cross-sectional quantitative survey to inform curriculum development.

    Science.gov (United States)

    Gallagher, Erin; Moore, Ainsley; Schabort, Inge

    2017-03-01

    To assess the current status of leadership training as perceived by family medicine residents to inform the development of a formal leadership curriculum. Cross-sectional quantitative survey. Department of Family Medicine at McMaster University in Hamilton, Ont, in December 2013. A total of 152 first- and second-year family medicine residents. Family medicine residents' attitudes toward leadership, perceived level of training in various leadership domains, and identified opportunities for leadership training. Overall, 80% (152 of 190) of residents completed the survey. On a Likert scale (1 = strongly disagree, 4 = neutral, 7 = strongly agree), residents rated the importance of physician leadership in the clinical setting as high (6.23 of 7), whereas agreement with the statement "I am a leader" received the lowest rating (5.28 of 7). At least 50% of residents desired more training in the leadership domains of personal mastery, mentorship and coaching, conflict resolution, teaching, effective teamwork, administration, ideals of a healthy workplace, coalitions, and system transformation. At least 50% of residents identified behavioural sciences seminars, a lecture and workshop series, and a retreat as opportunities to expand leadership training. The concept of family physicians as leaders resonated highly with residents. Residents desired more personal and system-level leadership training. They also identified ways that leadership training could be expanded in the current curriculum and developed in other areas. The information gained from this survey might facilitate leadership development among residents through application of its results in a formal leadership curriculum. Copyright© the College of Family Physicians of Canada.

  16. District heating in Switzerland: Giving a survey and studying an example case

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, M; Minder, R

    1981-05-01

    Today it is generally accepted that district-heating has essential adventages in areas which are suitable for it - as opposed to the heating mode which is most widely practiced in Switzerland, i.e. individual oil heating. These advantages shall only be pointed out briefly, here, by mentioning the following key words: economy, exploitation of fuel, safety of supply, and enviromental protection. Principally supporting the expansion of existing district-heating installations or the construction of new ones the authors give their view on the subject concerning the contribution to the total supply of heat which reasonably may be attributed to district-heating; they also give their opinion of the plans of a Swiss municipality as to its energy and district-heating supply.

  17. Frictional strength and heat flow of southern San Andreas Fault

    Science.gov (United States)

    Zhu, P. P.

    2016-01-01

    Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called "fault friction heat." On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault

  18. Resources on Quantitative/Statistical Research for Applied Linguists

    Science.gov (United States)

    Brown, James Dean

    2004-01-01

    The purpose of this review article is to survey and evaluate existing books on quantitative/statistical research in applied linguistics. The article begins by explaining the types of texts that will not be reviewed, then it briefly describes nine books that address how to do quantitative/statistical applied linguistics research. The review then…

  19. Quantitative map interpretation in regional planning surveys. | J.A. ...

    African Journals Online (AJOL)

    A procedure followed for the quantitative interpretation of maps compiled for regional planning purposes of the Upper Orange catchment-basin is presented. The analyses provided useful figures concerning the distribution of dominant vegetation components and their association with relevant habitat factors. Keywords: ...

  20. Performance evaluation of cryogenic counter-flow heat exchangers with longitudinal conduction, heat in-leak and property variations

    Science.gov (United States)

    Jiang, Q. F.; Zhuang, M.; Zhu, Z. G.; Y Zhang, Q.; Sheng, L. H.

    2017-12-01

    Counter-flow plate-fin heat exchangers are commonly utilized in cryogenic applications due to their high effectiveness and compact size. For cryogenic heat exchangers in helium liquefaction/refrigeration systems, conventional design theory is no longer applicable and they are usually sensitive to longitudinal heat conduction, heat in-leak from surroundings and variable fluid properties. Governing equations based on distributed parameter method are developed to evaluate performance deterioration caused by these effects. The numerical model could also be applied in many other recuperators with different structures and, hence, available experimental data are used to validate it. For a specific case of the multi-stream heat exchanger in the EAST helium refrigerator, quantitative effects of these heat losses are further discussed, in comparison with design results obtained by the common commercial software. The numerical model could be useful to evaluate and rate the heat exchanger performance under the actual cryogenic environment.

  1. Perceived heat stress and health effects on construction workers.

    Science.gov (United States)

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure.

  2. Two-dimensional heat flow apparatus

    Science.gov (United States)

    McDougall, Patrick; Ayars, Eric

    2014-06-01

    We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.

  3. Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island

    Directory of Open Access Journals (Sweden)

    Weihua Dong

    2014-10-01

    Full Text Available This research is motivated by the increasing threat of urban heat waves that are likely worsened by pervasive global warming and urbanization. Different regions of the city including urban, borderland and rural area will experience different levels of heat health risk. In this paper, we propose an improved approach to quantitatively assess Beijing’s heat health risk based on three factors from hazard, vulnerability and especially environment which is considered as an independent factor because different land use/cover types have different influence on ambient air temperatures under the Urban Heat Island effect. The results show that the heat health risk of Beijing demonstrates a spatial-temporal pattern with higher risk in the urban area, lower risk in the borderland between urban and rural area, and lowest risk in the rural area, and the total risk fluctuated dramatically during 2008–2011. To be more specific, the heat health risk was clearly higher in 2009 and 2010 than in 2008 and 2011. Further analysis with the urban area at sub-district level signifies that the impervious surface (urban area such as buildings, roads, et al. ratio is of high correlation with the heat health risk. The validation results show that the proposed method improved the accuracy of heat health risk assessment. We recommend that policy makers should develop efficient urban planning to accomplish Beijing’s sustainable development.

  4. Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed

    International Nuclear Information System (INIS)

    Honda, Ryosuke; Umekawa, Hisashi; Ozawa, Mamoru

    2009-01-01

    Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.

  5. Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Ryosuke [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Umekawa, Hisashi [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)], E-mail: umekawa@kansai-uac.jp; Ozawa, Mamoru [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2009-06-21

    Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.

  6. Cancer and the LGBTQ Population: Quantitative and Qualitative Results from an Oncology Providers' Survey on Knowledge, Attitudes, and Practice Behaviors.

    Science.gov (United States)

    Tamargo, Christina L; Quinn, Gwendolyn P; Sanchez, Julian A; Schabath, Matthew B

    2017-10-07

    Despite growing social acceptance, the LGBTQ population continues to face barriers to healthcare including fear of stigmatization by healthcare providers, and providers' lack of knowledge about LGBTQ-specific health issues. This analysis focuses on the assessment of quantitative and qualitative responses from a subset of providers who identified as specialists that treat one or more of the seven cancers that may be disproportionate in LGBTQ patients. A 32-item web-based survey was emailed to 388 oncology providers at a single institution. The survey assessed: demographics, knowledge, attitudes, and practice behaviors. Oncology providers specializing in seven cancer types had poor knowledge of LGBTQ-specific health needs, with fewer than half of the surveyed providers (49.5%) correctly answering knowledge questions. Most providers had overall positive attitudes toward LGBTQ patients, with 91.7% agreeing they would be comfortable treating this population, and would support education and/or training on LGBTQ-related cancer health issues. Results suggest that despite generally positive attitudes toward the LGBTQ population, oncology providers who treat cancer types most prevalent among the population, lack knowledge of their unique health issues. Knowledge and practice behaviors may improve with enhanced education and training on this population's specific needs.

  7. Entropy and heat generation of lithium cells/batteries

    International Nuclear Information System (INIS)

    Wang Songrui

    2016-01-01

    The methods and techniques commonly used in investigating the change of entropy and heat generation in Li cells/batteries are introduced, as are the measurements, calculations and purposes. The changes of entropy and heat generation are concomitant with the use of Li cells/batteries. In order to improve the management and the application of Li cells/batteries, especially for large scale power batteries, the quantitative investigations of the change of entropy and heat generating are necessary. (topical review)

  8. Compositional and Quantitative Model Checking

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand

    2010-01-01

    This paper gives a survey of a composition model checking methodology and its succesfull instantiation to the model checking of networks of finite-state, timed, hybrid and probabilistic systems with respect; to suitable quantitative versions of the modal mu-calculus [Koz82]. The method is based...

  9. Heat pump using dual heat sources of air and water. Performance with heat sources arranged in parallel; Mizu kuki ryonetsugen heat pump no kenkyu. Netsugen heiretsu unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N; Sato, S [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y; Hamada, K [Kubota Corp., Osaka (Japan)

    1996-10-27

    A heat pump system using water and air as heat sources was built and evaluated for its performance. In this system, evaporators may be operated singly or as connected in parallel or series, and, for each case, the quantity of heat acquired may be measured and system performance may be quantitatively evaluated. The findings follow. When the two heat sources are equal in temperature in the single-evaporator operation, the evaporation temperature is about 7{degree}C higher on the water side than on the air side, and the performance coefficient is about 0.7 higher. When the air heat source temperature is 25{degree}C in the parallel operation, like quantities of heat are obtained from both heat sources, and collection of heat from the water increases with a decrease in the air heat source temperature but, with an increase, collection from the air increases. When the air heat source temperature decreases, the evaporation temperature decreases in the single-evaporator working on the air and in the parallel operation but it levels off in the single-evaporator working on the water alone. When the water heat source temperature decreases, evaporation temperature drop is sharper in the single-evaporator working on the water than in the parallel operation, which suggests the transfer from the parallel operation to the single-evaporator working on the air. In the single-evaporator operation on the water heat source, the evaporation temperature linearly decreases with an increase in superheating. 1 ref., 10 figs.

  10. Shutter heating system of Antarctic bright star survey telescope

    Science.gov (United States)

    Chen, Jie; Dong, Shucheng; Jiang, Fengxin; Zhang, Hongfei; Wang, Jian

    2016-07-01

    A heat preservation system for mechanical shutter in Antarctic is introduced in the paper. The system consists of the heat preservation chamber, the host controller STM32F103C8T6 with peripheral circuit and the control algorithm. The whole design is carried out on the basis of the low temperature requirement, including the cavity structure and thermal insulation. The heat preservation chamber is used to keep the shutter warm and support the weight of the camera. Using PT100 as the temperature sensor, the signal processing circuit converts the temperature to the voltage which is then digitized by the 12 bit ADC in the STM32. The host controller transforms the voltage data into temperature, and through the tuning of the Fussy PID algorithm which controls the duty cycle of the MOSFET, the temperature control of chamber is realized. The System has been tested in the cryogenic environment for a long time, with characteristic of low temperature resistance, small volume, high accuracy of temperature control as well as remote control and detection.

  11. Comparative Membrane Proteomics Reveals a Nonannotated E. coli Heat Shock Protein.

    Science.gov (United States)

    Yuan, Peijia; D'Lima, Nadia G; Slavoff, Sarah A

    2018-01-09

    Recent advances in proteomics and genomics have enabled discovery of thousands of previously nonannotated small open reading frames (smORFs) in genomes across evolutionary space. Furthermore, quantitative mass spectrometry has recently been applied to analysis of regulated smORF expression. However, bottom-up proteomics has remained relatively insensitive to membrane proteins, suggesting they may have been underdetected in previous studies. In this report, we add biochemical membrane protein enrichment to our previously developed label-free quantitative proteomics protocol, revealing a never-before-identified heat shock protein in Escherichia coli K12. This putative smORF-encoded heat shock protein, GndA, is likely to be ∼36-55 amino acids in length and contains a predicted transmembrane helix. We validate heat shock-regulated expression of the gndA smORF and demonstrate that a GndA-GFP fusion protein cofractionates with the cell membrane. Quantitative membrane proteomics therefore has the ability to reveal nonannotated small proteins that may play roles in bacterial stress responses.

  12. A survey of radio frequency heating in tokamaks

    International Nuclear Information System (INIS)

    Bhatti, Z.R.

    1998-01-01

    A brief summary is given of the plasma physics of radio frequency heating in tokamaks. The general features common to all schemes are described. The three main methods, ion cyclotron electron cyclotron, and lower hybrid are also discussed. (author)

  13. Conductive carbon tape used for support and mounting of both whole animal and fragile heat-treated tissue sections for MALDI MS imaging and quantitation.

    Science.gov (United States)

    Goodwin, Richard J A; Nilsson, Anna; Borg, Daniel; Langridge-Smith, Pat R R; Harrison, David J; Mackay, C Logan; Iverson, Suzanne L; Andrén, Per E

    2012-08-30

    Analysis of whole animal tissue sections by MALDI MS imaging (MSI) requires effective sample collection and transfer methods to allow the highest quality of in situ analysis of small or hard to dissect tissues. We report on the use of double-sided adhesive conductive carbon tape during whole adult rat tissue sectioning of carboxymethyl cellulose (CMC) embedded animals, with samples mounted onto large format conductive glass and conductive plastic MALDI targets, enabling MSI analysis to be performed on both TOF and FT-ICR MALDI mass spectrometers. We show that mounting does not unduly affect small molecule MSI detection by analyzing tiotropium abundance and distribution in rat lung tissues, with direct on-tissue quantitation achieved. Significantly, we use the adhesive tape to provide support to embedded delicate heat-stabilized tissues, enabling sectioning and mounting to be performed that maintained tissue integrity on samples that had previously been impossible to adequately prepare section for MSI analysis. The mapping of larger peptidomic molecules was not hindered by tape mounting samples and we demonstrate this by mapping the distribution of PEP-19 in both native and heat-stabilized rat brains. Furthermore, we show that without heat stabilization PEP-19 degradation fragments can detected and identified directly by MALDI MSI analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk.

    Science.gov (United States)

    Kim, Dong-Hyeon; Chon, Jung-Whan; Lim, Jong-Soo; Kim, Hong-Seok; Kang, Il-Byeong; Jeong, Dana; Song, Kwang-Young; Kim, Hyunsook; Kim, Kwang-Yup; Seo, Kun-Ho

    2016-01-01

    The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk.

  15. Resources on quantitative/statistical research for applied linguists

    OpenAIRE

    Brown , James Dean

    2004-01-01

    Abstract The purpose of this review article is to survey and evaluate existing books on quantitative/statistical research in applied linguistics. The article begins by explaining the types of texts that will not be reviewed, then it briefly describes nine books that address how to do quantitative/statistical applied linguistics research. The review then compares (in prose and tables) the general characteris...

  16. 78 FR 52166 - Quantitative Messaging Research

    Science.gov (United States)

    2013-08-22

    ... COMMODITY FUTURES TRADING COMMISSION Quantitative Messaging Research AGENCY: Commodity Futures... survey will follow qualitative message testing research (for which CFTC received fast-track OMB approval... message testing research (for which CFTC received fast-track OMB approval) and is necessary to identify...

  17. State heating oil and propane program: 1995-96 heating season. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This is a summary report of the New Hampshire Governor's Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1995/96 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. EIA provides ECS with a list of oil and propane retailers that serve customers in New Hampshire. In turn ECS conduct phone surveys twice per month from October through March to determine the average retail price for each fuel. Data collected by ECS is entered into the Petroleum Electronic Data Reporting Option (PEDRO) and transmitted via modem to EIA. The results of the state retail price surveys along with wholesale prices, supply, production and stock levels for oil, and propane are published by EIA in the Weekly Petroleum Status Report. Data is also published electronically via the internet or through the Electronic Publication System

  18. State heating oil and propane program

    International Nuclear Information System (INIS)

    1991-01-01

    The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

  19. Report on a feasibility survey of the cold accumulated heat use energy system in Hokkaido; Hokkaido ni okeru reichikunetsu riyo energy system no kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A survey was conducted of various systems which use in summer cold heat from the snow stored in winter. A model of the cold accumulated heat system of the type which has a high possibility of the introduction was built to study a possibility of the realization. Types of the model system were selected assuming the utilization of cold heat energy of snow in Sapporo, a typical large city in the cold heavy-snow area. Studies were made on each model of urban type commercial facilities, urban type offices, suburban type shopping center, and suburban type hospitals. For each model, more than one systems were studied according to types and forms of the storage tank, and heat recovery methods. As a result, it was found that cold heat energy of snow can be utilized almost effectively by making an appropriate study of the energy balance like the possible supply of cold heat exceeded the demand in two models of an urban type office building and an suburban type hospital. Further, operating expenses of typical models were roughly calculated. 51 figs., 20 figs.

  20. Control of food-borne molds by combination of heat and radiation

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Bongirwar, D.R.

    1979-01-01

    After enumerating the fungi responsible for food spoilage, work done on the factors influencing growth of fungi in stored foods is reviewed and the methods using heat, radiation or chemicals for control of food-borne molds are briefly surveyed. Work on combination process employing heat treatment and radiation treatment is reviewed in detail. The review covers the following aspects: (1) theory and engineering aspects of combination process of heat and radiation including modes of heat transfer, radiation physics, radiation sources, heat radiation effect and calculation of energy balance of the process, (2) biological effects of heat, radiation and heat-radiation combination treatments on mold growth with special reference to DNA and (3) application of the process for mold control in cereal products, nuts and raisins and fruits. Heat treatment and radiation treatment have been found to complement each other and when given in proper sequence show synergism. Design requirements of radiation sources and heat transfer equipment are also surveyed. (M.G.B.)

  1. Simulation of transient heat transfer during cooling and heating of whole sweet potato (Ipomoea batatas (L.) Lam.) roots under forced-air conditions

    International Nuclear Information System (INIS)

    Korese, Joseph Kudadam; Sturm, Barbara; Román, Franz; Hensel, Oliver

    2017-01-01

    Highlights: • Heat transfer of whole sweet potato roots under forced-air cooling and heating is investigated. • Experiments were carried out in a cooling and heating chamber. • The cooling and heating rate and time was clearly depended on air velocity and roots size. • Simulated and experimental data on cooling and heating times were compared for validation. • Simulation results quantitatively agreed with experimental results. - Abstract: In this work, we investigated how different air velocity and temperature affect the cooling and heating rate and time of individual sweet potato roots. Additionally, we modified and applied a simulation model which is based on the fundamental solution of the transient equations for estimating the cooling and heating time at the centre of sweet potato roots. The model was adapted to receive input parameters such as thermo-physical properties of whole sweet potato roots as well as the surrounding air properties, and was verified with experimental transient temperature data. The experimental results showed that the temperature at the centre and the under skin of sweet potato roots is almost homogeneous during forced convection cooling and heating. The cooling and heating time was significantly (P < 0.05) affected by high air velocity and sweet potato root size. The simulation results quantitatively agreed with the experimental transient data. This research, thus provides a reliable experimental and theoretical basis for understanding the temperature variations as well as estimating the cooling and heating times in individual sweet potato roots under forced convection cooling and heating. The result from this study could be applied to design and optimize forced-air treatment equipments with improved energy efficiency as well as ensuring safety and the maintenance of sweet potato roots quality.

  2. Heat transfer characteristics of induced mixed convection

    International Nuclear Information System (INIS)

    Weiss, Y.; Lahav, C.; Szanto, M.; Shai, I.

    1996-01-01

    In the present work we focus our attention on the opposed Induced Mixed Convection case, i.e. the flow field structure in a vertical cylinder, closed at its bottom, opens at the top, and being heated circumferentially. The paper reports an experimental study of this complex heat transfer process. For a better understanding of the flow field and the related heat transfer process, two different experimental systems were built. The first was a flow visualization system, with water as the working fluid, while the second system enabled quantitative measurements of the temperature field in air. All the experiments were performed in the turbulent flow regime. In order to learn about all possible flow regimes, the visualization tests were conducted in three different length-to-diameter ratios (1/d=1,5,10). Quantitative measurements of the cylindrical wall temperature, as well as the radial and axial temperature profiles in the flow field, were taken in the air system. Based on the visualization observation and the measured wall temperature profile, it was found that the OIMC can be characterized by three main regimes: a mixing regime at the top, a central turbulent core and a boundary layer type of flow adjacent to the heated wall. (authors)

  3. Method of calculating heat transfer in furnaces of small power

    Directory of Open Access Journals (Sweden)

    Khavanov Pavel

    2016-01-01

    Full Text Available This publication presents the experiences and results of generalization criterion equation of importance in the analysis of the processes of heat transfer and thermal calculations of low-power heat generators cooled combustion chambers. With generalizing depending estimated contribution of radiation and convective heat transfer component in the complex for the combustion chambers of small capacity boilers. Determined qualitative and quantitative dependence of the integrated radiative-convective heat transfer from the main factors working combustion chambers of small volume.

  4. Sexual Harassment Prevention Initiatives: Quantitative and Qualitative Approaches

    Science.gov (United States)

    2010-10-28

    Quantitative Approach: The Survey The quantitative approach appears to be the dominant form of mainstream psychological research today , and Gelo et al. (2008...that viewpoint and remark that the characteristics of today ‟s psychological research demonstrate realities that can be replicated through studies...2000). The right of passage? The experiences of female pilots in commercial aviation. Feminism & Psychology, 10, 195-225. Davis, A., & Bremner, G

  5. Cancer and the LGBTQ Population: Quantitative and Qualitative Results from an Oncology Providers’ Survey on Knowledge, Attitudes, and Practice Behaviors

    Directory of Open Access Journals (Sweden)

    Christina L. Tamargo

    2017-10-01

    Full Text Available Background: Despite growing social acceptance, the LGBTQ population continues to face barriers to healthcare including fear of stigmatization by healthcare providers, and providers’ lack of knowledge about LGBTQ-specific health issues. This analysis focuses on the assessment of quantitative and qualitative responses from a subset of providers who identified as specialists that treat one or more of the seven cancers that may be disproportionate in LGBTQ patients. Methods: A 32-item web-based survey was emailed to 388 oncology providers at a single institution. The survey assessed: demographics, knowledge, attitudes, and practice behaviors. Results: Oncology providers specializing in seven cancer types had poor knowledge of LGBTQ-specific health needs, with fewer than half of the surveyed providers (49.5% correctly answering knowledge questions. Most providers had overall positive attitudes toward LGBTQ patients, with 91.7% agreeing they would be comfortable treating this population, and would support education and/or training on LGBTQ-related cancer health issues. Conclusion: Results suggest that despite generally positive attitudes toward the LGBTQ population, oncology providers who treat cancer types most prevalent among the population, lack knowledge of their unique health issues. Knowledge and practice behaviors may improve with enhanced education and training on this population’s specific needs.

  6. Cancer and the LGBTQ Population: Quantitative and Qualitative Results from an Oncology Providers’ Survey on Knowledge, Attitudes, and Practice Behaviors

    Science.gov (United States)

    Tamargo, Christina L.; Sanchez, Julian A.

    2017-01-01

    Background: Despite growing social acceptance, the LGBTQ population continues to face barriers to healthcare including fear of stigmatization by healthcare providers, and providers’ lack of knowledge about LGBTQ-specific health issues. This analysis focuses on the assessment of quantitative and qualitative responses from a subset of providers who identified as specialists that treat one or more of the seven cancers that may be disproportionate in LGBTQ patients. Methods: A 32-item web-based survey was emailed to 388 oncology providers at a single institution. The survey assessed: demographics, knowledge, attitudes, and practice behaviors. Results: Oncology providers specializing in seven cancer types had poor knowledge of LGBTQ-specific health needs, with fewer than half of the surveyed providers (49.5%) correctly answering knowledge questions. Most providers had overall positive attitudes toward LGBTQ patients, with 91.7% agreeing they would be comfortable treating this population, and would support education and/or training on LGBTQ-related cancer health issues. Conclusion: Results suggest that despite generally positive attitudes toward the LGBTQ population, oncology providers who treat cancer types most prevalent among the population, lack knowledge of their unique health issues. Knowledge and practice behaviors may improve with enhanced education and training on this population’s specific needs. PMID:28991160

  7. Quantitative respirator man-testing and anthropometric survey

    International Nuclear Information System (INIS)

    Leigh, J.D.

    1975-01-01

    Results are reported of a recent anthropometric survey and test procedures related to the respiratory protection program to safeguard the health of personnel. Respiratory protection procedures involve the selection of face masks worn by plant personnel. The fitting, handling, and use of face masks through explicit instructions can assure optimum protection. Comparisons are made with the test-panel selection parameters established by the Los Alamos Scientific Laboratory in Los Alamos, New Mexico, and recommendations by Webb Associates of Yellow Springs, Ohio. (U.S.)

  8. Quantitative flow visualization of fluidized-bed heat exchanger by neutron radiography

    International Nuclear Information System (INIS)

    Ozawa, M.; Umekawa, H.; Furui, S.; Hayashi, K.; Takenaka, N.

    2004-01-01

    Quantitative flow visualization of a gas-solid fluidized-bed installed vertical tube-bank has been successfully conducted using neutron radiography and image processing technique. The quantitative data of void fraction distribution as well as the fluctuation data are presented. The time-averaged void fraction is well correlated by the drift-flux model. The bubbles formed in the bed, rise along the vertical tubes and the observed bubble size is smaller than that in a free bubbling bed without tube-banks. The bubble diameter is well correlated by the modified Mori and Wen's correlation taking into account the pitch of tube arrangement. The bubble rise velocity is also well correlated by applying the drift-flux model. These results are consistent for both bed materials of Geldart's B- and A-particles, while the bubble size is significantly different between two kinds of particles

  9. Quantitative analysis of psychological personality for NPP operators

    International Nuclear Information System (INIS)

    Gao Jia; Huang Xiangrui

    1998-01-01

    The author introduces the relevant personality quantitative psychological research work carried out by 'Prognoz' Laboratory and Taiwan, and presents the primary results of the research for Chinese Nuclear Power Plant (NPP) operator's psychological personality assessment, which based on the survey of MMPI, and presents the main contents for the personality quantitative psychological research in NPP of China. And emphasizes the need to carry out psychological selection and training in nuclear industry

  10. Norwegian households' perception of wood pellet stove compared to air-to-air heat pump and electric heating

    International Nuclear Information System (INIS)

    Sopha, Bertha Maya; Kloeckner, Christian A.; Skjevrak, Geir; Hertwich, Edgar G.

    2010-01-01

    In 2003, the high dependency on electric heating combined with the high electricity price prompted a significant number of Norwegian households to consider alternative heating systems. The government introduced economic support for wood pellet heating and heat pumps. In contrast to the fast growing heat pump market, this financial support has not resulted in a widespread adoption of wood pellet heating. This paper studies factors that influence the choice of heating system based on Norwegian households' perceptions. Electric heating, heat pump and wood pellet heating were compared, with a special focus on wood pellet heating. This study was conducted as a questionnaire survey on two independent samples. The first sample consisted of 188 randomly chosen Norwegian households, mainly using electric heating; the second sample consisted of 461 households using wood pellet heating. Our results show that socio-demographic factors, communication among households, the perceived importance of heating system attributes, and the applied decision strategy all influence the Norwegian homeowners. The significance of these factors differs between the two samples and the preferred type of anticipated future heating system. Strategies for possible interventions and policy initiatives are discussed.

  11. Experimental study of heat transfer to the N2O4 dissociating coolant in the circular tube with variable heat load on the wall

    International Nuclear Information System (INIS)

    Golovnya, V.N.; Kolykhan, L.I.

    1983-01-01

    The results of the experimental study of heat transfer to N 2 O 4 dissociating coolant with a sinusoidal law of heat flux density variation by length are presented. The heat transfer process has been studied at subcritical and supercritical parameters and different substance aggregation states. Maximum error of heat transfer coefficient determination don't exceed 15%. The esimation of the effect of variable heat load on heat transfer has been condUcted by comparison of experimental data on the Nusselt number change along the tube length with that calculated using conventional relations for the conditions of uniform heat release. It is shown that heat transfer is enhanced in the region of heat load qsub(c) growth while its intensity is decreased in the region of heat flux reduction. The quantitative effect of qsub(c) variation on heat transfer can be regarded for by the method of superpositions

  12. No. 2 heating oil/propane program

    International Nuclear Information System (INIS)

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states

  13. High-performance hybrid Orbitrap mass spectrometers for quantitative proteome analysis

    DEFF Research Database (Denmark)

    Williamson, James C; Edwards, Alistair V G; Verano-Braga, Thiago

    2016-01-01

    We present basic workups and quantitative comparisons for two current generation Orbitrap mass spectrometers, the Q Exactive Plus and Orbitrap Fusion Tribrid, which are widely considered two of the highest performing instruments on the market. We assessed the performance of two quantitative methods...... on both instruments, namely label-free quantitation and stable isotope labeling using isobaric tags, for studying the heat shock response in Escherichia coli. We investigated the recently reported MS3 method on the Fusion instrument and the potential of MS3-based reporter ion isolation Synchronous...... Precursor Selection (SPS) and its impact on quantitative accuracy. We confirm that the label-free approach offers a more linear response with a wider dynamic range than MS/MS-based isobaric tag quantitation and that the MS3/SPS approach alleviates but does not eliminate dynamic range compression. We...

  14. FFTF preoperational survey. Program report

    International Nuclear Information System (INIS)

    Twitty, B.L.; Bicehouse, H.J.

    1980-12-01

    The FFTF will become operational with criticality early in 1980. This facility is composed of the test reactor, fuel examination cells, expended fuel storage systems and fuel handling systems. The reactor and storage systems are sodium-cooled with the heat load dumped to the ambient air through heat exchangers. In order to assure that the operation of the FFTF has minimal impact on the environment, a monitoring program has been established. Prior to operation of a new facility, a preoperational environmental survey is required. It is the purpose of this report to briefly describe the environmental survey program and to provide the background data obtained during the preoperational phase of the survey program. Nine stations in the program of particular importance to FFTF are discussed in detail with results of monitoring given. No unexplained trends were noted

  15. Reduction of heat losses from greenhouses by means of internal blinds with low thermal emissivity

    NARCIS (Netherlands)

    Meijer, J.

    1980-01-01

    Heat losses in greenhouses may be substantially reduced by the use of heat reflecting blinds. Quantitative results are obtained solving a mathematical heat flow model by numerical methods. Special attention has been given to the emissivity and transmittance of the screen and the ventilation through

  16. Can quantitative sensory testing predict responses to analgesic treatment?

    Science.gov (United States)

    Grosen, K; Fischer, I W D; Olesen, A E; Drewes, A M

    2013-10-01

    The role of quantitative sensory testing (QST) in prediction of analgesic effect in humans is scarcely investigated. This updated review assesses the effectiveness in predicting analgesic effects in healthy volunteers, surgical patients and patients with chronic pain. A systematic review of English written, peer-reviewed articles was conducted using PubMed and Embase (1980-2013). Additional studies were identified by chain searching. Search terms included 'quantitative sensory testing', 'sensory testing' and 'analgesics'. Studies on the relationship between QST and response to analgesic treatment in human adults were included. Appraisal of the methodological quality of the included studies was based on evaluative criteria for prognostic studies. Fourteen studies (including 720 individuals) met the inclusion criteria. Significant correlations were observed between responses to analgesics and several QST parameters including (1) heat pain threshold in experimental human pain, (2) electrical and heat pain thresholds, pressure pain tolerance and suprathreshold heat pain in surgical patients, and (3) electrical and heat pain threshold and conditioned pain modulation in patients with chronic pain. Heterogeneity among studies was observed especially with regard to application of QST and type and use of analgesics. Although promising, the current evidence is not sufficiently robust to recommend the use of any specific QST parameter in predicting analgesic response. Future studies should focus on a range of different experimental pain modalities rather than a single static pain stimulation paradigm. © 2013 European Federation of International Association for the Study of Pain Chapters.

  17. An improved model of heat-induced hyperalgesia--repetitive phasic heat pain causing primary hyperalgesia to heat and secondary hyperalgesia to pinprick and light touch.

    Science.gov (United States)

    Jürgens, Tim P; Sawatzki, Alexander; Henrich, Florian; Magerl, Walter; May, Arne

    2014-01-01

    This study tested a modified experimental model of heat-induced hyperalgesia, which improves the efficacy to induce primary and secondary hyperalgesia and the efficacy-to-safety ratio reducing the risk of tissue damage seen in other heat pain models. Quantitative sensory testing was done in eighteen healthy volunteers before and after repetitive heat pain stimuli (60 stimuli of 48°C for 6 s) to assess the impact of repetitive heat on somatosensory function in conditioned skin (primary hyperalgesia area) and in adjacent skin (secondary hyperalgesia area) as compared to an unconditioned mirror image control site. Additionally, areas of flare and secondary hyperalgesia were mapped, and time course of hyperalgesia determined. After repetitive heat pain conditioning we found significant primary hyperalgesia to heat, and primary and secondary hyperalgesia to pinprick and to light touch (dynamic mechanical allodynia). Acetaminophen (800 mg) reduced pain to heat or pinpricks only marginally by 11% and 8%, respectively (n.s.), and had no effect on heat hyperalgesia. In contrast, the areas of flare (-31%) and in particular of secondary hyperalgesia (-59%) as well as the magnitude of hyperalgesia (-59%) were significantly reduced (all pheat pain induces significant peripheral sensitization (primary hyperalgesia to heat) and central sensitization (punctate hyperalgesia and dynamic mechanical allodynia). These findings are relevant to further studies using this model of experimental heat pain as it combines pronounced peripheral and central sensitization, which makes a convenient model for combined pharmacological testing of analgesia and anti-hyperalgesia mechanisms related to thermal and mechanical input.

  18. An Improved Model of Heat-Induced Hyperalgesia—Repetitive Phasic Heat Pain Causing Primary Hyperalgesia to Heat and Secondary Hyperalgesia to Pinprick and Light Touch

    Science.gov (United States)

    Henrich, Florian; Magerl, Walter; May, Arne

    2014-01-01

    This study tested a modified experimental model of heat-induced hyperalgesia, which improves the efficacy to induce primary and secondary hyperalgesia and the efficacy-to-safety ratio reducing the risk of tissue damage seen in other heat pain models. Quantitative sensory testing was done in eighteen healthy volunteers before and after repetitive heat pain stimuli (60 stimuli of 48°C for 6 s) to assess the impact of repetitive heat on somatosensory function in conditioned skin (primary hyperalgesia area) and in adjacent skin (secondary hyperalgesia area) as compared to an unconditioned mirror image control site. Additionally, areas of flare and secondary hyperalgesia were mapped, and time course of hyperalgesia determined. After repetitive heat pain conditioning we found significant primary hyperalgesia to heat, and primary and secondary hyperalgesia to pinprick and to light touch (dynamic mechanical allodynia). Acetaminophen (800 mg) reduced pain to heat or pinpricks only marginally by 11% and 8%, respectively (n.s.), and had no effect on heat hyperalgesia. In contrast, the areas of flare (−31%) and in particular of secondary hyperalgesia (−59%) as well as the magnitude of hyperalgesia (−59%) were significantly reduced (all pheat pain induces significant peripheral sensitization (primary hyperalgesia to heat) and central sensitization (punctate hyperalgesia and dynamic mechanical allodynia). These findings are relevant to further studies using this model of experimental heat pain as it combines pronounced peripheral and central sensitization, which makes a convenient model for combined pharmacological testing of analgesia and anti-hyperalgesia mechanisms related to thermal and mechanical input. PMID:24911787

  19. Health Impacts of Increased Physical Activity from Changes in Transportation Infrastructure: Quantitative Estimates for Three Communities

    Science.gov (United States)

    2015-01-01

    Recently, two quantitative tools have emerged for predicting the health impacts of projects that change population physical activity: the Health Economic Assessment Tool (HEAT) and Dynamic Modeling for Health Impact Assessment (DYNAMO-HIA). HEAT has been used to support health impact assessments of transportation infrastructure projects, but DYNAMO-HIA has not been previously employed for this purpose nor have the two tools been compared. To demonstrate the use of DYNAMO-HIA for supporting health impact assessments of transportation infrastructure projects, we employed the model in three communities (urban, suburban, and rural) in North Carolina. We also compared DYNAMO-HIA and HEAT predictions in the urban community. Using DYNAMO-HIA, we estimated benefit-cost ratios of 20.2 (95% C.I.: 8.7–30.6), 0.6 (0.3–0.9), and 4.7 (2.1–7.1) for the urban, suburban, and rural projects, respectively. For a 40-year time period, the HEAT predictions of deaths avoided by the urban infrastructure project were three times as high as DYNAMO-HIA's predictions due to HEAT's inability to account for changing population health characteristics over time. Quantitative health impact assessment coupled with economic valuation is a powerful tool for integrating health considerations into transportation decision-making. However, to avoid overestimating benefits, such quantitative HIAs should use dynamic, rather than static, approaches. PMID:26504832

  20. Foundations of ICRF heating--A historical perspective

    International Nuclear Information System (INIS)

    Hosea, J.C.

    1994-01-01

    Tom Stix has made many major contributions to the development of understanding of a wide array of rf heating and diagnostics methods, in experiment and theory. In recognition of his profound influence on ion cyclotron range of frequencies (ICRF) heating research, this paper is focused on two major building blocks contributed by him which served to help guide and quantify the research toward establishing ICRF heating as a viable technique for the reactor regime: (1) the formalism for quantitative evaluation of antenna loading contained in his 1962 text book and (2) his Fokker-Planck analysis for heating of ions and especially minority species ions in his 1975 Nuclear Fusion paper. Importantly, his work from the mid 1950s to the mid 1970s from which these two building blocks derive, provided a solid basis for the rapid developing ion cyclotron heating research in the 1970s and helped to guide that research to definitive demonstration of the viability of the minority ion heating regime as a reactor heating method by the end of the decade

  1. FY 2000 report on the survey of the freon recovery/treatment technology for construction use heat insulating materials; 2000 nendo chosa hokokusho. Kenchiku yo dannetsuzai furon kaishu shori gijutsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    An investigational study was made of the quantity of the specified freon remaining in the construction use heat insulating material, the rational method for the recovery/treatment, etc. As to the standardization of the method to analyze the remaining freon quantity, the tube furnace - GC method and the MS method were proposed, and the basic items that can be developed to JIS (Japanese Industrial Standard) were standardized. In the estimation of the remaining freon quantity, the actual state of the use of heat insulating materials was surveyed from the statistics on the start of construction work, survey of the heat insulating area in actual buildings and listening to heat insulation workers/cold store construction companies, etc. Further, the remaining quantity was analyzed of samples collected from various buildings nationwide and by years of completion. As a result, it was found out that, even in samples before 1995, HCFC is used in about 10% and that, in case of limiting to the specified freon (CFC), the freon remaining quantity was more than 1-4 wt% even after a lapse of 30 years. The paper arranged subjects on the freon recovery/treatment in each stage of the life cycle and the required conditions for technology/equipment. (NEDO)

  2. Heats pipes for temperature homogenization: A literature review

    International Nuclear Information System (INIS)

    Blet, Nicolas; Lips, Stéphane; Sartre, Valérie

    2017-01-01

    Highlights: • This paper is a review based on more than sixty references. • The review is sorted into various application fields. • Quantitative values of thermal gradients are compared with and without heat pipes. • Specificities of mentioned heat pipes are compared to other functions of heat pipes. - Abstract: Heat pipes offer high effective heat transfer in a purely passive way. Other specific properties of heat pipes, like temperature homogenization, can be also reached. In this paper, a literature review is carried out in order to investigate the existing heat pipe systems mainly aiming the reduction of temperature gradients. The review gathering more than sixty references is sorted into various application fields, like thermal management of electronics, of storage vessels or of satellites, for which the management of the temperature uniformity differs by the isothermal surface area, temperature ranges or the targeted precision of the temperature flattening. A summary of heat pipe characteristics for this function of temperature homogenization is then performed to identify their specificities, compared to other applications of heat pipes.

