WorldWideScience

Sample records for heating equipment

  1. Space Heating Equipment

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  2. Chapter 12. Space Heating Equipment

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  3. 46 CFR 121.210 - Heating equipment.

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Heating equipment. 121.210 Section 121.210 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... SYSTEMS AND EQUIPMENT Cooking and Heating § 121.210 Heating equipment. (a) Each heater must be so...

  4. 46 CFR 184.210 - Heating equipment.

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Heating equipment. 184.210 Section 184.210 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.210 Heating equipment...

  5. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT

    KRISHNA, C.R.

    2001-01-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible

  6. 46 CFR 169.685 - Electric heating and cooking equipment.

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Electric heating and cooking equipment. 169.685 Section... More on Vessels of Less Than 100 Gross Tons § 169.685 Electric heating and cooking equipment. (a) Each...) All electric cooking equipment, attachments, and devices, must be of rugged construction and so...

  7. Reliability problems of heat transfer equipment

    Collier, J.G.

    1983-01-01

    A short historical account is given of the development of pressure vessel codes. The subject is then discussed under the headings: the cost of heat exchanger unreliability; degraded performance or failure; fouling; mal-distribution of flow; corrosion; erosion; vibration; thermal fatigue; corrosion fatigue; mal-operation; water hammer; conclusions. (U.K.)

  8. Methods for tube attachment in a heat exchange equipment

    Shilin, O.V.; Vasil'ev, V.B.

    1984-01-01

    Two main ways of attaching tubes to tube panels in heat exchange equipment are analyzed: expanding and pulse method (by explosion, for instance). Labour-consumption and cost price for the fastening of brass, perlitic and corrosion-resistant tubes for both of the methods are presented. The extent of fitting out with equipment for tube fixing and ways of testing the joints for attachment are evaluated. Measures for improving the joint quality and introduction of the advanced technology are suggested

  9. Temperature Assessment of Heating Stage for a Thermoforming Equipment

    Mohd Ghazali, F.A.; Ab Rahim, M.F.; Jaafar, A.A.; Ahmad, M.N.

    2016-01-01

    Thermoforming is a well-known manufacturing process in the productions of various plastic household and industrial solutions. The heating of a plastic sheet allows the plastic to soften and within its forming window temperature the sheet can replicate a required shape when pressed against a mould. Hence, the heating process is an important thermoforming stage that determine uniformity of the material distribution. This article proposed an experimental approach to investigate the thermal characteristics of the heating section of a low cost thermoforming equipment designed for teaching and research purposes. The temperatures of air and a model of a stretched heated plastic sheet were measured and analysed. The experimental data indicates that the spatial temperatures distribution was not localised and the temperature history of the infrared heating agrees well with those given by fast response thermocouples. The findings suggest that the spatial uniformity of temperature can be reasonably evaluated by using the proposed method. (paper)

  10. Restoration to serviceability of Bruce 'A' heat transfer equipment

    Gammage, D.; Machowski, C.; McGillivray, R.; Durance, D.; Kazimer, D.; Werner, K.

    2009-01-01

    Bruce Units 1 to 4 were shut down during the 1990s by the former Ontario Hydro, due in part to a long list of system and equipment deficiencies and concerns, including steam generator tube degradation as a consequence of the then-existing steam generator secondary side water chemistry conditions. Upon its creation in 2001, and following a program of condition assessment, Bruce Power was able to determine that Units 3 and 4 could return to service; but that Units 1 and 2 would require refurbishment. That Refurbishment Program, which is currently well advanced, included the re-assessment of the condition of equipment throughout the plant including the heat transfer equipment; and determination item-by-item as to what inspection, cleaning, repair, or even replacement would be required to put the equipment into a condition where it could be expected to operate reliably for the additional 30 years expected from the plant. Clearly the objective is to suitably restore the equipment to serviceability without doing more refurbishment work than is warranted - without replacing equipment except where absolutely necessary. The first task in such a program is determination of its scope - i.e. a listing of all heat exchangers. That list included everything from the steam generators (which required replacement, now completed), to much smaller heat exchangers in the heavy water upgrader systems (which were found to be in very good overall condition). There is also a very large number of other so-called 'balance-of-plant' heat exchangers; these include the maintenance coolers, moderator heat exchangers, shutdown coolers and a whole raft of smaller coolers - many of which are cooled directly by lake water with its potential for bio-fouling and 'BIC' (Biologically Induced Corrosion). This paper focuses primarily on the engineering assessment, inspection, repair and general refurbishment of the balance-of-plant heat exchangers. As will be discussed in the paper, the assessment of the

