WorldWideScience

Sample records for heating pipelines diameters

  1. Incidental electric heating of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Sonninskii, A V; Sirotin, A M; Vasiliev, Y N

    1981-04-01

    VNIIgaz has improved the conventional Japanese SECT pipeline-heating system, which uses a small steel tube that contains an insulated heater/conductor and is welded to the top of the pipeline. The improved version has two insulated electric heaters - one on the top and the other on the bottom of the pipeline - located inside steel angle irons that are welded to the pipeline. A comparison of experimental results from heating a 200-ft pipeline with both systems at currents of up to 470 A clearly demonstrated the better heating efficiency of the VNIIgaz unit. The improved SECT system would be suitable for various types of pipelines, including gas lines, in the USSR's far north regions.

  2. Diameter effect on critical heat flux

    International Nuclear Information System (INIS)

    Tanase, A.; Cheng, S.C.; Groeneveld, D.C.; Shan, J.Q.

    2009-01-01

    The critical heat flux look-up table (CHF LUT) is widely used to predict CHF for various applications, including design and safety analysis of nuclear reactors. Using the CHF LUT for round tubes having inside diameters different from the reference 8 mm involves conversion of CHF to 8 mm. Different authors [Becker, K.M., 1965. An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts, Aktiebolaget Atomenergie Report AE 177, Sweden; Boltenko, E.A., et al., 1989. Effect of tube diameter on CHF at various two phase flow regimes, Report IPE-1989; Biasi, L., Clerici, G.C., Garriba, S., Sala, R., Tozzi, A., 1967. Studies on Burnout, Part 3, Energia Nucleare, vol. 14, pp. 530-536; Groeneveld, D.C., Cheng, S.C., Doan, T., 1986. AECL-UO critical heat flux look-up table. Heat Transfer Eng., 7, 46-62; Groeneveld et al., 1996; Hall, D.D., Mudawar, I., 2000. Critical heat flux for water flow in tubes - II subcooled CHF correlations. Int. J. Heat Mass Transfer, 43, 2605-2640; Wong, W.C., 1996. Effect of tube diameter on critical heat flux, MaSC dissertation, Ottawa Carleton Institute for Mechanical and Aeronautical Engineering, University of Ottawa] have proposed several types of correlations or factors to describe the diameter effect on CHF. The present work describes the derivation of new diameter correction factor and compares it with several existing prediction methods

  3. Multi-diameter pigging: factors affecting the design and selection of pigging tools for multi-diameter pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Karl [Pipeline Engineering and Supply Co. Ltd., Richmond, NY (United States)

    2009-07-01

    This paper will consider the process involved in pigging tool selection for pipelines with two or more significant internal diameters which require pigging tools capable of negotiating the different internal diameters whilst also carrying out the necessary pipeline cleaning operation. The paper will include an analysis of pipeline features that affect pigging tool selection and then go on to look at other variables that determine the pigging tool design; this will include a step by step guide outlining how the tool is designed, the development of prototype pigs and the importance of testing and validation prior to final deployment in operational pigging programmes. (author)

  4. A Robotic System for Inspection and Repair of Small Diameter Pipelines

    Directory of Open Access Journals (Sweden)

    S. A. Vorotnikov

    2015-01-01

    Full Text Available This paper deals with the construction and control system of miniature robotic system that is designed to move and make inspection inside small diameter pipelines. It gives an overview of ways to move a microsize robotic system inside the small diameter pipe. The proposed design consists of information module and three traction modules, including modules for fixing, linear moving and angular positioning. This paper describes the design and operation of a robotic system and its different modules. Also are shown the structure of the robot control system, the basic calculations of construct and some simulation results of the individual modules of the robot.

  5. Public issues associated with planning a large diameter pipeline in a multi-use urban corridor

    Energy Technology Data Exchange (ETDEWEB)

    Buszynski, M. [SENES Consultants Ltd., Richmond Hill, ON (Canada)

    2004-07-01

    The demand for natural gas in a downtown area of Toronto is expected to increase significantly due to the proposed construction of two new generation stations. However, there are few opportunities to locate the pipelines in large urban centers because of the lack of foresight by municipalities and others in preserving corridors for utilities. Enbridge Gas conducted a system planning study to determine the best methods for overcoming public issues that were encountered while planning the route for a NPS 36 inch diameter natural gas pipeline in this urban region. In Ontario, distribution pipelines are regulated by the Ontario Energy Board, whose environmental guidelines for the location, construction and operation of hydrocarbon pipelines require the identification of indirectly affected landowners and detailed analysis of public issues and how they can be resolved. Issues include noise, vibration, dust and traffic. Secondary use of the electric transmission rights-of-way resulted in the identification of several other issues, including aesthetics of the right-of-way and loss of privacy for adjacent residential properties. It was determined that the optimal solution was to parallel a section of existing NPS 30 pipeline running in a north-south right-of-way located east of the Don Valley Parkway. The techniques used to address public issues identified 180 directly affected and 3,200 indirectly affected landowners. The Enbridge study revealed that it is possible to plan a right-of-way through an urban corridor in a manner that is compatible with existing development and that satisfies the general public. 6 figs.

  6. Experimental study of high-performance cooling system pipeline diameter and working fluid amount

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan; Hrabovsky, Peter; Papučík, Štefan

    2016-03-01

    This work deals with heat transfer resulting from the operation of power electronic components. Heat is removed from the mounting plate, which is the evaporator of the loop thermosyphon to the condenser and by natural convection is transferred to ambient. This work includes proposal of cooling device - loop thermosyphon, with its construct and follow optimization of cooling effect. Optimization proceeds by selecting the quantity of working fluid and selection of diameters vapour line and liquid line of loop thermosyphon.

  7. Design of small diameter HT/HP sour service reeled rigid pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Daniel; Gouveia, Joao; Tardelli, Luciano [Tecnitas, Rio de Janeiro, RJ (Brazil)], e-mail: daniel.carneiro@br.bureauveritas.com; Parrilha, Rafael [Bureau Veritas Group, London (United Kingdom); Oazen, Eduardo; Cardoso, Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The paper presents an overview of the challenges overcome in the engineering design of two 219 mm diameter, 6 km length oil production pipelines, to be installed by reeling at Espirito Santo Basin, offshore Brazilian coast in 1500 m water depth. The high temperature and high pressure (HT/HP) operating conditions and sour content associated with the small diameter required to single well oil production would usually lead to flexible flow line solution in Brazilian fields. The decision of employing small diameter thick-walled rigid C-Mn steel pipelines with thick thermal insulation made necessary extensive engineering work to achieve a safe and robust thermal expansion control arrangement, including the design of walking mitigation and buckle initiation apparatus; a feasible weld acceptance criterion covering both high cycle fatigue due to pipe lay and vortex induced vibration (VIV) at free spans, and high strain low cycle fatigue and fracture growth induced by reeling installation and in-service lateral buckling. Several studies were performed using highly non-linear three-dimensional finite element models considering: pipe-soil interaction with full 3D seabed bathymetry; load history maintained from pipe lay to operational cycles, including temperature transient effects; high plastic strains (including steel properties de-rating due to high temperature) and section ovalization; mechanical contact between pipe and appurtenances during both installation and operational phases. Pipe-soil interaction comprised embedment considering dynamic effects of pipe lay and full non-linear lateral and axial response curves including break-out and residual resistance. Strain concentration factors due to field joints were evaluated using detailed solid models considering non-linear response of both steel and insulation materials. Susceptibility to VIV at free spans was assessed considering post loaded deformed span natural frequencies, including multi-span interaction effects and

  8. A study of the heated length to diameter effects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    An analytical and experimental investigation has been performed on the heated length-to-diameter effect on critical heat flux exit conditions. A L/D correction factor is developed by applying artificial neural network and conventional regression techniques to the KAIST CHF data base. In addition, experiment is being performed to validate the developed L/D correction factor with independent data. Assessment shows that the developed correction factor is promising for practical applications. 6 refs., 8 figs. (Author)

  9. A study of the heated length to diameter effects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    An analytical and experimental investigation has been performed on the heated length-to-diameter effect on critical heat flux exit conditions. A L/D correction factor is developed by applying artificial neural network and conventional regression techniques to the KAIST CHF data base. In addition, experiment is being performed to validate the developed L/D correction factor with independent data. Assessment shows that the developed correction factor is promising for practical applications. 6 refs., 8 figs. (Author)

  10. Pipeline heating method based on optimal control and state estimation

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, F.L.V. [Dept. of Subsea Technology. Petrobras Research and Development Center - CENPES, Rio de Janeiro, RJ (Brazil)], e-mail: fvianna@petrobras.com.br; Orlande, H.R.B. [Dept. of Mechanical Engineering. POLI/COPPE, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ (Brazil)], e-mail: helcio@mecanica.ufrj.br; Dulikravich, G.S. [Dept. of Mechanical and Materials Engineering. Florida International University - FIU, Miami, FL (United States)], e-mail: dulikrav@fiu.edu

    2010-07-01

    In production of oil and gas wells in deep waters the flowing of hydrocarbon through pipeline is a challenging problem. This environment presents high hydrostatic pressures and low sea bed temperatures, which can favor the formation of solid deposits that in critical operating conditions, as unplanned shutdown conditions, may result in a pipeline blockage and consequently incur in large financial losses. There are different methods to protect the system, but nowadays thermal insulation and chemical injection are the standard solutions normally used. An alternative method of flow assurance is to heat the pipeline. This concept, which is known as active heating system, aims at heating the produced fluid temperature above a safe reference level in order to avoid the formation of solid deposits. The objective of this paper is to introduce a Bayesian statistical approach for the state estimation problem, in which the state variables are considered as the transient temperatures within a pipeline cross-section, and to use the optimal control theory as a design tool for a typical heating system during a simulated shutdown condition. An application example is presented to illustrate how Bayesian filters can be used to reconstruct the temperature field from temperature measurements supposedly available on the external surface of the pipeline. The temperatures predicted with the Bayesian filter are then utilized in a control approach for a heating system used to maintain the temperature within the pipeline above the critical temperature of formation of solid deposits. The physical problem consists of a pipeline cross section represented by a circular domain with four points over the pipe wall representing heating cables. The fluid is considered stagnant, homogeneous, isotropic and with constant thermo-physical properties. The mathematical formulation governing the direct problem was solved with the finite volume method and for the solution of the state estimation problem

  11. Evolutionary Optimization for the Number and Capacity of Surge Tanks and Pipeline Diameters in a Transmission Line

    Directory of Open Access Journals (Sweden)

    Gholam Reza Talebzadeh Sarvestani

    2006-09-01

    Full Text Available Controlling the unsteady effects of fluid flow (water hammer is one of the most important monitoring factors for structural protection of transmission pipelines. These effects are controlled by surge tanks, air chambers, pressure relief valves, and check valves. Generally, the critical points are detected by simulating the unsteady flow of the fluid, and accordingly, optimum positioning of the control devices is decided. Among the search methods, Genetic Algorithm (GA is an effective and robust method to solve highly complex optimization problems. Here, for the first time, GA coupled with an unsteady flow simulator is used to optimize the number and capacity of surge tanks in a pipeline system. In addition, the pipeline diameters are optimized for their best performance.

  12. ANALYSIS OF DEPENDENCE BETWEEN CAPITAL EXPENDUTURES OF CONSTRUCTION WORKS AND GAS DISTRIBUTION PIPELINE DIAMETER

    Directory of Open Access Journals (Sweden)

    Tabunshchikov Yuriy Andreevich

    2012-10-01

    The research also contemplates the structure of expenses associated with the piping of gas distribution networks. Mathematical equations have been derived to perform sufficiently accurate calculations of costs of construction of various types and various lengths of gas pipelines.

  13. Nuclear combined heat and power - analyses of hot water pipeline breaks in a service tunnel with Apros simulation software

    International Nuclear Information System (INIS)

    Henttonen, T.; Paananen, M.

    2010-01-01

    This paper presents a computer model and simulation results for a long-distance heat transport system. The system can be used e.g. to transport heat from a nuclear power plant with combined heat and power (CHP) production. CHP production is considered for new build NPP projects in Finland. Emphasis is on the environmental conditions during a hot water pipeline break in a service tunnel. The modelled pipeline system is designed to transport 1000 MW of heat over a distance of 77 km for district heating purposes. The hot water pipeline is assumed to be 1200 mm diameter with a water temperature of 120 deg. C. Cooled water returns with a temperature of 55 - 60 deg. C in a similar 1200 mm diameter pipe. Both pipelines are installed to a service tunnel which is excavated into bedrock and divided into 2 kilometres long compartments. Both the 77 km long pipeline and the tunnel are modelled with Apros simulation software. A leak is modelled from the pipeline to the tunnel and the results are analyzed. This paper includes three different leak sizes (1 %, 10 % and 100 % of the pipeline's cross-sectional area). The leaks are calculated with water temperatures of 95 deg. C and 120 deg. C in the pipeline. Apros calculates dynamically the phenomena inside the pipeline with two-phase 6-equation calculation model. The tunnel conditions are calculated with a lumped parameter model. The size of the leak has a substantial effect on the leak's consequences in the tunnel. Also the water temperature in the pipeline influences the results strongly. If the water temperature is over 100 deg. C, a considerable amount of the water boils as it leaks to the tunnel. The boiling of water makes the conditions in the tunnel much more severe than they would otherwise be. If there is a substantial flow out of the tunnel, the air in the tunnel can be replaced by hot steam. Obviously, this can mean hazardous conditions in the tunnel. (authors)

  14. Research of processes of heat exchange in horizontal pipeline

    Science.gov (United States)

    Nikolaev, A. K.; Dokoukin, V. P.; Lykov, Y. V.; Fetisov, V. G.

    2018-03-01

    The energy crisis, which becomes more evident in Russia, stems in many respects from unjustified high consumption of energy resources. Development and exploitation of principal oil and gas deposits located in remote areas with severe climatic conditions require considerable investments increasing essentially the cost of power generation. Account should be taken also of the fact that oil and gas resources are nonrenewable. An alternative fuel for heat and power generation is coal, the reserves of which in Russia are quite substantial. For this reason the coal extraction by 2020 will amount to 450-550 million tons. The use of coal, as a solid fuel for heat power plants and heating plants, is complicated by its transportation from extraction to processing and consumption sites. Remoteness of the principal coal mining areas (Kuzbass, Kansk-Achinsk field, Vorkuta) from the main centers of its consumption in the European part of the country, Siberia and Far East makes the problem of coal transportation urgent. Of all possible transportation methods (railway, conveyor, pipeline), the most efficient is hydrotransport which provides continuous transportation at comparatively low capital and working costs, as confirmed by construction and operation of extended coal pipelines in many countries.

  15. Including district heating pipelines in absolute liability laws

    Energy Technology Data Exchange (ETDEWEB)

    Gronau, W

    1977-10-01

    On January 1, 1978 the provisions of the Act Amending the Rules of Liability Damages have entered into force. Formally this means that the provisions of the Reich Liability Act (Reichshaftpflichtgesetz, RHG) and those of the Act on Liability with Respect to Property Damage of Railways and Tramways (SHG) are now combined under the new term of Liability Act (Haftpflichtgesetz). In material terms it means that the district heat industry with its supply pipelines is subject to absolute liability. This creates a liability situation for this industry which has been existing for the electricity and gas industries since 1943 as a result of an amendment of the Reich Liability Act.

  16. Plugging of drinking water flow into horizontal high diameter pipeline with artificial ice plug

    International Nuclear Information System (INIS)

    Gyongyosi, T.; Valeca, S.; Panaitescu, V. N.; Prisecaru, I.

    2013-01-01

    Local isolation of a pipeline section, placed horizontally into a loop of drinking water supply network, can be made with an ice plug resulting after controlled process inside of pipeline without stopping the consumer supply. The technique is applying in order to perform repairs or items replacement, without closing the drinking water supply network at the same time decreasing the fluid loss resulted after discharge of the affected loop. In facts, the technique is simple one and assumes to apply a special device sized for each case using a freezing liquid agent injected continuously. The paper contains a constructive description of the experimental technological facilities and of the experimental model for ice plugging device used. The test, the first results get and some conclusion are following. The paper is dedicated to the specialists working in the research and technological engineering. (authors)

  17. Influence of heat transfer on two-phase flow behavior in onshore oil pipelines

    Directory of Open Access Journals (Sweden)

    Oldrich Joel Romero

    2016-01-01

    Full Text Available Computational tools for simulation of multiphase flow in oil pipelines are of great importance for the determination of the technical feasibility of the production in oilfields. The present article presents the mathematical and numerical modeling of the oil biphasic flow in a partially submerged onshore pipeline. The biphasic behavior of the heavy oil of 13,2ºAPI is translated by the Dukler correlation. The oil’s viscosity is regarded as dependent on the temperature and on the API density of the oil by means of the Hossain correlation. The pipeline, of 3,600m and 4 inches (10.16cm in diameter, transports the oil from a collecting station to a storage center and consists of three sections. The first and third sections are above ground and are in contact with the external environment. The intermediate section is sitting on the river bed and is the critical part of the pipeline, once high heat losses are observed. The influence on the type of pipe insulation in the pressure and temperature gradients was analyzed with the aid of commercial 1D software Pipesim®. The results, of this 1D and non-isothermal problem with prescribed outlet pressure, show that the use of isolation when appropriately designed in terms of material quality and thickness is of utmost importance to maintain the heat transfer at low levels, in order to ensure the movement of fluids in long sections without compromising the system operation.

  18. Study of the equivalent diameter concept for heat transfer by forced convection in annular channels

    International Nuclear Information System (INIS)

    Mendez T, D.

    1994-01-01

    This work describes a comparative analysis between experimental values of heat transfer coefficients in fully developed turbulent flow for a concentric annular channel, and those calculated with the empirical correlations obtained for tubes by Dittus-Boelter, Sieder and Tate, a modified Colburn equation, and that proposed by Gnielinski which applies the analogy between friction and heat transfer. The coefficients were calculated by means of two different equivalent diameters: 1) The hydraulic equivalent diameter; and 2) The heated equivalent diameter. It was concluded that the hydraulic equivalent diameter gives much better results than the heated equivalent diameter. (Author)

  19. Combined cycles for pipeline compressor drives using heat

    International Nuclear Information System (INIS)

    Malewski, W.F.; Holldorff, G.M.

    1979-01-01

    Combined cycles for pipeline-booster stations using waste heat from gas turbines exhaust can improve the overall efficiency of such stations remarkably. Several working fluids are suitable. Due to existing criteria for selecting a working medium under mentioned conditions, water, ammonia, propane and butane can be considered as practical working fluids. The investigations have shown that: (1) ammonia is advantageous at low exhaust gas and ambient temperatures, (2) water is most effective at high exhaust gas and ambient temperatures, and (3), additionally, hydrocarbons are suitable in a medium range for exhaust gas and condensing temperatures. Not only thermodynamic but also operational features have to be considered. There is not one optimum working fluid but a best one suitable according to the prevailing site conditions

  20. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system.

    Science.gov (United States)

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-11-05

    In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography-Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Paint this pipeline green : new pipeline technologies set to trim fugitive emissions, reuse waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Cope, G.

    2007-01-15

    A significant amount of methane is released when natural gas is moved through North American pipelines, and gas producers continue to search for a method to recapture energy wasted as a result of the pressure reductions needed to deliver natural gas to residential areas. This article provided details of a new direct fuel cell energy recovery generation unit (DFC-ERG) consisting of a 1.2 MW fuel cell and a 1 MW unfired gas expansion turbine. As the natural gas exits the high pressure mainline, it passes through the unfired turbine, which rotates a generator and produces electricity. The fuel cell then uses an electrochemical process to internally convert natural gas to hydrogen, which is then converted into electricity and heat. The combined system can achieve electrical efficiencies of more than 60 per cent, and has almost no emissions. Heat produced by the fuel cell can be captured and used to warm up the gas in the distribution network in order to offset boiler emissions. Designed by Enbridge, the system is expected to be in operation by 2008, and will provide up to 15,000 MW hours per year. TransCanada Corporation has designed a supersonic gas-gas ejector that fits around the turbine shafts that release small amounts of gas to prevent heat build-up at compressor stations. The device encapsulates the gas, which is then re-injected back into the mainline, and may save the company up to 0.5 bcf per year. In Alberta, many portable compressor engines waste as much as 30 per cent of their efficiency through exhaust gases. A 3 year research project has resulted in the design of a slug flow generator. Water from a large tub is pumped into the top of a transparent acrylic cylinder which creates a vortex. Compressed air is then injected into the top of the vortex, where it breaks down into discrete slugs of water. While still in the initial design phases, the device may be used for field compressor exhaust pipes, as well as for commercial and residential applications. 2

  2. Performance Measurements of a 7 mm-Diameter Hydrogen Heat Pipe

    International Nuclear Information System (INIS)

    Abdel-Bary, M.; Abdel-Samad, S.; Kiliana, K.; Ritman, J.; Abdel-Bary, M.; Abdel-Samad, S.

    2008-01-01

    A gravity assisted heat pipe with 7-mm diameter has been developed and tested to cool a liquid hydrogen target for extracted beam experiments at COSY. The liquid flowing down from the condenser surface is separated from the vapor flowing up by a thin wall 3 mm diameter plastic tube located concentrically inside the heat pipe. The heat pipe was tested at different inclination angles with respect to the horizontal plane. The heat pipe showed good operating characteristics because of the low radiation heat load from the surroundings, low heat capacity due to the small mass, higher sensitivity to heat loads (to overcome the heat load before the complete vaporization of the liquid in the target cell) due to the higher vapor speed inside the heat pipe which transfers the heat load to the condenser

  3. Application of the Critical Heat Flux Look-Up Table to Large Diameter Tubes

    Directory of Open Access Journals (Sweden)

    M. El Nakla

    2013-01-01

    Full Text Available The critical heat flux look-up table was applied to a large diameter tube, namely 67 mm inside diameter tube, to predict the occurrence of the phenomenon for both vertical and horizontal uniformly heated tubes. Water was considered as coolant. For the vertical tube, a diameter correction factor was directly applied to the 1995 critical heat flux look-up table. To predict the occurrence of critical heat flux in horizontal tube, an extra correction factor to account for flow stratification was applied. Both derived tables were used to predict the effect of high heat flux and tube blockage on critical heat flux occurrence in boiler tubes. Moreover, the horizontal tube look-up table was used to predict the safety limits of the operation of boiler for 50% allowable heat flux.

  4. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jingqing [College of Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Chen, Huanyu [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Binhai Industrial Technology Research Institute of Zhejiang University, Tianjin 300000 (China); Yao, Lingdan; Wei, Zongyuan [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Lou, Liping, E-mail: loulp@zju.edu.cn [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda [Environmental Protection Agency, Office of Research and Development, NRMRL, Cincinnati, OH 45220 (United States); Hu, Baolan [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhou, Xiaoyan [Shaoxing Water Environmental Science Institute Co. Ltd, Zhejiang 312000 (China)

    2016-11-05

    Highlights: • First investigating the spatial distribution of pollutants in pipe-scale. • Spatial distribution of heavy metals indicated their sources were different. • Three main factors effete the distribution of pollutants. • Organic deposits mainly included microbial and microalgae metabolites. - Abstract: In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600 mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography–Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  5. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system

    International Nuclear Information System (INIS)

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-01-01

    Highlights: • First investigating the spatial distribution of pollutants in pipe-scale. • Spatial distribution of heavy metals indicated their sources were different. • Three main factors effete the distribution of pollutants. • Organic deposits mainly included microbial and microalgae metabolites. - Abstract: In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600 mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography–Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  6. The local heat treatment equipment and technology of the pipelines welded joints

    International Nuclear Information System (INIS)

    Korol'kov, P.M.

    1998-01-01

    The principal methods and equipment for local treatment of the pipe-lines weld joints in different industry branches is described. Recommendations about heat treatment equipment and technology application are given

  7. Effect of Tube Diameter on Heat Transfer to Vertically Upward Flowing Supercritical CO2

    International Nuclear Information System (INIS)

    Kang, Deog Ji; Kim, Sin; Bae, Yoon Yeong; Kim, Hwan Yeol; Kim, Hyung Rae

    2007-01-01

    Heat transfer characteristics of supercritical carbon dioxide are being investigated experimentally in the test loop named as SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt generation) at KAERI. The main purpose of the experiment is to provide a reliable heat transfer database for a SCWR (SuperCritical Water-cooled Reactor) by a prudent extension of the carbon dioxide test results to the estimation of a heat transfer for water. The produced data will be used in the thermo-hydraulic design of core and safety analysis for SCWR. The aim of the present paper is to study the influence of a tube diameter on a heat transfer. The experiments were completed for tubes of an inside diameter of 4.4mm and 9.0mm, respectively. The heat transfer characteristics from the two tubes of different diameters were compared and discussed

  8. Effect of Tube Diameter on Heat Transfer to Vertically Upward Flowing Supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji; Kim, Sin [Cheju National University, Jeju (Korea, Republic of); Bae, Yoon Yeong; Kim, Hwan Yeol; Kim, Hyung Rae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    Heat transfer characteristics of supercritical carbon dioxide are being investigated experimentally in the test loop named as SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt generation) at KAERI. The main purpose of the experiment is to provide a reliable heat transfer database for a SCWR (SuperCritical Water-cooled Reactor) by a prudent extension of the carbon dioxide test results to the estimation of a heat transfer for water. The produced data will be used in the thermo-hydraulic design of core and safety analysis for SCWR. The aim of the present paper is to study the influence of a tube diameter on a heat transfer. The experiments were completed for tubes of an inside diameter of 4.4mm and 9.0mm, respectively. The heat transfer characteristics from the two tubes of different diameters were compared and discussed.

  9. An ultrasound-based liquid pressure measurement method in small diameter pipelines considering the installation and temperature.

    Science.gov (United States)

    Li, Xue; Song, Zhengxiang

    2015-04-09

    Liquid pressure is a key parameter for detecting and judging faults in hydraulic mechanisms, but traditional measurement methods have many deficiencies. An effective non-intrusive method using an ultrasound-based technique to measure liquid pressure in small diameter (less than 15 mm) pipelines is presented in this paper. The proposed method is based on the principle that the transmission speed of an ultrasonic wave in a Kneser liquid correlates with liquid pressure. Liquid pressure was calculated using the variation of ultrasonic propagation time in a liquid under different pressures: 0 Pa and X Pa. In this research the time difference was obtained by an electrical processing approach and was accurately measured to the nanosecond level through a high-resolution time measurement module. Because installation differences and liquid temperatures could influence the measurement accuracy, a special type of circuit called automatic gain control (AGC) circuit and a new back propagation network (BPN) model accounting for liquid temperature were employed to improve the measurement results. The corresponding pressure values were finally obtained by utilizing the relationship between time difference, transient temperature and liquid pressure. An experimental pressure measurement platform was built and the experimental results confirm that the proposed method has good measurement accuracy.

  10. Pipeline investigation report : crude oil pipeline-third party damage : Trans Mountain Pipeline LP 610 millimetre-diameter crude oil pipeline : kilometre post 3.10, Westridge dock transfer line, Burnaby, British Columbia

    International Nuclear Information System (INIS)

    2009-03-01

    This report discussed an oil spill which occurred in July 2007 when a contractor's excavator bucket punctured a pipeline during the excavation of a trench for a new storm sewer line at a location in Burnaby, British Columbia (BC). The puncture caused the release of approximately 234 cubic meters of crude oil, which flowed into Burrard Inlet Bay via a storm sewer system. Eleven houses were sprayed with crude oil, and many other properties required restoration. Approximately 250 residents left their homes. While emergency workers and firefighters responding to the incident were sprayed with crude oil, no explosions, fires, or injuries occurred. The report provided details of studies conducted to determine the placement of the sewer line, as well as attempts made by the contractors to determine the lateral connection of the crude oil pipeline. Discrepancies between the location of the pipeline design drawing and its actual location on other construction drawings were also noted by the contractor. Twenty-four minutes after the rupture, the terminal was fully isolated and the drain-down of the pipeline was completed within an hour. The cause of the accident was attributed to inaccurate construction drawings and inadequate communications between contractors and consulting companies. 3 figs

  11. A deceleration system for near-diameter spheres in pipeline transportation in a pebble bed reactor based on the resistance of a pneumatic cushion

    International Nuclear Information System (INIS)

    Liu, Hongbing; He, Ayada; Du, Dong; Wang, Xin; Zhang, Haiquan

    2014-01-01

    Highlights: • A deceleration system for fuel transportation in a pebble bed reactor is designed. • Dynamic analysis and motion analysis of the deceleration process are conducted. • The effectiveness of the system is verified by the analysis and the experiment. • Some key design parameters are studied to achieve effective deceleration. • This research provides a guide for the design of a pebble bed reactor. - Abstract: The fuel elements cycle occurring inside and outside the core of a pebble bed reactor is carried out by pneumatic conveying. In some processes of conveyance, it is necessary to reduce the velocity of the moving fuel element in a short time to avoid damage to the fuel elements and the equipment. In this research, a deceleration system for near-diameter spheres in pipeline transportation based on the resistance of a pneumatic cushion is designed to achieve an effective and reliable deceleration process. Dynamic analysis and motion analysis of the deceleration process are conducted. The results show that when the fuel element is moving in the deceleration pipeline, the gas in the pipeline is compressed to create a pneumatic cushion which resists the movement of the fuel element. In this way, the velocity of the fuel element is decreased to below the target value. During this process, the deceleration is steady and reliable. On this basis some key design parameters are studied, such as the deceleration pipeline length, the ratio of the diameter of the fuel element to the internal diameter of the pipeline, etc. The experimental results are generally consistent with the analysis and demonstrate the considerable effectiveness of the deceleration process as well. This research provides a guide for the design of the fuel elements cycling system in a pebble bed reactor along with the optimization of its control

  12. Replacement of 13 valves by using an isolation plug in the 20 inches diameter main offshore gas pipeline at Cantarell oil field, Campeche Bay, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Carvahal Reyes, Jorge Omar; Ulloa Ochoa, Carlos Manuel [PEMEX, Exploracion y Produccion, MX (Mexico)

    2009-12-19

    In 2002 we changed 13 valves on deck of one gas production platform called Nohoch-A-Enlace at Cantarell Offshore Oil Field. The 20'' diameter gas pipeline and 200 km of length, transport and deliver gas for others production platforms in the Gas Lift System, So 2 millions of oil barrels per day depends of the operation of this gas pipeline but there was 13 valves on pig traps to be changed after 20 years of service to high pressure (64 to 63 kg/cm{sup 2}). We could not stop the operation of this pipeline and some little gas leaks were eliminated in some parts of the valves. This pipeline has two risers so the gas can be injected by two sides of the ring of 20 Km. So we found the proper technology in order to isolate one riser nad change 8 valves and the isolate the other and change the 5, and the gas lift system never stop during the plug and maintenance operations on platform. In the first isolation plug operation this tool run 20 mts inside the riser and was actionated and resists 65 Kg/cm{sup 2} of gas pressure during 44 hours so we changed 8 valves: 2 of 20'', 2 of 10'', 3 of 4'' and 1 of 8'' diameter. In the second isolation the plug run 30 mts inside the second risers and resist 64 Kg/cm{sup 2} of gas during 46 hours and we changed 5 valves of 20'' diameter. In the paper I will describe all the details of this successful operations and procedures. Also the aspects of Health, Security and Environment that we prepared one year before this operations at platform. Pemex save almost 2.5 millions of dollars because the gas lift system never stop and all valves were changed and now we can run cleaning and inspection tools inside the full ring. We used the first isolation plug in Latin America and we want to share this experience to all the pipeline operators in the world as a good practice in pipeline maintenance using plugging technology in the main and large pipelines of high pressure. (author)

  13. Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72

    Science.gov (United States)

    Kumar G., Udaya; S., Suresh; M. R., Thansekhar; Babu P., Dinesh

    2017-11-01

    Effect of varying diameter of metal nanowires on pool boiling heat transfer performance is presented in this study. Copper nanowires (CuNWs) of four different diameters (∼35 nm, ∼70 nm, ∼130 nm and ∼200 nm) were grown directly on copper specimen using template-based electrodeposition technique. Both critical heat flux (CHF) and boiling heat transfer coefficient (h) were found to be improved in surfaces with nanowires as compared to the bare copper surface. Moreover, both the parameters were found to increase with increasing diameter of the nanowires. The percentage increases observed in CHF for the samples with nanowires were 38.37%, 40.16%, 48.48% and 45.57% whereas the percentage increase in the heat transfer coefficient were 86.36%, 95.45%, 184.1% and 131.82% respectively as compared to the bare copper surface. Important reasons believed for this enhancement were improvement in micron scale cavity density and cavity size which arises as a result of the coagulation and grouping of nanowires during the drying process. In addition to this, superhydrophilic nature, capillary effect, and enhanced bubble dynamics parameters (bubble frequency, bubble departure diameter, and nucleation site density) were found to be the concurring mechanisms responsible for this enhancement in heat transfer performance. Qualitative bubble dynamics analysis was done for the surfaces involved and the visual observations are provided to support the results presented and discussed.

  14. Effect of Tube Diameter on The Design of Heat Exchanger in Solar Drying system

    Science.gov (United States)

    Husham Abdulmalek, Shaymaa; Khalaji Assadi, Morteza; Al-Kayiem, Hussain H.; Gitan, Ali Ahmed

    2018-03-01

    The drying of agriculture product consumes a huge fossil fuel rates that demand to find an alternative source of sustainable environmental friendly energy such as solar energy. This work presents the difference between using solar heat source and electrical heater in terms of design aspect. A circular-finned tube bank heat exchanger is considered against an electrical heater used as a heat generator to regenerate silica gel in solar assisted desiccant drying system. The impact of tube diameter on the heat transfer area was investigated for both the heat exchanger and the electrical heater. The fin performance was investigated by determining fin effectiveness and fin efficiency. A mathematical model was developed using MATLAB to describe the forced convection heat transfer between hot water supplied by evacuated solar collector with 70 °C and ambient air flow over heat exchanger finned tubes. The results revealed that the increasing of tube diameter augments the heat transfer area of both heat exchanger and electrical heater. The highest of fin efficiency was around 0.745 and the lowest was around 0.687 while the fin effectiveness was found to be around 0.998.

  15. Effect of particle diameter of porous media on flow and heat transfer in a mixing tee

    International Nuclear Information System (INIS)

    Wang, Yongwei; Lu, Tao; Wang, Kuisheng

    2012-01-01

    Highlights: ► Three particle diameter cases of 28 mm, 14 mm and 7 mm were simulated by LES. ► With the diameter decreasing, mixing scale tends to decrease in the mixing tee. ► With the diameter decreasing, thermal mixing is weakened. ► With the diameter decreasing, the thermal stratification is obvious. ► When the particle diameter ratio is 4:2:1, pressure drop ratio is 1:2:4. -- Abstract: Numerical simulations have been carried out to investigate flow and heat transfer in a mixing tee filled with periodic sintered copper spheres. Three particle diameter cases of 28 mm, 14 mm and 7 mm with the array of 4 × 4, 8 × 8 and 16 × 16 at the same porosity of 0.3 have been calculated using large-eddy simulations and the Smagorinsky–Lilly sub-grid scale model. With the particle diameter decreasing, the mixture scale of hot and cold fluid tends to decrease in the mixing tee; the pressure drop of fluid flow through porous media increases. When the particle diameter ratios are 4:2:1 and the specific surface ratios are 1:2:4, the pressure drop ratios are 1:2:4; the thermal mixing in porous media is weakened because the temperature fluctuation decreases and the stratification of hot and cold fluids is observed.

  16. Numerical Investigation of the Thermal Regime of Underground Channel Heat Pipelines Under Flooding Conditions with the Use of a Conductive-Convective Heat Transfer Model

    Science.gov (United States)

    Polovnikov, V. Yu.

    2018-05-01

    This paper presents the results of numerical analysis of thermal regimes and heat losses of underground channel heating systems under flooding conditions with the use of a convective-conductive heat transfer model with the example of the configuration of the heat pipeline widely used in the Russian Federation — a nonpassage ferroconcrete channel (crawlway) and pipelines insulated with mineral wool and a protective covering layer. It has been shown that convective motion of water in the channel cavity of the heat pipeline under flooding conditions has no marked effect on the intensification of heat losses. It has been established that for the case under consideration, heat losses of the heat pipeline under flooding conditions increase from 0.75 to 52.39% due to the sharp increase in the effective thermal characteristics of the covering layer and the heat insulator caused by their moistening.

  17. Automatic diameter control system applied to the laser heated pedestal growth technique

    Directory of Open Access Journals (Sweden)

    Andreeta M.R.B.

    2003-01-01

    Full Text Available We described an automatic diameter control system (ADC, for the laser heated pedestal growth technique, that reduces the diameter fluctuations in oxide fibers grown from unreacted and non-sinterized pedestals, to less than 2% of the average fiber diameter, and diminishes the average diameter fluctuation, over the entire length of the fiber, to less than 1%. The ADC apparatus is based on an artificial vision system that controls the pulling speed and the height of the molten zone within a precision of 30 mum. We also show that this system can be used for periodic in situ axial doping the fiber. Pure and Cr3+ doped LaAlO3 and pure LiNbO3 were usedas model materials.

  18. In line inspection of multi-diameter and high-pressure pipelines in Brazil using combined technologies: magnetic flux leakage and ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Ginten, Markus; Brockhaus, Stephan; Bouaoua, Nourreddine; Klein, Stefan [ROSEN Technology and Research Center, Lingen (Germany); Bruening, Franz [ROSEN Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The simultaneous use of the magnetic flux leakage (MFL) method and the ultrasonic testing (UT) method on a single in line inspection (ILI) tool has been identified as a versatile and accurate solution for liquid pipelines. The combination of the two methods is complementary to the restrictions of each other. Also, the overall scope of the inspection is enlarged. General wall thinning and largely corroded areas are accurately and reliably scanned with the UT unit, while very detailed information about pitting corrosion is obtained from the MFL measurement. Blind spots of echo loss, as occasionally observed for the UT channels is compensated by the more robust measurement from the MFL sensors. Consequently, this technology has been the method of choice in an in line inspection project of an onshore long distance pipeline in Brazil, facing a variety of corrosion threats. The pipeline consists of several multi-diameter sections of 18/20 inches and 20/22 inches. Furthermore, the high gravity of product in combination with a height profile, an altitude of 1152 m MSL (Mean Sea Level) had to be crossed, leads to a maximum pressure of 220 bar. These boundary conditions had to be considered during the design of the ILI-tool. The paper discusses the experience made so far with the combined technology MFL and UT. The effective use of the inspection tool for the above mentioned pipeline as well as field results from a previous inspection are described. (author)

  19. Attempts to isolate a horizontal high diameter (300 mm nominal diameter) pipeline with an ice plug at minimum water flow and without water flow

    International Nuclear Information System (INIS)

    Corbescu, B.; Gyongyosi, T.; Puiu, D.; Panaitescu, V. N.

    2016-01-01

    The ice plug isolation technique used for high diameter horizontal pipes is used for repair and maintenance activities on hydraulic installations that use liquid working agents. These techniques do not require shutting down the entire plant. The ice plug development inside the pipe requires using custom specialized equipment for each individual application. This paper briefly describes the experimental technological facilities used for conducting the experiments and highlights the important aspects in an experiment conducted on a horizontal NPS 12 testing section running demineralized water followed by the result analysis and conclusions. The paper is dedicated to specialists working in research and technological engineering. (authors)

  20. Transferability of decompression wave speed measured by a small-diameter shock tube to full size pipelines and implications for determining required fracture propagation resistance

    International Nuclear Information System (INIS)

    Botros, K.K.; Geerligs, J.; Rothwell, Brian; Carlson, Lorne; Fletcher, Leigh; Venton, Philip

    2010-01-01

    The control of propagating ductile (or tearing) fracture is a fundamental requirement in the fracture control design of pipelines. The Battelle two-curve method developed in the early 1970s still forms the basis of the analytical framework used throughout the industry. GASDECOM is typically used for calculating decompression speed, and idealizes the decompression process as isentropic and one-dimensional, taking no account of frictional effects. While this approximation appears not to have been a major issue for large-diameter pipes and for moderate pressures (up to 12 MPa), there have been several recent full-scale burst tests at higher pressures and smaller diameters for which the measured decompression velocity has deviated progressively from the predicted values, in general towards lower velocities. The present research was focused on determining whether pipe diameter was a major factor that could limit the applicability of frictionless models such as GASDECOM. Since potential diameter effects are primarily related to wall friction, which in turn is related to the ratio of surface roughness-to-diameter, an experimental approach was developed based on keeping the diameter constant, at a sufficiently small value to allow for an economical experimental arrangement, and varying the internal roughness. A series of tests covering a range of nominal initial pressures from 10 to 21 MPa, and involving a very lean gas and three progressively richer compositions, were conducted using two specialized high-pressure shock tubes (42 m long, I.D. = 38.1 mm). The first is honed to an extremely smooth surface finish, in order to minimize frictional effects and better simulate the behaviour of larger-diameter pipelines, while the second has a higher internal surface roughness. The results show that decompression wave speeds in the rough tube are consistently slower than those in the smooth tube under the same conditions of mixture composition and initial pressure and temperature

  1. Critical heat flux measurements in small-diameter tubes using R12 as model fluid

    International Nuclear Information System (INIS)

    Mueller-Menzel, T.

    1987-01-01

    Results of critical heat flux measurements are reported for vertical upflow of Refrigerant 12 at high mass fluxes and high pressures in small diameter tubes. The data are transformed into water data using a scaling law, which is verified by means of a new analysis. An error estimation includes the error of the scaling law. Special phenomena ('limiting quality', 'upstream boiling crisis') are explained by theoretical models. The applicability of existing correlations is checked and a new CHF-table for small diameter tubes is presented. With 41 figs., 12 tabs [de

  2. Heat resistance insulation for NPP pipelines and components

    International Nuclear Information System (INIS)

    Yurchenko, V.G.; Nazarova, G.A.; Popov, A.M.; Matveeva, N.F.

    1986-01-01

    To insulate hot surfaces of NPP process equipment and pipes it is suggested to use heat resistant insulation of foam aminoimides (FAI). Relative toxicity of aceton and acetaldehyd evolved from FAI in the process of thermal and thermal-oxidative break-down was determined. FAI can be used at 200 deg C

  3. Heat transfer with water in forced convection without boiling in small diameter tubes

    International Nuclear Information System (INIS)

    Ricque, Roger; Siboul, Roger

    1969-01-01

    This note presents the measurements performed for the establishment of an empirical heat transfer law for water in forced convection without boiling in small diameter tubes (2 and 4 mm), with high flow velocity and strong heat flux, and for relatively low fluid temperatures. A correlation of experimental points is obtained with a very small maximum dispersion: Nu fl = 0,0092 Re fl 0,88 Pr 0,5 (μ fl /μ p ) 0,14 . A correlation for the fiction coefficient is also presented [fr

  4. Corrosion Behavior of Pipeline Carbon Steel under Different Iron Oxide Deposits in the District Heating System

    Directory of Open Access Journals (Sweden)

    Yong-Sang Kim

    2017-05-01

    Full Text Available The corrosion behavior of pipeline steel covered by iron oxides (α-FeOOH; Fe3O4 and Fe2O3 was investigated in simulated district heating water. In potentiodynamic polarization tests; the corrosion rate of pipeline steel is increased under the iron oxide but the increaseing rate is different due to the differnet chemical reactions of the covered iron oxides. Pitting corrosion was only observed on the α-FeOOH-covered specimen; which is caused by the crevice corrosion under the α-FeOOH. From Mott-Schottky and X-ray diffraction results; the surface reaction and oxide layer were dependent on the kind of iron oxides. The iron oxides deposit increases the failure risk of the pipeline and localized corrosion can be occurred under the α-FeOOH-covered region of the pipeline. Thus, prevention methods for the iron oxide deposit in the district pipeline system such as filtering or periodic chemical cleaning are needed.

  5. Estimation of work capacity of welded mounting joints of pipelines of heat resisting steel

    International Nuclear Information System (INIS)

    Gorynin, I.V.; Ignatov, V.A.; Timofeev, B.T.; Blyumin, A.A.

    1982-01-01

    The analysis of a work capacity of circular welds made for the Dsub(y)850 pipeline connection with high pressure vessels of heat resisting steel of the 15Kh1NMFA type has been carried out on the base of test results with small samples and real units. Welds were performed using the manual electric arc welding without the following heat treatment. It has been shown that residual stresses in such welds do not produce an essential effect on the resistance of weld metal and heat affected zone on the formation and developments of cracks

  6. Development of the heated length to diameter correction factor on critical heat flux using the artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)

  7. Development of the heated length to diameter correction factor on critical heat flux using the artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)

  8. Heat loss of heat pipelines in insulation moisture conditions with the evaporation

    Directory of Open Access Journals (Sweden)

    Polovnikov Vyacheslav Yu.

    2014-01-01

    Full Text Available Results of numerical simulation of heat and mass transfer in a wet fibroporous material in conditions of evaporation and steam diffusion were obtained. Values of heat and mass fluxes were established. The contribution of evaporation effect to total heat flux and need to consider volume fractions of water and steam into the structure of fibroporous material in calculation of effective thermal conductivity were shown. Nonstationarity of heat and mass transfer in conditions of considered problem can be ignored.

  9. Dryout heat flux and flooding phenomena in debris beds consisting of homogeneous diameter particles

    International Nuclear Information System (INIS)

    Maruyama, Yu; Abe, Yutaka; Yamano, Norihiro; Soda, Kunihisa

    1988-08-01

    Since the TMI-2 accident, which occurred in 1979, necessity of understanding phenomena associated with a severe accident have been recognized and researches have been conducted in many countries. During a severe accident of a light water reactor, a debris bed consisting of the degraded core materials would be formed. Because the debris bed continues to release decay heat, the debris bed would remelt when the coolable geometry is not maintained. Thus the degraded core coolability experiments to investigate the influence of the debris particle diameter and coolant flow conditions on the coolability of the debris bed and the flooding experiments to investigate the dependence of flooding phenomena on the configuration of the debris bed have been conducted in JAERI. From the degraded core coolability experiments, the following conclusions were derived; the coolability of debris beds would be improved by coolant supply into the beds, Lipinski's 1-dimensional model shows good agreement with the measured dryout heat flux for the beds under stagnant and forced flow conditions from the bottom of the beds, and the analytical model used for the case that coolant is fed by natural circulation through the downcomer reproduces the experimental results. And the following conclusions were given from the flooding experiments ; no dependence between bed height and the flooding constant exists for the beds lower than the critical bed height, flooding phenomena of the stratified beds would be dominated by the layer consisting of smaller particles, and the predicted dryout heat flux by the analytical model based on the flooding theory gives underestimation under stagnant condition. (author)

  10. Does pan diameter influence carbon monoxide levels during heating of water to boiling point with a camping stove?

    Science.gov (United States)

    Leigh-Smith, Simon; Stevenson, Richard; Watt, Martin; Watt, Ian; McFadyen, Angus; Grant, Stan

    2004-01-01

    To determine whether pan diameter influences carbon monoxide (CO) concentration during heating of water to boiling point with a camping stove. The hypothesis was that increasing pan diameter increases CO concentration because of greater flame dispersal and a larger flame. This was a randomized, prospective study. A Coleman Dual Fuel 533 stove was used to heat pans of water to boiling point, with CO concentration monitored every 30 seconds for 5 minutes. The stove was inside a partially ventilated 200-L cardboard box model that was inside an environmental chamber at -6 degrees C. Water temperature, water volume, and flame characteristics were all standardized. Ten trials were performed for each of 2 pan diameters (base diameters of 165 mm [small] and 220 mm [large]). There was a significant difference (P = .002) between the pans for CO levels at each measurement interval from 60 seconds onward. These differences were markedly larger after 90 seconds, with a mean difference of 185 ppm (95% CI 115, 276 ppm) for all the results from 120 seconds onwards. This study has shown that there is significantly higher CO production with a large-diameter pan compared with a small-diameter pan. These findings were evident by using a camping stove to heat water to boiling point when a maximum blue flame was present throughout. Thus, in enclosed environments it is recommended that small-diameter pans be used in an attempt to prevent high CO levels.

  11. Pipelines, inexpensive and safe mode of transport

    Energy Technology Data Exchange (ETDEWEB)

    Grover, D D

    1979-01-01

    Pipelines are the leading bulk commodity transporter and should play an even more important role in the future of energy transportation and distribution. As fossil fuel and low-cost uranium resources become depleted, it will be economical to produce hydrogen by electrolysis and transport it through underground pipelines to points of consumption. The cost would be only two to three times that of transporting natural gas per unit of heat energy and substantially less than the cost of transporting electric energy in overhead, extra-high-voltage transmission lines. Pipeline design, including economic pipe diameter; pipe material; operation by remote control and automation; cathodic protection; pipeline construction; and pipeline maintenance, particularly as regards the 1157 km long Oil India Pipeline, are discussed.

  12. Combined Heat and Power Dispatch Considering Heat Storage of Both Buildings and Pipelines in District Heating System for Wind Power Integration

    Directory of Open Access Journals (Sweden)

    Ping Li

    2017-06-01

    Full Text Available The strong coupling between electric power and heat supply highly restricts the electric power generation range of combined heat and power (CHP units during heating seasons. This makes the system operational flexibility very low, which leads to heavy wind power curtailment, especially in the region with a high percentage of CHP units and abundant wind power energy such as northeastern China. The heat storage capacity of pipelines and buildings of the district heating system (DHS, which already exist in the urban infrastructures, can be exploited to realize the power and heat decoupling without any additional investment. We formulate a combined heat and power dispatch model considering both the pipelines’ dynamic thermal performance (PDTP and the buildings’ thermal inertia (BTI, abbreviated as the CPB-CHPD model, emphasizing the coordinating operation between the electric power and district heating systems to break the strong coupling without impacting end users’ heat supply quality. Simulation results demonstrate that the proposed CPB-CHPD model has much better synergic benefits than the model considering only PDTP or BTI on wind power integration and total operation cost savings.