  3. Geothermal source heat pump performance for a greenhouse heating system: an experimental study

    Directory of Open Access Journals (Sweden)

    Alexandros Sotirios Anifantis

    2016-09-01

    Full Text Available Greenhouses play a significant function in the modern agriculture economy even if require great amount of energy for heating systems. An interesting solution to alleviate the energy costs and environmental problems may be represented by the use of geothermal energy. The aim of this paper, based on measured experimental data, such as the inside greenhouse temperature and the heat pump performance (input and output temperatures of the working fluid, electric consumption, was the evaluation of the suitability of low enthalpy geothermal heat sources for agricultural needs such as greenhouses heating. The study was carried out at the experimental farm of the University of Bari, where a greenhouse was arranged with a heating system connected to a ground-source heat pump (GSHP, which had to cover the thermal energy request. The experimental results of this survey highlight the capability of the geothermal heat source to ensue thermal conditions suitable for cultivation in greenhouses even if the compressor inside the heat pump have operated continuously in a fluctuating state without ever reaching the steady condition. Probably, to increase the performance of the heat pump and then its coefficient of performance within GSHP systems for heating greenhouses, it is important to analyse and maximise the power conductivity of the greenhouse heating system, before to design an expensive borehole ground exchanger. Nevertheless, according to the experimental data obtained, the GSHP systems are effective, efficient and environmental friendly and may be useful to supply the heating energy demand of greenhouses.

  4. Heat transport in bubbling turbulent convection

    NARCIS (Netherlands)

    Lakkaraju, R.; Stevens, Richard Johannes Antonius Maria; Oresta, P.; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to

  5. No. 2 heating oil/propane program

    Energy Technology Data Exchange (ETDEWEB)

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  6. Practical Considerations for Thermal Stresses Induced by Surface Heating

    International Nuclear Information System (INIS)

    Blanchard, James P.

    2003-01-01

    Rapid surface heating can induce large stresses in solids. A relatively simple model, assuming full constraint in two dimensions and no constraint in the third dimension, can adequately model stresses in a wide variety of situations. This paper derives this simple model, and supports it with criteria for its validity. Phenomena that are considered include non-zero penetration depths for the heat deposition, spatial non-uniformity in the surface heating, and elastic waves. Models for each of these cases, using simplified geometries, are used to develop quantitative limits for their applicability

  7. Multistage quantum absorption heat pumps.

    Science.gov (United States)

    Correa, Luis A

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  8. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  9. Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581

    Science.gov (United States)

    Prayogo, Galang Sandy; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.

  10. Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581

    International Nuclear Information System (INIS)

    Prayogo, Galang Sandy; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-01-01

    Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.

  11. Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581

    Energy Technology Data Exchange (ETDEWEB)

    Prayogo, Galang Sandy, E-mail: gasandylang@live.com; Haryadi, Gunawan Dwi; Ismail, Rifky [Department of Mechanical Engineering, Diponegoro University, Semarang (Indonesia); Kim, Seon Jin [Department of Mechanical & Automotive Engineering of Pukyong National University (Korea, Republic of)

    2016-04-19

    Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.

  12. Heat production and quantitative oxidation of nutrients by physical activity in pigs

    DEFF Research Database (Denmark)

    Jakobsen, K; Chwalibog, André; Henckel, S

    1994-01-01

    Two groups of pigs weighing 90 (Expt A) or 80 (Expt B) kg walked on a horizontal moving rubber belt for a distance of 315 m at a speed of 25.6 +/- 0.38 and 28.8 +/- 0.35 m/min respectively for 10 min in an open-air-circuit respiration unit. From measurements of VO2 and VCO2, heat production...... and oxidation of carbohydrate and fat were calculated 30 min before (I), 10 min during walking (II) and in intervals of 10 min (III, IV) and 30 min (V) after walking. Heat production increased 2-3 times in section II in relation to section I, remained high for 20 min in section III and IV, but reached the basal...

  13. Customer satisfaction surveys: Methodological recommendations for financial service providers

    Directory of Open Access Journals (Sweden)

    Đorđić Marko

    2010-01-01

    Full Text Available This methodological article investigates practical challenges that emerge when conducting customer satisfaction surveys (CSS for financial service providers such as banks, insurance or leasing companies, and so forth. It displays methodological recommendations in reference with: (a survey design, (b sampling, (c survey method, (d questionnaire design, and (e data acquisition. Article provides appropriate explanations that usage of: two-stage survey design, SRS method, large samples, and rigorous fieldwork preparation can enhance the overall quality of CSS in financial services. Proposed methodological recommendations can primarily be applied to the primary quantitative marketing research in retail financial services. However, majority of them can be successfully applied when conducting primary quantitative marketing research in corporate financial services as well. .

  14. Superior heat transfer fluids for solar heating and cooling applications. Final report, 21 August 1978-31 December 1979. Report MRC-DA-953

    Energy Technology Data Exchange (ETDEWEB)

    Parts, L; Miller, D R; Leffingwell, J W; Thompson, Q E

    1980-09-01

    The major objective of this program was the identification of superior, currently available organic heat transfer fluids for solar collector applications. Organic fluids used in the form of aqueous solutions were also to be identified. The required design and handling properties of the fluids were determined through a survey in which 115 designers and manufacturers of solar collectors and collection systems participated. A state-of-the-art survey of commercially available organic heat transfer fluids provided information on fifty fluids. These were grouped into nine classes. This report contains information on limiting, design, and handling properties of these fluids. The limiting properties affix the use temperature ranges of the fluids. The design properties include the following thermophysical data: densities, vapor pressures, viscosities, specific heats, thermal conductivities, heats of vaporization, and coefficients of thermal expansion. The handling properties include: compatibility and incompatibility, with construction materials, chemical sensitivity, ignitability, physiological effects, and biodegradability characteristics. Mutagenicity tests with Salmonella typhimurium bacteria, and ignitability tests were conducted with a number of fluids in this program. The properties of the fluids were analyzed with reference to the required design and handling properties established in the survey of collector manufacturers. Guidelines are provided for the selection of superior fluids to meet specific collector operational and compatibility requirements. These guidelines include the use of heat transfer efficiency factors, that were calculated or the temperature ranges for which thermophysical data were available.

  15. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Science.gov (United States)

    Osten, Julia; Milkereit, Benjamin; Schick, Christoph; Kessler, Olaf

    2015-01-01

    In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181) in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed) was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC) was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  16. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Directory of Open Access Journals (Sweden)

    Julia Osten

    2015-05-01

    Full Text Available In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181 in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  17. Applications guide for waste heat recovery

    Science.gov (United States)

    Moynihan, P. I.

    1983-01-01

    The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R&D.

  18. Technical review of process heat applications using the HTGR

    International Nuclear Information System (INIS)

    Brierley, G.

    1976-06-01

    The demand for process heat applications is surveyed. Those applications which can be served only by the high temperature gas-cooled reactor (HTGR) are identified and the status of process heat applications in Europe, USA, and Japan in December 1975 is discussed. Technical problems associated with the HTGR for process heat applications are outlined together with an appraisal of the safety considerations involved. (author)

  19. Ohmic Heating: An Emerging Concept in Organic Synthesis.

    Science.gov (United States)

    Silva, Vera L M; Santos, Luis M N B F; Silva, Artur M S

    2017-06-12

    The ohmic heating also known as direct Joule heating, is an advanced thermal processing method, mainly used in the food industry to rapidly increase the temperature for either cooking or sterilization purposes. Its use in organic synthesis, in the heating of chemical reactors, is an emerging method that shows great potential, the development of which has started recently. This Concept article focuses on the use of ohmic heating as a new tool for organic synthesis. It presents the fundamentals of ohmic heating and makes a qualitative and quantitative comparison with other common heating methods. A brief description of the ohmic reactor prototype in operation is presented as well as recent examples of its use in organic synthesis at laboratory scale, thus showing the current state of the research. The advantages and limitations of this heating method, as well as its main current applications are also discussed. Finally, the prospects and potential implications of ohmic heating in future research in chemical synthesis are proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantitative elastic migration. Applications to 3D borehole seismic surveys; Migration elastique quantitative. Applications a la sismique de puits 3D

    Energy Technology Data Exchange (ETDEWEB)

    Clochard, V.

    1998-12-02

    3D VSP imaging is nowadays a strategic requirement by petroleum companies. It is used to precise in details the geology close to the well. Because of the lack of redundancy and limited coverage in the data. this kind of technology is more restrictive than surface seismic which allows an investigation at a higher scale. Our contribution was to develop an elastic quantitative imagine (GRT migration) which can be applied to 3 components borehole dataset. The method is similar to the Kirchhoff migration using sophistical weighting of the seismic amplitudes. In reality. GRT migration uses pre-calculated Green functions (travel time. amplitude. polarization). The maps are obtained by 3D ray tracing (wavefront construction) in the velocity model. The migration algorithm works with elementary and independent tasks. which is useful to process different kind of dataset (fixed or moving geophone antenna). The study has been followed with validations using asymptotic analytical solution. The ability of reconstruction in 3D borehole survey has been tested in the Overthrust synthetic model. The application to a real circular 3D VSP shows various problems like velocity model building, anisotropy factor and the preprocessing (deconvolution. wave mode separation) which can destroy seismic amplitudes. An isotropic 3 components preprocessing of the whole dataset allows a better lateral reconstruction. The choice of a big migration aperture can help the reconstruction of strong geological dip in spite of migration smiles. Finally, the methodology can be applied to PS converted waves. (author)

  1. Multi-annual planning of investments for heat production. 2009 - 2020 period

    International Nuclear Information System (INIS)

    2005-01-01

    A new Multi-annual Planning of Investments (PPI) for heat production in France has been realized in order to meet the conclusions of the Grenelle Environnement Forum for a better energy efficiency and a larger use of renewable energies. Based on quantitative data (the increase in heat production will reach more than 10 Mtoe by 2020), potential objectives have been assessed for the various heat production sources and techniques: wood, biomass (for buildings, district heating, industry and processes, cogeneration), deep and intermediary geothermal energy, individual heat pumps, individual and collective heat solar systems, biogas, etc. These objectives are said to be ambitious but reachable if every sources and techniques are thoroughly exploited

  2. BUYING BEHAVIOUR RELATED TO HEATING SYSTEMS IN GERMANY

    OpenAIRE

    Decker, Thomas; Zapilko, Marina; Menrad, Klaus

    2010-01-01

    The decision for buying a heating system is a long-term one, as many different aspects have an influence on this choice which were analysed in a Germany-wide, written survey. The respondents (only owners of a private house) had to answer questions about their attitude towards e.g. economics, convenience or ecological aspects related to heating systems and the respective combustibles. Using a multinomial logistic regression model the choice of the heating system is mainly explained by ecologic...

  3. Applications of thermoelectric modules on heat flow detection.

    Science.gov (United States)

    Leephakpreeda, Thananchai

    2012-03-01

    This paper presents quantitative analysis and practical scenarios of implementation of the thermoelectric module for heat flow detection. Mathematical models of the thermoelectric effects are derived to describe the heat flow from/to the detected media. It is observed that the amount of the heat flow through the thermoelectric module proportionally induces the conduction heat owing to the temperature difference between the hot side and the cold side of the thermoelectric module. In turn, the Seebeck effect takes place in the thermoelectric module where the temperature difference is converted to the electric voltage. Hence, the heat flow from/to the detected media can be observed from both the amount and the polarity of the voltage across the thermoelectric module. Two experiments are demonstrated for viability of the proposed technique by the measurements of the heat flux through the building wall and thermal radiation from the outdoor environment during daytime. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  4. FY 1999 investigational survey on the project on the potential survey of the effective energy utilization model project in the Asian region; 1999 nendo Asia chiiki ni okeru kokateki energy yuko riyo model jigyo no jisshi kanosei ni kansuru chosa jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A survey was made on the technology applicable to the energy effective utilization model project in the Asian region. In the survey, the technology was listed up which could be the base for the model project in which the use in the commercial/residential field and the use of natural energy were considered. Further, countries for survey were limited to developing countries in the Asian region. Technologies for survey were as follows: various cogeneration systems, fuel cell cogeneration systems, heat storage type heat utilization, heat storage type air conditioning using night power, night power use dynamic ice maker and heat storage tank utilization, low temperature exhaust heat use adsorption type refrigeration, low temperature waste heat recovery absorption type heat pump, low head hydroelectric power generation, energy conservation in buildings, rationalization of energy utilization by energy management, heat supply using solar energy/wind power energy, biomass energy utilization, high efficiency/multiple effect heat utilization, high performance membrane separator utilization, high temperature/high humidity drying, airless dryer, etc. (NEDO)

  5. One-dimensional nonlinear inverse heat conduction technique

    International Nuclear Information System (INIS)

    Hills, R.G.; Hensel, E.C. Jr.

    1986-01-01

    The one-dimensional nonlinear problem of heat conduction is considered. A noniterative space-marching finite-difference algorithm is developed to estimate the surface temperature and heat flux from temperature measurements at subsurface locations. The trade-off between resolution and variance of the estimates of the surface conditions is discussed quantitatively. The inverse algorithm is stabilized through the use of digital filters applied recursively. The effect of the filters on the resolution and variance of the surface estimates is quantified. Results are presented which indicate that the technique is capable of handling noisy measurement data

  6. Survey of the effect of heat-to-heat variations upon the fatigue-crack propagation behavior of types 304 and 316 stainless steels

    International Nuclear Information System (INIS)

    James, L.A.

    1975-05-01

    The fatigue-crack growth behavior of four heats of annealed Type 304 stainless steel and three heats of annealed Type 316 stainless steel were studied at elevated temperature using the techniques of linear-elastic fracture mechanics. It is estimated that a factor of 1.5 applied above and below the mean line would provide upper and lower bounds that would account for heat-to-heat variations. In addition, the three heats of Type 316 represented three different melt practices: air-melt, vacuum-arc-remelt, and double-vacuum-melt processes. No effect on fatigue-crack growth behavior was noted due to melt practice. (U.S.)

  7. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio; Sathaye, Jayant

    2010-05-14

    We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

  8. Using Qualitative Metasummary to Synthesize Qualitative and Quantitative Descriptive Findings

    OpenAIRE

    Sandelowski, Margarete; Barroso, Julie; Voils, Corrine I.

    2007-01-01

    The new imperative in the health disciplines to be more methodologically inclusive has generated a growing interest in mixed research synthesis, or the integration of qualitative and quantitative research findings. Qualitative metasummary is a quantitatively oriented aggregation of qualitative findings originally developed to accommodate the distinctive features of qualitative surveys. Yet these findings are similar in form and mode of production to the descriptive findings researchers often ...

  9. Status of gamma-ray heating characterization in LMFBR

    International Nuclear Information System (INIS)

    Gold, R.

    1975-11-01

    Efforts to define gamma-ray heating in Liquid Metal Fast Breeder Reactor (LMFBR) environments have been surveyed. Emphasis is placed on both current practice for the Experimental Breeder Reactor-II (EBR-II) and future needs of the Fast Flux Test Facility (FFTF). Experimental and theoretical work are included in this preliminary survey for both high and low power environments. Current ''state-of-the-art'' accuracies and limitations are assessed. On this basis, it is concluded that a broad and sustained effort be initiated to meet requested FFTF goal accuracies. To this end, recommendations are advanced for improving the current status of gamma heating characterization and temperature measurements in LMFBR

  10. Evaluation of piping heat transfer, piping flow regimes, and steam generator heat transfer for the Semiscale Mod-1 isothermal tests

    International Nuclear Information System (INIS)

    French, R.T.

    1975-08-01

    Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)

  11. Swedish Homeowners' Attitude towards Water-Based Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, L; Mahapatra, K [Mid Sweden Univ., Ecotechnology, SE-831 25 Oestersund (Sweden)

    2008-10-15

    In 2004 and 2007, we conducted questionnaire surveys of 1,500 randomly selected Swedish homeowners of detached houses to understand their attitude towards adopting an innovative heating system (IHS). The results showed that there was no substantial change in homeowners' attitude towards IHSs. More than 80% of the respondents did not intend to install a new heating system. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Installers were the most frequently consulted source of information on heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantages with respect to investment cost. District heating system was considered as most functionally reliable and automatic. Keywords: Heat sector, socio-economic aspects, market implementation

  12. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively Driven Heating and Chemistry of Molecular Gas

    Science.gov (United States)

    Bublitz, Jesse

    Planetary nebulae contain shells of cold gas and dust whose heating and chemistry is likely driven by UV and X-ray emission from their central stars and from wind-collision-generated shocks. We present the results of a survey of molecular line emissions in the 88 - 235 GHz range from nine nearby (Radioastronomie Millimetrique. Rotational transitions of nine molecules, including the well-studied CO isotopologues and chemically important trace species, were observed and the results compared with and augmented by previous studies of molecular gas in PNe. Lines of the molecules HCO+, HNC, HCN, and CN, which were detected in most objects, represent new detections for five planetary nebulae in our study. Flux ratios were analyzed to identify correlations between the central star and/or nebular ultraviolet/X-ray luminosities and the molecular chemistries of the nebulae. Analysis reveals the apparent dependence of the HNC/HCN line ratio on PN central star UV luminosity. There exists no such clear correlation between PN X-rays and various diagnostics of PN molecular chemistry. The correlation between HNC/HCN ratio and central star UV luminosity hints at the potential of molecular emission line studies of PNe for improving our understanding of the role that high-energy radiation plays in the heating and chemistry of photodissociation regions.

  13. Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII

    KAUST Repository

    Cenker, Emre

    2017-02-27

    During the rapid laser pulse heating and consecutive cooling in laser-induced incandescence (LII), soot particles may undergo thermal annealing and sublimation processes which lead to a permanent change in its optical properties and its primary particle size, respectively. Overall, effects of these two processes on soot and LII model-based particle sizing are investigated by measuring the two-color time-resolved (2C-TiRe) LII signal decay from in-flame soot after two consecutive laser pulses at 1064-nm wavelength. Experiments are carried out on a non-premixed laminar ethylene/air flame from a Santoro burner with both low and moderate laser fluences suitable for particle sizing. The probe volume is set to a radial position close to the flame axis where the soot particles are known to be immature or less graphitic. With the first pulse, soot is pre-heated, and the LII signal after the consecutive second pulse is used for analysis. The two-color incandescence emission technique is used for the pyrometric determination of the LII-heated peak soot temperature at the second pulse. A new LII simulation tool is developed which accounts for particle heating via absorption and annealing, and cooling via sublimation, conduction, and radiation with various existing sub-models from the literature. The same approach of using two laser pulses is implemented in the simulations. Measurements indicate that thermal annealing and associated absorption enhancement becomes important at laser fluences above 0.17 J/cm2 for the immature in-flame soot. After a heating pulse at 0.33 J/cm2, the increase of the soot absorption function is calculated as 35% using the temperature measured at the second pulse and an absorption model based on the Rayleigh approximation. Present annealing model, on the other hand, predicts graphitization of soot even in the absence of laser heating at typical flame temperatures. Recorded experimental LII signal decays and LII-heated peak soot temperature

  14. On-line fouling monitor for heat exchangers

    International Nuclear Information System (INIS)

    Tsou, J.L.

    1995-01-01

    Biological and/or chemical fouling in utility service water system heat exchangers adversely affects operation and maintenance costs, and reduced heat transfer capability can force a power deaerating or even a plant shut down. In addition, service water heat exchanger performance is a safety issue for nuclear power plants, and the issue was highlighted by NRC in Generic Letter 89-13. Heat transfer losses due to fouling are difficult to measure and, usually, quantitative assessment of the impact of fouling is impossible. Plant operators typically measure inlet and outlet water temperatures and flow rates and then perform complex calculations for heat exchanger fouling resistance or ''cleanliness''. These direct estimates are often imprecise due to inadequate instrumentation. Electric Power Research Institute developed and patented an on-line condenser fouling monitor. This monitor may be installed in any location within the condenser; does not interfere with routine plant operations, including on-line mechanical and chemical treatment methods; and provides continuous, real-time readings of the heat transfer efficiency of the instrumented tube. This instrument can be modified to perform on-line monitoring of service water heat exchangers. This paper discusses the design, construction of the new monitor, and algorithm used to calculate service water heat exchanger fouling

  15. On buoyancy-driven natural ventilation of a room with a heated floor

    Science.gov (United States)

    Gladstone, Charlotte; Woods, Andrew W.

    2001-08-01

    The natural ventilation of a room, both with a heated floor and connected to a cold exterior through two openings, is investigated by combining quantitative models with analogue laboratory experiments. The heated floor generates an areal source of buoyancy while the openings allow displacement ventilation to operate. When combined, these produce a steady state in which the air in the room is well-mixed, and the heat provided by the floor equals the heat lost by displacement. We develop a quantitative model describing this process, in which the advective heat transfer through the openings is balanced with the heat flux supplied at the floor. This model is successfully tested with observations from small-scale analogue laboratory experiments. We compare our results with the steady-state flow associated with a point source of buoyancy: for a given applied heat flux, an areal source produces heated air of lower temperature but a greater volume flux of air circulates through the room. We generalize the model to account for the effects of (i) a cooled roof as well as a heated floor, and (ii) an external wind or temperature gradient. In the former case, the direction of the flow through the openings depends on the temperature of the exterior air relative to an averaged roof and floor temperature. In the latter case, the flow is either buoyancy dominated or wind dominated depending on the strength of the pressure associated with the wind. Furthermore, there is an intermediate multiple-solution regime in which either flow regime may develop.

  16. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.

    Science.gov (United States)

    Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S

    2016-10-01

    A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  17. An Impurity Emission Survey in the near UV and Visible Spectral Ranges of Electron Cyclotron Heated (ECH) Plasma in the TJ-II Stellarator

    International Nuclear Information System (INIS)

    McCarthy, K. J.; Zurro, B.; Baciero, A.

    2001-01-01

    We report on a near-ultraviolet and visible spectroscopic survey (220-600 nm) of electron cyclotron resonance (ECR) heated plasmas created in the TJ-II stellarator, with central electron temperatures up to 2 keV and central electron densities up to 1.7 x 10 ''19 m''-3. Approximately 1200 lines from thirteen elements have been identified. The purpose of the work is to identify the principal impurities and spectral lines present in TJ-II plasmas, as well as their possible origin to search for transitions from highly ionised ions. This work will act as a base for identifying suitable transitions for following the evolution of impurities under different operating regimens and multiplet systems for line polarisation studies. It is intended to use the database creates as a spectral line reference for comparing spectra under different operating and plasma heating regimes. (Author)

  18. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    OpenAIRE

    Traynor, Laura; Lange, Ian A.; Moro, Mirko

    2012-01-01

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though ...

  19. Development of suitability maps for ground-coupled heat pump systems using groundwater and heat transport models

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Hikari; Itoi, Ryuichi [Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Inatomi, Tadasuke [YBM Co. Ltd., Kishiyama 589-10 Kitahata, Karatsu 847-1211 (Japan); Uchida, Youhei [Geological Survey of Japan, AIST Tsukuba Central 7, Tsukuba 305-8567 (Japan)

    2007-10-15

    The thermophysical properties of subsurface materials (soils, sediments and rocks) and groundwater flow strongly affect the heat exchange rates of ground heat exchangers (GHEs). These rates can be maximized and the installation costs of the ground-coupled heat pump (GCHP) systems reduced by developing suitability maps based on local geological and hydrological information. Such maps were generated for the Chikushi Plain (western Japan) using field-survey data and a numerical modeling study. First, a field-wide groundwater model was developed for the area and the results matched against measured groundwater levels and vertical temperature profiles. Single GHE models were then constructed to simulate the heat exchange performance at different locations in the plain. Finally, suitability maps for GCHP systems were prepared using the results from the single GHE models. Variations in the heat exchange rates of over 40% revealed by the map were ascribed to differences in the GHE locations, confirming how important it is to use appropriate thermophysical data when designing GCHP systems. (author)

  20. Transient thermal performance analysis of micro heat pipes

    International Nuclear Information System (INIS)

    Liu, Xiangdong; Chen, Yongping

    2013-01-01

    A theoretical analysis of transient fluid flow and heat transfer in a triangular micro heat pipes (MHP) has been conducted to study the thermal response characteristics. By introducing the system identification theory, the quantitative evaluation of the MHP's transient thermal performance is realized. The results indicate that the evaporation and condensation processes are both extended into the adiabatic section. During the start-up process, the capillary radius along axial direction of MHP decreases drastically while the liquid velocity increases quickly at the early transient stage and an approximately linear decrease in wall temperature arises along the axial direction. The MHP behaves as a first-order LTI control system with the constant input power as the 'step input' and the evaporator wall temperature as the 'output'. Two corresponding evaluation criteria derived from the control theory, time constant and temperature constant, are able to quantitatively evaluate the thermal response speed and temperature level of MHP under start-up, which show that a larger triangular groove's hydraulic diameter within 0.18–0.42 mm is able to accelerate the start-up and decrease the start-up temperature level of MHP. Additionally, the MHP starts up fastest using the fluid of ethanol and most slowly using the working fluid of methanol, and the start-up temperature reaches maximum level for acetone and minimum level for the methanol. -- Highlights: • Transient thermal response of micro heat pipe is simulated by an improved model. • Control theory is introduced to quantify the thermal response of micro heat pipe. • Evaluation criteria are proposed to represent thermal response of micro heat pipe. • Effects of groove dimensions and working fluids on start-up of micro heat pipe are evaluated

  1. The implementation of quantitative electromyographic neuromuscular monitoring in an academic anesthesia department.

    Science.gov (United States)

    Todd, Michael M; Hindman, Bradley J; King, Brian J

    2014-08-01

    Although experts agree on the importance of quantitative neuromuscular blockade monitoring, particularly for managing reversal, such monitoring is not in widespread use. We describe the processes and results of our departmental experience with the introduction of such quantitative monitoring. In mid-2010, the senior authors became concerned about the management of nondepolarizing neuromuscular blockers (NMB) by providers within the department, based on personal observations and on a review of a departmental quality assurance/adverse event database. This review indicated the occurrence of 2 to 4 reintubations/year in the postanesthesia care unit (PACU) that were deemed to be probably or possibly related to inadequate reversal. In response, quantitative blockade equipment (Datex-Omeda ElectroSensor™ EMG system) was installed in all our main operating rooms in January 2011. This introduction was accompanied by an extensive educational effort. Adoption of the system was slow; by mid-2011, the quantitative system was being used in system. In the initial (August 2011) PACU survey of 96 patients receiving nondepolarizing NMBs, 31% had a TOF ratio of ≤0.9, 17% had a ratio of ≤0.8, and 4 patients (4%) had ratios of ≤0.5. A record review showed that the quantitative monitoring system had been used to monitor reversal in only 51% of these patients, and 23% of patients had no evidence of any monitoring, including qualitative TOF assessment. By December of 2012 (after 2 interim PACU monitoring surveys), a fourth survey showed 15% of 101 monitored patients had a TOF ratio ≤0.9, and only 5% had ratios ≤0.8. (P system was present in 83% of cases (P < 0.05 vs August 2011). A final survey in July 2013 showed nearly identical values to those from December 2012. The lowest TOF ratio observed in any patient not receiving a nondepolarizing NMB was 0.92. There were no changes in the patterns of either rocuronium or neostigmine use over the duration of the project (through

  2. Air-to-air heat pumps in real-life use

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten; Christensen, Toke Haunstrup; Petersen, Poul Erik

    2012-01-01

    This paper deals with individual air-to-air heat pumps in Danish dwellings and summerhouses and the question of to what extent they actually deliver savings of energy consumption. Results show that 20% of the expected reduction of electricity consumption is converted into increased comfort...... in the homes, including extended heating areas, keeping a higher temperature and a longer heating season and using the heat pump for air conditioning. Data include electricity consumption in 185 households before and after installation of heat pumps together with survey results of 480 households. Furthermore...... heating practices. These results have to be taken into account when making long-term energy planning for a sustainable energy system....

  3. Analysis of the impact of the Dutch Heat Act on projects and an inventory of stakeholders

    International Nuclear Information System (INIS)

    Budding, B.; Gerrits, W.; Grootscholten, C.

    2010-08-01

    The Dutch Heat Act was adopted by the Dutch Lower Chamber in February 2009. The main aim of the Act is reliable delivery of heat at reasonable prices and conditions to protect the consumer. The Dutch Ministry of Economic Affairs commissioned a study on the effect of the Heat Act on investment decisions for new heat projects, encompassing a quantitative and a qualitative assessment. [nl

  4. Heat stress assessment in artistic glass units.

    Science.gov (United States)

    d'AMBROSIO Alfano, Francesca Romana; Palella, Boris Igor; Riccio, Giuseppe; Bartalini, Massimo; Strambi, Fabio; Malchaire, Jacques

    2018-04-07

    Heat stress in glass industry is mainly studied in large and highly mechanized manufacturing Units. To the contrary, few studies were carried out in small factories specialized in hand-made products. To stress the need of combined objective and medical surveys in these environments, this paper deals with a simultaneous climatic and physiological investigation of working conditions in artistic crystal glass factories in Tuscany (Italy). The microclimatic monitoring, through a continuous survey has been carried out in early spring. The main physiological parameters (metabolic rate, heart rate, tympanic temperature and water loss) were measured over the whole shifts. The results show that, despite the arduousness of the working conditions, the heat stress levels are physiologically tolerable. The predictions made using the PHS model at the Analysis level described in ISO 15265 agree closely to the observed values, validating the use of PHS model in these conditions. This model was then used to analyse what is likely to be the situation during the summer. It is concluded that the heat constraint will be very high and that some steps must be taken from the spring to monitor closely the exposed workers in the summer and take measures to prevent any heat accident.

  5. Quantitative studies of water and sanitation utilities: a literature survey

    OpenAIRE

    Berg, Sanford V; Marques, Rui Cunha

    2010-01-01

    This paper performs a literature update of quantitative studies of water and sanitation services (WSS). There are 190 studies which use cost or production functions to evaluate the performance of WSS utilities. The studies examine (1) the scale, scope or density economies of utilities in a particular country or region, (2) the influence of ownership on efficiency, (3) the existence and power of incentives associated with different governance systems (including external regulation), and (4) pe...

  6. An evaluation of analytical heat transfer area with various boiling heat transfer correlations in steam generator thermal sizing

    International Nuclear Information System (INIS)

    Jung, B. R.; Park, H. S.; Chung, D. M.; Baik, S. J.

    1999-01-01

    The computer program SAFE has been used to size and analyze the performance of a steam generator which has two types of heat transfer regions in Korean Standard Nuclear Power Plants (KSNP) and Korean Next Generation Reactor (KNGR) design. The SAFE code calculates the analytical boiling heat transfer area using the modified form of the saturated nucleate pool boiling correlation suggested by Rohsenow. The predicted heat transfer area in the boiling region is multiplied by a constant to obtain a final analytical heat transfer area. The inclusion of the multiplier in the analytical calculation has some disadvantage of loss of complete correlation by the governing heat transfer equation. Several comparative analyses have been performed quantitatively to evaluate the possibility of removing the multiplier in the analytical calculation in the SAFE code. The evaluation shows that the boiling correlation and multiplier used in predicting the boiling region heat transfer area can be replaced with other correlations predicting nearly the same heat transfer area. The removal of multiplier included in the analytical calculation will facilitate a direct use of a set of concerned analytical sizing values that can be exactly correlated by the governing heat transfer equation. In addition this will provide more reasonable basis for the steam generator thermal sizing calculation and enhance the code usability without loss of any validity of the current sizing procedure. (author)

  7. Explosion-protected electric heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, H

    1984-02-01

    Different constructions of explosion-protected heating systems are described concerning the different types of protection, the service conditions, the installation and the surveillance devices. Interpretations and regulations derived from the VDE Standards are discussed and their relation to the European Standards EN 50014 ... 50020 is considered in a survey.

  8. Effect of Buoyancy on Forced Convection Heat Transfer in Vertical Channels - a Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, A

    1965-03-15

    This report contains a short resume of the available information from various sources on the effect of free convection flow on forced convection heat transfer in vertical channels. Both theoretical and experimental investigations are included. Nearly all of the theoretical investigations are concerned with laminar flow with or without internal heat generation. More consistent data are available for upward flow than for downward flow. Curves are presented to determine whether free convection or forced convection mode of heat transfer is predominant for a particular Reynolds number and Rayleigh number. At Re{sub b} > 10{sup 5} free convection effects are negligible. Downward flow through a heated channel at low Reynolds number is unstable. Under similar conditions the overall heat transfer coefficient for downward flow tends to be higher than that for upward flow.

  9. Specific heat of the simple-cubic Ising model

    NARCIS (Netherlands)

    Feng, X.; Blöte, H.W.J.

    2010-01-01

    We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions

  10. Consumer impacts on dividends from solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F.; Levermore, G. [University of Manchester, Manchester (United Kingdom); Lynch, H. [Centre for Alternative Technology, Machynlleth, University of East London, London (United Kingdom)

    2011-01-15

    Common domestic solar water heating system usage patterns were investigated by a survey of 55 installations. These usage patterns were modelled by simulation based on the actual occupants' use of boiler or other auxiliary heating control strategies. These strategies were not optimal, as often assumed. The effectiveness of the technology was found to be highly sensitive to the time settings used for auxiliary water heating, and the 65% of solar householders using their boilers in the mornings were found to be forgoing 75% of their potential savings. Additionally, 92% of consumers were found to be small households, whose potential savings were only 23% of those of larger households, which use more hot water. Overall the majority (at least 60%) of the systems surveyed were found to be achieving no more than 6% of their potential savings. Incorporating consideration of Legionella issues, results indicate that if solar thermal technology is to deliver its potential to CO2 reduction targets: solar householders must avoid any use of their auxiliary water heating systems before the end of the main warmth of the day, grants for solar technology should be focused on households with higher hot water demands, and particularly on those that are dependent on electricity for water heating, health and safety requirements for hot water storage must be reviewed and, if possible, required temperatures should be set at a lower level, so that carbon savings from solar water heating may be optimized.

  11. Interferometric measurement and numerical comparisons of supersonic heat transfer flows in microchannel

    International Nuclear Information System (INIS)

    Takahashi, Yuya; Chen, Lin; Okajima, Junnosuke; Iga, Yuka; Komiya, Atsuki; Maruyama, Shigenao

    2016-01-01

    Highlights: • Effective cooling design by super-/sub-sonic air flow in microchannels is proposed. • Microscale supersonic flows is successfully generated and examined. • Microchannel flow density field were visualized quantitatively by interferometer. • The bump design shows great potential of heat transfer enhancement in microscale. - Abstract: With the fast development of electronic systems and the ever-increasing demand of thermally “smart” design in space and aeronautic engineering, the heat transfer innovations and high heat flux challenges have become a hot topic for decades. This study is aimed at the effective cooling heat transfer design by super-/sub-sonic air flow in microscale channels for high heat flux devices. The design is based on the low temperature flows with supersonic expansion in microscale, which yields a compact and simple design. By careful microelectromechanical process, microscale straight and bumped channels (with simple arc curve) are fabricated and experimentally tested in this study. The microscale flow field and density distributions under new designs are visualized quantitatively by an advanced phase-shifting interferometer system, which results are then compared carefully with numerical simulations. In this study, large differences between the two designs in density distribution and temperature changes (around 50 K) are found. The high heat flux potential for supersonic microchannel flows is realized and discussion into detail. It is confirmed that the bump design contributes significantly to the heat transfer enhancement, which shows potential for future application in novel system designs.

  12. Economy of straw-fired heating plants

    International Nuclear Information System (INIS)

    1991-10-01

    The aim was to produce a detailed survey of the economical aspects of the operation of individual Danish straw-fired heating plants and to compare the results. It is hoped the operators of these plants will thus be encouraged to work together when atttempting to solve problems in this respect and that the gathered information could be used by consultants. The collected data from the survey is presented in the form of tables and graphs. (AB)

  13. State heating oil and propane program. Final report, 1992--1993

    International Nuclear Information System (INIS)

    Rizzolo, D.R.

    1997-01-01

    In cooperation with the United States Department of Energy (USDOE), Energy Information Administration (EIA) the New Jersey Department of Environmental Protection and Energy (DEPE), Office of Energy participated in an ongoing program to monitor retail prices of no. 2 heating oil and propane in New Jersey. According to program instructions, we conducted price surveys on a semi-monthly basis to obtain the necessary information from retail fuel merchants and propane dealers identified by the EIA. According to program instructions and at the discretion of the USDOE, we conducted four additional propane surveys on January 11 and 25, and April 5 and 19, 1993. The heating oil surveys began on October 5, 1992 and ended on March 15, 1993. The propane surveys began on October 5, 1992 and ended on April 19, 1993. We submitted data collected as of specified report dates to the EIA, within two working days of those dates

  14. Small-Scale Pellet Heating Systems from Consumer Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, K; Gustavsson, L [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic.

  15. Small-Scale Pellet Heating Systems from Consumer Perspective

    International Nuclear Information System (INIS)

    Mahapatra, K.; Gustavsson, L.

    2006-01-01

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic

  16. Neutral-beam-heating applications and development

    International Nuclear Information System (INIS)

    Menon, M.M.

    1981-01-01

    The technique of heating the plasma in magnetically confined fusion devices by the injection of intense beams of neutral atoms is described. The basic principles governing the physics of neutral beam heating and considerations involved in determining the injection energy, power, and pulse length required for a fusion reactor are discussed. The pertinent experimental results from various fusion devices are surveyed to illustrate the efficacy of this technique. The second part of the paper is devoted to the technology of producing the neutral beams. A state-of-the-art account o the development of neutral injectors is presented, and the prospects for utilizing neutral injection to heat the plasma in a fusion reactor are examined

  17. The Thermos program for nuclear reactors specialized in district heating

    International Nuclear Information System (INIS)

    Lerouge, B.