  11. Impacts of Water Quality on Residential Water Heating Equipment

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  12. Market Potential for Residential Biomass Heating Equipment: Stochastic and Econometric Assessments

    Adee Athiyaman

    2015-01-01

    This paper provides estimates of market potential for biomass-residential-heating equipment in the US: that is, the greatest amount of biomass-residential-heating equipment that can be sold by the industry. The author's analysis is limited to biomass equipment used most to heat the housing unit. Assuming that households equipped with 10+ year old primary heating devices will replace rather than repair the devices he predicts that approximately 1.4 million units of residential home heating equ...

  13. Corrosion resistance of heat exchange equipment in hydrotreating Orenburg Condensate

    Teslya, B.M.; Burlov, V.V.; Parputs, I.V.; Parputs, T.P.

    1986-01-01

    The authors study the corrosion resistance of materials of construction and select appropriate materials for the fabrication of heat exchange equipment that will be serviceable under hydrotreating conditions. This paper discusses the Orenburg condensate hydrotreating unit which has been shut down repeatedly for repair because of corrosion damage to components of heat exchangers in the reactor section: tube bundles (08Kh18N10T steel), corrugated compensators (12Kh18N10T steel), and pins of the floating heads (37Kh13N8G8MFB steel). The authors recommend that the tube bundles and the compensators in heat exchangers in the reaction section should be fabricated of 08Kh21N6M2T or 10Kh17N13M2T steel. The pins have been replaced by new pins made of 10Kh17N13 X M2T steel, increasing the service life from 6-12 months to 2 years

  14. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  15. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  16. 49 CFR 176.93 - Vehicles having refrigerating or heating equipment.

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vehicles having refrigerating or heating equipment... Transported on Board Ferry Vessels § 176.93 Vehicles having refrigerating or heating equipment. (a) A transport vehicle fitted with refrigerating or heating equipment using a flammable liquid or Division 2.1...

  17. Procedures for selecting and buying district heating equipment. Sofia district heating. Final report

    NONE

    1997-11-01

    The aim of this Final Report, prepared for the project `Procedures for Selecting and Buying DistRict Heating Equipment - Sofia District Heating Company`, is to establish an overview of the activities accomplished, the outputs delivered and the general experience gained as a result of the project. The main objective of the project is to enable Sofia District Heating Company to prepare specifications and tender documents, identify possible suppliers, evaluate offers, etc. in connection with purchase of district heating equipment. This objective has been reached by using rehabilitation of sub-stations as an example requested by Sofia DH. The project was originally planned to be finalized end of 1995, but due to the extensions of the scope of work, the project has been prolonged until end 1997. The following main activities were accomplished: Preparation of a detailed work plan; Collection of background information; Discussion and advice about technical specifications and tender documents for sub-station rehabilitation; Input to terms of reference for a master plan study; Input to technical specification for heat meters; Collection of ideas for topics and examples related to dissemination of information to consumers about matters related to district heating consumption. (EG)

  18. Design guide for heat transfer equipment in water-cooled nuclear reactor systems

    1975-07-01

    Information pertaining to design methods, material selection, fabrication, quality assurance, and performance tests for heat transfer equipment in water-cooled nuclear reactor systems is given in this design guide. This information is intended to assist those concerned with the design, specification, and evaluation of heat transfer equipment for nuclear service and the systems in which this equipment is required. (U.S.)

  19. The local heat treatment equipment and technology of the pipelines welded joints

    Korol'kov, P.M.

    1998-01-01

    The principal methods and equipment for local treatment of the pipe-lines weld joints in different industry branches is described. Recommendations about heat treatment equipment and technology application are given

  20. 46 CFR 130.220 - Design of equipment for cooking and heating.