  13. U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22

    International Nuclear Information System (INIS)

    Nannipieri, P; Anichini, M; Barsocchi, L; Becatti, G; Buoni, L; Celi, F; Catarsi, A; Di Giorgio, P; Fattibene, P; Ferrato, E; Guardati, P; Mancini, E; Meoni, G; Nesti, F; Piacquadio, S; Pratelli, E; Quadrelli, L; Viglione, A S; Zanaboni, F; Mameli, M

    2017-01-01

    U-PHOS Project aims at analysing and characterising the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. Since, in milli-gravity conditions, buoyancy forces become less intense, the PHP diameter may be increased still maintaining the slug/plug typical flow pattern. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a large diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign. (paper)

  14. Correlation for prediction of growing and detaching bubble contact diameter on a heating wall

    International Nuclear Information System (INIS)

    Chen Deqi; Pan Liangming; Huang Yanping

    2011-01-01

    Phenomenal and theoretical analysis on the evolution of bubble contact diameter during bubble growing is presented in this paper, and it was found that the bubble contact diameter is dependent on the bubble growth rate and bubble radius strongly. By analyzing the regarding experimental data published in the literature, the relation between dimensionless bubble contact diameter, and dimensionless bubble growth time is obtained, based on this relation, a correlation relative to dimensionless bubble growth rate and dimensionless bubble radius are proposed for prediction of bubble contact diameter. With proper values of coefficients, a w and n w , this correlation can well predict the bubble contact diameter data published in the literature, with an error within ±20%. (authors)

  15. Effects of Tube Diameter and Tubeside Fin Geometry on the Heat Transfer Performance of Air-Cooled Condensers

    Science.gov (United States)

    Wang, H. S.; Honda, Hiroshi

    A theoretical study has been made on the effects of tube diameter and tubeside fin geometry on the heat transfer performance of air-cooled condensers. Extensive numerical calculations of overall heat transfer from refrigerant R410A flowing inside a horizontal microfin tube to ambient air were conducted for a typical operating condition of the air-cooled condenser. The tubeside heat transfer coefficient was calculated by applying a modified stratified flow model developed by Wang et al.8). The numerical results show that the effects of tube diameter, fin height, fin number and helix angle of groove are significant, whereas those of the width of flat portion at the fin tip, the radius of round corner at the fin tip and the fin half tip angle are small.

  16. Heating device for thermal treatment of curred small diameter tubes and utilization of this device

    International Nuclear Information System (INIS)

    Jacquier, P.

    1988-01-01

    The heating device is made by a helical winding constituted from a resistance heating wire. The heating wire constituted the central core of a coaxial cable comprising an outer tubular metal envelope and an insulating layer interpolated between the central core and the outer envelope. The coaxial cable is wound in order to form a helical winding that forms the flexible element for introduction to the tube to be treated [fr

  17. Evaluation of the dependence of heat transfer coefficient on the particle diameter of a metal porous medium in a heat removal system using liquid nitrogen

    International Nuclear Information System (INIS)

    Sasaki, Shunsuke; Ito, Satoshi; Hashizume, Hidetoshi

    2015-01-01

    Cryogenic cooling system using a bronze-particle-sintered porous medium has been studied for a re mountable high-temperature superconducting magnet. This study evaluates boiling curve of subcooled liquid nitrogen as flowing in a bronze porous medium as a function of the particle diameter of the medium. We obtained Departure from Nuclear Boiling (Dnb) point from the boiling curve and discussed growth of nitrogen vapor bubble inferred from measured pressure drop. The pressure drop decreased significantly at wall superheat before reaching the DNB point whereas that slightly decreased after reaching the DNB point compared to the smallest wall superheat. This result could consider DNB rises with an increase in the particle diameter because larger particle makes vapor to move easily from the heated pore region. The influence of the particle diameter on the heat transfer performance is larger than that of coolant's degree of subcooling. (author)

  18. Thermal resistance of rotating closed-loop pulsating heat pipes: Effects of working fluids and internal diameters

    Directory of Open Access Journals (Sweden)

    Kammuang-Lue Niti

    2017-01-01

    Full Text Available The objective of this study was to experimentally investigate the effects of working fluids and internal diameters on the thermal resistance of rotating closed-loop pul¬sating heat pipes (RCLPHP. The RCLPHP were made of a copper tube with internal diameters of 1.50 mm and 1.78 mm, bent into the shape of a flower petal, and arranged into a circle with 11 turns. The evaporator section was located at the outer end of the tube bundle. R123, ethanol, and water were filled as the working fluids. The RCLPHP was rotated at centrifugal accelerations 0.5, 1, 3, 5, 10, and 20 times of the gravitational acceleration considered at the connection between the evaporator and the condenser sections. The heat input was varied from 30 W to 50 W, and then to 100 W, 150 W, and 200 W. It can be concluded that when the latent heat of evaporation increases, the pressure difference between the evaporator and the condenser sections decreases, and the thermal resistance increases. Moreover, when the internal diameter increases, the driving force increases and the frictional force proportionally decreases, or the Karman number increases, and the thermal resistance decreases.

  19. Influence of soil properties on the behavior of heated on bottom pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Hallai, Julian [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Offshore pipelines have increasingly been operating at high temperatures and high pressures. Compression due to these loads can lead to global buckling, either laterally and/or vertically, depending on the burial depth and soil properties. The amount of embedment of pipelines directly laid on the seabed depends on the soil properties and influences the behavior of pipelines in operation. This work investigates the interaction between the vertical and lateral buckling modes, based on the analytical approach proposed for pipeline global buckling analysis by Hobbs. Furthermore, it presents a sensitivity study characterizing the impact of the determination of accurate soil properties. Finally, a conceptual design procedure, which takes into account the particular case of short pipelines, is provided. The method is presented by means of an example case. (author)

  20. Prediction for flow boiling heat transfer in small diameter tube using deep learning

    International Nuclear Information System (INIS)

    Enoki, Koji; Sei, Yuichi; Okawa, Tomio; Saito, Kiyoshi

    2017-01-01

    The applications of Artificial Intelligence ie AI show diversity in any fields. On the other hand, research of the predicting heat transfer regardless of single-phase or two-phase flow is still untouched. Therefore, we have confirmed usefulness using AI's deep learning function on horizontal flow boiling heat transfer in flowing mini-channel that is actively researched. The effect of the surface tension in the mini-channel is large compared with conventional large tubes, and then the heat transfer mechanism is very complicated. For this reason, the numerical correlations of many existing researchers the prediction result is not good. However, the mechanistic correlation based on the visualization experiment, which the authors' research group published several years ago has very high precision. Therefore, in this research paper, we confirmed the effectiveness of using deep learning for predicting of the boiling heat transfer in mini-channel while comparing our correlation. (author)

  1. Experimental analysis of heat conduction in a high diameter ratio annular gap filled with a rarefied gas

    International Nuclear Information System (INIS)

    Chalabi, H; Lorenzini, M; Morini, G L; Saraceno, L; Boccardi, G; Celata, G P

    2012-01-01

    A first experimental attempt has been realized in order to measure the heat transfer between a heated platinum wire having a diameter (d) of 0.15 mm, disposed along the axis of a cylindrical shell in stainless steel having an inner diameter (D) of 100 mm, and air from atmospheric conditions down to 10 −3 mbar. Temperature differences between the wire and the external stainless steel cylindrical shell in the range of 50–125 K were imposed and the heat power transferred from the wire to the surround was measured as a function of the gas pressure. The experimental results demonstrates that for an accurate measurement of the heat conduction when the pressure goes down to 0.05 mbar is very important to be able to quantify accurately the radiative contribution which becomes predominant at low pressure. The main limitations of the test rig described in this paper have been analysed in order to highlight the modifications which can be suggested to obtain experimental results comparable with theoretical models.

  2. Experimental analysis of heat transfer between a heated wire and a rarefied gas in an annular gap with high diameter ratio

    International Nuclear Information System (INIS)

    Chalabi, H; Lorenzini, M; Morini, G L; Buchina, O; Valougeorgis, D; Saraceno, L

    2012-01-01

    In this paper a first experimental attempt is performed to measure heat conduction through rarefied air at rest contained between two concentric cylinders. The heat transfer between a heated platinum wire having a diameter (d) of 0.15 mm, disposed along the axis of a cylindrical shell in stainless steel having an inner diameter (D) of 100 mm, and a surrounded rarefied gas has been studied experimentally and numerically. The ratio between the outer and inner diameter of the annular region filled by the gas is large (D/d=667). In the annular region filled with air the pressure was varied by using a vacuum pump from atmospheric value down to 10 −3 mbar. Temperature differences between the wire and the external stainless steel wall in the range 50-125 K were imposed and the heat power transferred from the wire to the surround was measured as a function of the gas pressure starting from air at atmospheric conditions down to 10 −3 mbar. The experimental results obtained in these tests were compared with the numerical results obtained by using the linear and nonlinear Shakhov kinetic models.

  3. Optimum diameter of a circulating fluidised bed combustor with negative wall heat flux

    CSIR Research Space (South Africa)

    Baloyi, J

    2015-07-01

    Full Text Available on irreversibilities in a 7 m circulating fluidised bed combustor with a negative wall heat flux, firing a mixture of air and solid pitch pine wood, was investigated. An analytical expression was derived that predicts the entropy generation rate, thereby...

  4. Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Hakan, E-mail: hakanay@uludag.edu.tr [Engineering and Architecture Faculty, Mechanical Engineering Department, Uludag University, 16059 Gorukle-Bursa (Turkey); Nelson, Tracy W. [Mechanical Engineering Department, Brigham Young University, 435 CTB, Provo, UT 84602 (United States)

    2013-12-01

    The study was conducted to investigate the microstructure and mechanical properties of the hard zone in friction stir welded X80 pipeline steel at different heat inputs. Microstructural analysis of the welds was carried out using optical microscopy, transmission electron microscopy, and microhardness. Heat input during friction stir welding process had a significant influence on the microstructure and mechanical properties in the hard zone along the advancing side of the weld nugget. Based on the results, the linear relationships between heat input and post-weld microstructures and mechanical properties in the hard zone of friction stir welded X80 steels were established. It can be concluded that with decrease in heat input the bainitic structure in the hard zone becomes finer and so hard zone strength increases.

  5. Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input

    International Nuclear Information System (INIS)

    Aydin, Hakan; Nelson, Tracy W.

    2013-01-01

    The study was conducted to investigate the microstructure and mechanical properties of the hard zone in friction stir welded X80 pipeline steel at different heat inputs. Microstructural analysis of the welds was carried out using optical microscopy, transmission electron microscopy, and microhardness. Heat input during friction stir welding process had a significant influence on the microstructure and mechanical properties in the hard zone along the advancing side of the weld nugget. Based on the results, the linear relationships between heat input and post-weld microstructures and mechanical properties in the hard zone of friction stir welded X80 steels were established. It can be concluded that with decrease in heat input the bainitic structure in the hard zone becomes finer and so hard zone strength increases

  6. Effects of the Back Plate Inner Diameter on the Frictional Heat Input and General Performance of Brush Seals

    Directory of Open Access Journals (Sweden)

    Manuel Hildebrandt

    2018-05-01

    Full Text Available Reducing losses in the secondary air system of gas and steam turbines can significantly increase the efficiency of such machines. Meanwhile, brush seals are a widely used alternative to labyrinth seals. Their most valuable advantage over other sealing concepts is the very small gap between the sealing package and the rotor and thus reduced leakage mass flow. This small gap can be achieved due to the great radial flexibility without running the risk of severe detrimental deterioration in case of rubbing. Rubbing between rotor and seal during operation might occur as a result of e.g., an unequal thermal expansion of the rotor and stator or a rotor elongation due to centrifugal forces or manoeuvre forces. Thanks to the flexible structure of the brush seal, the contact forces during a rubbing event are reduced; however, the frictional heat input can still be considerable. Particularly in aircraft engines with their thin and lightweight rotor structures, the permissible material stresses can easily be exceeded by an increased heat input and thus harm the engine’s integrity. The geometry of the seal has a decisive influence on the resulting contact forces and consequently the heat input. This paper is a contribution to further understand the influence of the geometrical parameters of the brush seal on the heat input and the leakage during the rubbing of the seal on the rotor. In this paper, a total of three seals with varied back plate inner diameter are examined in more detail. The experimental tests were carried out on the brush seal test rig of the Institute of Thermal Turbomachinery (ITS under machine-relevant conditions. These are represented by pressure differences of 1 to 7 bar, surface speeds of 30 to 180 m/s and radial interferences of 0.1 to 0.4 mm. For a better interpretation, the results were compared with those obtained at the static test rig of the Institute of Jet Propulsion and Turbomachinery (IFAS at the Technical University of

  7. 1998 Annual Study Report. Standardization of methods for evaluating characteristics of high-strength, large-diameter steel pipes for superhigh-pressure natural gas pipelines; 1998 nendo seika hokokusho. Chokoatsu tennen gas pipeline yo kokyodo daikei kokan no tokusei hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The pipelines for safely transmitting superhigh-pressure natural gas should have excellent characteristics. The steel pipe is required to have a sufficient toughness, more concretely Charpy impact-absorbing energy, to prevent propagating shear fracture characteristic of natural gas pipelines. Recently, the natural gas pipeline is increasingly required to have higher design pressures (15 Mpa or higher) and grade (X80 or higher). In order to develop the techniques for simulating crack propagation in the propagating shear fracture of natural gas pipe lines as part of the programs to cope with these trends, the 1998 efforts were directed to reviewing the research results obtained so far and analysis of the problems to be solved and tasks to be taken, based on which the analytical procedure for gas releasing phenomena during the fracture process was basically developed, the material characteristic data were collected by the laboratory scale toughness tests, and the preliminary tests with rupture disks were conducted to verify the above analytical procedure. These efforts have established the bases for evaluating the characteristics of high-strength, large-diameter steel pipes in the light of safety against fracture, and greatly advanced the program towards the final target of developing the international specification drafts for toughness. (NEDO)

  8. Influence of a source line position on results of EM observations applied to the diagnostics of underground heating system pipelines in urban area

    Science.gov (United States)

    Vetrov, A.

    2009-05-01

    The condition of underground constructions, communication and supply systems in the cities has to be periodically monitored and controlled in order to prevent their breakage, which can result in serious accident, especially in urban area. The most risk of damage have the underground construction made of steal such as pipelines widely used for water, gas and heat supply. To ensure the pipeline survivability it is necessary to carry out the operative and inexpensive control of pipelines condition. Induced electromagnetic methods of geophysics can be applied to provide such diagnostics. The highly developed surface in urbane area is one of cause hampering the realization of electromagnetic methods of diagnostics. The main problem is in finding of an appropriate place for the source line and electrodes on a limited surface area and their optimal position relative to the observation path to minimize their influence on observed data. Author made a number of experiments of an underground heating system pipeline diagnostics using different position of the source line and electrodes. The experiments were made on a 200 meters section over 2 meters deep pipeline. The admissible length of the source line and angle between the source line and the observation path were determined. The minimal length of the source line for the experiment conditions and accuracy made 30 meters, the maximum admissible angle departure from the perpendicular position made 30 degrees. The work was undertaken in cooperation with diagnostics company DIsSO, Saint-Petersburg, Russia.

  9. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Bae; Park, Chang Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2017-05-15

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f{sub F}1{sup /3}) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f{sub F}1{sup /3}), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  10. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    International Nuclear Information System (INIS)

    Kim, Man Bae; Park, Chang Yong

    2017-01-01

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f F 1 /3 ) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f F 1 /3 ), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  11. Calculation of vessels and heat exchangers submitted to dynamic efforts caused by postulated ruptures in pipeline

    International Nuclear Information System (INIS)

    Ferrari, L.D.B.; Amaral, J.A.R. do; Alves, M.C.T.

    1984-01-01

    An example of dynamic analysis of a heat exchanger subjected to pipe break transient loadings is shown. The contribution of the type of loading and component's model is discussed. Simplified verification methods are also presented. (Author) [pt

  12. Experimental investigations of heat exchange and hydrodynamics on models of a VG-400 steam generator tube bundle made up of small diameter helicoils

    International Nuclear Information System (INIS)

    Golovko, V.F; Ivaskov, N.A.; Obukhov, P.I.; Pospelov, V.N.; Sergeev, A.I.

    1988-01-01

    Features of HTGR steam generators having heat exchange surface made up of small diameter helicoils are discussed in the paper. A general approach to optimization of thermohydraulic characteristics BΓW-400 steam generator design backed by calculation and experiment are given. Main results of steam generator assembly's model aerodynamic test are presented. Data of thermohydraulic tests of a single tube model in a helium heated test rig are discussed. (author)

  13. The Trans-Alaska-pipeline and the insufficient heat insulation of US-buildings. Die Trans-Alaska-Pipeline und der mangelnde Waermeschutz US-amerikanischer Wohnungsbauten

    Energy Technology Data Exchange (ETDEWEB)

    Dialer, C. (Univ. of California at Berkeley, Dept. of Civil Engineering, CA (United States))

    1992-09-01

    It is almost a proverb that the amount of energy that diffuses through America's windows and walls every year is equivalent to all the oil that flows through the Alaska pipeline. Using an example and some simplified approaches, this statement is verified and discussed in more details. (orig.)

  14. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio

    International Nuclear Information System (INIS)

    Yang, Jian; Wu, Jiangquan; Zhou, Lang; Wang, Qiuwang

    2016-01-01

    Highlights: • Flow and heat transfer in composite packed beds with low d_t/d_p_e are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it is also

  15. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jian, E-mail: yangjian81@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiangquan [CSR Research of Electrical Technology and Material Engineering, Zhuzhou, Hunan 412001 (China); Zhou, Lang; Wang, Qiuwang [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-04-15

    Highlights: • Flow and heat transfer in composite packed beds with low d{sub t}/d{sub pe} are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it

  16. Decontamination device for pipeline

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    Pipelines to be decontaminated are parts of pipelines contaminated with radioactive materials, and they are connected to a fluid transfer means (for example, a bladeless pump) and a ball collector by way of a connector. The fluid of a mixture of chemical decontaminating liquid and spheres is sent into pipelines to be decontaminated. The spheres are, for example, heat resistant porous hard or soft rubber spheres. The fluid discharged from the pipelines to be decontaminated are circulated by way of bypassing means. The inner surface of the pipelines is decontaminated by the circulation of the fluid. When the bypass means is closed, the fluid discharged from the pipelines to be decontaminated is sent to the ball collector, and the spheres are captured by a hopper. Further, the liquid is sent to the filtrating means to filter the chemical contaminating liquid, and sludges contained in the liquid are captured. (I.N.)

  17. 75 FR 14243 - Pipeline Safety: Girth Weld Quality Issues Due to Improper Transitioning, Misalignment, and...

    Science.gov (United States)

    2010-03-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No..., and Welding Practices of Large Diameter Line Pipe AGENCY: Pipeline and Hazardous Materials Safety... bulletin to notify owners and operators of recently constructed large diameter natural gas pipeline and...

  18. Pipeline engineering

    CERN Document Server

    Liu, Henry

    2003-01-01

    PART I: PIPE FLOWSINTRODUCTIONDefinition and Scope Brief History of PipelinesExisting Major PipelinesImportance of PipelinesFreight (Solids) Transport by PipelinesTypes of PipelinesComponents of PipelinesAdvantages of PipelinesReferencesSINGLE-PHASE INCOMPRESSIBLE NEWTONIAN FLUIDIntroductionFlow RegimesLocal Mean Velocity and Its Distribution (Velocity Profile)Flow Equations for One-Dimensional AnalysisHydraulic and Energy Grade LinesCavitation in Pipeline SystemsPipe in Series and ParallelInterconnected ReservoirsPipe NetworkUnsteady Flow in PipeSINGLE-PHASE COMPRESSIBLE FLOW IN PIPEFlow Ana

  19. Numerical Simulation of Flow and Heat Transfer in Structured Packed Beds with Smooth or Dimpled Spheres at Low Channel to Particle Diameter Ratio

    Directory of Open Access Journals (Sweden)

    Shiyang Li

    2018-04-01

    Full Text Available Packed beds are widely used in catalytic reactors or nuclear reactors. Reducing the pressure drop and improving the heat transfer performance of a packed bed is a common research aim. The dimpled structure has a complex influence on the flow and heat transfer characteristics. In the present study, the flow and heat transfer characteristics in structured packed beds with smooth or dimpled spheres are numerically investigated, where two different low channel to particle diameter ratios (N = 1.00 and N = 1.15 are considered. The pressure drop and the Nusselt number are obtained. The results show that, for N = 1.00, compared with the structured packed bed with smooth spheres, the structured packed bed with dimpled spheres has a lower pressure drop and little higher Nusselt number at 1500 < ReH < 14,000, exhibiting an improved overall heat transfer performance. However, for N = 1.15, the structured packed bed with dimpled spheres shows a much higher pressure drop, which dominantly affects the overall heat transfer performance, causing it to be weaker. Comparing the different channel to particle diameter ratios, we find that different configurations can result in: (i completely different drag reduction effect; and (ii relatively less influence on heat transfer enhancement.

  20. Influence of oil on flow condensation heat transfer of R410A inside 4.18 mm and 1.6 mm inner diameter horizontal smooth tubes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiangchao; Ding, Guoliang; Hu, Haitao; Zhu, Yu.; Peng, Hao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, Shanghai 200020 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China)

    2010-01-15

    The influence of oil on condensation heat transfer of R410A inside 4.18 mm and 1.6 mm inner diameter horizontal smooth tubes is investigated experimentally. The experimental condensing temperature is 40 C, and nominal oil concentration range is from 0% to 5%. The test results indicate that the presence of oil deteriorates the heat transfer, and the deterioration effect becomes obvious with the increase of oil concentration. At oil concentration of 5%, the heat transfer coefficient decreases by maximum 24.9% and 28.5% for 4.18 mm and 1.6 mm tubes, respectively. A new correlation for heat transfer coefficients of R410A-oil mixture flow condensation inside smooth tubes is proposed, which agrees with all the experimental data within a deviation of -30% {proportional_to} +20%. (author)

  1. Analysis of in-R12 CHF data: influence of hydraulic diameter and heating length; test of Weisman boiling crisis model

    International Nuclear Information System (INIS)

    Czop, V.; Herer, C.; Souyri, A.; Garnier, J.

    1993-09-01

    In order to progress on the comprehensive modelling of the boiling crisis phenomenon, Electricite de France (EDF), Commissariat a l'Energie Atomique (CEA) and FRAMATOME have set up experimental programs involving in-R12 tests: the EDF APHRODITE program and the CEA-EDF-FRAMATOME DEBORA program. The first phase in these programs aims to acquire critical heat flux (CHF) data banks, within large thermal-hydraulic parameter ranges, both in cylindrical and annular configurations, and with different hydraulic diameters and heating lengths. Actually, three data banks have been considered in the analysis, all of them concerning in-R12 round tube tests: - the APHRODITE data bank, obtained at EDF with a 13 mn inside diameter, - the DEBORA data bank, obtained at CEA with a 19.2 mm inside diameter, - the KRISTA data bank, obtained at KfK with a 8 mm inside diameter. The analysis was conducted using CHF correlations and with the help of an advanced mathematical tool using pseudo-cubic thin plate type Spline functions. Two conclusions were drawn: -no influence of the heating length on our CHF results, - the influence of the diameter on the CHF cannot be simply expressed by an exponential function of this parameter, as thermal-hydraulic parameters also have an influence. Some calculations with Weisman and Pei theoretical boiling crisis model have been compared to experimental values: fairly good agreement was obtained, but further study must focus on improving the modelling of the influence of pressure and mass velocity. (authors). 12 figs., 4 tabs., 21 refs

  2. Computer-Aided Simulations of Convective Heat Transfer in a Wedged Channel with Pin-Fins at Various Outlet Arrangements and Nonuniform Diameters

    Directory of Open Access Journals (Sweden)

    Qitao Zhou

    2013-01-01

    Full Text Available The turbine blade works at high thermal loads, especially the trailing edge of the blade due to the hot gas leakage flow. Pin-fins are well recognized as a kind of effective device to augment the convective heat transfer and effectively cool the trailing edge. In this paper, the cooling effectiveness of chordwise outlet pin-fins distance and inner pin fin diameter is, respectively, studied on the heat transfer and flow friction of the trailing edge of the blade with software CFX. A 90 deg turn cooling wedge passage with cylindrical pin-fins is used to model the trailing edge. Results show that the pin-fins distance at the outlet and the arithmetic arrangement of the inner pin-fins diameter both are vital factors to influence the cooling effectiveness in the trailing edge of the blade.

  3. Experimental analysis on frosting characteristic of SK-type finned refrigerating heat exchanger with large-diameter circular holes

    International Nuclear Information System (INIS)

    Fang, Zhao-song; Wang, Hou-hua; Zhang, Jie; Wu, Wei-wei

    2014-01-01

    This paper presents the construction of both a plane fin-and-tube heat exchanger and a SK-type fin-and-tube heat exchanger. Based on plane fin-and-tube heat exchanger, comparative industrial prototype experiments of SK-type fin-and-tube heat exchanger energy efficiency performance were carried out in the artificial climate chamber. Test results confirmed several findings: when the amount of the refrigerant charged is the same and face velocity u = 3.75 m s −1 , SK-type fin-and-tube heat exchanger refrigeration capacity increases by an average of 9.13%; energy consumption reduces by an average of 11.25%, coefficient of performance (COP) of heat exchanger increases by an average of 22.65% with continuous operation during the first 2 h. Also, when the operation time exceeds 2 h, the COP of both types of heat exchangers are both less than 0.6, illustrating that under frost conditions, the defrost interval should not be too long, otherwise energy consumption may sharply spike. - Highlights: •The large holes of SK-type induced the generation of turbulence flow. •The refrigeration capacity and COP of SK-type exceeds that of plane one. •The SK-type fin-and-tube heat exchanger is a new kind of heat transfer equipment. •The defrost interval should not exceed 2 h under frost conditions

  4. Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter

    Science.gov (United States)

    Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt

    2018-01-01

    This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.

  5. Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiangchao; Ding, Guoliang; Hu, Haitao; Zhu, Yu [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, Shanghai 200020 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China)

    2010-10-15

    Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes were investigated experimentally. The experimental condensing temperature is 40 C, and nominal oil concentration range is from 0% to 5%. The test results indicate that the presence of oil deteriorates the heat transfer. The deterioration effect is negligible at nominal oil concentration of 1%, and becomes obvious with the increase of nominal oil concentration. At 5% nominal oil concentration, the heat transfer coefficient of R410A-oil mixture is found to have a maximum reduction of 25.1% and 23.8% for 5 mm and 4 mm tubes, respectively. The predictabilities of the existing condensation heat transfer correlations were verified with the experimental data, and Yu and Koyama correlation shows the best predictability. By replacing the pure refrigerant properties with the mixture's properties, Yu and Koyama correlation has a deviation of -15% to + 20% in predicting the local condensation heat transfer coefficient of R410A-oil mixture. (author)

  6. Leak Detection in Heat Exchangers and Underground Pipelines Using Radiotracers. Material for Education and On-The-Job Training for Practitioners of Radiotracer Technology

    International Nuclear Information System (INIS)

    2009-01-01

    The International Atomic Energy Agency plays a major role in facilitating the transfer of radiotracer technology to developing Member States. The use of radiotracer techniques is well established in many Member States; some hundred radiotracer and end user specialists have been trained in radiotracer techniques and their applications; nearly 50 radiotracer laboratories have been working in this field. The training of radiotracer practitioners is vital for the provision of quality services to industry. Leak detection using radiotracer techniques is probably one of the most widespread applications of radiotracers in industrial troubleshooting. Radiotracer techniques are the most competitive for online leak inspection of heat exchangers and buried pipelines. Radiotracers help in early detection of leaks in heat exchangers and underground transporting pipelines, thus saving money, reducing shutdown time, ensuring safe operation and protecting the environment from pollution. The training course series on leak detection in heat exchangers and underground pipelines using radiotracers addresses the needs of the radiotracer groups and their end users. Besides training purposes, this material will assist radiotracer groups in establishing their quality control and accreditation systems. This training course material is based on lecture notes and practical work delivered by many experts in IAEA-supported activities. In particular, the Technical Cooperation Projects implemented under the Regional Cooperative Agreement (RCA) of the IAEA Member States in the Asia and the Pacific Region have been successful in transferring and implementing radiotracer techniques for leak detection to many end users from oil and gas production, oil refineries and the petrochemical industry. The experience obtained in the RCA Region is presented in the training material illustrated with many case studies carried out in several RCA Member States. Lectures and case studies were reviewed by a number

  7. Experimental study of the condensation heat transfer characteristics of CO2 in a horizontal microfin tube with a diameter of 4.95 mm

    Science.gov (United States)

    Son, Chang-Hyo; Oh, Hoo-Kyu

    2012-11-01

    The condensation heat transfer characteristics for CO2 flowing in a horizontal microfin tube were investigated by experiment with respect to condensation temperature and mass flux. The test section consists of a 2,400 mm long horizontal copper tube of 4.6 mm inner diameter. The experiments were conducted at refrigerant mass flux of 400-800 kg/m2s, and saturation temperature of 20-30 °C. The main experimental results showed that annular flow was highly dominated the majority of condensation flow in the horizontal microfin tube. The condensation heat transfer coefficient increases with decreasing saturation temperature and increasing mass flux. The experimental data were compared against previous heat transfer correlations. Most correlations failed to predict the experimental data. However, the correlation by Cavallini et al. showed relatively good agreement with experimental data in the microfin tube. Therefore, a new condensation heat transfer correlation is proposed with mean and average deviations of 3.14 and -7.6 %, respectively.

  8. Oesophageal heat exchangers with a diameter of 11mm or 14.7mm are equally effective and safe for targeted temperature management.

    Directory of Open Access Journals (Sweden)

    Daniel C Schroeder

    Full Text Available Targeted temperature management (TTM is widely used in critical care settings for conditions including hepatic encephalopathy, hypoxic ischemic encephalopathy, meningitis, myocardial infarction, paediatric cardiac arrest, spinal cord injury, traumatic brain injury, ischemic stroke and sepsis. Furthermore, TTM is a key treatment for patients after out-of-hospital cardiac-arrest (OHCA. However, the optimal cooling method, which is quick, safe and cost-effective still remains controversial. Since the oesophagus is adjacent to heart and aorta, fast heat-convection to the central blood-stream could be achieved with a minimally invasive oesophageal heat exchanger (OHE. To date, the optimal diameter of an OHE is still unknown. While larger diameters may cause thermal- or pressure-related tissue damage after long-term exposure to the oesophageal wall, smaller diameter (e.g., gastric tubes, up to 11mm may not provide effective cooling rates. Thus, the objective of the study was to compare OHE-diameters of 11mm (OHE11 and 14.7mm (OHE14.7 and their effects on tissue and cooling capability.Pigs were randomized to OHE11 (N = 8 or OHE14.7 (N = 8. After cooling, pigs were maintained at 33°C for 1 hour. After 10h rewarming, oesophagi were analyzed by means of histopathology. The oesophagus of four animals from a separate study that underwent exactly the identical preparation and cooling protocol described above but received a maintenance period of 24h were used as histopathological controls.Mean cooling rates were 2.8±0.4°C°C/h (OHE11 and 3.0±0.3°C °C/h (OHE14.7; p = 0.20. Occasional mild acute inflammatory transepithelial infiltrates were found in the cranial segment of the oesophagus in all groups including controls. Deviations from target temperature were 0.1±0.4°C (OHE11 and 0±0.1°C (OHE14.7; p = 0.91. Rewarming rates were 0.19±0.07°C °C/h (OHE11 and 0.20±0.05°C °C/h (OHE14.7; p = 0.75.OHE with diameters of 11 mm and 14.7 mm achieve

  9. Validation of numeric methods for calculating interactions between district heating pipelines and the surrounding soil; Validierung numerischer Verfahren zur Berechnung des Interaktionsverhaltens 'Fernwaermeleitung - Baugrund'

    Energy Technology Data Exchange (ETDEWEB)

    Salveter, G.

    2000-07-01

    In this thesis, the results of experimental research work on global bearing behaviour with respect to the existing theoretical basis are systematically analysed for the evaluation and interpretation of measuring results. Among other things, the geometry of the pipeline route, the compactness of the backfilling material and the temperature dependence are considered. The mutual influence of friction and bedding resistances in the region of bends could not yet be determined for a local analysis by existing numerical models. This requires the determination of the induced stress distribution on the pipe perimeter due to lateral displacement of the pipe. The influence is therefore described by a numerical consideration of relative displacements between the pipe and the surrounding soil. Ultimately, relative displacements are verified on the basis of our own complementary results from experimental research carried out in a laboratory for soil mechanics with specially designed test equipment. The global analysis of bearing loads and displacements is done with a numerical model, in which the plastic jacked pipe is idealized as a beam, and the effect of the soil is idealized by spring elements with non-linear force displacement characteristics. An existing numerical model is extended with regard to the new findings and while taking vertical displacements into account. It is used for numerical simulations of selected tests on the global bearing behaviour of underground district heating pipelines which were carried out as part of the research cooperation project. Apart from a good correspondence between calculated results and test results this also provides a plausible description of interrelations. At the same time, however, it also makes itclear that further research is necessary. This thesis provides a contribution to the validation of recent methods for the calculated modelling of the interaction between a district heating pipeline and the subsoil on the basis of

  10. 77 FR 20807 - Northwest Pipeline GP; Notice of Application

    Science.gov (United States)

    2012-04-06

    ... diameter pipelines away from an adjacent surface coal mine west of Kemmerer, Wyoming. Northwest also... directed to Pam Barnes, Manager Certificates and Tariffs, Northwest Pipeline GP, 295 Chipeta Way, Salt Lake...

  11. Leadership Pipeline

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård

    2012-01-01

    Artiklen analyserer grundlaget for Leadership Pipeline modellen med henblik på en vurdering af substansen bag modellen, og perspektiverne for generalisering af modellen til en dansk organisatorisk kontekst.......Artiklen analyserer grundlaget for Leadership Pipeline modellen med henblik på en vurdering af substansen bag modellen, og perspektiverne for generalisering af modellen til en dansk organisatorisk kontekst....

  12. Sea water pipeline for nuclear power plant

    International Nuclear Information System (INIS)

    Ueno, Ken-ichi.

    1992-01-01

    Heating coils, for example, are wound around sea water pipelines as a heater. The outer wall surface of the sea water pipelines is heated by the heating coils. The inner wall surfaces of the sea water pipelines can be warmed to higher than a predetermined temperature by heating the outer wall surfaces to die out marine organisms deposited at the inner surfaces. Further, thermocouples for the external wall and the internal wall are disposed so that the temperature at the inner wall surface of the sea water pipelines can be controlled. Further, a temperature keeping material is disposed at the external surface of the sea water system pipelines. With such a constitution, the marine organisms deposited on the internal wall surface of the sea water system pipelines are died out to suppress the deposition amount of the marine organisms. Accordingly, the maintenance and the operation reliability is improved after maintenance. (I.N.)

  13. Strength analysis of copper gas pipeline span

    OpenAIRE

    Ianevski, Philipp

    2016-01-01

    The purpose of the study was to analyze the stresses in a gas pipeline. While analyzing piping systems located inside building were used. Calculation of the strength of a gas pipeline is done by using information of the thickness of pipe walls, by choosing the suitable material, inner and outer diameter for the pipeline. Data for this thesis was collected through various internet sources and different books. From the study and research, the final results were reached and calculations were ...

  14. Oil pipeline energy consumption and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.

    1981-01-01

    This report describes an investigation of energy consumption and efficiency of oil pipelines in the US in 1978. It is based on a simulation of the actual movement of oil on a very detailed representation of the pipeline network, and it uses engineering equations to calculate the energy that pipeline pumps must have exerted on the oil to move it in this manner. The efficiencies of pumps and drivers are estimated so as to arrive at the amount of energy consumed at pumping stations. The throughput in each pipeline segment is estimated by distributing each pipeline company's reported oil movements over its segments in proportions predicted by regression equations that show typical throughput and throughput capacity as functions of pipe diameter. The form of the equations is justified by a generalized cost-engineering study of pipelining, and their parameters are estimated using new techniques developed for the purpose. A simplified model of flow scheduling is chosen on the basis of actual energy use data obtained from a few companies. The study yields energy consumption and intensiveness estimates for crude oil trunk lines, crude oil gathering lines and oil products lines, for the nation as well as by state and by pipe diameter. It characterizes the efficiency of typical pipelines of various diameters operating at capacity. Ancillary results include estimates of oil movements by state and by diameter and approximate pipeline capacity utilization nationwide.

  15. Leadership Pipeline

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård

    2013-01-01

    I artiklen undersøges det empiriske grundlag for Leader- ship Pipeline. Først beskrives Leadership Pipeline modellen om le- delsesbaner og skilleveje i opadgående transitioner mellem orga- nisatoriske ledelsesniveauer (Freedman, 1998; Charan, Drotter and Noel, 2001). Dernæst sættes fokus på det...... forholdet mellem kontinuitet- og diskontinuitet i ledel- seskompetencer på tværs af organisatoriske niveauer præsenteres og diskuteres. Afslutningsvis diskuteres begrænsningerne i en kompetencebaseret tilgang til Leadership Pipeline, og det foreslås, at succesfuld ledelse i ligeså høj grad afhænger af...

  16. Global offshore pipeline markets

    International Nuclear Information System (INIS)

    Knight, R.; Parsons, B.

    2001-01-01

    In this article, two experts forecast a recovery in the offshore pipeline market followed by accelerating growth. A number of clearly definable macro trends are affecting the world offshore oil and gas industry and will be of considerable significance to the offshore pipelines industry. The authors' view is of markets that show every chance of enjoying long-term growth prospects driven by the fundamentals of a continuing increase in demand for offshore oil and gas. The offshore industry however has a highly cyclical nature, due to the impact of variations in oil and gas prices and the differing state of maturity of individual regions. Therefore those companies that are able to offer the widest range of pipe types and diameters and methods of installation across the greatest range of geographic markets are likely to prosper most. Thus, this continues to be a market best suited to those able to operate on a global scale and make a corporate commitment measured in decades

  17. Natural gas pipeline technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  18. Equipment for Preparing Pipeline Position Butts for Welding

    Directory of Open Access Journals (Sweden)

    Lobanov L.M.

    2015-09-01

    Full Text Available The results of developments of the Ye.O.Paton Electric Welding Institute and its specialized departments on the designing national equipment models for preparation during the assembly the edges and butt ends of pipeline position butts with the diameter from 14 up to 159 mm, repair and modernization of power engineering objects, including the power units of nuclear and heat electric stations, in chemical and machine building, at enterprises of oil-gas complex and other branches of industry are presented.

  19. East, West German gas pipeline grids linked

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Ruhrgas AG, Essen, has started up the first large diameter gas pipeline linking the gas grids of former East and West Germany. Ruhrgas last month placed in service a 40 in., 70 km line at Vitzeroda, near Eisenach, linking a new Ruhrgas pipeline in Hesse state with a 330 km gas pipeline built last year in Thuringia and Saxony states by Erdgasversorgungs GmbH (EVG), Leipzig. The new link enables pipeline operator EVG to receive 70 bcf/year of western European gas via Ruhrgas, complementing the 35 bcf/year of gas coming from the Commonwealth of Independent States via Verbundnetz Gas AG (VNG), Leipzig

  20. Location of leaks in pressurized underground pipelines

    International Nuclear Information System (INIS)

    Eckert, E.G.; Maresca, J.W. Jr.

    1993-01-01

    Millions of underground storage tanks (UST) are used to store petroleum and other chemicals. The pressurized underground pipelines associated with USTs containing petroleum motor fuels are typically 2 in. in diameter and 50 to 200 ft in length. These pipelines typically operate at pressures of 20 to 30 psi. Longer lines, with diameters up to 4 in., are found in some high-volume facilities. There are many systems that can be used to detect leaks in pressurized underground pipelines. When a leak is detected, the first step in the remediation process is to find its location. Passive-acoustic measurements, combined with advanced signal-processing techniques, provide a nondestructive method of leak location that is accurate and relatively simple, and that can be applied to a wide variety of pipelines and pipeline products

  1. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    International Nuclear Information System (INIS)

    Hashemi, S. H.; Mohammadyani, D.

    2011-01-01

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  2. Cleanup Verification Package for the 100-K-55:1 and 100-K-56:1 Pipelines and the 116-KW-4 and 116-KE-5 Heat Recovery Stations

    International Nuclear Information System (INIS)

    Capron, J.M.

    2005-01-01

    This cleanup verification package documents completion of remedial action for the 100-K-55:1 and 100-K-56:1 reactor cooling effluent underground pipelines and for the 116-KW-4 and 116-KE-5 heat recovery stations. The 100-K-55 and 100-K-56 sites consisted of those process effluent pipelines that serviced the 105-KW and 105-KE Reactors. This cleanup verification package documents completion of remedial action for the 100-K-55: 1 and 100-K-56: 1 reactor cooling effluent underground pipelines, referred to herein as the 100-K-55:1 and 100-K-56:l sites, as well as for the 116-KW-4 and 116-KE-5 heat recovery stations, referred to herein as the 116-KW-4 and 116-KE-5 sites. The 116-KW-4 and 116-KE-5 heat recovery stations were co-located and remediated with the 100-K-55:1 and 100-K-56:1 pipelines, respectively. These sites are located in the 100-KR-2 Operable Unit in the 100-K Area of the Hanford Site in southeastern Washington State. The 100-K-55 and 100-K-56 sites consisted of those process effluent pipelines that serviced the 105-KW and 105-KE Reactors, respectively. Both of these sites have been administratively divided into subunits based on the current extent of remediation. Portions of the pipelines remaining within the reactor security fencing and in proximity to active utility features have been delineated as the 100-K-55:2 and 100-K-56:2 pipelines, with the portions of the pipelines excluded from these boundaries identified as the 100-K-55:1 and 100-K-56:1 pipelines. This cleanup verification package addresses only the 100-K-55:1 and 100-K-56:I subunits; the 100-K-55:2 and 100-K-56:2 subunits will be addressed within a separate cleanup verification package. Site excavation and waste disposal are complete, and the exposed surfaces have been sampled and analyzed to verify attainment of the remedial action goals. Results of the sampling, laboratory analyses, and data evaluations for the 100-K-55:1, 100-K-56:1, 116-KW-4, and 116-KE-5 sites indicate that all remedial

  3. A Novel Method to Enhance Pipeline Trajectory Determination Using Pipeline Junctions.

    Science.gov (United States)

    Sahli, Hussein; El-Sheimy, Naser

    2016-04-21

    Pipeline inspection gauges (pigs) have been used for many years to perform various maintenance operations in oil and gas pipelines. Different pipeline parameters can be inspected during the pig journey. Although pigs use many sensors to detect the required pipeline parameters, matching these data with the corresponding pipeline location is considered a very important parameter. High-end, tactical-grade inertial measurement units (IMUs) are used in pigging applications to locate the detected problems of pipeline using other sensors, and to reconstruct the trajectories of the pig. These IMUs are accurate; however, their high cost and large sizes limit their use in small diameter pipelines (8″ or less). This paper describes a new methodology for the use of MEMS-based IMUs using an extended Kalman filter (EKF) and the pipeline junctions to increase the position parameters' accuracy and to reduce the total RMS errors even during the unavailability of above ground markers (AGMs). The results of this new proposed method using a micro-electro-mechanical systems (MEMS)-based IMU revealed that the position RMS errors were reduced by approximately 85% compared to the standard EKF solution. Therefore, this approach will enable the mapping of small diameter pipelines, which was not possible before.

  4. Repairing method for reactor primary system pipeline

    International Nuclear Information System (INIS)

    Hosokawa, Hideyuki; Uetake, Naoto; Hara, Teruo.

    1997-01-01

    Pipelines after decontamination of radioactive nuclides deposited on the pipelines in a nuclear power plant during operation or pipelines to replace pipelines deposited with radioactive nuclide are connected to each system of the nuclear power plant. They are heated in a gas phase containing oxygen to form an oxide film on the surface of the pipelines. The thickness of the oxide film formed in the gas phase is 1nm or greater, preferably 100nm. The concentration of oxygen in the gas phase containing oxygen must be 0.1% or greater. The heating is conducted by circulating a heated gas to the inside of the pipelines or disposing a movable heater such as a high frequency induction heater inside of the pipelines to form the oxide film. Then, redeposition of radioactive nuclide can be suppressed and since the oxide film is formed in the gas phase, a large scaled facilities are not necessary, thereby enabling to repair pipelines of reactor primary system at low cost. (N.H.)

  5. Tubular lining material for pipelines having bends

    Energy Technology Data Exchange (ETDEWEB)

    Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.

    1987-03-24

    A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.

  6. Economic evaluation of CO2 pipeline transport in China

    International Nuclear Information System (INIS)

    Zhang Dongjie; Wang Zhe; Sun Jining; Zhang Lili; Li Zheng

    2012-01-01

    Highlights: ► We build a static hydrodynamic model of CO 2 pipeline for CCS application. ► We study the impact on pressure drop of pipeline by viscosity, density and elevation. ► We point out that density has a bigger impact on pressure drop than viscosity. ► We suggest dense phase transport is preferred than supercritical state. ► We present cost-optimal pipeline diameters for different flowrates and distances. - Abstract: Carbon capture and sequestration (CCS) is an important option for CO 2 mitigation and an optimized CO 2 pipeline transport system is necessary for large scale CCS implementation. In the present work, a hydrodynamic model for CO 2 pipeline transport was built up and the hydrodynamic performances of CO 2 pipeline as well as the impacts of multiple factors on pressure drop behavior along the pipeline were studied. Based on the model, an economic model was established to optimize the CO 2 pipeline transport system economically and to evaluate the unit transport cost of CO 2 pipeline in China. The hydrodynamic model results show that pipe diameter, soil temperature, and pipeline elevation change have significant influence on the pressure drop behavior of CO 2 in the pipeline. The design of pipeline system, including pipeline diameter and number of boosters etc., was optimized to achieve a lowest unit CO 2 transport cost. In regarding to the unit cost, when the transport flow rate and distance are between 1–5 MtCO 2 /year and 100–500 km, respectively, the unit CO 2 transport cost mainly lies between 0.1–0.6 RMB/(tCO 2 km) and electricity consumption cost of the pipeline inlet compressor was found to take more than 60% of the total cost. The present work provides reference for CO 2 transport pipeline design and for feasibility evaluation of potential CCS projects in China.

  7. optimization for trenchless reconstruction of pipelines

    Directory of Open Access Journals (Sweden)

    Zhmakov Gennadiy Nikolaevich

    2015-01-01

    Full Text Available Today the technologies of trenchless reconstruction of pipelines are becoming and more widely used in Russia and abroad. One of the most perspective is methods is shock-free destruction of the old pipeline being replaced with the help of hydraulic installations with working mechanism representing a cutting unit with knife disks and a conic expander. A construction of a working mechanism, which allows making trenchless reconstruction of pipelines of different diameters, is optimized and patented and its developmental prototype is manufactured. The dependence of pipeline cutting force from knifes obtusion of the working mechanisms. The cutting force of old steel pipelines with obtuse knife increases proportional to the value of its obtusion. Two stands for endurance tests of the knifes in laboratory environment are offered and patented.

  8. Determination of heat losses in the Cerro Prieto, Baja California, geothermal field steam transportation network based on the thermal insulation condition of the steam pipelines; Determinacion de perdidas de calor en la red de transporte de vapor del campo geotermico de Cerro Prieto, Baja California, con base en el estado fisico del aislamiento termico de vaporductos

    Energy Technology Data Exchange (ETDEWEB)

    Ovando Castelar, Rosember; Garcia Gutierrez, Alfonso; Martinez Estrella, Juan Ignacio [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rovando@iie.org.mx; Canchola Felix, Ismael; Jacobo Galvan, Paul; Miranda Herrera, Carlos; Mora Perez, Othon [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, B.C. (Mexico)

    2011-07-15

    In Cerro Prieto Geothermal Field (CPGF), the steam from producing wells is transported to power plants through a large and complex system of pipes thermally insulated with a 2 inches thick mineral wool or a fiber glass layer and an external aluminum or iron cover. The insulation material has been exposed to weather conditions during the field operation and has suffered density and thickness changes. In some cases the insulation has been lost completely, increasing heat transfer from the pipes to the environment. This paper analyzes the impact of the conditions of thermal insulation on heat losses in the CPGF steam-pipeline network. The heat losses are calculated by applying an iterative method to determine the surface temperature based on a heat balance calculated from the three basic mechanisms of heat transfer: conduction, convection, and radiation. Finally, using length and diameter data corresponding to the condition of the thermal insulation of each pipeline-and field operation data, the overall heat losses are quantified for steam lines throughout the pipeline network in the field. The results allow us to evaluate the magnitude of the heat losses in comparison with the overall energy losses occurring during steam transport from wells to the power plants. [Spanish] En el Campo Geotermico de Cerro Prieto (CGCP), BC, el transporte de vapor desde los pozos hasta las plantas generadoras de electricidad se lleva a cabo mediante un extenso y complejo sistema de tuberias que tipicamente se encuentran aisladas termicamente con una capa de 2 pulgadas de material aislante a base de lana mineral o fibra de vidrio, y una proteccion mecanica de aluminio o hierro galvanizado. Debido a la exposicion a las condiciones meteorologicas a traves del tiempo de operacion del campo, el aislamiento ha experimentado cambios en su densidad y espesor y en ocasiones se ha perdido por completo, lo cual repercute en una mayor transferencia de calor de las tuberias hacia el medio ambiente

  9. Upheaval buckling of heated pipelines: a comparative study of three analytical methods; Flambagem vertical de dutos aquecidos: um estudo comparativo de tres metodos analiticos

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Divino J.S.; Benjamin, Adilson C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    Three analytical methods frequently used for analyzing upheaval buckling are presented and compared in this work: the Hobbs' method which is applied to straight pipelines, the Pedersen-Jensen's method and the JIP-Shell's method, both applied to pipelines containing initial imperfections. The basic equations of the three methods are outlined and its differences are appointed. Also it is studied the sensitivity of the response of the last two methods to the cover of soil and to the amplitude of the initial imperfection. (author)

  10. Maglev crude oil pipeline

    Science.gov (United States)

    Knolle, Ernst G.

    1994-01-01

    This maglev crude oil pipeline consists of two conduits guiding an endless stream of long containers. One conduit carries loaded containers and the other empty returns. The containers are levitated by permanent magnets in repulsion and propelled by stationary linear induction motors. The containers are linked to each other in a manner that allows them, while in continuous motion, to be folded into side by side position at loading and unloading points. This folding causes a speed reduction in proportion to the ratio of container diameter to container length. While in side by side position, containers are opened at their ends to be filled or emptied. Container size and speed are elected to produce a desired carrying capacity.

  11. Removable pipeline plug

    International Nuclear Information System (INIS)

    Vassalotti, M.; Anastasi, F.