    1976-01-01

    Many studies have been made in France on the use of nuclear heat for district heating. After a brief account of the problems raised by the use of thermal waste from big nuclear power stations, the quantitative and qualitative needs of heating networks are analyzed and the Thermos project described. This is a very robust reactor of the pool type, with an output of 100MW, supplying low-pressure water at 100 deg C. The advantages from the aspects of safety and economy are described, and the present state of the project and its possible developments summarized [fr

  18. Ballistic near-field heat transport in dense many-body systems

    Science.gov (United States)

    Latella, Ivan; Biehs, Svend-Age; Messina, Riccardo; Rodriguez, Alejandro W.; Ben-Abdallah, Philippe

    2018-01-01

    Radiative heat transport mediated by near-field interactions is known to be superdiffusive in dilute, many-body systems. Here we use a generalized Landauer theory of radiative heat transfer in many-body planar systems to demonstrate a nonmonotonic transition from superdiffusive to ballistic transport in dense systems. We show that such a transition is associated to a change of the polarization of dominant modes. Our findings are complemented by a quantitative study of the relaxation dynamics of the system in the different regimes of heat transport. This result could have important consequences on thermal management at nanoscale of many-body systems.

  19. A Study on the Representative Sampling Survey for Radionuclide Analysis of RI Waste

    Energy Technology Data Exchange (ETDEWEB)

    Jee, K. Y. [KAERI, Daejeon (Korea, Republic of); Kim, Juyoul; Jung, Gunhyo [FNC Tech. Co., Daejeon (Korea, Republic of)

    2007-07-15

    We developed a quantitative method for attaining a representative sample during sampling survey of RI waste. Considering a source, process, and type of RI waste, the method computes the number of sample, confidence interval, variance, and coefficient of variance. We also systematize the method of sampling survey logically and quantitatively. The result of this study can be applied to sampling survey of low- and intermediate-level waste generated from nuclear power plant during the transfer process to disposal facility.

  20. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, Laura; Lange, Ian; Moro, Mirko [Stirling Univ. (United Kingdom). Division of Economics

    2012-06-15

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though environmentally friendly behaviours are associated with lower heating expenditure. Also, the effect of these attitudes and behaviours do not change as income increase.

  1. Guidelines for heat exchange performance evaluation. A practical and semitheoretical approach

    International Nuclear Information System (INIS)

    Chocron, M.; Urrutia, G.; Calderon, Ma. del C Raffo; Arostegui, E.; Johanssen, W.; Guala, M.

    1998-01-01

    Steam Generators and highly rated heat exchangers, such as feed water preheaters, moderator coolers of PHWRs, etc., are frequently surveyed, as far as heat exchange capability is concerned, by monitoring some of the heat and mass transfer balances variables involved, though they are not necessarily the most proper ones for the best assesment. Through several years' experience working in the engineering department of a Nuclear Power Plant, it can be concluded that every important component or equipment that has an almost unique design due to its importance, requires a particular treatment for its periodical surveillance. In the present paper some guiding rules for a better achievement of the aforementioned task are described and illustrated with examples taken from several plant situations. It can be concluded that, improving process variables measurement, together with data reconciliation and a proper modelling leads to better parameters to survey heat transport in heath exchangers. (author)

  2. Characteristics of residential energy consumption in China: Findings from a household survey

    International Nuclear Information System (INIS)

    Zheng, Xinye; Wei, Chu; Qin, Ping; Guo, Jin; Yu, Yihua; Song, Feng; Chen, Zhanming

    2014-01-01

    A comprehensive survey of 1450 households in 26 Chinese provinces was undertaken in 2012 to identify the characteristics and potential driving forces of residential energy consumption in China. The survey covers six areas: household characteristics, dwelling characteristics, kitchen and home appliances, space heating and cooling, residential transportation, and electricity billing, metering, and pricing options. The results show that a typical Chinese household in 2012 consumed 1426 kilograms standard coal equivalent, which is approximately 44 percent of the 2009 level in the United States and 38 percent of the 2008 level in the EU-27. District heating, natural gas, and electricity are three major residential energy sources, while space heating, cooking, and water heating are three major end-use activities. Moreover, the results suggest a large urban–rural gap in terms of energy sources and purpose of usage. Commercial energy is used mainly for space heating in urban areas, while biomass dominates mainly for cooking purpose in rural areas. The survey results can help decision makers and scholars identify energy conservation opportunities, and evaluate the effectiveness of energy policies. - Highlights: • We develop the first comprehensive survey of residential energy consumption in China. • A typical Chinese household in 2012 consumed 1426 kilograms coal equivalent. • Space heating accounts for half of energy demand. • A large rural–urban gap exists in terms of energy sources and end-use activities. • Results reveal challenges and opportunities for China's energy policy

  3. Competition in the market for space heating. District heating as the infrastructure for competition among fuels and technologies

    International Nuclear Information System (INIS)

    Grohnheit, Poul Erik; Gram Mortensen, Bent Ole

    2003-01-01

    None of the EU directives on liberalisation of the electricity and gas markets are considering the district heating systems, although the district heating networks offer the possibility of competition between natural gas and a range of other fuels on the market for space heating. Cogeneration of electricity and heat for industrial processes or district heating is a technology option for increased energy efficiency and thus reduction of CO 2 emissions. In the mid-1990s less than 10% of the electricity generation in the European Union was combined production with significant variations among Member States. These variations are explained by different national legislation and relative power of institutions, rather than difference in industrial structure, climate or urban physical structure. The 'single energy carrier' directives have provisions that support the development of combined heat and power (CHP), but they do not support the development and expansion of the district heating infrastructure. The article is partly based on a contribution to the Shared Analysis Project for the European Commission DG Energy, concerning the penetration of CHP, energy saving, and renewables as instruments to meet the targets of the Kyoto Protocol within the liberalised European energy market. The quantitative and legal differences of the heat markets in selected Member States are described, and the consequences of the directives are discussed. Finally, we summarise the tasks for a European policy concerning the future regulation of district heating networks for CHP, emphasising the need for rules for a fair competition between natural gas and district heating networks

  4. Lower hybrid heating data on the Wega experiment revisited using ion stochastic heating and electron Landau damping theories

    International Nuclear Information System (INIS)

    Gormezano, C.; Hess, W.; Ichtchenko, G.

    1980-07-01

    The already obtained data on the Wega Tokamak by lower hybrid heating (f=500 MHz - Psub(HF)=130 KW) are revisited in the light of recent theories on ion stochastic heating and quasi-linear electron Landau damping. It is possible to correctly estimate with these theories the fast ion mean energy, the H.F. power density coupled to the ions and that coupled to the electrons. The values of the parallel index of refraction, Nsub(//), which are necessary to obtain a good quantitative agreement between experiment and theoretical estimates, are the same for the ions and for the electrons, even though at higher values than expected

  5. Numerical study of the conjugate heat transfer in a horizontal pipe heated by Joulean effect

    Directory of Open Access Journals (Sweden)

    Touahri Sofiane

    2012-01-01

    Full Text Available The three dimensional mixed convection heat transfer in a electrically heated horizontal pipe conjugated to a thermal conduction through the entire solid thickness is investigated by taking into account the thermal dependence of the physical properties of the fluid and the outer heat losses. The model equations of continuity, momentum and energy are numerically solved by the finite volume method. The pipe thickness, the Prandtl and the Reynolds numbers are fixed while the Grashof number is varied from 104to107. The results obtained show that the dynamic and thermal fields for mixed convection are qualitatively and quantitatively different from those of forced convection, and the local Nusselt number at the interface solid-fluid is not uniform: it has considerable axial and azimuthally variations. The effect of physical variables of the fluid depending on temperature is significant, which justifies its inclusion. The heat transfer is quantified by the local and average Nusselt numbers. We found that the average Nusselt number of solid-fluid interface of the duct increases with the increase of Grashof number. We have equally found out that the heat transfer is improved thanks to the consideration of the thermo dependence of the physical properties. We have tried modelling the average Nusselt number as a function of Richardson number. With the parameters used, the heat transfer is quantified by the correlation: NuA=12.0753 Ri0.156

  6. Domestic heat pumps in the UK. User behaviour, satisfaction and performance

    Energy Technology Data Exchange (ETDEWEB)

    Caird, S.; Roy, R.; Potter, S. [Design Innovation Group, Dept. Design, Development, Environment and Materials, Faculty of Mathematics, Computing and Technology, The Open University, Milton Keynes, MK7 6AA (United Kingdom)

    2012-08-15

    Consumer adoption of microgeneration technologies is part of the UK strategy to reduce carbon emissions from buildings. Domestic heat pumps are viewed as a potentially important carbon saving technology, given the ongoing decarbonisation of the electricity supply system. To address the lack of independent evaluation of heat pump performance, the Energy Saving Trust undertook the UK's first large-scale heat pump field trial, which monitored 83 systems in real installations. As part of the trial, the Open University studied the consumers' experience of using a domestic heat pump. An in-depth user survey investigated the characteristics, behaviour, and satisfactions of private householders and social housing residents using ground source and air source heat pumps for space and/or water heating, and examined the influence of user-related factors on measured heat pump system efficiency. The surveys found that most users were satisfied with the reliability, heating, hot water, warmth and comfort provided by their system. Analysis of user characteristics showed that higher system efficiencies were associated with greater user understanding of their heat pump system, and more continuous heat pump operation, although larger samples are needed for robust statistical confirmation. The analysis also found that the more efficient systems in the sample were more frequently located in the private dwellings than at the social housing sites and this difference was significant. This is explained by the interaction between differences in the systems, dwellings and users at the private and social housing sites. The implications for heat pump research, practice and policy are discussed.

  7. Achievement report on research and development in the Sunshine Project in fiscal 1978. Surveys and studies on patents and information (Surveys on information about new energy technology development); 1978 nendo tokkyo joho chosa kenkyu seika hokokusho. Shin energy gijutsu kaihatsu joho chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    This paper describes the surveys on information about new energy technology development in fiscal 1978 in the Sunshine Project. The present fiscal year performed the surveys on the United States and France as the main subjects. For the solar energy development in the United States, surveys were made on power generation using solar heat, solar cells, difference in ocean temperatures, satellites, biomass, and solar energy air conditioning systems. Geothermal energy development was also surveyed. For coal energy, surveys were done on coal liquefaction, gasification, high-temperature gas turbines and MHD power generation. The U.S. energy policy has various kinds of cards. For the solar energy development in France, heat conversion and photo-cell conversion systems were surveyed, while the authorities take development promotion measures on solar heat conversion system under the judgement that this is the only contributor to the new energy development. Surveys were performed on trends in biomass as the biological energy conversion means of the solar energy. Geothermal energy is being advanced of development following that for the solar energy. Surveys were made also on power generation systems using wind power, wave power and difference in ocean temperatures. This paper dwells also on waste heat utilization, cogeneration, and heat pumps as examples for energy conservation means. (NEDO)

  8. Absorption technology for solar and waste heat utilization

    International Nuclear Information System (INIS)

    Grossman, G.

    1993-01-01

    Absorption heat pumps, first developed in the 19th century, have received renewed and growing attention in the past two decades. With the increasing cost of oil and electricity, the particular features of this heat-powered cycle have made it attractive for both residential and industrial applications. Solar-powered air conditioning, gas-fired domestic cooling and waste-heat-powered temperature boosters are some of the applications on which intensive research and development has been conducted. This paper describes the operation of absorption systems and discusses several practical applications. It surveys recent advances in absorption technology, including the selection of working fluids, cycle improvements and multi-staging, and fundamentals of the combined heat and mass transfer in absorption processes. (author)

  9. Evaluation of solar thermal storages with quantitative flow visualisation

    Energy Technology Data Exchange (ETDEWEB)

    Logie, W.; Frank, E.; Luzzi, A.

    2008-07-15

    The non-intrusive Quantitative Flow Visualisation (QFV) Techniques of Particle Imaging Velocimetry (PIV) and Laser Induced Fluorescence (LIF) have been evaluated in the context of experimental investigations on solar Thermal Energy Storages (TES). Much competence and experience has been gained in the integration of these powerful yet complex and time consuming flow analysis methods into the realm of laboratory experimentation. In addition to gathering experience in the application of QFV techniques, a number of charging and discharging variations were considered in light of exergetic evaluation for the influence they have on the ability of a TES to stratify. The contemporary awareness that poorly chosen pitch to diameter ratios by the design of immersed coil heat exchangers leads to a reduction in heat exchange and an increase in mixing phenomenon has been confirmed. The observation of two combitank (combined domestic hot water and space heating) configurations has shown that free convective heat transfer forces in the form of mixing energy play a significant role in the stratification efficiency of thermal energy storages. (author)

  10. The effect of a magnetic field on heat transfer in a slotted channel

    International Nuclear Information System (INIS)

    Evtushenko, I.A.; Hua, T.Q.; Kirillov, I.R.; Reed, Claude B.; Sidorenkov, S.S.

    1995-01-01

    The results of numerical and experimental studies of liquid metal heat transfer in slotted channels in a transverse magnetic field are presented. Test results showed an improvement in heat transfer in a straight channel at low and moderate interaction parameter N. The Nusselt number at small N (around 120) was up to twofold higher than in turbulent flow without a magnetic field, the Peclet number being equal. This effect of heat transfer enhancement is caused by the generation and development of large-scale velocity fluctuations close to the heated wall area. Qualitative and quantitative correlations between heat transfer and velocity fluctuation characteristics are presented. (orig.)

  11. District heating in Italy: Extent of use

    International Nuclear Information System (INIS)

    Sacchi, E.

    1992-01-01

    The Author surveys the trend that has been established over the last two decades in the use of district heating in Italy. Comparison with the European situation reveals that Italy is lagging behind. The reason for this the Author states is the Italian public's aversion to unknown risks involved in the utilization of innovative technologies associated with cogeneration/district heating (current preference is given to autonomous methane fuelled building space heating systems), and the current opinion of some misinformed public administrations that cogeneration/district heating plants are too costly. Citing the successful campaign by the natural gas industry to promote the public acceptance of methane as a safe, readily available and competitively priced energy source, he suggests that similar efforts be made to have the public also accept cogeneration (with methane fired gas turbines)/district heating as being safe and environmentally, as well as, economically beneficial

  12. Study on constraints for heat removal duties of the main fractionator in delayed coking units

    International Nuclear Information System (INIS)

    Lei, Yang; Zhang, Bingjian; Qi, Xin; Chen, Qinglin; Hui, Chi-Wai

    2014-01-01

    A novel method is presented in this paper to quantitatively define the heat removal of the main fractionator in delayed coking units on the basis of a fractionating precision diagram (Houghland diagram) and column grand composite curve (CGCC). By referring to the CGCC method, several envelopes are illustrated at draw trays including the top pumparound draw, diesel draw, intermediate pumparound draw and gas oil draw, the energy and material balances are then calculated. Assuming practical near-minimum thermodynamic condition (PNMTC), the minimum liquid reflux flow is zero in the envelope for pumparound trays without product draw and the minimum liquid reflux flow is defined by Houghland diagram for pumparound trays with product draw. The PNMTC-CGCC is constructed by calculating the enthalpy-flow deficit to quantitatively define the heat removal constraints in each envelope. Meanwhile, the corresponding practical heat removal curve is constructed. A case study shows that the high temperature heat removal ratio within the main fractionator increased by 8%. The proposed method offers heat removal inequality constraints for the model to optimize the heat integration between the main fractionator and the heat exchanger network. - Highlights: • A novel method defines the heat removal constraints of the main fractionator. • Fractionating precision diagram and column grand composite curve are combined. • The results are the inequality constraints in a simultaneous optimization model

  13. Heat Exchange with Air and Temperature Profile of a Moving Oversize Tire

    Science.gov (United States)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat exchange of a moving tire with air has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.

  14. Physical and Theoretical Models of Heat Pollution Applied to Cramped Conditions Welding Taking into Account the Different Types of Heat

    Science.gov (United States)

    Bulygin, Y. I.; Koronchik, D. A.; Legkonogikh, A. N.; Zharkova, M. G.; Azimova, N. N.

    2017-05-01

    The standard k-epsilon turbulence model, adapted for welding workshops, equipped with fixed workstations with sources of pollution took into account only the convective component of heat transfer, which is quite reasonable for large-volume rooms (with low density distribution of sources of pollution) especially the results of model calculations taking into account only the convective component correlated well with experimental data. For the purposes of this study, when we are dealing with a small confined space where necessary to take account of the body heated to a high temperature (for welding), located next to each other as additional sources of heat, it can no longer be neglected radiative heat exchange. In the task - to experimentally investigate the various types of heat transfer in a limited closed space for welding and behavior of a mathematical model, describing the contribution of the various components of the heat exchange, including radiation, influencing the formation of fields of concentration, temperature, air movement and thermal stress in the test environment. Conducted field experiments to model cubic body, allowing you to configure and debug the model of heat and mass transfer processes with the help of the developed approaches, comparing the measurement results of air flow velocity and temperature with the calculated data showed qualitative and quantitative agreement between process parameters, that is an indicator of the adequacy of heat and mass transfer model.

  15. Patterns of gene expression associated with recovery and injury in heat-stressed rats.

    Science.gov (United States)

    Stallings, Jonathan D; Ippolito, Danielle L; Rakesh, Vineet; Baer, Christine E; Dennis, William E; Helwig, Bryan G; Jackson, David A; Leon, Lisa R; Lewis, John A; Reifman, Jaques

    2014-12-03

    The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model. We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response. Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery.

  16. Influence of vibrations on heat-exchanger tubes. A literature survey

    International Nuclear Information System (INIS)

    Oddving, B.; Wiberg, J.

    1965-05-01

    During the last few years vibrations in heat-exchanger tubes have become a more and more serious problem due to increased demands for higher capacities of such components, which, for example, are included in nuclear power plants. These vibrations, which are most frequently induced by vortex shedding in the flow around the tubes, may sometimes cause impact fretting on the tubes and/or baffles where they are in contact with each other. Fretting may occur when two surfaces rub against each other under the influence of a vibrating movement, whereby the amplitudes are rather small (<0.25 mm). Some laboratory experiments have been reported with a combined impact and sliding movement, which is supposed to take place in heat exchangers. The influences of the clearance between the tube and baffle-hole surfaces, pressure normal to the contact surface, amplitude, frequency, time, atmosphere (also water) have been investigated for various material combinations. The finish of the tube and baffle-hole surfaces as well as the shape of the latter may also have an influence on the fretting phenomenon. However, any results from research on this matter have not been found in the literature so far. There are always difficulties in translating the above mentioned laboratory results into real operating conditions. In order to be able to judge whether a given heat exchanger might be subject to vibrational damages or not a few researchers have derived correlations between different flow-, design- and material parameters. That, on the basis of the design and actual operating conditions calculated value of such a correlation, will then indicate the risk of damages due to tube vibrations. (author)

  17. Measuring our Universe from Galaxy Redshift Surveys.

    Science.gov (United States)

    Lahav, Ofer; Suto, Yasushi

    2004-01-01

    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  18. Comparative analysis of heat transfer correlations for forced convection boiling

    International Nuclear Information System (INIS)

    Guglielmini, G.; Nannei, E.; Pisoni, C.

    1978-01-01

    A critical survey was conducted of the most relevant correlations of boiling heat transfer in forced convection flow. Most of the investigations carried out on partial nucleate boiling and fully developed nucleate boiling have led to the formulation of correlations that are not able to cover a wide range of operating conditions, due to the empirical approach of the problem. A comparative analysis is therefore required in order to delineate the relative accuracy of the proposed correlations, on the basis of the experimental data presently available. The survey performed allows the evaluation of the accuracy of the different calculating procedure; the results obtained, moreover, indicate the most reliable heat transfer correlations for the different operating conditions investigated. This survey was developed for five pressure range (up to 180bar) and for both saturation and subcooled boiling condition

  19. Temporal variation in the effect of heat and the role of the Italian heat prevention plan.

    Science.gov (United States)

    de'Donato, F; Scortichini, M; De Sario, M; de Martino, A; Michelozzi, P

    2018-05-08

    The aim of the article is to evaluate the temporal change in the effect of heat on mortality in Italy in the last 12 years after the introduction of the national heat plan. Time series analysis. Distributed lag non-linear models were used to estimate the association between maximum apparent temperature and mortality in 23 Italian cities included in the national heat plan in four study periods (before the introduction of the heat plan and three periods after the plan was in place between 2005 and 2016). The effect (relative risks) and impact (attributable fraction [AF] and number of heat-related deaths) were estimated for mild summer temperatures (20th and 75th percentile maximum apparent temperature [Tappmax]) and extreme summer temperatures (75th and 99th percentile Tappmax) in each study period. A survey of the heat preventive measures adopted over time in the cities included in the Italian heat plan was carried out to better describe adaptation measures and response. Although heat still has an impact on mortality in Italian cities, a reduction in heat-related mortality is observed progressively over time. In terms of the impact, the heat AF related to extreme temperatures declined from 6.3% in the period 1999-2002 to 4.1% in 2013-2016. Considering the entire temperature range (20th vs 99th percentile), the total number of heat-related deaths spared over the entire study period was 1900. Considering future climate change and the health burden associated to heat waves, it is important to promote adaptation measures by showing the potential effectiveness of heat prevention plans. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  20. Chlorophyll a fluorescence to phenotype wheat genotypes for heat tolerance

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto

    In prospects of global climate change, heat stress is a rising constraint for the productivity of wheat (Triticum aestivum L.). It is a heat-susceptible crop beyond 17-23oC temperature throughout its phenological stages, flowering phase being the most sensitive stage. Chlorophyll a fluorescence...... parameter, maximum quantum yield efficiency of PSII (Fv/Fm) is used as a physiological marker for early stress detection in PSII in plants. We established a reproducible protocol to measure response of wheat genotypes to high temperature based on Fv/Fm. The heat treatment of 40°C in 300 µmol m-2s-1 PAR...... enabled the identification of contrasting wheat genotypes that can be used to study the genetic and physiological nature of heat stress tolerance to dissect quantitative traits into simpler and more heritable traits....

  1. On the question of heat engine cycles optimization

    Directory of Open Access Journals (Sweden)

    Костянтин Ігорович Ткаченко

    2015-10-01

    Full Text Available It is known that the efficiency of heat engines nowadays isn’t more than 50-60% for prototypes and maximum possible efficiency of a heat engine is considered Carnot cycle efficiency Thus, at least 40% of the disposable amount of heat is lost in the surrounding medium, unless the waste gases heat is utilized somehow. General idea of heat engines cycles is the transfer of energy from the heater (both external and internal to a working fluid, obtaining mechanical work from expanding of the working fluid, and returning the working fluid to the initial state by compression and excess heat discharge into a cooler. In this paper the combination of a heat engine operating according to the standard Edwards cycle and consisting of isochor, adiabat and isotherm, and the heat pump, using the reverse Carnot cycle is investigated. The heat pump partially picks out the heat of the working fluid at its isothermal compression, and returns it to the equivalent working fluid or regenerator cap, at the beginning of isochoric heating. The efficiency coefficient of the heat pump, and thus the work to putting it into action is calculated by proper equations at the constant temperature of the low-potential heat source (working fluid and variable temperature of the heated equivalent of the working fluid or the regenerator cap. Taking as an example selected quantitative parameters of the Edwards cycle it has been proved that the use of the heat pump increases the effective efficiency of combined cycle as compared to the basic one. In addition, it has been shown that the dependence of the efficiency on the degree of heat return is not monotonic and has a maximum

  2. Multi-Function Gas Fired Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh Momen, Ayyoub [ORNL; Abu-Heiba, Ahmad [ORNL; Vineyard, Edward Allan [ORNL

    2015-11-01

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibration reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.

  3. Analysis of a Community-based Intervention to Reduce Heat-related Illness during Heat Waves in Licheng, China: a Quasi-experimental Study.

    Science.gov (United States)

    Li, Jing; Xu, Xin; Wang, Jun; Zhao, Yun; Song, Xiu Ping; Liu, Zhi Dong; Cao, Li Na; Jiang, Bao Fa; Liu, Qi Yong

    2016-11-01

    To reduce health-related threats of heat waves, interventions have been implemented in many parts of the world. However, there is a lack of higher-level evidence concerning the intervention efficacy. This study aimed to determine the efficacy of an intervention to reduce the number of heat-related illnesses. A quasi-experimental design was employed by two cross-sectional surveys in the year 2014 and 2015, including 2,240 participants and 2,356 participants, respectively. Each survey was designed to include one control group and one intervention group, which conducted in Licheng, China. A representative sample was selected using a multistage sampling method. Data, collected from questionnaires about heat waves in 2014 and 2015, were analyzed using a difference-in-difference analysis and cost effectiveness analysis. Outcomes included changes in the prevalence of heat-related illnesses and cost-effectiveness variables. Relative to the control participants, the prevalence of heat-related illness in the intervention participants decreased to a greater extent in rural areas than in urban areas (OR=0.495 vs. OR=1.281). Moreover, the cost-effectiveness ratio in the intervention group was less than that in the control group (US$15.06 vs. US$15.69 per participant). Furthermore, to avoid one additional patient, the incremental cost-effectiveness ratio showed that an additional US$14.47 would be needed for the intervention compared to when no intervention was applied. The intervention program may be considered a worthwhile investment for rural areas that are more likely to experience heat waves. Meanwhile, corresponding improving measures should be presented towards urban areas. Future research should examine whether the intervention strategies could be spread out in other domestic or international regions where heat waves are usually experienced. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  4. Heating plant privatization stagnates

    International Nuclear Information System (INIS)

    Janoska, J.; Benka, M.; Sobinkovic, B.; Haluza, I.

    2005-01-01

    The state has been talking about privatization of 6 municipal heating plants since 2001. The tenders were to start last year. But nothing has happened and the future is uncertain. The city councils would prefer to receive, if not 100%, then at least a majority stake in the heating plants free of charge. But the Cabinet has decided to sell 51% to investors. The privatization agency - the National Property Fund (FNM) is preparing a proposal to increase the stake offered for sale to 67%. According to information provided by the FNM the sale will begin after Cabinet approval. The Fund intends to apply the same model to the sale of all the heating plants. Last year, a major German company Verbundnetz Gas declared its interest in purchasing large municipal heating plants in Slovakia. But it has been waiting for a response ever since. The French company - Dalkia, which has 10-years' experience of doing business in Slovakia, is interested in all the heating plants to be offered for sale. The Austrian company - Stefe is not new to the business either, it is interested mainly in the regions where it has already established itself - Central and Eastern Slovakia. Strategic investors expect financial groups to show interest too. The Penta Group has not hid its ambitions - it has already privatised a company which represents the key to the future development of heat management in Bratislava - Paroplynovy cyklus. Whereas Penta is not new to the heat production business another financial group - Slavia Capital is still surveying the sector. Should it not succeed, it plans several projects that would allow it to take a stake in the sector

  5. Market survey of forest work tools and heating devices

    International Nuclear Information System (INIS)

    Mutikainen, A.

    2002-01-01

    The TTS Institute has published internet pages where information has been 'gathered on the work tools, equipment, devices and machines needed by forest owners and people who use wood heating. The contact information of manufacturers and merchants for such tools and devices has also been provided. A link to the pages can be found at http://www.tts.fi. The pages are meant to be an aid for product buyers and also for advisory and research use. So far the pages are in trial use and are free of charge. They will be developed on the basis of feedback received. The TTS Institute internet pages operate primarily as a contact list where different product groups and contact information for product manufacturers and merchants can be found. The pages present limited information on the product since updating detailed product information would require intensive market monitoring and great work input. Furthermore, the objective is not to compete in the advertising market, but to publish independent information where the beneficiary is primarily the buyer. The contents of the pages are mainly limited to the products concerned with private forest owners and people who heat detached houses with wood, and information on those products. Information is collected and updated from public sources and also partly direct from the manufacturers and merchants. For clarity, the source of information will be mentioned. (orig.)

  6. EFFECT OF HEAT-DISPERSING ON STICKIES AND THEIR REMOVAL IN POST-FLOTATION

    OpenAIRE

    Yang Gao,; Menghua Qin,; Hailong Yu,; Fengshan Zhang

    2012-01-01

    The effect of heat-dispersing on sticky substances in a deinking pulping line was studied under different conditions including varying temperature, disc clearance, and pulp consistency. Sticky substances were quantitatively investigated before and after the heat-dispersing, and categorized into macro-, mini-, and micro-stickies as well as dissolved and colloidal substances. Meanwhile, their extents of removal in post-flotation were evaluated. The results showed that raising temperature, reduc...

  7. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    Science.gov (United States)

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density situation. © The Author(s) 2015.

  8. Correlation analysis of heat flux and fire behaviour and hazards of polycrystalline silicon photovoltaic panels

    Science.gov (United States)

    Ju, Xiaoyu; Zhou, Xiaodong; Peng, Fei; Wu, Zhibo; Lai, Dimeng; Hu, Yue; Yang, Lizhong

    2017-05-01

    This work aims to gain a better understanding of fire behaviour and hazards of PV panels under different radiation heat fluxes. The cone calorimeter tests were applied to simulate the situations when the front and back surfaces are exposed to heat flux in a fire, respectively. Through comparison of ignition time, mass loss rate and heat release rate, it is found that the back-up condition is more hazardous than face-up condition. Meanwhile, three key parameters: flashover propensity, total heat release and FED, were introduced to quantitatively illustrate fire hazards of a PV panel.

  9. Fiscal 1999 survey report. Basic survey for promotion of joint implementations, etc. (Feasibility study of regenerative burner type heating furnaces for China's Shougang Corporation and Anshan Steel); 1999 nendo Chugoku shuto kotetsu Anshan kotetsu chikunetsu burner kanetsuro FS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Most of the steel heating furnaces now in operation in China are of the old type, consuming more than 40% more fuel than furnaces in general use for instance in Japan. In this survey, China's steel heating furnaces will be replaced by regenerative burners, developed in Japan recently and approaching practical application, for epoch-making enhancement of energy conservation and NOx reduction. Three plants are selected for study, which are the Shougang Corporation Plate Mill, the Qinhungdao Plate Mill, and the Anshan Steel Mill. Technical feasibility and economic profitability are studied for each of the projects for picking out projects that will link to CDM (clean development mechanism) in the future. In all the three mills, excellent energy conservation and economic profitability will result from technologically feasible introduction of regenerative burner heating furnaces. It is expected that their introduction will take place early enough. Full-scale diffusion of new furnaces will be dependent, however, on the progress of fuel gas cleaning study and China's assessment of the effects of energy conservation and environmental improvement. (NEDO)

  10. Measuring our Universe from Galaxy Redshift Surveys

    Directory of Open Access Journals (Sweden)

    Lahav Ofer

    2004-07-01

    Full Text Available Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant. We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  11. Rising Mercury, Rising Hostility: How Heat Affects Survey Response

    Science.gov (United States)

    Cohen, Alexander H.; Krueger, James S.

    2016-01-01

    Recent social scientific research has examined connections between public opinion and weather conditions. This article contributes to this literature by analyzing the relationship between high temperature and survey response. Because hot temperatures are associated with aggression, irritation, and negativity, such conditions should lead to the…

  12. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  13. Carbon-nanotube nanofluid thermophysical properties and heat transfer by natural convection

    International Nuclear Information System (INIS)

    Li, Y; Inagaki, T; Suzuki, S; Yamauchi, N

    2014-01-01

    We measured the thermophysical properties of suspensions of carbon nanotubes in water as a type of nanofluid, and experimentally investigated their heat transfer characteristics in a horizontal, closed rectangular vessel. Using a previously constructed system for high- reliability measurement, we quantitatively determined their thermophysical properties and the temperature dependence of these properties. We also investigated the as yet unexplained mechanism of heat transport in carbon-nanotube nanofluids and their flow properties from a thermal perspective. The results indicated that these nanofluids are non-Newtonian fluids, whose high viscosity impedes convection and leads to a low heat transfer coefficient under natural convection, despite their high thermal conductivity

  14. A Quantitative Analysis of the Extrinsic and Intrinsic Turnover Factors of Relational Database Support Professionals

    Science.gov (United States)

    Takusi, Gabriel Samuto

    2010-01-01

    This quantitative analysis explored the intrinsic and extrinsic turnover factors of relational database support specialists. Two hundred and nine relational database support specialists were surveyed for this research. The research was conducted based on Hackman and Oldham's (1980) Job Diagnostic Survey. Regression analysis and a univariate ANOVA…

  15. Assessing healthcare professionals' experiences of integrated care: do surveys tell the full story?

    Science.gov (United States)

    Stephenson, Matthew D; Campbell, Jared M; Lisy, Karolina; Aromataris, Edoardo C

    2017-09-01

    Integrated care is the combination of different healthcare services with the goal to provide comprehensive, seamless, effective and efficient patient care. Assessing the experiences of healthcare professionals (HCPs) is an important aspect when evaluating integrated care strategies. The aim of this rapid review was to investigate if quantitative surveys used to assess HCPs' experiences with integrated care capture all the aspects highlighted as being important in qualitative research, with a view to informing future survey development. The review considered all types of health professionals in primary care, and hospital and specialist services, with a specific focus on the provision of integrated care aimed at improving the patient journey. PubMed, CINAHL and grey literature sources were searched for relevant surveys/program evaluations and qualitative research studies. Full text articles deemed to be of relevance to the review were appraised for methodological quality using abridged critical appraisal instruments from the Joanna Briggs Institute. Data were extracted from included studies using standardized data extraction templates. Findings from included studies were grouped into domains based on similarity of meaning. Similarities and differences in the domains covered in quantitative surveys and those identified as being important in qualitative research were explored. A total of 37 studies (19 quantitative surveys, 14 qualitative studies and four mixed-method studies) were included in the review. A range of healthcare professions participated in the included studies, the majority being primary care providers. Common domains identified from quantitative surveys and qualitative studies included Communication, Agreement on Clear Roles and Responsibilities, Facilities, Information Systems, and Coordination of Care and Access. Qualitative research highlighted domains identified by HCPs as being relevant to their experiences with integrated care that have not

  16. Study on boiling heat transfer of high temperature liquid sodium

    International Nuclear Information System (INIS)

    Sakurai, Akira

    1978-01-01

    In the Intitute of Atomic Energy, Kyoto University, fundamental studies on steady state and non-steady state heat flow are underway in connection with reactor design and the safety in a critical accident in a sodium-cooled fast breeder reactor. First, the experimental apparatus for sodium heat transfer and the testing system are described in detail. The apparatus is composed of sodium-purifying section including the plugging meter for measuring purity and cold trap, the pool boiling test section for experimenting natural convection boiling heat transfer, the forced convection boiling test section for experimenting forced convection boiling heat transfer, and gas system. Next, the experimental results by the author and the data obtained so far are compared regarding heat transfer in sodium natural convection and stable nucleating boiling and critical heat flux. The effect of liquid head on a heater on boiling heat transfer coefficient and critical heat flux under the condition of low system pressure in most fundamental pool boiling was elucidated quantitatively, which has been overlooked in previous studies. It was clarified that this is the essentially important problem that can not be overlooked. From this point of view, expressions on heat transfer were also re-investigated. (Wakatsuki, Y.)

  17. Heat transfer to liquid sodium in the thermal entrance region

    International Nuclear Information System (INIS)

    Qiu, R.

    1981-01-01

    It is well known that the convective heat transfer in the regions of duct systems where the thermal boundary layers are not yet established can be far superior to heat transfer in the fully developed regions. A quantitative understanding of heat transfer in the thermal entrance region is essential in designing high heat-flux nuclear reactors. More specifically, if the thermal boundary layers have not been fully established in the system, the forced-convection relations for the fully developed regions cannot be used to predict the heat transfer characteristics. The present work is characterized by the following: 1. The behaviours in the thermal entrance region have been examined more completely. 2. To obtain a higher accuracy of analyses, in present study the method of SPARROW et al. for pipe was improved for annulus by utilizing a finite difference technique. Furthermore, an asymptotic solution was developed. 3. This is, in our knowledge, the first experimental investigation about the thermal development effect on turbulent heat transfer from rod element to liquid sodium in annulus with fully developed flow. (MDC)

  18. Microbial fouling control in heat exchangers

    International Nuclear Information System (INIS)

    McCoy, W.F.

    1991-01-01

    Biofilm formation in turbulent flow has been studied a great deal during the last 15 years. Such studies have provided the basis for further experiments designed to test the efficacy of industrial antimicrobials against biofilms in laboratory models and in actual real-world industrial water-treatment programs. Biofilm microbiology is relevant from the industrial perspective because adherent populations of microorganisms often cause an economic impact on industrial processes. For example, it is the adherent population of microorganisms in cooling-water systems that can eventually contribute to significant heat transfer and fluid frictional resistances. The microbiology of biofilms in heat exchangers can be related to the performance of industrial antimicrobials. The development of fouling biofilms and methods to quantitatively observe the effect of biofouling control agents are discussed in this paper

  19. Household electricity and gas consumption for heating homes

    International Nuclear Information System (INIS)

    Jeong, Jaehoon; Seob Kim, Chang; Lee, Jongsu

    2011-01-01

    Energy consumption has been drastically changed because of energy source depletion, price fluctuations, development and penetration of alternative energy sources, and government policies. Household energy sources are interrelated, and energy price and household characteristics, such as income level and dwelling size, affect the usage. To supply energy consistently and achieve a balance between production and consumption, stakeholders must understand consumer energy-consumption behavior. Therefore, this study identifies household heating energy usage patterns and the substitutive and/or complementary relationships between electricity and gas. Based on a multiple discrete-continuous extreme value model, household utility structure is identified from data on gas-heating usage. Results show greater utility and the smallest satiation values for gas boilers than for electric heaters and electric heating beds. The effects of consumer socioeconomic and environmental characteristics on the choice of heating energy sources were analyzed. Also, for further comparison, the respondents were split into high and low categories for income, heating degree days, dwelling size, and gas usage. Gas was found to be the most economical heating choice for households. - Research highlights: → This study investigates household electricity and gas consumption behavior for heating. → It also studied the relationship between two energy sources. → A research framework is suggested by combining the CDA and the MDCEV models. → It provides quantitative data that might be used for designing efficient energy policies.