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Design of equipment for cooking and heating. 130.220... Design of equipment for cooking and heating. (a) Doors on each cooking appliance must be provided with heavy-duty hinges and locking-devices to prevent accidental opening in heavy weather. (b) Each cooking...

  1. 78 FR 63410 - Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment...

    2013-10-24

    ... test procedures for direct heating equipment and pool heaters established under the Energy Policy and... U.S.C. 6293(e)(2)) The current energy conservation standards for direct heating equipment and pool... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2013-BT-TP-0004] RIN 1904-AC94 Energy...

  2. Development and fabrication of heat-sterilizable inhalation therapy equipment

    Irons, A. S.

    1974-01-01

    The development of a completely heat sterilizable intermittent positive pressure breathing (IPPB) ventilator in an effort to reduce the number of hospital acquired infections is reported. After appropriate changes in materials and design were made, six prototype units were fabricated and were successfully field tested in local hospitals. Most components of the modified ventilators are compatible with existing machines. In all but a few instances, such as installation of bacteria-retentive filters and a modified venturi, the change over from non-heat-sterilizable to sterilizable units was accomplished by replacement of heat labile materials with heat stable materials.

  3. Structural steels for power generating equipment and heat and chemical heat treatments

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  4. A novel circuit topology of modified switched boost hybrid resonant inverter fitted induction heating equipment

    Bhattacharya Ananyo

    2016-12-01

    Full Text Available A novel circuit topology of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment is presented in this paper for efficient induction heating. Recently, induction heating technique is becoming very popular for both domestic and industrial purposes because of its high energy efficiency and controllability. Generally in induction heating, a high frequency alternating magnetic field is required to induce the eddy currents in the work piece. High frequency resonant inverters are incorporated in induction heating equipment which produce a high frequency alternating magnetic field surrounding the coil. Previously this high frequency alternating magnetic field was produced by voltage source inverters. But VSIs have several demerits. So, in this paper, a new scheme of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment has been depicted which enhances the energy efficiency and controllability and the same is validated by PSIM.

  5. Evaporation equipment with electron beam heating for the evaporation of metals and other conducting materials

    Mueller, P.

    1977-01-01

    Equipment for the evaporation of metals and other conducting materials by electron beam heating is to be improved by surrou nding the evaporation equipment with a grid, which has a negative voltage compared to the cathode. This achieves the state where the cathode is hit and damaged less by the ions formed, so that its life period is prolonged. (UWI) [de

  6. Development of drying equipment for heat sensitive material : final report

    Schoenau, G.J.; Sokhansanj, S. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2003-07-01

    This paper described a project in which two types of prototype heat pump dryer systems were designed, constructed and field tested in 2000 to 2002. Performance testing was accomplished through a computer based simulation model for predicting dryer performance. The paper describes the procedures followed and the results obtained. The dryer is used for high value specialty crops such as ginseng, herbs and echinacea which require low temperature drying. The heat pump dryer operates under a closed loop and can dry these crops at low temperatures, independent of ambient conditions. The first prototype was a small fixed bed cabinet dryer suitable for small growers. The other was a full scale prototype moving bed cross flow system suitable for large scale commercial drying of sensitive agricultural crops. The heat pump system is faster and more energy efficient than conventional dryers. The average moisture content of ginseng roots was reduced by 10 per cent in 5 days using 190 kWh of energy. The heat pump dryer is 22 per cent more efficient than a conventional dryer due to its recirculating system. Drying time is reduced by 65 per cent. A computerized simulation validated experimental results. 30 refs., 10 tabs., 29 figs.

  7. Power enhancement of piezoelectric transformers by adding heat transfer equipment.

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Wu, Wen-Jong; Costa, François; Lee, Chih-Kung

    2012-10-01

    It is known that piezoelectric transformers have several inherent advantages compared with conventional electromagnetic transformers. However, the maximum power capacity of piezoelectric transformers is not as large as electromagnetic transformers in practice, especially in the case of high output current. The theoretical power density of piezoelectric transformers calculated by stress boundary can reach 330 W/cm(3), but no piezoelectric transformer has ever reached such a high power density in practice. The power density of piezoelectric transformers is limited to 33 W/cm(3) in practical applications. The underlying reason is that the maximum passing current of the piezoelectric material (mechanical current) is limited by the temperature rise caused by heat generation. To increase this current and the power capacity, we proposed to add a thermal pad to the piezoelectric transformer to dissipate heat. The experimental results showed that the proposed techniques can increase by 3 times the output current of the piezoelectric transformer. A theoretical-phenomenological model which explains the relationship between vibration velocity and generated heat is also established to verify the experimental results.