    1984-01-01

    A removable plugging device for a pipeline, and particularly for pressure testing a steam pipeline in a boiling water reactor, wherein an inflatable annular sealing member seals off the pipeline and characterized by radially movable shoes for holding the plug in place, each shoe being pivotally mounted for self-adjusting engagement with even an out-of-round pipeline interior

  12. Pipeline integrity management

    Energy Technology Data Exchange (ETDEWEB)

    Guyt, J.; Macara, C.

    1997-12-31

    This paper focuses on some of the issues necessary for pipeline operators to consider when addressing the challenge of managing the integrity of their systems. Topics are: Definition; business justification; creation and safeguarding of technical integrity; control and deviation from technical integrity; pipelines; pipeline failure assessment; pipeline integrity assessment; leak detection; emergency response. 6 figs., 3 tabs.

  13. Wax deposition in crude oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Pablo Morelato; Rodrigues, Lorennzo Marrochi Nolding [Universidade Federal do Espirito Santo, Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Engenharia de Petroleo; Romero, Mao Ilich [University of Wyoming, Laramie, WY (United States). Enhanced Oil Recovery Institute], e-mail: mromerov@uwyo.edu

    2010-07-01

    Crude oil is a complex mixture of hydrocarbons which consists of aromatics, paraffins, naphthenics, resins asphaltenes, etc. When the temperature of crude oil is reduced, the heavy components, like paraffin, will precipitate and deposit on the pipe internal wall in the form of a wax-oil gel. The gel deposit consists of wax crystals that trap some amount of oil. As the temperature gets cooler, more wax will precipitate and the thickness of the wax gel will increase, causing gradual solidification of the crude and eventually the oil stop moving inside the offshore pipeline. Crude oil may not be able to be re-mobilized during re-startup. The effective diameter will be reduced with wax deposition, resulting in several problems, for example, higher pressure drop which means additional pumping energy costs, poor oil quality, use of chemical components like precipitation inhibitors or flowing facilitators, equipment failure, risk of leakage, clogging of the ducts and process equipment. Wax deposition problems can become so sever that the whole pipeline can be completely blocked. It would cost millions of dollars to remediate an offshore pipeline that is blocked by wax. Wax solubility decreases drastically with decreasing temperature. At low temperatures, as encountered in deep water production, is easy to wax precipitate. The highest temperature below which the paraffins begins to precipitate as wax crystals is defined as wax appearance temperature (WAT). Deposition process is a complex free surface problem involving thermodynamics, fluid dynamics, mass and heat transfer. In this work, a numerical analysis of wax deposition by molecular diffusion and shear dispersion mechanisms in crude oil pipeline is studied. Diffusion flux of wax toward the wall is estimated by Fick's law of diffusion, in similar way the shear dispersion; wax concentration gradient at the solid-liquid interface is obtained by the volume fraction conservation equation; and since the wax deposition

  14. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  15. Isotopic method of leaks detection in oil pipelines

    International Nuclear Information System (INIS)

    Listwam, W.; Mottl, J.

    1974-01-01

    Isotopic method of leaks detection in oil pipelines of diameter 200-800 mm is described. Tracer is injected into pipeline in the form of CH 3 Br 82 . After few hours one or two detectors are passed through pipeline to detect leaks. Detector set consists of scintillation radiometer with Na I/Tl crystal, electronic blecks with one-channel analyzer, recorder and storage batteries. Detector set is built on integrated circuits. (Z.M.)

  16. Millennium Pipeline Presentation : a new northeast passage

    International Nuclear Information System (INIS)

    Wolnik, J.

    1997-01-01

    Routes of the proposed Millennium Pipeline project were presented. The pipeline is to originate at the Empress gas field in Alberta and link up to eastern markets in the United States. One of the key advantages of the pipeline is that it will have the lowest proposed rates from Empress to Chicago and through links via affiliates to New York and other eastern markets. It will include 380 miles of new 36-inch pipeline and have a capacity of 650 million cubic feet per day. In many instances it will follow existing rights-of-way. The pipeline is expected to be in service for the 1999 winter heating season. The project sponsors are Columbia Gas Transmission, CMS Energy, MCN Energy, and Westcoast Energy. 6 figs

  17. Welding simulation of large-diameter thick-walled stainless steel pipe joints. Fast computation of residual stress and influence of heat source model

    International Nuclear Information System (INIS)

    Maekawa, Akira; Serizawa, Hisashi; Nakacho, Keiji; Murakawa, Hidekazu

    2011-01-01

    There are many weld zones in the apparatus and piping installed in nuclear power plants and residual stress generated in the zone by weld process is the most important influence factor for maintaining structural integrity. Though the weld residual stress is frequently evaluated using numerical simulation, fast simulation techniques have been demanded because of the enormous calculation times used. Recently, the fast weld residual stress evaluation based on three-dimensional accurate analysis became available through development of the Iterative Substructure Method (ISM). In this study, the computational performance of the welding simulation code using the ISM was improved to get faster computations and more accurate welding simulation. By adding functions such as parallel processing, the computation speed was much faster than that of the conventional finite element method code. Furthermore, the accuracy of the improved code was validated by measurements. The influence of two different weld heat source models on the simulation results was also investigated and it was found that the moving heat source was effective to achieve accurate weld simulation for multi-pass welds. (author)

  18. Measurements of Heat Transfer and Boundary-Layer Transition on an 8-Inch-Diameter Hemisphere-Cylinder in Free Flight for a Mach Number Range of 2.00 to 3.88

    Science.gov (United States)

    Garland, Benjamine J.; Chauvin, Leo T.

    1957-01-01

    Measurements of aerodynamic heat transfer have been made along the hemisphere and cylinder of a hemisphere-cylinder rocket-propelled model in free flight up to a Mach number of 3.88. The test Reynolds number based on free-stream condition and diameter of model covered a range from 2.69 x l0(exp 6) to 11.70 x 10(exp 6). Laminar, transitional, and turbulent heat-transfer coefficients were obtained. The laminar data along the body agreed with laminar theory for blunt bodies whereas the turbulent data along the cylinder were consistently lower than that predicted by the turbulent theory for a flat plate. Measurements of heat transfer at the stagnation point were, in general, lower than the theory for stagnation-point heat transfer. When the Reynolds number to the junction of the hemisphere-cylinder was greater than 6 x l0(exp 6), the transitional Reynolds number varied from 0.8 x l0(exp 6) to 3.0 x 10(exp 6); however, than 6 x l(exp 6) when the Reynolds number to the junction was less, than the transitional Reynolds number varied from 7.0 x l0(exp 6) to 24.7 x 10(exp 6).

  19. Failure Diameter Resolution Study

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-19

    Previously the SURFplus reactive burn model was calibrated for the TATB based explosive PBX 9502. The calibration was based on fitting Pop plot data, the failure diameter and the limiting detonation speed, and curvature effect data for small curvature. The model failure diameter is determined utilizing 2-D simulations of an unconfined rate stick to find the minimum diameter for which a detonation wave propagates. Here we examine the effect of mesh resolution on an unconfined rate stick with a diameter (10mm) slightly greater than the measured failure diameter (8 to 9 mm).

  20. Comparisons of sediment losses from a newly constructed cross-country natural gas pipeline and an existing in-road pipeline

    Science.gov (United States)

    Pamela J. Edwards; Bridget M. Harrison; Daniel J. Holz; Karl W.J. Williard; Jon E. Schoonover

    2014-01-01

    Sediment loads were measured for about one year from natural gas pipelines in two studies in north central West Virginia. One study involved a 1-year-old pipeline buried within the bed of a 25-year-old skid road, and the other involved a newly constructed cross-country pipeline. Both pipelines were the same diameter and were installed using similar trenching and...

  1. Increase of ecological safety of the pipeline

    International Nuclear Information System (INIS)

    Dr Movsumov, Sh.N.; Prof Aliyev, F.G.

    2005-01-01

    Full text : For increase of ecological safety of the pipeline, necessary decrease of damage (risk) rendered by the pipeline on surrounding natural environment which depends: on the frequency of damage of the pipeline; on the volume poured oil; on the factor of sensitivity of an environment where flood of oil was. Frequency of damage of the pipeline depends on physico-chemical properties of a material of the pipeline, from its technical characteristics (thickness of a wall, length of a pipe, working pressure), on the seismic area of the district where the pipeline passed and also on the way of lining of the pipeline (underground or overground). The volume poured oil depends on diameter of the received damage, from stability of the pipeline mechanical and other external actions, from an ambient temperature, from capacity of the pipeline, from distance between the latches established in the pipeline, and also from time, necessary for their full closing. The factor of sensitivity of environment depends on geological structure and landscapes of district (mountain, the river, settlements) where passed the pipeline. At designing the pipeline, in report is shown questions of increase of ecological safety of the pipeline are considered at his construction and exploitation. For improvement of ecological safety of the pipeline is necessary to hold the following actions: Ecological education of the public, living near along a line of the oil pipeline; carrying out ecological monitoring; working of the public plan of response to oil spills; For ecological education of the public is necessary: carrying out informing of the public for all (technical, ecological, social and economic and legal) questions connected to an oil pipeline, and also on methods of protection of the rights at participation in acceptance of ecological significant decisions; Creation of public groups for realization of activity on observance of the legislation and to prevention of risks; Exposure of hot

  2. 30 CFR 250.1003 - Installation, testing, and repair requirements for DOI pipelines.

    Science.gov (United States)

    2010-07-01

    .... (a)(1) Pipelines greater than 8-5/8 inches in diameter and installed in water depths of less than 200... for DOI pipelines. 250.1003 Section 250.1003 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Pipelines...

  3. A case study in flow assurance of a pipeline-riser system using OLGA

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Rafael Horschutz; Balino, Jorge Luis [Nucleo de Dinamica e Fluidos. Dept. de Engenharia Mecanica. Universidade de Sao Paulo (EP/USP), SP (Brazil)], e-mails: rafael.nemoto@usp.br, jlbalino@usp.br; Tanaka, Rafael Loureiro; Godinho, Carlos Alberto [Prysmian Cables and Systems, Cariacica, ES (Brazil)], e-mails: rafael.tanaka@prysmian.com, carlos.godinho@prysmian.com

    2010-07-01

    In this paper, a case study in flow assurance is performed considering an offshore operating system, using the software OLGA. As operating system we consider a pipeline-riser geometry with typical dimensions of offshore oil production systems, and a three-phase flow of oil, gas and water. The model developed in OLGA considers the composition and dimensions of the tubes, heat transfer parameters, process equipment and fluid sources. The fluids properties are calculated using the software PVTsim. Simulations are ran in order to determine the pipeline inner diameter and insulation required to satisfy pressure and temperature requirements. It is also possible to simulate the transient behavior of the system, which allows to evaluate if production instabilities are present. In case instabilities exist, two mitigation alternatives are evaluated: closure of a choke valve before the separator and gas lift. Considering a possible production shutdown, the tubes insulation is calculated in order to avoid hydrate formation. (author)

  4. Demineralized water flow cancelling experiments with ice plug into high diameter horizontal tube (300 nominal diameter)

    International Nuclear Information System (INIS)

    Gyongyosi, T.; Valeca, S.; Corbescu, B.; Puiu, D.; Panaitescu, V. N.

    2015-01-01

    The isolation with ice plug of a high diameter horizontal pipeline section is a specific technique for repairs activities/ replacements of components owning to thermo-hydraulic installations working with liquid agents. The application of such technique don.t assumes stopping of the entire system. The ice plugging inside of the pipeline assumes using of a special device and of an own specific technology for application. The paper contains a brief description of the experimental technological facilities used, followed by setting off the main moments in evolution of two experimental tests carried out on the test section with 300 mm nominal diameter for demineralized water and, finally, by a brief results analysis and some conclusions. The paper is dedicated to the specialists working in the research and technological engineering. (authors)

  5. Theoretical study and design of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane and intended for cooling of gas transported in a gas-main pipeline

    KAUST Repository

    Petrenko, V.O.

    2011-11-01

    This paper describes the construction and performance of a novel combined system intended for natural gas transportation and power production, and for cooling of gas transported in a gas-main pipeline. The proposed system includes a gas turbine compressor, a combined electrogenerating plant and an ejector refrigeration unit operating with a hydrocarbon refrigerant. The combined electrogenerating plant consists of a high-temperature steam-power cycle and a low-temperature hydrocarbon vapor power cycle, which together comprise a binary vapor system. The combined system is designed for the highest possible effectiveness of power generation and could find wide application in gas-transmission systems of gas-main pipelines. Application of the proposed system would enable year-round power generation and provide cooling of natural gas during periods of high ambient temperature operation. This paper presents the main results of a theoretical study and design performance specifications of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane. © 2010 Elsevier Ltd and IIR. All rights reserved.

  6. CFD analysis of onshore oil pipelines in permafrost

    Science.gov (United States)

    Nardecchia, Fabio; Gugliermetti, Luca; Gugliermetti, Franco

    2017-07-01

    Underground pipelines are built all over the world and the knowledge of their thermal interaction with the soil is crucial for their design. This paper studies the "thermal influenced zone" produced by a buried pipeline and the parameters that can influence its extension by 2D-steady state CFD simulations with the aim to improve the design of new pipelines in permafrost. In order to represent a real case, the study is referred to the Eastern Siberia-Pacific Ocean Oil Pipeline at the three stations of Mo'he, Jiagedaqi and Qiqi'har. Different burial depth sand diameters of the pipe are analyzed; the simulation results show that the effect of the oil pipeline diameter on the thermal field increases with the increase of the distance from the starting station.

  7. Method for keeping equipment and pipeline of nuclear power plant

    International Nuclear Information System (INIS)

    Okubo, Osamu.

    1990-01-01

    The present invention intends to suppress corrosion of equipments and pipelines in condensate, feedwater and feedwater heater drain systems during operation of a nuclear power plant. That is, condensate, feedwater and drain remained in equipments and pipelines just after the stopping of operation are passed through pipelines comprising only conduits, or they are introduced to a condensator passing through the pipelines and condensate pipes. Further, the remaining droplets on the inner surfaces are evaporated by the remaining heat of the equipments and the pipelines themselves. Then, the equipments and pipelines are isolated from other regions and kept. In view of the above, since condensate, feedwater and water feeder drains are introduced directly to the condensator passing through the conduits in which other equipments such as tanks and pumps are not present and are isolated and kept, corrosion of the equipments and the pipelines is suppressed and radioactive contamination is suppressed from prevailing by way of cruds. (I.S.)

  8. North America pipeline map

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    This map presents details of pipelines currently in place throughout North America. Fifty-nine natural gas pipelines are presented, as well as 16 oil pipelines. The map also identifies six proposed natural gas pipelines. Major cities, roads and highways are included as well as state and provincial boundaries. The National Petroleum Reserve is identified, as well as the Arctic National Wildlife Refuge. The following companies placed advertisements on the map with details of the services they provide relating to pipeline management and construction: Ferus Gas Industries Trust; Proline; SulfaTreat Direct Oxidation; and TransGas. 1 map

  9. The method of calculation of pipelines laid on supports

    OpenAIRE

    Benin D.M.

    2017-01-01

    this article focuses on the issue of laying pipelines on supports and the method of calculation of vertical and horizontal loads acting on the support. As pipelines can be water piping systems, heat networks, oil and mazout lines, condensate lines, steam lines, etc. this article describes the calculations of supports for pipelines laid above ground, in crowded channels, premises, on racks, in impassable channels, hanging supports, etc. The paper explores recommendations for placement of the s...

  10. Embedding of transmitted-heat pipelines in soil grout with coarse additives; Bettung von Fernwaermeleitungen in Boden-Moertel mit Grobzuschlagstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Berger, W.; Keller, H. [Forschungsinstitute fuer Tief- und Rohrleitungsbau Weimar e.V. (FITR) (Germany); Hoffmann, H.W. [Vorstandsbereich Technik VT1, MVV Energie AG, Mannheim (Germany)

    2003-07-01

    Greater re-use of excavated material in the infilling of pipeline trenches promises to produce economic benefits in pipeline construction. An R and D project by MVV Energie AG Mannheim is aimed at developing construction methods which will realize this potential for savings. Embedding of DN 150 plastic casing tubes (PCTs) with integrated sockets, which in some cases were wrapped with protective mats, in so-called Weimar construction mortar (WCM){sup *} with coarse additives of 0 to 56 mm particle size has been experimentally investigated as a function of the WCM's curing time and conveyed fluid temperature at the Forschungsinstitut fuer Tief- und Rohrleitungsbau Weimar e.V. (Weimar Underground and Pipeline Engineering Research Institute, German abbreviation: FITR). The test PCT objects were jacked across a distance of 75 mm in each case at rates of 10 and 30 mm/h, respectively, using hydraulic presses, in conformity with DIN EN 489 [1]. Exposure of the test items after completion of the tests demonstrated that neither the PE sheath of the PCTs nor either the sheathed or non-sheathed sockets had been damaged. (orig.) [German] Eine verstaerkte Wiederverwendung von Aushubmaterial bei der Verfuellung von Rohrleitungsgraeben verspricht wirtschaftliche Vorteile im Rohrleitungsbau. Ein FuE-Projekt der MVV Energie AG Mannheim zielt darauf ab, Bautechniken zu entwickeln, die dieses Einsparpotenzial erschliessen. Am Forschungsinstitut fuer Tief- und Rohrleitungsbau Weimar e. V. (FITR) wurde die Bettung von Kunststoffmantelrohren (KMR) DN 150 mit integrierten Muffen, die teilweise mit Schutzmatten ummantelt waren, in Weimarer Bau-Moertel trademark (WBM){sup *} mit Grobzuschlagstoffen 0 - 56 mm in Abhaengigkeit von der Verfestigungsdauer des WBM und der Mediumtemperatur experimentell untersucht. Dabei wurden die KMR-Probanden in Anlehnung an DIN EN 489 [1] mit Hilfe hydraulischer Pressen mit Geschwindigkeiten von 10 bzw. 30 mm/h jeweils ueber eine Distanz von 75 mm

  11. Shore approach of Camarupim pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, Tiaraju P.; Oliveira Neto, Vasco A. de; Siqueira, Jakson [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Camarupim Field is located in the northern portion of Espirito Santo Basin and was discovered from the drilling of the well 1-ESS-164 in 2006. It is a gas field which start of the production is in mid of 2009. The production unit will be a FPSO (Floating Production, Storage and Offloading) and the gas will flow through a pipeline with diameter ranging from 12 inches and 24 inches with approximately 60 km long, from the FPSO Cidade de Sao Mateus to UTGC (Unit for Treatment of Gas Cacimbas-Linhares-ES). The FPSO will have processing capacity of 10MMm3/day of gas. Due to the approach of the pipeline in the continental portion, located in an environmental protection area and place of spawning of sea turtles, the connection between the stretch of sea and land pipeline running through a shore approach, known and proven technique of horizontal directional drilling about 950m in length. This paper will be shown the assumptions adopted, the technique employed, the challenges faced by the team and the lessons learned to build the directional hole. (author)

  12. Flexible, pre-insulated pipelines for heat and water supply. Systems with integrated quality and service; Flexible, vorgedaemmte Rohrsysteme fuer die Versorgungstechnik. Gesamtsysteme mit Qualitaet und Service

    Energy Technology Data Exchange (ETDEWEB)

    Hetzel, Michaela [Uponor Central Europe, Hassfurt (Germany). Unternehmenskommunikation

    2010-10-15

    Flexible pipes are suited for heat distribution, cooling water and freshwater transport. Uponor uses a modified, cross-linked polythene for insulation. The material is flexible, ageing-resistant, and will reduce the heat loss. Pipes are supplied to the construction site within two days, cut to measure and with all required parts. (orig.)

  13. Pipelines 'R' us

    International Nuclear Information System (INIS)

    Thomas, P.

    1997-01-01

    The geopolitical background to the export of oil and gas from Kazakhstan by pipeline is explored with particular reference to the sensitivities of the USA. There are now a number of pipeline proposals which would enable Kazakhstan to get its hydrocarbons to world markets. The construction of two of these formed part of a major oil deal signed recently with China in the face of stiff competition from major US companies. The most convenient and cost effective route, connecting up with Iran's existing pipeline network to the Gulf, is unlikely to be developed given continuing US sanctions against Iran. Equally unlikely seems to be the Turkmenistan to Pakistan pipeline in the light of the political volatility of Afghanistan. US companies continue to face limits on export capacity via the existing Russian pipelines from Kazakhstan. A temporary solution could be to carry some oil in the existing pipeline from Azerbaijan to Georgia which has been upgraded and is due to become operational soon, and later in a second proposed pipeline on this route. The Caspian Pipeline Consortium, consisting of three countries and eleven international companies, is building a 1500 km pipeline from the Tergiz field to Novorossiysk on the Black Sea with a view to completion in 2000. An undersea pipeline crossing the Caspian from Azerbaijan is being promoted by Turkey. There is an international perception that within the next five years Kazakhstan could be in a position to export its oil via as many as half a dozen different routes. (UK)

  14. Thermal interaction of underground pipeline with freezing heaving soil

    Science.gov (United States)

    Podorozhnikov, S. Y.; Mikhailov, P.; Puldas, L.; Shabarov, A.

    2018-05-01

    A mathematical model and a method for calculating the stress-strain state of a pipeline describing the heat-power interaction in the "underground pipeline - soil" system in the conditions of negative temperatures in the soils of soils are offered. Some results of computational-parametric research are presented.

  15. Overview of slurry pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, R L

    1982-01-01

    Slurry pipelines have proven to be a technically feasible, environmentally attractive and economic method of transporting finely divided particles over long distances. A pipeline system normally consists of preparation, pipeline and utilization facilities and requires optimization of all three components taken together. A considerable amount of research work has been done to develop hydraulic design of a slurry pipeline. Equipment selection and estimation of corrosion-erosion are considered to be as important as the hydraulic design. Future applications are expected to be for the large-scale transport of coal and for the exploitation of remotely located mineral deposits such as iron ore and copper. Application of slurry pipelines for the exploitation of remotely located mineral deposits is illustrated by the Kudremukh iron concentrate slurry pipeline in India.

  16. Risk from transport of gas by pipeline ''kokui-perm''

    International Nuclear Information System (INIS)

    Yelokhin, A.

    1998-01-01

    Full text of publication follows: the length of gas pipelines in Russia is 142 thousands km, 62 % are pipelines of the large diameters. Annually on gas pipelines in Russia there are more than 70 large accidents, more than 50 % from them is accompanied by ignition of gas. The average ecological looses from accident is: destruction arable lands - 78 hectares; removing from consumption agricultural soils - 6,2 hectares; destruction forests - 47,5 hectares. In work the reasons of accidents on gas pipelines of different diameters are analyzed. So, for pipelines a diameter of 1220 mm by the reasons of accidents are: marriage of civil and erection works - 39, 1 %; outside corrosion - 35,9 %; mechanical damages - 9,4 %; defects of pipes - 6,2 %; defects of the factory equipment - 1,6 %; nature disasters and other reasons - 7,8 %. In work the results of risk analysis on a gas pipeline 'Kokui - Perm' are analysed. The gas pipeline 'Kokui - Perm' passes near 22 towns and countries, crosses 15 highways, 2 rail ways, 15 rivers. In work the concrete recommendations for management of risk and safety of the population are given. (author)

  17. 75 FR 13342 - Pipeline Safety: Workshop on Distribution Pipeline Construction

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... natural gas distribution construction. Natural gas distribution pipelines are subject to a unique subset... distribution pipeline construction practices. This workshop will focus solely on natural gas distribution...

  18. Design Against Propagating Shear Failure in Pipelines

    Science.gov (United States)

    Leis, B. N.; Gray, J. Malcolm

    Propagating shear failure can occur in gas and certain hazardous liquid transmission pipelines, potentially leading to a large long-burning fire and/or widespread pollution, depending on the transported product. Such consequences require that the design of the pipeline and specification of the steel effectively preclude the chance of propagating shear failure. Because the phenomenology of such failures is complex, design against such occurrences historically has relied on full-scale demonstration experiments coupled with empirically calibrated analytical models. However, as economic drivers have pushed toward larger diameter higher pressure pipelines made of tough higher-strength grades, the design basis to ensure arrest has been severely compromised. Accordingly, for applications where the design basis becomes less certain, as has occurred increasing as steel grade and toughness has increased, it has become necessary to place greater reliance on the use and role of full-scale testing.

  19. Engineering critical assessment of PETROBRAS Camarupim pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J.R. [Microalloying International, Houston, TX (United States); Gatlin, R.W. [Global Industries, Rio de Janeiro, RJ (Brazil); Zumpano Junior, P.; Kaspary, T. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    This paper presents details of an Engineering Critical Assessment (ECA) performed to develop girth weld flaw acceptance criteria for the PETROBRAS Camarupim Pipeline which was installed in Espirito Santo Basin, ES, offshore Brazil in May 2008 by Global Industries. The pipeline was constructed using 24-inch diameter API Grade X65 pipe with wall thicknesses of 0.875-inch (22.2 mm) and 1.00 inch (25.4 mm). Although the Camarupim pipeline will initially transport sweet gas there is the potential for mildly sour service operation in mid to late life. To assess the effect of sour service on the material toughness properties a series of slow strain rate fracture toughness tests were performed in a Project representative sour service environment. In addition the results of sour service fatigue crack growth tests were analyzed to develop a conservative sour service fatigue crack growth law for the ECA analysis. (author)

  20. Pipeline system operability review

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Kjell [Det Norske Veritas (Norway); Davies, Ray [CC Technologies, Dublin, OH (United States)

    2005-07-01

    Pipeline operators are continuously working to improve the safety of their systems and operations. In the US both liquid and gas pipeline operators have worked with the regulators over many years to develop more systematic approaches to pipeline integrity management. To successfully manage pipeline integrity, vast amounts of data from different sources needs to be collected, overlaid and analyzed in order to assess the current condition and predict future degradation. The efforts undertaken by the operators has had a significant impact on pipeline safety, nevertheless, during recent years we have seen a number of major high profile accidents. One can therefore ask how effective the pipeline integrity management systems and processes are. This paper will present one methodology 'The Pipeline System Operability Review' that can evaluate and rate the effectiveness of both the management systems and procedures, as well as the technical condition of the hardware. The result from the review can be used to compare the performance of different pipelines within one operating company, as well as benchmark with international best practices. (author)

  1. Pipeline system operability review

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Kjell [Det Norske Veritas (Norway); Davies, Ray [CC Technologies, Dublin, OH (United States)

    2005-07-01

    Pipeline operators are continuously working to improve the safety of their systems and operations. In the US both liquid and gas pipeline operators have worked with the regulators over many years to develop more systematic approaches to pipeline integrity management. To successfully manage pipeline integrity, vast amounts of data from different sources needs to be collected, overlaid and analyzed in order to assess the current condition and predict future degradation. The efforts undertaken by the operators has had a significant impact on pipeline safety, nevertheless, during recent years we have seen a number of major high profile accidents. One can therefore ask how effective the pipeline integrity management systems and processes are. This paper will present one methodology 'The Pipeline System Operability Review' that can evaluate and rate the effectiveness of both the management systems and procedures, as well as the technical condition of the hardware. The result from the review can be used to compare the performance of different pipelines within one operating company, as well as benchmark with international best practices. (author)

  2. Metallurgical analysis of high pressure gas pipelines rupture

    International Nuclear Information System (INIS)

    Hasan, F.; Ahmed, F.

    2007-01-01

    On 6 July 2004, two parallel-running gas pipelines (18-inch and 24-inch diameters), in the main transmission network of SNGPL (a gas company in Pakistan) were ruptured. The ruptures occurred in the early hours of the morning about 8 miles downstream of the compressor station AC-4. The ruptures were indicated by the increased gas flow at the outlet of AC-4 (1), first at about 0648 hours and then again about 20 minutes later. The gas escaping from the ruptured lines had caught fire, and the flames had also 'affected' a third parallel-running pipeline of 30-inch diameter, lying next to the 24-inch line. The metallurgical examination of the two ruptured lines showed that the 24-inch line was ruptured with the help of an explosive device that had been placed on the underside of the pipe. An examination of the 18-inch line showed that this pipe had failed as a result of the heating of the pipe-wall, presumably, by the flame emanating from the 24-inch line. These two observations clearly suggested that the 24-inch line was the first to rupture (by explosives), and the fire following this rupture had heated the 18-inch pipe to a temperature where its yield strength was unable to support the inside gas pressure. The 20 minutes time interval between the two ruptures was obviously the time taken by the 18 inch pipe to be heated upto the level where it started to yield. The 30-inch line lying next to the 24-inch line was affected to the extent that its coating had been burnt-off over a length of about 40-50 feet. However, the pipe did not exhibit any signs of deshaping or deformation what-so-ever. A replica metallographic examination indicated that the microstructure of the pipe was not measurably affected by the heat. It was thus decided not to replace the affected part of the 30-inch pipe, but only to re-coat this affected portion. (author)

  3. Skaha Lake crossing, innovations in pipeline installation

    International Nuclear Information System (INIS)

    Fernandez, M.L.; Bryce, P.W.; Smith, J.D.

    1995-01-01

    This paper describes the construction of a 10.8 km long NPS16 (406 mm, 16 inch diameter) pipeline, across Skaha Lake, in the south Okanagan valley, British Columbia, Canada. The water crossing is part of the 32 km South Okanagan Natural Gas Pipeline Project (SONG) operated by BC Gas. The pipeline is located in a region dependent on year-round tourism. Therefore, the design and construction was influenced by sensitive environmental and land use concerns. From earlier studies, BC Gas identified surface tow or lay as preferred installation methods. The contractor, Fraser River Pile and Dredge departed from a conventional laybarge methodology after evaluating environmental data and assessing locally available equipment. The contractor proposed a surface tow with multiple surface tie-ins. This approach modification to the ''Surface Tow and Buoy Release Method'' (STBRM) used previously with success on relatively short underwater pipelines. A total of 10 pipe strings, up to 1 km long, were towed into position on the lake and tied-in using a floating platform. The joined pipeline was lowered to the lakebed by divers releasing buoys while tension was maintained from a winch barge at the free end of the pipeline. From analysis and field verified measurement the installation stresses were well below the allowable limits during all phases of construction. The entire construction, including mobilization and demobilization, lasted less than three months, and actual pipelaying less than three weeks. Installation was completed within budget and on schedule, without any environmental or safety related incidents. The SONG pipeline became operational in December 1994

  4. Slurry pipeline design approach

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy; Navarro R, Luis [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    Compared to other engineering technologies, the design of a commercial long distance Slurry Pipeline design is a relatively new engineering concept which gained more recognition in the mid 1960 's. Slurry pipeline was first introduced to reduce cost in transporting coal to power generating units. Since then this technology has caught-up worldwide to transport other minerals such as limestone, copper, zinc and iron. In South America, the use of pipeline is commonly practiced in the transport of Copper (Chile, Peru and Argentina), Iron (Chile and Brazil), Zinc (Peru) and Bauxite (Brazil). As more mining operations expand and new mine facilities are opened, the design of the long distance slurry pipeline will continuously present a commercially viable option. The intent of this paper is to present the design process and discuss any new techniques and approach used today to ensure a better, safer and economical slurry pipeline. (author)

  5. Validation of pig operations through pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Tolmasquim, Sueli Tiomno [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2005-07-01

    In the oil industry, pigging operations in pipelines have been largely applied for different purposes: pipe cleaning, inspection, liquid removal and product separation, among others. An efficient and safe pigging operation requires that a number of operational parameters, such as maximum and minimum pressures in the pipeline and pig velocity, to be well evaluated during the planning stage and maintained within stipulated limits while the operation is accomplished. With the objective of providing an efficient tool to assist in the control and design of pig operations through pipelines, a numerical code was developed, based on a finite difference scheme, which allows the simulation of two fluid transient flow, like liquid-liquid, gas-gas or liquid-gas products in the pipeline. Modules to automatically control process variables were included to employ different strategies to reach an efficient operation. Different test cases were investigated, to corroborate the robustness of the methodology. To validate the methodology, the results obtained with the code were compared with a real liquid displacement operation of a section of the OSPAR oil pipeline, belonging to PETROBRAS, with 30'' diameter and 60 km length, presenting good agreement. (author)

  6. 78 FR 70623 - Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory...

    Science.gov (United States)

    2013-11-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2009-0203] Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory Committee AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. [[Page...

  7. Detection blockages and valve statues in natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Karl; Short, Gordon; Wang, Xuesong [Pipeline Engineering Ltd, North Yorkshire, (United Kingdom); Lennox, Barry; Lewis, Keith; Turner, John [University of Manchester, Manchester, (United Kingdom); Lewis, Chris [BP exploration, Aberdeen, (United Kingdom)

    2010-07-01

    Detecting features in pipelines containing flowing gas is difficult. This paper investigated a patented acoustic reflectometry technique for detecting defects in gas pipelines. The basic concept of this technique is to inject a pulse of sound into a pipeline and then measure the reflections produced while the signal travels along the length of the pipe. A modification in the internal section of the pipe will produce a reflection which, given with the speed of sound in the gas within the pipeline, provides the location of the feature. Laboratory tests on a 16m rigid PVC pipe and two field trials were undertaken to test this new method. The results showed that acoustic reflectometry can be used to identify features resulting from blockages and leakages. The field tests demonstrated that the method is capable of surveying both small and large diameter pipelines with lengths up to 10 km.

  8. 76 FR 53086 - Pipeline Safety: Safety of Gas Transmission Pipelines

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket No. PHMSA-2011-0023] RIN 2137-AE72 Pipeline Safety: Safety of Gas Transmission Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), Department of Transportation (DOT...

  9. 76 FR 70953 - Pipeline Safety: Safety of Gas Transmission Pipelines

    Science.gov (United States)

    2011-11-16

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket ID PHMSA-2011-0023] RIN 2137-AE72 Pipeline Safety: Safety of Gas Transmission Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Advance notice of...

  10. Pipeline Drag Reducers

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Pipeline drag reducers have proven to be an extremely powerful tool in fluid transportation. High molecular weight polymers are used to reduce the frictional pressure loss ratio in crude oil pipelines, refined fuel and aqueous pipelines. Chemical structure of the main used pipeline drag reducers is one of the following polymers and copolymers classified according to the type of fluid to ; low density polyethylene, copolymer of I-hexane cross linked with divinyl benzene, polyacrylamide, polyalkylene oxide polymers and their copolymers, fluorocarbons, polyalkyl methacrylates and terpolymer of styrene, alkyl acrylate and acrylic acid. Drag reduction is the increase in pump ability of a fluid caused by the addition of small amounts of an additive to the fluid. The effectiveness of a drag reducer is normally expressed in terms of percent drag reduction. Frictional pressure loss in a pipeline system is a waste of energy and it costly. The drag reducing additive minimizes the flow turbulence, increases throughput and reduces the energy costs. The Flow can be increased by more than 80 % with existing assets. The effectiveness of the injected drag reducer in Mostorod to Tanta crude oil pipeline achieved 35.4 % drag reduction and 23.2 % flow increase of the actual performance The experimental application of DRA on Arab Petroleum Pipeline Company (Summed) achieved a flow increase ranging from 9-32 %

  11. Pollution from pipelines

    International Nuclear Information System (INIS)

    1991-01-01

    During the 1980s, over 3,900 spills from land-based pipelines released nearly 20 million gallons of oil into U.S. waters-almost twice as much as was released by the March 1989 Exxon Valdez oil spill. Although the Department of Transportation is responsible for preventing water pollution from petroleum pipelines, GAO found that it has not established a program to prevent such pollution. DOT has instead delegated this responsibility to the Coast Guard, which has a program to stop water pollution from ships, but not from pipelines. This paper reports that, in the absence of any federal program to prevent water pollution from pipelines, both the Coast Guard and the Environmental Protection Agency have taken steps to plan for and respond to oil spills, including those from pipelines, as required by the Clean Water Act. The Coast Guard cannot, however, adequately plan for or ensure a timely response to pipeline spills because it generally is unaware of specific locations and operators of pipelines

  12. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  13. Trouble in the pipeline?

    Energy Technology Data Exchange (ETDEWEB)

    Snieckus, Darius

    2002-10-01

    The author provides a commentary on the political, economic, environmental and social problems facing the proposed 3 billion US dollars Baku-Ceyhan-Tbilisi export pipeline. The 1760 km long pipeline has been designed to carry 1 million b/d of crude oil from the Caspian Sea to Turkey's Mediterranean coast. The pipeline is being constructed by a BP-led consortium made up of Socar, Statoil, Unocal, TPAO, Eni, Itochu, Amerada Hess, TotalFinaElf and BP. (UK)

  14. A New Reliability Analysis Model of the Chegongzhuang Heat-Supplying Tunnel Structure Considering the Coupling of Pipeline Thrust and Thermal Effect

    Directory of Open Access Journals (Sweden)

    Jiawen Zhang

    2018-02-01

    Full Text Available Based on the operating Chegongzhuang heat-supplying tunnel in Beijing, the reliability of its lining structure under the action of large thrust and thermal effect is studied. According to the characteristics of a heat-supplying tunnel service, a three-dimensional numerical analysis model was established based on the mechanical tests on the in-situ specimens. The stress and strain of the tunnel structure were obtained before and after the operation. Compared with the field monitoring data, the rationality of the model was verified. After extracting the internal force of the lining structure, the improved method of subset simulation was proposed as the performance function to calculate the reliability of the main control section of the tunnel. In contrast to the traditional calculation method, the analytic relationship between the sample numbers in the subset simulation method and Monte Carlo method was given. The results indicate that the lining structure is greatly influenced by coupling in the range of six meters from the fixed brackets, especially the tunnel floor. The improved subset simulation method can greatly save computation time and improve computational efficiency under the premise of ensuring the accuracy of calculation. It is suitable for the reliability calculation of tunnel engineering, because “the lower the probability, the more efficient the calculation.”

  15. Evaluation of the sources of error in the linepack estimation of a natural gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Marco, Fabio Capelassi Gavazzi de [Transportadora Brasileira Gasoduto Bolivia-Brasil S.A. (TBG), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The intent of this work is to explore the behavior of the random error associated with determination of linepack in a complex natural gas pipeline based on the effect introduced by the uncertainty of the different variables involved. There are many parameters involved in the determination of the gas inventory in a transmission pipeline: geometrical (diameter, length and elevation profile), operational (pressure, temperature and gas composition), environmental (ambient / ground temperature) and those dependent on the modeling assumptions (compressibility factor and heat transfer coefficient). Due to the extent of a natural gas pipeline and the vast amount of sensor involved it is infeasible to determine analytically the magnitude of resulting uncertainty in the linepack, thus this problem has been addressed using Monte Carlo Method. The approach consists of introducing random errors in the values of pressure, temperature and gas gravity that are employed in the determination of the linepack and verify its impact. Additionally, the errors associated with three different modeling assumptions to estimate the linepack are explored. The results reveal that pressure is the most critical variable while the temperature is the less critical. In regard to the different methods to estimate the linepack, deviations around 1.6% were verified among the methods. (author)

  16. Cooling pipeline disposing structure for large-scaled cryogenic structure

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki.

    1996-01-01

    The present invention concerns an electromagnetic force supporting structure for superconductive coils. As the size of a cryogenic structure is increased, since it takes much cooling time, temperature difference between cooling pipelines and the cryogenic structure is increased over a wide range, and difference of heat shrinkage is increased to increase thermal stresses. Then, in the cooling pipelines for a large scaled cryogenic structure, the cooling pipelines and the structure are connected by way of a thin metal plate made of a material having a heat conductivity higher than that of the material of the structure by one digit or more, and the thin metal plate is bent. The displacement between the cryogenic structure and the cooling pipelines caused by heat shrinkage is absorbed by the elongation/shrinkage of the bent structure of the thin metal plate, and the thermal stresses due to the displacement is reduced. In addition, the heat of the cryogenic structures is transferred by way of the thin metal plate. Then, the cooling pipelines can be secured to the cryogenic structure such that cooling by heat transfer is enabled by absorbing a great deviation or three dimensional displacement due to the difference of the temperature distribution between the cryogenic structure enlarged in the scale and put into the three dimensional shape, and the cooling pipelines. (N.H.)

  17. Chechnya: the pipeline front

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1999-11-01

    This article examines the impact of the Russian campaign against Chechnya on projects for oil and gas pipelines from the new Caspian republics, which are seeking financial support. Topics discussed include the pipeline transport of oil from Azerbaijan through Chechnya to the Black Sea, the use of oil money to finance the war, the push for non-Russian export routes, the financing of pipelines, the impact of the war on the supply of Russian and Turkmenistan gas to Turkey, the proposed construction of the Trans Caspian pipeline, the weakening of trust between Russia and its neighbours, and the potential for trans Caucasus republics to look to western backers due to the instability of the North Caucasus. (UK)

  18. National Pipeline Mapping System

    Data.gov (United States)

    Department of Transportation — The NPMS Public Map Viewer allows the general public to view maps of transmission pipelines, LNG plants, and breakout tanks in one selected county. Distribution and...

  19. The Winfrith effluent pipeline

    International Nuclear Information System (INIS)

    Palmer, G.H.

    1959-11-01

    The paper describes the preparatory work leading up to the design of the Winfrith pipeline. Details of the existing system are given and some information on the predicted safe levels of radio-active discharge. (author)

  20. Pipelines in power plants

    International Nuclear Information System (INIS)

    Oude-Hengel, H.H.

    1978-01-01

    Since the end of the Sixties, steam-transporting pipelines are given great attention, as pipeline components often fail, partially even long before their designed operation time is over. Thus, experts must increasingly deal with questions of pipelines and their components. Design and calculation, production and operation of pipelines are included in the discussion. Within the frame of this discussion, planners, producers, operators, and technical surveillance personnel must be able to offer a homogenous 'plan for assuring the quality of pipelines' in fossil and nuclear power plants. This book tries to make a contribution to this topic. 'Quality assuring' means efforts made for meeting the demands of quality (reliability). The book does not intend to complete with well-known manuals, as for as a complete covering of the topic is concerned. A substantial part of its sections serves to show how quality assurance of pipelines can be at least partially obtained by surveillance measures beginning with the planning, covering the production, and finally accompanying the operation. There is hardly need to mention that the sort of planning, production, and operation has an important influence on the quality. This is why another part of the sections contain process aspects from the view of the planners, producers, and operators. (orig.) [de

  1. Pipelines to eastern Canada

    International Nuclear Information System (INIS)

    Otsason, J.

    1998-01-01

    This presentation focused on four main topics: (1) the existing path of pipelines to eastern Canada, (2) the Chicago hub, (3) transport alternatives, and (4) the Vector Pipeline' expansion plans. In the eastern Canadian market, TransCanada Pipelines dominates 96 per cent of the market share and is effectively immune to expansion costs. Issues regarding the attractiveness of the Chicago hub were addressed. One attractive feature is that the Chicago hub has access to multiple supply basins including western Canada, the Gulf Coast, the mid-continent, and the Rockies. Regarding Vector Pipelines' future plans, the company proposes to construct 343 miles of pipeline from Joliet, Illinois to Dawn, Ontario. Project description included discussion of some of the perceived advantages of this route, namely, extensive storage in Michigan and south-western Ontario, the fact that the proposed pipeline traverses major markets which would mitigate excess capacity concerns, arbitrage opportunities, cost effective expansion capability reducing tolls, and likely lower landed costs in Ontario. Project schedule, costs, rates and tariffs are also discussed. tabs., figs

  2. Overview of interstate hydrogen pipeline systems

    International Nuclear Information System (INIS)

    Gillette, J.L.; Kolpa, R.L.

    2008-01-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  3. Overview of interstate hydrogen pipeline systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  4. The method of calculation of pipelines laid on supports

    Directory of Open Access Journals (Sweden)

    Benin D.M.

    2017-08-01

    Full Text Available this article focuses on the issue of laying pipelines on supports and the method of calculation of vertical and horizontal loads acting on the support. As pipelines can be water piping systems, heat networks, oil and mazout lines, condensate lines, steam lines, etc. this article describes the calculations of supports for pipelines laid above ground, in crowded channels, premises, on racks, in impassable channels, hanging supports, etc. The paper explores recommendations for placement of the supports on the route of the pipelines, calculation of loads on rotating and stationary supports of pipelines; inspection of stresses in the metal pipe, resulting from elongation of the piping from the temperature from the thermal expansion of the metal during operation.

  5. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata.

    Directory of Open Access Journals (Sweden)

    J Zhang

    Full Text Available This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines.

  6. Security of pipeline facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.C. [Alberta Energy and Utilities Board, Calgary, AB (Canada); Van Egmond, C.; Duquette, L. [National Energy Board, Calgary, AB (Canada); Revie, W. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada)

    2005-07-01

    This working group provided an update on provincial, federal and industry directions regarding the security of pipeline facilities. The decision to include security issues in the NEB Act was discussed as well as the Pipeline Security Management Assessment Project, which was created to establish a better understanding of existing security management programs as well as to assist the NEB in the development and implementation of security management regulations and initiatives. Amendments to the NEB were also discussed. Areas of pipeline security management assessment include physical safety management; cyber and information security management; and personnel security. Security management regulations were discussed, as well as implementation policies. Details of the Enbridge Liquids Pipelines Security Plan were examined. It was noted that the plan incorporates flexibility for operations and is integrated with Emergency Response and Crisis Management. Asset characterization and vulnerability assessments were discussed, as well as security and terrorist threats. It was noted that corporate security threat assessment and auditing are based on threat information from the United States intelligence community. It was concluded that the oil and gas industry is a leader in security in North America. The Trans Alaska Pipeline Incident was discussed as a reminder of how costly accidents can be. Issues of concern for the future included geographic and climate issues. It was concluded that limited resources are an ongoing concern, and that the regulatory environment is becoming increasingly prescriptive. Other concerns included the threat of not taking international terrorism seriously, and open media reporting of vulnerability of critical assets, including maps. tabs., figs.

  7. LNG transport through pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, P; Philipps, A

    1975-01-01

    LNG pipelines could help solve some peakshaving problems if operated in conjunction with other facilities that could use the LNG cold recovered during regasification. In some areas at present, LNG is delivered by tanker and regasified near the terminal for transmission through conventional gas pipelines. In other places, utilities liquefy natural gas for easy storage for later peakshaving use. The only chance to avoid the second expensive liquefaction step would be to convey imported LNG through a suitable designed LNG pipeline. The technical problems involved in LNG pipeline construction have basically been solved in recent years, but those pipelines actually constructed have been only short ones. To be economically justified, long-distance LNG lines require additional credit, which could be obtained by selling the LNG cold recovered during regasification to industrial users located in or near the points of gas consumption. Technical details presented cover the pipe material, stress relief, steel composition, pressure enthalpy, bellows-type expansion joints, and mechanical and thermal insulation.

  8. Water level detection pipeline

    International Nuclear Information System (INIS)

    Koshikawa, Yukinobu; Imanishi, Masatoshi; Niizato, Masaru; Takagi, Masahiro

    1998-01-01

    In the present invention, water levels of a feedwater heater and a drain tank in a nuclear power plant are detected at high accuracy. Detection pipeline headers connected to the upper and lower portions of a feedwater heater or a drain tank are connected with each other. The connection line is branched at appropriate two positions and an upper detection pipeline and a lower detection pipeline are connected thereto, and a gauge entrance valve is disposed to each of the detection pipelines. A diaphragm of a pressure difference generator is connected to a flange formed to the end portion. When detecting the change of water level in the feedwater heater or the drain tank as a change of pressure difference, gauge entrance valves on the exit side of the upper and lower detection pipelines are connected by a connection pipe. The gauge entrance valve is closed, a tube is connected to the lower detection pipe to inject water to the diaphragm of the pressure difference generator passing through the connection pipe thereby enabling to calibrate the pressure difference generator. The accuracy of the calibration of instruments is improved and workability thereof upon flange maintenance is also improved. (I.S.)

  9. The capacity increase of the Bolivia-Brasil Gas Pipeline to 30 MMm{sup 3} diameter. Relative aspects to the enterprise; O aumento de capacidade do gasoduto Bolivia-Brasil para 30 MMm{sup 3}/dia nominal. Aspectos relativos ao empreendimento

    Energy Technology Data Exchange (ETDEWEB)

    D' Oliveira, Celso Araripe; Igreja, Carlos Alexandre Fanjul [PETROBRAS, Rio de Janeiro, RJ (Brazil); Claussen, Edgard Soares; Castro, Raymundo Cesar de Mello Araujo [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    GASBOL - Gasoduto Bolivia - Brasil Gas Pipeline had its natural gas transport capacity increased from 17 MMm3/day to 30 MMm3/day, in the period of November 1999 - May 2003, with the bidding, engineering design, procurement, construction, commissioning, start-up, tests, assisted operation and acceptance of 8 (eight) compression stations (ECOMP's), equipped with 02 (two) groups of solar compressors and turbines-MHI, 15000 HP, each. This paper presents aspects relative to that Project, including the characterization / description of the pipeline and the compression plants, the EPC type contract, the several construction phases and, the management aspects of costs and schedule. In addition, a historic of the main facts will be presented, including, the problems and the solutions adopted in the technical and management areas. The main positive and negative aspects will also be presented. These aspects have been discussed in a workshop with the participation of the Engineering Service of PETROBRAS and TBG. Finally, we will present the conclusions and recommendations learned with the experience of this Project, in order to give feedback for new Projects. (author)

  10. Impedance Method for Leak Detection in Zigzag Pipelines

    Science.gov (United States)

    Lay-Ekuakille, A.; Vergallo, P.; Trotta, A.

    2010-01-01

    Transportation of liquids is a primary aspect of human life. The most important infrastructure used accordingly is the pipeline. It serves as an asset for transporting different liquids and strategic goods. The latter are for example: chemical substances, oil, gas and water. Thus, it is necessary to monitor such infrastructures by means of specific tools. Leakage detection methods are used to reveal liquid leaks in pipelines for many applications, namely, waterworks, oil pipelines, industry heat exchangers, etc. The configuration of pipelines is a key issue because it impacts on the effectiveness of the method to be used and, consequently, on the results to be counterchecked. This research illustrated an improvement of the impedance method for zigzag pipeline by carrying out an experimental frequency analysis that has been compared with other methods based on frequency response. Hence, the impedance method is generally used for simple (straight) pipeline configurations because complicated pipelines with many curves introduce difficulties and major uncertainties in the calculation of characteristic impedance and in the statement of boundary conditions. The paper illustrates the case of a water pipeline where the leakage is acquired thanks to pressure transducers.