  20. Reduced Arteriovenous Shunting Capacity After Local Heating and Redistribution of Baseline Skin Blood Flow in Type 2 Diabetes Assessed With Velocity-Resolved Quantitative Laser Doppler Flowmetry

    Science.gov (United States)

    Fredriksson, Ingemar; Larsson, Marcus; Nyström, Fredrik H.; Länne, Toste; Östgren, Carl J.; Strömberg, Tomas

    2010-01-01

    OBJECTIVE To compare the microcirculatory velocity distribution in type 2 diabetic patients and nondiabetic control subjects at baseline and after local heating. RESEARCH DESIGN AND METHODS The skin blood flow response to local heating (44°C for 20 min) was assessed in 28 diabetic patients and 29 control subjects using a new velocity-resolved quantitative laser Doppler flowmetry technique (qLDF). The qLDF estimates erythrocyte (RBC) perfusion (velocity × concentration), in a physiologically relevant unit (grams RBC per 100 g tissue × millimeters per second) in a fixed output volume, separated into three velocity regions: v 10 mm/s. RESULTS The increased blood flow occurs in vessels with a velocity >1 mm/s. A significantly lower response in qLDF total perfusion was found in diabetic patients than in control subjects after heat provocation because of less high-velocity blood flow (v >10 mm/s). The RBC concentration in diabetic patients increased sevenfold for v between 1 and 10 mm/s, and 15-fold for v >10 mm/s, whereas no significant increase was found for v <1 mm/s. The mean velocity increased from 0.94 to 7.3 mm/s in diabetic patients and from 0.83 to 9.7 mm/s in control subjects. CONCLUSIONS The perfusion increase occurs in larger shunting vessels and not as an increase in capillary flow. Baseline diabetic patient data indicated a redistribution of flow to higher velocity regions, associated with longer duration of diabetes. A lower perfusion was associated with a higher BMI and a lower toe-to-brachial systolic blood pressure ratio. PMID:20393143

  1. Roof Moisture Surveys: Current State Of The Technology

    Science.gov (United States)

    Tobiasson, Wayne

    1983-03-01

    Moisture is the big enemy of compact roofing systems. Non-destructive nuclear, capacitance and infrared methods can all find wet insulation in such roofs but a few core samples are needed for verification. Nuclear and capacitance surveys generate quantitative results at grid points but examine only a small portion of the roof. Quantitative results are not usually provided by infrared scanners but they can rapidly examine every square inch of the roof. Being able to find wet areas when they are small is an important advantage. Prices vary with the scope of the investigation. For a particular scope, the three techniques are often cost-competitive. The limitations of each technique are related to the people involved as well as the equipment. When the right people are involved, non-destructive surveys are a very effective method for improving the long-term performance and reducing the life-cycle costs of roofing systems. Plans for the maintenance, repair or replacement of a roof should include a roof moisture survey.

  2. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  3. The entropy problem of the decentralized solar and nuclear heat generation

    International Nuclear Information System (INIS)

    Seifritz, W.

    1984-01-01

    Parallel to the energy fluxes the entropy fluxes of decentralized hot-water systems based on solar collectors coupled with an electrical auxiliary heating installation are also deduced. As an important result the fact emerges that this kind of solar energy has to remain very restricted, not only for quantitative-energetic reasons, but also for entropy ones, and that a solar hot-water system will always have to rely on an energy system of low entropy. In contrast to this, the provision of heat for space heating sector with the help of the 'nuclear short-distance concept', which practically does not need any external energy, is not subject to these restrictions. This concept is introduced briefly, as well as the heat prices which presumably can be achieved by it. Concluding comments summarize the reasons once again that speak against the installation of a decentralized solar heat supply system. (orig.) [de

  4. Report on an investigation into heat pumps in China in fiscal 1995; 1995 nendo Chugoku ni okeru heat pump system ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper surveyed the present status, the status of spread, and the technical development of the technology of heat pumps for residential and industrial uses in China. Main examples of installation of heat pumps are cited below: steam drive absorption type refrigerators in Beijing; sea water heat source turbo heat pumps in Qingdao; hot water drive absorption type refrigerators in Beijing; oil-fueled absorption type water cooling and heating appliances in Beijing; ice latent heat storage airconditioning systems using electrically-driven screw chiller in Beijing; temperature rising systems using electrically-driven heat pump of the solar energy utilization warm water swimming pool in Guangdong Province; cooling water supply using waste heat utilization absorption type refrigerator of the alcohol plant in Shandong Province; timber drying systems using electrically-driven heat pump, and marine product cultivation systems in Quangdong Province; distillation systems using steam turbine heat pump in Jiangxi Province. The demand for heat pumps is expected to be 20 million units under the 9th 5-year plan, and the development of equipment is thought to go toward promotion of energy conservation, low noise, multi-type or multi-functional air conditioning equipment, and computer use. 137 figs., 40 tabs.

  5. Individual Heating systems vs. District Heating systems: What will consumers pay for convenience?

    International Nuclear Information System (INIS)

    Yoon, Taeyeon; Ma, Yongsun; Rhodes, Charles

    2015-01-01

    For Korea's two most popular apartment heating systems – Individual Heating (IH) and District Heating (DH), – user convenience rests heavily on location of the boiler, availability of hot water, administration of the system, and user control of indoor temperature. A double-bounded dichotomous choice method estimates consumer value for convenience, in a hypothetical market. Higher-income more-educated consumers in more expensive apartments prefer DH. Cost-conscious consumers, who use more electrical heating appliances and more actively adjust separate room temperatures, prefer IH. With willingness-to-pay (WTP) defined as the price ratio between IH and DH, 800 survey respondents indicate a WTP of 4.0% for DH over IH. IH users unfamiliar with DH expect little greater convenience (0.1% WTP), whereas the WTP for DH users runs to 7.9%, demonstrating consumer loyalty. Quantified estimates of consumer preference and convenience can inform design of a full-cost-plus pricing system with a price cap. Results here indirectly predict the effect of abolishing regulations that exclusively establish district heating zones. Strategies to foster the many external benefits of DH systems should stress not their lower cost, but convenience, comfort, and safety. Higher installation costs still hamper DH expansion, so policy-makers could set policies to lower cost barriers to entry. - Highlights: • District Heating (DH) and Individual Heating (IH) systems differ in user convenience. • Difference of convenience is evaluated by a double-bounded dichotomous choice method. • Consumers are willing to pay a 4.03–12.52% higher rate to use DH rather than IH. • Consumers with high living standards prefer DH to IH, and show high consumer loyalty. • Strategies to foster DH systems should stress DH convenience over its lower cost.

  6. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  7. Prospects of heat supply from Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Kuba, V.

    1987-01-01

    The possibilities are discussed of using the Temelin nuclear power plant for heat supply to a number of localities in the South Bohemian Region, to a distance of up to 34 km. Direct supply of steam and of 150/70 degC or 180/65 degC hot water is envisaged. An alternative solution has also been proposed allowing to supply steam and hot water simultaneously from 180 degC hot water with quantitative regulation. The hot water is made to expand at a pressure of 0.3 to 0.5 MPa and the low-pressure steam is compressed to a pressure of 0.9 to 1.3 MPa. This steam will be supplied to the existing heating system. The possibility was also studied of supplying Prague with heat and 180/65 degC hot water of a thermal output of up to 1,700 MW using a two-pipe heat supply line of 105 to 125 km in length. (B.S.). 2 figs

  8. Study on the System Design of a Solar Assisted Ground Heat Pump System Using Dynamic Simulation

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-04-01

    Full Text Available Recently, the use of hybrid systems using multiple heat sources in buildings to ensure a stable energy supply and improve the system performance has gained attention. Among them, a heat pump system using both solar and ground heat was developed and various system configurations have been introduced. However, establishing a suitable design method for the solar-assisted ground heat pump (SAGHP system including a thermal storage tank is complicated and there are few quantitative studies on the detailed system configurations. Therefore, this study developed three SAGHP system design methods considering the design factors focused on the thermal storage tank. Using dynamic energy simulation code (TRNSYS 17, individual performance analysis models were developed and long-term quantitative analysis was carried out to suggest optimum design and operation methods. As a result, it was found that SYSTEM 2 which is a hybrid system with heat storage tank for only a solar system showed the highest average heat source temperature of 14.81 °C, which is about 11 °C higher than minimum temperature in SYSTEM 3. Furthermore, the best coefficient of performance (COP values of heat pump and system were 5.23 and 4.32 in SYSYEM 2, using high and stable solar heat from a thermal storage tank. Moreover, this paper considered five different geographical and climatic locations and the SAGHP system worked efficiently in having high solar radiation and cool climate zones and the system COP was 4.51 in the case of Winnipeg (Canada where the highest heating demand is required.

  9. Effect of heat conditions on the mechanical properties of boron nitride polycrystals

    International Nuclear Information System (INIS)

    Bochko, A.V.

    1986-01-01

    This paper examines the effect of various types of heat treatment on the mechanical and service properties of polycrystals of boron nitride. Quantitative phase analysis was carried out using the methods described when using a DRON-2.0 x-ray diffractometer. The mechanical characteristics were determined by the method of local loading using the standard nitride polycrystals in the initial state are quite high. On the basis of the results it may be concluded that the heat treatment conditions examined (annealing, hf heating, annealing and hf heating) lead to the same changes in the structural state as those taking place in thermal cycling thus causing the corresponding reduction of the level of the strength properties of the boron nitride polycrystals

  10. The state of the Canadian geothermal heat pump industry 2010 : industry survey and market analysis

    International Nuclear Information System (INIS)

    2010-11-01

    This report provided an overview of the state of the Canadian geothermal heat pump industry for 2010. In 2003, the Canadian GeoExchange Coalition (CGC) embarked on a market transformation initiative that continues to shape Canada's geothermal heat pump markets. The market for ground source heat pumps has grown by more than 60 percent annually in 2006, 2007, and 2008. The large increases in oil prices has created a price effect strong enough to trigger fuel switching for many consumers. Growth in the industry has also coincided with grant and financial assistance programs deployed by provincial governments, utilities, and the federal government. The ecoENERGY retrofitting program initiated in 2007 encouraged the use of geothermal heat pumps in the residential retrofit market. Tax rebate and load programs, as well as direct grants from provincial governments have increased demand in the new-built market. Canada's geothermal heat pump markets are growing much faster than United States geothermal markets. Closed horizontal loop systems accounted for 49.4 percent of residential installations. The CGC has trained over 2968 installers as well as many designers and inspectors for geothermal heat pumps. Colleges and public institutions are now creating training programs related to geothermal energy use. The total economic activity of the geoexchange industry in 2009 was estimated at in excess of $500 million. 29 tabs., 63 figs.

  11. Solar heating systems

    International Nuclear Information System (INIS)

    1993-01-01

    This report is based on a previous, related, one which was quantitative in character and relied on 500 telephone interviews with house-owners. The aim of this, following, report was to carry out a more deep-going, qualitative analysis focussed on persons who already own a solar heating system (purchased during 1992) or were/are considering having one installed. Aspects studied were the attitudes, behaviour and plans of these two groups with regard to solar heating systems. Some of the key questions asked concerned general attitudes to energy supply, advantages and disadvantages of using solar heating systems, related decision-making factors, installation problems, positive and negative expectations, evaluation of the information situation, suggestions related to information systems regarding themes etc., dissemination of information, sources of advice and information, economical considerations, satisfaction with the currently-owned system which would lead to the installation of another one in connection with the purchase of a new house. The results of this investigation directed at Danish house-owners are presented and discussed, and proposals for following activities within the marketing situation are given. It is concluded that the basic attitude in both groups strongly supports environmental protection, renewable energy sources and is influenced by considerations of prestige and independence. Constraint factors are confusion about environmental factors, insecurity in relation to the effect of established supplementary energy supply and suspicion with regard to the integrity of information received. (AB)

  12. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  13. Active and passive smoking impacts on asthma with quantitative and temporal relations: A Korean Community Health Survey.

    Science.gov (United States)

    Kim, So Young; Sim, Songyong; Choi, Hyo Geun

    2018-06-05

    This study aimed to evaluate the relations of smoking with asthma and asthma-related symptoms, considering quantitative and temporal influences. The 820,710 Korean adults in the Korean Community Health Survey in 2009, 2010, 2011, and 2013 were included and classified as non-smoker, past smoker or current smoker. Total smoking years, total pack-years, and age at smoking onset were assessed. Information on wheezing, exercise wheezing, and aggravation of asthma in the past 12 months and asthma diagnosis history and current treatment was collected. Multiple logistic regression analysis with complex sampling was used. Current and former smokers showed significant positive relations with wheezing, exercise wheezing, asthma ever, current asthma, and asthma aggravation. Current smokers demonstrated higher adjusted odd ratios (AORs) for wheezing, exercise wheezing, and asthma aggravation than former smokers. Former smokers showed higher AORs than current smokers for current asthma treatment. Longer passive smoking was related to wheezing and exercise wheezing. Greater age at smoking onset and duration since cessation were negatively related to wheezing, exercise wheezing, and current asthma; total pack-years demonstrated proportional associations with these symptoms. Former, current, and passive smoking was positively correlated with wheezing and exercise wheezing. Total pack-years and early initiation were increasingly related to asthma.

  14. JET ({sup 3}He)-D scenarios relying on RF heating: survey of selected recent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Van Eester, D; Lerche, E; Andrew, Y; Biewer, T M; Casati, A; Crombe, K; De la Luna, E; Ericsson, G; Felton, R; Giacomelli, L; Giroud, C; Hawkes, N; Hellesen, C; Hjalmarsson, A; Joffrin, E; Kaellne, J; Kiptily, V; Lomas, P; Mantica, P; Marinoni, A [JET-EFDA Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)] (and others)

    2009-04-15

    Recent JET experiments have been devoted to the study of ({sup 3}He)-D plasmas involving radio frequency (RF) heating. This paper starts by discussing the RF heating efficiency theoretically expected in such plasmas, covering both relevant aspects of wave and of particle dynamics. Then it gives a concise summary of the main conclusions drawn from recent experiments that were either focusing on studying RF heating physics aspects or that were adopting RF heating as a tool to study plasma behavior. Depending on the minority concentration chosen, different physical phenomena are observed. At very low concentration (X[{sup 3}He] < 1%), energetic tails are formed which trigger MHD activity and result in loss of fast particles. Alfven cascades were observed and gamma ray tomography indirectly shows the impact of sawtooth crashes on the fast particle orbits. Low concentration (X[{sup 3}He] < 10%) favors minority heating while for X[{sup 3}He] >> 10% electron mode conversion damping becomes dominant. Evidence for the Fuchs et al standing wave effect (Fuchs et al 1995 Phys. Plasmas 2 1637-47) on the absorption is presented. RF induced deuterium tails were observed in mode conversion experiments with large X[{sup 3}He] ({approx}18%). As tentative modeling shows, the formation of these tails can be explained as a consequence of wave power absorption by neutral beam particles that efficiently interact with the waves well away from the cold D cyclotron resonance position as a result of their substantial Doppler shift. As both ion and electron RF power deposition profiles in ({sup 3}He)-D plasmas are fairly narrow-giving rise to localized heat sources-the RF heating method is an ideal tool for performing transport studies. Various of the experiments discussed here were done in plasmas with internal transport barriers (ITBs). ITBs are identified as regions with locally reduced diffusivity, where poloidal spinning up of the plasma is observed. The present know-how on the role of

  15. Heat transfer and evaporative cooling in the function of pot-in-pot coolers

    Science.gov (United States)

    Chemin, Arsène; Levy Dit Vehel, Victor; Caussarieu, Aude; Plihon, Nicolas; Taberlet, Nicolas

    2018-03-01

    A pot-in-pot cooler is an affordable electricity-free refrigerator which uses the latent heat of vaporization of water to maintain a low temperature inside an inner compartment. In this article, we experimentally investigate the influence of the main physical parameters in model pot-in-pot coolers. The effect of the wind on the evaporation rate of the cooling fluid is studied in model experiments while the influence of the fluid properties (thermal conductivity, specific heat, and latent heat) is elucidated using a variety of cooling fluids (water, ethanol, and ether). A model based on a simplified heat conduction equation is proposed and is shown to be in good quantitative agreement with the experimental measurements.

  16. Using Local Data To Advance Quantitative Literacy

    Directory of Open Access Journals (Sweden)

    Stephen Sweet

    2008-07-01

    Full Text Available In this article we consider the application of local data as a means of advancing quantitative literacy. We illustrate the use of three different sources of local data: institutional data, Census data, and the National College Health Assessment survey. Our learning modules are applied in courses in sociology and communication, but the strategy of using local data can be integrated beyond these disciplinary boundaries. We demonstrate how these data can be used to stimulate student interests in class discussion, advance analytic skills, as well as develop capacities in written and verbal communication. We conclude by considering concerns that may influence the types of local data used and the challenges of integrating these data in a course in which quantitative analysis is not typically part of the curriculum.

  17. Quantitative analysis of culture using millions of digitized books.

    Science.gov (United States)

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva Presser; Veres, Adrian; Gray, Matthew K; Pickett, Joseph P; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A; Aiden, Erez Lieberman

    2011-01-14

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of 'culturomics,' focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. Culturomics extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities.

  18. Quantitative analysis of culture using millions of digitized books

    Science.gov (United States)

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva P.; Veres, Adrian; Gray, Matthew K.; Pickett, Joseph P.; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A.; Aiden, Erez Lieberman

    2011-01-01

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics’, focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. ‘Culturomics’ extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities. PMID:21163965

  19. Quantitative indicators of fruit and vegetable consumption

    OpenAIRE

    Dagmar Kozelová; Dana Országhová; Milan Fiľa; Zuzana Čmiková

    2015-01-01

    The quantitative research of the market is often based on surveys and questionnaires which are finding out the behavior of customers in observed areas. Before purchasing process consumers consider where they will buy fruit and vegetables, what kind to choose and in what quantity of goods. Consumers' behavior is affected by the factors as: regional gastronomic traditions, price, product appearance, aroma, place of buying, own experience and knowledge, taste preferences as well as specific heal...

  20. AFSC/RACE/GAP: RACE Groundfish Survey Photo Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The core function of the Resource Assessment and Conservation Engineering (RACE) Groundfish Assessment Program (GAP) is to conduct quantitative fishery surveys and...

  1. High frequency parametric wave phenomena and plasma heating: a review

    International Nuclear Information System (INIS)

    Porkolab, M.

    1975-11-01

    A survey of parametric instabilities in plasma, and associated particle heating, is presented. A brief summary of linear theory is given. The physical mechanism of decay instability, the purely growing mode (oscillating two-stream instability) and soliton and density cavity formation is presented. Effects of density gradients are discussed. Possible nonlinear saturation mechanisms are pointed out. Experimental evidence for the existence of parametric instabilities in both unmagnetized and magnetized plasmas is reviewed in some detail. Experimental observation of plasma heating associated with the presence of parametric instabilities is demonstrated by a number of examples. Possible application of these phenomena to heating of pellets by lasers and heating of magnetically confined fusion plasmas by high power microwave sources is discussed

  2. Determining open cluster membership. A Bayesian framework for quantitative member classification

    Science.gov (United States)

    Stott, Jonathan J.

    2018-01-01

    Aims: My goal is to develop a quantitative algorithm for assessing open cluster membership probabilities. The algorithm is designed to work with single-epoch observations. In its simplest form, only one set of program images and one set of reference images are required. Methods: The algorithm is based on a two-stage joint astrometric and photometric assessment of cluster membership probabilities. The probabilities were computed within a Bayesian framework using any available prior information. Where possible, the algorithm emphasizes simplicity over mathematical sophistication. Results: The algorithm was implemented and tested against three observational fields using published survey data. M 67 and NGC 654 were selected as cluster examples while a third, cluster-free, field was used for the final test data set. The algorithm shows good quantitative agreement with the existing surveys and has a false-positive rate significantly lower than the astrometric or photometric methods used individually.

  3. No. 2 heating oil/propane program. Final report, 1990/91

    Energy Technology Data Exchange (ETDEWEB)

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  4. SOCIOLOGICAL MEDIA: MAXIMIZING STUDENT INTEREST IN QUANTITATIVE METHODS VIA COLLABORATIVE USE OF DIGITAL MEDIA

    Directory of Open Access Journals (Sweden)

    Frederick T. Tucker

    2016-10-01

    Full Text Available College sociology lecturers are tasked with inspiring student interest in quantitative methods despite widespread student anxiety about the subject, and a tendency for students to relieve classroom anxiety through habitual web browsing. In this paper, the author details the results of a pedagogical program whereby students at a New York City community college used industry-standard software to design, conduct, and analyze sociological surveys of one another, with the aim of inspiring student interest in quantitative methods and enhancing technical literacy. A chi-square test of independence was performed to determine the effect of the pedagogical process on the students’ ability to discuss sociological methods unrelated to their surveys in their final papers, compared with the author’s students from the previous semester who did not undergo the pedagogical program. The relation between these variables was significant, χ 2(3, N=36 = 9.8, p = .02. Findings suggest that community college students, under lecturer supervision, with minimal prior statistical knowledge, and access to digital media can collaborate in small groups to create and conduct sociological surveys, and discuss methods and results in limited classroom time. College sociology lecturers, instead of combatting student desire to use digital media, should harness this desire to advance student mastery of quantitative methods.

  5. Estimation of the effective heating systems radius as a method of the reliability improving and energy efficiency

    Science.gov (United States)

    Akhmetova, I. G.; Chichirova, N. D.

    2017-11-01

    When conducting an energy survey of heat supply enterprise operating several boilers located not far from each other, it is advisable to assess the degree of heat supply efficiency from individual boiler, the possibility of energy consumption reducing in the whole enterprise by switching consumers to a more efficient source, to close in effective boilers. It is necessary to consider the temporal dynamics of perspective load connection, conditions in the market changes. To solve this problem the radius calculation of the effective heat supply from the thermal energy source can be used. The disadvantage of existing methods is the high complexity, the need to collect large amounts of source data and conduct a significant amount of computational efforts. When conducting an energy survey of heat supply enterprise operating a large number of thermal energy sources, rapid assessment of the magnitude of the effective heating radius requires. Taking into account the specifics of conduct and objectives of the energy survey method of calculation of effective heating systems radius, to use while conducting the energy audit should be based on data available heat supply organization in open access, minimize efforts, but the result should be to match the results obtained by other methods. To determine the efficiency radius of Kazan heat supply system were determined share of cost for generation and transmission of thermal energy, capital investment to connect new consumers. The result were compared with the values obtained with the previously known methods. The suggested Express-method allows to determine the effective radius of the centralized heat supply from heat sources, in conducting energy audits with the effort minimum and the required accuracy.

  6. Measurement improvements of heat flux probes for internal combustion engine; Nainen kikan ni okeru netsuryusokukei no kaihatsu to kento

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, H; Tasaka, H [Miyazaki University, Miyazaki (Japan)

    1997-10-01

    In heat flux measurement in engines, material properties of a heat flux probe and numerical prediction of those influence have been discussed rather than practical measurement accuracy. This study featured the process for the quantitative examination of heat flux probes. Although the process required direct comparison among all the probes and additional measurements in a constant volume bomb, precision of heat flux measurement was greatly improved so that the essential characteristics of heat transfer in engines can be detected. 9 refs., 8 figs., 1 tab.

  7. A convenient method for the quantitative determination of elemental sulfur in coal by HPLC analysis of perchloroethylene extracts

    Science.gov (United States)

    Buchanan, D.H.; Coombs, K.J.; Murphy, P.M.; Chaven, C.

    1993-01-01

    A convenient method for the quantitative determination of elemental sulfur in coal is described. Elemental sulfur is extracted from the coal with hot perchloroethylene (PCE) (tetrachloroethene, C2Cl4) and quantitatively determined by HPLC analysis on a C18 reverse-phase column using UV detection. Calibration solutions were prepared from sublimed sulfur. Results of quantitative HPLC analyses agreed with those of a chemical/spectroscopic analysis. The HPLC method was found to be linear over the concentration range of 6 ?? 10-4 to 2 ?? 10-2 g/L. The lower detection limit was 4 ?? 10-4 g/L, which for a coal sample of 20 g is equivalent to 0.0006% by weight of coal. Since elemental sulfur is known to react slowly with hydrocarbons at the temperature of boiling PCE, standard solutions of sulfur in PCE were heated with coals from the Argonne Premium Coal Sample program. Pseudo-first-order uptake of sulfur by the coals was observed over several weeks of heating. For the Illinois No. 6 premium coal, the rate constant for sulfur uptake was 9.7 ?? 10-7 s-1, too small for retrograde reactions between solubilized sulfur and coal to cause a significant loss in elemental sulfur isolated during the analytical extraction. No elemental sulfur was produced when the following pure compounds were heated to reflux in PCE for up to 1 week: benzyl sulfide, octyl sulfide, thiane, thiophene, benzothiophene, dibenzothiophene, sulfuric acid, or ferrous sulfate. A sluury of mineral pyrite in PCE contained elemental sulfur which increased in concentration with heating time. ?? 1993 American Chemical Society.

  8. Review of liquid metal heat pipe work at Los Alamos

    International Nuclear Information System (INIS)

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

  9. Experimental analysis of direct-expansion ground-coupled heat pump systems

    Science.gov (United States)

    Mei, V. C.; Baxter, V. D.

    1991-09-01

    Direct-expansion ground-coil-coupled (DXGC) heat pump systems have certain energy efficiency advantages over conventional ground-coupled heat pump (GCHP) systems. Principal among these advantages are that the secondary heat transfer fluid heat exchanger and circulating pump are eliminated. While the DXGC concept can produce higher efficiencies, it also produces more system design and environmental problems (e.g., compressor starting, oil return, possible ground pollution, and more refrigerant charging). Furthermore, general design guidelines for DXGC systems are not well documented. A two-pronged approach was adopted for this study: (1) a literature survey, and (2) a laboratory study of a DXGC heat pump system with R-22 as the refrigerant, for both heating and cooling mode tests done in parallel and series tube connections. The results of each task are described in this paper. A set of general design guidelines was derived from the test results and is also presented.

  10. Number 2 heating oil/propane program. Final report, 1991/92

    Energy Technology Data Exchange (ETDEWEB)

    McBrien, J.

    1992-06-01

    During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

  11. Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR)

    NARCIS (Netherlands)

    Ruiz-Villalba, Adrián; van Pelt-Verkuil, Elizabeth; Gunst, Quinn D.; Ruijter, Jan M.; van den Hoff, Maurice J. B.

    2017-01-01

    Quantitative PCR allows the precise measurement of DNA concentrations and is generally considered to be straightforward and trouble free. However, a survey with 93 validated assays for genes in the Wnt-pathway showed that the amplification of nonspecific products occurs frequently and is unrelated

  12. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  13. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

    International Nuclear Information System (INIS)

    Tamai, K.; Abe, T.; Araki, M.; Ito, H.

    1998-01-01

    Seasonal changes in the radiation budget and soil heat flux of a forest floor were measured in a mixed forest located in Kyoto, Japan. The basal area at breast height in the survey forest was about 15·82 m 2 ha −1 , for evergreen trees, and 12·46 m 2 ha −1 , for deciduous trees. The sky view factor was 16 and 22% at the survey site in the foliate and defoliate seasons, respectively. The small difference between the sky view factor in the two seasons was reflected in the seasonal change in the radiation budget of the forest floor. Namely, the net long-wave radiation changed rapidly in leafing and falling days, and the rate of net short-wave radiation was highest in April. The distinctive characteristic of the radiation budget was that the rates of available radiation in the daytime and at night were almost equal in September and October. Latent heat flux at the forest floor was estimated to be around 94 MJ m −2 annually, from our measurement with the simulation model. (author)

  14. Solar heating and cooling system design and development

    Science.gov (United States)

    1978-01-01

    Application surveys and performance studies were conducted to determine a solar heating and hot water configuration that could be used in a variety of applications, and to identify subsystem modules that could be utilized in a building block fashion to adapt hardware items to single and multi-family residential and commercial systems. Topics discussed include: subsystem development for the solar collectors, controls, other components, energy management module, and the heating system configuration test. Operational tests conducted at an Illinois farmhouse, and a YWCA in Spokane, Washington are discussed.

  15. Urban Heat Islands and Their Mitigation vs. Local Impacts of Climate Change

    Science.gov (United States)

    Taha, H.

    2007-12-01

    Urban heat islands and their mitigation take on added significance, both negative and positive, when viewed from a climate-change perspective. In negative terms, urban heat islands can act as local exacerbating factors, or magnifying lenses, to the effects of regional and large-scale climate perturbations and change. They can locally impact meteorology, energy/electricity generation and use, thermal environment (comfort and heat waves), emissions of air pollutants, photochemistry, and air quality. In positive terms, on the other hand, mitigation of urban heat islands (via urban surface modifications and control of man-made heat, for example) can potentially have a beneficial effect of mitigating the local negative impacts of climate change. In addition, mitigation of urban heat islands can, in itself, contribute to preventing regional and global climate change, even if modestly, by helping reduce CO2 emissions from power plants and other sources as a result of decreased energy use for cooling (both direct and indirect) and reducing the rates of meteorology-dependent emissions of air pollutants. This presentation will highlight aspects and characteristics of heat islands, their mitigation, their modeling and quantification techniques, and recent advances in meso-urban modeling of California (funded by the California Energy Commission). In particular, the presentation will focus on results from quantitative, modeling-based analyses of the potential benefits of heat island mitigation in 1) reducing point- and area-source emissions of CO2, NOx, and VOC as a result of reduced cooling energy demand and ambient/surface temperatures, 2) reducing evaporative and fugitive hydrocarbon emissions as a result of lowered temperatures, 3) reducing biogenic hydrocarbon emissions from existing vegetative cover, 4) slowing the rates of tropospheric/ground-level ozone formation and/or accumulation in the urban boundary layer, and 5) helping improve air quality. Quantitative estimates

  16. Practice variation amongst preventive child healthcare professionals in the prevention of child maltreatment in the Netherlands: Qualitative and quantitative data.

    Science.gov (United States)

    Visscher, Simeon J A; van Stel, Henk F

    2017-12-01

    This article provides both qualitative and quantitative data on practice variation amongst preventive child healthcare professionals in the prevention of child maltreatment in the Netherlands. Qualitative data consist of topics identified during interviews with 11 experts (with quotes), resulting in an online survey. The quantitative data are survey responses from 1104 doctors and nurses working in 29 preventive child healthcare organizations. Additionally, the interview topic list, the qualitative data analysis methodology, the survey (in English and Dutch) and anonymized raw survey data (http://hdl.handle.net/10411/5LJOGH) are provided as well. This data-in-brief article accompanies the paper "Variation in prevention of child maltreatment by Dutch child healthcare professionals" by Simeon Visscher and Henk van Stel [1].

  17. Proteomic Profiling Comparing the Effects of Different Heat Treatments on Camel (Camelus dromedarius) Milk Whey Proteins.

    Science.gov (United States)

    Benabdelkamel, Hicham; Masood, Afshan; Alanazi, Ibrahim O; Alzahrani, Dunia A; Alrabiah, Deema K; AlYahya, Sami A; Alfadda, Assim A

    2017-03-28

    Camel milk is consumed in the Middle East because of its high nutritional value. Traditional heating methods and the duration of heating affect the protein content and nutritional quality of the milk. We examined the denaturation of whey proteins in camel milk by assessing the effects of temperature on the whey protein profile at room temperature (RT), moderate heating at 63 °C, and at 98 °C, for 1 h. The qualitative and quantitative variations in the whey proteins before and after heat treatments were determined using quantitative 2D-difference in gel electrophoresis (DIGE)-mass spectrometry. Qualitative gel image analysis revealed a similar spot distribution between samples at RT and those heated at 63 °C, while the spot distribution between RT and samples heated at 98 °C differed. One hundred sixteen protein spots were determined to be significantly different ( p protein spots were decreased in common in both the heat-treated samples and an additional 25 spots were further decreased in the 98 °C sample. The proteins with decreased abundance included serum albumin, lactadherin, fibrinogen β and γ chain, lactotransferrin, active receptor type-2A, arginase-1, glutathione peroxidase-1 and, thiopurine S, etc. Eight protein spots were increased in common to both the samples when compared to RT and included α-lactalbumin, a glycosylation-dependent cell adhesion molecule. Whey proteins present in camel milk were less affected by heating at 63 °C than at 98 °C. This experimental study showed that denaturation increased significantly as the temperature increased from 63 to 98 °C.

  18. Survey of occupant behaviour and control of indoor environment in Danish dwellings

    DEFF Research Database (Denmark)

    Andersen, Rune Vinther; Toftum, Jørn; Andersen, Klaus Kaae

    2009-01-01

    separately by means of multiple logistic regression in order to quantify factors influencing occupants’ behaviour. The window opening behaviour was strongly related to the outdoor temperature. The perception of the environment and factors concerning the dwelling also impacted the window opening behaviour......Repeated surveys of occupant control of the indoor environment were carried out in Danish dwellings from September to October 2006 and again from February to March 2007. The summer survey comprised 933 respondents and the winter survey 636 respondents. The surveys were carried out by sending out....... The proportion of dwellings with the heating turned on was strongly related to the outdoor temperature and the presence of a wood burning stove. The solar radiation, dwelling ownership conditions and the perception of the indoor environment also affected the use of heating. The results of the statistical...

  19. Microsegregation of heat and homogenization treatments in uranium-niobium alloys (U-Nb)

    International Nuclear Information System (INIS)

    Leal, J.F.

    1988-01-01

    In the following sections microsegration results in U-3,6 Wt% Nb and U-6,1 Wt% Nb alloys casted in noconsumable electrode arc furnace are presented. The microsegration is studied qualitatively by optical microscopy and quantitatively by electron microprobe. The degree of homogenization has been measured after 800 and 850 0 C heat treatments in tubular resistive furnace. The microstructures after heat treatments are quantitatively analysed to check effects on the casting structures, mainly the variations in solute along the dendrite arm spacing. Some solidification phenomena are then discussed on reference to theorical models of dendritic solidification, including microstructure and microsegregation. The experimental results are compared to theoretical on basis of initial and residual microsegregation after homogenization treatments. The times required for homogenization of the alloys are also discussed in function of the microsegregation from casting structures and the temperatures of the treatments. (author) [pt

  20. A Quantitative Study Examining Teacher Stress, Burnout, and Self-Efficacy

    Science.gov (United States)

    Stephenson, Timar D.

    2012-01-01

    The purpose of this quantitative, correlational study was to examine the relationships between stress, burnout, and self-efficacy in public school teachers in the Turks and Caicos Islands. The Teacher Stress Inventory was used to collect data on teacher stress, the Maslach Burnout Inventory Educators Survey was used to obtain data on teacher…

  1. Quantitative determination of tritium in metals and oxides

    International Nuclear Information System (INIS)

    Vance, D.E.; Smith, M.E.; Waterbury, G.R.

    1979-04-01

    Metallic samples are analyzed for tritium by heating the sample at 1225 K in a moist oxygen stream. The volatile products are trapped and the tritium is quantitatively determined by scintillation spectroscopy. The method is used to determine less than 1 ppb of tritium in 100-mg samples of lithium, iron, nickel, cerium, plutonium, and plutonium dioxide. Analysis of 18 cuts of a tritium-zirconium, copper foil standard over a 3-yr period showed a tritium content of 45 ppM and a standard deviation of 6 ppM

  2. [Research progress and development trend of quantitative assessment techniques for urban thermal environment.

    Science.gov (United States)

    Sun, Tie Gang; Xiao, Rong Bo; Cai, Yun Nan; Wang, Yao Wu; Wu, Chang Guang

    2016-08-01

    Quantitative assessment of urban thermal environment has become a focus for urban climate and environmental science since the concept of urban heat island has been proposed. With the continual development of space information and computer simulation technology, substantial progresses have been made on quantitative assessment techniques and methods of urban thermal environment. The quantitative assessment techniques have been developed to dynamics simulation and forecast of thermal environment at various scales based on statistical analysis of thermal environment on urban-scale using the historical data of weather stations. This study reviewed the development progress of ground meteorological observation, thermal infrared remote sensing and numerical simulation. Moreover, the potential advantages and disadvantages, applicability and the development trends of these techniques were also summarized, aiming to add fundamental knowledge of understanding the urban thermal environment assessment and optimization.

  3. Envisioning a Quantitative Studies Center: A Liberal Arts Perspective

    Directory of Open Access Journals (Sweden)

    Gizem Karaali

    2010-01-01

    Full Text Available Several academic institutions are searching for ways to help students develop their quantitative reasoning abilities and become more adept at higher-level tasks that involve quantitative skills. In this note we study the particular way Pomona College has framed this issue within its own context and what it plans to do about it. To this end we describe our efforts as members of a campus-wide committee that was assigned the duty of investigating the feasibility of founding a quantitative studies center on our campus. These efforts involved analysis of data collected through a faculty questionnaire, discipline-specific input obtained from each departmental representative, and a survey of what some of our peer institutions are doing to tackle these issues. In our studies, we identified three critical needs where quantitative support would be most useful in our case: tutoring and mentoring for entry-level courses; support for various specialized and analytic software tools for upper-level courses; and a uniform basic training for student tutors and mentors. We surmise that our challenges can be mitigated effectively via the formation of a well-focused and -planned quantitative studies center. We believe our process, findings and final proposal will be helpful to others who are looking to resolve similar issues on their own campuses.

  4. Diffusion of innovative domestic heating systems and multi-storey wood-framed buildings in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna

    2007-10-15

    The diffusion of innovations that promote sustainable use of forest resources and energy efficiency is important for reducing greenhouse gas emission and dependency on oil. In this thesis the 'systems of innovation' (SI) approach is used to analyse the diffusion of multi-storey wood-framed buildings and wood pellet heating systems in Sweden. The diffusion of an innovative heating system (IHS) is influenced by the diffusion of other types of IHSs, making it complex to analyse the diffusion of all these systems simultaneously using the SI approach. Hence, an 'adopter-centric' approach was used, as homeowners make the decision to adopt an IHS, which affects the rate of adoption of that system. The SI analyses showed that several sources of path dependency, resulting from the establishment and growth of the concrete-based construction system over the past 100 years, hinder the expansion of a wood-based multi-storey construction system. However, development of the wood construction system was possible due to government policies and funding, the wood industry's interest in expanding the market for value-added wood products, and the involvement of the wood research community. The growth of the pellet market was supported by national energy policy, the abundance of raw material and broad dissemination of district heating systems. However, a lack of co-ordination between the pellet and equipment suppliers in the early phase of market development, high annual operating cost, lack of information, dissatisfaction among early adopters and technology lock-in contributed to its relatively slow growth. The adopter-centric approach included household questionnaire surveys: one covering the whole of Sweden in 2004 involving 1500 randomly selected homeowners with any type of heating system, and another in the city of Oestersund in 2005 of 700 homeowners who had resistance heaters. The same homeowners in Oestersund were re-surveyed in 2006 to analyse the

  5. State heating oil and propane program. Final report, 1995--1996

    International Nuclear Information System (INIS)

    Rizzolo, D.R.