  8. Heat exchanger designed as longitudinal counter flow equipment

    Ecker, H.

    1976-01-01

    An improvement for heat exchangers is described, which should make them suitable for use in a closed gas turbine cycle or in the primary loop of a gas-cooled high-temperature reactor with a helium turbine, as they have a small volume. It is proposed that the bundles of tubes should be divided into separate boxes, which are arranged in a hexagonal grid; the return pipes are arranged in a sheath in the centre of this grid and are welded to the cover of this. The subdivision into separate boxes makes maintenance easier. Constructional details are given, and there are 9 drawings. (UWI) [de

  9. System constitution of plasma high frequency heating device and element equipment

    Nagashima, Takashi

    1988-01-01

    On the high frequency heating device used for nuclear fusion experiment, the system constitution and the main items of development for the element equipment are described. As for the high frequency heating device, large technical progress was observed in the past 10 years as the second stage heating for tokamaks and one of the main means of current drive. At present, three frequency zones are regarded as promising for plasma high frequency heating in large nuclear fusion devices, and the experiment of 10 MW class is in progress at JT-60, JET and so on. There are electron cyclotron heating, lower hybrid resonance frequency heating and ion cyclotron range of frquency heating. The basic constitution of these heating devices includes a high frequency source, a transmission system, a connection system, and a common system for control, cooling, record and others. The ECH device using gyrotrons of several tens GHz, the LHRF heating device using large power klystrons up to several GHz and the ICRF heating device up to 200 MHz are briefly explained. The main element equipments composing the high frequency heating systems of several tens MW are discussed. (Kako, I.)

  10. Interotex-innovative gas equipment for heating and cooling

    Winnington, T.L. [Interotex Ltd. (United Kingdom); Moore, N. [British Gas plc (United Kingdom); Valle, F.; Sanz, J. I. [Gas Natural SDG S.A. (Spain); Chavarri, J.M. [Fagor Electrodomesticos S. Coop. (Spain); Uselton, R. [Lennox Industries Inc. (United States)

    1997-10-01

    Conventionally, cooling technology for the residential market is provided by electrically driven vapour re-compression systems. But lately, due to the Montreal Protocol - restricting the utilisation of ozone depleting substances - and to the high peak demand in electricity, created by electrical air conditioning systems, there is a commercial opportunity for gas fired air conditioning appliances. This paper describes the development programme for a radical new absorption technology, from the theoretical studies, through the experimental programme, to the building, commissioning and installation of demonstration machines. It also includes an analysis of the world-wide residential cooling market and the opportunities available to manufacturers and gas utilities to introduce new gas heating and cooling technology, capable of competing effectively with electrical systems. (au)

  11. 'Better feedwater quality through heat exchange equipment renovation'

    Pouzenc, C.

    2002-01-01

    In a fossil-fired or nuclear steam power plant, the water secondary circuit is a critical part of its thermodynamic cycle, as it achieves conditioning, pressurizing and heating of the condensate to match the conditions required at the steam generator inlet. Furthermore, the power plant electrical output and efficiency depend on availability and performances of each component of this secondary circuit from the condenser to the steam generator. Erosion and corrosion phenomena are at the origin of most significant failures in these components and related interconnecting systems. Feedwater chemistry is, together with the selection of materials and optimization of fluid velocities, one of the key levers to protect, as efficiently as possible, the components of the water secondary. (authors)

  12. Buyers guide of industrial furnaces and heating equipment. Bau und Ausruestung von Industrieoefen und industriellen Waermeanlagen: Bezugsquellenverzeichnis

    Stepanek, J [comp.