  11. Pipelines. Economy's veins; Pipelines. Adern der Wirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feizlmayr, Adolf; Goestl, Stefan [ILF Beratende Ingenieure, Muenchen (Germany)

    2011-02-15

    According to the existing prognoses more than 1 million km of gas pipelines, oil pipelines and water pipelines are built up to the year 2030. The predominant portion is from gas pipelines. The safe continued utilization of the aging pipelines is a large challenge. In addition, the diagnostic technology, the evaluation and risk assessment have to be developed further. With the design of new oil pipelines and gas pipelines, aspects of environmental protection, the energy efficiency of transport and thus the emission reduction of carbon dioxide, the public acceptance and the market strategy of the exporters gain in importance. With the offshore pipelines one soon will exceed the present border of 2,000 m depth of water and penetrate into larger sea depths.

  12. 77 FR 34123 - Pipeline Safety: Public Meeting on Integrity Management of Gas Distribution Pipelines

    Science.gov (United States)

    2012-06-08

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0100] Pipeline Safety: Public Meeting on Integrity Management of Gas Distribution Pipelines AGENCY: Office of Pipeline Safety, Pipeline and Hazardous Materials Safety Administration, DOT. ACTION...

  13. 76 FR 29333 - Pipeline Safety: Meetings of the Technical Pipeline Safety Standards Committee and the Technical...

    Science.gov (United States)

    2011-05-20

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Technical Hazardous Liquid Pipeline Safety Standards Committee AGENCY: Pipeline and Hazardous Materials... for natural gas pipelines and for hazardous liquid pipelines. Both committees were established under...

  14. Theoretical study and design of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane and intended for cooling of gas transported in a gas-main pipeline

    KAUST Repository

    Petrenko, V.O.; Volovyk, O.S.

    2011-01-01

    This paper describes the construction and performance of a novel combined system intended for natural gas transportation and power production, and for cooling of gas transported in a gas-main pipeline. The proposed system includes a gas turbine

  15. Pipeline rehabilitation planning

    Energy Technology Data Exchange (ETDEWEB)

    Palmer-Jones, Roland; Hopkins, Phil; Eyre, David [PENSPEN (United Kingdom)

    2005-07-01

    An operator faced with an onshore pipeline that has extensive damage must consider the need for rehabilitation, the sort of rehabilitation to be used, and the rehabilitation schedule. This paper will consider pipeline rehabilitation based on the authors' experiences from recent projects, and recommend a simple strategy for planning pipeline rehabilitation. It will also consider rehabilitation options: external re-coating; internal lining; internal painting; programmed repairs. The main focus will be external re-coating. Consideration will be given to rehabilitation coating types, including tape wraps, epoxy, and polyurethane. Finally it will discuss different options for scheduling the rehabilitation of corrosion damage including: the statistical comparison of signals from inspection pigs; statistical comparison of selected measurements from inspection pigs and other inspections; the use of corrosion rates estimated for the mechanisms and conditions; expert judgement. (author)

  16. Beyond the pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Barnsley, J.; Ellis, D.; McIntosh, J.

    1979-12-01

    A study was conducted on the lives of women and their families in Fort Nelson, British Columbia, and Whitehorse, Yukon Territory, two communities which are to be affected by the proposed construction of the Alaska Highway gas pipeline. The womens' socio-economic concerns resulting from the proposed construction were examined by means of interviews with samples of women living in the two communities. Results from the study include descriptions of the communities and their basic services, community planning and housing, women's work in the home and for wages, and the perceived impact of the pipeline on such matters as employment, social services, living costs, business, housing, crime, and the overall community. Recommendations are made to improve the planning process for the pipeline to include the taking into account of womens' needs in such areas as training, health care, housing, and community services. 213 refs., 4 figs., 2 tabs.

  17. CPL: Common Pipeline Library

    Science.gov (United States)

    ESO CPL Development Team

    2014-02-01

    The Common Pipeline Library (CPL) is a set of ISO-C libraries that provide a comprehensive, efficient and robust software toolkit to create automated astronomical data reduction pipelines. Though initially developed as a standardized way to build VLT instrument pipelines, the CPL may be more generally applied to any similar application. The code also provides a variety of general purpose image- and signal-processing functions, making it an excellent framework for the creation of more generic data handling packages. The CPL handles low-level data types (images, tables, matrices, strings, property lists, etc.) and medium-level data access methods (a simple data abstraction layer for FITS files). It also provides table organization and manipulation, keyword/value handling and management, and support for dynamic loading of recipe modules using programs such as EsoRex (ascl:1504.003).

  18. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  19. Experience with two pipeline river crossings in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Yaremko, Eugene [Northwest Hydraulic Consultants (NHC), Edmonton (Canada); D' Agnillo, Pablo; Diaz, Jose A. [Minera Alumbrera XTRADA Copper S.A., Buenos Aires (Argentina); Bravo, Claudio

    2009-12-19

    The Alumbrera copper-gold mine located in the Province of Catamarca, northwest region of Argentina, commenced operation in October, 1997. Mine development included a 316 km long, 175 mm diameter slurry pipeline that conveys copper concentrate to a dewatering facility near the city of Tucuman, Province of Tucuman. It became apparent during the first few years of operation that, given the many potential risks of pipeline exposure associated with stream crossings, Minera Alumbrera would have to undertake an aggressive, formal program of risk management of crossings and risk mitigation. In this paper, the experience associated with two crossings is addressed: Rio Villavil; and, Rio Gastona. The original pipeline route through the 10 km length of pipeline connecting Pump Station (PS) 2 to PS 3 was directed along the bottom of the Rio Villavil valley, with most of it located within the flood way of the stream. The exposure of the pipeline at some locations and high risk of further pipeline exposures led to initiation of risk mitigation planning. Remediation work was completed by 2008. Rio Gastona, during the summer of 2001, experienced rapid shifting of the left bank at the crossing resulting in an undermined and unsupported length of pipeline. The subsequent risk mitigation method adopted in 2001 involved the planning and construction of groyne fields along both banks. (author)

  20. Northern pipelines : backgrounder

    International Nuclear Information System (INIS)

    2002-04-01

    Most analysts agree that demand for natural gas in North America will continue to grow. Favourable market conditions created by rising demand and declining production have sparked renewed interest in northern natural gas development. The 2002 Annual Energy Outlook forecasted U.S. consumption to increase at an annual average rate of 2 per cent from 22.8 trillion cubic feet to 33.8 TCF by 2020, mostly due to rapid growth in demand for electric power generation. Natural gas prices are also expected to increase at an annual average rate of 1.6 per cent, reaching $3.26 per thousand cubic feet in 2020. There are currently 3 proposals for pipelines to move northern gas to US markets. They include a stand-alone Mackenzie Delta Project, the Alaska Highway Pipeline Project, and an offshore route that would combine Alaskan and Canadian gas in a pipeline across the floor of the Beaufort Sea. Current market conditions and demand suggest that the projects are not mutually exclusive, but complimentary. The factors that differentiate northern pipeline proposals are reserves, preparedness for market, costs, engineering, and environmental differences. Canada has affirmed its role to provide the regulatory and fiscal certainty needed by industry to make investment decisions. The Government of the Yukon does not believe that the Alaska Highway Project will shut in Mackenzie Delta gas, but will instead pave the way for development of a new northern natural gas industry. The Alaska Highway Pipeline Project will bring significant benefits for the Yukon, the Northwest Territories and the rest of Canada. Unresolved land claims are one of the challenges that has to be addressed for both Yukon and the Northwest Territories, as the proposed Alaska Highway Pipeline will travel through traditional territories of several Yukon first Nations. 1 tab., 4 figs

  1. Putting the coal slurry pipelines to the test

    Energy Technology Data Exchange (ETDEWEB)

    Sauermann, H B

    1978-03-01

    This paper deals with the advantages and disadvantages of coal slurry pipelines and describes coal slurry tests undertaken in three test circuits with 100, 200 and 250 mm diameter pipes. The test results from the test circuits were used to scale-up pressure gradients to larger pipe diameters. The construction and installation of hydraulic transport pipelines is simple and requires a minimum of space. The crossing of rivers, roads, railways or any other obstacles is comparatively easy. The operation, supervision and maintenance of a pipeline is simple since any pipeline can be easily adapted for fully automatic control. For this reason manpower requirements are small resulting in only small increases in operating costs during the life of a pipeline. This is an attractive feature in any economy troubled by inflationary trends. In transporting a commodity such as coal the quantities handled are usually large and the distances are long. The profitability of hydraulic transportation systems benefits from such operating conditions. Even though the various components of a slurry transport system, such as the slurrying facilities at the mine end and the dewatering facilities at the utilization end, are complex, their reliability is high. Against the advantages, the following limitations can be visualized: It is practically impossible to transport solids other than those for which the pipeline was designed; in this regard, road and rail transportation is more versatile. The solids throughput through a pipeline cannot be economically increased beyond its design throughput. Pipelining involves the use of fluids, in most cases water, which in some instances may not be readily available.

  2. Comprehensive investigation into historical pipeline construction costs and engineering economic analysis of Alaska in-state gas pipeline

    Science.gov (United States)

    Rui, Zhenhua

    This study analyzes historical cost data of 412 pipelines and 220 compressor stations. On the basis of this analysis, the study also evaluates the feasibility of an Alaska in-state gas pipeline using Monte Carlo simulation techniques. Analysis of pipeline construction costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary by diameter, length, volume, year, and location. Overall average learning rates for pipeline material and labor costs are 6.1% and 12.4%, respectively. Overall average cost shares for pipeline material, labor, miscellaneous, and right of way (ROW) are 31%, 40%, 23%, and 7%, respectively. Regression models are developed to estimate pipeline component costs for different lengths, cross-sectional areas, and locations. An analysis of inaccuracy in pipeline cost estimation demonstrates that the cost estimation of pipeline cost components is biased except for in the case of total costs. Overall overrun rates for pipeline material, labor, miscellaneous, ROW, and total costs are 4.9%, 22.4%, -0.9%, 9.1%, and 6.5%, respectively, and project size, capacity, diameter, location, and year of completion have different degrees of impacts on cost overruns of pipeline cost components. Analysis of compressor station costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary in terms of capacity, year, and location. Average learning rates for compressor station material and labor costs are 12.1% and 7.48%, respectively. Overall average cost shares of material, labor, miscellaneous, and ROW are 50.6%, 27.2%, 21.5%, and 0.8%, respectively. Regression models are developed to estimate compressor station component costs in different capacities and locations. An investigation into inaccuracies in compressor station cost estimation demonstrates that the cost estimation for compressor stations is biased except for in the case of material costs. Overall average

  3. Analysis of in-R12 CHF data: influence of hydraulic diameter and heating length; test of Weisman boiling crisis model; Analyse de donnees de flux critique en R12: influence du diametre hydraulique et de la longueur chauffante; test du modele de Weisman

    Energy Technology Data Exchange (ETDEWEB)

    Czop, V; Herer, C; Souyri, A; Garnier, J

    1993-09-01

    In order to progress on the comprehensive modelling of the boiling crisis phenomenon, Electricite de France (EDF), Commissariat a l`Energie Atomique (CEA) and FRAMATOME have set up experimental programs involving in-R12 tests: the EDF APHRODITE program and the CEA-EDF-FRAMATOME DEBORA program. The first phase in these programs aims to acquire critical heat flux (CHF) data banks, within large thermal-hydraulic parameter ranges, both in cylindrical and annular configurations, and with different hydraulic diameters and heating lengths. Actually, three data banks have been considered in the analysis, all of them concerning in-R12 round tube tests: - the APHRODITE data bank, obtained at EDF with a 13 mn inside diameter, - the DEBORA data bank, obtained at CEA with a 19.2 mm inside diameter, - the KRISTA data bank, obtained at KfK with a 8 mm inside diameter. The analysis was conducted using CHF correlations and with the help of an advanced mathematical tool using pseudo-cubic thin plate type Spline functions. Two conclusions were drawn: -no influence of the heating length on our CHF results, - the influence of the diameter on the CHF cannot be simply expressed by an exponential function of this parameter, as thermal-hydraulic parameters also have an influence. Some calculations with Weisman and Pei theoretical boiling crisis model have been compared to experimental values: fairly good agreement was obtained, but further study must focus on improving the modelling of the influence of pressure and mass velocity. (authors). 12 figs., 4 tabs., 21 refs.

  4. Diagnosing in building main pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, L.G.; Gorelov, A.S.; Kurepin, B.N.; Orekhov, V.I.; Vasil' yev, G.G.; Yakovlev, Ye. I.

    1984-01-01

    General principles are examined for technical diagnosis in building main pipelines. A technique is presented for diagnosis during construction, as well as diagnosis of the technical state of the pipeline-construction machines and mechanisms. The survey materials could be used to set up construction of main pipelines.

  5. Experimental studies on the evaporative heat transfer and pressure drop of CO{sub 2} and CO{sub 2}/propane mixtures flowing upward in smooth and micro-fin tubes with outer diameter of 5 mm for an inclination angle of 45

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin Min; Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea); Kim, Yong Jin [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2010-08-15

    Heat transfer characteristics show different tendency according to the tube orientations such as horizontal, vertical, and inclined positions. In this study, evaporative heat transfer characteristics and pressure drop of CO{sub 2} and CO{sub 2}/propane mixtures flowing upward are investigated in inclined smooth and micro-fin tubes. Smooth and micro-fin tubes with outer diameter of 5 mm and length of 1.44 m with inclination angle of 45 were chosen as test tubes. Average inner diameters of test tubes are 4.0 mm (smooth tube) and 4.13 mm (micro-fin tube). The tests were conducted at mass fluxes from 212 to 656 kg/m{sup 2} s, saturation temperatures from -10 to 30 C and heat fluxes from 15 to 60 kW/m{sup 2} for CO{sub 2}. In addition, for CO{sub 2}/propane mixtures, the test was carried out at inlet temperatures from -10 to 30 C for several compositions (75/25, 50/50, 25/75 wt%) with the same mass fluxes, heat fluxes applied for CO{sub 2}. Heat transfer coefficients in inclined tube are approximately 1.8-3 times higher than those in horizontal tube and the average pressure drop of inclined tube exists between that of horizontal and vertical tubes. (author)

  6. Richards Bay effluent pipeline

    CSIR Research Space (South Africa)

    Lord, DA

    1986-07-01

    Full Text Available of major concern identified in the effluent are the large volume of byproduct calcium sulphate (phosphogypsum) which would smother marine life, high concentrations of fluoride highly toxic to marine life, heavy metals, chlorinated organic material... ........................ 9 THE RICHARDS BAY PIPELINE ........................................ 16 Environmental considerations ................................... 16 - Phosphogypsum disposal ................................... 16 - Effects of fluoride on locally occurring...

  7. Central oxygen pipeline failure

    African Journals Online (AJOL)

    surgical intensive care unit (ICU), with two patients on full ventilation and ... uncertainty around the cause of the failure and the restoration, .... soon as its level also falls below three tons. Should ... (properly checked and closed prior to each anaesthetic). ... in use at the time of the central oxygen pipeline failure at Tygerberg.

  8. Characteristics of operating pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, A K; Armenskii, E A; Gimaev, R G; Mastobaev, B N; Shammazov, A M

    1977-04-01

    The interval in pressure changes according to operational data for the Kamennyi Log--Perm oil pipeline was determined with the aid of the pattern identification method. This has made it possible to determine pressure changes in the operational process. 2 references, 1 table.

  9. Transient cavitation in pipelines

    NARCIS (Netherlands)

    Kranenburg, C.

    1974-01-01

    The aim of the present study is to set up a one-dimensional mathematical model, which describes the transient flow in pipelines, taking into account the influence of cavitation and free gas. The flow will be conceived of as a three-phase flow of the liquid, its vapour and non-condensible gas. The

  10. Hydrogeological considerations in northern pipeline development. [Permafrost affected by hot or chilled pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Harlan, R L

    1974-11-01

    Some of the hydrogeological implications of construction and operation of oil and gas pipelines in northern regions of Canada are considered in relation to their potential environmental impacts and those factors affecting the security of the pipeline itself. Although the extent to which water in permafrost participates in the subsurface flow regime has not been fully demonstrated, the role of liquid as well as vapor transport in frozen earth materials can be shown from theory to be highly significant; water movement rates in frozen soil are on the same order as those in unsaturated, unfrozen soil. Below 0/sup 0/C, the unfrozen water content in a fine-grained porous medium is dependent on temperature but independent of the total water content. The thermal gradient controls the rate and direction of water movement in permafrost. The groundwater stabilizes the streamflow and in the absence of large lakes provides the main source of flow during the winter. As groundwater is frequently confined by the permafrost, degradation of the permafrost can have significant consequences. The thaw bulb formed around a hot oil pipeline can induce liquefactioned flow of the thawed material. A chilled pipeline could restrict groundwater movement, resulting in buildup of artesian conditions and icings. The liberation and absorption of latent heat on freezing and thawing affects the thermal regime in the ground surface. Recommendations are given for pipeline construction and areas for further study pointed out. (DLC)

  11. Experimental study of oil-water with paraffin precipitation in submarine pipelines; Estudo experimental do escoamento oleo-agua com precipitacao de parafinas em dutos submarinos

    Energy Technology Data Exchange (ETDEWEB)

    Bordalo, Sergio N.; Oliveira, Rafael de Castro [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo], e-mail: bordalo@dep.fem.unicamp.br, e-mail: rafael@dep.fem.unicamp.br

    2006-07-01

    The deposition of paraffins in submarine pipelines poses a serious problem for the offshore petroleum production. Paraffins precipitate off oily solutions due to a temperature decrease according to the phase equilibrium conditions of the liquid-solid system. After some time, the continuous precipitation leads to deposits in the internal walls of the pipe, clogging the lines and promoting an increase in the head loss of the flow. Consequently, there is an increase in the pressure gradient required to maintain the flow, and the flow rate is reduced. A complete obstruction of the pipeline may occur. In the present work, this phenomenon was studied in a simulation of the subsea operational conditions, where the oil pipelines laying on the seabed are subjected to low temperatures, just a little above the freezing point of water. The pipeline behaves as a heat exchanger and the hot oil from the underground reservoir emerging from the wellhead is effectively cooled down to the point where paraffin precipitation occurs somewhere along the line. An experimental apparatus was built for a 25.4 mm (1 in) diameter pipe-flow model with 13 m of length, submerged in a chilling bath of near frozen water. Stream wise pressure and temperature gradients were measured, in order to evaluate the differences in the behavior of paraffin deposition between one-phase oil flow and two-phase oil-water flow. (author)

  12. New method for NPP sodium coolant pipeline austenization

    International Nuclear Information System (INIS)

    Malashonok, V.A.; Rotshtejn, A.V.; Gotshalk, A.L.; Miryushchenko, E.F.

    1980-01-01

    Heat treatment technology is considered for pipelines intended for the NPP cooling systems employing sodium coolant. Various techniques are discussed which are used for protecting the pipeline internal surfaces against oxidation in the process of heat treatment. It is noted that the austenite formation of welded joints of steel 12Kh18N9 and steel Kh16N11M3 at temperatures of 1050 and 1100 deg C releases welding-induced stresses and reduces a possibility of local damages. Evacuation down to 1 mm Hg appears to be the most rational protective technique. The considered procedure of the pipeline heat treatment has been utilized for mounting the equipment of the BN-600 reactor at the Beloyarskaya NPP. The economic gain resulting from the use of the procedure, owing to decrease in argon consumption and reduction of labour input, makes up 150 000 roubles

  13. Future heat supply of our cities. Heating by waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  14. Predicting wear of hydrotransport pipelines in oil sand slurries

    Energy Technology Data Exchange (ETDEWEB)

    Been, J.; Lu, B.; Wolodko, J. [Alberta Research Council, Edmonton, AB (Canada); Kiel, D. [Coanda Research and Development Corp., Burnaby, BC (Canada)

    2008-07-01

    An overview of erosion and corrosion methods and techniques was presented. Wear to pipelines is influenced by slurry flow and chemistry; solids loading; and electrochemical interactions. While several experimental techniques have been developed to rank the performance of different pipeline materials, experiments do not currently provide accurate quantitative prediction of pipeline wear in the field. Rotating cylinder electrodes (RCE) and jet impingement methods are used to study the effect of flow velocity on corrosion rate. Slurry pot erosion-corrosion testers are used to rank materials for use in more dilute, less turbulent slurries. Coriolois slurry erosion testers are used to rank the erosion resistance of different pipeline materials. A pilot-scale flow loop is now being constructed by the Alberta Research Council (ARC) in order to replicate wet erosion phenomena in oil sands applications. The flow loop will be used to simulate the field conditions of oil sands pipelines and develop predictive wear data and models. Coulombic shear stress and characteristic wall velocities have been determined using a 2-layer model designed to represent flow as 2 distinct layers. To date, the flow loop pilot study has demonstrated that wear rates in smaller diameter flow loops are not significantly different than larger diameter field installations. Preliminary calculations have demonstrated that the flow loop can be used to accurately simulate the hydrodynamics and wear typically experienced in field slurry flows. 67 refs., 2 tabs., 7 figs.

  15. Experimental and Numerical Investigation of Local Scour Around Submarine Piggyback Pipeline Under Steady Current

    Science.gov (United States)

    Zhao, Enjin; Shi, Bing; Qu, Ke; Dong, Wenbin; Zhang, Jing

    2018-04-01

    As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few experimental studies have been published on the scour around the piggyback pipeline under steady current. This study numerically and experimentally investigates the local scour of the piggyback pipe under steady current. The influence of prominent factors such as pipe diameter, inflow Reynolds number, and gap between the main and small pipes, on the maximum scour depth have been examined and discussed in detail. Furthermore, one formula to predict the maximum scour depth under the piggyback pipeline has been derived based on the theoretical analysis of scour equilibrium. The feasibility of the proposed formula has been effectively calibrated by both experimental data and numerical results. The findings drawn from this study are instructive in the future design and application of the piggyback pipeline.

  16. CFPL installs products pipeline with directional drilling

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland number-sign 70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line

  17. Pipeline corridors through wetlands

    International Nuclear Information System (INIS)

    Zimmerman, R.E.; Wilkey, P.L.; Isaacson, H.R.

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity

  18. Instrumented Pipeline Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  19. Russia: the pipeline diplomacy

    International Nuclear Information System (INIS)

    Bourdillon, Y.

    2005-01-01

    First world producer of oil and gas, Russia wishes to use its mastery of energy distribution to recover its great power status. The oil and gas pipelines network is the basement used by Russia to build up its hegemony in Europe. The Russian oil and gas companies are also carrying out a long-term strategy of international expansion, in particular thanks to investments in the neighboring countries for the building of new infrastructures or the purchase of oil refineries. (J.S.)

  20. Pipeline Optimization Program (PLOP)

    Science.gov (United States)

    2006-08-01

    the framework of the Dredging Operations Decision Support System (DODSS, https://dodss.wes.army.mil/wiki/0). PLOP compiles industry standards and...efficiency point ( BEP ). In the interest of acceptable wear rate on the pump, industrial standards dictate that the flow Figure 2. Pump class as a function of...percentage of the flow rate corresponding to the BEP . Pump Acceptability Rules. The facts for pump performance, industrial standards and pipeline and

  1. Pipeline network and environment

    International Nuclear Information System (INIS)

    Oliveira Nascimento, I.; Wagner, J.; Silveira, T.

    2012-01-01

    The Rio de Janeiro is one of 27 units of Brazil. It is located in the eastern portion of the Southeast and occupies an area of 43 696.054 km², being effectively the 3rd smallest state in Brazil. This state in recent years has suffered from erosion problems caused by the deployment of the network pipeline. The deployment pipeline is part of the activities related to the oil industry has caused a more intense conflict between the environment and economic activities, modifying the soil structure and distribution of surface and subsurface flows. This study aimed to analyze the erosion caused by the removal of soil for the deployment of pipeline transportation, with the consequences of the emergence of numerous gullies, landslides and silting of rivers. For the development of this study were performed bibliographic research, field work, mapping and digital preparation of the initial diagnosis of active processes and what the consequent environmental impacts. For these reasons, we conclude that the problems could be avoided or mitigated if there was a prior geological risk management. (author)

  2. GRI testing facility available for pipeline inspection devices

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    As part of a program to help improve detection and characterization of defects that may occur in pipelines, the Gas Research Institute has announced the completion of the first phase of a testing facility for the evaluation of new and existing pipeline inspection technologies. GRI is a private, not-for-profit membership organization based in Chicago. The first phase of the facility consists of a pull rig which includes four 300-foot lengths of pipe with diameters of 12, 24, 30, and 36 inches. NDE inspection devices can be pulled through these pipe segments by a winch at speeds up to 25 miles per hour

  3. United States petroleum pipelines: An empirical analysis of pipeline sizing

    Science.gov (United States)

    Coburn, L. L.

    1980-12-01

    The undersizing theory hypothesizes that integrated oil companies have a strong economic incentive to size the petroleum pipelines they own and ship over in a way that means that some of the demand must utilize higher cost alternatives. The DOJ theory posits that excess or monopoly profits are earned due to the natural monopoly characteristics of petroleum pipelines and the existence of market power in some pipelines at either the upstream or downstream market. The theory holds that independent petroleum pipelines owned by companies not otherwise affiliated with the petroleum industry (independent pipelines) do not have these incentives and all the efficiencies of pipeline transportation are passed to the ultimate consumer. Integrated oil companies on the other hand, keep these cost efficiencies for themselves in the form of excess profits.

  4. Pipelines : moving biomass and energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2006-07-01

    Moving biomass and energy through pipelines was presented. Field sourced biomass utilization for fuel was discussed in terms of competing cost factors; economies of scale; and differing fuel plant sizes. The cost versus scale in a bioenergy facility was illustrated in chart format. The transportation cost of biomass was presented as it is a major component of total biomass processing cost and is in the typical range of 25-45 per cent of total processing costs for truck transport of biomass. Issues in large scale biomass utilization, scale effects in transportation, and components of transport cost were identified. Other topics related to transportation issues included approaches to pipeline transport; cost of wood chips in pipeline transport; and distance variable cost of transporting wood chips by pipeline. Practical applications were also offered. In addition, the presentation provided and illustrated a model for an ethanol plant supplied by truck transport as well as a sample configuration for 19 truck based ethanol plants versus one large facility supplied by truck plus 18 pipelines. Last, pipeline transport of bio-oil and pipeline transport of syngas was discussed. It was concluded that pipeline transport can help in reducing congestion issues in large scale biomass utilization and that it can offer a means to achieve large plant size. Some current research at the University of Alberta on pipeline transport of raw biomass, bio-oil and hydrogen production from biomass for oil sands and pipeline transport was also presented. tabs., figs.

  5. Planned and proposed pipeline regulations

    International Nuclear Information System (INIS)

    De Leon, C.

    1992-01-01

    The Research and Special Programs Administration administers the Natural Gas Pipeline Safety Act of 1968 (NGPSA) and the Hazardous Liquid Pipeline Safety Act of 1979 (HLPSA). The RSPA issues and enforces design, construction, operation and maintenance regulations for natural gas pipelines and hazardous liquid pipelines. This paper discusses a number of proposed and pending safety regulations and legislative initiatives currently being considered by the RSPA and the US Congress. Some new regulations have been enacted. The next few years will see a great deal of regulatory activity regarding natural gas and hazardous liquid pipelines, much of it resulting from legislative requirements. The office of Pipeline Safety is currently conducting a study to streamline its operations. This study is analyzing the office's business, social and technical operations with the goal of improving overall efficiency, effectiveness, productivity and job satisfaction to meet the challenges of the future

  6. Hydrocarbons pipeline transportation risk assessment

    Science.gov (United States)

    Zanin, A. V.; Milke, A. A.; Kvasov, I. N.

    2018-04-01

    The pipeline transportation applying risks assessment issue in the arctic conditions is addressed in the paper. Pipeline quality characteristics in the given environment has been assessed. To achieve the stated objective, the pipelines mathematical model was designed and visualized by using the software product SOLIDWORKS. When developing the mathematical model the obtained results made possible to define the pipeline optimal characteristics for designing on the Arctic sea bottom. In the course of conducting the research the pipe avalanche collapse risks were examined, internal longitudinal and circular loads acting on the pipeline were analyzed, as well as the water impact hydrodynamic force was taken into consideration. The conducted calculation can contribute to the pipeline transport further development under the harsh climate conditions of the Russian Federation Arctic shelf territory.

  7. 75 FR 5244 - Pipeline Safety: Integrity Management Program for Gas Distribution Pipelines; Correction

    Science.gov (United States)

    2010-02-02

    ... Management Program for Gas Distribution Pipelines; Correction AGENCY: Pipeline and Hazardous Materials Safety... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Regulations to require operators of gas distribution pipelines to develop and implement integrity management...

  8. 77 FR 2126 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...

    Science.gov (United States)

    2012-01-13

    ... Natural Gas Operators AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements.'' The final rule...

  9. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Science.gov (United States)

    2013-07-12

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Notice; Issuance of Advisory... Gas and Hazardous Liquid Pipeline Systems. Subject: Potential for Damage to Pipeline Facilities Caused...

  10. 78 FR 41496 - Pipeline Safety: Meetings of the Gas and Liquid Pipeline Advisory Committees

    Science.gov (United States)

    2013-07-10

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0156] Pipeline Safety: Meetings of the Gas and Liquid Pipeline Advisory Committees AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice of advisory committee...

  11. Pigging the unpiggable: a total integrated maintenance approach of the Progreso Process Pipelines in Yucatan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Graciano, Luis [PEMEX Refinacion, Mexico, MX (Mexico); Gonzalez, Oscar L. [NDT Systems and Services, Stutensee (Germany)

    2009-07-01

    Pemex Refinacion and NDT Systems and Services, executed a Total Integrated Maintenance Program of the Process Pipeline System in the Yucatan Peninsula in Mexico, in order to modernize, enhance and bring the pipeline system up to the best industry standards and ensure the integrity, reliability and safe operation of the system. This approach consisted in using multi-diameter ultrasonic inspection technology to determine the current status of the pipelines, repair every 'integrity diminishing' feature present on the system and establish a Certified Maintenance Program to ensure the future reliability and safety of the pipelines. Due to the complex nature of the pipeline construction, dated from 1984, several special modifications, integrations and solutions were necessary to improve the in line inspection survey as for all traditionally unpiggable systems. The Progreso Pipeline System consists in 3 major pipelines which transport diesel, jet fuel and gasoline respectively. The outside diameter of two pipelines varies along its length between 12 inches - 14 inches - 16 inches, making the inspection survey more difficult and particularly demanding an Inspection Tool solution. It is located on the coast of the Yucatan Peninsula, at the Mexican Caribbean, and its main purpose is to transport the product from the docked tanker ships to the Pemex Storage and Distribution Terminal. (author)

  12. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.

    Science.gov (United States)

    Strogen, Bret; Horvath, Arpad; Zilberman, David

    2013-12-01

    Petroleum fuels are predominantly transported domestically by pipelines, whereas biofuels are almost exclusively transported by rail, barge, and truck. As biofuel production increases, new pipelines may become economically attractive. Location-specific variables impacting pipeline viability include construction costs, availability and costs of alternative transportation modes, electricity prices and emissions (if priced), throughput, and subsurface temperature. When transporting alcohol or diesel-like fuels, pipelines have a lower direct energy intensity than rail, barge, and trucks if fluid velocity is under 1 m/s for 4-inch diameter pipelines and 2 m/s for 8-inch or larger pipelines. Across multiple hypothetical state-specific scenarios, profit-maximizing design velocities range from 1.2 to 1.9 m/s. In costs and GHG emissions, optimized pipelines outperform trucks in each state and rail and barge in most states, if projected throughput exceeds four billion liters/year. If emissions are priced, optimum design diameters typically increase to reduce pumping energy demands, increasing the cost-effectiveness of pipeline projects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Fission tracks diameters in glasses

    International Nuclear Information System (INIS)

    Garzon Ruiperez, L.; Veiguela, J.

    1974-01-01

    Standard glass microscope slides have been irradiated with fission fragments from the uranium. The etching track conditions have been the same for the series, having changed the etching time only for each specimen. For each glass, a minimum of 250 measurements of the tracks diameters have been made, the distributions of which are the bimodal type. Diameters-etching dependence with time is roughly lineal. Energy determinations have been made with the help of the diameters-energy relations. The calculated values agree very well with the know ones. (author) [es

  14. 49 CFR 195.210 - Pipeline location.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pipeline location. 195.210 Section 195.210 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.210 Pipeline location. (a) Pipeline right-of-way must be selected to avoid, as...

  15. Centrifuge modelling of lateral displacement of buried pipelines; Modelagem fisica centrifuga de flambagem lateral de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Renato Moreira da Silva de; Almeida, Marcio de Souza Soares de; Marques, Maria Esther Soares; Almeida, Maria Cascao Ferreira de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Costa, Alvaro Maia da [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2003-07-01

    This work discusses soil-structure interaction applied to the buckling phenomena of buried pipelines subjected to heated oil flow. A set of physical modelling tests on lateral buckling of pipelines buried on soft clay is presented using COPPE/UFRJ geotechnical centrifuge. A 1:30 pipeline model was moved side ward through a soft clay layer during centrifuge flight, varying the burial depth, in order to simulate the lateral buckling in plane strain condition. The results show different behaviour concerning horizontal and vertical forces measured at pipeline level due to soil reaction. (author)

  16. Slurry pipeline technology: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jay P. [Pipeline Systems Incorporated (PSI), Belo Horizonte, MG (Brazil); Lima, Rafael; Pinto, Daniel; Vidal, Alisson [Ausenco do Brasil Engenharia Ltda., Nova Lima, MG (Brazil). PSI Div.

    2009-12-19

    Slurry pipelines represent an economical and environmentally friendly transportation means for many solid materials. This paper provides an over-view of the technology, its evolution and current Brazilian activity. Mineral resources are increasingly moving farther away from ports, processing plants and end use points, and slurry pipelines are an important mode of solids transport. Application guidelines are discussed. State-of-the-Art technical solutions such as pipeline system simulation, pipe materials, pumps, valves, automation, telecommunications, and construction techniques that have made the technology successful are presented. A discussion of where long distant slurry pipelines fit in a picture that also includes thickened and paste materials pipe lining is included. (author)

  17. RF sensor for multiphase flow measurement through an oil pipeline

    Science.gov (United States)

    Wylie, S. R.; Shaw, A.; Al-Shamma'a, A. I.

    2006-08-01

    We have developed, in conjunction with Solartron ISA, an electromagnetic cavity resonator based sensor for multiphase flow measurement through an oil pipeline. This sensor is non-intrusive and transmits low power (10 mW) radio frequencies (RF) in the range of 100-350 MHz and detects the pipeline contents using resonant peaks captured instantaneously. The multiple resonances from each captured RF spectrum are analysed to determine the phase fractions in the pipeline. An industrial version of the sensor for a 102 mm (4 inch) diameter pipe has been constructed and results from this sensor are compared to those given by simulations performed using the electromagnetic high frequency structure simulator software package HFSS. This paper was presented at the 13th International Conference on Sensors and held in Chatham, Kent, on 6-7 September 2005.

  18. Diameter 2 properties and convexity

    Czech Academy of Sciences Publication Activity Database

    Abrahamsen, T. A.; Hájek, Petr Pavel; Nygaard, O.; Talponen, J.; Troyanski, S.

    2016-01-01

    Roč. 232, č. 3 (2016), s. 227-242 ISSN 0039-3223 R&D Projects: GA ČR GA16-07378S Institutional support: RVO:67985840 Keywords : diameter 2 property * midpoint locally uniformly rotund * Daugavet property Subject RIV: BA - General Mathematics Impact factor: 0.535, year: 2016 https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia- mathematica /all/232/3/91534/diameter-2-properties-and-convexity

  19. 76 FR 44985 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Science.gov (United States)

    2011-07-27

    .... PHMSA-2011-0177] Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding AGENCY... liquid pipelines to communicate the potential for damage to pipeline facilities caused by severe flooding... pipelines in case of flooding. ADDRESSES: This document can be viewed on the Office of Pipeline Safety home...

  20. 77 FR 19799 - Pipeline Safety: Pipeline Damage Prevention Programs

    Science.gov (United States)

    2012-04-02

    ... noted ``when the oil pipeline industry developed the survey for its voluntary spill reporting system...) [cir] The American Public Gas Association (APGA) [cir] The Association of Oil Pipelines (AOPL) [cir... the contrary, all 50 states in the United States have a law designed to prevent excavation damage to...

  1. Freezing around a pipeline carrying cooled gas in flooded areas

    Energy Technology Data Exchange (ETDEWEB)

    Koval' kov, V P; Krivoshein, B L

    1978-12-01

    The USSR's NIPIESUneftegazstroi mathematically analyzed the problem of ice formation around a subcooled-gas pipeline submerged in water in cold regions and derived charts for determining heat-transfer coefficients and the rate of ice formation for various water and gas temperatures. Because the ice halo that forms around these pipelines necessitates additional anchoring of the line, NIPIESUneftegazstroi sought to quantify the weight required in order to minimize the cost and material needed. The differential heat-transfer equations given can be used to calculate heat-transfer coefficients and the specific heat flux from the water to the ice halo, as well as the radius of the ice halo. Values of the ice-halo radius are plotted graphically as parabolic function of time (to 15,000 h) for pipeline surface temperatures of 30.2, 27.5, 23, 18.5, and 14/sup 0/F. An equation indicates the limiting value of the temperature of the transported gas at which icing of an insulated pipeline will not occur.

  2. Which future for conventional pipeline laying barges?; Quel avenir pour les barges de pose de pipelines conventionnelles ?

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, A.; Perinet, D. [ETPM International (International organizations without location)

    1997-05-01

    The aim of this paper is to study the evolution of conventional pipeline laying barges. The past and todays capacities of some barges are presented in order to follow the evolution of their equipments with time to answer the market needs. The second part outlines the main characteristics of todays market needs. Different analyses are made according to the different means of pipeline laying: conventional, flexible pipes and rigid pipes using unrolling technique. Market trends in these 3 domains show a sensible growth from 1996 to 1997 and are assumed to keep a sustained level during the following years. However, the tendency shows an evolution towards smaller diameter pipes and greater depths. The last part concerns the evolution of laying barges. The most important improvements in pipeline laying industry concern the dynamic positioning, the laying techniques (`S` laying technique), and the rate of laying using real-time control techniques. (J.S.)

  3. Technical consideration of Niigata-Sendai natural gas pipeline; Niigata Sendaikan tennen gas pipeline no seko to gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, O.; Sugai, H.; Koizumi, H. [Kawasaki Steel Corp., Tokyo (Japan)

    1997-09-01

    The Niigata-Sendai natural gas pipeline was constructed in 1996 by Japan Petroleum Exploration Co. to transmit indigenous gas produced off Niigata Pref. and imported gas from Indonesia in the form of LNG to Tohoku Electric Power Co.`s Sendai Thermal Power Station. It is the second longest onshore pipeline in Japan extending 251km (nominal diameter: 20in.). Kawasaki Steel participated in the construction project from the preliminary investigation and planning stage, and constructed a 97km long section, which is approximately 39% of the total length. Various new techniques were applied to secure safety and reduce cost. This paper outlines the project and some of the representative techniques adopted for the project, such as field bends cold-worked on 11m long straight pipes, work management system for constructing long-distance pipelines, coordination for the test runs and verification of the designs. 3 refs., 12 figs., 5 tabs.

  4. Lay Pipeline Abandonment Head during Some

    African Journals Online (AJOL)

    2016-12-01

    Dec 1, 2016 ... is very cruel to the structural integrity of the pipeline structure after ... and properties may be jeopardized should the pipeline structure be used for oil or gas transport when such ... pipelines under bending may alter the material.

  5. Pipeline Processing for VISTA

    Science.gov (United States)

    Lewis, J. R.; Irwin, M.; Bunclark, P.

    2010-12-01

    The VISTA telescope is a 4 metre instrument which has recently been commissioned at Paranal, Chile. Equipped with an infrared camera, 16 2Kx2K Raytheon detectors and a 1.7 square degree field of view, VISTA represents a huge leap in infrared survey capability in the southern hemisphere. Pipeline processing of IR data is far more technically challenging than for optical data. IR detectors are inherently more unstable, while the sky emission is over 100 times brighter than most objects of interest, and varies in a complex spatial and temporal manner. To compensate for this, exposure times are kept short, leading to high nightly data rates. VISTA is expected to generate an average of 250 GB of data per night over the next 5-10 years, which far exceeds the current total data rate of all 8m-class telescopes. In this presentation we discuss the pipelines that have been developed to deal with IR imaging data from VISTA and discuss the primary issues involved in an end-to-end system capable of: robustly removing instrument and night sky signatures; monitoring data quality and system integrity; providing astrometric and photometric calibration; and generating photon noise-limited images and science-ready astronomical catalogues.

  6. Heat flux limiting sleeves

    Science.gov (United States)

    Harris, William G.

    1985-01-01

    A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.

  7. FEM analysis of impact of external objects to pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gracie, Robert; Konuk, Ibrahim [Geological Survey of Canada, Ottawa, ON (Canada)]. E-mail: ikonuk@NRCan.gc.ca; Fredj, Abdelfettah [BMT Fleet Technology Limited, Ottawa, ON (Canada)

    2003-07-01

    One of the most common hazards to pipelines is impact of external objects. Earth moving machinery, farm equipment or bullets can dent or fail land pipelines. External objects such as anchors, fishing gear, ice can damage offshore pipelines. This paper develops an FEM model to simulate the impact process and presents investigations using the FEM model to determine the influence of the geometry and velocity of the impacting object and also will study the influence of the pipe diameter, wall thickness, and concrete thickness along with internal pressure. The FEM model is developed by using LS-DYNA explicit FEM software utilizing shell and solid elements. The model allows damage and removal of the concrete and corrosion coating elements during impact. Parametric studies will be presented relating the dent size to pipe diameter, wall thickness and concrete thickness, internal pipe pressure, and impacting object geometry. The primary objective of this paper is to develop and present the FEM model. The model can be applied to both offshore and land pipeline problems. Some examples are used to illustrate how the model can be applied to real life problems. A future paper will present more detailed parametric studies. (author)

  8. Accuracy Limitations of Pipelined ADCs

    NARCIS (Netherlands)

    Quinn, P.J.; Roermund, van A.H.M.

    2005-01-01

    In this paper, the key characteristics of the main errors which affect the performance of a switched capacitor pipelined ADC are presented and their effects on the ADC transfer characteristics demonstrated. Clear and concise relationships are developed to aid optimized design of the pipeline ADC and

  9. Research into the transmission of natural gas by gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Gadonneix, P.

    1998-12-31

    This paper is the press release of the talk given at the `Gaz de France scientific meeting with the press` by P. Gadonneix, chairman of Gaz de France company, on October 7, 1998. The aim of this talk concerns the new French and European supply link for bringing natural gas from the Norwegian North Sea fields. This new supply link is the first direct link between Norway and France and the NorFra gas pipeline which brings natural gas from the North Sea to France is the longest offshore pipeline in the world. The `Artere des Hauts de France` pipeline (the largest diameter gas pipeline ever laid in France) is devoted to the transfer of natural gas from Dunkerque to the Gournay-sur-Aronde underground storage site. This paper describes successively: the French European gas supply hub, the NorFra project, the Artere des Hauts de France pipeline, the network performance research, the safety and quality guaranties, the reduction of overland natural gas transmission costs (improvement of pipe-laying techniques and optimization of line route and welding operations), the specific techniques used for road and river crossing (micro-tunnel digging, river-crossing ditches) and for anchoring (buoyancy compensation). Finally, the environmental impact of the laying operations is briefly described. (J.S.)

  10. Recent developments in pipeline welding practice

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen chapters are included: overview of pipeline welding systems and quality assurance, CRC automatic welding system, H.C. Price Co. automatic welding system, semi-automatic MIG-welding process, partial penetration welding of steel pipes for gas distribution, construction procedures and quality control in offshore pipeline construction, welding in repair and maintenance of gas transmission pipelines, British Gas studies of welding on pressurized gas transmission pipelines, hot tapping pipelines, underwater welding for offshore pipelines and associated equipment, radial friction welding, material composition vs weld properties, review of NDT of pipeline welds, and safety assurance in pipeline construction. A bibliography of approximately 150 references is included, arranged according to subject and year.

  11. Strain-Based Design Methodology of Large Diameter Grade X80 Linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D. [ORNL

    2014-04-01

    Continuous growth in energy demand is driving oil and natural gas production to areas that are often located far from major markets where the terrain is prone to earthquakes, landslides, and other types of ground motion. Transmission pipelines that cross this type of terrain can experience large longitudinal strains and plastic circumferential elongation as the pipeline experiences alignment changes resulting from differential ground movement. Such displacements can potentially impact pipeline safety by adversely affecting structural capacity and leak tight integrity of the linepipe steel. Planning for new long-distance transmission pipelines usually involves consideration of higher strength linepipe steels because their use allows pipeline operators to reduce the overall cost of pipeline construction and increase pipeline throughput by increasing the operating pressure. The design trend for new pipelines in areas prone to ground movement has evolved over the last 10 years from a stress-based design approach to a strain-based design (SBD) approach to further realize the cost benefits from using higher strength linepipe steels. This report presents an overview of SBD for pipelines subjected to large longitudinal strain and high internal pressure with emphasis on the tensile strain capacity of high-strength microalloyed linepipe steel. The technical basis for this report involved engineering analysis and examination of the mechanical behavior of Grade X80 linepipe steel in both the longitudinal and circumferential directions. Testing was conducted to assess effects on material processing including as-rolled, expanded, and heat treatment processing intended to simulate coating application. Elastic-plastic and low-cycle fatigue analyses were also performed with varying internal pressures. Proposed SBD models discussed in this report are based on classical plasticity theory and account for material anisotropy, triaxial strain, and microstructural damage effects

  12. Bubble behaviour and mean diameter in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Zeitoun, O.; Shoukri, M. [McMaster Univ., Hamilton, Ontario (Canada)

    1995-09-01

    Bubble behaviour and mean bubble diameter in subcooled upward flow boiling in a vertical annular channel were investigated under low pressure and mass flux conditions. A high speed video system was used to visualize the subcooled flow boiling phenomenon. The high speed photographic results indicated that, contrary to the common understanding, bubbles tend to detach from the heating surface upstream of the net vapour generation point. Digital image processing technique was used to measure the mean bubble diameter along the subcooled flow boiling region. Data on the axial area-averaged void fraction distributions were also obtained using a single beam gamma densitometer. Effects of the liquid subcooling, applied heat flux and mass flux on the mean bubble size were investigated. A correlation for the mean bubble diameter as a function of the local subcooling, heat flux and mass flux was obtained.

  13. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    International Nuclear Information System (INIS)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm 2 , 1000 0 C cladding temperature, and (2) 40 h at 40 W/cm 2 , 1200 0 C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370 0 C

  14. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  15. Shipping Information Pipeline

    DEFF Research Database (Denmark)

    Jensen, Thomas

    to creating a more efficient shipping industry, and a number of critical issues are identified. These include that shipments depend on shipping information, that shipments often are delayed due to issues with documentation, that EDI messages account for only a minor part of the needed information......This thesis applies theoretical perspectives from the Information Systems (IS) research field to propose how Information Technology (IT) can improve containerized shipping. This question is addressed by developing a set of design principles for an information infrastructure for sharing shipping...... information named the Shipping Information Pipeline (SIP). Review of the literature revealed that IS research prescribed a set of meta-design principles, including digitalization and digital collaboration by implementation of Inter-Organizational Systems based on Electronic Data Interchange (EDI) messages...

  16. The Leaking Pipeline

    DEFF Research Database (Denmark)

    Henningsen, Inge; Højgaard, Lis

    2002-01-01

    negotiations of cultural prescriptions of gendered subjectivity and identities, organizational understandings and procedures embedded in specific university cultures, traditional of different science disciplines, and the systemic logic and political rationale of the education and research system....... these positions, and one that maintains that a closer look at the statistics does not support this optimism because women’s percentage in recruitment positions is not increasing as the pool of potential female researchers increases, or to put it metaphorically, “the pipeline is leaking women all along” (Alper...... it identifies and describes a Danish verion of ‘the leaky pipeline’ from analyses of the ratios of women in science from high school through tenured positions. Finally it illustrates the cultural mechanisms at play in this process, based on the results of three studies. The first two analyze the educational...

  17. Useful effectiveness of plastic pipes for gas pipelines operating at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zayutsev, K I

    1976-06-01

    Because a significant portion of the feeder lines in the Soviet union operate at relatively low pressures up to 75 to 150 psi, it is economically feasible to replace the conventional pipeline material (steel) with plastic. Cost savings result from lower material costs and ease of laying plastic pipe. Because of stiffness and corrosion requirements, the steel pipe used for these low-pressure pipelines is much thicker than needed to withstand the pressure used. Data are tabulated on the comparative costs and manpower requirements for the construction of 1 km of steel, polyvinyl chloride, and polyethylene gas pipelines ranging in diameter from 3 to 14 in. Generally, the plastic pipelines required 15 to 30% less man-days and were 20 to 35% lower in cost to build. The plastic pipelines can operate at 150 to 175 psi pressure and at temperatures up to 100 to 140/sup 0/F. In research conducted at VNIIST (All-Union Research Institute for the Construction of Trunk Pipelines) on plastic pipelines, a 2.5-mile test section has been operating successfully for 2 years, and new techniques and equipment for joining plastic pipe up to 25-in. diameter are being developed.

  18. Northern pipelines : challenges and needs

    Energy Technology Data Exchange (ETDEWEB)

    Dean, D.; Brownie, D. [ProLog Canada Inc., Calgary, AB (Canada); Fafara, R. [TransCanada PipeLines Ltd., Calgary, AB (Canada)

    2007-07-01

    Working Group 10 presented experiences acquired from the operation of pipeline systems in a northern environment. There are currently 3 pipelines operating north of 60, notably the Shiha gas pipeline near Fort Liard, the Ikhil gas pipeline in Inuvik and the Norman Wells oil pipeline. Each has its unique commissioning, operating and maintenance challenges, as well as specific training and logistical support requirements for the use of in-line inspection tools and other forms of integrity assessment. The effectiveness of cathodic protection systems in a permafrost northern environment was also discussed. It was noted that the delay of the Mackenzie Gas Pipeline Project by two to three years due to joint regulatory review may lead to resource constraints for the project as well as competition for already scarce human resources. The issue of a potential timing conflict with the Alaskan Pipeline Project was also addressed as well as land use issues for routing of supply roads. Integrity monitoring and assessment issues were outlined with reference to pipe soil interaction monitoring in discontinuous permafrost; south facing denuded slope stability; base lining projects; and reclamation issues. It was noted that automatic welding and inspection will increase productivity, while reducing the need for manual labour. In response to anticipated training needs, companies are planning to involve and train Aboriginal labour and will provide camp living conditions that will attract labour. tabs., figs.