    1997-01-01

    This reports documents the 1995-1996 United States Department of Energy (USDOE) program to monitor No. 2 heating oil and propane prices. Data reported encompass states that are heavily dependent on these products. Twelve surveys were conducted semimonthly to obtain the necessary price information from retail fuel merchants and propane dealers. Surveys began on October 2, 1995 and ended on March 18, 1996. Responses were analyzed to avoid questionable prices. Tables and graphs included in the report reflect the general activity of the prices furnished during the surveys. 3 figs., 2 tabs

  6. No. 2 heating oil/propane program. Final report, 1992/93

    Energy Technology Data Exchange (ETDEWEB)

    McBrien, J.

    1993-05-01

    During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

  7. Comprehensive assessments of measures mitigating heat island phenomena in urban areas; Heat shinku wo riyoshita daikibo reibo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T; Yamamoto, S; Yoshikado, H; Kondo, H; Kaneho, N; Saegusa, N; Inaba, A [National Institute for Resources and Environment, Tsukuba (Japan); Inoue, M [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    This paper describes the assessment method of measures mitigating heat island phenomena in urban areas. The heat island phenomena were classified into meso-scale with 100 km-scale, block-scale with several km-scale, and building-scale with 100 m-scale. Urban thermal environment simulation model was developed in response to each scale. For the development, regional data using aircraft and artificial satellite observations, surface observation and thermal environment observation at Shinjuku new central city of Tokyo, and artificial waste heat actual survey data in the southern Kanto district were utilized. Results of the urban thermal environment simulation were introduced as an application of this model. Temperature distributions of the heat island in the Kanto district were simulated with considering urban conditions near Tokyo and without considering it. Daily changes of wall surfaces of high buildings and road surface were calculated. Increase in the air temperature in the back stream of building roofs with increased temperature was determined. 4 figs.

  8. Direct electronic measurement of Peltier cooling and heating in graphene.

    Science.gov (United States)

    Vera-Marun, I J; van den Berg, J J; Dejene, F K; van Wees, B J

    2016-05-10

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

  9. Air-sea heat exchange, an element of the water cycle

    Science.gov (United States)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  10. Survey of Indoor Air Quality in the University of Alaska

    DEFF Research Database (Denmark)

    Kotol, Martin; Craven, Colin; Rode, Carsten

    2014-01-01

    problem which is poor indoor air quality (IAQ). During summer 2012 four student homes were built in Fairbanks, Alaska as a part of Sustainable Village project. The aim of this project is to promote sustainable ways of living in the Arctic and to study new technologies and their applicability in the cold......In cold climates living inside the heated space requires considerable amounts of heat. With the intention to decrease the heating demand, people are insulating their homes and make them more air tight. With the natural infiltration being brought close to zero there has been an increase of a new...... north. This paper presents the results of an IAQ survey performed in the homes during two weeks in December 2012. During this survey the air temperature, relative humidity (RH) and CO2 concentration were measured in all occupied bedrooms along with monitoring of the ventilation units. The results have...

  11. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  12. Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC/R), AFSC 3E1X1. OSSN 2368

    National Research Council Canada - National Science Library

    1999-01-01

    Survey Coverage: The Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC/R) career ladder, AFSC 3E1X1, was surveyed to gather data needed to guide the development and evaluation of training...

  13. Nonlinear processes in laser heating of chemically active media

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, F V; Kirichenko, N A; Luk' yanchuk, B S

    1984-08-01

    After it had been discovered and in due measure physically comprehended that numerous nontrivial phenomena observed during laser heating of chemically active media are caused primarily by self-stress of laser radiation due to the chemical intertial nonlinearity of the medium, an approach was found for solving problems of laser thermochemistry that is most adequate from the mathematical (and physical) standpoint: the approach of the theory of nonlinear oscillations in point systems and distributed systems. This approach has provided a uniform viewpoint for examination of a variety of phenomena of spatiotemporal self-organization of chemically active media under the effect of laser radiation, qualitative, and in some cases quantitative description of such phenomena as the onset of thermochemical instability, self-oscillations, various spatial structures and the like. Evidently it can be rightly considered that at this juncture a definite stage has been completed in the development of laser thermochemistry marked by the creation of an ideology, method and overall approach to interpretation of the most diverse phenomena under conditions of actual physical experiments. References to the numerous studies that make up the content of this stage of development of laser thermochemistry are to be found in survey papers. 48 references, 10 figures.

  14. Energy survey in the New Zealand dairy industry

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, V T; Shannon, D V

    1977-12-25

    An in-depth report on energy consumption in the New Zealand dairy industry for 1974--75 shows that a reduction in fuel consumption per unit of production has occurred when compared with two previous surveys (1954--55 and 1964--65). The increase in thermal efficiency of dairy processing was due mainly to the use of hot water heating systems in milk-treatment stations, the increased capacity of butter and cheese factories, increased thermal efficiency in skim milk drying and casein manufacture, increased efficiency in boiler plants, and higher drying air temperature achieved with the use of indirect oil- and gas-fired air heaters and liquid-phase air heating systems. Total energy consumed by the industry by type is tabulated. Recommendations to the industry following the survey are listed. (MCW)

  15. Electric heating systems - Measures and options for the reduction of electricity consumption; Elektroheizungen Massnahmen und Vorgehensoptionen zur Reduktion des Stromverbrauchs

    Energy Technology Data Exchange (ETDEWEB)

    Nipkow, J.; Togni, G.

    2009-10-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at how electricity consumption for electrical heating systems can be reduced. The authors state that electric space heating consumes roughly 6% to 12% of Swiss electricity consumption, depending on the source of data. Important reduction potentials obtainable through the implementation of efficiency measures and substitution are well known. The results of two surveys on hardware installations and heating users' and utility companies' preferences are presented and discussed. The user survey yielded more than 900 evaluable answers. The main focus was on conditions considered necessary for changing a heating system. The utilities' survey was carried out by means of letters posted to 62 utilities, half of whom sent back evaluable answers. The main focus was on the number of dwellings supplied with electric space heating, current and past tariffs and utility activities to motivate customers to change their heating systems. The results showed that high investments necessary for a new heating system and additional thermal insulation of the building are the main obstacles for making changes. On the basis of the project's findings, a catalogue of measures was developed, whereby financial aspects and general conditions were taken into account.

  16. Bibliography on augmentation of convective heat and mass transfer

    International Nuclear Information System (INIS)

    Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.

    1979-05-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report

  17. Heat Conduction Analysis Using Semi Analytical Finite Element Method

    International Nuclear Information System (INIS)

    Wargadipura, A. H. S.

    1997-01-01

    Heat conduction problems are very often found in science and engineering fields. It is of accrual importance to determine quantitative descriptions of this important physical phenomena. This paper discusses the development and application of a numerical formulation and computation that can be used to analyze heat conduction problems. The mathematical equation which governs the physical behaviour of heat conduction is in the form of second order partial differential equations. The numerical resolution used in this paper is performed using the finite element method and Fourier series, which is known as semi-analytical finite element methods. The numerical solution results in simultaneous algebraic equations which is solved using the Gauss elimination methodology. The computer implementation is carried out using FORTRAN language. In the final part of the paper, a heat conduction problem in a rectangular plate domain with isothermal boundary conditions in its edge is solved to show the application of the computer program developed and also a comparison with analytical solution is discussed to assess the accuracy of the numerical solution obtained

  18. Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines

    Science.gov (United States)

    Pietzonka, Patrick; Seifert, Udo

    2018-05-01

    Heat engines should ideally have large power output, operate close to Carnot efficiency and show constancy, i.e., exhibit only small fluctuations in this output. For steady-state heat engines, driven by a constant temperature difference between the two heat baths, we prove that out of these three requirements only two are compatible. Constancy enters quantitatively the conventional trade-off between power and efficiency. Thus, we rationalize and unify recent suggestions for overcoming this simple trade-off. Our universal bound is illustrated for a paradigmatic model of a quantum dot solar cell and for a Brownian gyrator delivering mechanical work against an external force.

  19. Qualitative and quantitative analysis of women's perceptions of transvaginal surgery.

    Science.gov (United States)

    Bingener, Juliane; Sloan, Jeff A; Ghosh, Karthik; McConico, Andrea; Mariani, Andrea

    2012-04-01

    Prior surveys evaluating women's perceptions of transvaginal surgery both support and refute the acceptability of transvaginal access. Most surveys employed mainly quantitative analysis, limiting the insight into the women's perspective. In this mixed-methods study, we include qualitative and quantitative methodology to assess women's perceptions of transvaginal procedures. Women seen at the outpatient clinics of a tertiary-care center were asked to complete a survey. Demographics and preferences for appendectomy, cholecystectomy, and tubal ligation were elicited, along with open-ended questions about concerns or benefits of transvaginal access. Multivariate logistic regression models were constructed to examine the impact of age, education, parity, and prior transvaginal procedures on preferences. For the qualitative evaluation, content analysis by independent investigators identified themes, issues, and concerns raised in the comments. The completed survey tool was returned by 409 women (grouped mean age 53 years, mean number of 2 children, 82% ≥ some college education, and 56% with previous transvaginal procedure). The transvaginal approach was acceptable for tubal ligation to 59%, for appendectomy to 43%, and for cholecystectomy to 41% of the women. The most frequently mentioned factors that would make women prefer a vaginal approach were decreased invasiveness (14.4%), recovery time (13.9%), scarring (13.7%), pain (6%), and surgical entry location relative to organ removed (4.4%). The most frequently mentioned concerns about the vaginal approach were the possibility of complications/safety (14.7%), pain (9%), infection (5.6%), and recovery time (4.9%). A number of women voiced technical concerns about the vaginal approach. As in prior studies, scarring and pain were important issues to be considered, but recovery time and increased invasiveness were also in the "top five" list. The surveyed women appeared to actively participate in evaluating the technical

  20. Effects of heat stress on gene expression in eggplant ( Solanum ...

    African Journals Online (AJOL)

    In order to identify differentially expressed genes involved in heat shock response, cDNA amplified fragment length polymorphism (cDNA-AFLP) and quantitative real-time polymerase chain reaction (QPCR) were used to study gene expression of eggplant seedlings subjected to 0, 6 and 12 h at 43°C. A total of 53 of over ...

  1. Practice variation amongst preventive child healthcare professionals in the prevention of child maltreatment in the Netherlands: Qualitative and quantitative data

    Directory of Open Access Journals (Sweden)

    Simeon J.A. Visscher

    2017-12-01

    Full Text Available This article provides both qualitative and quantitative data on practice variation amongst preventive child healthcare professionals in the prevention of child maltreatment in the Netherlands. Qualitative data consist of topics identified during interviews with 11 experts (with quotes, resulting in an online survey. The quantitative data are survey responses from 1104 doctors and nurses working in 29 preventive child healthcare organizations. Additionally, the interview topic list, the qualitative data analysis methodology, the survey (in English and Dutch and anonymized raw survey data (http://hdl.handle.net/10411/5LJOGH are provided as well. This data-in-brief article accompanies the paper “Variation in prevention of child maltreatment by Dutch child healthcare professionals” by Simeon Visscher and Henk van Stel [1].

  2. survey research in practical theology and congregational studies

    African Journals Online (AJOL)

    such as the social, political and economic environment that influence society also affect the ... correlation research is part of a quantitative research methodology and could contribute to ... Another type is qualitative survey that focuses on the ...

  3. Subjective heat stress of urban citizens: influencing factors and coping strategies

    Science.gov (United States)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Hans

    2014-05-01

    Given urbanization trend and a higher probability of heat waves in Europe, heat discomfort or heat stress for the population in cities is a growing concern that is addressed from various perspectives, such as urban micro climate, urban and spatial planning, human health, work performance and economic impacts. This presentation focuses on subjective heat stress experienced by urban citizens. In order to better understand individual subjective heat stress of urban citizens and how different measures to cope with heat stress in everyday life are applied, a questionnaire survey was conducted in Karlsruhe, Germany. Karlsruhe is located in one of the warmest regions in Germany and holds the German temperature record of 40.2°C in August 2003. In 2013, two hot weather periods with continuous heat warnings by the German Weather Service for 7 and 8 days occurred during the last 10 days of July and first 10 days of August 2013 with an inofficial maximum temperature of again 40.2°C on July 27th in Karlsruhe (not taken by the official network of the German Weather Service). The survey data was collected in the six weeks after the heat using an online-questionnaire on the website of the South German Climate Office that was announced via newspapers and social media channels to reach a wide audience in Karlsruhe. The questionnaire was additionally sent as paper version to groups of senior citizens to ensure having enough respondents from this heat sensitive social group in the sample. The 428 respondents aged 17-94 show differences in subjective heat stress experienced at home, at work and during various typical activities in daily routine. They differ also in the measures they used to adjust to and cope with the heat such as drinking more, evading the heat, seeking cooler places, changing daily routines, or use of air condition. Differences in heat stress can be explained by housing type, age, subjective health status, employment, and different coping measures and strategies

  4. A Survey of Current and Projected Ethical Dilemmas of Rehabilitation Counselors

    Science.gov (United States)

    Hartley, Michael T.; Cartwright, Brenda Y.

    2016-01-01

    Purpose: This study surveyed current and projected ethical dilemmas of rehabilitation counselors. Method: As a mixed-methods approach, the study used both quantitative and qualitative analyses. Results: Of the 211 participants who completed the survey, 116 (55.0%) reported an ethical dilemma. Based on the descriptions, common themes involved roles…

  5. On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?

    Directory of Open Access Journals (Sweden)

    Tanja Wolf

    2015-10-01

    Full Text Available Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability has the potential to enable local governments to identify hot spots of vulnerability and allocate resources and increase assistance to people in areas of greatest need. Recently there has been a proliferation of heat vulnerability mapping studies, all of which, to varying degrees, justify the process of vulnerability mapping in a policy context. However, to date, there has not been a systematic review of the extent to which the results of vulnerability mapping studies have been applied in decision-making. Accordingly we undertook a comprehensive review of 37 recently published papers that use geospatial techniques for assessing human vulnerability to heat. In addition, we conducted an anonymous survey of the lead authors of the 37 papers in order to establish the level of interaction between the researchers as science information producers and local authorities as information users. Both paper review and author survey results show that heat vulnerability mapping has been used in an attempt to communicate policy recommendations, raise awareness and induce institutional networking and learning, but has not as yet had a substantive influence on policymaking or preventive action.

  6. On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?

    Science.gov (United States)

    Wolf, Tanja; Chuang, Wen-Ching; McGregor, Glenn

    2015-10-23

    Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability has the potential to enable local governments to identify hot spots of vulnerability and allocate resources and increase assistance to people in areas of greatest need. Recently there has been a proliferation of heat vulnerability mapping studies, all of which, to varying degrees, justify the process of vulnerability mapping in a policy context. However, to date, there has not been a systematic review of the extent to which the results of vulnerability mapping studies have been applied in decision-making. Accordingly we undertook a comprehensive review of 37 recently published papers that use geospatial techniques for assessing human vulnerability to heat. In addition, we conducted an anonymous survey of the lead authors of the 37 papers in order to establish the level of interaction between the researchers as science information producers and local authorities as information users. Both paper review and author survey results show that heat vulnerability mapping has been used in an attempt to communicate policy recommendations, raise awareness and induce institutional networking and learning, but has not as yet had a substantive influence on policymaking or preventive action.

  7. An evaluation of the quantitative effects on radon gas from the modification of a home heating and air conditioning system

    International Nuclear Information System (INIS)

    Montague, A.

    1991-01-01

    The quantitative effects associated with the design, construction, operation, environmental and meteorological conditions on radon gas levels in a typical residential dwelling with a basement, having a measured radon level of approximately 20 pico-curies/liter (pCi/L), are evaluated. After several mechanical and electrical modifications are made on the dwelling's heating system, two different furnace breathing modes are studied. The effect on radon levels in the dwelling are observed as the furnace receives all of its combustion, draft and ventilation air - as the experiment alternates, on a bi-weekly basis - from inside and then outside the dwelling. Radon, barometric pressure, outside temperature, relative humidity, wind-speed and direction are monitored continuously; special household activity in the dwelling is also observed. A novel differential air pressure technique is used to measure inside versus outside house air pressure variations, twice each day, resulting from meteorological conditions, dwelling activity, and the furnace breathing mode. A rigorous statistical analysis is employed that includes sequential linear regression of time-series data, trend corrections to remove variations that contribute to the variance in the data without addition useful information. A novel approach using an electrical analog, to screen out unwanted variations is applied, by utilizing a computer routine to simulate the effect of an electronic RC filter, to achieve the desired analytical discrimination

  8. Renewable energies heat act and government grants in Germany

    International Nuclear Information System (INIS)

    Nast, M.

    2010-01-01

    In Germany renewable energies in the heat market are promoted by the Renewable Energies Heat Act (EEWaermeG) and by government grants. Ultimately, these two instruments are not only about short-term market success, but rather about the perspectives of climate protection and resource conservation. The focus of this report is therefore on the long-term significance of the current design of government grants and EEWaermeG. We will introduce and discuss the quantitative goals and structural changes strived for as well as - on a slightly shorter time horizon - the quality assurance regulations which must accompany the steady and stable growth of renewable energies. In the process, we will elaborate in particular on heat pumps, which have recently been added to the government support programme, along with solar collectors. Some explanations regarding the structural relationships between EEWaermeG and government grants round off this contribution. (author)

  9. Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas

    International Nuclear Information System (INIS)

    Xu, Gang; Huang, Shengwei; Yang, Yongping; Wu, Ying; Zhang, Kai; Xu, Cheng

    2013-01-01

    Highlights: • Four typical flue gas heat recovery schemes are quantitatively analyzed. • The analysis considers thermodynamic, heat transfer and hydrodynamics factors. • Techno-economic analysis and optimization design are carried out. • High-stage steam substitute scheme obtains better energy-saving effect. • Large heat transfer area and high flue gas resistances weaken overall performance. - Abstract: Coal-fired power plants in China consume nearly half of available coals, and the resulting CO 2 emissions cover over 40% of total national emissions. Therefore, reducing the energy expenditure of coal-fired power plants is of great significance to China’s energy security and greenhouse gas reduction programs. For coal-fired power plants, the temperature of a boiler’s exhaust gas reaches 120–150 °C or even higher. The thermal energy of boiler’s exhaust accounts for approximately 3–8% of the total energy of fuel input. Given these factors, we conducted a techno-economic analysis and optimization design of the heat recovery system using boiler exhaust gas. This research is conformed to the principles of thermodynamic, heat transfer, and hydrodynamics. Based on the data from an existing 1000 MW typical power generation unit in China, four typical flue gas heat recovery schemes are quantitatively analyzed from the thermodynamics perspective. The impacts of flue gas heat recovery on net work output and standard coal consumption rate of various schemes are performed. Furthermore, the transfer area of heat recovery exchanger and the draft fan work increment due to the flue gas pressure drop are analyzed. Finally, a techno-economic analysis of the heat recovery schemes is conducted, and some recommendations on optimization design parameters are proposed, with full consideration of various factors such as the decrease on fuel cost due to energy conservation as well as the investment cost of heat recovery retrofitting. The results revealed that, high

  10. Short-term test-retest-reliability of conditioned pain modulation using the cold-heat-pain method in healthy subjects and its correlation to parameters of standardized quantitative sensory testing.

    Science.gov (United States)

    Gehling, Julia; Mainka, Tina; Vollert, Jan; Pogatzki-Zahn, Esther M; Maier, Christoph; Enax-Krumova, Elena K

    2016-08-05

    Conditioned Pain Modulation (CPM) is often used to assess human descending pain inhibition. Nine different studies on the test-retest-reliability of different CPM paradigms have been published, but none of them has investigated the commonly used heat-cold-pain method. The results vary widely and therefore, reliability measures cannot be extrapolated from one CPM paradigm to another. Aim of the present study was to analyse the test-retest-reliability of the common heat-cold-pain method and its correlation to pain thresholds. We tested the short-term test-retest-reliability within 40 ± 19.9 h using a cold-water immersion (10 °C, left hand) as conditioning stimulus (CS) and heat pain (43-49 °C, pain intensity 60 ± 5 on the 101-point numeric rating scale, right forearm) as test stimulus (TS) in 25 healthy right-handed subjects (12females, 31.6 ± 14.1 years). The TS was applied 30s before (TSbefore), during (TSduring) and after (TSafter) the 60s CS. The difference between the pain ratings for TSbefore and TSduring represents the early CPM-effect, between TSbefore and TSafter the late CPM-effect. Quantitative sensory testing (QST, DFNS protocol) was performed on both sessions before the CPM assessment. paired t-tests, Intraclass correlation coefficient (ICC), standard error of measurement (SEM), smallest real difference (SRD), Pearson's correlation, Bland-Altman analysis, significance level p Pain ratings during CPM correlated significantly (ICC: 0.411…0.962) between both days, though ratings for TSafter were lower on day 2 (p pain thresholds. The short-term test-retest-reliability of the early CPM-effect using the heat-cold-pain method in healthy subjects achieved satisfying results in terms of the ICC. The SRD of the early CPM effect showed that an individual change of > 20 NRS can be attributed to a real change rather than chance. The late CPM-effect was weaker and not reliable.

  11. Analysis of the economic potential of solar thermal energy to provide industrial process heat. Final report, Volume I. [In-depth analysis of 78 industries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-07

    The process heat data base assembled as the result of this survey includes specific process applications from 78 four-digit Standard Industrial Classification (SIC) groups. These applications account for the consumption of 9.81 quadrillion Btu in 1974, about 59 percent of the 16.6 quadrillion Btu estimated to have been used for all process heat in 1974. About 7/sup 1///sub 2/ percent of industrial process heat is used below 212/sup 0/F (100/sup 0/C), and 28 percent below 550/sup 0/F (288/sup 0/C). In this study, the quantitative assessment of the potential of solar thermal energy systems to provide industrial process heat indicates that solar energy has a maximum potential to provide 0.6 quadrillion Btu per year in 1985, and 7.3 quadrillion Btu per year in 2000, in economic competition with the projected costs of conventional fossil fuels for applications having a maximum required temperature of 550/sup 0/ (288/sup 0/C). A wide variety of collector types were compared for performance and cost characteristics. Performance calculations were carried out for a baseline solar system providing hot water in representative cities in six geographical regions within the U.S. Specific industries that should have significant potential for solar process heat for a variety of reasons include food, textiles, chemicals, and primary metals. Lumber and wood products, and paper and allied products also appear to have significant potential. However, good potential applications for solar process heat can be found across the board throughout industry. Finally, an assessment of nontechnical issues that may influence the use of solar process heat in industry showed that the most important issues are the establishment of solar rights, standardization and certification for solar components and systems, and resolution of certain labor-related issues. (Volume 1 of 3 volumes.)

  12. National natality and fetal mortality surveys

    International Nuclear Information System (INIS)

    Roney, P.L.

    1980-01-01

    A project is described in which the Epidemiologic Studies Branch, DBE, is cooperating with the National Center for Health Statistics in a National Natality Survey and a National Fetal Mortality Survey of a sample of live births and of late fetal deaths (28 or more weeks gestation) in 1979. Questionnaires will be sent to a sample of mothers who had a live born infant or late fetal death in 1979, to hospitals in which the deliveries took place, to attending physicians, and all other possible sources of health care. The survey will provide quantitative information regarding use of ionizing and nonionizing radiation, including ultrasound, during pregnancy and possible associations between radiation and late fetal mortality. Specifically the study will provide information on the demographic and socioeconomic characteristics of the mothers and complications of pregnancy, labor, and delivery. The physical condition of the infant at birth is also included. This is one of many health surveys conducted routinely by the NCHS under the National Health Survey program

  13. Energy Systems Training Programs and Certifications Survey White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Daryl [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wenning, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thirumaran, Kiran [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    Compressed air system, industrial refrigeration system, chilled water system, pump system, fan system, steam system, process heating system, and combined heat and power system are the major industrial energy systems. By helping enhance knowledge and skills of workforce, training and certification programs on these systems are essential to improve energy efficiency of manufacturing facilities. A literature survey of currently available training and certification programs on these systems was conducted.

  14. Focus Groups in Elderly Ophthalmologic Patients: Setting the Stage for Quantitative Preference Elicitation.

    Science.gov (United States)

    Danner, Marion; Vennedey, Vera; Hiligsmann, Mickaël; Fauser, Sascha; Stock, Stephanie

    2016-02-01

    Patients suffering from age-related macular degeneration (AMD) are rarely actively involved in decision-making, despite facing preference-sensitive treatment decisions. This paper presents a qualitative study to prepare quantitative preference elicitation in AMD patients. The aims of this study were (1) to gain familiarity with and learn about the special requirements of the AMD patient population for quantitative data collection; and (2) to select/refine patient-relevant treatment attributes and levels, and gain insights into preference structures. Semi-structured focus group interviews were performed. An interview guide including preselected categories in the form of seven potentially patient-relevant treatment attributes was followed. To identify the most patient-relevant treatment attributes, a ranking exercise was performed. Deductive content analyses were done by two independent reviewers for each attribute to derive subcategories (potential levels of attributes) and depict preference trends. The focus group interviews included 21 patients. The interviews revealed that quantitative preference surveys in this population will have to be interviewer assisted to make the survey feasible for patients. The five most patient-relevant attributes were the effect on visual function [ranking score (RS): 139], injection frequency (RS: 101), approval status (RS: 83), side effects (RS: 79), and monitoring frequency (RS: 76). Attribute and level refinement was based on patients' statements. Preference trends and dependencies between attributes informed the quantitative instrument design. This study suggests that qualitative research is a very helpful step to prepare the design and administration of quantitative preference elicitation instruments. It especially facilitated familiarization with the target population and its preferences, and it supported attribute/level refinement.

  15. Robust Modelling of Heat and Mass Transfer in Processing of Solid Foods

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu

    The study is focused on combined heat and mass transfer during processing of solid foods such as baking and frying processes. Modelling of heat and mass transfer during baking and frying is a significant scientific challenge. During baking and frying, the food undergoes several changes...... in microstructure and other physical properties of the food matrix. The heat and water transport inside the food is coupled in a complex way, which for some food systems it is not yet fully understood. A typical example of the latter is roasting of meat in convection oven, where the mechanism of water transport...... is unclear. Establishing the robust mathematical models describing the main mechanisms reliably is of great concern. A quantitative description of the heat and mass transfer during the solid food processing, in the form of mathematical equations, implementation of the solution techniques, and the value...

  16. Individual and Public-Program Adaptation: Coping with Heat Waves in Five Cities in Canada

    Directory of Open Access Journals (Sweden)

    Mustapha Alhassan

    2011-12-01

    Full Text Available Heat Alert and Response Systems (HARS are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals’ recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as “not at risk” and that they would cope with excessive heat by staying in air conditioned environments and keeping well hydrated. Despite the absence of heat outreach and education programs in their city, our respondents at least a rough idea of how to take care of themselves. The presence of air conditioning and knowledge of cooling centers is location-specific, which provides opportunities for targeting HARS interventions.

  17. Individual and public-program adaptation: coping with heat waves in five cities in Canada.

    Science.gov (United States)

    Alberini, Anna; Gans, Will; Alhassan, Mustapha

    2011-12-01

    Heat Alert and Response Systems (HARS) are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals' recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as "not at risk" and that they would cope with excessive heat by staying in air conditioned environments and keeping well hydrated. Despite the absence of heat outreach and education programs in their city, our respondents at least a rough idea of how to take care of themselves. The presence of air conditioning and knowledge of cooling centers is location-specific, which provides opportunities for targeting HARS interventions.

  18. DuraLith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution

    International Nuclear Information System (INIS)

    Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L.

    2014-01-01

    Highlights: • Quantitative correlations firstly established for cementitious waste forms. • Quantitative correlations firstly established for geopolymeric materials. • Ternary DuraLith geopolymer waste forms for Hanford radioactive wastes. • Extended setting times which improve workability for geopolymer waste forms. • Reduced hydration heat release from DuraLith geopolymer waste forms. - Abstract: The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results

  19. Practical versus theoretical domestic energy consumption for space heating

    International Nuclear Information System (INIS)

    Audenaert, A.; Briffaerts, K.; Engels, L.

    2011-01-01

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: → The energy advice procedure (EAP) calculates the energy use for heating in dwellings. → Calculations are compared with the real energy use for 5 dwellings. → A survey on the occupants' behaviour is used to interpret the observed differences. → Default values used in the EAP can be very different from the observed behaviour.

  20. Practical versus theoretical domestic energy consumption for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, A., E-mail: amaryllis.audenaert@artesis.be [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium); Department of Environment, Technology and Technology Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp (Belgium); Briffaerts, K. [Unit Transition Energy and Environment, VITO NV, Boeretang 200, B-2400 Mol (Belgium); Engels, L. [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium)

    2011-09-15

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: > The energy advice procedure (EAP) calculates the energy use for heating in dwellings. > Calculations are compared with the real energy use for 5 dwellings. > A survey on the occupants' behaviour is used to interpret the observed differences. > Default values used in the EAP can be very different from the observed behaviour.

  1. Heat exchanger design for desalination plants

    International Nuclear Information System (INIS)

    1979-03-01

    The Office of Saline Water (OSW) accomplished a very large amount of significant work related to the design and performance of large heat exchanger bundles and enhanced heat transfer surfaces. This work was undertaken to provide basic technical and economic data for the design of distillation plants for the desalination of seawater, and should be of value to other industrial applications as well. The OSW work covers almost every aspect of heat exchanger design, and ranges academic research to data gathering on commercial desalting plants. Exchanger design configurations include multistage flash plant condensers, vertical tube falling film and upflow evaporators, and horizontal tube spray film evaporators. Unfortunately, the data is scattered through a large number of reports of which many are concerned primarily with factors other than heat transfer, and the quality of reporting and the quality of the data are far from consistent. This report catalogues and organizes the heat exchanger data developed by the OSW. Some analysis as to the validity of the data is made and ranges of performance that can be expected are given. Emphasis is placed on the vertical tube, falling film evaporators. A thorough analysis of the large literature file that was surveyed was not possible. No analysis was made of the quality of original data, but apparent data discrepancies are pointed out where such discrepancies happen to be found

  2. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  3. Active solar heating industry development study

    International Nuclear Information System (INIS)

    1995-01-01

    Despite the fact that solar water heating systems are technologically viable and commercially available, this Energy Technology Support Unit report shows that there is no established market in the United Kingdom. The Solar Trade Association (STA) has undertaken an Active Solar Heating Industry Development Study which is reported here. The data is derived from a questionnaire survey completed by companies, organizations and individuals operating within the industry. Information was also gathered from utility companies, and STAs elsewhere in Europe. Barriers which need to be overcome include lack of public awareness, especially in the construction industry, lack of capital investment and other financial disincentives, little or no government support, and lack of organization and quality monitoring and assurance within the industry itself. (UK)

  4. Enhancement of ohmic and stochastic heating by resonance effects in capacitive radio frequency discharges: a theoretical approach.

    Science.gov (United States)

    Mussenbrock, T; Brinkmann, R P; Lieberman, M A; Lichtenberg, A J; Kawamura, E

    2008-08-22

    In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are dominant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) stochastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases the dissipation by factors of 2-5. We conclude that the nonlinear plasma dynamics should be taken into account in order to describe quantitatively correct electron heating in asymmetric capacitive radio frequency discharges.

  5. Estimating the Total Heat Flux from the ASHES Hydrothermal Vent Field Using the Sentry Autonomous Underwater Vehicle

    Science.gov (United States)

    Crone, T. J.; Kinsey, J. C.; Mittelstaedt, E. L.

    2017-12-01

    Hydrothermal venting at mid-ocean ridges influences ocean chemistry, the thermal and chemical structure of the oceanic crust, and the evolution of unique and diverse autolithotrophically-supported ecosystems. Axially-hosted hydrothermal systems are responsible for 20-25% of the total heat flux out of Earth's interior, and likely play a large role in local as well as global biogeochemical cycles. Despite the importance of these systems, only a few studies have attempted to constrain the volume and heat flux of an entire hydrothermal vent field. In July of 2014 we used the Sentry autonomous underwater vehicle (AUV) to survey the water column over the ASHES hydrothermal vent field which is located within the caldera of Axial Seamount, an active submarine volcano located on the Juan de Fuca Ridge. To estimate the total heat and mass flux from this vent field, we equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV), an inertial measurement unit (IMU), two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, allowing us to obtain precise measurements of fluid temperature and water velocity. The survey was designed using a control volume approach in which Sentry was pre-programmed to survey a 150-m-square centered over the vent field flying a grid pattern with 5-m track line spacing followed by a survey of the perimeter. This pattern was repeated multiple times during several 10-h dives at different altitudes, including 10, 20, 40, and 60 m above the seafloor, and during one 40-h survey at an altitude of 10 m. During the 40-h survey, the pattern was repeated nine times allowing us to obtain observations over several tidal cycles. Water velocity data obtained with Sentry were corrected for platform motion and then combined with the temperature measurements to estimate heat flux. The analysis of these data will likely provide the most accurate and highest resolution heat and mass flux estimates at a seafloor hydrothermal field to date.

  6. Establishment of a Quantitative Medical Technology Evaluation System and Indicators within Medical Institutions.

    Science.gov (United States)

    Wu, Suo-Wei; Chen, Tong; Pan, Qi; Wei, Liang-Yu; Wang, Qin; Li, Chao; Song, Jing-Chen; Luo, Ji

    2018-06-05

    The development and application of medical technologies reflect the medical quality and clinical capacity of a hospital. It is also an effective approach in upgrading medical service and core competitiveness among medical institutions. This study aimed to build a quantitative medical technology evaluation system through questionnaire survey within medical institutions to perform an assessment to medical technologies more objectively and accurately, and promote the management of medical quality technologies and ensure the medical safety of various operations among the hospitals. A two-leveled quantitative medical technology evaluation system was built through a two-round questionnaire survey of chosen experts. The Delphi method was applied in identifying the structure of evaluation system and indicators. The judgment of the experts on the indicators was adopted in building the matrix so that the weight coefficient and maximum eigenvalue (λ max), consistency index (CI), and random consistency ratio (CR) could be obtained and collected. The results were verified through consistency tests, and the index weight coefficient of each indicator was conducted and calculated through analytical hierarchy process. Twenty-six experts of different medical fields were involved in the questionnaire survey, 25 of whom successfully responded to the two-round research. Altogether, 4 primary indicators (safety, effectiveness, innovativeness, and benefits), as well as 13 secondary indicators, were included in the evaluation system. The matrix is built to conduct the λ max, CI, and CR of each expert in the survey, and the index weight coefficients of primary indicators were 0.33, 0.28, 0.27, and 0.12, respectively, and the index weight coefficients of secondary indicators were conducted and calculated accordingly. As the two-round questionnaire survey of experts and statistical analysis were performed and credibility of the results was verified through consistency evaluation test, the

  7. Configuring a fuel cell based residential combined heat and power system

    Science.gov (United States)

    Ahmed, Shabbir; Papadias, Dionissios D.; Ahluwalia, Rajesh K.

    2013-11-01

    The design and performance of a fuel cell based residential combined heat and power (CHP) system operating on natural gas has been analyzed. The natural gas is first converted to a hydrogen-rich reformate in a steam reformer based fuel processor, and the hydrogen is then electrochemically oxidized in a low temperature polymer electrolyte fuel cell to generate electric power. The heat generated in the fuel cell and the available heat in the exhaust gas is recovered to meet residential needs for hot water and space heating. Two fuel processor configurations have been studied. One of the configurations was explored to quantify the effects of design and operating parameters, which include pressure, temperature, and steam-to-carbon ratio in the fuel processor, and fuel utilization in the fuel cell. The second configuration applied the lessons from the study of the first configuration to increase the CHP efficiency. Results from the two configurations allow a quantitative comparison of the design alternatives. The analyses showed that these systems can operate at electrical efficiencies of ∼46% and combined heat and power efficiencies of ∼90%.

  8. Use of Danish Heat Atlas and energy system models for exploring renewable energy scenarios

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2013-01-01

    networks in relation with significant heat saving measures that are capital intensive infrastructure investments require highly detailed decision - support tools. The Heat Atlas for Denmark provides a highly detailed database and includes heat demand and possible heat savings for about 2.5 million...... buildings with associated costs included. Energy systems modelling tools that incorporate economic, environmental, energy and engineering analysis of future energy systems are considered crucial for quantitative assessment of transitional scenarios towards future milestones, such as (i) EU 2020 goals...... of reducing greenhouse gas emissions, increasing share of renewable energy and improving energy efficiency and (ii) Denmark’s 2050 goals of covering entire energy supply by renewable energy. Optimization and simulation energy system models are currently used in Denmark. The present paper tends to provide...

  9. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): a case study from workplaces in Chennai, India

    Science.gov (United States)

    Lundgren, Karin; Kuklane, Kalev; Venugopal, Vidhya

    2014-01-01

    Background Heat stress is a major occupational problem in India that can cause adverse health effects and reduce work productivity. This paper explores this problem and its impacts in selected workplaces, including industrial, service, and agricultural sectors in Chennai, India. Design Quantitative measurements of heat stress, workload estimations, and clothing testing, and qualitative information on health impacts, productivity loss, etc., were collected. Heat strain and associated impacts on labour productivity between the seasons were assessed using the International Standard ISO 7933:2004, which applies the Predicted Heat Strain (PHS) model. Results and conclusions All workplaces surveyed had very high heat exposure in the hot season (Wet Bulb Globe Temperature x¯ =29.7), often reaching the international standard safe work values (ISO 7243:1989). Most workers had moderate to high workloads (170–220 W/m2), with some exposed to direct sun. Clothing was found to be problematic, with high insulation values in relation to the heat exposure. Females were found to be more vulnerable because of the extra insulation added from wearing a protective shirt on top of traditional clothing (0.96 clo) while working. When analysing heat strain – in terms of core temperature and dehydration – and associated productivity loss in the PHS model, the parameters showed significant impacts that affected productivity in all workplaces, apart from the laundry facility, especially during the hot season. For example, in the canteen, the core temperature limit of 38°C predicted by the model was reached in only 64 min for women. With the expected increases in temperature due to climate change, additional preventive actions have to be implemented to prevent further productivity losses and adverse health impacts. Overall, this study presented insight into using a thermo-physiological model to estimate productivity loss due to heat exposure in workplaces. This is the first time the PHS

  10. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): a case study from workplaces in Chennai, India.