    1988-01-01

    The book is a glossary as well as a dictionary (German, English, French, Spanish). It comprises the following chapters: 1. Trade directory. 2. Industrial furnaces and industrial heating equipment. 3. Index to thermal processes. 4. Index to industrial furnaces and industrial heating equipment. 5. General accessories. 6. Special accessories. 7. Accessories for firing equipment. 8. Addresses. 9. Codes of practice. (HW).

  13. Thermal fatigue equipment to test joints of materials for high heat flux components

    Visca, E.; Libera, S.; Orsini, A.; Riccardi, B.; Sacchetti, M.

    2000-01-01

    The activity, carried out in the framework of an ITER divertor task, was aimed at defining a suitable method in order to qualify junctions between armour materials and heat sink of plasma-facing components (PFCs) mock-ups. An equipment able to perform thermal fatigue testing by electrical heating and active water-cooling was constructed and a standard for the sample was defined. In this equipment, during operation cycles, two samples are heated by thermal contact up to a relevant temperature value (350 deg. C) and then the water flow is switched on, thus producing fast cooling with time constants and gradients close to the real operating conditions. The equipment works with a test cycle of about 60 s and is suitable for continuous operation. A complete test consists of about 10000 cycles. After the assembling, the equipment and the control software were optimized to obtain a good reliability. Preliminary tests on mock-ups with flat CFC tiles joined to copper heat sink were performed. Finite-elements calculations were carried out in order to estimate the value of the thermal stresses arising close to the joint under the transient conditions that are characteristic of this equipment

  14. Identification of critical equipment and determination of operational limits in helium refrigerators under pulsed heat load

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2014-01-01

    Large-scale helium refrigerators are subjected to pulsed heat load from tokamaks. As these plants are designed for constant heat loads, operation under such varying load may lead to instability in plants thereby tripping the operation of different equipment. To understand the behavior of the plant subjected to pulsed heat load, an existing plant of 120 W at 4.2 K and another large-scale plant of 18 kW at 4.2 K have been analyzed using a commercial process simulator Aspen Hysys®. A similar heat load characteristic has been applied in both quasi steady state and dynamic analysis to determine critical stages and equipment of these plants from operational point of view. It has been found that the coldest part of both the cycles consisting JT-stage and its preceding reverse Brayton stage are the most affected stages of the cycles. Further analysis of the above stages and constituting equipment revealed limits of operation with respect to variation of return stream flow rate resulted from such heat load variations. The observations on the outcome of the analysis can be used for devising techniques for steady operation of the plants subjected to pulsed heat load.

  15. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  16. TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts

    Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.

    2018-05-01

    Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.

  17. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    2010-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Canning and Canned... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Equipment and procedures for heat processing systems. 381.305 Section 381.305 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE...

  18. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    2010-01-01

    ... processing systems. 318.305 Section 318.305 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION... PREPARATION OF PRODUCTS Canning and Canned Products § 318.305 Equipment and procedures for heat processing...

  19. Rehabilitation of heat exchange equipment a key to power plant life extension and performance improvement

    Taveau, F.; Huiban, A.M. [Alstom Power Heat Exchange, 78 - Velizy Villacoublay (France)

    2001-07-01

    With the current evolutions of the energy market and the life extension of the power plants, all the equipment initially supplied need one day or another partial or total rehabilitation. For heat exchange equipment, this includes the condensers, feed water heaters and various heat exchangers. Modernization is in particular necessary when in-service monitoring and periodic inspections show significant deteriorations of the tubes and cooling water leakages leading to forced outages or when tube and tube plate materials are no longer suited to cooling water characteristics or to updated specifications of the secondary system. Feedwater heaters and heat exchangers damaged by erosion/corrosion, vibrations, etc. can be re-designed, manufactured and replaced easily. The operation is more complex on condensers and requires technical surveys, study of alternative solutions and has a more direct impact on the global output of the power plant. That is why our conference will focus on the condenser refurbishment. (author)

  20. Rehabilitation of heat exchange equipment a key to power plant life extension and performance improvement

    Taveau, F.; Huiban, A.M.