  19. Effort problem of chemical pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Okrajni, J.; Ciesla, M.; Mutwil, K. [Silesian Technical University, Katowice (Poland)

    1998-12-31

    The problem of the technical state assessment of the chemical pipelines working under mechanical and thermal loading has been shown in the paper. The pipelines effort after the long time operating period has been analysed. Material geometrical and loading conditions of the crack initiation and crack growth process in the chosen object has been discussed. Areas of the maximal effort have been determined. The material structure charges after the long time operating period have been described. Mechanisms of the crack initiation and crack growth in the pipeline elements have been analysed and mutual relations between the chemical and mechanical influences have been shown. (orig.) 16 refs.

  20. Pipeline technology. Petroleum oil - long-distance pipelines. Pipelinetechnik. Mineraloelfernleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Krass, W; Kittel, A; Uhde, A

    1979-01-01

    All questions and concerns of pipeline technique are dealt with in detail. Some chapters can be applied for petroleum pipelines only or partly, for example the importance of petroleum pipelines, projecting, calculation, and operation. The sections of pipes and formings, laying, rights of way, and corrosion protection, accessories and remote effect technique, however, are of general interest, for example also for gas pipelines. In the chapter on working material, a very good summary of today's pipe working material including the thermomechanically treated steels is given. Besides methods of improving the toughness, the problems of the corrosion caused by strain cracking and the ways of avoiding it are pointed out. The pipe producing methods and, in the end of the chapter, the tests in the factory are explained. The section of laying deals with the laying methods being applied for years in pipeline construction, a big part referring to welding methods and tests. Active and passive corrosion protection are explained with all details. In addition to the solidity calculation presented with special regard to concerns of petroleum pipelines, theoretical fundaments and calculation methods for pressure are dealt with. Beside general questions of pumps, accessories, and drives, there is a section dealing with measurement and control techniques. Furthermore, remote effect and transmission techniques and news systems are explained in detail. Here, problems are referred to which are applicable not only to the operation of mineral oil pipelines. The book is completed by indications as to pipeline operation emphasizing general operation control, maintenance, repair methods and damage and their elimination. The last chapter contains a collection of the legal fundaments and the technical rules.

  1. Fishing intensity around the BBL pipeline

    NARCIS (Netherlands)

    Hintzen, Niels

    2016-01-01

    Wageningen Marine Research was requested by ACRB B.V. to investigate the fishing activities around the BBL pipeline. This gas pipeline crosses the southern North Sea from Balgzand (near Den Helder) in the Netherlands to Bacton in the UK (230km). This pipeline is abbreviated as the BBL pipeline. Part

  2. Oil and gas pipeline construction cost analysis and developing regression models for cost estimation

    Science.gov (United States)

    Thaduri, Ravi Kiran

    In this study, cost data for 180 pipelines and 136 compressor stations have been analyzed. On the basis of the distribution analysis, regression models have been developed. Material, Labor, ROW and miscellaneous costs make up the total cost of a pipeline construction. The pipelines are analyzed based on different pipeline lengths, diameter, location, pipeline volume and year of completion. In a pipeline construction, labor costs dominate the total costs with a share of about 40%. Multiple non-linear regression models are developed to estimate the component costs of pipelines for various cross-sectional areas, lengths and locations. The Compressor stations are analyzed based on the capacity, year of completion and location. Unlike the pipeline costs, material costs dominate the total costs in the construction of compressor station, with an average share of about 50.6%. Land costs have very little influence on the total costs. Similar regression models are developed to estimate the component costs of compressor station for various capacities and locations.

  3. Multicriteria optimization approach to design and operation of district heating supply system over its life cycle

    Science.gov (United States)

    Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał

    2017-11-01

    District Heating (DH) systems are commonly supplied using local heat sources. Nowadays, modern insulation materials allow for effective and economically viable heat transportation over long distances (over 20 km). In the paper a method for optimized selection of design and operating parameters of long distance Heat Transportation System (HTS) is proposed. The method allows for evaluation of feasibility and effectivity of heat transportation from the considered heat sources. The optimized selection is formulated as multicriteria decision-making problem. The constraints for this problem include a static HTS model, allowing considerations of system life cycle, time variability and spatial topology. Thereby, variation of heat demand and ground temperature within the DH area, insulation and pipe aging and/or terrain elevation profile are taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. Inner pipe diameter, insulation thickness, temperatures and pumping stations locations are optimized during the decision-making process. Moreover, the variants of pipe-laying e.g. one pipeline with the larger diameter or two with the smaller might be considered during the optimization. The analyzed optimization problem is multicriteria, hybrid and nonlinear. Because of such problem properties, the genetic solver was applied.

  4. 77 FR 16471 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...

    Science.gov (United States)

    2012-03-21

    ... Registry of Pipeline and Liquefied Natural Gas Operators AGENCY: Pipeline and Hazardous Materials Safety... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts... Register (75 FR 72878) titled: ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting...

  5. Pipeline integrity handbook risk management and evaluation

    CERN Document Server

    Singh, Ramesh

    2013-01-01

    Based on over 40 years of experience in the field, Ramesh Singh goes beyond corrosion control, providing techniques for addressing present and future integrity issues. Pipeline Integrity Handbook provides pipeline engineers with the tools to evaluate and inspect pipelines, safeguard the life cycle of their pipeline asset and ensure that they are optimizing delivery and capability. Presented in easy-to-use, step-by-step order, Pipeline Integrity Handbook is a quick reference for day-to-day use in identifying key pipeline degradation mechanisms and threats to pipeline integrity. The book begins

  6. Logistics aspects of petroleum pipeline operations

    Directory of Open Access Journals (Sweden)

    W. J. Pienaar

    2010-11-01

    Full Text Available The paper identifies, assesses and describes the logistics aspects of the commercial operation of petroleum pipelines. The nature of petroleum-product supply chains, in which pipelines play a role, is outlined and the types of petroleum pipeline systems are described. An outline is presented of the nature of the logistics activities of petroleum pipeline operations. The reasons for the cost efficiency of petroleum pipeline operations are given. The relative modal service effectiveness of petroleum pipeline transport, based on the most pertinent service performance measures, is offered. The segments in the petroleum-products supply chain where pipelines can play an efficient and effective role are identified.

  7. Pipelines programming paradigms: Prefab plumbing

    International Nuclear Information System (INIS)

    Boeheim, C.

    1991-08-01

    Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

  8. Economic evaluation: wood stave pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rook, M.E.

    The spray of leakage from the wood stave water supply pipeline serving the New England Power Company's (NEPCO) Searsburg hydroelectric development had caused this facility to be dubbed ''The Searsburg Car Wash.'' In July, 1982, excessive leakage from this pipeline prompted NEPCO to perform a technical inspection which would inform the company's decision to replace, repair, or abandon the pipeline. The inspection indicated that a combination of interrelated factors has led to rapid deterioration. The feasibility study, which included a benefit -cost analysis of a times replacement with a continued repair program weighed annually by a risk factor representing the probability of pipeline failure during the replacement period, determined that direct replacement was most advantageous. 4 figures, 1 figures.

  9. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  10. Pipeline robots with elastic elements

    Directory of Open Access Journals (Sweden)

    A. Matuliauskas

    2002-10-01

    Full Text Available In the article constructions of the pipeline robots with elastic elements are reviewed and the scheme of new original construction is presented. The mathematical models of a robot with one-dimensional vibration exciter with two degrees of freedom were developed and the equations of movement were formed and written. The mathematical model of the pipeline robot with circular elements is formed and its motion equations are presented.

  11. Optimal valve location in long oil pipelines

    OpenAIRE

    Grigoriev, A.; Grigorieva, N.V.

    2007-01-01

    We address the valve location problem, one of the basic problems in design of long oil pipelines. Whenever a pipeline is depressurized, the shutoff valves block the oil flow and seal the damaged part of the pipeline. Thus, the quantity of oil possibly contaminating the area around the pipeline is determined by the volume of the damaged section of the pipeline between two consecutive valves. Then, ecologic damage can be quantified by the amount of leaked oil and the environmental characteristi...

  12. Residual stresses evaluation in a gas-pipeline crossing

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Maria Cindra [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Almeida, Manoel Messias [COMPAGAS, Curitiba, PR (Brazil); Rebello, Joao Marcos Alcoforado [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Souza Filho, Byron Goncalves de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The X-rays diffraction technique is a well established and effectiveness method in the determination of the residual and applied stresses in fine grained crystalline materials. It allows to characterize and to quantify the magnitude and direction of the existing surface stresses in the studied point of the material. The objective of this work is the evaluation of the surface stresses in a 10 in diameter Natural Gas Distribution Pipeline manufactured from API 5 L Gr B steel of COMPAGAS company, in a crossing with a Natural Gas Transportation Pipeline, in Araucaria-PR. This kind of evaluation is important to establish weather you have to perform a repositioning of one of the pipeline or not. The measurements had been made in two transversal sections of the pipe, the one upstream (170 mm of the external wall of the pipeline) and another one downstream (840 mm of the external wall of the pipeline). Each transversal section measurements where carried out in 3 points: 9 hours, 12 hours and 3 hours. In each measured point of the pipe surface, the longitudinal and transversal stresses had been measured. The magnitude of the surface residual stresses in the pipe varied of +180 MPa at the -210 MPa. The residual stress state on the surface of the points 12 hours region is characterized by tensile stresses and by compressive stresses in the points of 3 and 9 hours region. The surface residual stresses in gas-pipeline have been measured using X-ray diffraction method, by double exposure technique, using a portable apparatus, with Cr-K-alpha radiation. (author)

  13. Pipeline for Contraceptive Development

    Science.gov (United States)

    Blithe, Diana L.

    2016-01-01

    The high rates of unplanned pregnancy reflect unmet need for effective contraceptive methods for women, especially for individuals with health risks such as obesity, diabetes, hypertension, and other conditions that may contraindicate use of an estrogen-containing product. Improvements in safety, user convenience, acceptability and availability of products remain important goals of the contraceptive development program. Another important goal is to minimize the impact of the products on the environment. Development of new methods for male contraception has the potential to address many of these issues with regard to safety for women who have contraindications to effective contraceptive methods but want to protect against pregnancy. It also will address a huge unmet need for men who want to control their fertility. Products under development for men would not introduce eco-toxic hormones in the waste water. Investment in contraceptive research to identify new products for women has been limited in the pharmaceutical industry relative to investment in drug development for other indications. Pharmaceutical R&D for male contraception was active in the 1990’s but was abandoned over a decade ago. The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) has supported a contraceptive development program since 1969. Through a variety of programs including research grants and contracts, NICHD has developed a pipeline of new targets/products for male and female contraception. A number of lead candidates are under evaluation in the NICHD Contraceptive Clinical Trials Network (CCTN) (1–3). PMID:27523300

  14. Crude oil pipeline expansion summary

    International Nuclear Information System (INIS)

    2005-02-01

    The Canadian Association of Petroleum Producers has been working with producers to address issues associated with the development of new pipeline capacity from western Canada. This document presents an assessment of the need for additional oil pipeline capacity given the changing mix of crude oil types and forecasted supply growth. It is of particular interest to crude oil producers and contributes to current available information for market participants. While detailed, the underlying analysis does not account for all the factors that may come into play when individual market participants make choices about which expansions they may support. The key focus is on the importance of timely expansion. It was emphasized that if pipeline expansions lags the crude supply growth, then the consequences would be both significant and unacceptable. Obstacles to timely expansion are also discussed. The report reviews the production and supply forecasts, the existing crude oil pipeline infrastructure, opportunities for new market development, requirements for new pipeline capacity and tolling options for pipeline development. tabs., figs., 1 appendix

  15. Solving an unpiggable pipeline challenge

    Energy Technology Data Exchange (ETDEWEB)

    Walker, James R. [GE Oil and Gas, PII Pipeline Solutions, Cramlington Northumberland (United Kingdom); Kern, Michael [National Grid, New Hampshire (United Kingdom)

    2009-07-01

    Technically, any pipeline can be retrofitted to enable in line inspection. Sensibly however, the expense of excavations and construction of permanent facilities have been, in many cases, exceedingly prohibitive. Even where traditional modifications are feasible from engineering perspectives, flow interruption may not be an option - either because they are critical supply lines or because the associated lost revenues could be nearly insurmountable. Savvy pipeline integrity managers know the safety issue that is at stake over the long term. They are also well aware of the accuracy benefits that high-quality in-line inspection data offer over potentially supply disruptive alternatives such as hydrostatic testing. To complicate matters further, many operators, particularly in the US, now face regulatory pressure to assess the integrity of their yet-uninspected pipelines located in highly populated areas. This paper describes an important project National Grid undertook that made use of a unique pipeline access method that did not require permanent installation of expensive facilities required for in line inspection of a pipeline previously considered 'unpiggable'. Since the pipeline was located in an urban area, flow disruption had to be minimized. This paper will define the project background, its challenges, outcomes and lessons learned for the future. (author)

  16. Diameter-dependent hydrophobicity in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kyakuno, Haruka, E-mail: h-kyakuno@kanagawa-u.ac.jp [Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Institute of Physics, Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Fukasawa, Mamoru; Ichimura, Ryota; Nakai, Yusuke; Maniwa, Yutaka, E-mail: maniwa@phys.se.tmu.ac.jp [Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Matsuda, Kazuyuki [Institute of Physics, Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Miyata, Yasumitsu [Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); PRESTO, JST, Kawaguchi 332-0012 (Japan); Saito, Takeshi [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565 (Japan)

    2016-08-14

    Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature T and the SWCNT diameter D. SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature T{sub wd} ≈ 220-230 K and above a critical diameter D{sub c} ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs (D > D{sub c}) evaporate and condense into ice Ih outside the SWCNTs at T{sub wd} upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below T{sub wd} freezes. Molecular dynamics simulations indicate that upon lowering T, the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs (D < D{sub c}) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.

  17. 76 FR 28326 - Pipeline Safety: National Pipeline Mapping System Data Submissions and Submission Dates for Gas...

    Science.gov (United States)

    2011-05-17

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR 191... Reports AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Issuance of... Pipeline and Hazardous Materials Safety Administration (PHMSA) published a final rule on November 26, 2010...

  18. 75 FR 45591 - Pipeline Safety: Notice of Technical Pipeline Safety Advisory Committee Meetings

    Science.gov (United States)

    2010-08-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Committee Meetings AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION... safety standards, risk assessments, and safety policies for natural gas pipelines and for hazardous...

  19. 77 FR 36606 - Pipeline Safety: Government/Industry Pipeline Research and Development Forum, Public Meeting

    Science.gov (United States)

    2012-06-19

    ...: Threat Prevention --Working Group 2: Leak Detection/Mitigation & Storage --Working Group 3: Anomaly... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0146] Pipeline Safety: Government/Industry Pipeline Research and Development Forum, Public...

  20. Gathering pipeline methane emissions in Fayetteville shale pipelines and scoping guidelines for future pipeline measurement campaigns

    Directory of Open Access Journals (Sweden)

    Daniel J. Zimmerle

    2017-11-01

    Full Text Available Gathering pipelines, which transport gas from well pads to downstream processing, are a sector of the natural gas supply chain for which little measured methane emissions data are available. This study performed leak detection and measurement on 96 km of gathering pipeline and the associated 56 pigging facilities and 39 block valves. The study found one underground leak accounting for 83% (4.0 kg CH4/hr of total measured emissions. Methane emissions for the 4684 km of gathering pipeline in the study area were estimated at 402 kg CH4/hr [95 to 1065 kg CH4/hr, 95% CI], or 1% [0.2% to 2.6%] of all methane emissions measured during a prior aircraft study of the same area. Emissions estimated by this study fall within the uncertainty range of emissions estimated using emission factors from EPA’s 2015 Greenhouse Inventory and study activity estimates. While EPA’s current inventory is based upon emission factors from distribution mains measured in the 1990s, this study indicates that using emission factors from more recent distribution studies could significantly underestimate emissions from gathering pipelines. To guide broader studies of pipeline emissions, we also estimate the fraction of the pipeline length within a basin that must be measured to constrain uncertainty of pipeline emissions estimates to within 1% of total basin emissions. The study provides both substantial insight into the mix of emission sources and guidance for future gathering pipeline studies, but since measurements were made in a single basin, the results are not sufficiently representative to provide methane emission factors at the regional or national level.

  1. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    Science.gov (United States)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe

  2. Local buckling failure analysis of high-strength pipelines

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Jian Shuai; Zhong-Li Jin; Ya-Tong Zhao; Kui Xu

    2017-01-01

    Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load.This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength,which are under different conditions,including pure bending and bending combined with internal pressure.Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes.In parametric analysis,a series of parameters,including pipe geometrical dimension,pipe material properties and internal pressure,were selected to study their influences on the critical bending moment,critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg-Osgood constitutive model.Results showed that geometrical dimensions,material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress,which have different,even reverse effects on the critical compressive strain.Based on these analyses,more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bending conditions,which provide theoretical methods for highstrength pipeline engineering.

  3. 77 FR 45417 - Pipeline Safety: Inspection and Protection of Pipeline Facilities After Railway Accidents

    Science.gov (United States)

    2012-07-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Accidents AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. [[Page 45418

  4. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    International Nuclear Information System (INIS)

    Zellmer, S.D.; Rastorfer, J.R.; Van Dyke, G.D.

    1991-07-01

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1 x1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems ≥2 cm dbh in 10 x 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs

  5. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D. (Argonne National Lab., IL (United States)); Rastorfer, J.R. (Chicago State Univ., IL (United States). Dept. of Biological Sciences ANL/CSU Cooperative Herbarium, Chicago, IL (United States)); Van Dyke, G.D. (Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology)

    1991-07-01

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1 {times}1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems {ge}2 cm dbh in 10 {times} 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs.

  6. New territory for NGL pipelines

    International Nuclear Information System (INIS)

    Turner, C.L.; Billings, F.E.

    1994-01-01

    Even though the NGL pipeline industry appears mature, new geographic territory exists for expansion of NGL pipelines. However, the most fertile territory that must be pursued is the collective opportunities to better link the existing NGL industry. Associations like the Gas Processors Association can not perform the role demanded by a need to share information between the links of the chain on a more real time basis. The Association can not substitute for picking up the phone or calling a meeting of industry participants to discuss proposed changes in policies and procedures. All stakeholders must participate in squeezing out the inefficiencies of the industry. Some expansion and extension of NGL pipelines will occur in the future without ownership participation or commitments from the supply and demand businesses. However, significant expansions linking new supply sources and demand markets will only be made as the supply and demand businesses share long-term strategies and help define the pipeline opportunity. The successful industries of the twenty-first century will not be dominated by a single profitable sector, but rather by those industries which foster cooperation as well as competition. A healthy NGL industry will be comprised of profitable supply businesses and profitable demand businesses, linked together by profitable pipeline businesses

  7. Optimization of pipeline transport for CO2 sequestration

    International Nuclear Information System (INIS)

    Zhang, Z.X.; Wang, G.X.; Massarotto, P.; Rudolph, V.

    2006-01-01

    Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO 2 concentration and, hence, global warming. Capture and disposal of CO 2 has received increased R and D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO 2 emissions. This paper addresses CO 2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO 2 can be transported through pipelines in the form of a gas, a supercritical fluid or in the subcooled liquid state. Operationally, most CO 2 pipelines used for enhanced oil recovery transport CO 2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the cost of CO 2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO 2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO 2 below its critical point of 31.1 o C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions

  8. Environmental audit guidelines for pipelines

    International Nuclear Information System (INIS)

    1991-01-01

    Environmental auditing is a form of management control which provides an objective basis by which a company can measure the degree of compliance with environmental regulations. Other benefits of this type of auditing include improved environmental management, furthering communication on environmental issues of concern within the company, and provision of documentation on environmental diligence. A series of environmental audit guidelines for pipelines is presented in the form of lists of questions to be asked during an environmental audit followed by recommended actions in response to those questions. The questions are organized into seven main categories: environmental management and planning; operating procedures; spill prevention; management of wastes and hazardous materials; environmental monitoring; construction of pipelines; and pipeline abandonment, decommissioning and site reclamation

  9. Emergency preparedness of OSBRA Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Milton P.; Torres, Carlos A.R.; Almeida, Francisco J.C. [TRANSPETRO, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper presents the experience of PETROBRAS Transporte S. A. - TRANSPETRO in the preparation for emergencies in the OSBRA pipeline, showing specific aspects and solutions developed. The company has a standardized approach for the emergency management, based on risk analysis studies, risk management plan and contingency plans. To cover almost 1,000 km of pipeline, the Company avails of Emergency Response Centers and Environmental Defense Center, located at strategic points. In order to achieve preparation, fire fighting training and oil leakage elimination training are provided. Additionally, simulation exercises are performed, following a schedule worked out according to specific criteria and guidelines. As a conclusion, a picture is presented of the evolution of the preparation for emergencies in the OSBRA System which bears the enormous responsibility of transporting flammable products for almost 1,000 km of pipeline, crossing 40 municipalities, 3 states and the Federal District. (author)

  10. Optimal design of regional wastewater pipelines and treatment plant systems.

    Science.gov (United States)

    Brand, Noam; Ostfeld, Avi

    2011-01-01

    This manuscript describes the application of a genetic algorithm model for the optimal design of regional wastewater systems comprised of transmission gravitational and pumping sewer pipelines, decentralized treatment plants, and end users of reclaimed wastewater. The algorithm seeks the diameter size of the designed pipelines and their flow distribution simultaneously, the number of treatment plants and their size and location, the pump power, and the required excavation work. The model capabilities are demonstrated through a simplified example application using base runs and sensitivity analyses. Scaling of the proposed methodology to real life wastewater collection and treatment plants design problems needs further testing and developments. The model is coded in MATLAB using the GATOOL toolbox and is available from the authors.

  11. Risk and integrity management system for PETRONAS Gas Berhad's gas and liquid hydrocarbon pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Tuan Hj. Ahmad Nadzri bin; Nasir, Osman; Napiah, Mohd Nazmi Mohd Ali [PETRONAS Gas Berhad, Johor (Malaysia); Choong, Evelyn

    2005-07-01

    PETRONAS Gas Berhad (PGB), Malaysia currently operates one of Southeast Asia's largest onshore pipeline systems comprising more than 2,500 km of large diameter high pressure gas and liquid transmission, supply and lateral pipelines. Recognizing the value of a risk based approach to pipeline integrity management program, in 2002 PGB implemented a customized and fully integrated Risk and Integrity Management System (RIMS) which included software modules for: data management; semi-quantitative risk assessment; risk control cost benefit analyses; defect assessment; corrosion growth modeling; and reporting. As part of this project, a benchmarking study performed jointly with the contractor, PGB's pipeline integrity programs were also compared with a broad group of international pipeline operators. This study compared the relative ranking position of PGB pre- and post implementation of RIMS. It demonstrated that implementation of RIMS places PGB in a select group of first quartile international pipeline operators, with respect to the implementation of pipeline integrity management best practice. This paper describes the functionalities of RIMS system and how it has benefited PGB, which have been realized to date from its implementation. (author)

  12. Rehabilitation of underwater pipeline with liner; Reabilitacao de aqueduto submarino com liner: multiplas vantagens e aplicacoes

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Roberto S.; Oliveira, Jose N. de; Urtiga, Rogerio L.; Witt, R. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The system of water injection in XAREU oil production field has an water pipeline sizing 4'' of diameter, between the offshore platform PXA-1 and another PXA-2, that it transfers 165 m{sup 3}/d of salt water for pressurization of the reservoir through the injection well Xareu-23. This water pipeline always presented high degree of corrosion needing frequently installation of cramps to eliminate leakages. After evaluating the costs we conclude that the more attractive it would be the installation of a liner than the launching of a new water pipeline. For the installation of a new water pipeline we would need the approval of IBAMA and of a great number of resources for the substitution of that pipeline. In spite of treating of an unpublished service between two offshore platforms we chose for the installation of a liner, because we had a great technological domain in this service in onshore oil production facilities with many pipelines recovered with this technique. We had to revise all of the procedures so that there was not any surprise to make unfeasible this service. The installation of the system liner, consisted of an internal coating 'in situ' through the insert of plastic tubes(high density polyethylene-HDPE), that it forms a barrier between the pipeline and the transported fluid. (author)

  13. Reliability analysis of pipelines and pressure vessels at nuclear power plants

    International Nuclear Information System (INIS)

    Klemin, A.I.; Shiverskij, E.A.

    1979-01-01

    Reliability analysis of pipelines and pressure vessels at NPP is given. The main causes and failure mechanisms of these elements, the ways of reliability improvement and preventing of great damages are considered. The reliability estimation methods both according to the statistical operation data and under the conditions of absence of failure statistics are given. The main characteristics and actual reliability factors of pipelines and pressure vessels of three home NPP: the first in the world NPP, VK-50 and Beloyarsk NPP, are presented. From the start-up there were practically no failures of the pipelines and pressure vessels at the VK-50 pilot installation. The analysis of the operation experience of the first and second blocks of the Beloyarsk NPP, as well as the first in the world NPP, shows that the most part of failures of the pipelines and pressure vessels of these energy blocks with the channel reactors is connected with the coolant leakage at minority pipelines of a small diameter. The most part of failures at individual pipelines of the first and second blocks of the Beloyarsk NPP are connected with the leakages of stuffing boxes of switching off devices. It is noted that serious failures of large pipelines and pressure vessels at all home NPP under operation have not been observed

  14. Assessment of weld thickness loss in offshore pipelines using computed radiography and computational modeling

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Oliveira, D.F.; Silva, A.X.; Lopes, R.T.; Marinho, C.; Camerini, C.S.

    2009-01-01

    In order to guarantee the structural integrity of oil plants it is crucial to monitor the amount of weld thickness loss in offshore pipelines. However, in spite of its relevance, this parameter is very difficult to determine, due to both the large diameter of most pipes and the complexity of the multi-variable system involved. In this study, a computational modeling based on Monte Carlo MCNPX code is combined with computed radiography to estimate the weld thickness loss in large-diameter offshore pipelines. Results show that computational modeling is a powerful tool to estimate intensity variations in radiographic images generated by weld thickness variations, and it can be combined with computed radiography to assess weld thickness loss in offshore and subsea pipelines.

  15. Empirical Formulas for Calculation of Negative Pressure Difference in Vacuum Pipelines

    Directory of Open Access Journals (Sweden)

    Marek Kalenik

    2015-10-01

    Full Text Available The paper presents the analysis of results of empirical investigations of a negative pressure difference in vacuum pipelines with internal diameters of 57, 81, 102 mm. The investigations were performed in an experimental installation of a vacuum sewage system, built in a laboratory hall on a scale of 1:1. The paper contains a review of the literature concerning two-phase flows (liquid-gas in horizontal, vertical and diagonal pipelines. It presents the construction and working principles of the experimental installation of vacuum sewage system in steady and unsteady conditions during a two-phase flow of water and air. It also presents a methodology for determination of formula for calculation of a negative pressure difference in vacuum pipelines. The results obtained from the measurements of the negative pressure difference Δpvr in the vacuum pipelines were analyzed and compared with the results of calculations of the negative pressure difference Δpvr, obtained from the determined formula. The values of the negative pressure difference Δpvr calculated for the vacuum pipelines with internal diameters of 57, 81, and 102 mm with the use of Formula (19 coincide with the values of Δpvr measured in the experimental installation of a vacuum sewage system. The dependence of the negative pressure difference Δpvr along the length of the vacuum pipelines on the set negative pressure in the vacuum container pvzp is linear. The smaller the vacuum pipeline diameter, the greater the negative pressure difference Δpvr is along its length.

  16. Analysis of pipeline transportation systems for carbon dioxide sequestration

    Directory of Open Access Journals (Sweden)

    Witkowski Andrzej

    2014-03-01

    Full Text Available A commercially available ASPEN PLUS simulation using a pipe model was employed to determine the maximum safe pipeline distances to subsequent booster stations as a function of carbon dioxide (CO2 inlet pressure, ambient temperature and ground level heat flux parameters under three conditions: isothermal, adiabatic and with account of heat transfer. In the paper, the CO2 working area was assumed to be either in the liquid or in the supercritical state and results for these two states were compared. The following power station data were used: a 900 MW pulverized coal-fired power plant with 90% of CO2 recovered (156.43 kg/s and the monothanolamine absorption method for separating CO2 from flue gases. The results show that a subcooled liquid transport maximizes energy efficiency and minimizes the cost of CO2 transport over long distances under isothermal, adiabatic and heat transfer conditions. After CO2 is compressed and boosted to above 9 MPa, its temperature is usually higher than ambient temperature. The thermal insulation layer slows down the CO2 temperature decrease process, increasing the pressure drop in the pipeline. Therefore in Poland, considering the atmospheric conditions, the thermal insulation layer should not be laid on the external surface of the pipeline.

  17. Analysis of pipeline transportation systems for carbon dioxide sequestration

    Science.gov (United States)

    Witkowski, Andrzej; Majkut, Mirosław; Rulik, Sebastian

    2014-03-01

    A commercially available ASPEN PLUS simulation using a pipe model was employed to determine the maximum safe pipeline distances to subsequent booster stations as a function of carbon dioxide (CO2) inlet pressure, ambient temperature and ground level heat flux parameters under three conditions: isothermal, adiabatic and with account of heat transfer. In the paper, the CO2 working area was assumed to be either in the liquid or in the supercritical state and results for these two states were compared. The following power station data were used: a 900 MW pulverized coal-fired power plant with 90% of CO2 recovered (156.43 kg/s) and the monothanolamine absorption method for separating CO2 from flue gases. The results show that a subcooled liquid transport maximizes energy efficiency and minimizes the cost of CO2 transport over long distances under isothermal, adiabatic and heat transfer conditions. After CO2 is compressed and boosted to above 9 MPa, its temperature is usually higher than ambient temperature. The thermal insulation layer slows down the CO2 temperature decrease process, increasing the pressure drop in the pipeline. Therefore in Poland, considering the atmospheric conditions, the thermal insulation layer should not be laid on the external surface of the pipeline.

  18. Comparison of carbon footprints of steel versus concrete pipelines for water transmission.

    Science.gov (United States)

    Chilana, Lalit; Bhatt, Arpita H; Najafi, Mohammad; Sattler, Melanie

    2016-05-01

    The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing. This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.

  19. 77 FR 51848 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-08-27

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Program for Gas Distribution Pipelines. DATES: Interested persons are invited to submit comments on or.... These regulations require operators of hazardous liquid pipelines and gas pipelines to develop and...

  20. 78 FR 5866 - Pipeline Safety: Annual Reports and Validation

    Science.gov (United States)

    2013-01-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0319] Pipeline Safety: Annual Reports and Validation AGENCY: Pipeline and Hazardous Materials... 2012 gas transmission and gathering annual reports, remind pipeline owners and operators to validate...

  1. 77 FR 74275 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-12-13

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No.... These regulations require operators of hazardous liquid pipelines and gas pipelines to develop and... control room. Affected Public: Operators of both natural gas and hazardous liquid pipeline systems. Annual...

  2. 77 FR 27279 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-05-09

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... collections relate to the pipeline integrity management requirements for gas transmission pipeline operators... Management in High Consequence Areas Gas Transmission Pipeline Operators. OMB Control Number: 2137-0610...

  3. 78 FR 46560 - Pipeline Safety: Class Location Requirements

    Science.gov (United States)

    2013-08-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... class location requirements for gas transmission pipelines. Section 5 of the Pipeline Safety, Regulatory... and, with respect to gas transmission pipeline facilities, whether applying IMP requirements to...

  4. 75 FR 53733 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-09-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2010-0246] Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous... liquefied natural gas, hazardous liquid, and gas transmission pipeline systems operated by a company. The...

  5. 77 FR 46155 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-08-02

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... collections relate to the pipeline integrity management requirements for gas transmission pipeline operators... Management in High Consequence Areas Gas Transmission Pipeline Operators. OMB Control Number: 2137-0610...

  6. 77 FR 15453 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-03-15

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... information collection titled, ``Gas Pipeline Safety Program Certification and Hazardous Liquid Pipeline... collection request that PHMSA will be submitting to OMB for renewal titled, ``Gas Pipeline Safety Program...

  7. pipelines cathodic protection design methodologies for impressed

    African Journals Online (AJOL)

    HOD

    oil and gas pipelines corrosion in the United State of. American alone ... or preventing external corrosion of pipeline steels and other metallic .... 2.1 Materials and Impressed Current Design. Carbon steel ..... Research Analysis, Vol. 2, pp 2277 ...

  8. Natural disasters and the gas pipeline system.

    Science.gov (United States)

    1996-11-01

    Episodic descriptions are provided of the effects of the Loma Prieta earthquake (1989) on the gas pipeline systems of Pacific Gas & Electric Company and the Cit of Palo Alto and of the Northridge earthquake (1994) on Southern California Gas' pipeline...

  9. Reliable pipeline repair system for very large pipe size

    Energy Technology Data Exchange (ETDEWEB)

    Charalambides, John N.; Sousa, Alexandre Barreto de [Oceaneering International, Inc., Houston, TX (United States)

    2004-07-01

    The oil and gas industry worldwide has been mainly depending on the long-term reliability of rigid pipelines to ensure the transportation of hydrocarbons, crude oil, gas, fuel, etc. Many other methods are also utilized onshore and offshore (e.g. flexible lines, FPSO's, etc.), but when it comes to the underwater transportation of very high volumes of oil and gas, the industry commonly uses large size rigid pipelines (i.e. steel pipes). Oil and gas operators learned to depend on the long-lasting integrity of these very large pipelines and many times they forget or disregard that even steel pipelines degrade over time and more often that that, they are also susceptible to various forms of damage (minor or major, environmental or external, etc.). Over the recent years the industry had recognized the need of implementing an 'emergency repair plan' to account for such unforeseen events and the oil and gas operators have become 'smarter' by being 'pro-active' in order to ensure 'flow assurance'. When we consider very large diameter steel pipelines such as 42' and 48' nominal pipe size (NPS), the industry worldwide does not provide 'ready-made', 'off-the-shelf' repair hardware that can be easily shipped to the offshore location and effect a major repair within acceptable time frames and avoid substantial profit losses due to 'down-time' in production. The typical time required to establish a solid repair system for large pipe diameters could be as long as six or more months (depending on the availability of raw materials). This paper will present in detail the Emergency Pipeline Repair Systems (EPRS) that Oceaneering successfully designed, manufactured, tested and provided to two major oil and gas operators, located in two different continents (Gulf of Mexico, U.S.A. and Arabian Gulf, U.A.E.), for two different very large pipe sizes (42'' and 48'' Nominal Pipe Sizes

  10. 75 FR 63774 - Pipeline Safety: Safety of On-Shore Hazardous Liquid Pipelines

    Science.gov (United States)

    2010-10-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), Department of... Gas Pipeline Safety Act of 1968, Public Law 90-481, delegated to DOT the authority to develop...

  11. 77 FR 61825 - Pipeline Safety: Notice of Public Meeting on Pipeline Data

    Science.gov (United States)

    2012-10-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... program performance measures for gas distribution, gas transmission, and hazardous liquids pipelines. The... distribution pipelines (49 CFR 192.1007(e)), gas transmission pipelines (49 CFR 192.945) and hazardous liquids...

  12. California Natural Gas Pipelines: A Brief Guide

    Energy Technology Data Exchange (ETDEWEB)

    Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Price, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pezzola, Genny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  13. Rehabilitation of district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Peter [AaF-Energikonsult Syd AB (Sweden)

    1996-11-01

    Often the choice is between reparation or exchange of a damaged section of the network. If the exchange is based on the wrong assumptions, large sections of undamaged pipelines could be removed. Most important for the district heating company is to decide which strategy to use for the future exchange of the pipelines. Whichever strategy used, it has to based on an assessment of the network and/or assumptions based on that assessment. The question if it is possible extend the life span of the pipelines arises. What is the most economical choice, the exchange or the renovation. (au)

  14. Heat transfer from internally heated hemispherical pools

    International Nuclear Information System (INIS)

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere

  15. Fishing activity near offshore pipelines, 2017

    NARCIS (Netherlands)

    Machiels, Marcel

    2018-01-01

    On the North Sea bottom lie numerous pipelines to link oil- or gas offshore drilling units, - platforms and processing stations on land. Although pipeline tubes are coated and covered with protective layers, the pipelines risk being damaged through man-made hazards like anchor dropping and fishing

  16. Elasticplastic dynamic analysis of pipelines

    International Nuclear Information System (INIS)

    Veloso Filho, D.; Loula, A.F.D.; Guerreiro, J.N.C.

    1982-01-01

    A model for structural analysis of spatial pipelines constituted by material with perfect elastoplastic behavior and submmited to time dependence stress is presented. The spatial discretization is done using the Finite Element method, and for the time integration of movement equations an stable finite difference algorithm is used. (E.G.) [pt

  17. Logistics aspects of pipeline transport in the supply of petroleum products

    Directory of Open Access Journals (Sweden)

    Wessel Pienaar

    2008-09-01

    Full Text Available The commercial transportation of crude oil and petroleum products by pipeline is receiving increased attention in South Africa. Transnet Pipeline Transport has recently obtained permission from the National Energy Regulator of South Africa (Nersa to construct and operate a new petroleum products pipeline of 60 cm diameter from Durban to Gauteng. At an operating speed of 10 km/h the proposed 60 cm Transnet pipeline would be able to deliver 3,54 million litres of petroleum product per hour. This is equivalent to 89 deliveries per hour using road tank vehicles with an average carrying capacity of 40 000 litres of fuel per vehicle. This pipeline throughput is also equivalent to two trains departing per hour, each consisting of 42 petroleum tank wagons with an average carrying capacity of 42 500 litres of fuel per wagon. Considering that such road trucks and rail wagons return empty to the upstream refineries in Durban, it is clear that there is no tenable long-term alternative to pipeline transport:pipeline transport is substantially cheaper than road and rail transport;pipeline transport is much safer than rail and especially road transport; andpipeline transport frees up alternative road and rail transport capacity.Pipeline transport is a non-containerised bulk mode of transport for the carriage of suitable liquids (for example, petroleum commodities, which include crude oil, refined fuel products and liquid petro-chemicals, gas, slurrified coal and certain water-suspended ores and minerals. InSouth Africa, petroleum products account for the majority of commercial pipeline traffic, followed by crude oil and natural gas. There are three basic types of petroleum pipeline transport systems:Gathering pipeline systemsCrude oil trunk pipeline systemsRefined products pipeline systems Collectively, these systems provide a continuous link between extraction, processing, distribution, and wholesalers’ depots in areas of consumption. The following

  18. Effect of oil-pipelines existed in HVTL corridor on the electric field distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, H.M. [College of Technological Studies, Kuwait (Kuwait). Dept. of Electrical Engineering

    2007-07-01

    The overhead transmission of large amounts of electricity over long distances requires high transmission voltages which can generate high electric fields that may have harmful effects on both human and animals. Therefore, corridors or right-of-way are left on both sides along the route of transmission lines. Overhead power transmission lines need strips of land to be designated as rights-of-way. These strips of land can also support other uses such as pipelines, railroads and highways. The primary purpose for minimizing the field effects of high voltage AC lines is to reduce the electric field at ground level. This study investigated the effects of oil-pipelines running parallel to the lines in the rights-of-way corridors on the electric fields generated from high voltage electrical networks in Kuwait. In order to examine the impact of certain design parameters on the electric field distribution near the ground surface, this study varied the oil pipelines diameter, the proximity of the pipeline from the transmission line center and the number of pipelines. The objective was to determine if the amount of land which is required as right-of-way can be reduced. This study also examined the effect of two parallel oil pipelines on the field distribution. Both pipelines were separated by a given distance and ran parallel to the transmission line conductors. The charge simulation method (CSM) was used to simulate and model both the conductors of the transmission lines and the oil-pipelines. Graphs for the electric field distribution profiles at the ground surface, at transmission line conductors' surfaces and at the surfaces of the oil pipelines were presented and evaluated for each scenario. 10 refs., 12 figs.

  19. Customer service drives pipelines' reorganization

    International Nuclear Information System (INIS)

    Share, J.

    1997-01-01

    The concept behind formation of Enron Transportation and Storage tells plenty about this new gas industry. When executives at the Enron Gas Pipeline Group considered plans last year to streamline operations by merging the support functions of Transwestern Pipeline and their other wholly owned pipeline company, Northern Natural Gas, seamless customer service was foremost on their agenda. Instead of worrying about whether employees would favor one pipeline over the other, perhaps to the detriment of customers, they simply created a new organization that everyone would swear the same allegiance to. The 17,000-mile, 4.1 Bcf/d Northern system serves the upper Midwest market and two major expansion projects were completed there last year. Transwestern is a 2,700-mile system with an eastward capacity of 1 Bcf/d and westward of 1.5 Bcf/, that traditionally served California markets. It also ties into Texas intrastate markets and, thanks to expansion of the San Juan lateral, to southern Rocky Mountain supplies. Although Enron Corp. continues to position itself as a full-service energy company, the Gas Pipeline Group continues to fuel much of corporate's net income, which was $584 million last year. With ET and S comprising a significant portion of GPG's income, it was vital that the merger of Northern's 950 employees with Transwestern's 250 indeed be a seamless one. It was not easy either psychologically or geographically with main offices in Omaha, NE and Houston as well as operations centers in Minneapolis, MN; Amarillo, TX; W. Des Moines, IA; and Albuquerque, NM. But the results have been gratifying, according to William R. Cordes, President of ET and S and Nancy L. Gardner, Executive Vice President of Strategic Initiatives

  20. Overview of the design, construction, and operation of interstate liquid petroleum pipelines.

    Energy Technology Data Exchange (ETDEWEB)

    Pharris, T. C.; Kolpa, R. L.

    2008-01-31

    The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are

  1. Awarding legal and Union legal specifications for the routing and operation of district heating pipelines in the public street space; Vergabe- und unionsrechtliche Vorgaben fuer die Verlegung und den Betrieb von Fernwaermeleitungen im oeffentlichen Strassenraum

    Energy Technology Data Exchange (ETDEWEB)

    Reidt, Olaf

    2012-08-15

    The contribution under consideration deals with the question which requirements arise from the national competition and procurement law under EU law for the construction, the continued existence and operation of district heating pipes in public streets. In particular, the question will be whether the planned signing of a concession agreement or the imminent expiry of a fixed-term concession agreement are to be made known throughout the Union. Various constellations in the district heating sector will comment on whether the EU law procurement directives require the compliance with the antitrust laws. Then the requirements of the European primary law are presented for such cases in which the public procurement directives and the cartel procurement law are not relevant.

  2. Waste system optimization - can diameter selection

    International Nuclear Information System (INIS)

    Ashline, R.C.

    1983-08-01

    The purpose of the waste system optimization study is to define in terms of cost incentives the preferred waste package for HLW which has been converted to glass at a commercial reprocessing plant. The Waste Management Economic Model (WMEM) was employed to analyze the effect of varying important design parameters on the overall net present cost of waste handling. The parameters found to have the greatest effect on the calculated overall net present cost were can diameter, repository type (salt, basalt/bentonite, or welded tuff), allowable areal heat loading, and the repository availability date. The overall net present of a waste handling option is calculated over a 20-year operating period. It includes the total capital and operating costs associated with high-level and intermediate-level liquid waste storage, liquid waste solidification, hulls storage and compaction, and general process trash handling. It also includes the cask leasing and transportation costs associated with each waste type and the waste repository disposal costs. The waste repository disposal costs used in WMEM for this analysis were obtained from Battelle Pacific Northwest Laboratories and thir RECON model. 2 figures, 2 tables

  3. Packing configuration performance for small stem diameters

    International Nuclear Information System (INIS)

    Aikin, J.A.; Spence, C.G.; Cumming, D.

    1997-01-01

    The extensive use of graphite packing and its excellent track record for large isolating valves in CANDU, Primary Heat Transfer (PHT) systems has resulted in an increased application of graphite packing on the conventional side. Many of these applications are in air operated valves (AOVs) where the packing sets are used on small stem diameters (<1 inch) with frequent short-cycling strokes (± 10% of full stroke). The direct application of the proven packing configurations for large isolated valves to control valve application has generated problems such as stiction, packing wear and, in isolated cases, stem stall. To address this issue, a test program was conducted at AECL, CRL by MED branch. The testing showed that by reconfiguring the packing sets and using PTFE wafers reductions in stem friction of 50% at ambient conditions, a 3 fold at hot conditions are achievable. The test program also demonstrated benefits gained in packing wear with different stem roughness finishes and the potential need to exercise small stems valves that see less than full stroke cycling. The paper describes the tests results and provides field support experience. (author)

  4. Calculation of NPP pipeline seismic stability

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Ambriashvili, Yu.K.; Kaliberda, I.V.

    1982-01-01

    A simplified design procedure of seismic pipeline stability of NPP at WWER reactor is described. The simplified design procedure envisages during the selection and arrangement of pipeline saddle and hydraulic shock absorbers use of method of introduction of resilient mountings of very high rigidity into the calculated scheme of the pipeline and performance of calculations with step-by-step method. It is concluded that the application of the design procedure considered permits to determine strains due to seismic loads, to analyze stressed state in pipeline elements and supporting power of pipe-line saddle with provision for seismic loads to plan measures on seismic protection

  5. Oil pipeline valve automation for spill reduction

    Energy Technology Data Exchange (ETDEWEB)

    Mohitpour, Mo; Trefanenko, Bill [Enbridge Technology Inc, Calgary (Canada); Tolmasquim, Sueli Tiomno; Kossatz, Helmut [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Liquid pipeline codes generally stipulate placement of block valves along liquid transmission pipelines such as on each side of major river crossings where environmental hazards could cause or are foreseen to potentially cause serious consequences. Codes, however, do not stipulate any requirement for block valve spacing for low vapour pressure petroleum transportation, nor for remote pipeline valve operations to reduce spills. A review of pipeline codes for valve requirement and spill limitation in high consequence areas is thus presented along with a criteria for an acceptable spill volume that could be caused by pipeline leak/full rupture. A technique for deciding economically and technically effective pipeline block valve automation for remote operation to reduce oil spilled and control of hazards is also provided. In this review, industry practice is highlighted and application of the criteria for maximum permissible oil spill and the technique for deciding valve automation thus developed, as applied to ORSUB pipeline is presented. ORSUB is one of the three initially selected pipelines that have been studied. These pipelines represent about 14% of the total length of petroleum transmission lines operated by PETROBRAS Transporte S.A. (TRANSPETRO) in Brazil. Based on the implementation of valve motorization on these three pipeline, motorization of block valves for remote operation on the remaining pipelines is intended, depending on the success of these implementations, on historical records of failure and appropriate ranking. (author)

  6. Russia: the pipeline diplomacy; Russie: la diplomatie du pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Bourdillon, Y

    2005-01-15

    First world producer of oil and gas, Russia wishes to use its mastery of energy distribution to recover its great power status. The oil and gas pipelines network is the basement used by Russia to build up its hegemony in Europe. The Russian oil and gas companies are also carrying out a long-term strategy of international expansion, in particular thanks to investments in the neighboring countries for the building of new infrastructures or the purchase of oil refineries. (J.S.)

  7. Arctic pipeline planning design, construction, and equipment

    CERN Document Server

    Singh, Ramesh

    2013-01-01

    Utilize the most recent developments to combat challenges such as ice mechanics. The perfect companion for engineers wishing to learn state-of-the-art methods or further develop their knowledge of best practice techniques, Arctic Pipeline Planning provides a working knowledge of the technology and techniques for laying pipelines in the coldest regions of the world. Arctic Pipeline Planning provides must-have elements that can be utilized through all phases of arctic pipeline planning and construction. This includes information on how to: Solve challenges in designing arctic pipelines Protect pipelines from everyday threats such as ice gouging and permafrost Maintain safety and communication for construction workers while supporting typical codes and standards Covers such issues as land survey, trenching or above ground, environmental impact of construction Provides on-site problem-solving techniques utilized through all phases of arctic pipeline planning and construction Is packed with easy-to-read and under...

  8. Canadian pipeline contractors in holding pattern

    Energy Technology Data Exchange (ETDEWEB)

    Caron, G [Pe Ben Pipelines Ltd.; Osadchuk, V; Sharp, M; Stabback, J G

    1979-05-21

    A discussion of papers presented at a Pipe Line Contractors Association of Canada convention includes comments by G. Caron (Pe Ben Pipelines Ltd.) on the continued slack in big-inch pipeline construction into 1980 owing mainly to delayed U.S. and Canadian decisions on outstanding Alaska Highway gas pipeline issues and associated gas export bids and on the use of automatic welding for expeditious construction of the northern sections of the Alaska Highway pipeline; by V. Osadchuk (Majestic Wiley Contract. Ltd.) on the liquidation of surplus construction equipment because of these delays; by M. Sharp (Can. North. Pipeline Agency) on the need for close U.S. and Canadian governmental and industrial cooperation to permit an early 1980 start for construction of the prebuild sections of the Alaska pipeline; and by J. G. Stabback (Can. Natl. Energy Board) on the Alaska oil pipeline applications by Foothills Pipe Lines Ltd., Trans Mountain Pipe Line Co. Ltd., and Kitimat Pipe Line Ltd.

  9. MODELING AND DESIGN OF INNOVATIVE SMALL DIAMETER GRAVITY SEWERAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    Tadeusz Nawrot

    2017-05-01

    Full Text Available The article presents modern methods of hydraulic design of an innovative small diameter gravity sewerage system. In this system, domestic wastewater is preliminary treated in septic tanks equipped with outlet filters, thus the effluent features are similar to those of clear water. Innovative non-return valves at the outlets eliminate introduction of air to the system and thus the flows can be treated as one-phase ones. Computer codes EPANET 2 and SWMM 5.0 were applied and compared. Two flow schemes typical for the sewerage system were implemented in EPANET 2, and the third - in a slightly modified SWMM 5.0. Simulation results were validated on empirical data obtained on a laboratory physical model, consisting of four tanks of minimum volumes 600 dm3 each, connecting PE pipelines of diameters 25 mm and 36 mm and relevant sanitary fittings. Water inflows, typical for domestic wastewater outflows from single homesteads, were provided by a pump. Water flows were measured using water meters with pulse outputs, and water levels in tanks by pressure transducers. Hydraulic characteristics of filters and non-return valves were provided. Simulation results showed good agreement with the empirical data. Ranges of values of design parameters, needed for successful application of both codes, were established and discussed.