    Science.gov (United States)

    Lundgren, Karin; Kuklane, Kalev; Venugopal, Vidhya

    2014-01-01

    Heat stress is a major occupational problem in India that can cause adverse health effects and reduce work productivity. This paper explores this problem and its impacts in selected workplaces, including industrial, service, and agricultural sectors in Chennai, India. Quantitative measurements of heat stress, workload estimations, and clothing testing, and qualitative information on health impacts, productivity loss, etc., were collected. Heat strain and associated impacts on labour productivity between the seasons were assessed using the International Standard ISO 7933:2004, which applies the Predicted Heat Strain (PHS) model. All workplaces surveyed had very high heat exposure in the hot season (Wet Bulb Globe Temperature =29.7), often reaching the international standard safe work values (ISO 7243:1989). Most workers had moderate to high workloads (170-220 W/m2), with some exposed to direct sun. Clothing was found to be problematic, with high insulation values in relation to the heat exposure. Females were found to be more vulnerable because of the extra insulation added from wearing a protective shirt on top of traditional clothing (0.96 clo) while working. When analysing heat strain--in terms of core temperature and dehydration--and associated productivity loss in the PHS model, the parameters showed significant impacts that affected productivity in all workplaces, apart from the laundry facility, especially during the hot season. For example, in the canteen, the core temperature limit of 38°C predicted by the model was reached in only 64 min for women. With the expected increases in temperature due to climate change, additional preventive actions have to be implemented to prevent further productivity losses and adverse health impacts. Overall, this study presented insight into using a thermo-physiological model to estimate productivity loss due to heat exposure in workplaces. This is the first time the PHS model has been used for this purpose. An exploratory

  11. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933: a case study from workplaces in Chennai, India

    Directory of Open Access Journals (Sweden)

    Karin Lundgren

    2014-11-01

    Full Text Available Background: Heat stress is a major occupational problem in India that can cause adverse health effects and reduce work productivity. This paper explores this problem and its impacts in selected workplaces, including industrial, service, and agricultural sectors in Chennai, India. Design: Quantitative measurements of heat stress, workload estimations, and clothing testing, and qualitative information on health impacts, productivity loss, etc., were collected. Heat strain and associated impacts on labour productivity between the seasons were assessed using the International Standard ISO 7933:2004, which applies the Predicted Heat Strain (PHS model. Results and conclusions: All workplaces surveyed had very high heat exposure in the hot season (Wet Bulb Globe Temperature x¯ =29.7, often reaching the international standard safe work values (ISO 7243:1989. Most workers had moderate to high workloads (170–220 W/m2, with some exposed to direct sun. Clothing was found to be problematic, with high insulation values in relation to the heat exposure. Females were found to be more vulnerable because of the extra insulation added from wearing a protective shirt on top of traditional clothing (0.96 clo while working. When analysing heat strain – in terms of core temperature and dehydration – and associated productivity loss in the PHS model, the parameters showed significant impacts that affected productivity in all workplaces, apart from the laundry facility, especially during the hot season. For example, in the canteen, the core temperature limit of 38°C predicted by the model was reached in only 64 min for women. With the expected increases in temperature due to climate change, additional preventive actions have to be implemented to prevent further productivity losses and adverse health impacts. Overall, this study presented insight into using a thermo-physiological model to estimate productivity loss due to heat exposure in workplaces. This is the

  12. Report on survey of the CO2 reducing effects of regional heat supply system for urban areas in FY 1997; 1997 nendo chosa hokokusho (toshiiki wo taisho to shita koiki netsu kyokyu system no CO2 sakugen koka ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report introduces regional heat supply systems using unused energy in Japan and overseas. Evaluation examples of their CO2 reducing effects are arranged. The introduction effects were quantitatively evaluated in some urban areas in Tokyo. For the evaluation, not only the conventional energy efficiency but also energy saving and CO2 reducing effects secondarily derived from the release of a rise of temperature in urban areas were quantified, to investigate their economy. Synthetic introduction effects were estimated. As a result of the case study, the system was confirmed to be a prospective option to make CO2 reduction more than 10% in the target district. Particularly in summer, about one-fourth of the effect was brought by the restriction of heat island phenomenon. When soil heat source type district heating and cooling system was applied to the whole redevelopment area, it was found that CO2 reducing effect of the whole Tokyo is only less than 0.1%. 40 refs., 64 figs., 43 tabs.

  13. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison

  14. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  15. Nucleate boiling heat transfer

    International Nuclear Information System (INIS)

    Saiz Jabardo, J.M.

    2009-01-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 μm and 10.5 μm ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 μm). (author)

  16. Heat pulse excitability of vestibular hair cells and afferent neurons

    Science.gov (United States)

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  17. Quantifying Livestock Heat Stress Impacts in the Sahel

    Science.gov (United States)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2014-12-01

    Livestock heat stress, especially in regions of the developing world with limited adaptive capacity, has a largely unquantified impact on food supply. Though dominated by ambient air temperature, relative humidity, wind speed, and solar radiation all affect heat stress, which can decrease livestock growth, milk production, reproduction rates, and mortality. Indices like the thermal-humidity index (THI) are used to quantify the heat stress experienced from climate variables. Livestock experience differing impacts at different index critical thresholds that are empirically determined and specific to species and breed. This lack of understanding has been highlighted in several studies with a limited knowledge of the critical thresholds of heat stress in native livestock breeds, as well as the current and future impact of heat stress,. As adaptation and mitigation strategies to climate change depend on a solid quantitative foundation, this knowledge gap has limited such efforts. To address the lack of study, we have investigated heat stress impacts in the pastoral system of Sub-Saharan West Africa. We used a stochastic weather generator to quantify both the historic and future variability of heat stress. This approach models temperature, relative humidity, and precipitation, the climate variables controlling heat stress. Incorporating large-scale climate as covariates into this framework provides a better historical fit and allows us to include future CMIP5 GCM projections to examine the climate change impacts on heat stress. Health and production data allow us to examine the influence of this variability on livestock directly, and are considered in conjunction with the confounding impacts of fodder and water access. This understanding provides useful information to decision makers looking to mitigate the impacts of climate change and can provide useful seasonal forecasts of heat stress risk. A comparison of the current and future heat stress conditions based on

  18. Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.

  19. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  20. A Quantitative Correlational Study of Teacher Preparation Program on Student Achievement

    Science.gov (United States)

    Dingman, Jacob Blackstone

    2010-01-01

    The purpose of this quantitative correlational study was to identify the relationship between the type of teacher preparation program and student performance on the seventh and eighth grade mathematics state assessments in rural school settings. The study included a survey of a convenience sample of 36 teachers from Colorado and Washington school…

  1. Quantitative Study of Emotional Intelligence and Communication Levels in Information Technology Professionals

    Science.gov (United States)

    Hendon, Michalina

    2016-01-01

    This quantitative non-experimental correlational research analyzes the relationship between emotional intelligence and communication due to the lack of this research on information technology professionals in the U.S. One hundred and eleven (111) participants completed a survey that measures both the emotional intelligence and communication…

  2. Radon in houses utilizing stone magazines for heat accumulation

    International Nuclear Information System (INIS)

    Stranden, E.

    1981-01-01

    Measurements of 222 Rn and its daughters in three solar energy houses utilizing stone magazines for heat accumulation are reported. Theoretical calculations of the radon contribution from the stone magazines seem to be in good agreement with the measured values. The survey indicated that this method for heat accumulation could give a significant increase in the indoor radon concentration if the radium concentration of the stone material is high. The theoretical considerations suggest that a radium concentration of 1 pCi/g of the stone material could give an increment of the radon concentration in the indoor air of about 1 pCi/l. during the heating season in a house with air volume of 250 m 3 and a 10 5 -kg stone magazine. (author)

  3. Changes in the properties of superalloys by long term heating

    International Nuclear Information System (INIS)

    Susukida, H.; Tsuji, I.; Kawai, H.

    1976-01-01

    A laboratory study was conducted in order to determine the effect of long term heating (max. 10000h at 850 0 and 950 0 C) on the microstructure, tensile properties, hardness and stress rupture properties of four kinds of superalloys. These superalloys are two kinds of solid solution hardened Ni-base superalloys Hastelloy X and Inconel 617 and two kinds of dispersion strengthened Ni-base superalloys TD-Ni and TD-NiCr. The result of the study can be summarized as follows: (1) Solid solution hardened superalloys: Many precipitates were observed in the grains and on the grain boundaries after 100 hours of heating, and the precipitates became coarse-grained by over 1000 hours of heating. This tendency was remarkable when they were heated at 950 0 C. With the change of their microstructure, their mechanical properties also changed, particularly their tensile ductility decreased remarkably. (2) Dispersion strengthened superalloys: Their microstructure and mechanical properties were almost unchanged by long term heating. (3) The authors proposed ''solid solution hardening value'' in order to grasp quantitatively the solid solution hardening which has been discussed by the content of each element hitherto. (auth.)

  4. Projected Heat Wave Characteristics over the Korean Peninsula During the Twenty-First Century

    Science.gov (United States)

    Shin, Jongsoo; Olson, Roman; An, Soon-Il

    2018-02-01

    Climate change is expected to increase temperatures globally, and consequently more frequent, longer, and hotter heat waves are likely to occur. Ambiguity in defining heat waves appropriately makes it difficult to compare changes in heat wave events over time. This study provides a quantitative definition of a heat wave and makes probabilistic heat wave projections for the Korean Peninsula under two global warming scenarios. Changes to heat waves under global warming are investigated using the representative concentration pathway 4.5 (RCP4.5) and 8.5 (RCP8.5) experiments from 30 coupled models participating in phase five of the Coupled Model Inter-comparison Project. Probabilistic climate projections from multi-model ensembles have been constructed using both simple and weighted averaging. Results from both methods are similar and show that heat waves will be more intense, frequent, and longer lasting. These trends are more apparent under the RCP8.5 scenario as compared to the RCP4.5 scenario. Under the RCP8.5 scenario, typical heat waves are projected to become stronger than any heat wave experienced in the recent measurement record. Furthermore, under this scenario, it cannot be ruled out that Korea will experience heat wave conditions spanning almost an entire summer before the end of the 21st century.

  5. Calibration of Heat Stress Monitor and its Measurement Uncertainty

    Science.gov (United States)

    Ekici, Can

    2017-07-01

    Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.

  6. Fiscal 1997 survey report. Survey on the innovative well drilling technology; 1997 nendo chosa hokokusho. Kakushinteki kosei kussaku gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the geothermal drilling, reduction of the cost of well drilling is an important subject for technical development. The geothermal resource development tends to be made at higher temperatures and at deeper wells. In the present drilling technology, the cost is rising with the exponentially increasing depth and temperature, and there is also occurring the technical limit. Accordingly, the survey clarified the limit of the present drilling technology/cost to point out the research trend of the drilling technology as substitute for the present one, possibilities of the introduction, and the R and D target and subjects. As to latest drilling systems abroad and in Japan, the following were surveyed to study and extract promising technologies and systems: improvement/application of drilling equipment/materials (enhancement of heat resistance of the main drilling equipment, etc., cooling effects of top drive, heat resistance verification of MWD tools, PDM, tricone bits, multi-stage cementing tools, etc.), heightening of drilling rates, trend surveys of slim hole drilling, control drilling, well maintenance/workover, and well design technology. 68 refs., 73 figs., 40 tabs.

  7. Theoretical Analysis of Heat Stress Prefabricating the Crack in Precision Cropping

    Directory of Open Access Journals (Sweden)

    Lijun Zhang

    2013-07-01

    Full Text Available The mathematical model of the metal bar in course of heat treatment is built by regarding the convective heat transfer process of the metal bar as the heat conduction boundary condition. By the theory analysis and numerical simulation methods, the theoretical expression of unsteady multidimensional temperature field for the axisymmetric model of metal bar is obtained. Temperature field distribution of bar V-shaped notch equivalent tip is given by ANSYS software. The quantitative relationship between temperature of bar inner key points and the time is determined. Through the polynomial curve fitting, the relation between the ultimate strength and the temperature is also given. Based on it, the influences of the width of the adiabatic boundary and water velocity on the critical temperature gradient of germinating heat crack in the tip of V-shaped notch are analyzed. The experimental results in precision cropping show that the expression of unsteady multidimensional temperature field is feasible in the rapid calculation of crack generation.

  8. Analysis of surface roughness effects on heat transfer in micro-conduits

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.; Kleinstreuer, C. [North Carolina State University, Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering

    2005-06-01

    Modern heat rejection systems, such as micro-heat sinks, are attractive because of their potential for high performance at small size and low weight. However, the impact of microscale effects on heat transfer have to be considered and quantitatively analyzed in order to gain physical insight and accurate Nusselt number data. The relative surface roughness (SR) was selected as a key microscale parameter, represented by a porous medium layer (PML) model. Assuming steady laminar fully developed liquid flow in microchannels and microtubes, the SR effects in terms of PML thermal conductivity ratio and Darcy number on the dimensionless temperature profile and Nusselt number were analyzed. In summary, the PML characteristics, especially the SR-number and conductivity ratio k{sub m}/k{sub f}, greatly affect the heat transfer performance where the Nusselt number can be either higher or lower than the conventional value. The PML influence is less pronounced in microtubes than in parallel-plate microchannels. (author)

  9. Theoretical simulation of the dual-heat-flux method in deep body temperature measurements.

    Science.gov (United States)

    Huang, Ming; Chen, Wenxi

    2010-01-01

    Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-heat-flux method has been shown experimentally to be competitive with the conventional zero-heat-flow method in its performance, in terms of measurement accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-heat-flux probe in deep body temperature measurements to validate the fundamental principles of the dual-heat-flux method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-heat-flux probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-heat-flux probe. Insights in improving the performance of the dual-heat-flux method were discussed for further studies of dual-heat-flux probes, taking into account structural and geometric considerations.

  10. The influence of multifamily apartment building occupants on energy and water consumption - the preliminary results of monitoring and survey campaign

    Science.gov (United States)

    Bandurski, Karol; Hamerla, Miłosz; Szulc, Jowita; Koczyk, Halina

    2017-11-01

    Occupants' attitudes and behavior have a significant influence on energy and water consumption in buildings. To provide more robust solutions, energy efficient applications should consider occupant-building interaction. However, there is a question to be answered: which aspects of lodging and occupant behavior cause the most substantial increase in consumption of these mediums. Thus, the aim of this study is to investigate the influence of household characteristics and occupants' behavior on level and variability in utilities consumption. The study uses the results of a measuring campaign and the questionnaire. The measuring campaign was carried out to monitor the consumption of energy used for space heating and domestic hot water, as well as electricity, gas and water. The questionnaire specifically focused on household characteristics and occupants' behavior. The research was carried out in four apartment buildings, all consisting of more than 100 apartments. Data from approximately 100 households was gathered and analyzed; the survey's respond rate was almost 50%. A quantitative analysis of the results confirms the assumption that both household characteristics and occupants' behavior (e.g. the use of heating control) are important factors for utilities consumption. Further work with the obtained data is planned in terms of including of greater number of apartments, assessment of ventilation effectiveness, as well as analysis of heat transfer between the apartments.

  11. Thermal Efficiency of Cogeneration Units with Multi-Stage Reheating for Russian Municipal Heating Systems

    Directory of Open Access Journals (Sweden)

    Evgeny Lisin

    2016-04-01

    Full Text Available This paper explores the layout of an optimum process for supplying heat to Russian municipal heating systems operating in a market environment. We analyze and compare the standard cogeneration unit design with two-stage reheating of service water coming from controlled extraction locations and layouts that employ three in-line reheaters with heat the supply controlled by a rotary diaphragm and qualitative/quantitative methods (so-called “uncontrolled extraction”. Cogeneration unit designs are benchmarked in terms of their thermal efficiency expressed as a fuel consumption rate. The specific fuel consumption rate on electricity production is viewed as a key parameter of thermal efficiency.

  12. Connecting people and place: a new framework for reducing urban vulnerability to extreme heat

    International Nuclear Information System (INIS)

    Wilhelmi, Olga V; Hayden, Mary H

    2010-01-01

    Climate change is predicted to increase the intensity and negative impacts of urban heat events, prompting the need to develop preparedness and adaptation strategies that reduce societal vulnerability to extreme heat. Analysis of societal vulnerability to extreme heat events requires an interdisciplinary approach that includes information about weather and climate, the natural and built environment, social processes and characteristics, interactions with stakeholders, and an assessment of community vulnerability at a local level. In this letter, we explore the relationships between people and places, in the context of urban heat stress, and present a new research framework for a multi-faceted, top-down and bottom-up analysis of local-level vulnerability to extreme heat. This framework aims to better represent societal vulnerability through the integration of quantitative and qualitative data that go beyond aggregate demographic information. We discuss how different elements of the framework help to focus attention and resources on more targeted health interventions, heat hazard mitigation and climate adaptation strategies.

  13. Post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.; Condie, K.G.

    1980-01-01

    This paper describes quantitatively new mechanisms in the post-CHF regime which provide understanding and predictive capability for several current two-phase forced convective heat transfer problems. These mechanisms are important in predicting rod temperature turnaround and quenching during the reflood phase of either a hypothetical loss-of-coolant accident (LOCA) or the FLECHT and Semiscale experiments. The mechanisms are also important to the blowdown phase of a LOCA or the recent Loss-of-Fluid Test (LOFT) experiments L2-2 and L2-3, which were 200% cold leg break transients. These LOFT experiments experienced total core quenching in the early part of the blowdown phase at high (1000 psia) pressures. The mechanisms are also important to certain pressurized water reactor (PWR) operational transients where the reactor may operate in the post-CHF regime for short periods of time. Accurate prediction of the post-CHF heat transfer including core quench during these transients is of prime importance to limit maximum cladding temperatures and prevent cladding deformation

  14. On the importance of specific heats as regards efficiency increases for highly dilute IC engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2014-01-01

    Highlights: • Importance of specific heats towards increasing engine efficiency was quantified. • Decreases of specific heats contribute 3.5–6.3% (abs) to the efficiency. • Dilute engines benefit from decreases of specific heats due to lower temperatures. - Abstract: Engineering and scientific efforts continue with the development of advanced, IC engines using highly dilute mixtures, and relatively high compression ratios. Such engines are known to provide opportunities for low emissions as well as high efficiencies. The main features of these engines include higher compression ratios, lean operation, use of EGR, and shorter burn durations. First, this study reviews the quantitative contributions of each of these features as determined by an engine cycle simulation. Second, this study provides the quantitative contributions to the increased efficiency in terms of fundamental thermodynamic considerations. An automotive engine operated at 2000 rpm was selected for this study. For the conditions examined, the net indicated thermal efficiency increased from 37.0% (conventional engine) to 53.9% (high efficiency engine) – for an incremental increase of 16.9% (absolute). The contribution of increases of the ratio of specific heats towards the final thermal efficiency is quantified. This aspect has been well known, but has not been quantified for actual engines. For the various conditions examined, 21–35% of the total efficiency improvement was estimated to be due to the increase of the ratio of specific heats

  15. A quantitative experiment on the fountain effect in superfluid helium

    Science.gov (United States)

    Amigó, M. L.; Herrera, T.; Neñer, L.; Peralta Gavensky, L.; Turco, F.; Luzuriaga, J.

    2017-09-01

    Superfluid helium, a state of matter existing at low temperatures, shows many remarkable properties. One example is the so called fountain effect, where a heater can produce a jet of helium. This converts heat into mechanical motion; a machine with no moving parts, but working only below 2 K. Allen and Jones first demonstrated the effect in 1938, but their work was basically qualitative. We now present data of a quantitative version of the experiment. We have measured the heat supplied, the temperature and the height of the jet produced. We also develop equations, based on the two-fluid model of superfluid helium, that give a satisfactory fit to the data. The experiment has been performed by advanced undergraduate students in our home institution, and illustrates in a vivid way some of the striking properties of the superfluid state.

  16. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  17. Advanced regenerative heat recovery system

    Science.gov (United States)

    Prasad, A.; Jasti, J. K.

    1982-02-01

    A regenerative heat recovery system was designed and fabricated to deliver 1500 scfm preheated air to a maximum temperature of 1600 F. Since this system is operating at 2000 F, the internal parts were designed to be fabricated with ceramic materials. This system is also designed to be adaptable to an internal metallic structure to operate in the range of 1100 to 1500 F. A test facility was designed and fabricated to test this system. The test facility is equipped to impose a pressure differential of up to 27 inches of water column in between preheated air and flue gas lines for checking possible leakage through the seals. The preliminary tests conducted on the advanced regenerative heat recovery system indicate the thermal effectiveness in the range of 60% to 70%. Bench scale studies were conducted on various ceramic and gasket materials to identify the proper material to be used in high temperature applications. A market survey was conducted to identify the application areas for this heat recovery system. A cost/benefit analysis showed a payback period of less than one and a half years.

  18. Bibliography on augmentation of convective heat and mass transfer-II

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.; Webb, R.L.

    1983-12-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performance evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.

  19. Mentoring Matters: An Exploratory Survey of Educational Leadership Doctoral Students' Perspectives

    Science.gov (United States)

    Welton, Anjalé D.; Mansfield, Katherine Cumings; Lee, Pei-Ling

    2014-01-01

    There is limited research on quantitative differences between men and women's experiences in doctoral programs. We aim to fill that gap by sharing findings from a web-based exploratory survey of perceived gender differences on quality mentoring in educational leadership doctoral programs. According to survey results, there is limited…

  20. The blowdown, refill and reflood phase during a LOCA. Survey of the main physical phenomena

    International Nuclear Information System (INIS)

    Reocreux, M.

    1980-05-01

    In this paper, the main physical phenomena occuring during a LOCA are reviewed. They are presented in a chronological order. For each phenomena, a detailed physical description is given followed by the review of the general modelling problems. For some of these phenomena, modelling details are given for critical flow, for two-phase flow and heat transfer, for critical heat flux and post critical heat flux heat transfer, for reflood and rewet heat transfer and in the survey on LOCA computation codes

  1. Genome-Wide Association Mapping for Identification of Quantitative Trait Loci for Rectal Temperature during Heat Stress in Holstein Cattle

    Science.gov (United States)

    Dikmen, Serdal; Cole, John B.; Null, Daniel J.; Hansen, Peter J.

    2013-01-01

    Heat stress compromises production, fertility, and health of dairy cattle. One mitigation strategy is to select individuals that are genetically resistant to heat stress. Most of the negative effects of heat stress on animal performance are a consequence of either physiological adaptations to regulate body temperature or adverse consequences of failure to regulate body temperature. Thus, selection for regulation of body temperature during heat stress could increase thermotolerance. The objective was to perform a genome-wide association study (GWAS) for rectal temperature (RT) during heat stress in lactating Holstein cows and identify SNPs associated with genes that have large effects on RT. Records on afternoon RT where the temperature-humidity index was ≥78.2 were obtained from 4,447 cows sired by 220 bulls, resulting in 1,440 useable genotypes from the Illumina BovineSNP50 BeadChip with 39,759 SNP. For GWAS, 2, 3, 4, 5, and 10 adjacent SNP were averaged to identify consensus genomic regions associated with RT. The largest proportion of SNP variance (0.07 to 0.44%) was explained by markers flanking the region between 28,877,547 and 28,907,154 bp on Bos taurus autosome (BTA) 24. That region is flanked by U1 (28,822,883 to 28,823,043) and NCAD (28,992,666 to 29,241,119). In addition, the SNP at 58,500,249 bp on BTA 16 explained 0.08% and 0.11% of the SNP variance for 2- and 3-SNP analyses, respectively. That contig includes SNORA19, RFWD2 and SCARNA3. Other SNPs associated with RT were located on BTA 16 (close to CEP170 and PLD5), BTA 5 (near SLCO1C1 and PDE3A), BTA 4 (near KBTBD2 and LSM5), and BTA 26 (located in GOT1, a gene implicated in protection from cellular stress). In conclusion, there are QTL for RT in heat-stressed dairy cattle. These SNPs could prove useful in genetic selection and for identification of genes involved in physiological responses to heat stress. PMID:23935954

  2. On estimation of reliability for pipe lines of heat power plants under cyclic loading

    International Nuclear Information System (INIS)

    Verezemskij, V.G.

    1986-01-01

    One of the possible methods to obtain a quantitative estimate of the reliability for pipe lines of the welded heat power plants under cyclic loading due to heating-cooling and due to vibration is considered. Reliability estimate is carried out for a common case of loading by simultaneous cycles with different amplitudes and loading asymmetry. It is shown that scattering of the breaking number of cycles for the metal of welds may perceptibly decrease reliability of the welded pipe line

  3. Survey of Thermal-Fluids Evaluation and Confirmatory Experimental Validation Requirements of Accident Tolerant Cladding Concepts with Focus on Boiling Heat Transfer Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ali, Amir [Univ. of New Mexico, Albuquerque, NM (United States); Liu, Maolong [Univ. of New Mexico, Albuquerque, NM (United States); Blandford, Edward [Univ. of New Mexico, Albuquerque, NM (United States)

    2016-06-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation and confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.

  4. Adoption of innovative heating systems. Needs and attitudes of Swedish homeowners

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, K; Gustavsson, L [Ecotechnology, Mid Sweden University, 831 25 Oestersund (Sweden)

    2009-11-15

    Questionnaire surveys of Swedish homeowners of detached houses were carried out in 2004 and 2007 to understand their needs and attitudes towards attributes of innovative heating systems (IHSs) comprised of a bedrock heat pump, district heating, or a wood pellet boiler. In each occasion 1,500 homeowners were randomly selected. The response rate was 42% in 2004 and 48% in 2007. Results showed that the majority of the respondents were satisfied with their existing heating system and did not intend to install new systems. Economic factors and functional reliability were the most important factors in the respondents' choices of heating system, while environmental factors were of lower importance. Among the IHSs, respondents had the most favorable attitude towards bedrock heat pumps followed by district heating and pellet boilers. But the attitude was more favorable towards electric boilers than for pellet boilers. The least favorable attitude was towards oil boilers. Between 2004 and 2007, there was a positive change in respondents' attitude towards IHSs and electric boilers, and a negative change in attitude towards resistance heaters and oil boilers.

  5. Studies on the key aroma compounds in raw (unheated) and heated Japanese soy sauce.

    Science.gov (United States)

    Kaneko, Shu; Kumazawa, Kenji; Nishimura, Osamu

    2013-04-10

    An investigation using the aroma extract dilution analysis (AEDA) technique of the aroma concentrate from a raw Japanese soy sauce and the heated soy sauce revealed 40 key aroma compounds including 7 newly identified compounds. Among them, 5(or 2)-ethyl-4-hydroxy-2(or 5)-methyl-3(2H)-furanone and 3-hydroxy-4,5-dimethyl-2(5H)-furanone exhibited the highest flavor dilution (FD) factor of 2048, followed by 3-(methylthio)propanal, 4-ethyl-2-methoxyphenol, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone having FD factors from 128 to 512 in the raw soy sauce. Furthermore, comparative AEDAs, a quantitative analysis, and a sensory analysis demonstrated that whereas most of the key aroma compounds in the raw soy sauce were common in the heated soy sauce, some of the Strecker aldehydes and 4-vinylphenols contributed less to the raw soy sauce aroma. The model decarboxylation reactions of the phenolic acids during heating of the raw soy sauce revealed that although all reactions resulted in low yields, the hydroxycinnamic acid derivatives were much more reactive than the hydroxybenzoic acid derivatives due to the stable reaction intermediates. Besides the quantitative analyses of the soy sauces, the estimation of the reaction yields of the phenolic compounds in the heated soy sauce revealed that although only the 4-vinylphenols increased during heating of the raw soy sauce, they might not mainly be formed as decarboxylation products from the corresponding hydroxycinnamic acids but from the other proposed precursors, such as lignin, shakuchirin, and esters with arabinoxylan.

  6. Fluid mechanics and heat transfer spirally fluted tubing

    Science.gov (United States)

    Larue, J. C.; Libby, P. A.; Yampolsky, J. S.

    1981-08-01

    The objective of this program is to develop both a qualitative and a quantitative understanding of the fluid mechanics and heat transfer mechanisms that underlie the measured performance of the spirally fluted tubes under development at General Atomic. The reason for the interest in the spirally fluted tubes is that results to date have indicated three advantages to this tubing concept: The fabrication technique of rolling flutes on strip and subsequently spiralling and simultaneously welding the strip to form tubing results in low fabrication costs, approximately equal to those of commercially welded tubing. The heat transfer coefficient is increased without a concomitant increase of the friction coefficient on the inside of the tube. In single-phase axial flow of water, the helical flutes continuously induce rotation of the flow both within and without the tube as a result of the effect of curvature. An increase in condensation heat transfer on the outside of the tube is achieved. In a vertical orientation with fluid condensing on the outside of the helically fluted tube, the flutes provide a channel for draining the condensed fluid.

  7. Development of two tier test to assess conceptual understanding in heat and temperature

    Science.gov (United States)

    Winarti; Cari; Suparmi; Sunarno, Widha; Istiyono, Edi

    2017-01-01

    Heat and temperature is a concept that has been learnt from primary school to undergraduate levels. One problem about heat and temperature is that they are presented abstractly, theoretical concept. A student conceptual frameworks develop from their daily experiences. The purpose of this research was to develop a two-tier test of heat and temperature concept and measure conceptual understanding of heat and temperature of the student. This study consist of two method is qualitative and quantitative method. The two-tier test was developed using procedures defined by Borg and Gall. The two-tier test consisted of 20 question and was tested for 137 students for collecting data. The result of the study showed that the two-tier test was effective in determining the students’ conceptual understanding and also it might be used as an alternative for assessment and evaluation of students’ achievement

  8. Drivers and barriers to heat stress resilience.

    Science.gov (United States)

    Hatvani-Kovacs, Gertrud; Belusko, Martin; Skinner, Natalie; Pockett, John; Boland, John

    2016-11-15

    Heatwaves are the most dangerous natural hazard to health in Australia. The frequency and intensity of heatwaves will increase due to climate change and urban heat island effects in cities, aggravating the negative impacts of heatwaves. Two approaches exist to develop population heat stress resilience. Firstly, the most vulnerable social groups can be identified and public health services can prepare for the increased morbidity. Secondly, the population level of adaptation and the heat stress resistance of the built environment can be increased. The evaluation of these measures and their efficiencies has been fragmented across research disciplines. This study explored the relationships between the elements of heat stress resilience and their potential demographic and housing drivers and barriers. The responses of a representative online survey (N=393) about heat stress resilience at home and work from Adelaide, South Australia were analysed. The empirical findings demonstrate that heat stress resistant buildings increased adaptation capacity and decreased the number of health problems. Air-conditioning increased dependence upon it, limited passive adaptation and only people living in homes with whole-house air-conditioning had less health problems during heatwaves. Tenants and respondents with pre-existing health conditions were the most vulnerable, particularly as those with health conditions were not aware of their vulnerability. The introduction of an Energy Performance Certificate is proposed and discussed as an effective incentive to increase the heat stress resistance of and the general knowledge about the built environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Wheat multiple synthetic derivatives: a new source for heat stress tolerance adaptive traits

    Science.gov (United States)

    Elbashir, Awad Ahmed Elawad; Gorafi, Yasir Serag Alnor; Tahir, Izzat Sidahmed Ali; Kim, June-Sik; Tsujimoto, Hisashi

    2017-01-01

    Heat stress is detrimental to wheat (Triticum aestivum L.) productivity. In this study, we aimed to select heat-tolerant plants from a multiple synthetic derivatives (MSD) population and evaluate their agronomic and physiological traits. We selected six tolerant plants from the population with the background of the cultivar ‘Norin 61’ (N61) and established six MNH (MSD population of N61 selected as heat stress-tolerant) lines. We grew these lines with N61 in the field and growth chamber. In the field, we used optimum and late sowings to ensure plant exposure to heat. In the growth chamber, in addition to N61, we used the heat-tolerant cultivars ‘Gelenson’ and ‘Bacanora’. We confirmed that MNH2 and MNH5 lines acquired heat tolerance. These lines had higher photosynthesis and stomata conductance and exhibited no reduction in grain yield and biomass under heat stress compared to N61. We noticed that N61 had relatively good adaptability to heat stress. Our results indicate that the MSD population includes the diversity of Aegilops tauschii and is a promising resource to uncover useful quantitative traits derived from this wild species. Selected lines could be useful for heat stress tolerance breeding. PMID:28744178

  10. Qualitative and Quantitative Data on the Use of the Internet for Archaeological Information

    Directory of Open Access Journals (Sweden)

    Lorna-Jane Richardson

    2015-04-01

    Full Text Available These survey results are from an online survey of 577 UK-based archaeological volunteers, professional archaeologists and archaeological organisations. These data cover a variety of topics related to how and why people access the Internet for information about archaeology, including demographic information, activity relating to accessing information on archaeological topics, archaeological sharing and networking and the use of mobile phone apps and QR codes for public engagement. There is wide scope for further qualitative and quantitative analysis of these data.

  11. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  12. The keys to success in marketing small heating reactors

    International Nuclear Information System (INIS)

    McDougall, D.S.; Lynch, G.F.

    1988-01-01

    The success of the SLOWPOKE Energy System requires acceptance of the SLOWPOKE reactor within the community where the reactor's energy is to be used. Public acceptance will be obtained once the public is convinced that this nuclear heat source is needed, safe and of economic benefit to the community. The need for a new application of nuclear energy is described and the ability of small reactors used for district heating to play that role is shown. The safety of the reactor is being demonstrated with the establishment of the SLOWPOKE Demonstration Reactor by Atomic Energy of Canada Limited and with open, candid discussion with the involved community. Economic arguments are reviewed and include discussion of quantitative and qualitative issues. (orig.)

  13. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  14. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  15. Induction heating in in-line strip production process

    International Nuclear Information System (INIS)

    Costa, P.; Santinelli, M.

    1995-05-01

    ISP (In-line Strip Production), a continuous process for steel strip production, has recently been set in an italian innovative plant, where ecological impact and power requirements are lighter than usual. This report describes the studies performed by ENEA (Italian Agency for New Technologies, Energy and the Environment), while a prototype reheating facility was arranged by Acciaieria ISP in Cremona (Italy). The authors, after a study of the prototype electromagnetic field, calculate the heating rate, with the thermal network method. Then they detect, with a 1-D-FEM, the heat diffusion through the strip cross section. Afterward, since the heat distribution depends on the eddy current density one, which is given by the magnetic field distribution, the authors, with a 3-D-FEM, carry out a coupled, electromagnetic and thermal, analysis in time domain. The strip temperature map is established by the balance between skin depth heating and surface cooling: a thermal analysis, performed with a moving 2-D-FEM, take into account the effects of the different heating and cooling situations, originated by the strip moving at a speed of 6m/min through four consecutive reheating facilities. The temperatures of a strip sample heated by the prototype have been monitored, acquired by a computer and related with the simulation results. The little difference between experiment and simulation assessed the qualitative and quantitative validity of this analysis, that has come out to be a tool, useful to evaluate the effects of possible improvements to the ISP process

  16. Quantitative patterns in drone wars

    Science.gov (United States)

    Garcia-Bernardo, Javier; Dodds, Peter Sheridan; Johnson, Neil F.

    2016-02-01

    Attacks by drones (i.e., unmanned combat air vehicles) continue to generate heated political and ethical debates. Here we examine the quantitative nature of drone attacks, focusing on how their intensity and frequency compare with that of other forms of human conflict. Instead of the power-law distribution found recently for insurgent and terrorist attacks, the severity of attacks is more akin to lognormal and exponential distributions, suggesting that the dynamics underlying drone attacks lie beyond these other forms of human conflict. We find that the pattern in the timing of attacks is consistent with one side having almost complete control, an important if expected result. We show that these novel features can be reproduced and understood using a generative mathematical model in which resource allocation to the dominant side is regulated through a feedback loop.

  17. Global environmental benefits of industrial heat pumps (fiscal 1993); 1993 nendo koon heat pumping gijutsu ni yoru chikyu ondanka keigen koka ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    An investigational study was conducted aiming at making a quantitative grasp of effects of the spread of industrial heat pumps on energy conservation and greenhouse gas reduction and at promoting the spread. Finally, the following eight countries joined this international joint research: Canada, France, Japan, Holland, Norway, Sweden, the U.K. and the U.S. Each country share the work and expenses for the research with each other. Japan made investigational researches on the application of heat pumps to processes of the chemical industry, oil refining industry, food industry, paper/pulp industry, and dyeing/weaving industry, and on the effects of greenhouse gas reduction. As procedures taken, values up to 2010 were estimated of energy prices in each country, energy supply/demand, rates of the heat source configuration for electric power supply, etc., the heat flow of the above-mentioned process was made clear, and analyses were conducted of annual profits, energy consumption, and depreciation period in the case of adopting heat pumps. Moreover, the energy conservation amount and greenhouse effect gas reduction amount were estimated based on the result of the analyses. 69 figs., 196 tabs.

  18. Experiments of Pool Boiling Performance (Boiling Heat Transfer and Critical Heat Flux) on Designed Micro-Structures

    International Nuclear Information System (INIS)

    Kim, Seol Ha; Kang, Jun Young; Lee, Gi Chol; Kiyofumia, Moriyama; Kim, Moo Hwan; Park, Hyun Sun

    2015-01-01

    In general, the evaluation of the boiling performance mainly focuses on two physical parameters: boiling heat transfer (BHT) and critical heat flux (CHF). In the nuclear power plants, both BHT and CHF contribute the nuclear system efficiency and safety, respectively. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on Pin-fin effect analysis. In terms of CHF, critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on the roughness ratio. The extended heat transfer area contributes the boiling heat transfer increase on the structured surface, and its quantitative analysis has been performed. In terms of CHF, the critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. We suggested a capillary limit to CHF delay for modeling capillary induced liquid inflow through microstructured surfaces. The critical size of the capillary limit on the prepared structured surface, determined by a model, could be reasonable explanation points for the experimental results (optimal size for CHF delay). The present experimental results also showed clearly the critical size (10 - 20 μm) for CHF delay, predicted by capillary limit analysis. This study provides fundamental insight into BHT and CHF enhancement of structured surfaces, and an optimal design guide for the required CHF and boiling heat-transfer performance. Finally, this study can contribute the basic understanding of the boiling on designed microstructure surface, and it also suggest the optimal micro scaled structured surface of boiling

  19. A three-tier phenotyping approach for hunting QTLs related to heat tolerance in bread wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Rosenqvist, Eva; Ottosen, Carl-Otto

    2014-01-01

    In the global climate change scenario, heatstress together with other abiotic stresses will remain an importantdeterminant of future food security. Wheat (Triticum aestivum L.) is the third most important crop, feeding about one third of the world population. Being a crop of temperate climate......, wheat is sensitive to heat stress, particularly at the reproductive phase. Heat tolerance is a complex trait. In the present study, a combined approach of physiological phenotyping and quantitative genetics was used to dissect the complex nature of heat tolerance into photosynthesis related traits......- with a top-to-bottom (forward) approach: Tier 1: Phenotyping: As a starting point,the quantification of heat tolerance was done by the chlorophyll fluorescence parameter, Fv/Fm, as a measure of maximum quantum efficiency of PSII photochemistry after heat stress treatment (40°C for 72h). This way...

  20. Uncertainties in fission-product decay-heat calculations

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)

    1997-03-01

    The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)

  1. Ethnobiological survey of plants and animals used for the treatment ...

    African Journals Online (AJOL)

    Ethnobiological survey of plants and animals used for the treatment of acute respiratory ... African Journal of Traditional, Complementary and Alternative Medicines ... Methods: It is a descriptive exploratory study with a quantitative approach, ...

  2. Danish heat atlas as a support tool for energy system models

    International Nuclear Information System (INIS)

    Petrovic, Stefan N.; Karlsson, Kenneth B.

    2014-01-01

    Highlights: • The GIS method for calculating costs of district heating expansion is presented. • High socio-economic potential for district heating is identified within urban areas. • The method for coupling a heat atlas and TIMES optimization model is proposed. • Presented methods can be used for any geographical region worldwide. - Abstract: In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to the energy conservation measures on the demand side and the energy efficiency improvements on the supply side. Nowadays, the capital intensive infrastructure investments, such as the expansion of district heating networks and the introduction of significant heat saving measures require highly detailed decision-support tool. A Danish heat atlas provides highly detailed database with extensive information about more than 2.5 million buildings in Denmark. Energy system analysis tools incorporate environmental, economic, energy and engineering analysis of future energy systems and are considered crucial for the quantitative assessment of transitional scenarios towards future milestones, such as EU 2020 goals and Denmark’s goal of achieving fossil free society after 2050. The present paper shows how a Danish heat atlas can be used for providing inputs to energy system models, especially related to the analysis of heat saving measures within building stock and expansion of district heating networks. As a result, marginal cost curves are created, approximated and prepared for the use in optimization energy system model. Moreover, it is concluded that heat atlas can contribute as a tool for data storage and visualisation of results

  3. Global heating distributions for January 1979 calculated from GLA assimilated and simulated model-based datasets

    Science.gov (United States)

    Schaack, Todd K.; Lenzen, Allen J.; Johnson, Donald R.

    1991-01-01

    This study surveys the large-scale distribution of heating for January 1979 obtained from five sources of information. Through intercomparison of these distributions, with emphasis on satellite-derived information, an investigation is conducted into the global distribution of atmospheric heating and the impact of observations on the diagnostic estimates of heating derived from assimilated datasets. The results indicate a substantial impact of satellite information on diagnostic estimates of heating in regions where there is a scarcity of conventional observations. The addition of satellite data provides information on the atmosphere's temperature and wind structure that is important for estimation of the global distribution of heating and energy exchange.

  4. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  5. Future heat supply of our cities. Heating by waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  6. Latent heat transport and microlayer evaporation in nucleate boiling

    International Nuclear Information System (INIS)

    Jawurek, H.H.

    1977-08-01

    Part 1 of this work provides a broad overview and, where possible, a quantitative assessment of the complex physical processes which together constitute the mechanism of nucleate boiling heat transfer. It is shown that under a wide range of conditions the primary surface-to-liquid heat flows within an area of bubble influence are so redistributed as to manifest themselves predominantly as latent heat transport, that is, as vaporisation into attached bubbles. Part 2 deals in greater detail with one of the component processes of latent heat transport, namely microlayer evaporation. A literature review reveals the need for synchronised records of microlayer geometry versus time and of normal bubble growth and departure. An apparatus developed to provide such records is described. High-speed cine interference photography from beneath and through a transparent heating surface provided details of microlayer geometry and an image reflection system synchronised these records with the bubble profile views. Results are given for methanol and ethanol boiling at sub-atmospheric pressures and at various heat fluxes and bulk subcoolings. In all cases it is found that microlayers were of sub-micron thickness, that microlayer thinning was restricted to the inner layer edge (with the thickness elsewhere remaining constant or increasing with time) and that the contribution of this visible evaporation to the total vapour flow into bubbles was negligible. The observation of thickening towards the outer microlayer edge, however, demonstrates that a liquid replenishment flow occurred simultaneously with the evaporation process

  7. Agent-based modelling of heating system adoption in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Sopha, Bertha Maya; Kloeckner, Christian A.; Hertwich, Edgar G.

    2010-07-01

    Full text: This paper introduces agent-based modelling as a methodological approach to understand the effect of decision making mechanism on the adoption of heating systems in Norway. The model is used as an experimental/learning tool to design possible interventions, not for prediction. The intended users of the model are therefore policy designers. Primary heating system adoptions of electric heating, heat pump and wood pellet heating were selected. Random topology was chosen to represent social network among households. Agents were households with certain location, number of peers, current adopted heating system, employed decision strategy, and degree of social influence in decision making. The overall framework of decision-making integrated theories from different disciplines; customer behavior theory, behavioral economics, theory of planned behavior, and diffusion of innovation, in order to capture possible decision making processes in households. A mail survey of 270 Norwegian households conducted in 2008 was designed specifically for acquiring data for the simulation. The model represents real geographic area of households and simulates the overall fraction of adopted heating system under study. The model was calibrated with historical data from Statistics Norway (SSB). Interventions with respects to total cost, norms, indoor air quality, reliability, supply security, required work, could be explored using the model. For instance, the model demonstrates that a considerable total cost (investment and operating cost) increase of electric heating and heat pump, rather than a reduction of wood pellet heating's total cost, are required to initiate and speed up wood pellet adoption. (Author)

  8. A Study of Student Completion Strategies in a Likert-Type Course Evaluation Survey

    Science.gov (United States)

    Gee, Nick

    2017-01-01

    This article investigates the motivations and strategies employed by respondents to a Likert-style course evaluation at a UK university. These attitude surveys, generating large amounts of quantitative data, are commonly used in quality assurance procedures across UK higher education institutions. Similar student survey results are now scrutinised…

  9. The health effects of climate change: a survey of recent quantitative research.

    Science.gov (United States)

    Grasso, Margherita; Manera, Matteo; Chiabai, Aline; Markandya, Anil

    2012-05-01

    In recent years there has been a large scientific and public debate on climate change and its direct as well as indirect effects on human health. In particular, a large amount of research on the effects of climate changes on human health has addressed two fundamental questions. First, can historical data be of some help in revealing how short-run or long-run climate variations affect the occurrence of infectious diseases? Second, is it possible to build more accurate quantitative models which are capable of predicting the future effects of different climate conditions on the transmissibility of particularly dangerous infectious diseases? The primary goal of this paper is to review the most relevant contributions which have directly tackled those questions, both with respect to the effects of climate changes on the diffusion of non-infectious and infectious diseases, with malaria as a case study. Specific attention will be drawn on the methodological aspects of each study, which will be classified according to the type of quantitative model considered, namely time series models, panel data and spatial models, and non-statistical approaches. Since many different disciplines and approaches are involved, a broader view is necessary in order to provide a better understanding of the interactions between climate and health. In this respect, our paper also presents a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; the establishment of Early Warning Systems for infectious diseases.

  10. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan

    2016-01-01

    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  11. Combining qualitative and quantitative research approaches in understanding pain

    DEFF Research Database (Denmark)

    Moore, R.

    1996-01-01

    findings. Furthermore, with specific scientific assumptions, combining methods can aid in estimating minimum sample size required for theoretical generalizations from even a qualitative sample. This is based on measures of how accurately subjects describe a given social phenomenon and degree of agreement......There are many research issues about validity and especially reliability in regards to qualitative research results. Generalizability is brought into question to any population base from which a relatively small number of informants are drawn. Sensitivity to new discoveries is an advantage...... of qualitative research while the advantage of quantified survey data is their reliability. This paper argues for combining qualitative and quantitative methods to improve concurrent validity of results by triangulating interviews, observations or focus group data with short surveys for validation of main...

  12. Decay heat removal for the liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Zemanick, P.P.; Brown, N.W.

    1975-01-01

    The functional and reliability requirements of the decay heat removal systems are described. The reliability requirement and its rationale as adequate assurance that public health and safety are safeguarded are presented. The means by which the reliability of the decay heat removal systems are established to meet their requirement are identified. The heat removal systems and their operating characteristics are described. The discussion includes the overflow heat removal service and its role in decay heat removal if needed. The details of the systems are described to demonstrate the elements of redundancy and diversity in the systems design. The quantitative reliability assessment is presented, including the reliability model, the most important assumptions on which the analysis is based, sources of failure data, and the preliminary numerical results. Finally, the qualitative analyses and administrative controls will be discussed which ensure reliability attainment in design, fabrication, and operation, including minimization of common mode failures. A component test program is planned to provide reliability data on selected critical heat removal system equipment. This test plan is described including a definition of the test parameters of greatest interest and the motivation for the test article selection. A long range plan is also in place to collect plant operational data and the broad outlines of this plan are described. A statement of the high reliability of the Clinch River Breeder reactor Plant decay heat removal systems and a summary of the supporting arguments is presented. (U.S.)

  13. Decay Heat Removal for the Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zemanick, P. P.; Brown, N. W.

    1975-10-15

    The functional and reliability requirements of the decay heat removal systems are described. The reliability requirement and its rationale as adequate assurance that public health and safety are safeguarded are presented. The means by which the reliability of the decay heat removal systems are established to meet their requirement are identified. The heat removal systems and their operating characteristics are described. The discussion includes the overflow heat removal service and its role in decay heat removal if needed. The details of the systems are described to demonstrate the elements of redundancy and diversity in the systems design. The quantitative reliability assessment is presented, including the reliability model, the most important assumptions on which the analysis is based, sources of failure data, and the preliminary numerical results. Finally, the qualitative analyses and administrative controls will be discussed which ensure reliability attainment in design, fabrication, and operation, including minimization of common mode failures. A component test program is planned to provide reliability data on selected critical heat removal system equipment. This test plan is described including a definition of the test parameters of greatest interest and the motivation for the test article selection. A long range plan is also in place to collect plant operational data and the broad outlines of this plan are described. The paper closes with a statement of the high reliability of the Clinch River Breeder Reactor Plant decay heat removal systems and a summary of the supporting arguments. (author)

  14. PURCHASING BEHAVIOUR RELATED TO HEATING SYSTEMS IN GERMANY WITH SPECIAL CONSIDERATION OF CONSUMERS' ECOLOGICAL ATTITUDES

    OpenAIRE

    Decker, Thomas; Zapilko, Marina; Menrad, Klaus

    2010-01-01

    The decision for buying a heating system is a long-term one, as many different aspects have an influence on this choice which were analyzed in a Germany-wide, written survey. The respondents (only owners of a private house) had to answer questions about their attitude towards e.g. economic, convenience or ecological aspects related to heating systems and the respective combustibles. Using a multinomial logistic regression model the choice of the heating system is mainly explained by ecologica...

  15. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  16. Heat transfer characteristics evaluation of heat exchangers of mock-up test facility with full-scale reaction tube for HTTR hydrogen production system (Contract research)

    International Nuclear Information System (INIS)

    Shimizu, Akira; Ohashi, Hirofumi; Kato, Michio; Hayashi, Koji; Aita, Hideki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Morisaki, Norihiro; Sakaki, Akihiro; Maeda, Yukimasa; Sato, Hiroyuki; Inagaki, Yoshiyuki; Hanawa, Hiromi; Fujisaki, Katsuo; Yonekawa, Hideo

    2005-06-01

    Connection of hydrogen production system by steam reforming of methane to the High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) has been surveyed until now. Mock-up test facility of this steam reforming system with full-scale reaction tube was constructed in FY 2001 and hydrogen of 120 Nm 3 /h was successfully produced in overall performance test. Totally 7 times operational tests were performed from March 2002 to December 2004. A lot of operational test data on heat exchanges were obtained in these tests. In this report specifications and structures of steam reformer, steam superheater, steam generator, condenser, helium gas cooler, feed gas heater and feed gas superheater were described. Heat transfer correlation equations for inside and outside tube were chosen from references. Spreadsheet programs were newly made to evaluate heat transfer characteristics from measured test data such as inlet and outlet temperature pressure and flow-rate. Overall heat-transfer coefficients obtained from the experimental data were compared and evaluated with the calculated values with heat transfer correlation equation. As a result, actual measurement values of all heat exchangers gave close agreement with the calculated values with correlation equations. Thermal efficiencies of the heat exchangers were adequate as they were well accorded with design value. (author)

  17. Study of natural convection heat transfer characteristics. (2) Verification for numerical simulation

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Nakada, Kotaro; Ikeda, Tatsumi; Wakamatsu, Mitsuo; Iwaki, Chikako; Morooka, Shinichi; Masaki, Yoshikazu

    2008-01-01

    In the natural cooling system for waste storage, it is important to evaluate the flow by natural draft enough to remove the decay heat from the waste. In this study, we carried out the fundamental study of natural convection on vertical cylindrical heater by experiment and numerical simulation. The dimension of test facility is about 4m heights with single heater. Heating power is varied in the range of 33-110W, where Rayleigh number is over 10 10 . We surveyed the velocity distribution around heater by some turbulent models, mesh sizes around heated wall and turbulent Prandtl numbers. Results of numerical simulation of the velocity distribution and averaged heat transfer coefficient agreed well with experimental data and references. (author)

  18. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  19. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    International Nuclear Information System (INIS)

    Biesinger, M C; Payne, B P; McIntryre, N S; Hart, B R; Lau, L Wm; Grosvenor, A P; Smart, R StC

    2008-01-01

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available

  20. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, M C; Payne, B P; McIntryre, N S [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Hart, B R; Lau, L Wm [Surface Science Western, Room G1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Grosvenor, A P [Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada); Smart, R StC [ACeSSS, Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, SA 5095 (Australia)], E-mail: biesingr@uwo.ca

    2008-03-15

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available.

  1. Probes, Surveys, and the Ontology of the Social

    Science.gov (United States)

    Collins, Harry; Evans, Robert

    2017-01-01

    By distinguishing between a survey and--a newly introduced term--a "probe," we recast the relationship between qualitative and quantitative approaches to social science. The difference turns on the "uniformity" of the phenomenon being examined. Uniformity is a fundamental idea underlying all scientific research but is rarely…

  2. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  3. [Medical terminology and lay users. A quali-quantitative survey of a group of young motivated graduates].

    Science.gov (United States)

    Conti, A A

    2013-01-01

    Medical terms occupy growing spaces in dictionaries and the media daily propose a great number of medical words. Nevertheless scientific data regarding the actual degree of comprehension of medical terminology on the part of lay users are scanty. Aim of this study was the evaluation, in a group of young motivated graduates, of the degree of understanding of a set of medical terms normally adopted by physicians in specialistic language, and also used when speaking with patients. Nine medical terms used by physicians in daily practice were selected (“aphasia”, “edema”, “erythema”, “fibrillation”, “fibroma”, “jaundice”, “paraplegia”, “polypus”, “sclerosis”) and they were administered in paper form to eighteen young graduates, non-health operators who were asked to furnish one definition for each of the terms. A subsequent structured oral discussion integrated the recorded written findings. Erythema and fibrillation were the most well-known and understood terms. Among the selected medical terms, the more difficult ones to understand were sclerosis and jaundice. Interesting features emerged from the characterization of the site attributed to some of the investigated terms, in particular edema was mainly perceived as the pulmonary one, fibroma was more often interpreted as a benign tumor localized in the uterus and polypus was more frequently associated with its collocation in the nose. The participants involved in this quali-quantitative survey demonstrated a general good knowledge and comprehension of the medical terms proposed. Some limits in knowledge documented in this group, however, indicate that the use of medical terminology needs more clarification within the doctor-patient context. Such clarification appears even more mandatory in subjects with low scholastic-education levels.

  4. Significance of atmospheric effects of heat rejection from energy centers in the semi arid northwest

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Drake, R.L.; Young, J.R.

    1976-01-01

    The results presented in this paper have been obtained using simple atmospheric models in an attempt to optimize heat sink management in a conceptual nuclear energy center (NEC) at Hanford. The models have been designed to be conservatice in the sense that they are biased toward over prediction of the impact of cooling system effluents on humidity and fog. Thus the models are screening tools to be used to identify subjects for further, more realistic examination. Within this context the following conclusions have been reached: the evaluation of any atmospheric impact postulated for heat dissipation must be conducted in quantitative terms which can be used to determine the significance of the impact; of the potential atmospheric impacts of large heat releases from energy centers, the one most amenable to quantitative evaluation in meaningful terms as the increase in fog; a postulated increase in frequency of fog can be translated into terms of visibility and both can be evaluated statistically; the translation of a increase in fog to visibility terms permits economic evaluation of the impact; and the predicted impact of the HNEC on fog and visibility is statistically significant whether the energy center consists of 20 or 40 units

  5. Perceptions of Workplace Heat Exposure and Controls among Occupational Hygienists and Relevant Specialists in Australia.

    Directory of Open Access Journals (Sweden)

    Jianjun Xiang

    Full Text Available With warmer weather projections, workplace heat exposure is presenting a growing challenge to workers' health and safety. Occupational hygienists are the specialist group conducting measurements and providing advice on heat stress management to industry. In order to provide insights into hygienists perceptions on workplace heat exposure, current and future preparedness for extreme heat, and barriers to possible heat adaptation strategies, a self-administered questionnaire survey was conducted during a national conference of the Australian Institute of Occupational Hygienists. Nearly 90% of the 180 respondents were at least moderately concerned about extreme heat and 19% were dissatisfied with current heat stress prevention measures. Barriers recognized by the participants were lack of awareness (68%, insufficient training (56%, unsatisfactory management commitment (52%, and low compliance with prevention policies (40%. The findings suggest a need to refine occupational heat management and prevention strategies.

  6. Knowledge and awareness of heat-related morbidity among adult recreational endurance athletes

    Science.gov (United States)

    Shendell, Derek G.; Alexander, Melannie S.; Lorentzson, Lauren; McCarty, Frances A.

    2010-07-01

    Adults have been increasingly motivated to compete in recreational endurance sports events. Amateurs may lack a complete understanding of recommended strategies for handling heat and humidity, making heat-related illnesses increasingly possible. This is compounded by global climate change and increasing average surface and air temperatures, especially in urban areas of industrialized nations in Europe and North America that have hosted most events to date. We conducted an on-line, secure survey at the 2nd Annual ING Georgia Marathon and Half-Marathon in Atlanta, Georgia, in 2008. We included previously validated questions on participant socio-demographics, training locations, and knowledge and awareness of heat-related illnesses. Participants were aware of heat illnesses, and of heat stroke as a serious form of heat stress. However, the majority, across age and gender, did not understand the potential severity of heat stroke. Furthermore, 1-in-5 participants did not understand the concept of heat stress as a form of heat-related illness, and how heat stress may result from buildup of muscle-generated heat in the body. Adult recreational endurance athletes are another susceptible, vulnerable population sub-group for applied research and public health educational interventions, especially in urban areas of industrialized nations in Europe and North America.

  7. Industrial ecology: Quantitative methods for exploring a lower carbon future

    Science.gov (United States)

    Thomas, Valerie M.

    2015-03-01

    Quantitative methods for environmental and cost analyses of energy, industrial, and infrastructure systems are briefly introduced and surveyed, with the aim of encouraging broader utilization and development of quantitative methods in sustainable energy research. Material and energy flow analyses can provide an overall system overview. The methods of engineering economics and cost benefit analysis, such as net present values, are the most straightforward approach for evaluating investment options, with the levelized cost of energy being a widely used metric in electricity analyses. Environmental lifecycle assessment has been extensively developed, with both detailed process-based and comprehensive input-output approaches available. Optimization methods provide an opportunity to go beyond engineering economics to develop detailed least-cost or least-impact combinations of many different choices.

  8. Using Qualitative Metasummary to Synthesize Qualitative and Quantitative Descriptive Findings

    Science.gov (United States)

    Sandelowski, Margarete; Barroso, Julie; Voils, Corrine I.

    2008-01-01

    The new imperative in the health disciplines to be more methodologically inclusive has generated a growing interest in mixed research synthesis, or the integration of qualitative and quantitative research findings. Qualitative metasummary is a quantitatively oriented aggregation of qualitative findings originally developed to accommodate the distinctive features of qualitative surveys. Yet these findings are similar in form and mode of production to the descriptive findings researchers often present in addition to the results of bivariate and multivariable analyses. Qualitative metasummary, which includes the extraction, grouping, and formatting of findings, and the calculation of frequency and intensity effect sizes, can be used to produce mixed research syntheses and to conduct a posteriori analyses of the relationship between reports and findings. PMID:17243111

  9. Average Heating Rate of Hot Atmospheres in Distant Galaxy Clusters by Radio AGN: Evidence for Continuous AGN Heating

    Science.gov (United States)

    Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.

    2011-09-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.

  10. Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Lei, Dongyang; Tan, Lubin; Liu, Fengxia; Chen, Liyun; Sun, Chuanqing

    2013-03-01

    Understanding the responses of rice plants to heat-stress is a challenging, yet crucial, endeavor. A set of introgression lines was previously developed using an advanced backcrossing strategy that involved the elite indica cultivar Teqing as the recipient and an accession of common wild rice (Oryza rufipongon Griff.) as the donor. In this study, we evaluated the responses of 90 of these previously developed introgression lines to heat stress. Five quantitative trait loci (QTLs) related to heat response were detected. The phenotypic variances explained by these QTLs ranged from 6.83% to 14.63%, and O. rufipogon-derived alleles at one locus reduced sensitivity to heat. A heat-sensitive introgression line, YIL106, was identified and characterized. Genotypic analysis demonstrated that YIL106 contained four introgressed segments derived from O. rufipongon and two QTLs (qHTS1-1 and qHTS3) related to heat response. Physiological tests, including measurements of chlorophyll content, electrolyte leakage, malondialdehyde content, and soluble sugar content, were consistent with the heat sensitivity observed in YIL106. Ultrastructural analysis of YIL106 mesophyll cells showed that they were severely damaged following heat stress. This suggests that modification of the cell membrane system is a primary response to heat stress in plants. Identification and characterization of the heat-sensitive line YIL106 may facilitate the isolation of genes associated with the response of rice plants to heat stress. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Heat transport properties of pressurized and saturated He II in the vicinity of T/sub λ

    International Nuclear Information System (INIS)

    Fouaidy, M.; Francois, M.X.

    1988-01-01

    A quantitative experimental analysis of He II confined to a channel has been performed for the heat flux densities and bulk temperatures for which the transitions of He II to He I, He II to vapor, and He II to He I to vapor could occur in the neighborhood of the heating source or in the channel itself. Temperature measurements of the heater and the He I and He II channel flow were used in a thermohydrodynamic model of the heat flow. Emphasis was given to the $lambda transition and thus to the case where a He I layer separated the heater from the He II channel. The dynamics of the vaporized He I and He II bubbles and their role in heat transfer are analyzed

  12. X-Ray Source Heights in a Solar Flare: Thick-Target Versus Thermal Conduction Front Heating

    Science.gov (United States)

    Reep, J. W.; Bradshaw, S. J.; Holman, G. D.

    2016-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O'Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  13. Antioxidant properties of the mung bean flavonoids on alleviating heat stress.

    Directory of Open Access Journals (Sweden)

    Dongdong Cao

    Full Text Available BACKGROUND: It is a widespread belief in Asian countries that mung bean soup (MBS may afford a protective effect against heat stress. Lack of evidence supports MBS conferring a benefit in addition to water. RESULTS: Here we show that vitexin and isovitexin are the major antioxidant components in mungbean (more than 96% of them existing in the bean seed coat, and both of them could be absorbed via gavage into rat plasma. In the plasma of rats fed with mungbean coat extract before or after exposure to heat stress, the levels of malonaldehyde and activities of lactate dehydrogenase and nitric oxide synthase were remarkably reduced; the levels of total antioxidant capacity and glutathione (a quantitative assessment of oxidative stress were significantly enhanced. CONCLUSIONS: Our results demonstrate that MBS can play additional roles to prevent heat stress injury. Characterization of the mechanisms underlying mungbean beneficial effects should help in the design of diet therapy strategies to alleviate heat stress, as well as provide reference for searching natural medicines against oxidative stress induced diseases.

  14. The Health Effects of Climate Change: A Survey of Recent Quantitative Research

    Directory of Open Access Journals (Sweden)

    Anil Markandya

    2012-04-01

    Full Text Available In recent years there has been a large scientific and public debate on climate change and its direct as well as indirect effects on human health. In particular, a large amount of research on the effects of climate changes on human health has addressed two fundamental questions. First, can historical data be of some help in revealing how short-run or long-run climate variations affect the occurrence of infectious diseases? Second, is it possible to build more accurate quantitative models which are capable of predicting the future effects of different climate conditions on the transmissibility of particularly dangerous infectious diseases? The primary goal of this paper is to review the most relevant contributions which have directly tackled those questions, both with respect to the effects of climate changes on the diffusion of non-infectious and infectious diseases, with malaria as a case study. Specific attention will be drawn on the methodological aspects of each study, which will be classified according to the type of quantitative model considered, namely time series models, panel data and spatial models, and non-statistical approaches. Since many different disciplines and approaches are involved, a broader view is necessary in order to provide a better understanding of the interactions between climate and health. In this respect, our paper also presents a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; the establishment of Early Warning Systems for infectious diseases.

  15. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  16. Unveiling the sources of disk heating in spiral galaxies with the CALIFA survey

    NARCIS (Netherlands)

    Pinna, F.; Falcón-Barroso, J.; Martig, M.; van de Ven, G.; Lyubenova, M.; Leaman, R.

    The stellar velocity ellipsoid (SVE) quantifies the amount of velocity dispersion in the vertical, radial and azimuthal directions. Since different disk heating mechanisms (e.g. spiral arms, giant molecular clouds, mergers, etc) affect these components differently, the SVE can constrain the sources

  17. Quantitative analysis of culture using millions of digitized books

    OpenAIRE

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva P.; Veres, Adrian; Gray, Matthew K.; Pickett, Joseph P.; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A.; Aiden, Erez Lieberman

    2010-01-01

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics’, focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pu...

  18. Quantitative Analysis of Culture Using Millions of Digitized Books

    OpenAIRE

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva Presser; Veres, Adrian; Gray, Matthew K.; Google Books Team; Pickett, Joseph; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A.; Aiden, Erez Lieberman

    2011-01-01

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics,’ focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pu...

  19. Targeting the maximum heat recovery for systems with heat losses and heat gains

    International Nuclear Information System (INIS)

    Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

    2014-01-01

    Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

  20. The Einstein/CFA stellar survey - Overview of the data and interpretation of results

    Science.gov (United States)

    Vaiana, G. S.

    1981-01-01

    Results are presented from an extensive survey of stellar X-ray emission, using the Einstein Observatory. Over 140 stars have been detected to date, throughout the H-R diagram, thus showing that soft X-ray emission is the norm rather than the exception for stars in general. This finding is strongly at odds with pre-Einstein expectations based on standard acoustic theories of coronal heating. Typical examples of stellar X-ray detections and an overview of the survey data are presented. In combination with recent results from solar X-ray observations, the new Einstein data argue for the general applicability of magnetic field-related coronal heating mechanisms.

  1. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow

    International Nuclear Information System (INIS)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs

  2. Estimation and harvesting of human heat power for wearable electronic devices

    International Nuclear Information System (INIS)

    Dziurdzia, P; Brzozowski, I; Bratek, P; Gelmuda, W; Kos, A

    2016-01-01

    The paper deals with the issue of self-powered wearable electronic devices that are capable of harvesting free available energy dissipated by the user in the form of human heat. The free energy source is intended to be used as a secondary power source supporting primary battery in a sensor bracelet. The main scope of the article is a presentation of the concept for a measuring setup used to quantitative estimation of heat power sources in different locations over the human body area. The crucial role in the measurements of the human heat plays a thermoelectric module working in the open circuit mode. The results obtained during practical tests are confronted with the requirements of the dedicated thermoelectric generator. A prototype design of a human warmth energy harvester with an ultra-low power DC-DC converter based on the LTC3108 circuit is analysed

  3. Geothermal development promotion survey report. No. 25. Hishikari region; 1987-1989 chinetsu kaihatsu sokushin chosa hokokusho. No. 22 Hishikari chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The results of surveys conducted in the Hishikari region, Kagoshima Prefecture, in fiscal 1987-1989 are compiled in this report. Conducted were a geological/alteration zone survey, geochemical survey, electric prospecting, electromagnetic surveillance, gravity prospecting, heat flow rate survey, test boring, environmental impact survey, and so forth. The surveys resulted in conclusions mentioned below. According to the underground temperature distribution based on the results of the heat flow rate survey, test boring, and so forth, temperature is low at the western part of the Hishikari region where there is a low gravity anomaly and high in the zone in the ENE-WSW direction where there is a high gravity anomaly. The present ground temperature is lower than the fluid inclusion homogenization temperature by approximately 120-140 degrees C. It is deduced that the geothermal water reservoir lies in the Quatenary volcanic rocks or in a fracture zone that develops in the Shimanto supergroup. It is inferred that the geothermal water producing the hot spring water all originates in meteoric water staying long in the ground. It is also inferred that volcanic gas or the like contributes but a little to the formation of the geothermal system but that the contribution is great of the heat supplied from the magma pool. (NEDO)

  4. Industrial excess heat for district heating in Denmark

    International Nuclear Information System (INIS)

    Bühler, Fabian; Petrović, Stefan; Karlsson, Kenneth; Elmegaard, Brian

    2017-01-01

    Highlights: •Method for utilisation potential of industrial excess heat for district heating. •Industrial excess heat from thermal processes is quantified at single production units. •Linking of industrial excess heat sources and district heating demands done in GIS. •Excess heat recovery using direct heat transfer and heat pumps. •5.1% of the Danish district heating demand could be supplied by industrial excess heat. -- Abstract: Excess heat is available from various sources and its utilisation could reduce the primary energy use. The accessibility of this heat is however dependent amongst others on the source and sink temperature, amount and potential users in its vicinity. In this work a new method is developed which analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal processes which equals 5.1% of the current demand. More than half of this heat was found to be usable directly, without the need for a heat pump.

  5. Shape Effect on the Temperature Field during Microwave Heating Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2018-01-01

    Full Text Available Aiming at improving the food quality during microwave process, this article mainly focused on the numerical simulation of shape effect, which was evaluated by microwave power absorption capability and temperature distribution uniformity in a single sample heated in a domestic microwave oven. This article only took the electromagnetic field and heat conduction in solid into consideration. The Maxwell equations were used to calculate the distribution of microwave electromagnetic field distribution in the microwave cavity and samples; then the electromagnetic energy was coupled as the heat source in the heat conduction process in samples. Quantitatively, the power absorption capability and temperature distribution uniformity were, respectively, described by power absorption efficiency (PAE and the statistical variation of coefficient (COV. In addition, we defined the comprehensive evaluation coefficient (CEC to describe the usability of a specific sample. In accordance with volume or the wave numbers and penetration numbers in the radial and axial directions of samples, they can be classified into different groups. And according to the PAE, COV, and CEC value and the specific need of microwave process, an optimal sample shape and orientation could be decided.

  6. Quantitative analyses of postmortem heat shock protein mRNA profiles in the occipital lobes of human cerebral cortices: implications in cause of death.

    Science.gov (United States)

    Chung, Ukhee; Seo, Joong-Seok; Kim, Yu-Hoon; Son, Gi Hoon; Hwang, Juck-Joon

    2012-11-01

    Quantitative RNA analyses of autopsy materials to diagnose the cause and mechanism of death are challenging tasks in the field of forensic molecular pathology. Alterations in mRNA profiles can be induced by cellular stress responses during supravital reactions as well as by lethal insults at the time of death. Here, we demonstrate that several gene transcripts encoding heat shock proteins (HSPs), a gene family primarily responsible for cellular stress responses, can be differentially expressed in the occipital region of postmortem human cerebral cortices with regard to the cause of death. HSPA2 mRNA levels were higher in subjects who died due to mechanical asphyxiation (ASP), compared with those who died by traumatic injury (TI). By contrast, HSPA7 and A13 gene transcripts were much higher in the TI group than in the ASP and sudden cardiac death (SCD) groups. More importantly, relative abundances between such HSP mRNA species exhibit a stronger correlation to, and thus provide more discriminative information on, the death process than does routine normalization to a housekeeping gene. Therefore, the present study proposes alterations in HSP mRNA composition in the occipital lobe as potential forensic biological markers, which may implicate the cause and process of death.

  7. Cultural and Technical Evaluation of Heating Alternatives to Improve Indoor Air Quality on the Navajo Nation

    Science.gov (United States)

    In the Navajo Nation it is estimated that 62% of households use wood as their primary means of heating1. A 2010 study by the U.S. Geological Survey (USGS) and Diné College found that in Shiprock, NM, the largest town in the Navajo Nation (pop. = 8,300)2, heating is often w...

  8. The Effects of Heat Stress on Job Satisfaction, Job Performance and Occupational Stress in Casting Workers

    OpenAIRE

    Dehghan; Mobinyzadeh; Habibi

    2016-01-01

    Background Job satisfaction, job performance, job stress and heat stress affect the productivity of workers. Objectives This research aimed to study the relationship between heat stress indices with job satisfaction, job performance and job stress in casting workers. Patients and Methods This descriptive-analytical cross sectional survey was performed during summer 2013 on one hund...

  9. Study on concrete cask for practical use. Heat removal test under normal condition

    International Nuclear Information System (INIS)

    Takeda, Hirofumi; Wataru, Masumi; Shirai, Koji; Saegusa, Toshiari

    2005-01-01

    In Japan, it is planed to construct interim storage facilities taking account of dry storage away form reactor in 2010. Recently, a concrete cask is noticed from the economical point of view. But data for its safety analysis have not been sufficient yet. Heat removal tests using to types of full-scale concrete casks were conducted. This paper describes the results under normal condition of spent fuel storage. In the tests, data on heat removal performance and integrity of cask components were obtained for different storage periods. The change of decay heat of spent fuel was simulated using electric heaters. Reinforced Concrete cask (RC cask) and Concrete Filled Steel cask (CFS cask) were the specimen casks. The levels of decay heat at the initial period of 60 years of storage, the intermediate period (20 years of storage), and the final period (40 years of storage) correspond to 22.6 kW, 16 kW and 10 kW, respectively. Quantitative temperature data of the cask components were obtained as compared with their limit temperature. In addition, heat balance data required for heat removal analyses were obtained. (author)

  10. A survey of risk behaviour for contracting HIV among adult ...

    African Journals Online (AJOL)

    and sex workers, for example) and substance abuse.2,5,8,9,10. A survey ... Objective: Various studies have reported increased prevalence of HIV infection among psychiatric patients. ... The study took the form of a cross-sectional quantitative.

  11. Industrial process heat market assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  12. Industrial process heat market assessment

    International Nuclear Information System (INIS)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve

  13. Heat Transfer between an Individual Carbon Nanotube and Gas Environment in a Wide Knudsen Number Regime

    Directory of Open Access Journals (Sweden)

    Hai-Dong Wang

    2013-01-01

    Full Text Available Applications of carbon nanotube (CNT and graphene in thermal management have recently attracted significant attention. However, the lack of efficient prediction formula for heat transfer coefficient between nanomaterials and gas environment limits the further development of this technique. In this work, a kinetic model has been established to predict the heat transfer coefficient of an individual CNT in gas environment. The heat dissipation around the CNT is governed by molecular collisions, and outside the collision layer, the heat conduction is dominant. At nanoscales, the natural convection can be neglected. In order to describe the intermolecular collisions around the CNT quantitatively, a correction factor 1/24 is introduced and agrees well with the experimental observation. The prediction of the present model is in good agreement with our experimental results in free molecular regime. Further, a maximum heat transfer coefficient occurs at a critical diameter of several nanometers, providing guidelines on the practical design of CNT-based heat spreaders.

  14. Flowfield characterisation in the wake of a low-velocity heated sphere anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Olim, A.M. [Associacao para o Desenvolvimento da Aerodinamica Industrial (ADAI), Coimbra (Portugal); Riethmuller, M.L. [Von Karman Institute for Fluid Dynamics (VKI), St. Genese (Belgium); Gameiro da Silva, M.C. [Departamento de Engenharia Mecanica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra Polo II, Coimbra (Portugal)

    2002-06-01

    Heated sphere anemometers (HSA) are the most widely used instruments for low-velocity measurements in the heating, ventilation and air-conditioning industry. Experiments were conducted to characterise the flowfield around the spherically shaped sensor and upper probe assembly of a HSA. Particle image velocimetry was the main quantitative experimental technique. Measurements of the flowfield around a HSA probe and a 2:1 scaled-up model were performed in a uniform isothermal axisymmetrical jet air flow at Re around 350, based on sensor diameter, for different pitch angle incident flows. Additionally, extensive flow visualisation studies around scaled-up models of the HSA probe were performed. (orig.)

  15. Reliability assessment on decay heat removal system of a fast reactor

    International Nuclear Information System (INIS)

    Hioki, Kazumasa

    1991-01-01

    The reliability of a decay heat removal system (DHRS) is influenced by the success criteria, the components which constitute the system, the support systems configuration, and the mission time. Assessments were performed to investigate quantitatively the effects of these items. Failure probabilities of DHRS under forced or natural circulation modes were calculated and then components and systems of large importance for each mode were identified. (author)

  16. Evaluation of the decay heat removal capability using the concept of a thermosyphon in the liquid metal reactor

    International Nuclear Information System (INIS)

    Kim, Y. S.; Sim, Y. S.; Kim, W. K.