  10. Reliability-based assessment of flow assurance of hot waxy crude pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jinjun, Zhang; Wenke, Zhang; Jianlin, Ding; Bo, Yu [China University of Petroleum - Beijing (CUPB), Beijing (China)

    2009-07-01

    Waxy crude is characterized by its high pour point. Pipeline blockage may occur after prolonged shutdown of a pipeline due to crude oil gelation. Another flow assurance problem is the instable operation at a flow rate below the lowest allowable operation flow rate which is dependent on heat transfer of the pipeline and the viscosity vs. temperature relation of the crude pumped. Besides, for pipelines with thick wax deposition layer, massive depletion of wax deposit in some cases such as pipeline restart at high expelling pressure may also result in blockage of the pipeline, and the pig may be jammed during pigging as a result of thick wax deposition. Conventionally, assessment of these risks has been made by using the deterministic approach. However, many related physical quantities are subject to uncertainty and contribute to reliability of flow assurance. Therefore, the probabilistic approach is suggested and a framework of reliability based assessment of flow assurance of waxy crude pipelines is proposed in this paper. Discussions are also made on the limit state functions and target safety level. In the future study, development of an efficient and robust stochastic-numerical method is crucial. (author)

  11. Cost Minimization Model of Gas Transmission Line for Indonesian SIJ Pipeline Network

    Directory of Open Access Journals (Sweden)

    Septoratno Siregar

    2003-05-01

    Full Text Available Optimization of Indonesian SIJ gas pipeline network is being discussed here. Optimum pipe diameters together with the corresponding pressure distribution are obtained from minimization of total cost function consisting of investment and operating costs and subjects to some physical (Panhandle A and Panhandle B equations constraints. Iteration technique based on Generalized Steepest-Descent and fourth order Runge-Kutta method are used here. The resulting diameters from this continuous optimization are then rounded to the closest available discrete sizes. We have also calculated toll fee along each segment and safety factor of the network by determining the pipe wall thickness, using ANSI B31.8 standard. Sensitivity analysis of toll fee for variation of flow rates is shown here. The result will gives the diameter and compressor size and compressor location that feasible to use for the SIJ pipeline project. The Result also indicates that the east route cost relatively less expensive than the west cost.

  12. Numerical modeling of fires on gas pipelines

    International Nuclear Information System (INIS)

    Zhao Yang; Jianbo Lai; Lu Liu

    2011-01-01

    When natural gas is released through a hole on a high-pressure pipeline, it disperses in the atmosphere as a jet. A jet fire will occur when the leaked gas meets an ignition source. To estimate the dangerous area, the shape and size of the fire must be known. The evolution of the jet fire in air is predicted by using a finite-volume procedure to solve the flow equations. The model is three-dimensional, elliptic and calculated by using a compressibility corrected version of the k - ξ turbulence model, and also includes a probability density function/laminar flamelet model of turbulent non-premixed combustion process. Radiation heat transfer is described using an adaptive version of the discrete transfer method. The model is compared with the experiments about a horizontal jet fire in a wind tunnel in the literature with success. The influence of wind and jet velocity on the fire shape has been investigated. And a correlation based on numerical results for predicting the stoichiometric flame length is proposed. - Research highlights: → We developed a model to predict the evolution of turbulent jet diffusion flames. → Measurements of temperature distributions match well with the numerical predictions. → A correlation has been proposed to predict the stoichiometric flame length. → Buoyancy effects are higher in the numerical results. → The radiative heat loss is bigger in the experimental results.

  13. Long distance transmission of low grade heat

    International Nuclear Information System (INIS)

    Arnott, P.T.W.

    1977-01-01

    This paper is concerned with low and medium temperature water carried by pipeline as a heat transfer medium for the purpose of utilising the waste heat arising from the nuclear power generation process. Different pipelines, single and double, and alternative pipe materials to steel are presented. Later in the paper the effect of the sending-end temperature on the viability of a water pipeline transmission system is discussed and the consequences of using small quantities of steam in order to boost the water temperature are explained. (M.S.)

  14. Analytical solutions for peak and residual uplift resistance of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Oswell, J.M. [Naviq Consulting Inc., Calgary, AB (Canada)

    2010-07-01

    Frost heave can occur on cold pipelines that traverse unfrozen, non permafrost terrain. The stresses experienced by the pipeline are partly a function of the strength of the soil on the non heaving side of the frozen-unfrozen interface. This paper proposed three analytical solutions to estimate the soil uplift resistance by considering the pipeline and soil to act similar to a strip footing, a punching shear failure, and by considering the formation of horizontal crack emanating from the spring line of the pipe. Peak uplift resistance and residual uplift resistance were discussed. Results for full scale pipe and for laboratory scale model pipes were presented, with particular reference to cover depth, temperature and crack width; and limits to residual uplift resistance. It was concluded that the peak uplift resistance and the residual uplift resistance are generally independent and controlled by different factors. The peak resistance is related directly to pipe diameter, and less strongly dependent on springline depth. It is also strongly dependent on soil temperature. However, the residual uplift resistance is strongly dependent on burial depth, weakly dependent on pipe displacement rate and also on soil temperature. 15 refs., 19 figs.

  15. Quantitative risk analysis of the pipeline GASDUC III - solutions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edmilson P.; Bettoni, Izabel Cristina [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In this work the quantitative risks analysis to the external public of the Pipeline Cabiunas - REDUC (GASDUC III), with 180 km, linking the municipalities of Macae and Duque de Caxias - RJ was performed by the Companies PETROBRAS and ITSEMAP do Brasil. In addition to the large diameter of the pipeline 38 inches and high operation pressure 100 kgf/cm{sup 2} operating with natural gas through several densely populated areas. Initially, the individual risk contours were calculated without considering mitigating measures, obtaining as result the individual risk contour with frequencies of 1x10{sup -06} per year involving sensitive occupations and therefore considered unacceptable when compared with the INEA criterion. The societal risk was calculated for eight densely populated areas and their respective FN-curves situated below the advised limit established by INEA, except for two areas that required the proposal of additional mitigating measures to the reduction of societal risk. Regarding to societal risk, the FN-curve should be below the advised limit presented in the Technical Instruction of INEA. The individual and societal risk were reassessed incorporating some mitigating measures and the results situated below the advised limits established by INEA and PETROBRAS has obtained the license for installation of the pipeline. (author)

  16. Detailed inelastic analysis of an LMFBR pipeline

    International Nuclear Information System (INIS)

    Hibbitt, H.D.; Leung, E.K.; Ohalla, A.K.

    1982-01-01

    The paper describes detailed inelastic analyses of a large diameter, thin walled pipeline configuration typical of liquid metal cooled reactor primary piping, subject to thermal shock, with intermediate periods of creep hold time. Three such analyses are compared. Two of these analyses are performed with recently developed elements based on a combination of Fourier and polynomial interpolation to describe the deformation of the pipe. One of these two analyses includes continuous deformation of the pipe wall between each elbow and the adjacent straight pipe segments, while the other neglects such ''end effects'' on the elbow deformation. The third analysis is based on a modified axi-symmetric shell element for modeling the elbows (neglecting and effects). The results thus provide an assessment of the relative cost and importance of including consideration of end effects in modeling a realistic piping system, as well as providing a similar comparison between the two basic deforming section pipe models (Fourier/polynomial versus modified axi-symmetric shells)

  17. Pipeline system for gas centrifuge

    International Nuclear Information System (INIS)

    Masumoto, Tsutomu; Umezawa, Sadao.

    1977-01-01

    Purpose: To enable effective operation for the gas centrifuge cascade system upon failures in the system not by interrupting the operation of all of the centrifuges in the system but by excluding only the failed centrifuges. Constitution: A plurality of gas centrifuges are connected by way of a pipeline and an abnormal detector for the automatic detection of abnormality such as destruction in a vacuum barrel and loss of vacuum is provided to each of the centrifuges. Bypass lines for short-circuitting adjacent centrifuges are provided in the pipelines connecting the centrifuges. Upon generation of abnormality in a centrifuge, a valve disposed in the corresponding bypass is automatically closed or opened by a signal from the abnormal detector to change the gas flow to thereby exclude the centrifuge in abnormality out of the system. This enables to effectively operate the system without interrupting the operation for the entire system. (Moriyama, K.)

  18. Oil pipeline performance review, 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This paper reviews the environmental performance of Canadian oil pipelines in spill prevention and control in 1990 and compares it with that in 1989. In 1990, in-service length of the systems reporting increased to 34,907 km. Traffic volume was 235 million m 3 . Failures dropped 16% from 1989 to 36. Equipment failures accounted for 47%, corrosion for 22% and operational error for 19% of the failures. Repair, damage and clean-up costs were considerably higher at $5,302,000, of which one external corrosion failure contributed $4,500,000. The average spill size was 130 m 3 with 72 m 3 recovered for a 55.4% recovery rate. No injuries resulted from the failures. An 11 year statistical summary of oil pipeline performance data is included. 3 figs., 5 tabs

  19. Nova Gas's pipeline to Asia

    International Nuclear Information System (INIS)

    Lea, N.

    1996-01-01

    The involvement of the Calgary-based company NOVA Gas International (NGI) in Malaysia's peninsular gas utilization (PGU) project, was described. Phase I and II of the project involved linking onshore gas processing plants with a natural gas transmission system. Phase III of the PGU project was a gas transmission pipeline that began midway up the west coast of peninsular Malaysia to the Malaysia-Thailand border. The complex 549 km pipeline included route selection, survey and soil investigation, archaeological study, environmental impact assessment, land acquisition, meter-station construction, telecommunication systems and office buildings. NGI was the prime contractor on the project through a joint venture with OGP Technical Services, jointly owned by NGI and Petronas, the Thai state oil company. Much of NGI's success was attributed to excellent interpersonal skills, particularly NGI's ability to build confidence and credibility with its Thai partners

  20. Magnetic Flux Leakage and Principal Component Analysis for metal loss approximation in a pipeline

    International Nuclear Information System (INIS)

    Ruiz, M; Mujica, L E; Quintero, M; Florez, J; Quintero, S

    2015-01-01

    Safety and reliability of hydrocarbon transportation pipelines represent a critical aspect for the Oil an Gas industry. Pipeline failures caused by corrosion, external agents, among others, can develop leaks or even rupture, which can negatively impact on population, natural environment, infrastructure and economy. It is imperative to have accurate inspection tools traveling through the pipeline to diagnose the integrity. In this way, over the last few years, different techniques under the concept of structural health monitoring (SHM) have continuously been in development.This work is based on a hybrid methodology that combines the Magnetic Flux Leakage (MFL) and Principal Components Analysis (PCA) approaches. The MFL technique induces a magnetic field in the pipeline's walls. The data are recorded by sensors measuring leakage magnetic field in segments with loss of metal, such as cracking, corrosion, among others. The data provide information of a pipeline with 15 years of operation approximately, which transports gas, has a diameter of 20 inches and a total length of 110 km (with several changes in the topography). On the other hand, PCA is a well-known technique that compresses the information and extracts the most relevant information facilitating the detection of damage in several structures. At this point, the goal of this work is to detect and localize critical loss of metal of a pipeline that are currently working. (paper)

  1. Development of a design methodology for hydraulic pipelines carrying rectangular capsules

    International Nuclear Information System (INIS)

    Asim, Taimoor; Mishra, Rakesh; Abushaala, Sufyan; Jain, Anuj

    2016-01-01

    The scarcity of fossil fuels is affecting the efficiency of established modes of cargo transport within the transportation industry. Efforts have been made to develop innovative modes of transport that can be adopted for economic and environmental friendly operating systems. Solid material, for instance, can be packed in rectangular containers (commonly known as capsules), which can then be transported in different concentrations very effectively using the fluid energy in pipelines. For economical and efficient design of such systems, both the local flow characteristics and the global performance parameters need to be carefully investigated. Published literature is severely limited in establishing the effects of local flow features on system characteristics of Hydraulic Capsule Pipelines (HCPs). The present study focuses on using a well validated Computational Fluid Dynamics (CFD) tool to numerically simulate the solid-liquid mixture flow in both on-shore and off-shore HCPs applications including bends. Discrete Phase Modelling (DPM) has been employed to calculate the velocity of the rectangular capsules. Numerical predictions have been used to develop novel semi-empirical prediction models for pressure drop in HCPs, which have then been embedded into a robust and user-friendly pipeline optimisation methodology based on Least-Cost Principle. - Highlights: • Local flow characteristics in a pipeline transporting rectangular capsules. • Development of prediction models for the pressure drop contribution of capsules. • Methodology developed for sizing of Hydraulic Capsule Pipelines. • Implementation of the developed methodology to obtain optimal pipeline diameter.

  2. Latvijas gaze. Inspection of pipeline. Interim report. Cathodic protection, phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Sloka pipeline branch was constructed in 1966-67. Between 1976 and 1985 a number of leaks were detected. The majority of leaks, from chainage appr. 22 km to appr. 29 km, were reported to be caused by stray current induced corrosion. Latvijas Gaze has expressed specific concern as to whether more corrosion defects, though not yet detected, may cause potential risks for future leaks. It was hence agreed at the project meeting in Riga on October 19, 1995, that Balslev should conduct an intensive potential and gradient survey covering appr. 10 km of pipeline up to the Sloka end. The branch is appr. 30,5 km long, and runs from a T-branch on the main pipeline Riga - Lipeija (chainage 0 km) to Sloka (chainage 30,5 km). The diameter of the pipeline is 273 mm and the thickness of the steel is 8 mm. The pipeline is running parallel to a DC-electrified railway over the last appr. 3 km. The stray current from the railway collected on the pipeline has been returned to the railway via two diode drain points. Today only one drain point is active. Stray current (or even reverse current) may be the reason for the serious corrosion defects, cf. Corrosion Report 1985 from `the Leningrade Institute`. (JT)

  3. Operational maneuvers and pipelines activities repairs for the 32 inches scraper tool recovering

    Energy Technology Data Exchange (ETDEWEB)

    Valdivia, Jose; Salguero, Luis; Villanueva, Pedro [Compania Operadora del Gas Amazonas, Lima (Peru)

    2009-07-01

    Transportadora de Gas del Peru and the Compania Operadora de Gas del Amazonas, responsible companies of the transport, operation and maintenance of the pipelines who transport natural gas and natural gas liquids respectively of the Camisea Project - Peru, following the internal policies and the maintenance plan of the pipeline transportation system was planned the activities for the internal pipeline inspection of these activities for 729.3 Km of natural gas pipeline covering diameters of 32 inches, 24 inches and 18 inches. After the first run of the cleaning tool, was scheduled the launch of the dummy scraper (scraper tool) along to the first 210 Km of the 32 inches natural gas pipeline , given changes in elevation along the trace and the low flow of transport. This scraper tool could not reach the final destination. After many series operational maneuvers as venting, creation of differential pressure in valves, the scraper tool only reach the first 75 Km of the trace. After an exhaustive analysis of trending pressure variations, it was concluded that this scraper showed intermittent progress of short durations, concluding that this scraper had not reach the next check point. In this way was decided to conduct operational maneuvers in order to locate, relocated and retrieve the scrapper tool from de 32 inches natural gas pipeline. (author)

  4. Production of 82Br Radiotracer and its Application on Leak Detection in Buried Pipelines

    International Nuclear Information System (INIS)

    Dawed, E. M.; Alwerfalli, M. A.; Ben ayad, S. M.

    2008-01-01

    This paper represents a proper technique called a pig method technique. This technique was applied for leakage detection on the 10 inch diameter and 54 km long underground pipeline carrying the crude oil derivatives from Albrega pumping station (Alzawia) to the Tareeq Almatar distribution center (Tripoli). For this technique, a suitable radioisotope ( 82 BR) was produced through irradiation of potassium bromide target under flux of 1014 n/cm 2 .sec. After 24 hours cooling of the target, 74 GBq (2 Ci) activity was achieved. The chemical reaction to get the radioactive source in a gaseous form was carried on in a special generator. A generated Methyl bromide gas was injected into the pipeline fluid stream (Light Naphtha), and then DN-1 water proof detector was lunched in the same pipeline, afterwards analysis of the obtained data from the detector passage in the pipeline indicated that no changes in the background activity a long the pipeline except the markers positions. This result proved that the pipeline was free of leaks (author)

  5. Magnetic Flux Leakage and Principal Component Analysis for metal loss approximation in a pipeline

    Science.gov (United States)

    Ruiz, M.; Mujica, L. E.; Quintero, M.; Florez, J.; Quintero, S.

    2015-07-01

    Safety and reliability of hydrocarbon transportation pipelines represent a critical aspect for the Oil an Gas industry. Pipeline failures caused by corrosion, external agents, among others, can develop leaks or even rupture, which can negatively impact on population, natural environment, infrastructure and economy. It is imperative to have accurate inspection tools traveling through the pipeline to diagnose the integrity. In this way, over the last few years, different techniques under the concept of structural health monitoring (SHM) have continuously been in development. This work is based on a hybrid methodology that combines the Magnetic Flux Leakage (MFL) and Principal Components Analysis (PCA) approaches. The MFL technique induces a magnetic field in the pipeline's walls. The data are recorded by sensors measuring leakage magnetic field in segments with loss of metal, such as cracking, corrosion, among others. The data provide information of a pipeline with 15 years of operation approximately, which transports gas, has a diameter of 20 inches and a total length of 110 km (with several changes in the topography). On the other hand, PCA is a well-known technique that compresses the information and extracts the most relevant information facilitating the detection of damage in several structures. At this point, the goal of this work is to detect and localize critical loss of metal of a pipeline that are currently working.

  6. Structure of pipeline or duct for thermonuclear reactor

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayashi, Takeshi; Fujioka, Junzo; Nishio, Satoshi; Okawa, Yoshinao; Sato, Keisuke.

    1992-01-01

    An electrically insulating material comprising a gradient function material is bonded metallurgically to a pipeline or a duct to be disposed to a magnetic field-confining type thermonuclear reactor. The gradient material has an ingredient approximate to ceramics on the side of an electrically insulative ceramic portion and an ingredient approximate to a metal on the other side. The intermediate portion between them, has a continuous gradient ingredient. Further, in the gradient portion of the electrically insulative portion, a heat expansion coefficient is also varied continuously or stepwise in addition to the electrical insulative property. Accordingly, even when a temperature distribution is caused during operation and welding upon production, thermal stresses applied to the pipelines is moderated. Further, since the electrically insulative ceramics are interposed with no support by an electric conductor, sufficient electrical insulation can be ensured. (T.M.)

  7. Gas elephants: Arctic projects revived by expanding markets and pipelines

    International Nuclear Information System (INIS)

    Jaremko, G.

    2000-01-01

    The revival of interest in Arctic natural gas and the developing competition to extend the pipeline grid to Alaska and the Yukon and the Northwest territories are the subject of this report. Substantial agreement between competing interest groups is reported with respect to the need for Arctic gas and the willingness of the market to pay for bringing it south to consumers. The discussion centers on the construction of the Alliance Pipeline Project that will reportedly bring two billion cubic feet per day of excess capacity to transport natural gas from northeastern British Columbia to Chicago, and the 2,400 km long Foothills Pipelines System that carries about one-third of Canadian gas exports to middle-western states and California. Plans are to extend the line to 5,240 km by laying pipe in a giant Y pattern between Prudhoe Bay and the Mackenzie delta in the north, and the start of the Foothills System at Caroline in central Alberta. The estimated cost of the line is about $US 6 billion, using a 36-inch diameter line at increased pressures in place of the 56-inch diameter pipe used in the 1970s. Construction plans are similar for the rest of the big Y, the Dempster Lateral beside the Dempster Highway between Whitehorse and Inuvik. A competing project, the Northern Gas Pipeline Project is also discussed. This line would run east of Prudhoe Bay under the Beaufort Sea to the Mackenzie Delta; then south along the Mackenzie Valley to Alberta. Cost of this line is also estimated at $US 6 billion, however, it would have a capacity of four billion cubic feet per day, including 2.5 billion cubic feet from Alaska and 1.5 billion cubic feet from Canada. Strong revival of interest is also reported from the supply side, with BP Amoco, ARCO, Chevron Canada Resources, Ranger 0il Ltd., Paramount Resources, Berkley Petroleum Corporation, Canadian Forest Oil, Alberta Energy Company, Petro-Canada, Anderson Resources, and Poco Petroleum Ltd., all showing interest to mount new

  8. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    Directory of Open Access Journals (Sweden)

    Jeffrey Tuck

    2013-12-01

    Full Text Available Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the

  9. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    Science.gov (United States)

    Tuck, Jeffrey; Lee, Pedro

    2013-01-01

    Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the pipeline are both important

  10. Engineered pipeline field joint coating solutions for demanding conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lwemuchi, Andre L.; Gudme, Carl C.; Buchanan, Robert [Canusa-CPS, Toronto, OT (Canada)

    2009-12-19

    Trends in the oil and gas pipeline industry see that the demand for new technologies and engineered solutions for pipeline external coatings are increasing. In general, superior mechanical resistance and long term performance are being required in addition to operating at higher temperatures. This demand for more robust coatings has been created because of factors such as more remote fields, deep onshore reservoirs, deep water offshore fields and heavy oil that must be pumped at higher temperatures. The development of new techniques for pipeline construction is also exposing the coatings to more aggressive construction conditions. Because of this, the use of three layer and multi-layer polypropylene mainline coating systems have been growing considerably. Following this trend, the field joint coating manufacturers developed polypropylene systems and more recently had to work on engineered solutions required for recent offshore projects in Europe where very thick polypropylene field joint heat-shrinkable systems were provided. In addition, projects in remote locations such as the recently completed projects in the Brazilian Amazon required special logistics and field services. The growth of the mining industry in South America with slurry pipelines constructed in the recent years also demanded thicker, more robust coatings. The popularization of directional drilling and shore approach applications moved the industry to develop improved abrasion resistant coating systems such as using sacrificial elements to protect the primary coating integrity after the pipeline pull. PETROBRAS plans to replace existing thermally insulated pipelines crossing Great Sao Paulo. Therefore, pumping heavy oil at high temperatures created the need to develop improved mainline and field joint coatings to avoid having the same sort of problems they are facing in existing thermally insulated lines. Due to these needs, the field joint coating manufactures have been challenged to provide

  11. The influence of salinity of fly ash mixtures on energy looses during flow in pipelines

    OpenAIRE

    И. Собота

    2017-01-01

    In Polish mining for backfilling the fly ash mixtures are used. Last time for fly ash mixtures preparation the saline water from mine have been used, to thanks to that the saline water missing the surface waters. Usage of saline water for fly ash mixture preparation causes the changes in energy looses during the flow in pipelines. The paper presents the results of energy looses measurement іn laboratory pipeline installation with diameter D =50 mm. The measurements have been performed for dif...

  12. A leak-detection instrument for long buried pipelines based on radioactive tracer measurements

    International Nuclear Information System (INIS)

    Lu Qingqian; Zhou Shuxuan; Tang Yonghua; Sun Xiaolei; Hu Xusheng; Li Deyi; Yin Liqiang

    1987-01-01

    The instrument introduced provides a means for leak detection of long buried pipelines based on the radioactive tracer technique. The principle, block diagram and performances for the instrument are described. The leak-detecting method and the determination of some related parameters are also presented. Leak-detection sensitivity of the instrument is 185 kBq (5 μCi). Accuracy for leak localization is within 2.5 m (per km). It is suitable for the buried light oil (gasoline, kerosene, diesel oil) and industrial water pipelines with a diameter of 15 or 20 cm. The detection length for a single operation reaches up to 50 km

  13. Diameter-speed relation of sprite streamers

    International Nuclear Information System (INIS)

    Kanmae, T; Stenbaek-Nielsen, H C; McHarg, M G; Haaland, R K

    2012-01-01

    Propagation and splitting of sprite streamers has been observed at high temporal and spatial resolution using two intensified high-speed CMOS cameras recording at 10 000 and 16 000 frames per second. Concurrent video recordings from a remote site provided data for triangulation allowing us to determine accurate altitude scales for the sprites. Diameters and speeds of the sprite streamers were measured from the high-speed images, and the diameters were scaled to the reduced diameters based on the triangulated locations. The sprite streamers with larger reduced diameter move faster than those with smaller diameter; the relation between the reduced diameter and speed is roughly linear. The reduced diameters at ≈65-70 km altitude are larger than streamer diameters measured at ground pressure in laboratory discharges indicating a deviation from the similarity law possibly due to the effects of the photoionization and an expansion of the streamer head along its propagation over a long distance. The reduced diameter and speed of the sprite streamers agree well with the diameter-velocity relation proposed by Naidis (2009 Phys. Rev. E 79 057401), and the peak electric field of the sprite streamers is estimated to be approximately 3-5 times the breakdown threshold field. (paper)

  14. Review of the Factors that Influence the Condition of Wax Deposition in Subsea Pipelines

    Directory of Open Access Journals (Sweden)

    Koh Junyi

    2018-03-01

    Full Text Available When crude oil is transported via sub-sea pipeline, the temperature of the pipeline decreases at a deep depth which causes a difference in temperature with the crude oil inside. This causes the crude oil to dissipate its heat to the surrounding until thermal equilibrium is achieved. This is also known as the cloud point where wax begins to precipitate and solidifies at the walls of the pipeline which obstruct the flow of fluid. The main objective of this review is to quantify the factors that influence wax deposition such as temperature difference between the wall of the pipeline and the fluid flowing within, the flow rate of the fluid in the pipeline and residence time of the fluid in the pipeline. It is found the main factor that causes wax deposition in the pipeline is the difference in temperature between the petroleum pipeline and the fluid flowing within. Most Literature deduces that decreasing temperature difference results in lower wax content deposited on the wall of the pipeline. The wax content increases with rising flow rate. As for the residence time, the amount of deposited wax initially increases when residence time increases until it reaches a peak value and gradually decreases. Flow-loop system and cold finger apparatus were used in literature investigations to determine the trends above. Three new models are generated through a regression analysis based on the results from other authors. These new models form a relationship between temperature difference, flow rate, residence time and Reynolds number with wax deposition. These models have high values of R-square and adjusted R-square which demonstrate the reliability of these models.

  15. Development of high productivity pipeline girth welding

    International Nuclear Information System (INIS)

    Yapp, David; Liratzis, Theocharis

    2010-01-01

    The trend for increased oil and gas consumption implies a growth of long-distance pipeline installations. Welding is a critical factor in the installation of pipelines, both onshore and offshore, and the rate at which the pipeline can be laid is generally determined by the speed of welding. This has resulted in substantial developments in pipeline welding techniques. Arc welding is still the dominant process used in practice, and forge welding processes have had limited successful application to date, in spite of large investments in process development. Power beam processes have also been investigated in detail and the latest laser systems now show promise for practical application. In recent years the use of high strength steels has substantially reduced the cost of pipeline installation, with X70 and X80 being commonly used. This use of high strength pipeline produced by thermomechanical processing has also been researched. They must all meet three requirments, high productivity, satisfactory weld properties, and weld quality

  16. Submarine pipelines and the North Sea environment

    International Nuclear Information System (INIS)

    Haldane, D.; Paul, M.A.; Reuben, R.L.; Side, J.C.

    1992-01-01

    The function and design of pipelines for use on the United Kingdom continental shelf are described. Environmental influences which can threaten the integrity of seabed pipelines in the North Sea include hydrodynamic forces due to residual, tidal and wave currents, the nature of seabed sediments and corrosion by seawater. Damage may be caused to pipelines by interaction with vessel anchors and with fishing gear. Special care has to be taken over the selection of the general area for the landfall of a pipeline and the engineering of the installation where the pipeline comes ashore. Trenching and other protection techniques for pipelines are discussed together with hydrostatic testing and commissioning and subsequent inspection, maintenance and repair. (UK)

  17. Development and Applications of Pipeline Steel in Long-Distance Gas Pipeline of China

    Science.gov (United States)

    Chunyong, Huo; Yang, Li; Lingkang, Ji

    In past decades, with widely utilizing of Microalloying and Thermal Mechanical Control Processing (TMCP) technology, the good matching of strength, toughness, plasticity and weldability on pipeline steel has been reached so that oil and gas pipeline has been greatly developed in China to meet the demand of strong domestic consumption of energy. In this paper, development history of pipeline steel and gas pipeline in china is briefly reviewed. The microstructure characteristic and mechanical performance of pipeline steel used in some representative gas pipelines of china built in different stage are summarized. Through the analysis on the evolution of pipeline service environment, some prospective development trend of application of pipeline steel in China is also presented.

  18. Measures for security and supervision of pipelines; Massnahmen zur Pipeline-Sicherheit und -Ueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Horlacher, Hans-Burkhard [TU Dresden (Germany). Inst. fuer Wasserbau und Technische Hydromechanik; Giesecke, Juergen [Stuttgart Univ. (Germany). Inst. fuer Wasserbau

    2010-07-01

    In a previous publication, the two authors dealt with the hydraulic problems as regards mineral oil pipelines. The present report describes the measures mainly used to guarantee the safety of such pipelines. (orig.)

  19. Lessons Learned from Developing and Operating the Kepler Science Pipeline and Building the TESS Science Pipeline

    Science.gov (United States)

    Jenkins, Jon M.

    2017-01-01

    The experience acquired through development, implementation and operation of the KeplerK2 science pipelines can provide lessons learned for the development of science pipelines for other missions such as NASA's Transiting Exoplanet Survey Satellite, and ESA's PLATO mission.

  20. Preliminary results from the hierarchical glitch pipeline

    International Nuclear Information System (INIS)

    Mukherjee, Soma

    2007-01-01

    This paper reports on the preliminary results obtained from the hierarchical glitch classification pipeline on LIGO data. The pipeline that has been under construction for the past year is now complete and end-to-end tested. It is ready to generate analysis results on a daily basis. The details of the pipeline, the classification algorithms employed and the results obtained with one days analysis on the gravitational wave and several auxiliary and environmental channels from all three LIGO detectors are discussed

  1. Pipeline dreams face up to reality

    International Nuclear Information System (INIS)

    Ryan, Orla

    1999-01-01

    This article gives details of two gas pipelines which are expected to be built in Turkey to meet the estimated demand for gas. The Bluestream joint ENI/Gasprom project pipeline will convey Russian gas across the Black Sea to Turkey, and the PSG joint Bechtel/General Electric venture will bring gas from Turkmenistan to Turkey across the Caspian Sea. Construction of the pipelines and financing aspects are discussed. (uk)

  2. Chile's pipelines - who's out in the cold?

    International Nuclear Information System (INIS)

    Bellhouse, G.

    1998-01-01

    There is a battle on in Northern Chile to supply the region with gas and electricity. Two pipelines and a transmission line are being built, but there is insufficient demand to merit the construction of all of these projects. It is widely believed that the first pipeline to be finished will be the overall winner, but the situation is not that simple. A more sensible conclusion could be the merger of the two pipeline projects, rationalising supply of gas to the region. (Author)

  3. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.

    1995-01-01

    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  4. Transmission pipeline calculations and simulations manual

    CERN Document Server

    Menon, E Shashi

    2014-01-01

    Transmission Pipeline Calculations and Simulations Manual is a valuable time- and money-saving tool to quickly pinpoint the essential formulae, equations, and calculations needed for transmission pipeline routing and construction decisions. The manual's three-part treatment starts with gas and petroleum data tables, followed by self-contained chapters concerning applications. Case studies at the end of each chapter provide practical experience for problem solving. Topics in this book include pressure and temperature profile of natural gas pipelines, how to size pipelines for specified f

  5. Acoustic system for communication in pipelines

    Science.gov (United States)

    Martin, II, Louis Peter; Cooper, John F [Oakland, CA

    2008-09-09

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  6. A quick guide to pipeline engineering

    CERN Document Server

    Alkazraji, D

    2008-01-01

    Pipeline engineering requires an understanding of a wide range of topics. Operators must take into account numerous pipeline codes and standards, calculation approaches, and reference materials in order to make accurate and informed decisions.A Quick Guide to Pipeline Engineering provides concise, easy-to-use, and accessible information on onshore and offshore pipeline engineering. Topics covered include: design; construction; testing; operation and maintenance; and decommissioning.Basic principles are discussed and clear guidance on regulations is provided, in a way that will

  7. Quantitative thermography and methods for in-situ determination of heat losses from district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B. [ed.

    1996-11-01

    The course and seminar summarizing application of infrared thermography in district heating systems control gathered Danish specialists with 5 contributions on the subject. Maintenance of the heat distribution pipelines and thermographic inspection of the systems are essential in order to avoid heat losses. (EG)

  8. 77 FR 6857 - Pipeline Safety: Notice of Public Meetings on Improving Pipeline Leak Detection System...

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... installed to lessen the volume of natural gas and hazardous liquid released during catastrophic pipeline... p.m. Panel 3: Considerations for Natural Gas Pipeline Leak Detection Systems 3:30 p.m. Break 3:45 p...

  9. Contemporary methods of emergency repair works on transit pipelines. Repair works on in-service pipelines

    International Nuclear Information System (INIS)

    Olma, T.; Winckowski, J.

    2007-01-01

    The paper presents modern methods and relevant technologies of pipeline failure repairs, basing on TD Williamson technique for hermetic plugging of gas pipelines without interrupting service. Rules for management of emergency situations on the Polish Section of Yamal - Europe Transit Gas Pipeline are being discussed as well. (author)

  10. PipelineDog: a simple and flexible graphic pipeline construction and maintenance tool.

    Science.gov (United States)

    Zhou, Anbo; Zhang, Yeting; Sun, Yazhou; Xing, Jinchuan

    2018-05-01

    Analysis pipelines are an essential part of bioinformatics research, and ad hoc pipelines are frequently created by researchers for prototyping and proof-of-concept purposes. However, most existing pipeline management system or workflow engines are too complex for rapid prototyping or learning the pipeline concept. A lightweight, user-friendly and flexible solution is thus desirable. In this study, we developed a new pipeline construction and maintenance tool, PipelineDog. This is a web-based integrated development environment with a modern web graphical user interface. It offers cross-platform compatibility, project management capabilities, code formatting and error checking functions and an online repository. It uses an easy-to-read/write script system that encourages code reuse. With the online repository, it also encourages sharing of pipelines, which enhances analysis reproducibility and accountability. For most users, PipelineDog requires no software installation. Overall, this web application provides a way to rapidly create and easily manage pipelines. PipelineDog web app is freely available at http://web.pipeline.dog. The command line version is available at http://www.npmjs.com/package/pipelinedog and online repository at http://repo.pipeline.dog. ysun@kean.edu or xing@biology.rutgers.edu or ysun@diagnoa.com. Supplementary data are available at Bioinformatics online.

  11. 76 FR 303 - Pipeline Safety: Safety of On-Shore Hazardous Liquid Pipelines

    Science.gov (United States)

    2011-01-04

    ... leak detection requirements for all pipelines; whether to require the installation of emergency flow... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 195 [Docket ID PHMSA-2010-0229] RIN 2137-AE66 Pipeline Safety: Safety of On-Shore Hazardous Liquid...

  12. 7 CFR 51.320 - Diameter.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter...

  13. DEVELOPMENT OF DEPOSIT DETECTION SYSTEM IN PIPELINES OF THE STEELWORKS USING CS-137 GAMMA-RAY

    International Nuclear Information System (INIS)

    Song, Won-Joon; Lee, Seung-Hee; Jeong, Hee-Dong

    2008-01-01

    The deposit is built up in the pipeline of the steelworks by the chemical reaction among COG (coke oven gas), BFG (blast furnace gas), moisture, and steel in the high temperature environment and obstructs the smooth gas flow. In this study a gamma-ray system is developed to detect the deposit accumulated in pipelines and calculate the accumulation rate with respect to the cross section area of pipes. Cs-137 is used as the gamma-ray source and the system is designed to apply to pipes of various diameters. This system also includes the DB for storage and display of the measurement results so that it can be used for the efficient management of the pipelines

  14. Spontaneous delayed migration/shortening of the pipeline embolization device: report of 5 cases.

    Science.gov (United States)

    Chalouhi, N; Tjoumakaris, S I; Gonzalez, L F; Hasan, D; Pema, P J; Gould, G; Rosenwasser, R H; Jabbour, P M

    2013-12-01

    Five patients were found to have spontaneous delayed migration/shortening of their Pipeline Embolization Devices on follow-up angiography. The device migrated proximally in 4 patients and distally in 1 patient. One patient had a subarachnoid hemorrhage and died as a result of migration of the Pipeline Embolization Device, and another patient presented with complete MCA occlusion and was left severely disabled. Mismatch in arterial diameter between inflow and outflow vessels was a constant finding. Migration of the Pipeline Embolization Device was managed conservatively, with additional placement of the device, or with parent vessel occlusion. Obtaining complete expansion of the embolization device by using a longer device, increasing vessel coverage, using adjunctive aneurysm coiling, and avoiding dragging and stretching of the device are important preventive measures. Neurointerventionalists should be aware of this potentially fatal complication and take all necessary preventive measures.

  15. Optimal Design of Pumped Pipeline Systems Using Genetic Algorithm and Mathematical Optimization

    Directory of Open Access Journals (Sweden)

    Mohammadhadi Afshar

    2007-12-01

    Full Text Available In recent years, much attention has been paid to the optimal design of pipeline systems. In this study, the problem of pipeline system optimal design has been solved through genetic algorithm and mathematical optimization. Pipe diameters and their thicknesses are considered as decision variables to be designed in a manner that water column separation and excessive pressures are avoided in the event of pump failure. Capabilities of the genetic algorithm and the mathematical programming method are compared for the problem under consideration. For simulation of transient streams, explicit characteristic method is used in which devices such as pumps are defined as boundary conditions of the equations defining the hydraulic behavior of pipe segments. The problem of optimal design of pipeline systems is a constrained problem which is converted to an unconstrained optimization problem using an external penalty function approach. The efficiency of the proposed approaches is verified in one example and the results are presented.

  16. Development of Pipe Inspection Gauge (PIG) for leak detection in buried pipelines using radiotracer technique

    International Nuclear Information System (INIS)

    Pendharkar, A.S.; Sharma, V.K.; Pant, H.J.; Singh, Gursharan

    2004-01-01

    This paper discusses the development of a portable battery operated radioisotope based pipeline inspection gauge( PIG) for detection and location of leaks as well as to examine the condition of the underground pipelines. The system consists of a scintillation detector, power supply for detector and other electronic circuits. Pulse processing amplifier data acquisition system, readout unit and software to transfer data to computer for further processing. The microcontroller based pig is very useful in a field in an underground pipeline of 6 inch diameter and above. The battery operated pig system developed indigenously is rugged and portable with data storage capacity up to 20 hours. The system was tested under simulated leak conditions and field trials are being planned. (author)

  17. Addressing the workforce pipeline challenge

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  18. Maritimes and northeast pipeline update

    International Nuclear Information System (INIS)

    Langan, P.

    1998-01-01

    Efforts made by Maritimes and Northeast Pipelines to bring the benefits of natural gas to the Maritime's economy was discussed. Some background on the developments that have brought the company to where they are today and an update on all their activities were presented. These activities and operations are expected to impact and affect the region's economy in a positive way. Particular attention was paid to the company's policy on laterals and the positive effects of that policy on the development of natural gas service and future natural gas distribution business in the Maritimes

  19. Diameter-dependent coloration of silver nanowires

    International Nuclear Information System (INIS)

    Stewart, Mindy S; Qiu Chao; Jiang Chaoyang; Kattumenu, Ramesh; Singamaneni, Srikanth

    2011-01-01

    Silver nanowires were synthesized with a green method and characterized with microscopic and diffractometric methods. The correlation between the colors of the nanowires deposited on a solid substrate and their diameters was explored. Silver nanowires that appear similar in color in the optical micrographs have very similar diameters as determined by atomic force microscopy. We have summarized the diameter-dependent coloration for these silver nanowires. An optical interference model was applied to explain such correlation. In addition, microreflectance spectra were obtained from individual nanowires and the observed spectra can be explained with the optical interference theory. This work provides a cheap, quick and simple screening method for studying the diameter distribution of silver nanowires, as well as the diameter variations of individual silver nanowires, without complicated sample preparation.

  20. Study of tube diameter effect on the burnout

    International Nuclear Information System (INIS)

    Levitan, L.L.; Lantsman, F.P.; Dedneva, E.I.

    1981-01-01

    Effect of a tube diameter d on boundary steam content Xsub(b) is experimentally investigated during unwashed liquid wall film drying in the disperse-ring flow regime. For this purpose systematical experimental investigations of the burnout of the second kind in tubes with diameters of 4, 6 and 12 mm have been carried out as well as the other data relating to burnout in tubes with diameter from 4 to 40 mm are used. The investigations have been carried out at water and steam pressures of 4.9-13.7 MPa and mass velocities from 750 to 5000 kg/m 2 xs. It is elucidated that increase in the tube diameter results in reducing the ranges of pressures and mass velocities at which Xsub(b) is independent of heat flux. Quantity dependence Xsub(b)=f(d) has been obtained as well. The best agreement with data from different experiments is observed when taking into account the effect of d on Xsub(b) by means of the following relation: Xsub(b) is proportional to dsup(-0.25). In this case divergence, as a rule, does not exceed 10% [ru

  1. Numerical analysis of the bubble detachment diameter in nucleate boiling

    International Nuclear Information System (INIS)

    Lamas, M I; Sáiz Jabardo, J M; Arce, A; Fariñas, P

    2012-01-01

    The present paper presents a tri-dimensional CFD (Computational Fluid Dynamics) model to investigate the fluid flow around bubbles attached to heated walls. Transient solutions of the governing field equations in a domain containing the bubbles and the surrounding liquid have been obtained. The nucleation, growing and detachment processes have been analyzed. Concerning the software, the open source OpenFOAM has been used. Special attention has been given to the bubble detachment diameter. Two mechanisms have been considered as physically related to the detachment: surface tension and buoyancy. As expected, it has been verified that the bubble detachment diameter depends on the contact angle, operating pressure and properties of the fluid. Several fluids have been considered (water, R134a, ammonia and R123), as well as several operating pressures (between 0.1 and 10 bar) and contact angles (between 10 and 80°). It has been concluded that the detachment diameter depends strongly on the contact angle and fluid properties and slightly on the pressure. A correlation for the bubble detachment diameter has been developed based on the obtained numerical results. Data from this expression compare reasonably well with those from other correlations from the literature.

  2. Cleaning the feed-water pipeline internal surfaces

    International Nuclear Information System (INIS)

    Podkopaev, V.A.

    1984-01-01

    The procedure of cleaning the feed-water pipeline internal surfaces at the Chernobylsk-4 power unit is described. Cleaning was conducted in five stages. Pipelines were cleaned from mechanical impurities at the first stage. At the second stage the pipelines were washing by water heated up to 80 deg C. At the third stage nitric acid was added to 95-100 deg C water the acid concentration in the circuit = 60 mg/l, purification period = 14 h. At the fourth stage hydrogen peroxide was added to the circuit at 95-100 deg C (the solution concentration was equal to 5-6 mg/l, the solution stayed in the circuit for 1 h 20 min). At the fifth stage sodium nitrite concentrated to 20 mg/l was introduced to the circuit in 75 minutes; this promoted strengthening of the oxide layer in the circuit on the base of nitric acid and hydrogen peroxide. Data on the water acidity in the circuit, water electric conductivity and iron concentration after the fourth stage and on completion of the circuit cleaning are presented. The described method of cleaning enables to save scarce reagents and use cheaper ones

  3. Cleaning the feed-water pipeline internal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, V.A.

    1984-12-01

    The procedure of cleaning the feed-water pipeline internal surfaces at the Chernobylsk-4 power unit is described. Cleaning was conducted in five stages. Pipelines were cleaned from mechanical impurities at the first stage. At the second stage the pipelines were washed by water heated up to 80 deg C. At the third stage nitric acid was added to 95-100 deg C water with the acid concentration in the circuit = 60 mg/l, purification period = 14 h. At the fourth stage hydrogen peroxide was added to the circuit at 95-100 deg C (the solution concentration was equal to 5-6 mg/l, the solution stayed in the circuit for 1 h 20 min). At the fifth stage sodium nitrite concentrated to 20 mg/l was introduced to the circuit in 75 minutes; this promoted strengthening of the oxide layer in the circuit on the base of nitric acid and hydrogen peroxide. Data on the water acidity in the circuit, water electric conductivity and iron concentration after the fourth stage and on completion of the circuit cleaning are presented. The described method of cleaning enables to save scarce reagents and use cheaper ones.

  4. Scour Monitoring System for Subsea Pipeline Based on Active Thermometry: Numerical and Experimental Studies

    Directory of Open Access Journals (Sweden)

    Jun Du

    2013-01-01

    Full Text Available A scour monitoring system for subsea pipeline based on active thermometry is proposed in this paper. The temperature reading of the proposed system is based on a distributed Brillouin optical fiber sensing technique. A thermal cable acts as the main component of the system, which consists of a heating belt, armored optical fibers and heat-shrinkable tubes which run parallel to the pipeline. The scour-induced free span can be monitored through different heat transfer behaviors of in-water and in-sediment scenarios during heating and cooling processes. Two sets of experiments, including exposing different lengths of the upper surface of the pipeline to water and creating free spans of various lengths, were carried out in laboratory. In both cases, the scour condition was immediately detected by the proposed monitoring system, which confirmed the system is robust and very sensitive. Numerical study of the method was also investigated by using the finite element method (FEM with ANSYS, resulting in reasonable agreement with the test data. This brand new system provides a promising, low cost, highly precise and flexible approach for scour monitoring of subsea pipelines.

  5. Factors related to external loads in buried pipelines; Consideracoes quanto as variaveis relacionadas ao carregamento externo em dutos enterrados

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, Carlos E.C.; Silva, Breno S.; Fernandes, Lincoln F.; Santos Junior, Sergio J.F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Louzada, Carlos H.C.M.

    2005-07-01

    Work of heavy equipment or vehicles above existent right-of-ways, may cause undesired external overload at buried pipelines in operation. The effect of these loads shall be analyzed considering the deflections and stresses on the pipelines. The major variables, nominal diameter, thickness, material, soil parameters, operation pressure and external loads shall be related and verified according to the limits from original project. Cases when the external loads cause higher efforts, the traffic over the pipelines shall be restricted in order to avoid damages. In other cases, it may be adapted to any technical alternatives to modify the parameters in such a way to make possible work above the right-of-way, such as increase the machine support area, increase backfill covering, a reduction in the internal operation pressure in a short time, etc. This work presents the study on the parameters used to establish the maximum allowable external loads over buried pipelines in operation. (author)

  6. Internal corrosion control of northern pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Papavinasam, S.

    2005-02-01

    The general causes of internal corrosion in pipelines were discussed along with the methods to control them. Efficient methods are needed to determine chemical efficiency for mitigating internal corrosion in transmission pipelines, particularly those used in environmentally sensitive regions in the Arctic where harsh environmental conditions prevail. According to the Office of Pipeline Safety, 15 per cent of pipeline failures in the United States from 1994 to 2000 were caused by internal corrosion. Since pipelines in the United States are slightly older than Canadian pipelines, internal corrosion is a significant issue from a Canadian perspective. There are 306,618 km of energy-related pipelines in western Canada. Between April 2001 and March 2002 there were 808 failures, of which 425 failures resulted from internal corrosion. The approach to control internal corrosion comprises of dehydrating the gases at production facilities; controlling the quality of corrosive gases such as carbon dioxide and hydrogen sulphide; and, using internal coatings. The approaches to control internal corrosion are appropriate, when supplemented by adequate integrity management program to ensure that corrosive liquids do not collect, over the operational lifetime of the pipelines, at localized areas. It was suggested that modeling of pipeline operations may need improvement. This paper described the causes, prediction and control of internal pitting corrosion. It was concluded that carbon steel equipment can continue to be used reliably and safely as pipeline materials for northern pipelines if the causes that lead to internal corrosion are scientifically and accurately predicted, and if corrosion inhibitors are properly evaluated and applied. 5 figs.

  7. Risk and integrity management system for PETRONAS Gas Berhad's gas and liquid hydrocarbon pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Tuan Hj. Ahmad Nadzri bin; Nasir, Osman; Napiah, Mohd Nazmi Mohd Ali [PETRONAS Gas Berhad, Johor (Malaysia); Choong, Evelyn

    2005-07-01

    PETRONAS Gas Berhad (PGB), Malaysia currently operates one of Southeast Asia's largest onshore pipeline systems comprising more than 2,500 km of large diameter high pressure gas and liquid transmission, supply and lateral pipelines. Recognizing the value of a risk based approach to pipeline integrity management program, in 2002 PGB implemented a customized and fully integrated Risk and Integrity Management System (RIMS) which included software modules for: data management; semi-quantitative risk assessment; risk control cost benefit analyses; defect assessment; corrosion growth modeling; and reporting. As part of this project, a benchmarking study performed jointly with the contractor, PGB's pipeline integrity programs were also compared with a broad group of international pipeline operators. This study compared the relative ranking position of PGB pre- and post implementation of RIMS. It demonstrated that implementation of RIMS places PGB in a select group of first quartile international pipeline operators, with respect to the implementation of pipeline integrity management best practice. This paper describes the functionalities of RIMS system and how it has benefited PGB, which have been realized to date from its implementation. (author)

  8. 78 FR 24309 - Pipeline and Hazardous Materials Safety Administration

    Science.gov (United States)

    2013-04-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration List of Special Permit Applications Delayed AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA..., Pipeline and Hazardous Materials Safety Administration, U.S. Department of Transportation, East Building...

  9. Oil and Natural Gas Pipelines, North America, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Oil and Natural Gas Pipeline geospatial data layer contains gathering, interstate, and intrastate natural gas pipelines, crude and product oil pipelines, and...

  10. 75 FR 32836 - Pipeline Safety: Workshop on Public Awareness Programs

    Science.gov (United States)

    2010-06-09

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... American Public Gas Association Association of Oil Pipelines American Petroleum Institute Interstate... the pipeline industry). Hazardous Liquid Gas Transmission/Gathering Natural Gas Distribution (10...

  11. 75 FR 67807 - Pipeline Safety: Emergency Preparedness Communications

    Science.gov (United States)

    2010-11-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... is issuing an Advisory Bulletin to remind operators of gas and hazardous liquid pipeline facilities... Gas Pipeline Systems. Subject: Emergency Preparedness Communications. Advisory: To further enhance the...

  12. 76 FR 65778 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2011-10-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: 12,120. Frequency of Collection: On occasion. 2. Title: Recordkeeping for Natural Gas Pipeline... investigating incidents. Affected Public: Operators of natural gas pipeline systems. Annual Reporting and...