    2000-01-01

    A study related to understand the characteristics of the heat pipe and thermosyphon was performed to evaluate their applicabilities to the current PSDRS (Passive Safety Decay heat Removal System) in the KALIMER (Korea Advanced LIquid MEtal Reactor) design. The possible heat transfer rate by the heat pipe and thermosyphon was reviewed to compare the required capability in the PSDRS. A quantitative comparison was done between the current PSDRS and the modified PSDRS with the thermosyphon. The result showed the dominant heat transfer rate in the air channel, e.g. radiation or convection, is different from each other. The total heat transfer rate is not sensitive to the operating temperature of the thermosyphon. The heat removal by the air in the modified case is relatively reduced and the resultant outlet temperature appears less than above 10 .deg. C. A reversal heat transfer between the air and the thermosyphon may exist near the exit of the active heat transfer region. The total heat transfer rate by the modified case showed about 20∼40% increase relative to the reference one

  17. Hardness survey of cold-worked and heat-treated JBK-75 stainless steel alloy

    International Nuclear Information System (INIS)

    Jackson, R.J.; Lucas, R.L.

    1977-01-01

    The alloy JBK-75, an age-hardenable austenitic stainless steel, is similar to commercial A-286, but has certain chemistry modifications to improve weldability and hydrogen compatibility. The principal changes are an increase in nickel and a decrease in manganese with lower limits on carbon, phosphorus, sulfur, silicon, and boron. In this study, the effects of solutionizing time and temperature, quench rate, cold working, and the effects of cold working on precipitation kinetics were examined. Findings show that the solutionizing temperature has a moderate effect on the as-quenched hardness, while times greater than that required for solutionizing do not significantly affect hardness. Quench rate was found to have a small effect on as-quenched hardness, however, hardness gradients did not develop in small bars. It was found that JBK-75 can be significantly strengthened by cold working. Cold working alone produced hardness increases from Rockwell-A 49 to R/sub A/ 68. A recovery-related hardness change was noted on heat treating at 300 and 400 0 C for both as-quenched and as-worked JBK-75. Significant age-hardening was observed at temperatures as low as 500 0 C for as-worked metal. Aging at 600 0 C resulted in maximum hardness in the 75 percent worked sample at about 6 hours (R/sub A/ 73.5) while the 50 percent worked sample was near maximum hardness (R/sub A 72.5) after seven days. THE 25 and 0 percent worked samples were considerably underaged after seven days. Similar type kinetic data were obtained for worked and nonworked metal at 650, 700, 800, 850, 900, 1000, and 1100 0 C for times from 10 minutes to 10,000 minutes (6.7 days). The overall purpose of the hardness survey was to better define the effects of cold work on the stress-relieving range, coherent precipitation range, incoherent precipitation range, recrystallization range, solutionizing range, and grain-growth range

  18. A QUANTITATIVE STUDY OF MARKET ORIENTATION AND ORGANIZATIONAL PERFORMANCE OF LISTED COMPANIES: EVIDENCE FROM GHANA

    OpenAIRE

    Solomon A. Keelson

    2012-01-01

    The study is part of a larger research of market orientation, which was conducted to build on previous research, and particularly examined the association between market orientation and business performance in a larger market context, using a synthesis model approach. Using the survey approach 24 companies out of 37 listed companies participated in the quantitative study; where 72 senior officials were surveyed from August 2011 to September 2011, through a five-likert scale questions. In this...

  19. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  20. Lattice Boltzmann heat transfer model for permeable voxels

    Science.gov (United States)

    Pereira, Gerald G.; Wu, Bisheng; Ahmed, Shakil

    2017-12-01

    We develop a gray-scale lattice Boltzmann (LB) model to study fluid flow combined with heat transfer for flow through porous media where voxels may be partially solid (or void). Heat transfer in rocks may lead to deformation, which in turn can modulate the fluid flow and so has significant contribution to rock permeability. The LB temperature field is compared to a finite difference solution of the continuum partial differential equations for fluid flow in a channel. Excellent quantitative agreement is found for both Poiseuille channel flow and Brinkman flow. The LB model is then applied to sample porous media such as packed beds and also more realistic sandstone rock sample, and both the convective and diffusive regimes are recovered when varying the thermal diffusivity. It is found that while the rock permeability can be comparatively small (order milli-Darcy), the temperature field can show significant variation depending on the thermal convection of the fluid. This LB method has significant advantages over other numerical methods such as finite and boundary element methods in dealing with coupled fluid flow and heat transfer in rocks which have irregular and nonsmooth pore spaces.

  1. Questionnaire survey, Indoor climate measurements and Energy consumption

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Thomsen, Kirsten Engelund; Mørck, Ove

    2012-01-01

    to be designed and constructed with a heating demand corresponding to the Danish low-energy standard referred to as "low-energy class 1" in a new settlement called Stenløse Syd. This means that the energy consumption is to be 50% lower than the requirement in BR08 (Danish Building Regulations 2008). 66 flats...... were to be designed and constructed with a yearly heating demand of 15 kWh/m². Furthermore, the Concerto community include a kindergarten and an activity centre for elderly people. All the single family houses were to be heated by a heat pump supported by a 3 m² thermal solar system for hot water....... This report presents part of the results of an evaluation of the project that was performed in the settlement. The evaluation consisted of a questionnaire survey of occupant experiences and satisfaction in 35 single-family houses, measurements of energy consumption in 22 selected single-family houses and 58...

  2. The 1986 residential occupant survey

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, D.L.; Alley, P.K.

    1987-04-01

    In 1986, Pacific Northwest Laboratory developed the Residential Occupant Survey-Spring '86, which was implemented. The overall purpose of the study was to collect demographic, attitudinal, and behavioral data related to the use and conservation of electricity in dwellings participating in the Bonneville Power Administration's End-Use Load and Conservation Assessment Program (ELCAP). Information was collected on the respondents' perceptions of the energy efficiency of their dwelling, temperature the dwelling was kept when people were at home and awake during the last heating season, which rooms, if any, were not heated during the last heating season, number of times the dwelling was unoccupied for at least one week, number of times pets were let out of the dwelling per day, attitudes toward energy use and conservation and several socio-demographic variables such as age, sex, and total household income. The results of the data analyses showed age to be an important factor for reported indoor temperature and perceived energy efficiency of the dwelling. The results also showed that almost 60% of the ELCAP occupants do not heat one or more rooms during the heating season, and almost 45% of the ELCAP dwellings were unoccupied for at least one week during the reporting period. In terms of the reported allocation of household income for household energy expenses, the results showed that the reported dollar amount spent for the expenses remained relatively constant over income levels.

  3. Quantitative Analysis of Graphene Sheet Content in Wood Char Powders during Catalytic Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Yan-Jia Liou; Wu-Jang Huang

    2013-01-01

    The quantitative characterization of the graphene sheet content in carbon-containing materials is arguable and has not yet been developed.The authors report on a feasible method to characterize graphene sheet content quantitatively in pyrolized carbon materials using an X-ray diffraction (XRD) spectrometer.A direct carbonation at 300 ℃ followed by catalytic pyrolysis (heat-treatment temperature was set at 700-1400 ℃)under a vacuum condition was used for turning wood waste into pyrolized wood char powders.The graphene content in the samples was calculated through an analysis of full width at half maximum (FWHM) of the carbon (100) crystal plane at around 42°-43° in XRD.Results showed that the FWHM and the calculated graphene sheet content of pyrolized wood char powders depended on the heat-treatment temperature,and the FWHM of wood char powder with well-developed graphene sheets (100%) was determined to be 5.0.In addition,the trend to 100% graphene sheet-contained pyrolized carbon powder was obtained at a heattreatment temperature of 2700 ℃.The resistivity of the wood char powder with 100% graphene sheets was predicted to be 0.01 Ω cm,close to our experimental data of 0.012 and 0.006 Ω cm for commercial graphite and graphene products,respectively.

  4. Aspects of the transitory deformations correlated with the cracking at heat in welding

    International Nuclear Information System (INIS)

    Miclosi, V.; Solomon, G.; Tonoiu, I.

    1993-01-01

    The cracking at heat is one of the main problems which appear at the austenitic steel welding, especially for the austenitics steel without delta ferite. The susceptibility regarding the cracking at heat can be studied analitically by the correlation between two factors: the factor stress constituted by the tension and the deformations which appear in the welding process (FS) and the resistance factor constituted by the capacity of the material to take the stress and the deformations appeared (FR). As a result of the interaction of the both factors is the possibility of cracking or not cracking into a concrete case, named generally the susceptibility at the heat cracking. The tendency at the cracking at heat can be appreciate with a quantitative estimation, named critical speed of cracking (Vcf). The practical determination of these speed supposed for an concrete example, the knowledge of real plastic deformation at the weld, which are determinated in this paper. (orig.)

  5. Survey of Tokamak experiments

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1977-01-01

    The survey covers the following topics:- Introduction and history of tokamak research; review of tokamak apparatus, existing and planned; remarks on measurement techniques and their limitations; main results in terms of electron and ion temperatures, plasma density, containment times, etc. Empirical scaling; range of operating densities; impurities, origin, behaviour and control (including divertors); data on fluctuations and instabilities in tokamak plasmas; data on disruptive instabilities; experiments on shaped cross-sections; present experimental evidence on β limits; auxiliary heating; experimental and theoretical problems for the future. (author)

  6. Active control of divertor heat and particle fluxes in EAST towards advanced steady state operations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L., E-mail: lwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dalian University of Technology, Dalian 116024 (China); Guo, H.Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); General Atomics, P. O. Box 85608, San Diego, CA 92186 (United States); Li, J.; Wan, B.N.; Gong, X.Z.; Zhang, X.D.; Hu, J.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liang, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Association EURATOM-FZJ, D-52425 Jülich (Germany); Xu, G.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zou, X.L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Loarte, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Maingi, R.; Menard, J.E. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Luo, G.N.; Gao, X.; Hu, L.Q.; Gan, K.F.; Liu, S.C.; Wang, H.Q.; Chen, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-08-15

    Significant progress has been made in EAST towards advanced steady state operations by active control of divertor heat and particle fluxes. Many innovative techniques have been developed to mitigate transient ELM and stationary heat fluxes on the divertor target plates. It has been found that lower hybrid current drive (LHCD) can lead to edge plasma ergodization, striation of the stationary heat flux and lower ELM transient heat and particle fluxes. With multi-pulse supersonic molecular beam injection (SMBI) to quantitatively regulate the divertor particle flux, the divertor power footprint pattern can be actively modified. H-modes have been extended over 30 s in EAST with the divertor peak heat flux and the target temperature being controlled well below 2 MW/m{sup 2} and 250 °C, respectively, by integrating these new methods, coupled with advanced lithium wall conditioning and internal divertor pumping, along with an edge coherent mode to provide continuous particle and power exhaust.

  7. The 1992 Pacific Northwest Residential Energy Survey: Phase 1 : Book 1 : Getting Started.

    Energy Technology Data Exchange (ETDEWEB)

    Applied Management & Planning Group (firm); United States. Bonneville Power Administration. End-Use Research Section.

    1993-08-01

    This Executive Summary outlines the general processes employed in and the major findings from the conduct of Phase I of the Pacific Northwest Residential Energy Survey (PNWRES92-I) during the last quarter of 1992. This study was Bonneville`s third comprehensive residential survey of the region, conducted to provide data on energy usage, conservation awareness and behaviors, and associated consumer characteristics for use in forecasting and planning. The summary is divided into four sections: Background sets the stage with respect to the need for the survey, relates it to previous work, outlines the implementation processes, and summarizes the data products. Profiling the respondents summarizes the survey results under these six categories: Demographics; Housing Units; Room Inventory; Appliance Inventory; Air-Conditioning/Heating; Water-Heating; and Opinion. Reports and cross-tabulations describes the various individual documents. Bonneville Power Plus provides a short description of an Excel-spreadsheet-based software program that contains all of the tabulated material in a format that encourages browsing among the tables and charts, with special feature that they can be copied directly into other Windows-based documents.

  8. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  9. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  10. A quantitative comparison between burn-out data for water at 1000 lb/in2 and Freon 12 at 155 lb/in2 (abs) uniformly heated round tubes, vertical upflow

    International Nuclear Information System (INIS)

    Stevens, G.F.; Kirby, G.J.

    1964-07-01

    An earlier report presented the results of an experimental investigation into forced convection burn-out in Freon 12 (Arcton 12) at 155 lb/in 2 (abs) flowing vertically upwards in uniformly heated round tubes. This work was carried out as part of a programme devised to explore the possibility of developing model techniques for studies of two-phase flow and burn-out in high pressure water. The Freon 12 burn-out data was shown to exhibit qualitative similarity with data for water at 1000 Ib/in 2 , and to bring to light a number of details previously concealed by experimental scatter and inadequate coverage. The object of this paper is to present the results of a quantitative comparison of the Freon 12 data and the available water data, and to discuss the implications of this on the possibility of developing model techniques in the study of burn-out. (author)

  11. Quantitative analysis of the network structure that underlines the transitioning in mechanical responses of pea protein gels

    NARCIS (Netherlands)

    Munialo, C.D.; Linden, van der E.; Ako, K.; Jongh, de H.H.J.

    2015-01-01

    The objective of this study was to analyze quantitatively the network structure that underlines the transitioning in the mechanical responses of heat-induced pea protein gels. To achieve this, gels were prepared from pea proteins at varying pHs from 3.0 to 4.2 at a fixed 100 mg/mL protein

  12. Ebola Response: Modeling the Risk of Heat Stress from Personal Protective Clothing.

    Directory of Open Access Journals (Sweden)

    Adam W Potter

    Full Text Available A significant number of healthcare workers have responded to aid in the relief and containment of the 2013 Ebola virus disease (EVD outbreak in West Africa. Healthcare workers are required to wear personal protective clothing (PPC to impede the transmission of the virus; however, the impermeable design and the hot humid environment lead to risk of heat stress.Provide healthcare workers quantitative modeling and analysis to aid in the prevention of heat stress while wearing PPC in West Africa.A sweating thermal manikin was used to measure the thermal (Rct and evaporative resistance (Ret of the five currently used levels of PPC for healthcare workers in the West Africa EVD response. Mathematical methods of predicting the rise in core body temperature (Tc in response to clothing, activity, and environment was used to simulate different responses to PPC levels, individual body sizes, and two hot humid conditions: morning/evening (air temperature: 25°C, relative humidity: 40%, mean radiant temperature: 35°C, wind velocity: 1 m/s and mid-day (30°C, 60%, 70°C, 1 m/s.Nearly still air (0.4 m/s measures of Rct ranged from 0.18 to 0.26 m2 K/W and Ret ranged from 25.53 to 340.26 m2 Pa/W.Biophysical assessments and modeling in this study provide quantitative guidance for prevention of heat stress of healthcare workers wearing PPC responding to the EVD outbreak in West Africa.

  13. Ebola Response: Modeling the Risk of Heat Stress from Personal Protective Clothing.

    Science.gov (United States)

    Potter, Adam W; Gonzalez, Julio A; Xu, Xiaojiang

    2015-01-01

    A significant number of healthcare workers have responded to aid in the relief and containment of the 2013 Ebola virus disease (EVD) outbreak in West Africa. Healthcare workers are required to wear personal protective clothing (PPC) to impede the transmission of the virus; however, the impermeable design and the hot humid environment lead to risk of heat stress. Provide healthcare workers quantitative modeling and analysis to aid in the prevention of heat stress while wearing PPC in West Africa. A sweating thermal manikin was used to measure the thermal (Rct) and evaporative resistance (Ret) of the five currently used levels of PPC for healthcare workers in the West Africa EVD response. Mathematical methods of predicting the rise in core body temperature (Tc) in response to clothing, activity, and environment was used to simulate different responses to PPC levels, individual body sizes, and two hot humid conditions: morning/evening (air temperature: 25°C, relative humidity: 40%, mean radiant temperature: 35°C, wind velocity: 1 m/s) and mid-day (30°C, 60%, 70°C, 1 m/s). Nearly still air (0.4 m/s) measures of Rct ranged from 0.18 to 0.26 m2 K/W and Ret ranged from 25.53 to 340.26 m2 Pa/W. Biophysical assessments and modeling in this study provide quantitative guidance for prevention of heat stress of healthcare workers wearing PPC responding to the EVD outbreak in West Africa.

  14. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  15. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  16. Effect of longitudinal pitch on the convection heat transfer from the tube banks in crossflow

    International Nuclear Information System (INIS)

    Kim, Tae-Wan; Hwang, Dae-Hyun; Lee, Chung-Chan; Kim, Keung-Ku

    2006-01-01

    When the tube banks in the heat exchanger are compactly designed, it is known that the average heat transfer coefficient is reduced compared with that of widely-designed tube banks. Thus, the heat transfer rate calculated by the usual heat transfer correlation will be over-estimated more than the actual one and the heat exchanger with such a design will have insufficient heat transfer capacity. Therefore, it is necessary to evaluate the effect of longitudinal and transverse pitches on the heat transfer, quantitatively. Zukauskas correlated various experimental data for aligned and staggered arrangements of tube banks as a function of Reynolds number and Prandtl number. In addition, Grimison suggested the heat transfer correlation for tube banks whose coefficients are determined by geometrical characteristics. However, Zukauskas correlation does not consider the effect of longitudinal and transverse pitches in the case of the aligned arrangement and Grimison correlation can only be used for specific geometrical arrangement such as 1.25X1.25, 1.50X1.50, and so on. Therefore, additional correlation for a heat transfer coefficient which covers a wide range of a pitch is required to predict the heat transfer rate appropriately. In this study, as a first step, the effect of a longitudinal pitch on the heat transfer is investigated for aligned tube banks by using CFD (Computational Fluid Dynamics) code

  17. Factors of subjective heat stress of urban citizens in contexts of everyday life

    Science.gov (United States)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Janus Willem

    2016-04-01

    Heat waves and the consequent heat stress of urban populations have a growing relevance in urban risk management and strategies of urban adaptation to climate change. In this context, social science studies on subjective experiencing of heat as stress by urban citizens are a new emerging field. To contribute to the understanding of self-reported subjective heat stress and its major determinants in a daily life perspective, we conducted a questionnaire survey with 323 respondents in Karlsruhe, Germany, after heat waves in July and August 2013. Statistical data analysis showed that subjective heat stress is an issue permeating everyday activities. Subjective heat stress at home was lower than at work and in general. Subjective heat stress in general, at home, and at work was determined by the health impairments experienced during the heat and the feeling of being helplessly exposed to the heat. For subjective heat stress at home, characteristics of the residential building and the built environment additionally played a role. Although the rate of implemented coping measures was rather high, coping measures showed no uniform effect for the subjective heat stress. We conclude that in terms of urban adaptation strategies, further research is needed to understand how various processes of daily social (work) life enable or limit individual coping and that communication strategies are important for building capacities to better cope with future heat waves.

  18. Sustainability assessment of renewable power and heat generation technologies

    International Nuclear Information System (INIS)

    Dombi, Mihály; Kuti, István; Balogh, Péter

    2014-01-01

    Rationalisation of consumption, more efficient energy usage and a new energy structure are needed to be achieved in order to shift the structure of energy system towards sustainability. The required energy system is among others characterised by intensive utilisation of renewable energy sources (RES). RES technologies have their own advantages and disadvantages. Nevertheless, for the strategic planning there is a great demand for the comparison of RES technologies. Furthermore, there are additional functions of RES utilisation expected beyond climate change mitigation, e.g. increment of employment, economic growth and rural development. The aim of the study was to reveal the most beneficial RES technologies with special respect to sustainability. Ten technologies of power generation and seven technologies of heat supply were examined in a multi-criteria sustainability assessment frame of seven attributes which were evaluated based on a choice experiment (CE) survey. According to experts the most important characteristics of RES utilisation technologies are land demand and social impacts i.e. increase in employment and local income generation. Concentrated solar power (CSP), hydropower and geothermal power plants are favourable technologies for power generation, while geothermal district heating, pellet-based non-grid heating and solar thermal heating can offer significant advantages in case of heat supply. - highlights: • We used choice experiment to estimate the weights of criteria for the sustainability assessment of RES technologies. • The most important attributes of RES technologies according to experts are land demand and social impacts. • Concentrated solar power (CSP), hydropower and geothermal power plants are advantageous technologies for power generation. • Geothermal district heating, pellet-based non-grid heating and solar thermal heating are favourable in case of heat supply

  19. A thermodynamic approach to the quantitative evaluation of the metallic melts glass-forming ability

    International Nuclear Information System (INIS)

    Zajtsev, A.I.

    2004-01-01

    The outlook for development of quantitative criteria of the tendency of metallic melt to render amorphous is shown with taking into account specific features of chemical interaction between components. With the use of statistical physics methods and thermodynamics as well as concepts of association the techniques are devised for quantitative separation of contributions to liquid alloy thermodynamic functions conditioned by various types of chemical interaction between components. The results Knudsen mass-spectroscopic comprehensive thermodynamic study of a wide range of systems with various tendency to vitrification are summarized. It is shown that excessive (configurational) entropy and specific heat of the liquid are key features predetermining thermodynamic and kinetic stimuli of amorphization. Their values are completely determined by a covalent constituent of chemical interaction on entropic term of association reaction. The possibility of construction of quantitative amorphization criteria on the basis of this feature and the outlook for the use of the approach proposed to predict physicochemical and mechanical properties of solid amorphous materials are illustrated [ru

  20. Detection of nanoflare-heated plasma in the solar corona by the FOXSI-2 sounding rocket

    Science.gov (United States)

    Ishikawa, Shin-nosuke; Glesener, Lindsay; Krucker, Säm; Christe, Steven; Buitrago-Casas, Juan Camilo; Narukage, Noriyuki; Vievering, Juliana

    2017-11-01

    The processes that heat the solar and stellar coronae to several million kelvins, compared with the much cooler photosphere (5,800 K for the Sun), are still not well known1. One proposed mechanism is heating via a large number of small, unresolved, impulsive heating events called nanoflares2. Each event would heat and cool quickly, and the average effect would be a broad range of temperatures including a small amount of extremely hot plasma. However, detecting these faint, hot traces in the presence of brighter, cooler emission is observationally challenging. Here we present hard X-ray data from the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2), which detected emission above 7 keV from an active region of the Sun with no obvious individual X-ray flare emission. Through differential emission measure computations, we ascribe this emission to plasma heated above 10 MK, providing evidence for the existence of solar nanoflares. The quantitative evaluation of the hot plasma strongly constrains the coronal heating models.

  1. Study of the heat conductivity of double and triple disordered solid solutions in the titanium-zirconium-hafnium system

    Energy Technology Data Exchange (ETDEWEB)

    Zarichnyak, Yu.P.; Lisnenko, T.A.

    1977-10-01

    Measurements are presented of the heat physical properties of trinary alloys in the system Ti-Zr-Hf. The possibility is shown of summarizing the results of the measurement and prediction of the heat conductivity of trinary continuous disordered solid solutions. Comparison of calculated results with experimental data shows that the method of modeling of the structure and prediction of heat conductivity suggested yields good qualitative and quantitative agreement throughout the entire range of change of concentration of the components. The maximum disagreement between calculated and experimental results is about 10%. 8 references, 2 figures, 1 table.

  2. Heat flux from magmatic hydrothermal systems related to availability of fluid recharge

    Science.gov (United States)

    Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.

    2015-01-01

    Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.

  3. Gasification of coal with steam using heat from HTRs

    International Nuclear Information System (INIS)

    Juentgen, H.; Heek, K.H. van

    1975-01-01

    In existing coal gasification processes a substantial part of the coal is used to provide the heat for the reaction, for the generation and superheating of steam and for the production of oxygen. By using heat from HTRs to substitute this part, the coal is then completely used as raw material for gas production. This offers the following advantages compared with the existing processes: a saving of coal, less CO 2 emission and, in countries with high coal costs, lower gas production costs. A survey is given of the state of the project, discussing the first design of a commercial gasifier, the influence of the helium outlet temperature of the HTR, kinds of products, and the overall efficiency of the plant. The aim of the development is to demonstrate the use of heat from an HTR for full scale coal gasification, starting in 1985. (Auth.)

  4. Identifying Student Difficulties with Entropy, Heat Engines, and the Carnot Cycle

    Science.gov (United States)

    Smith, Trevor I.; Christensen, Warren M.; Mountcastle, Donald B.; Thompson, John R.

    2015-01-01

    We report on several specific student difficulties regarding the second law of thermodynamics in the context of heat engines within upper-division undergraduate thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students…

  5. A quantitative determination of air-water heat fluxes in Hermit Lake, New Hampshire under varying meteorological conditions, time of day, and time of year

    Science.gov (United States)

    Kyper, Nicholas D.

    An extensive heat flux study is performed at Hermit Lake, New Hampshire from May 26, 2010 till November 7, 2010 to determine the effects of the five individual heat fluxes on Hermit Lake and the surrounding amphibian community. Hermit Lake was chosen due to the relatively long meteorological observations record within the White Mountains of New Hampshire, a new lakeside meteorological station, and ongoing phenology studies of the surrounding eco-system. Utilizing meteorological data from the lakeside weather station and moored water temperature sensors, the incident (Qi), blackbody ( Qbnet ), latent (Qe), sensible (Q s), and net (Qn) heat fluxes are calculated. The incident heat flux is the dominate term in the net flux, accounting for 93% of the variance found in Qn and producing a heat gain of ˜ 19x108 J m-2 throughout the period of study. This large gain produces a net gain of heat in the lake until October 1, 2010, where gains by Qi are offset by the large combined losses of Qbnet , Qs, and Qe thereby producing a gradual decline of heat within the lake. The latent and blackbody heat fluxes produce the largest losses of heat in the net heat flux with a total losses of ˜ -8x108 J m-2 and ˜ -7x108 J m-2, respectively. The sensible heat flux is negligible, producing a total minimal loss of ˜ -1x108 J m-2. Overall the net heat produces a net gain of heat of 2x108 J m-2 throughout the study period. Frog calls indicative of breeding are recorded from May 26, 2010 until August 16, 2010. The spring peeper, American toad, and green frog each produced enough actively calling days to be compared to air temperature, surface water temperature, and wind speed data, as well as data from the five heat fluxes. Linear regression analysis reveals that certain water temperature thresholds affect the calling activities of the spring peeper and green frog, while higher wind speeds have a dramatic effect on the calling activities of both the green frog and American toad. All three

  6. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  7. Survey on sexual harassment in public transportation in Belgrade

    Directory of Open Access Journals (Sweden)

    Tanasković Branislava

    2007-01-01

    Full Text Available This paper presents the results of the survey on sexual harassment in public transportation in Belgrade, conducted during 2007. Authors of the survey are Milena Račeta and Branislava Tanasković, students on Philosophy faculty in Belgrade, psychology department. In introduction, authors give a short review of research methodology. In the rest of the paper, authors present quantitive survey results obtained through exploration of specific aspects of real sexual harassment experiences. Qualitive analysis of recommendations given by questioned females is also presented. This survey has been conducted using a questionnaire specially constructed by authors for the purpose of this research. Finally, in conclusion, authors summarize the data, and emphasizing the need of an appropriate social action offer some possible solutions for minimizing this type of violence.

  8. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  9. Hamiltonian study of the response of a tokamak plasma to the ion cyclotron heating wave: minor heating and current generation by the fast wave

    International Nuclear Information System (INIS)

    Becoulet, A.

    1990-06-01

    The role of additional Heatings, such as the Ion Cyclotron Heating, is to raise magnetic fusion plasmas to higher temperatures, to satisfy the ignition condition. The understanding of the wave absorption mechanisms by the plasma first requires a precise description of the particle individual trajectories. The Hamiltonian mechanics, through action-angle variables, allows this description, and makes the computation of the wave-particle interaction easier. We then derive a quantitative evaluation of the intrinsic stochasticity for ionic trajectories perturbated by the fast wave. This stochasticity, combinated to the collisional effects, gives the validity domain for a quasilinear approximation of the evolution equation. This equation is then written under a variational formulation, and solved semi-analytically. Results conclude to the importance of the Hamiltonian chaos in the formation of the deeply anisotropic distribution tails, encountered in minority heating scenarios. Direct interaction of the electrons and the fast wave is similarly analysed. The influence of the various parameters (wave spectrum, magnetic configuration, frequency,...) is then examined in order to optimize this scenario of fast wave current drive in tokamaks [fr

  10. Inducing Heat Shock Proteins Enhances the Stemness of Frozen-Thawed Adipose Tissue-Derived Stem Cells.

    Science.gov (United States)

    Shaik, Shahensha; Hayes, Daniel; Gimble, Jeffrey; Devireddy, Ram

    2017-04-15

    Extensive research has been performed to determine the effect of freezing protocol and cryopreservation agents on the viability of adipose tissue-derived stromal/stem cells (ASCs) as well as other cells. Unfortunately, the conclusion one may draw after decades of research utilizing fundamentally similar cryopreservation techniques is that a barrier exists, which precludes full recovery. We hypothesize that agents capable of inducing a subset of heat shock proteins (HSPs) and chaperones will reduce the intrinsic barriers to the post-thaw recovery of ASCs. ASCs were exposed to 43°C for 1 h to upregulate HSPs, and the temporal HSP expression profile postheat shock was determined by performing quantitative polymerase chain reaction (PCR) and western blotting assays. The expression levels of HSP70 and HSP32 were found to be maximum at 3 h after the heat shock, whereas HSP90 and HSP27 remain unchanged. The heat shocked ASCs cryopreserved during maximal HSPs expression exhibited increased post-thaw viability than the nonheat shocked samples. Histochemical staining and quantitative reverse transcription-PCR indicated that the ASC differentiation potential was retained. Thus, suggesting that the upregulation of HSPs before a freezing insult is beneficial to ASCs and a potential alternative to the use of harmful cryoprotective agents.

  11. Efficient dewatering of bark in heated presses. Survey and pilot-scale trials; Effektivare avvattning av bark i vaermda pressar. Problemkartering samt foersoek i pilotskala

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Martin; Stenstroem, Stig (Lund Inst. of Technology, Lund (SE))

    2007-12-15

    Dewatering and drying of biofuels such as bark and GROT have received increased importance due to an increased interest to use these products as energy sources. In Sweden there are about 30 bark presses installed, however the amount of available information is very limited about dewatering of bark. The goal with this work is to increase the knowledge about dewatering of bark. Two separate goals have been defined in the project: A. Survey about problems related to dewatering of bark and compilation of operating experiences at Swedish mills. B. Study how different parameters affect bark dewatering at pilot scale experiments. Study different techniques for heating bark and the bark pressing process. The results will mainly be of interest for mills which are handling bark, for municipal power plants who buy wet forest residues (bark, GROT etc.) and for manufacturers of industrial bark pressing equipment. The results show that the dry matter content for birch- and pine bark normally are so high that pressing does not result in dewatering of the barks. Both dry and wet debarking is used and these bark fractions should be pressed separately. On line measurement of the dry matter content for the bark should be used as a standard tool on the bark press. This will facilitate improved control of the bark press during the year. Other conclusions are that smaller bark particles result in an increased dry matter content, large bark- and wood pieces decrease the dewatering in the bark press and that the total residence time in the press nip should be at least 30 seconds. The most common method to take care of bark water is to send it to the evaporators or to the water purification plant. Maintenance of the bark press appears not to be a big problem. Hot pressing can be accomplished in different ways, either the bark press can be heated or the bark can be heated in different ways. The alternatives that have been studied in this project are steaming the bark, heating the bark using

  12. Drivers of self-reported heat stress in the Australian labour force.

    Science.gov (United States)

    Zander, Kerstin K; Moss, Simon A; Garnett, Stephen T

    2017-01-01

    Heat stress causes reductions in well-being and health. As average annual temperatures increase, heat stress is expected to affect more people. While most research on heat stress has explored how exposure to heat affects functioning of the human organism, stress from heat can be manifest long before clinical symptoms are evident, with profound effects on behavior. Here we add to the little research conducted on these subclinical effects of environmental heat using results from an Australian-wide cross-sectional study of nearly 2000 respondents on their self-reported level of heat stress. Slightly less than half (47%) of the respondents perceived themselves as at least sometimes, often or very often stressed by heat during the previous 12 months. Health status and smoking behavior had the expected impact on self-reported perceived heat stress. There were also regional differences with people living in South Australia, Victoria and New South Wales most likely to have reported to have felt heat stressed. People generally worried about climate change, who had been influenced by recent heat waves and who thought there was a relationship between climate change and health were also more likely to have been heat stressed. Surprisingly average maximum temperatures did not significantly explain heat stress but stress was greater among people who perceived the day of the survey as hotter than usual. Currently heat stress indices are largely based on monitoring the environment and physical limitations to people coping with heat. Our results suggest that psychological perceptions of heat need to be considered when predicting how people will be affected by heat under climate change and when developing heat relief and climate change adaptation plans, at work, at home or in public spaces. We further conclude that the perception of temperature and heat stress complements measures that assess heat exposure and heat strain. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content

    Science.gov (United States)

    Piecuch, Christopher G.; Ponte, Rui M.; Little, Christopher M.; Buckley, Martha W.; Fukumori, Ichiro

    2017-09-01

    The subpolar North Atlantic (SPNA) is subject to strong decadal variability, with implications for surface climate and its predictability. In 2004-2005, SPNA decadal upper ocean and sea-surface temperature trends reversed from warming during 1994-2004 to cooling over 2005-2015. This recent decadal trend reversal in SPNA ocean heat content (OHC) is studied using a physically consistent, observationally constrained global ocean state estimate covering 1992-2015. The estimate's physical consistency facilitates quantitative causal attribution of ocean variations. Closed heat budget diagnostics reveal that the SPNA OHC trend reversal is the result of heat advection by midlatitude ocean circulation. Kinematic decompositions reveal that changes in the deep and intermediate vertical overturning circulation cannot account for the trend reversal, but rather ocean heat transports by horizontal gyre circulations render the primary contributions. The shift in horizontal gyre advection reflects anomalous circulation acting on the mean temperature gradients. Maximum covariance analysis (MCA) reveals strong covariation between the anomalous horizontal gyre circulation and variations in the local wind stress curl, suggestive of a Sverdrup response. Results have implications for decadal predictability.

  14. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  15. The international heat pump market as seen from the 'Business Development' point of view

    International Nuclear Information System (INIS)

    Schilli, A. S.; Afjei, T.

    2002-01-01

    This article takes a close look at the prerequisites that are decisive for successful business development in the international heat pump market and the challenges placed by them. The article examines the quality of market information and data that is available, especially regarding the market potential for heating and cooling in residential, commercial and industrial buildings. The results of various national and international surveys and studies made in this area are discussed. Several characteristics of the heat pump market - both in the buying and selling areas - are examined in order to clarify the requirements for market and business development in these sectors

  16. Industrial excess heat for district heating in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Petrovic, Stefan; Karlsson, Kenneth Bernard

    2017-01-01

    analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate...... the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity...... analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal...

  17. On the thermal analysis of a plate-fin heat sink considering the thermal-entry length effect

    International Nuclear Information System (INIS)

    Bassiouny, Ramadan; Maher, Hisham; Hegazy, Adel A.

    2016-01-01

    Highlights: • Dissipated convective heat strongly depends on convection coefficient. Two correlations were developed for so and validated. • A clear error in air temperature distribution along the heat sink was seen if coefficient were not properly selected. • The error decreases when thermal-entry length effect is considered, as for thermal flow through short conduits as Pr <1. - Abstract: Cooling electric and electronic components is very imperative to keep these components functioning properly. The heat sink is a device used to dissipate generated heat and accordingly cool these components. Airflow through heat sinks experiences velocity and thermal boundary layer variation that significantly affects the heat transfer process and heat sink performance as a result. The present study aims at developing an analytical model that compares the effect of adopting fully-developed or thermally-developing flow on convective heat transfer coefficient and accordingly longitudinal predicted air temperature distribution. Experiments on plate-fin heat sinks were carried out to validate the developed model. The results quantitatively showed a noticeable overprediction in the air temperature distribution when the heat transfer coefficient was estimated based on a fully-developed assumption. On the other hand, a close agreement between predicted and measured values was noticed when the thermal-entry length effect was considered.

  18. Heat-flow patterns in Tian-Calvet microcalorimeters: Conductive, convective, and radiative transport in gas dosing experiments

    International Nuclear Information System (INIS)

    Vilchiz, Luis Enrique; Pacheco-Vega, Arturo; Handy, Brent E.

    2005-01-01

    Mathematical models of a Tian-Calvet microcalorimeter were solved numerically by the finite-element method in an effort to understand the relative importance of the three basic heat transfer mechanisms operative during gas dosing experiments typically used to determine heats of adsorption on catalysts and adsorbents. The analysis pays particular attention to the quantitative release of heat through various elements of the cell and sensor cups to assess time delays and the deg.ree of thermal shunting that may result in inaccuracies in calorimetric measurements. Conductive transfer predominates in situations where there is high gas headspace pressure. The convection currents that arise when dosing with considerable gas pressure in the cell headspace region are not sufficiently strong to shunt significant amounts of sample heat away from being sensed by the surrounding thermopiles. Therefore, the heat capture fraction (heat sensed/heat produced) does not vary significantly with gas headspace pressure. During gas dosing under very low gas headspace pressure, radiation losses from the top of the sample bed may significantly affect the heat capture fraction, leading to underestimations of adsorption heats, unless the heat radiated from the top of the catalyst bed is effectively reflected back to the sample region or absorbed by an inert packing layer also in thermal contact with the thermopile wall

  19. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  20. Experience gained in the process of the variable mass heat flow control implemented in the district heat supply system of the city of Gyor

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, F.; Milanovich, L.; Lelek, J.; Kekk, I. [District Heating LTD. of Gyor (Hungary)

    1996-11-01

    The district heating system of the city of Gyor is fed from a hot water boiler plant. The total heat demand for 23,000 residential homes and several public facilities is 260 MW. The variable mass flow control was implemented in 1991 through 1992. Design, preparatory job and the majority of implementation was carried out without external involvement. The paper presents historical background and brief project presentation which is followed by comparative presentation of the variable mass flow control and constant mass flow control. This comparative survey has been conducted on the basis of operating data for 1993 and those for 1988. In the conclusion the gained experience is summarized.