  13. 75 FR 13807 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-03-23

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... of Transportation, Pipeline and Hazardous Materials Safety Administration, 1200 New Jersey Avenue, SE...: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements (One Rule). The Notice of Proposed...

  14. 77 FR 61826 - Pipeline Safety: Communication During Emergency Situations

    Science.gov (United States)

    2012-10-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... liquefied natural gas pipeline facilities that operators should immediately and directly notify the Public.... Background Federal regulations for gas, liquefied natural gas (LNG), and hazardous liquid pipeline facilities...

  15. 77 FR 34457 - Pipeline Safety: Mechanical Fitting Failure Reports

    Science.gov (United States)

    2012-06-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... notice provides clarification to owners and operators of gas distribution pipeline facilities when... of a gas distribution pipeline facility to file a written report for any mechanical fitting failure...

  16. After-heat removal system

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Mitani, Shinji.

    1982-01-01

    Purpose: To prevent contamination of suppression pool water and intrusion of corrosion products into a nuclear reactor. Constitution: Upon stop of an after-heat removing system, reactor water contained in pipelines is drained out to a radioactive wastes processing facility at the time the cooling operation mode has been completed. At the same time, water is injected from a pure water supply system to the after-heat removing system to discharge corrosion product and activated materials while cleaning the inside of the pipelines. Then, pure water is held in the pipelines and it is discharged again and replaced with pure water before entering the cooling mode operation. Thereafter, the cooling mode operation upon reactor shutdown is performed. (Yoshino, Y.)

  17. Software for pipeline integrity administration

    Energy Technology Data Exchange (ETDEWEB)

    Soula, Gerardo; Perona, Lucas Fernandez [Gie SA., Buenos Aires (Argentina); Martinich, Carlos [Refinaria do Norte S. A. (REFINOR), Tartagal, Provincia de Salta (Argentina)

    2009-07-01

    A Software for 'pipeline integrity management' was developed. It allows to deal with Geographical Information and a PODS database (Pipeline Open database Standard) simultaneously, in a simple and reliable way. The premises for the design were the following: didactic, geo referenced, multiple reference systems. Program skills: 1.PODS+GIS: the PODS database in which the software is based on is completely integrated with the GIS module. 2 Management of different kinds of information: it allows to manage information on facilities, repairs, interventions, physical inspections, geographical characteristics, compliance with regulations, training, offline events, operation measures, O and M information treatment and importing specific data and studies in a massive way. It also assures the integrity of the loaded information. 3 Right of way survey: it allows to verify the class location, ROW occupation, sensitive areas identification and to manage landowners. 4 Risk analysis: it is done in a qualitative way, depending on the entered data, allowing the user to identify the riskiest stretches of the system. Either results from risk analysis, data and consultations made about the database, can be exported to standard formats. (author)

  18. Electrical fingerprint of pipeline defects

    International Nuclear Information System (INIS)

    Mica, Isabella; Polignano, Maria Luisa; Marco, Cinzia De

    2004-01-01

    Pipeline defects are dislocations that connect the source region of the transistor with the drain region. They were widely reported to occur in CMOS, BiCMOS devices and recently in SOI technologies. They can reduce device yield either by affecting the devices functionality or by increasing the current consumption under stand-by conditions. In this work the electrical fingerprint of these dislocations is studied, its purpose is to enable us to identify these defects as the ones responsible for device failure. It is shown that the pipeline defects are responsible for a leakage current from source to drain in the transistors. This leakage has a resistive characteristic and it is lightly modulated by the body bias. It is not sensitive to temperature; vice versa the off-current of a good transistor exhibits the well-known exponential dependence on 1/T. The emission spectrum of these defects was studied and compared with the spectrum of a good transistor. The paper aims to show that the spectrum of a defective transistor is quite peculiar; it shows well defined peaks, whereas the spectrum of a good transistor under saturation conditions is characterized by a broad spectral light emission distribution. Finally the deep-level transient spectroscopy (DLTS) is tried on defective diodes

  19. System reliability of corroding pipelines

    International Nuclear Information System (INIS)

    Zhou Wenxing

    2010-01-01

    A methodology is presented in this paper to evaluate the time-dependent system reliability of a pipeline segment that contains multiple active corrosion defects and is subjected to stochastic internal pressure loading. The pipeline segment is modeled as a series system with three distinctive failure modes due to corrosion, namely small leak, large leak and rupture. The internal pressure is characterized as a simple discrete stochastic process that consists of a sequence of independent and identically distributed random variables each acting over a period of one year. The magnitude of a given sequence follows the annual maximum pressure distribution. The methodology is illustrated through a hypothetical example. Furthermore, the impact of the spatial variability of the pressure loading and pipe resistances associated with different defects on the system reliability is investigated. The analysis results suggest that the spatial variability of pipe properties has a negligible impact on the system reliability. On the other hand, the spatial variability of the internal pressure, initial defect sizes and defect growth rates can have a significant impact on the system reliability.

  20. Comprehensive analysis of pipeline transportation systems for CO2 sequestration. Thermodynamics and safety problems

    International Nuclear Information System (INIS)

    Witkowski, Andrzej; Rusin, Andrzej; Majkut, Mirosław; Rulik, Sebastian; Stolecka, Katarzyna

    2013-01-01

    Highlights: • Comprehensive analysis of the efficiency and safety strategies of transport CO 2 . • Selection of safety zones around pipelines transporting CO 2 . • Optimization of CO 2 pipeline transportation conditions. - Abstract: The aim of this paper is to analyze CO 2 compression and transportation processes with safety issues for post-combustion CO 2 capture applications for basic technological concepts of a 900 MW pulverized coal-fired power plant. Four various types of compressors including a conventional multistage centrifugal compressor, an integrally geared centrifugal compressor, a supersonic shock wave compressor, and pump machines were used. This study emphasizes that total compression power is a strong function of the thermodynamic process and is not only determined by the compressor efficiency. The compressor increases the CO 2 pressure from normal pressure to critical pressure and the boosting pump continues to increase the pressure to the required pressure for the pipeline inlet. Another problem analyzed in this study is the transport of CO 2 by pipeline from the compressor outlet site to the disposal site under heat transfer conditions. Simulations were made to determine maximum safe pipeline distance to subsequent booster stations depending on inlet pressure, environmental temperature, the thermal insulation thickness and the ground level heat transfer conditions. From the point of view of environmental protection, the most important problem is to identify the hazards which indirectly affect CO 2 transportation in a strict and reliable manner. This identification is essential for effective hazard management. A failure of pipelines is usually caused by corrosion, material defects, ground movement or third party interference. After the rupture of the pipeline transporting liquid CO 2 , a large pressure drop will occur. The pressure will continue to fall until the liquid becomes a mixture of saturated vapour/liquid. In the vicinity of the

  1. Dynamic pressure measures for long pipeline leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Likun Wang; Hongchao Wang; Min Xiong; Bin Xu; Dongjie Tan; Hengzhang Zhou [PetroChina Pipeline Company, Langfang (China). R and D Center

    2009-07-01

    Pipeline leak detection method based on dynamic pressure is studied. The feature of dynamic pressure which is generated by the leakage of pipeline is analyzed. The dynamic pressure method is compared with the static pressure method for the advantages and disadvantages in pipeline leak detection. The dynamic pressure signal is suitable for pipeline leak detection for quick-change of pipeline internal pressure. Field tests show that the dynamic pressure method detects pipeline leak rapidly and precisely. (author)

  2. Best practices for the abandonment of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mackean, M; Reed, R; Snow, B [Nabors Canada, Calgary, AB (Canada). Abandonrite Service

    2006-07-01

    Pipeline regulations implemented in 2006 require that licensees register all pipelines. Training must also be provided for ground disturbance supervisors. In addition, signage must be maintained on abandoned pipelines, and discontinued pipelines must be properly isolated. Corrosion control and internal inhibition is required for discontinued lines. However, pipelines are often neglected during the well abandonment process. This presentation provided recommendations for coordinating well and pipeline abandonment processes. Pipeline ends can be located, depressurized, flushed and purged while wells are being abandoned. Contaminated soils around the wells can also be identified prior to reclamation activities. Administrative reviews must be conducted in order to provide accurate information on pipeline location, reclamation certification, and line break history. Field operation files must be reviewed before preliminary field work is conducted. Site inspections should be used to determine if all ends of the line are accessible. Landowners and occupants near the line must also be notified, and relevant documentation must be obtained. Skilled technicians must be used to assess the lines for obstructions as well as to cut and cap the lines after removing risers. The presentation also examined issues related to pressure change, movement, cold tapping, and live dead legs. tabs., figs.

  3. Canadian pipeline transportation system : transportation assessment

    International Nuclear Information System (INIS)

    2009-07-01

    In addition to regulating the construction and operation of 70,000 km of oil and natural gas pipelines in Canada, the National Energy Board (NEB) regulates the trade of natural gas, oil and natural gas liquids. This report provided an assessment of the Canadian hydrocarbon transportation system in relation to its ability to provide a robust energy infrastructure. Data was collected from NEB-regulated pipeline companies and a range of publicly available sources to determine if adequate pipeline capacity is in place to transport products to consumers. The NEB also used throughput and capacity information received from pipeline operators as well as members of the investment community. The study examined price differentials compared with firm service tolls for transportation paths, as well as capacity utilization on pipelines and the degree of apportionment on major oil pipelines. This review indicated that in general, the Canadian pipeline transportation system continues to work effectively, with adequate pipeline capacity in place to move products to consumers who need them. 9 tabs., 30 figs., 3 appendices.

  4. The MIRI Medium Resolution Spectrometer calibration pipeline

    NARCIS (Netherlands)

    Labiano, A.; Azzollini, R.; Bailey, J.; Beard, S.; Dicken, D.; García-Marín, M.; Geers, V.; Glasse, A.; Glauser, A.; Gordon, K.; Justtanont, K.; Klaassen, P.; Lahuis, F.; Law, D.; Morrison, J.; Müller, M.; Rieke, G.; Vandenbussche, B.; Wright, G.

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments,

  5. Testing the School-to-Prison Pipeline

    Science.gov (United States)

    Owens, Emily G.

    2017-01-01

    The School-to-Prison Pipeline is a social phenomenon where students become formally involved with the criminal justice system as a result of school policies that use law enforcement, rather than discipline, to address behavioral problems. A potentially important part of the School-to-Prison Pipeline is the use of sworn School Resource Officers…

  6. Generating pipeline networks for corrosion assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, J. [Cimarron Engineering Ltd., Calgary, AB (Canada)

    2008-07-01

    Production characteristics and gas-fluid compositions of fluids must be known in order to assess pipelines for internal corrosion risk. In this study, a gathering system pipeline network was built in order to determine corrosion risk for gathering system pipelines. Connections were established between feeder and collector lines in order measure upstream production and the weighted average of the upstream composition of each pipeline in the system. A Norsok M-506 carbon dioxide (CO{sub 2}) corrosion rate model was used to calculate corrosion rates. A spreadsheet was then used to tabulate the obtained data. The analysis used straight lines drawn between the 'from' and 'to' legal sub-division (LSD) endpoints in order to represent pipelines on an Alberta township system (ATS) and identify connections between pipelines. Well connections were established based on matching surface hole location and 'from' LSDs. Well production, composition, pressure, and temperature data were sourced and recorded as well attributes. XSL hierarchical computations were used to determine the production and composition properties of the commingled inflows. It was concluded that the corrosion assessment process can identify locations within the pipeline network where potential deadlegs branched off from flowing pipelines. 4 refs., 2 tabs., 2 figs.

  7. Analysis of buried pipelines at Kozloduy

    International Nuclear Information System (INIS)

    Asfura, A.

    1999-01-01

    This paper describes the analysis of the buried pipelines at Kozloduy NPP. It involves the description of the studied pipelines, their properties, a detailed description of the methodology applied, and the evaluation of the soil strain field as well as the graphical representation of the results obtained

  8. The LOFAR Known Pulsar Data Pipeline

    NARCIS (Netherlands)

    Alexov, A.; Hessels, J.W.T.; Mol, J.D.; Stappers, B.; van Leeuwen, J.

    2010-01-01

    Abstract: Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group (PWG) has been developing the LOFAR Pulsar Data Pipelines to both study known pulsars as well as search for new ones. The pipelines are being

  9. Protection of pipelines affected by surface subsidence

    International Nuclear Information System (INIS)

    Luo, Y.; Peng, S.S.; Chen, H.J.

    1998-01-01

    Surface subsidence resulting from underground coal mining can cause problems for buried pipelines. A technique for assessing the level of stress on a subsidence-affected pipeline is introduced. The main contributors to the stress are identified, and mitigation techniques for reducing the stress are proposed. The proposed mitigation techniques were then successfully tested. 13 refs., 8 figs., 2 tabs

  10. 78 FR 41395 - NET Mexico Pipeline Partners, LLC: Notice of Intent To Prepare an Environmental Assessment for...

    Science.gov (United States)

    2013-07-10

    ... Project, that approval conveys with it the right of eminent domain. Therefore, if easement negotiations... feet of 48-inch- diameter pipeline on the Mexican side of the international border. Los Ramones would own and operate all facilities on the Mexican side of the international border. These related non...

  11. Diameter Tuning of Single-Walled Carbon Nanotubes by Diffusion Plasma CVD

    Directory of Open Access Journals (Sweden)

    Toshiaki Kato

    2011-01-01

    Full Text Available We have realized a diameter tuning of single-walled carbon nanotubes (SWNTs by adjusting process gas pressures with plasma chemical vapor deposition (CVD. Detailed photoluminescence measurements reveal that the diameter distribution of SWNTs clearly shifts to a large-diameter region with an increase in the pressure during plasma CVD, which is also confirmed by Raman scattering spectroscopy. Based on the systematical investigation, it is found that the main diameter of SWNTs is determined by the pressure during the heating in an atmosphere of hydrogen and the diameter distribution is narrowed by adjusting the pressure during the plasma generation. Our results could contribute to an application of SWNTs to high-performance thin-film transistors, which requires the diameter-controlled semiconductor-rich SWNTs.

  12. Offshore Pipeline Locations in the Gulf of Mexico, Geographic NAD27, MMS (2007) [pipelines_vectors_mms_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — Offshore Minerals Management Pipeline Locations for the Gulf of Mexico (GOM). Contains the lines of the pipeline in the GOM. All pipelines existing in the databases...

  13. Offshore Pipeline Locations in the Gulf of Mexico, Geographic NAD27, MMS (2007) [pipelines_points_mms_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — Offshore Minerals Management Pipeline Locations for the Gulf of Mexico (GOM). Contains the points of the pipeline in the GOM. All pipelines existing in the databases...

  14. Pipeline monitoring with unmanned aerial vehicles

    Science.gov (United States)

    Kochetkova, L. I.

    2018-05-01

    Pipeline leakage during transportation of combustible substances leads to explosion and fire thus causing death of people and destruction of production and accommodation facilities. Continuous pipeline monitoring allows identifying leaks in due time and quickly taking measures for their elimination. The paper describes the solution of identification of pipeline leakage using unmanned aerial vehicles. It is recommended to apply the spectral analysis with input RGB signal to identify pipeline damages. The application of multi-zone digital images allows defining potential spill of oil hydrocarbons as well as possible soil pollution. The method of multi-temporal digital images within the visible region makes it possible to define changes in soil morphology for its subsequent analysis. The given solution is cost efficient and reliable thus allowing reducing timing and labor resources in comparison with other methods of pipeline monitoring.

  15. Crude oil growth impact on pipelines

    International Nuclear Information System (INIS)

    Devries, O.

    2005-01-01

    This paper provided an outline of crude oil production and supply in Canada. Details of oil sands projects in Athabasca, Cold Lake and Peace River were presented. A chart of oil sands growth by major project was provided. A list of new emerging oil sands crude types was also presented along with details of a synthetic bitumen blending synergy. Maps of Western Canadian crude oil markets were provided, along with details of refinery and market demand by crude type. Various pipeline alternatives to new markets were examined, with reference to Enbridge Pipeline's supply and capacity. Details of the Hardisty to U.S Gulf Coast Pipeline and the Edmonton to Prince Rupert Pipeline and its terminal and dock facilities were presented. It was concluded that pipeline capacity and seasonal factors will influence market demand, while linefill, crude types and the quality of the product will influence operational strategies. tabs., figs

  16. Efficiency improvements in pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. F.

    1977-09-09

    This report identifies potential energy-conservative pipeline innovations that are most energy- and cost-effective and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight technologies recommended for R, D, and D are gas-fired combined cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cell pump station; drag-reducing additives in liquid pipelines; and internal coatings in pipelines.

  17. Pipeline modeling and assessment in unstable slopes

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Carlos Nieves [Oleoducto Central S.A., Bogota, Cundinamarca (Colombia); Ordonez, Mauricio Pereira [SOLSIN S.A.S, Bogota, Cundinamarca (Colombia)

    2010-07-01

    The OCENSA pipeline system is vulnerable to geotechnical problems such as faults, landslides or creeping slopes, which are well-known in the Andes Mountains and tropical countries like Colombia. This paper proposes a methodology to evaluate the pipe behaviour during the soil displacements of slow landslides. Three different cases of analysis are examined, according to site characteristics. The process starts with a simplified analytical model and develops into 3D finite element numerical simulations applied to the on-site geometry of soil and pipe. Case 1 should be used when the unstable site is subject to landslides impacting significant lengths of pipeline, pipeline is straight, and landslide is simple from the geotechnical perspective. Case 2 should be used when pipeline is straight and landslide is complex (creeping slopes and non-conventional stabilization solutions). Case 3 should be used if the pipeline presents vertical or horizontal bends.

  18. Heat transfer study under supercritical pressure conditions

    International Nuclear Information System (INIS)

    Yamashita, Tohru; Yoshida, Suguru; Mori, Hideo; Morooka, Shinichi; Komita, Hideo; Nishida, Kouji

    2003-01-01

    Experiments were performed on heat transfer and pressure drop of a supercritical pressure fluid flowing upward in a uniformly heated vertical tube of a small diameter, using HCFC22 as a test fluid. Following results were obtained. (1) Characteristics of the heat transfer are similar to those for the tubes of large diameter. (2) The effect of tube diameter on the heat transfer was seen for a 'normal heat transfer, but not for a 'deteriorated' heat transfer. (3) The limit heat flux for the occurrence of deterioration in heat transfer becomes larger with smaller diameter tube. (4) The Watts and Chou correlation has the best prediction performance for the present data in the 'normal' heat transfer region. (5) Frictional pressure drop becomes smaller than that for an isothermal flow in the region near the pseudocritical point, and this reduction was more remarkable for the deteriorated' heat transfer. (author)

  19. Impact of the rheological studies in the transport for pipeline of paraffinic crude oils

    International Nuclear Information System (INIS)

    Rodriguez, L; Vidales, H; Castaneda, M; Leal, O; Barrero R; Garzon, J

    2000-01-01

    The results of this applied research contribute fundamental elements for handling paraffinic crude oils (pipeline design and operation) and the optimization of the use of Pour Point Depressor additives. The rheological studies support the fluid-dynamic analyses that accurately predict the pipeline transport operation, unlike traditional parameters such as pour point and cloud point. Evaluations of rheological behavior was carried out at the laboratory level in concentric viscometers and were scaled at the pilot plant level in a fluid-dynamic test circuit in pipes with diameters from 1.27 to 15.24 cm (1/2 to 6 inches), where the laboratory scale was confirmed. The tests were performed under strain rate temperature and conditions similar to those of pipeline and flow line operation in production fields. Also, the viability to restart pumping after a prolonged shutdown with extreme temperatures was calculated, evaluating creep stress. The study has allowed us to transport Cupiagua crude oil without the PPD additive in a segregated manner, showing that despite its high pour point 300K (27 grades Celsius), in dynamic conditions similar to those in the pipeline, the crude oil flows at temperatures near 283K (10 Celsius degrades) without putting the integrity of the pipe in danger and within operational and equipment restrictions for the company operating the pipeline. This has generated significant savings, due to the additive as well as the possibility to segregate the crude oils, which facilitates the operation of the paraffin plant at the Barrancabermeja Industrial Complex

  20. Mackenzie Valley Pipeline market demand, supply, and infrastructure analysis : final report

    International Nuclear Information System (INIS)

    2004-01-01

    Mackenzie Valley Pipeline Co-Venturers is a consortium of petroleum companies proposing to construct a 1,400 km long, large-diameter, high-pressure natural gas transmission pipeline from the northwestern edge of the Northwest Territories to the Alberta-Northwest Territories border. The Mackenzie Valley Pipeline will bring natural gas from the Mackenzie Delta region to markets in Alberta, central and eastern Canada and the United States. Navigant Consulting Ltd. prepared this assessment of the long-term market need for natural gas produced from the Mackenzie Delta. It presents an analysis of gas demand, supply and infrastructure. Three sensitivity cases were examined, incorporating different assumptions about the initial capacity of the pipeline, potential expansion of its capacity and different levels of gas demand in Canada and the United States. The report indicates that gas markets in North America support construction of the proposed 34 million cubic metre per day pipeline in the 2009 timeframe, with possible expansion in 2015 and 2020. It also indicates that there will be enough capacity on the intra-Alberta gas transmission system to accommodate the projected deliveries of Mackenzie Delta gas. The increase in gas demand is due to an increase in residential and commercial gas consumption, electric power generation and the energy intensive bitumen extraction and processing activities in the Alberta oil sands industry. 36 tabs., 56 figs

  1. Determination of the actual hydraulic characteristics of a main oil pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Gubin, V V; Mironenko, N Ya; Titov, N S; Skovorodnikov, Yu A

    1976-01-01

    A method is presented for construction of hydraulic characteristics of sections of an oil pipeline by pattern recognition methods. In the theory of pattern recognition, the characteristics of a complex object are studied by means of adaptation algorithms. These algorithms allow the generation of models of processes, establishment of the relationships between their defining parameters and output characteristics on the basis of successive processing of information on the object (for example, dispatchers data on a pipeline sector). The analysis does not require analytic formalization of the processes. This work presents a solution of the problem of determination of the pressure loss to friction over the sections of a main pipeline on the basis of the following initial data: oil flowrate, diameter of pipeline, length of section, and viscosity of oil. The range of change of the pressure drop is divided into intervals (classes), and the task of determination of the continuous value is reduced to recognition of its membership in one of the classes with an accuracy equal to the size of an interval. The potential functions method from pattern recognition theory is used to perform the classification. The algorithm presented allows actual operational characteristics of main oil pipelines to be defined with an accuracy sufficient for practical application.

  2. HDPE (High Density Polyethylene) pipeline and riser design in Guanabara Bay: challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bomfimsilva, Carlos; Jorge, Joao Paulo Carrijo; Schmid, Dominique; Gomes, Rodrigo Klim [INTECSEA, Sao Paulo, SP (Brazil); Lima, Alexander Piraja [GDK, Salvador, BA (Brazil)

    2009-12-19

    Worldwide shipments of plastic pipes are forecasted to increase 5.2% per year since 2008, being commonly used for water supply and sewage disposal. The HDPE (High Density Polyethylene) pipes have been applied recently to deliver potable water and fire fighting water for the main pier of the LNG system in Guanabara Bay, Rio de Janeiro. The system contains three sizes of pipe outside diameter, 110 mm and 160 mm for water supply, and 500 mm for the fire fighting system. The main design challenges of the pipeline system included providing on-bottom stability, a suitable installation procedure and a proper riser design. The on-bottom stability calculations, which are quite different from the conventional steel pipelines, were developed by designing concrete blocks to be assembled on the pipeline in a required spacing to assure long term stability, knowing that plastic pipes are buoyant even in flooded conditions. The installation procedure was developed considering the lay down methodology based on surface towing technique. The riser was designed to be installed together with additional steel support structure to allow the entire underwater system to have the same plastic pipe specification up to the surface. This paper presents the main challenges that were faced during the design of the HDPE pipelines for the LNG system in Guanabara Bay, addressing the solutions and recommendations adopted for the plastic underwater pipeline system.

  3. SERS Raman Sensor Based on Diameter-Modulated Sapphire Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Shimoji, Yutaka

    2010-08-09

    Surface enhanced Raman scattering (SERS) has been observed using a sapphire fiber coated with gold nano-islands for the first time. The effect was found to be much weaker than what was observed with a similar fiber coated with silver nanoparticles. Diameter-modulated sapphire fibers have been successfully fabricated on a laser heated pedestal growth system. Such fibers have been found to give a modest increase in the collection efficiency of induced emission. However, the slow response of the SERS effect makes it unsuitable for process control applications.

  4. Pipeline integrity: ILI baseline data for QRA

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Todd R. [Tuboscope Pipeline Services, Houston, TX (United States)]. E-mail: tporter@varco.com; Silva, Jose Augusto Pereira da [Pipeway Engenharia, Rio de Janeiro, RJ (Brazil)]. E-mail: guto@pipeway.com; Marr, James [MARR and Associates, Calgary, AB (Canada)]. E-mail: jmarr@marr-associates.com

    2003-07-01

    The initial phase of a pipeline integrity management program (IMP) is conducting a baseline assessment of the pipeline system and segments as part of Quantitative Risk Assessment (QRA). This gives the operator's integrity team the opportunity to identify critical areas and deficiencies in the protection, maintenance, and mitigation strategies. As a part of data gathering and integration of a wide variety of sources, in-line inspection (ILI) data is a key element. In order to move forward in the integrity program development and execution, the baseline geometry of the pipeline must be determined with accuracy and confidence. From this, all subsequent analysis and conclusions will be derived. Tuboscope Pipeline Services (TPS), in conjunction with Pipeway Engenharia of Brazil, operate ILI inertial navigation system (INS) and Caliper geometry tools, to address this integrity requirement. This INS and Caliper ILI tool data provides pipeline trajectory at centimeter level resolution and sub-metre 3D position accuracy along with internal geometry - ovality, dents, misalignment, and wrinkle/buckle characterization. Global strain can be derived from precise INS curvature measurements and departure from the initial pipeline state. Accurate pipeline elevation profile data is essential in the identification of sag/over bend sections for fluid dynamic and hydrostatic calculations. This data, along with pipeline construction, operations, direct assessment and maintenance data is integrated in LinaViewPRO{sup TM}, a pipeline data management system for decision support functions, and subsequent QRA operations. This technology provides the baseline for an informed, accurate and confident integrity management program. This paper/presentation will detail these aspects of an effective IMP, and experience will be presented, showing the benefits for liquid and gas pipeline systems. (author)

  5. Normal ureteral diameter in infancy and childhood

    International Nuclear Information System (INIS)

    Hellstroem, M.; Hjaelmaas, K.; Jacobsson, B.; Jodal, U.; Oden, A.; Oestra Sjukhuset, Goeteborg; Oestra Sjukhuset, Goeteborg; Goeteborg Univ.

    1985-01-01

    Ureteral diameters were estimated on films from intravenous urography in 194 children (100 boys and 94 girls) aged 0-16 years. Children with signs of urinary tract infection, calculi, obstruction, duplication or malformation were excluded. Films obtained without abdominal compression were used for measurements, including only ureters visualized over 50 per cent of their lengths. A good correlation was demonstrated between ureteral diameter and age and between ureteral diameter and the length of a segment of the lumbar spine. The widest part of the ureter was most often located just above the crossing of the iliac vessels. The right ureter was slightly wider than the left one. No difference between boys and girls was noted. The results are in good agreement with those of others obtained at autopsy. Bearing in mind the possible physiologic variations, it would seem that measuring the ureteral diameter can be of value for a more objective differentiation between dilated and non-dilated ureters. (orig.)

  6. SEX DETERMINATION FROM FEMORAL HEAD DIAMETERS IN ...

    African Journals Online (AJOL)

    hi-tech

    2000-03-01

    Mar 1, 2000 ... In medico-legal cases where sophisticated methods of sex determination is lacking, these ... scientific methods(3). Using the visual method ... between the sexes and the values of the right and left femoral head diameters.

  7. A study on the development of repair procedure for gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W S; Kim, Y P; Baek, J H [R and D Center, Korea Gas Corporation, Ansan (Korea)

    1999-06-01

    In the buried natural gas pipelines, many defects may occur by construction faults, corrosion, third-party interference and ground movement. When a segment of a pipeline is found to be defective, one of the repair methods is to remove its contents and cut out the defective segment after shutting down the pipeline. However, the cost is extremely high in terms of venting and disrupting the gas supply. Therefore, most pipeline companies have developed in-service repair methods without removing the line from service. In general, in order to avoid removing the line from service, direct deposition of weld metal, full-encirclement sleeve, patches, stopple fittings, half-sole and branch connections are required. There are three important concerns in the sleeve-repair welding like other methods of in-service repair-welding. The first concern is the possibility of burn-through which is due to the localized heating and loss of meterial strength on the inner surface of pipe during the welding process. The pipe wall may burst under internal pressure if the loss in strength is too great. The second concern is the high cooling rates by the flowing gas which quickly removes heat from the pipe wall, resulting in accelerated cooling of the weld. Such rapid cooling rates promote the formation of hard heat affected zone microstructure making these welds susceptible to hydrogen cracking. The third concern is for the load carrying ability, such as tensile strength, fracture toughness and fatigue strength. This study was taken to investigate the effect of in-service welding conditions and assess the mechanical properties for the direct deposition welding and sleeve-repair welding of in-service gas pipelines and develope the welding procedure specification for in-service pipeline repair. 81 figs., 40 tabs.

  8. Effective diameters and corresponding states of fluids

    Science.gov (United States)

    Del Río, Fernando

    Effective hard-sphere diameters of fluids with purely repulsive interactions are derived from a generalized corresponding-states principle of Leland, Rowlinson and coworkers. Various alternative definitions are discussed and related. Virial expansions of the effective diameters and their corresponding volumes are obtained and compared with results of perturbation theory. Applications are made to inverse-power potentials, the repulsive part of the Lennard-Jones potential and hard spherocylinders and dumbells.

  9. Appendiceal diameter: CT versus sonographic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Orscheln, Emily S. [University of Cincinnati Medical Center, Department of Radiology, Cincinnati, OH (United States); Trout, Andrew T. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2016-03-15

    Ultrasound and CT are the dominant imaging modalities for assessment of suspected pediatric appendicitis, and the most commonly applied diagnostic criterion for both modalities is appendiceal diameter. The classically described cut-off diameter for the diagnosis of appendicitis is 6 mm when using either imaging modality. To demonstrate the fallacy of using the same cut-off diameter for both CT and US in the diagnosis of appendicitis. We conducted a retrospective review of patients younger than 18 years who underwent both US and CT of the appendix within 24 h. The shortest transverse dimension of the appendix was measured at the level of the proximal, mid and distal appendix on US and CT images. We compared mean absolute difference in appendiceal diameter between US and CT, using the paired t-test. We reviewed exams of 155 children (58.7% female) with a mean age of 11.3 ± 4.2 years; 38 of the children (24.5%) were diagnosed with appendicitis. The average time interval between US and CT was 7.0 ± 5.4 h. Mean appendiceal diameter measured by CT was significantly larger than that measured by US in cases without appendicitis (5.3 ± 1.0 mm vs. 4.7 ± 1.1 mm, P < 0.0001) and in cases with appendicitis (8.3 ± 2.2 mm vs. 7.0 ± 2.0 mm, P < 0.0001). Mean absolute diameter difference at any location along the appendix was 1.3-1.4 mm in normal appendices and 2 mm in cases of appendicitis. Measured appendiceal diameter differs between US and CT by 1-2 mm, calling into question use of the same diameter cut-off (6 mm) for both modalities for the diagnosis of appendicitis. (orig.)

  10. Small Diameter Bomb Increment II (SDB II)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-439 Small Diameter Bomb Increment II (SDB II) As of FY 2017 President’s Budget Defense... Bomb Increment II (SDB II) DoD Component Air Force Joint Participants Department of the Navy Responsible Office References SAR Baseline (Production...Mission and Description Small Diameter Bomb Increment II (SDB II) is a joint interest United States Air Force (USAF) and Department of the Navy

  11. Appendiceal diameter: CT versus sonographic measurements

    International Nuclear Information System (INIS)

    Orscheln, Emily S.; Trout, Andrew T.

    2016-01-01

    Ultrasound and CT are the dominant imaging modalities for assessment of suspected pediatric appendicitis, and the most commonly applied diagnostic criterion for both modalities is appendiceal diameter. The classically described cut-off diameter for the diagnosis of appendicitis is 6 mm when using either imaging modality. To demonstrate the fallacy of using the same cut-off diameter for both CT and US in the diagnosis of appendicitis. We conducted a retrospective review of patients younger than 18 years who underwent both US and CT of the appendix within 24 h. The shortest transverse dimension of the appendix was measured at the level of the proximal, mid and distal appendix on US and CT images. We compared mean absolute difference in appendiceal diameter between US and CT, using the paired t-test. We reviewed exams of 155 children (58.7% female) with a mean age of 11.3 ± 4.2 years; 38 of the children (24.5%) were diagnosed with appendicitis. The average time interval between US and CT was 7.0 ± 5.4 h. Mean appendiceal diameter measured by CT was significantly larger than that measured by US in cases without appendicitis (5.3 ± 1.0 mm vs. 4.7 ± 1.1 mm, P < 0.0001) and in cases with appendicitis (8.3 ± 2.2 mm vs. 7.0 ± 2.0 mm, P < 0.0001). Mean absolute diameter difference at any location along the appendix was 1.3-1.4 mm in normal appendices and 2 mm in cases of appendicitis. Measured appendiceal diameter differs between US and CT by 1-2 mm, calling into question use of the same diameter cut-off (6 mm) for both modalities for the diagnosis of appendicitis. (orig.)

  12. The Very Large Array Data Processing Pipeline

    Science.gov (United States)

    Kent, Brian R.; Masters, Joseph S.; Chandler, Claire J.; Davis, Lindsey E.; Kern, Jeffrey S.; Ott, Juergen; Schinzel, Frank K.; Medlin, Drew; Muders, Dirk; Williams, Stewart; Geers, Vincent C.; Momjian, Emmanuel; Butler, Bryan J.; Nakazato, Takeshi; Sugimoto, Kanako

    2018-01-01

    We present the VLA Pipeline, software that is part of the larger pipeline processing framework used for the Karl G. Jansky Very Large Array (VLA), and Atacama Large Millimeter/sub-millimeter Array (ALMA) for both interferometric and single dish observations.Through a collection of base code jointly used by the VLA and ALMA, the pipeline builds a hierarchy of classes to execute individual atomic pipeline tasks within the Common Astronomy Software Applications (CASA) package. Each pipeline task contains heuristics designed by the team to actively decide the best processing path and execution parameters for calibration and imaging. The pipeline code is developed and written in Python and uses a "context" structure for tracking the heuristic decisions and processing results. The pipeline "weblog" acts as the user interface in verifying the quality assurance of each calibration and imaging stage. The majority of VLA scheduling blocks above 1 GHz are now processed with the standard continuum recipe of the pipeline and offer a calibrated measurement set as a basic data product to observatory users. In addition, the pipeline is used for processing data from the VLA Sky Survey (VLASS), a seven year community-driven endeavor started in September 2017 to survey the entire sky down to a declination of -40 degrees at S-band (2-4 GHz). This 5500 hour next-generation large radio survey will explore the time and spectral domains, relying on pipeline processing to generate calibrated measurement sets, polarimetry, and imaging data products that are available to the astronomical community with no proprietary period. Here we present an overview of the pipeline design philosophy, heuristics, and calibration and imaging results produced by the pipeline. Future development will include the testing of spectral line recipes, low signal-to-noise heuristics, and serving as a testing platform for science ready data products.The pipeline is developed as part of the CASA software package by an

  13. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, Kieran [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes

  14. Calibration pipeline for VIR data

    Science.gov (United States)

    Carraro, F.; Fonte, S.; Coradini, A.; Filacchione, G.; de Sanctis, M. C.; Ammannito, E.; Capria, M. T.; Cartacci, M.; Noschese, R.; Tosi, F.; Capaccioni, F.

    2011-10-01

    During the second quarter of 2011 VIR-MS (VIS and IR Mapping Spectrometer) [1] aboard Dawn mission [2] has approached Vesta in order to start a long period of acquisitions that will end at the beginning of 2012. Data acquired by each instrument always require a calibration process in order to remove all the instrument effects that could affect the scientific evaluations and analysis. VIR-MS instrument team has realized a calibration pipeline which has the goal of producing calibrated (1b level) data starting from the raw (1a level) ones. The other goal of the tool has been the check of the goodness of acquired data by means of the evaluation of a series of minimum requisites of each data file, such as the percentage of the saturated pixels, the presence of spikes or the mean S/N ratio of each qube.

  15. Northeast market view : Millennium Pipeline

    International Nuclear Information System (INIS)

    Pentzien, D.C.

    1998-01-01

    The potential for growth in the U.S. northeast natural gas markets was discussed. In presenting a forecast for natural gas consumption, the growth in demand was attributed primarily to the planned conversion of coal and oil-fired electric generation plants to gas-fired ones, combined with nuclear plant shutdowns, and more stringent environmental policies. An overview of the development of the Millennium Pipeline bringing natural gas from the Alberta border all the way to New York City was also provided, with an update on the current status of the project. Assuming no unreasonable delays in the present schedule, the line should be in service sometime in the year 2000. figs

  16. Development and introduction of stamping technique for large-size laterals of NPP pipelines

    International Nuclear Information System (INIS)

    Romashko, N.I.; Moshnin, E.N.; Timokhin, V.S.; Bryukhanov, Yu.V.; Lebedev, V.A.

    1984-01-01

    The results of development and introduction of stamping technique for large-size laterals of NPP high-pressure pipelines are presented. The main experimental data characterizing technological possibilities of the process are given. The technological process and design of the stamp assure production of laterals from ovalized bars per one heating of the bar and per one running of the press cronnhead. Introduction of new technology decreased labour input of lateral production, reliability and serviceability of pipelines increased in this case. Introduction of this technology gives a considerable benefit

  17. Comparison of Soil Models in the Thermodynamic Analysis of a Submarine Pipeline Buried in Seabed Sediments

    Directory of Open Access Journals (Sweden)

    Magda Waldemar

    2017-12-01

    Full Text Available This paper deals with mathematical modelling of a seabed layer in the thermodynamic analysis of a submarine pipeline buried in seabed sediments. The existing seabed soil models: a “soil ring” and a semi-infinite soil layer are discussed in a comparative analysis of the shape factor of a surrounding soil layer. The meaning of differences in the heat transfer coefficient of a soil layer is illustrated based on a computational example of the longitudinal temperaturę profile of a -kilometer long crude oil pipeline buried in seabed sediments.

  18. U.S. interstate pipelines ran more efficiently in 1994

    International Nuclear Information System (INIS)

    True, W.R.

    1995-01-01

    Regulated US interstate pipelines began 1995 under the momentum of impressive efficiency improvements in 1994. Annual reports filed with the US Federal Energy Regulatory Commission (FERC) show that both natural-gas and petroleum liquids pipeline companies increased their net incomes last year despite declining operating revenues. This article discusses trends in the pipeline industry and gives data on the following: pipeline revenues, incomes--1994; current pipeline costs; pipeline costs--estimated vs. actual; current compressor construction costs; compressor costs--estimated vs. actual; US interstate mileage; investment in liquids pipelines; 10-years of land construction costs; top 10 interstate liquids pipelines; top 10 interstate gas pipelines; liquids pipeline companies; and gas pipeline companies

  19. Current pipelines for neglected diseases.

    Science.gov (United States)

    di Procolo, Paolo; Jommi, Claudio

    2014-09-01

    This paper scrutinises pipelines for Neglected Diseases (NDs), through freely accessible and at-least-weekly updated trials databases. It updates to 2012 data provided by recent publications, and integrates these analyses with information on location of trials coordinators and patients recruitment status. Additionally, it provides (i) disease-specific information to better understand the rational of investments in NDs, (ii) yearly data, to understand the investment trends. The search identified 650 clinical studies. Leishmaniasis, Arbovirus infection, and Dengue are the top three diseases by number of clinical studies. Disease diffusion risk seems to be the most important driver of the clinical trials target choice, whereas the role played by disease prevalence and unmet need is controversial. Number of trials is stable between 2005 and 2010, with an increase in the last two years. Patient recruitment was completed for most studies (57.6%), and Phases II and III account for 35% and 28% of trials, respectively. The primary purpose of clinical investigations is prevention (49.3%), especially for infectious diseases with mosquitoes and sand flies as the vector, and treatment (43.2%), which is the primary target for parasitic diseases Research centres and public organisations are the most important clinical studies sponsors (58.9%), followed by the pharmaceutical industry (24.1%), foundations and non-governmental organisations (9.3%). Many coordinator centres are located in less affluent countries (43.7%), whereas OECD countries and BRICS account for 34.7% and 17.5% of trials, respectively. Information was partially missing for some parameters. Notwithstanding, and despite its descriptive nature, this research has enhanced the evidence of the literature on pipelines for NDs. Future contributions may further investigate whether trials metrics are consistent with the characteristics of the interested countries and the explicative variables of trials location, target

  20. Data summary report on short-term turbidity monitoring of pipeline river crossings in the Moyie River, Boundary County, Idaho: PGT-PG&E Pipeline Expansion Project

    Energy Technology Data Exchange (ETDEWEB)

    Gowdy, M.J.; Smits, M.P.; Wilkey, P.L.; Miller, S.F.

    1994-03-01

    A water-quality monitoring program was implemented for Bechtel Corporation to measure the short-term increases in turbidity in the Moyie River caused by construction activities of the Pacific Gas Transmission-Pacific Gas & Electric Pipeline Expansion Project. Construction of the buried, 42-in.-diameter, steel pipeline, during the summer of 1992, involved eight wet crossings of the Moyie River along the 13-mi section of pipeline immediately south of the Canadian-United States border in Boundary County, Idaho. This report summarizes the sampling and analysis protocol used and gives the results and observations for each of the eight crossings. The data obtained from this monitoring program, in addition to satisfying regulatory requirements for the Pipeline Expansion Project, will contribute to an ongoing long-term study of the Moyie River crossings being performed for the Gas Research Institute by Argonne National Laboratory. The purpose of this document is strictly limited to reporting the results of the monitoring program. Interpretation of the data is not within the scope of this report.

  1. Fatigue assessment of a double submerged arc welded gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Fazzini, Pablo; Otegui, Jose Luis [Universidad Nacional Mar del Plata, Mar del Plata (Argentina). Instituto de Ciencia y Tecnologia de Materiales (INTEMA); Teutonico, Mauricio; Manfredi, Carlos [GIE S.A., Mar del Plata (Argentina)

    2005-07-01

    An uncommon blowout in a 24'' diameter, 7 mm thick API 5L X52 gas pipeline was due to fracture at the longitudinal double submerged arc weld. Oddly enough for gas pipelines, it was found that fatigue cracks had propagated from a large embedded weld defect of lack of fusion resulting from severe geometrical mismatch between inner and outer weld passes. What makes this failure particularly interesting is that: previous in line inspections failed to detect any defect, no evidence of third party damage was found, and very few large pressure cycles had been recorded during the last 5 years of service, which were believed to be representative of the entire service life of the pipeline. Fatigue tests were carried out to characterize propagation of fatigue cracks in weld metal, it was found that a large Paris exponent made the few large amplitude cycles most contributing to crack propagation. Crack growth path and striation patterns were studied. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. Crack growth path and striation patterns were studied. It was found that microstructure discontinuities govern propagation at low {delta}K, but one striation per cycle was produced at large {delta}K, due to a mostly ductile propagation mode. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. It was found that in the early life of the line many more large pressure cycles than expected had occurred. Good correspondence between predicted and actual fatigue lives was in this way obtained (author)

  2. Acoustic power delivery to pipeline monitoring wireless sensors.

    Science.gov (United States)

    Kiziroglou, M E; Boyle, D E; Wright, S W; Yeatman, E M

    2017-05-01

    The use of energy harvesting for powering wireless sensors is made more challenging in most applications by the requirement for customization to each specific application environment because of specificities of the available energy form, such as precise location, direction and motion frequency, as well as the temporal variation and unpredictability of the energy source. Wireless power transfer from dedicated sources can overcome these difficulties, and in this work, the use of targeted ultrasonic power transfer as a possible method for remote powering of sensor nodes is investigated. A powering system for pipeline monitoring sensors is described and studied experimentally, with a pair of identical, non-inertial piezoelectric transducers used at the transmitter and receiver. Power transmission of 18mW (Root-Mean-Square) through 1m of a118mm diameter cast iron pipe, with 8mm wall thickness is demonstrated. By analysis of the delay between transmission and reception, including reflections from the pipeline edges, a transmission speed of 1000m/s is observed, corresponding to the phase velocity of the L(0,1) axial and F(1,1) radial modes of the pipe structure. A reduction of power delivery with water-filling is observed, yet over 4mW of delivered power through a fully-filled pipe is demonstrated. The transmitted power and voltage levels exceed the requirements for efficient power management, including rectification at cold-starting conditions, and for the operation of low-power sensor nodes. The proposed powering technique may allow the implementation of energy autonomous wireless sensor systems for monitoring industrial and network pipeline infrastructure. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Fatigue assessment of a double submerged arc welded gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Fazzini, Pablo; Otegui, Jose Luis [Universidad Nacional Mar del Plata, Mar del Plata (Argentina). Instituto de Ciencia y Tecnologia de Materiales (INTEMA); Teutonico, Mauricio; Manfredi, Carlos [GIE S.A., Mar del Plata (Argentina)

    2005-07-01

    An uncommon blowout in a 24'' diameter, 7 mm thick API 5L X52 gas pipeline was due to fracture at the longitudinal double submerged arc weld. Oddly enough for gas pipelines, it was found that fatigue cracks had propagated from a large embedded weld defect of lack of fusion resulting from severe geometrical mismatch between inner and outer weld passes. What makes this failure particularly interesting is that: previous in line inspections failed to detect any defect, no evidence of third party damage was found, and very few large pressure cycles had been recorded during the last 5 years of service, which were believed to be representative of the entire service life of the pipeline. Fatigue tests were carried out to characterize propagation of fatigue cracks in weld metal, it was found that a large Paris exponent made the few large amplitude cycles most contributing to crack propagation. Crack growth path and striation patterns were studied. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. Crack growth path and striation patterns were studied. It was found that microstructure discontinuities govern propagation at low {delta}K, but one striation per cycle was produced at large {delta}K, due to a mostly ductile propagation mode. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. It was found that in the early life of the line many more large pressure cycles than expected had occurred. Good correspondence between predicted and actual fatigue lives was in this way obtained (author)

  4. Flooding simulation of hilly pipeline commisionning process

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Zhang [China National Oil and Gas Exploration and Development Corporation and China University of Petroleum, Beijing (China); Jing, Gong [China University of Petroleum, Beijing (China); Baoli, Zhu [China National Oil and Gas Exploration and Development Corporation, Beijing (China); Lin, Zheng [CNPC Oil and Gas Control Center, Beijing (China)

    2010-07-01

    When the construction of a pipeline has been completed, the pipeline flooding is done as part of the pipeline commissioning process. This method consists of filling the empty pipe with water or oil. In a pipeline situated in hilly terrain, air entrapped in the fluid causes problems with the flooding process and it is necessary to discharge the accumulated air to address this issue. The aim of this paper is to provide a model for predicting the location and volume of air pockets in a pipeline. This model was developed based on the fundamentals of mass balance and momentum transfer in multiphase flow and was then applied to a pipeline in China and compared with the SCADA data. Results showed a good match between the model's predictions of hydraulic movement and the real data from SCADA. The two flow model developed can predict hydraulic movement during pipeline flooding in a hilly area and thus it can be used to predict water front location and air pocket movement in the pipe.

  5. Protective coating as a factor to ensure the strength and hydraulic performance of recoverable pipelines

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2015-01-01

    Full Text Available The authors present an analysis of various types of internal protective pipeline coatings to ensure the strength and hydraulic characteristics of a remodeled pipeline and related coating methods for effective trenchless renovation of engineering systems, water supply systems and sanitation. As protective coating the authors considered a round profile tube of a smaller diameter than of the old pipe, close to the old pipe, sprayed lining on the basis of inorganic and inorganic materials. The article analyzes the methods of trenchless renovation for applying protective coatings: routing in the old pipeline of new pipes made of polymeric materials or polymeric sleeves, centrifugal spraying on the inner surface of pipelines’ inorganic and organic protective coatings. Special attention was paid to bag technology, providing the required strength properties at specific values of the modulus of elasticity and a number of external factors such as the depth of the existing pipe, the existence and magnitude of the horizon groundwater over it. Also attention is paid to the application technology of tape coatings ribbed profile on the inner surface of pipelines. This technology has a unique feature, which is the ability of recoverable pipeline functioning during its renovation by winding an endless belt and the formation of a new pipe. The tape coating winding is carried out by different types of spiral winding machines. The thickness of the protective coating layer forming the tube remains minimal. Inorganic cement-sand and organic coatings were considered as alternative options for repair of pipelines, which allow to localize the defects in the form of a fistula, minor cracks and other damages. However it is noted that a cement-sandy covering is inferior to organic, because it does not provide the strength characteristics of the pipeline system. The main advantage of the organic coating is mudding fistula of a large diameter, making a high wear

  6. First phase of small diameter heater experiments in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1983-01-01

    As part of the Nevada Nuclear Waste Storage Investigations (NNWSI) project, we have undertaken small diameter heater experiments in the G-Tunnel Underground Facility on the Nevada Test Site (NTS). These experiments are to evaluate the thermal and hydrothermal behavior which might be encountered if heat producing nuclear waste were disposed of in welded and nonwelded tuffs. The two Phase I experiments discussed have focused on vertical borehole emplacements. In each experiment, temperatures were measured along the surface of the 10.2-cm-dia heater and the 12.7-cm-dia boreholes. For each experiment, measurements were compared with computer model representations. Maximum temperatures reached were: 196 0 C for the welded tuff after 21 days of operations at 800W and 173 0 C for the nonwelded tuff after 35 days of operations at 500W. Computed results indicate that the same heat transfer model (includes conduction and radiation only) can describe the behavior of both tuffs using empirical techniques to describe pore water vaporization. Hydrothermal measurements revealed heat-indiced water migration. Results indicated that small amounts of liquid water migrated into the welded tuff borehole early in the heating period. Once the rock-wall temperatures exceeded 94 0 C, in both tuffs, there was mass transport of water vapor as evidence indicated condensation cooler regions. Borehole pressures remained essentially ambient during the thermal periods

  7. Digitization of radiographic inspection for pipeline girth welded joints

    International Nuclear Information System (INIS)

    Uemura, Shimpei

    2016-01-01

    In radiographic inspection for the girth welded joints of natural gas pipeline, film radiographic testing (FRT) is applied presently in Japan. However, as of July 2016, the work of establishing JIS standard for radiographic inspection with digital detector is in progress. In order to provide users with the merit of digitization as soon as possible, the authors have developed NSDART (Nittetsu-Sumikin digital detector array technology) as a field X-ray inspection system for the girth welded joints of pipeline. This paper reports the required performances discussed in face of development of NSDART, selection of digital detector, and outline of NSDART, and shows part of the radiographic images acquired with NSDART. As required performances, the following were established: (1) required image quality for radiographic image, (2) identifiable minimum wire diameter of transmission meter, (3) density range of radiographic image and value of gradation meter, (4) spatial resolution via Duplex Wire, (5) X-ray generator, (6) real time performance, and (7) display for observing radiographic image. As for the selection of digital detector, flat panel detector was judged to be the most suitable, and its incorporation to NSDART was determined. NSDART devices are composed of a magnet-wheeled self-propelled imaging device, personal computer, controller, and externally installed display for judgment. (A.O.)

  8. Gas pipelines and the American lobster, Homarus americanus

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.A. [Connecticut Univ., Groton, CT (United States); Clancy, M. [Boston Univ., MA (United States); Cobb, J.S. [Rhode Island Univ., Kingston, RI (United States)

    2003-07-01

    One of the main objectives of the megabenthic study of the New England continental shelf conducted during the 1970s and the 1980s was to define the migratory behavior and overall ecology of the offshore American lobster. The study involved more than 100 manned submersible divers on the outer continental shelf, upper continental slope, Georges Bank and submarine canyons. It also included an extensive lobster tagging program. The study provided valuable information on the ecology and behaviour of the lobster and several other megabenthic fauna that could be affected by the presence of a gas pipeline running parallel to the outer continental shelf, from eastern Georges Bank to northern New Jersey. The study showed that an exposed 2-4 diameter pipeline would impede the normal onshore and offshore migration of this deep water lobster species because its' migration is done by walking rather than swimming, and any overhanging structure would block its path. It was emphasized that it is extremely important to maintain spring to early summer onshore migration in the multi-million dollar lobster industry. This paper offered suggestions for modifying pipe encasements to solve the migration problem.

  9. Environmental hazards due to rupture of a liquefied propane pipeline

    International Nuclear Information System (INIS)

    Badr, O.A.; El-Sheikh, H.A.

    1996-01-01

    Accidental leakages of liquefied propane from high-pressure pipelines may occur despite the use of sophisticated safety equipment and following strict monitoring procedures. Environmental impact of steady and transient leakages were considered from toxicity and flammability viewpoints for two specific scenarios of full pipe ruptures. For each case, calculated mass flow rate, velocity, and temperature of leaking gas were utilized in an EPA-based dispersion model to predict the ground level concentration profiles in the downwind and crosswind directions. For the specific pipeline conditions considered here, the first scenario of a nonjet release (a cloud) produced steady toxic and flammable zones which were about 20 times bigger than those produced in the transient case. The second scenario of a free vertical jet resulted in the formation of a flammable vertical plume, while at ground level it did not produce flammable nor toxic zones. A parametric study of the first scenario confirmed the expected effects of both the gas release time and the atmospheric stability on the size of the dangerous zones. Within the typical range, the wind speed was found to have opposite effects for steady and transient releases. For a steady release, the dangerous zone was wider for slower winds and vice versa for a transient case. Moreover, the size of the dangerous zone was found to be an exponential function of the pipe diameter, while the effect of the initial pipe pressure was insignificant

  10. Optimal hub location in pipeline networks

    Energy Technology Data Exchange (ETDEWEB)

    Dott, D.R.; Wirasinghe, S.C.; Chakma, A. [Univ. of Calgary, Alberta (Canada)

    1996-12-31

    This paper discusses optimization strategies and techniques for the location of natural gas marketing hubs in the North American gas pipeline network. A hub is a facility at which inbound and outbound network links meet and freight is redirected towards their destinations. Common examples of hubs used in the gas pipeline industry include gas plants, interconnects and market centers. Characteristics of the gas pipeline industry which are relevant to the optimization of transportation costs using hubs are presented. Allocation techniques for solving location-allocation problems are discussed. An outline of the research in process by the authors in the field of optimal gas hub location concludes the paper.

  11. Prospects for coal slurry pipelines in California

    Science.gov (United States)

    Lynch, J. F.

    1978-01-01

    The coal slurry pipeline segment of the transport industry is emerging in the United States. If accepted it will play a vital role in meeting America's urgent energy requirements without public subsidy, tax relief, or federal grants. It is proven technology, ideally suited for transport of an abundant energy resource over thousands of miles to energy short industrial centers and at more than competitive costs. Briefly discussed are the following: (1) history of pipelines; (2) California market potential; (3) slurry technology; (4) environmental benefits; (5) market competition; and (6) a proposed pipeline.

  12. Integrating sustainable growth into export pipeline projects

    International Nuclear Information System (INIS)

    Jeniffer, Barringer; William, Lukens; Patricia, Wild

    2002-01-01

    Full text: Sustainable growth in the energy industry is rapidly expanding beyond the conceptual stage. Policies addressing the three principles of Sustainable Development are being established and strategies to execute these policies are being developed and implemented in the field. Conoco is developing a strong corporate culture around sustainable growth; and, pipeline systems play a vital role in delivering the triple bottom line results for our stake holders. This paper will highlight some of the key focal points by Conoco Inc., in each phase of pipeline project development, execution, and operation to make pipeline projects a contributor to Conoco's sustainable growth success, and shares some lessons learned

  13. ARTIP: Automated Radio Telescope Image Processing Pipeline

    Science.gov (United States)

    Sharma, Ravi; Gyanchandani, Dolly; Kulkarni, Sarang; Gupta, Neeraj; Pathak, Vineet; Pande, Arti; Joshi, Unmesh

    2018-02-01

    The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

  14. Basic Block of Pipelined ADC Design Requirements

    Directory of Open Access Journals (Sweden)

    V. Kledrowetz

    2011-04-01

    Full Text Available The paper describes design requirements of a basic stage (called MDAC - Multiplying Digital-to- Analog Converter of a pipelined ADC. There exist error sources such as finite DC gain of opamp, capacitor mismatch, thermal noise, etc., arising when the switched capacitor (SC technique and CMOS technology are used. These non-idealities are explained and their influences on overall parameters of a pipelined ADC are studied. The pipelined ADC including non-idealities was modeled in MATLAB - Simulink simulation environment.

  15. Diameter of titanium nanotubes influences anti-bacterial efficacy

    International Nuclear Information System (INIS)

    Ercan, Batur; Taylor, Erik; Webster, Thomas J; Alpaslan, Ece

    2011-01-01

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  16. Diameter of titanium nanotubes influences anti-bacterial efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Ercan, Batur; Taylor, Erik; Webster, Thomas J [School of Engineering, Brown University, Providence, RI 02917 (United States); Alpaslan, Ece, E-mail: thomas_webster@brown.edu [Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul (Turkey)

    2011-07-22

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  17. Diameter of titanium nanotubes influences anti-bacterial efficacy

    Science.gov (United States)

    Ercan, Batur; Taylor, Erik; Alpaslan, Ece; Webster, Thomas J.

    2011-07-01

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  18. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire

    International Nuclear Information System (INIS)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-01-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs

  19. Measuring Electrospun Nanofibre Diameter: a Novel Approach

    International Nuclear Information System (INIS)

    Ziabari, M.; Mottaghitalab, V.; Haghi, A. K.; McGovern, S. T.

    2008-01-01

    A new method based on image analysis for electrospun nanofibre diameter measurement is presented. First, the SEM micrograph of the nanofibre web obtained by electrospinning process is converted to binary image using local thresholding method. In the next step, skeleton and distance transformed image are generated. Then, the intersection points which bring about untrue measurements are identified and removed from the skeleton. Finally, the resulting skeleton and distance transformed image are used to determine fibre diameter. The method is evaluated by a simulated image with known characteristics generated by ?-randomness procedure. The results indicate that this approach is successful in making fast, accurate automated measurements of electrospun fibre diameters. (cross-disciplinary physics and related areas of science and technology)

  20. Knowledge Pipeline: A Task Oriented Way to Implement Knowledge Management

    International Nuclear Information System (INIS)

    Pan Jiajie

    2014-01-01

    Concept of knowledge pipeline: There are many pipelines named by tasks or business processes in an organization. Knowledge contributors put knowledge to its corresponding pipelines. A maintenance team could keep the knowledge in pipelines clear and valid. Users could get knowledge just like opening a faucet in terms of their tasks or business processes

  1. 49 CFR 192.627 - Tapping pipelines under pressure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Tapping pipelines under pressure. 192.627 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Operations § 192.627 Tapping pipelines under pressure. Each tap made on a pipeline under pressure must be performed by a crew qualified to make...

  2. 76 FR 21423 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2011-04-15

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2011-0063] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials... application is for two 30-inch segments, segments 3 and 4, of the TPL 330 natural gas pipeline located in St...

  3. 77 FR 2606 - Pipeline Safety: Random Drug Testing Rate

    Science.gov (United States)

    2012-01-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0004] Pipeline Safety: Random Drug Testing Rate AGENCY: Pipeline and Hazardous Materials... pipelines and operators of liquefied natural gas facilities must select and test a percentage of covered...

  4. 75 FR 35516 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2010-06-22

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2010-0147] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials... with the Class 1 location portion of a 7.4 mile natural gas pipeline to be constructed in Alaska. This...

  5. 77 FR 26822 - Pipeline Safety: Verification of Records

    Science.gov (United States)

    2012-05-07

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0068] Pipeline Safety: Verification of Records AGENCY: Pipeline and Hazardous Materials... issuing an Advisory Bulletin to remind operators of gas and hazardous liquid pipeline facilities to verify...

  6. 75 FR 73160 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-11-29

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...-Related Conditions on Gas, Hazardous Liquid, and Carbon Dioxide Pipelines and Liquefied Natural Gas... Pipelines and Liquefied Natural Gas Facilities.'' The Pipeline Safety Laws (49 U.S.C. 60132) require each...

  7. 75 FR 9018 - Pipeline Safety: Random Drug Testing Rate

    Science.gov (United States)

    2010-02-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2010-0034] Pipeline Safety: Random Drug Testing Rate AGENCY: Pipeline and Hazardous Materials... pipelines and operators of liquefied natural gas facilities must select and test a percentage of covered...

  8. 75 FR 4136 - Pipeline Safety: Request To Modify Special Permit

    Science.gov (United States)

    2010-01-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2009-0377] Pipeline Safety: Request To Modify Special Permit AGENCY: Pipeline and Hazardous... coating on its gas pipeline. DATES: Submit any comments regarding this special permit modification request...

  9. 76 FR 11853 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2011-0027] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials... a 24-inch mainline natural gas pipeline, 595 feet in length. The first segment of the special permit...

  10. 77 FR 34458 - Pipeline Safety: Requests for Special Permit

    Science.gov (United States)

    2012-06-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0112] Pipeline Safety: Requests for Special Permit AGENCY: Pipeline and Hazardous Materials... BreitBurn Energy Company LP, two natural gas pipeline operators, seeking relief from compliance with...

  11. 78 FR 14877 - Pipeline Safety: Incident and Accident Reports

    Science.gov (United States)

    2013-03-07

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2013-0028] Pipeline Safety: Incident and Accident Reports AGENCY: Pipeline and Hazardous Materials... PHMSA F 7100.2--Incident Report--Natural and Other Gas Transmission and Gathering Pipeline Systems and...

  12. 78 FR 65429 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2013-10-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2010-0041] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials...-0041 Williams Gas Pipeline 49 CFR 192.150........ To authorize the extension Company, LLC (WGP). of a...

  13. 49 CFR 192.513 - Test requirements for plastic pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Test requirements for plastic pipelines. 192.513 Section 192.513 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Test requirements for plastic pipelines. (a) Each segment of a plastic pipeline must be tested in...

  14. Numerical Analysis of Thermal Mixing in a Swirler-Embedded Line-Heater for Flow Assurance in Subsea Pipelines

    Directory of Open Access Journals (Sweden)

    Jang Min Park

    2015-02-01

    Full Text Available Flow assurance issue in subsea pipelines arises mainly due to hydrate plugs. We present a new line-heater for prevention of hydrate plug formation in subsea pipelines. The line heater has modular compact design where an electrical heater and a swirl generator are embedded inside the housing pipe so that the stream can be heated efficiently and homogeneously. In this paper, flow and heat transfer characteristics of the line heater are investigated numerically, with a particular emphasis on the mixing effect due to the swirl generator.

  15. Moisture monitoring in large diameter boreholes

    International Nuclear Information System (INIS)

    Tyler, S.

    1985-01-01

    The results of both laboratory and field experiments indicate that the neutron moisture gauge traditionally used in soil physics experiments can be extended for use in large diameter (up to 15 cm) steel-cased boreholes with excellent results. This application will permit existing saturated zone monitoring wells to be used for unsaturated zone monitoring of recharge, redistribution and leak detection from waste disposal facilities. Its applicability to large diameter cased wells also gives the soil physicist and ground-water hydrologist and new set of monitoring points in the unsaturated zone to study recharge and aquifer properties. 6 refs., 6 figs., 2 tabs

  16. Aquaculture and energy-generation benefit from pipeline deep under the sea

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2002-09-01

    The Natural Energy Laboratory of Hawaii chose about 10,000 feet of HDPE pipe in 55-inch and 63-inch diameters for an application to pump ashore 38 degree F seawater from deep below the ocean surface for use in aquaculture and energy generation. The pipe was supplied by KWH Pipe of Mississauga, Ontario. It is well known that the world's tropical oceans are huge collectors of heat energy which can be utilized for various scientific and practical endeavours, Ocean Thermal Energy Conversion (OTEC) as the process is called, utilizes the difference between warm surface seawater and cold deep seawater to produce energy. The cold seawater can also be used to air condition buildings, desalinate water, grow lobsters and fish, produce algae and shellfish, grow cold-climate fruit and vegetables and much more. In the typical application the pipe is filled with air, which supports it and its anchors during towing to the site where the pipe is flooded for sinking. In the application described here, a separate warm water structure was also installed near the 80-foot deep end of one shore-crossing tunnel; spool pieces connect that structure and the offshore HDPE pipe to the two tunnels constructed earlier. The tunnels extend onshore to the pump station which provides the power to bring the cold water to shore. Other than the Hawaii installation, the only existing example is at Cornell University where the university campus buildings are being cooled by pumping cold water from 250 feet deep in Cayuga Lake through a two-mile long, 63-inch HDPE pipeline.

  17. Longitudinal Pipeline Scour Propagation Induced by Wave-Current Interaction For the South Sumatra-West Java Submarine Pipeline

    Science.gov (United States)

    Suntoyo; Perkasa, B.; Atikasari, T. J.; Wisudawan, A.

    2018-03-01

    Scouring process around subsea pipelines could reduce the soil bearing capacity which affected to the pipe stability. Scouring initial process against time should be known to discover scouring propagation. This paper aims to analyze the time scale calculation of 32 inch diameter in-trench pipe, until meet the maximum-scouring-depth stage. Embedment (e/D) variation is given to know the impact to the scour propagation. Wave and current condition presented to meet the real condition. Wave orbital particle velocity (Uw) is calculated to obtain the non-dimensional factors (Uc/(Uc+Uw)) and KC. The results showed according to the deeper pipe embedment, it takes longer time to reach the maximum scouring depth.

  18. Pipelines in Louisiana, Geographic NAD83, USGS (1999) [pipelines_la_usgs_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This dataset contains vector line map information of various pipelines throughout the State of Louisiana. The vector data contain selected base categories of...

  19. Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods

    Energy Technology Data Exchange (ETDEWEB)

    Volentic, J [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)

    1998-12-31

    Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.

  20. Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods

    Energy Technology Data Exchange (ETDEWEB)

    Volentic, J. [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)

    1997-12-31

    Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.

  1. Worldwide natural gas pipeline situation. Sekai no tennen gas pipeline jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, T [Osaka Gas Co. Ltd., Osaka (Japan)

    1993-03-01

    Constructing natural gas pipelines in wide areas requires investments of a huge amount. Many countries are building natural gas supply infrastructures under public support as nations' basic policy of promoting use of natural gas. This paper describes the present conditions of building pipelines in Western Europe, the U.S.A., Korea and Taiwan. In Western Europe, transporting companies established in line with the national policy own trunk pipelines and storage facilities, and import and distribute natural gas. The U.S.A. has 2300 small and large pipeline companies bearing transportation business. Pipelines extend about 1.9 million kilometers in total, with trunk pipelines accounting for about 440,000 kilometers. The companies are given eminent domain for the right of way. Korea has a plan to build a pipeline network with a distance of 1600 kilometers in around 2000. Taiwan has completed trunk pipelines extending 330 kilometers in two years. In Japan, the industry is preparing draft plans for wide area pipeline construction. 5 figs., 1 tab.

  2. Pipeline engineering. 8. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Wagner, W.

    2000-01-01

    Apart from calculating the strength of pipeline components planning and design are the most important tasks on the areas of apparatus manufacturing, fluid engineering, process engineering and thermal engineering. It is therefore necessary that the flow diagrams of a plant are clearly understandable and in accordance with the technical rules even in the early stages of planning. This book concentrates on steel pipeline which are not laid underground but of the type used mostly in industrial applications. The pictures and equations provided can be used for the design of pipelines, tables and diagrams are given to facilitate estimation of elasticity, pipeline pressure losses and insulating thicknesses. An overview of the equations is given at the end of the book. Many examples facilitate learning. (orig.) [de

  3. Optimizing pipeline transportation using a fuzzy controller

    Energy Technology Data Exchange (ETDEWEB)

    Aramaki, Thiago L.; Correa, Joao L. L.; Montalvoa, Antonio F. F. [National Control and Operation Center Tranpetro, Rio de Janeiro, (Brazil)

    2010-07-01

    The optimization of pipeline transportation is a big concern for the transporter companies. This paper is the third of a series of three articles which investigated the application of a system to simulate the human ability to operate a pipeline in an optimized way. The present paper presents the development of a proportional integral (PI) fuzzy controller, in order to optimize pipeline transportation capacity. The fuzzy adaptive PI controller system was developed and tested with a hydraulic simulator. On-field data were used from the OSBRA pipeline. The preliminary tests showed that the performance of the software simulation was satisfactory. It varied the set-point of the conventional controller within the limits of flow meters. The transport capacity of the pipe was maximize without compromising the integrity of the commodities transported. The system developed proved that it can be easily deployed as a specialist optimizing system to be added to SCADA systems.

  4. Australia's changing natural gas and pipeline industry

    International Nuclear Information System (INIS)

    Kimber, M.J.

    1998-01-01

    The future is bright for continued development of Australia's natural gas pipeline infrastructure, as well as for privatization and private energy infrastructure growth. Gas demands are growing and the development of open access principles for all natural gas transmission and distribution pipelines heralds a much more market focused industry. Within the next few years gas-on-gas competition will apply to supply, pipelines, and retail marketing. No longer will operators be able to pass on high costs resulting from inefficiencies to their customers. This article describes the changing Australian gas industry, evaluates the drivers for change and looks at ways the industry is responding to new regulatory regimes and the development and use of new pipeline technology

  5. Citizenship program in near communities of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mascarenhas, Carina R.; Vilas Boas, Ianne P. [TELSAN Engenharia, Belo Horizonte, MG (Brazil); Bourscheid, Pitagoras [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    During the construction of a pipeline, the IENE - Engineering Unit of PETROBRAS, responsible for the construction and erection of pipelines and related plants in northeastern Brazil, crossed more than 7 states and 250 counties, had implemented a social responsibility program, in special a citizenship program. This action was the result of community studies located near of the pipelines AID - Direct Influence Area (438 yards right and left of the pipeline) and through the evidence that those locations were poor and have no personal documents and citizen position in society. This paper intents to share the experience of IENE about its citizen program that worked in three big lines: community mobilization; citizenship qualification; and citizenship board. This last one, turns possible to people obtains theirs personal documents and exercise the plenitude of citizenship. (author)

  6. Evaluation results on the effectiveness of the corrosion protection system for underground pipelines, using the DC-voltage gradient technique

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Antonio Carlos [Petroquimica Uniao S.A., Santo Andre, SP (Brazil)

    2003-07-01

    A pipeline of diameter 6'' with 17.694 km of extension was evaluated how much to the integrity of its external covering and the effectiveness of the system of cathodic protection, using the method DC-Voltage Gradient. The Cathodic Protection in this pipeline is made by seven rectifiers. The gotten data indicate that the potential pipe-ground registered in some check points to the long one of the pipeline is extremely negative, what has led to a super protection of the pipeline for the CP. This if explains for the great proximity between the anodes and the pipeline. For km had been identified 917 failures with a mean density of 50,1 per Km. Beyond the analysis of the data, this work includes conclusions and recommendations detailed for the repairs of the covering of the pipeline and for improvement of the effectiveness of the CP. One sends regards to a combination of repairs in the covering and reevaluation of the CP, in way to improve the protection level and to assure the reduction of the risk of external corrosion. (author)

  7. Evaluation results on the effectiveness of the corrosion protection system for underground pipelines, using the DC-voltage gradient technique

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Antonio Carlos [Petroquimica Uniao S.A., Santo Andre, SP (Brazil)

    2003-07-01

    A pipeline of diameter 6'' with 17.694 km of extension was evaluated how much to the integrity of its external covering and the effectiveness of the system of cathodic protection, using the method DC-Voltage Gradient. The Cathodic Protection in this pipeline is made by seven rectifiers. The gotten data indicate that the potential pipe-ground registered in some check points to the long one of the pipeline is extremely negative, what has led to a super protection of the pipeline for the CP. This if explains for the great proximity between the anodes and the pipeline. For km had been identified 917 failures with a mean density of 50,1 per Km. Beyond the analysis of the data, this work includes conclusions and recommendations detailed for the repairs of the covering of the pipeline and for improvement of the effectiveness of the CP. One sends regards to a combination of repairs in the covering and reevaluation of the CP, in way to improve the protection level and to assure the reduction of the risk of external corrosion. (author)

  8. A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain.

    Science.gov (United States)

    Deng, Yajun; Hu, Hongbing; Yu, Bo; Sun, Dongliang; Hou, Lei; Liang, Yongtu

    2018-01-15

    The rupture of a high-pressure natural gas pipeline can pose a serious threat to human life and environment. In this research, a method has been proposed to simulate the release of natural gas from the rupture of high-pressure pipelines in any terrain. The process of gas releases from the rupture of a high-pressure pipeline is divided into three stages, namely the discharge, jet, and dispersion stages. Firstly, a discharge model is established to calculate the release rate of the orifice. Secondly, an improved jet model is proposed to obtain the parameters of the pseudo source. Thirdly, a fast-modeling method applicable to any terrain is introduced. Finally, based upon these three steps, a dispersion model, which can take any terrain into account, is established. Then, the dispersion scenarios of released gas in four different terrains are studied. Moreover, the effects of pipeline pressure, pipeline diameter, wind speed and concentration of hydrogen sulfide on the dispersion scenario in real terrain are systematically analyzed. The results provide significant guidance for risk assessment and contingency planning of a ruptured natural gas pipeline. Copyright © 2017. Published by Elsevier B.V.

  9. Transient leak detection in crude oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Beushausen, R.; Tornow, S.; Borchers, H. [Nord-West Oelleitung, Wilhelmshaven (Germany); Murphy, K.; Zhang, J. [Atmos International Ltd., Manchester (United Kingdom)

    2004-07-01

    Nord-West Oelleitung (NWO) operates 2 crude oil pipelines from Wilhemshaven to Koln and Hamburg respectively. German regulations for transporting flammable substances stipulate that 2 independent continuously working procedures be used to detect leaks. Leak detection pigs are used routinely to complement the surveillance system. This paper described the specific issues of transient leak detection in crude oil pipelines. It was noted that traditional methods have failed to detect leaks that occur immediately after pumps are turned on or off because the pressure wave generated by the transient dominates the pressure wave that results from the leak. Frequent operational changes in a pipeline are often accompanied by an increased number of false alarms and failure to detect leaks due to unsteady operations. NWO therefore decided to have the Atmos statistical pipeline leak detection (SPLD) system installed on their pipelines. The key to the SPLD system is the sequential probability ratio test. Comprehensive data validation is performed following reception of pipeline data from the supervisory control and data acquisition (SCADA) system. The validated data is then used to calculate the corrected flow imbalance, which is fed into the SPRT to determine if there is an increase in the flow imbalance. Pattern recognition is then used to distinguish a leak from operational changes. The SPLD is unique because it uses 3 computational pipeline monitoring methods simultaneously, namely modified volume balance, statistical analysis, and pressure and flow monitoring. The successful installation and testing of the SPLD in 2 crude oil pipelines was described along with the main difficulties associated with transient leaks. Field results were presented for both steady-state and transient conditions. 5 refs., 2 tabs., 16 figs.

  10. 78 FR 53190 - Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on...

    Science.gov (United States)

    2013-08-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0185] Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on Leak Repair Clamps Due to Defective Seal AGENCY: Pipeline and Hazardous Materials Safety...

  11. 78 FR 42889 - Pipeline Safety: Reminder of Requirements for Utility LP-Gas and LPG Pipeline Systems

    Science.gov (United States)

    2013-07-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket No. PHMSA-2013-0097] Pipeline Safety: Reminder of Requirements for Utility LP-Gas and LPG Pipeline Systems AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION...

  12. 49 CFR 179.200-11 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.200-11 Section 179.200-11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat treatment...

  13. Under-expanded jets and dispersion in supercritical CO_2 releases from a large-scale pipeline

    International Nuclear Information System (INIS)

    Guo, Xiaolu; Yan, Xingqing; Yu, Jianliang; Zhang, Yongchun; Chen, Shaoyun; Mahgerefteh, Haroun; Martynov, Sergey; Collard, Alexander; Proust, Christophe

    2016-01-01

    Highlights: • A large-scale full instrumented CO_2 test pipeline (258 m long, 233 mm id) has been developed. • The dynamic pressure evolutions near the orifice were recorded with differential pressure transducers. • The highly under-expanded jet flow structure in the near-field was studied in supercritical leakage. • The formation of the visible cloud, the distributions of temperature and concentration in the far-field were analysed. - Abstract: Long-distance CO_2 pipelines will be widely applied to transport captured CO_2 from fossil fuel fired power plants for subsequent sequestration. In the event of pipeline failure a large mass of the inventory may be discharged within a short time, this represents a significant hazard if leaks continue undetected. An important result of the risk assessment for a CO_2 pipeline is the safety distance. At present the lack of knowledge concerning near-field source terms and the far-field dispersion behavior of CO_2 leaking from pipelines can make the calculation of safety distances imprecise. Study of near-field source terms and dispersion behavior is therefore necessary and of paramount importance for assessing safety distances and the impact of CO_2 pipeline releases on the surrounding environment. In order to study CO_2 pipeline leakage, a large-scale pipeline set-up with a total length of 258 m and an internal diameter of 233 mm was constructed to study the near-field characteristics and dispersion behavior of supercritical CO_2 during sudden releases. The dynamic pressure near the orifice and CO_2 concentrations and temperatures within the downstream dispersion region were measured together with the pressures inside the pipeline. The under-expanded jet flow structure and phase transitions in the near-field were studied for supercritical CO_2 released though different orifice diameters (15 mm, 50 mm and Full Bore Rupture). The formation of the visible cloud, the distribution of cloud temperatures and CO_2

  14. Small diameter symmetric networks from linear groups

    Science.gov (United States)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  15. Changing the Diameter of a Viewing Tube

    Science.gov (United States)

    Obara, Samuel

    2009-01-01

    This article is about the students' investigation about the relationship between the diameter of the view tubes (x) of constant lengths and the viewable vertical distance (y) on the wall while keeping the perpendicular distance from the eyeball to the wall constant. The students collected data and used and represented it in tabular and graphical…

  16. Height - Diameter predictive equations for Rubber (Hevea ...

    African Journals Online (AJOL)

    BUKOLA

    They proffer logistic data for modeling and futuristic prediction for sustainable forest management. Diameter is one of the most ... in various quantitative estimation following the intricacy of time, availability of modern equipments .... growth functions. This trend is shown in Figure 1 where the prediction equations are plotted.

  17. Prospects of natural gas demand and pipeline projects in the East Asia

    International Nuclear Information System (INIS)

    Ishii, A.

    1997-01-01

    The development of the natural gas industry in East Asia was discussed. It was predicted that by 2010, the demand for natural gas could potentially reach 80 billion cubic feet per day. This represents an 8 per cent per year growth rate from a 1995 baseline. Similarly, it was predicted that by 2010, the region's natural gas supply could potentially reach 65 billion cubic feet per day which would represent 2.5 times the supply of natural gas in 1995. The additional demand will most likely be supplied from the Middle East in the form of liquefied natural gas (LNG), from Eastern Russia through pipelines of LNG, or from North America in the form of LNG. Some gas may also be supplied from Central Asia through pipelines. The price and cost of natural gas are major uncertainties in the future of the East Asian gas demand. Pipeline projects from Russia to China were discussed. Japan and Korea are also interested in collaborating on the feasibility study with Russia and China on a 3,400 km pipeline of 60 inch diameter from the Koviktinskoye gas field through Mongolia to Beijing, Tianjin and Korea, transporting 20 to 30 billion cubic metres of gas annually. A natural gas pipeline project transporting gas from the southern edge of the Sakhalin Island to the Tokyo area was also discussed. The project would involve construction of a 2,200 km 40-48 inch pipeline, much of it undersea, transporting 6 to 12 million tonnes of liquid natural gas, annually

  18. Leakage investigation in an underground cooling water pipeline at a thermal power station using radiotracer technique

    International Nuclear Information System (INIS)

    Khan, I.H.; Din, U.G.; Gul, S.; Farooq, M.; Qureshi, R.M.

    2004-05-01

    The objective of this study was to locate the leakage point(s) in an underground cooling water pipeline of a Thermal Power Station for pre-shutdown planning purposes. The internal diameter of the pipeline was 2240 mm with 12 mm with 12 (mild steel) wall thickness and it was buried under 1.0 meter reinforced concrete and 0.5-1.0 meter soil/sand cover. The volume flow rate of the pipeline was 29043 m/sup 3/hour at 2kg/cm/sup 2/ pressure. The linear speed of water flowing inside the pipeline was around 2 m/sec. This gave rise to a very high volume fast moving system. Radiotracer technique was used to investigate the problem under investigation. About 50 mCi of /sup 131/I radiotracer, in the form of NaI solution, was injected into the system and radiotracer evolution near suspected leakage point(s) was monitored using radiation detectors (NaI, 2 x 2 inch crystal size). Seven detectors were installed around three teeing off pipes (leakage area) inside the plant building and one at the injection point near the pump outlet. On line data acquisition system was used to acquire the radiotracer data. The leakage water was exiting from the floor just along the pipes carrying main flow of water. The time lag between the arrival, at detectors, of radiotracer flowing inside the pipeline and that present in the leakage water (outside the pipeline) was exploited to identify the position of leakage. The tracer test revealed that there was leakage at two points. The leakage at one point was small as compared at the other points. (author)

  19. Black powder in gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Sherik, Abdelmounam [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-07-01

    Despite its common occurrence in the gas industry, black powder is a problem that is not well understood across the industry, in terms of its chemical and physical properties, source, formation, prevention or management of its impacts. In order to prevent or effectively manage the impacts of black powder, it is essential to have knowledge of its chemical and physical properties, formation mechanisms and sources. The present paper is divided into three parts. The first part of this paper is a synopsis of published literature. The second part reviews the recent laboratory and field work conducted at Saudi Aramco Research and Development Center to determine the compositions, properties, sources and formation mechanisms of black powder in gas transmission systems. Microhardness, nano-indentation, X-ray Diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscopy (SEM) techniques were used to analyze a large number of black powder samples collected from the field. Our findings showed that black powder is generated inside pipelines due to internal corrosion and that the composition of black powder is dependent on the composition of transported gas. The final part presents a summary and brief discussion of various black powder management methods. (author)

  20. The development of auto-sealing system for field joints of polyethylene coated pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Yoshihiro [NKK Corp., Tsu, Mie (Japan); Shoji, Norio [NKK Corp., Yokohama (Japan); Namioka, Toshiyuki [Nippon Kokan Koji Corp., Osaka (Japan); Komura, Minoru [Nitto Denko Corp., Fukaya, Saitama (Japan)

    1997-08-01

    The paper describes the development of a system to create high quality, automatic sealing of field joints of polyethylene coated pipelines. The system uses a combination of electrically heated shrink sleeves and a low pressure chamber. The self-heating shrink sleeves include electric wires and heat themselves when connected to electricity. A method was developed to eliminate air trapped between the sleeve and steel pipe by shrinking the sleeves under low pressure. The low pressure condition was automatically and easily attained by using a vacuum chamber. The authors verified that the system produces high quality sealing of field joints.

  1. Simplified Technique for Predicting Offshore Pipeline Expansion

    Science.gov (United States)

    Seo, J. H.; Kim, D. K.; Choi, H. S.; Yu, S. Y.; Park, K. S.

    2018-06-01

    In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs, which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio (SDR) versus virtual anchor length (L A ) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline, offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.

  2. Outlook '98 - Gas and oil pipelines

    International Nuclear Information System (INIS)

    Curtis, B.

    1998-01-01

    Due to rising North American demand, especially by the United States, by the end of 1997 there were plans to build 15 new pipelines over the next three years, at an estimated cost of $17 billion. Canada''s proximity to the United States, combined with huge Canadian reserves, and the fact that Canada already supplies some 15 per cent of U.S. requirements, makes Canada the obvious choice for filling future demand. This explains why most, if not all, current pipeline expansion projects are targeting markets in the U.S. Market forces will determine which of the projects will actually go forward. From the point of view of the Canadian Energy Pipeline Association pipeline regulatory reform, pipeline safety, integrity and climate change will be the Association''s key concerns during 1998. To that end, the Association is cooperating with the National Energy Board in a multi-million dollar study of stress corrosion cracking. The Association has also developed a Manual of Recommended Practices for the use of member companies to assist them to tailor stress corrosion cracking practices to their own operations. Meeting Canada''s commitment at the Kyoto Conference for greenhouse gas emissions of six per cent below 1990 levels by the year 2008 to 2012 (in effect a 25 per cent reduction from the level anticipated in the year 2000), a very difficult task according to industry experts, is also among the high priority items on the pipeline industry''s agenda for 1998

  3. Market Brief : Turkey oil and gas pipelines

    International Nuclear Information System (INIS)

    2001-08-01

    This report presented some quick facts about oil and gas pipelines in Turkey and presented opportunities for trade. The key players and customers in the oil and gas sector were described along with an export check list. Turkey is looking into becoming an energy bridge between oil and gas producing countries in the Middle East, Central Asia and Europe. The oil and gas sectors are dominated by the Turkish Petroleum Corporation, a public enterprise dealing with exploration and production, and the State Pipeline Corporation which deals with energy transmission. They are also the key buyers of oil and gas equipment in Turkey. There are several pipelines connecting countries bordering the Caspian Sea. Opportunities exist in the areas of engineering consulting as well as contracting services for oil and gas pipeline transmission and distribution. Other opportunities lie in the area of pipeline construction, rehabilitation, materials, equipment, installation, and supervisory control and data acquisition (SCADA) systems. Currently, the major players are suppliers from Italy, Germany, France, United States and Japan. Turkey has no trade barriers and imported equipment and materials are not subjected to any restriction. The oil and gas market in Turkey expected in increase by an average annual growth rate of 15 per cent from 2001 to 2003. A brief description of pipeline projects in Turkey was presented in this report along with a list of key contacts and support services. 25 refs., 1 append

  4. World pipeline work set for rapid growth

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports on international pipeline construction which has entered a fast-growth period, accelerated by the new political and economic realities around the world and increasing demand for natural gas, crude oil and refined petroleum products. Many projects are under way or in planning for completion in the mid- to late 1990s in Europe, South America, Asia and the Middle East. Pipeline And Gas Journal's projection calls for construction or other work on 30,700 miles of new natural gas, crude oil and refined products pipelines in the 1992-93 period outside Canada and the U.S. These projects will cost an estimated $30 billion-plus. Natural gas pipelines will comprise most of the mileage, accounting for almost 23,000 miles at an estimated cost of $26.3 billion. Products pipelines, planned or under construction, will add another 5,800 miles at a cost of $2.8 billion. Crude oil pipelines, at a minimum, will total 1,900 new miles at a cost of slightly under $1 billion

  5. Seismic vulnerability of natural gas pipelines

    International Nuclear Information System (INIS)

    Lanzano, Giovanni; Salzano, Ernesto; Santucci de Magistris, Filippo; Fabbrocino, Giovanni

    2013-01-01

    This work deals with the analysis of the interaction of earthquakes with pipelines transporting and distributing natural gas for industrial and civil use. To this aim, a new large data-set of seismic information classified on the basis of selected seismological, geotechnical and structural parameters is presented and analyzed. Particular attention is devoted to continuous pipelines under strong ground shaking, which is the geotechnical effect due to passage of waves in soil. Results are provided in terms of the likelihood of the loss of containment with respect to Peak Ground Velocity (PGV), a seismic intensity parameter which may be easily retrieved either from local authorities and public databases or from site dependent hazard analysis. Fragility functions and seismic intensity threshold values for the failure and for the loss of containment of gas from pipeline systems are also given. The obtained functions can be easily implemented in existing codes and guidelines for industrial risk assessment, land-use planning, and for the design of public distribution network, with specific reference to Natural—Technological interaction (Na-Tech). -- Highlights: • The seismic vulnerability of natural gas pipelines is analyzed. • A collection of data for pipelines damaged by earthquake is given. • Damage states and risk states for pipelines are defined. • Consequence-based fragility formulations for the loss of containment are given • Seismic threshold values for public authority, risk assessment and gas distribution are shown

  6. Rupture detection device for pipeline in reactor

    International Nuclear Information System (INIS)

    Murakoshi, Toshinori; Kanamori, Shigeru; Shirasawa, Hirofumi.

    1991-01-01

    A difference between each of the pressures in a plurality of pipelines disposed in a shroud a reactor container and a pressure outside of the shroud is detected, thereby enabling safety and reliable detection even for simultaneous rapture and leakage of the pipelines. That is, a difference between the pressure of a steam phase outside of the shroud and a pressure in each of a plurality of low pressure injection pipelines in an emergency core cooling system opened to the inside of the shroud in the reactor container is detected by a difference pressure detector for each of them. Then, an average value for each of the pressure difference is determined, which is compared with the difference pressure obtained from each of the detectors in a comparator. Then, if openings should be caused by rupture, leakage or the like in any of the pipelines, the pressure in that pipeline is lowered to a vicinity of an atmospheric pressure and at the vapor phase pressure at the lowest. If the pressure is compared with the average value by the comparator, a negative difference is caused. Accordingly, an alarming unit generates an alarm based on the pressure difference signal, thereby enabling to specify the failed pipeline and provide an announce of the failure. (I.S.)

  7. GRAVITY PIPELINE TRANSPORT FOR HARDENING FILLING MIXTURES

    Directory of Open Access Journals (Sweden)

    Leonid KROUPNIK

    2015-12-01

    Full Text Available In underground mining of solid minerals becoming increasingly common development system with stowing hardening mixtures. In this case the natural ore array after it is replaced by an artificial excavation of solidified filling mixture consisting of binder, aggregates and water. Such a mixture is prepared on the surface on special stowing complexes and transported underground at special stowing pipelines. However, it is transported to the horizons of a few kilometers, which requires a sustainable mode of motion of such a mixture in the pipeline. Hardening stowing mixture changes its rheological characteristics over time, which complicates the calculation of the parameters of pipeline transportation. The article suggests a method of determining the initial parameters of such mixtures: the status coefficient, indicator of transportability, coefficient of hydrodynamic resistance to motion of the mixture. These indicators characterize the mixture in terms of the possibility to transport it through pipes. On the basis of these indicators is proposed methodology for calculating the parameters of pipeline transport hardening filling mixtures in drift mode when traffic on the horizontal part of the mixture under pressure column of the mixture in the vertical part of the backfill of the pipeline. This technique allows stable operation is guaranteed to provide pipeline transportation.

  8. Heat removing device for reactor container

    International Nuclear Information System (INIS)

    Hisamochi, Kohei; Matsumoto, Tomoyuki; Matsumoto, Masayoshi; Sato, Ken-ichi.

    1996-01-01

    A recycling loop for reactor water is disposed in a reactor pressure vessel of a BWR type reactor. Extracted reactor water from the recycling loop passes through a extracted reactor water pipeline and flows into a reactor coolant cleanup system. A pipeline for connecting the extracted reactor water pipeline and a suppression pool is disposed, and a discharged water pressurizing pump is disposed to the pipeline. Upon occurrence of emergency, discharged water from the suppression pool is pressurized by a discharged water pressurizing pump and sent to a reactor coolant cleanup system. The discharged water is cooled while passing through a sucking water cooling portion of a regenerative heat exchanger and a non-regenerative heat exchanger. Then, it is sent to a feed water pipeline passing a bypass line of a filtering desalter and a bypass line of the sucked water cooling portion of the regenerative heat exchanger, injected to the inside of the pressure vessel to cool the reactor core and remove after-heat. Then, it cools the inside of the reactor container together with coolants flown out of the pressure vessel and then returns to the suppression pool. (I.N.)

  9. Tree diameter at breast height in relation to stump diameter by species group

    Science.gov (United States)

    Arthur G. Horn; Richard C. Keller

    1957-01-01

    A stump tally is one method of determining the volume of timber previously removed from an area in a logging operation. To estimate volume of standing timber from stumps, foresters must first know the relationship between stump diameters and tree diameters at breast height (d.b.h.).

  10. Fluid Induced Vibration Analysis of a Cooling Water Pipeline for the HANARO CNS

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Lee, Young Sub; Kim, Ik Soo; Kim, Young Ki

    2007-01-01

    CNS is the initial of Cold Neutron Source and the CNS facility system consists of hydrogen, a vacuum, a gas blanketing, a helium refrigeration and a cooling water supply system. Out of these subsystems, the helium refrigeration system has the function of removal of heat from a thermal neutron under reactor operation. Therefore, HRS (helium refrigeration system) must be under normal operation for the production of cold neutron. HRS is mainly made up of a helium compressor and a coldbox. This equipment is in need of cooling water to get rid of heat generation under stable operation and a cooling water system is essential to maintain the normal operation of a helium compressor and a coldbox. The main problem for the cooling water system is the vibration issue in the middle of operation due to a water flow in a pipeline. In order to suppress the vibration problem for a pipeline, the characteristics of a pipeline and fluid flow must be analyzed in detail. In this paper, fluid induced vibration of a cooling water pipe is analyzed numerically and the stability of the cooling water pipeline is investigated by using pipe dynamic theory

  11. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  12. Integrated surface management for pipeline construction: The Mid-America Pipeline Company Four Corners Project

    Science.gov (United States)

    Maria L. Sonett

    1999-01-01

    Integrated surface management techniques for pipeline construction through arid and semi-arid rangeland ecosystems are presented in a case history of a 412-mile pipeline construction project in New Mexico. Planning, implementation and monitoring for restoration of surface hydrology, soil stabilization, soil cover, and plant species succession are discussed. Planning...

  13. 75 FR 4134 - Pipeline Safety: Leak Detection on Hazardous Liquid Pipelines

    Science.gov (United States)

    2010-01-26

    ... safety study on pipeline Supervisory Control and Data Acquisition (SCADA) systems (NTSB/SS-05/02). The... indications of a leak on the SCADA interface was the impetus for this study. The NTSB examined 13 hazardous... pipelines, the line balance technique for leak detection can often be performed with manual calculations...

  14. 77 FR 32631 - Lion Oil Trading & Transportation, Inc., Magnolia Pipeline Company, and El Dorado Pipeline...

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR12-13-000] Lion Oil... of the Commission's Rules of Practice and Procedure, 18 CFR 385.202 (2011), Lion Oil Trading & Transportation, Inc., Magnolia Pipeline Company, and El Dorado Pipeline Company, collectively, Lion Companies...

  15. The Dangers of Pipeline Thinking: How the School-to-Prison Pipeline Metaphor Squeezes out Complexity

    Science.gov (United States)

    McGrew, Ken

    2016-01-01

    In this essay Ken McGrew critically examines the "school-to-prison pipeline" metaphor and associated literature. The origins and influence of the metaphor are compared with the origins and influence of the competing "prison industrial complex" concept. Specific weaknesses in the "pipeline literature" are examined.…

  16. New application technology for 'in situ' pipeline protection using pigging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pretorius, Louis Charles [Corrocoat SA (PTY) Ltd., Durban (South Africa)

    2005-07-01

    Pigging of long pipelines is a technique for in situ (field) coating, creating seamless internal structural linings. Originally developed for cleaning pipes, the system was adapted to apply internal anti-corrosion protection to pipes using a thin epoxy layer, which had some problems in weld coverage, stress cracking, poor cold weather curing and the inability to fill pitting corrosion metal loss. New coating materials, revised application methods and modified pigging equipment have made it possible to apply in situ liquid film coatings up to 1 mm thick, as an internal corrosion barrier to pipes, in a single application (similar to continuous screeding) resulting in a bonded 'GRP pipe within a steel pipe'. The method can be used for new projects on fully welded pipe lines avoiding coating problems associated with flange joints and/or couplings, or for refurbishment of old pipelines, varying from 150-900 mm diameter, up to 12 km long. Pipes can be buried, submerged, continuously welded or flanged. Many different pipes, such as oil platform to shore based pipelines, can all be treated using this method. Thick film polymer pigging techniques create new possibilities for Engineers to extend the life of pipeline systems, with significant cost savings compared to replacement pipe. (author)

  17. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines

    International Nuclear Information System (INIS)

    Briottet, L.; Batisse, R.; De Dinechin, G.; Langlois, P.; Thiers, L.

    2012-01-01

    By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility. (authors)

  18. Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines

    Directory of Open Access Journals (Sweden)

    Ciro Apollonio

    2016-01-01

    Full Text Available One of the main issues arising during the rapid filling of a pipeline is the pressure transient which originates after the entrapped air has been expelled at the air release valve. Because of the difference in density between water and air, a pressure transient originates at the impact of the water column. Many authors have analyzed the problem, both from the theoretical and the experimental standpoint. Nevertheless, mainly vertical or horizontal pipelines have been analyzed, whereas in real field applications, the pipe profile is a sequence of ascending and descending pipes, with air release/vacuum valves at high points. To overcome lack of knowledge regarding this latter case, laboratory experiments were carried out to simulate the filling of an undulating pipeline, initially empty at atmospheric pressure. The pipe profile has a high point where an orifice is installed for air venting, so as to simulate the air release valve at intermediate high point of a supply pipeline. In the experiments, the diameter of the orifice and the opening degree of both upstream and downstream valves were varied, in order to analyze their effect on the pressure transient. The experiments were also carried out with a longer descending pipe, in order to assess the effects on the pressure surge of the air volume downstream of the orifice.

  19. A novel approach to pipeline tensioner modeling

    Energy Technology Data Exchange (ETDEWEB)

    O' Grady, Robert; Ilie, Daniel; Lane, Michael [MCS Software Division, Galway (Ireland)

    2009-07-01

    As subsea pipeline developments continue to move into deep and ultra-deep water locations, there is an increasing need for the accurate prediction of expected pipeline fatigue life. A significant factor that must be considered as part of this process is the fatigue damage sustained by the pipeline during installation. The magnitude of this installation-related damage is governed by a number of different agents, one of which is the dynamic behavior of the tensioner systems during pipe-laying operations. There are a variety of traditional finite element methods for representing dynamic tensioner behavior. These existing methods, while basic in nature, have been proven to provide adequate forecasts in terms of the dynamic variation in typical installation parameters such as top tension and sagbend/overbend strain. However due to the simplicity of these current approaches, some of them tend to over-estimate the frequency of tensioner pay out/in under dynamic loading. This excessive level of pay out/in motion results in the prediction of additional stress cycles at certain roller beds, which in turn leads to the prediction of unrealistic fatigue damage to the pipeline. This unwarranted fatigue damage then equates to an over-conservative value for the accumulated damage experienced by a pipeline weld during installation, and so leads to a reduction in the estimated fatigue life for the pipeline. This paper describes a novel approach to tensioner modeling which allows for greater control over the velocity of dynamic tensioner pay out/in and so provides a more accurate estimation of fatigue damage experienced by the pipeline during installation. The paper reports on a case study, as outlined in the proceeding section, in which a comparison is made between results from this new tensioner model and from a more conventional approach. The comparison considers typical installation parameters as well as an in-depth look at the predicted fatigue damage for the two methods

  20. Pipeline capacity and heavy oil markets

    International Nuclear Information System (INIS)

    Scott, G.R.

    1993-01-01

    Aspects of transporting heavy crude to markets from Canadian sources are discussed, with reference to pipeline expansion, western Canadian crude supply, and exports to various Petroleum Administration for Defense Districts (PADDs) in the USA. Pipeline expansions have been proposed by Interprovincial Pipeline, Trans Mountain Pipeline, Rangeland, and Wascana, and some of these proposals are in the review stage. Western Canadian crude supply is expected to peak at 1.9 million bbl/d in 1996. An increase in heavy crude supply is expected but this increase will not be sufficient to offset a decline in light crude supply. Adequate pipeline capacity should exist with the Interprovincial expansion volume of 170,000 bbl/d and the Trans Mountain expansion of 38,000 bbl/d forecast to be in place by 1995. Canadian crude exports to the USA have steadily increased since 1989, and heavy crude exports have grown an average of 20,000 bbl/d each year. In PADD Region IV, oil production is declining and ca 20,000 bbl/d of heavy crude will be needed by the year 2000; additional pipeline capacity will be required. In PADD Region II, Canadian heavy crude imports are ca 390,000 bbl/d and further market opportunities exist, after the Interprovincial expansion is complete. When the various combinations of possible pipeline expansions or reversals are considered, a range of heavy crude near-term growth potentials is obtained in which Canadian heavy oil would displace offshore heavy oil supplied to USA refineries. This potential is seen to range from 35,000 bbl/d to 200,000 bbl/d. 7 refs., 20 figs., 3 tabs