    2001-01-01

    With the current evolutions of the energy market and the life extension of the power plants, all the equipment initially supplied need one day or another partial or total rehabilitation. For heat exchange equipment, this includes the condensers, feed water heaters and various heat exchangers. Modernization is in particular necessary when in-service monitoring and periodic inspections show significant deteriorations of the tubes and cooling water leakages leading to forced outages or when tube and tube plate materials are no longer suited to cooling water characteristics or to updated specifications of the secondary system. Feedwater heaters and heat exchangers damaged by erosion/corrosion, vibrations, etc. can be re-designed, manufactured and replaced easily. The operation is more complex on condensers and requires technical surveys, study of alternative solutions and has a more direct impact on the global output of the power plant. That is why our conference will focus on the condenser refurbishment. (author)

  1. Method and equipment to utilize solar heat. [paraffin used as heat storage material

    Poellein, H

    1976-09-16

    In this process, solar radiation is converted into heat by means of absorbers. The heat transferred to a liquid is led in forced circulation, first into a heat storage device and then into a water heater. The cooled-down liquid is rercirculated. The storage material used here is paraffin. A measuring and control device is provided to switch from periods with solar radiation to periods where only stored energy is consumed. This device consists of a photocell measuring the incoming sunlight and a temperarure sensor. The control system is put into operation by a combination of the two measured values. The heat accumulator consists of several elements connected in parallel. A control device makes sure that only one accumulator element at a time is part of the circuit. The absorbers, as usual, consists of the absorber plate proper and a cover plate.

  2. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Jandačka J.

    2013-04-01

    Full Text Available Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe. Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  3. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Kaduchová, K.; Lenhard, R.; Gavlas, S.; Jandačka, J.

    2013-04-01

    Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe). Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  4. Investigations of heat-hydraulic noises in the equipment for creation of power-saving technologies

    Proskuryakov, K.N.

    2000-01-01

    The results of experimental and theoretical studies on the parameters of vibroacoustic signals, originating in the TPP and NPP thermal energy equipment, are presented. The methods for calculation and identification of the heat-hydraulic perturbation sources, intended for improving the means of early diagnostics of anomalies in the technological process, forecasting their development, increasing the maintenance work efficiency and operational safety, as well as for creating power-saving technologies in the power engineering, are developed [ru

  5. [Automated analysis of bacterial preparations manufactured on automatic heat fixation and staining equipment].

    2012-01-01

    Heat fixation of preparations was made in the fixation bath designed by EMKO (Russia). Programmable "Emkosteiner" (EMKO, Russia) was used for trial staining. Reagents set Micko-GRAM-NITsF was applied for Gram's method of staining. It was demostrated that automatic smear fixation equipment and programmable staining ensure high-quality imaging (1% chromaticity variation) good enough for standardization of Gram's staining of microbial preparations.

  6. A Materials and Equipment Review of Selected U.S. Geothermal District Heating Systems

    Rafferty, K D [P.E.

    0000-12-30

    Geothermal district heating systems are now quite common in the western U.S. A recent survey identified a total of 17 such systems. The performance of materials and equipment in 13 of these systems is reviewed in this paper. Specific areas covered include: production facilities, central plants, distribution, customer connection, metering and disposal. Those areas: characterized by the highest incidence of problems include: production well pumps, customer branch piping and energy metering.

  7. Nuclear reactor equipped with a flooding tank and a residual heat removal and emergency cooling system

    Schabert, H.P.; Winkler, F.

    1975-01-01

    A description is given of a nuclear reactor such as a pressurized-water reactor or the like which is equipped with a flooding tank and a residual heat removal and emergency cooling system. The flooding tank is arranged within the containment shell at an elevation above the upper edge of the reactor core and contains a liquid for flooding the reactor core in the event of a loss of coolant

  8. A model predictive framework of Ground Source Heat Pump coupled with Aquifer Thermal Energy Storage System in heating and cooling equipment of a building

    Rostampour Samarin, V.; Bloemendal, J.M.; Keviczky, T.

    2017-01-01

    This paper presents a complete model of a building heating and cooling equipment and a ground source heat pump (GSHP) coupled with an aquifer thermal energy storage (ATES) system. This model contains detailed
    mathematical representations of building thermal dynamics, ATES system dynamics, heat

  9. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  10. Equipment for the emplacement of heat-producing waste in long horizontal boreholes

    Young, K.D.; Scully, L.W.; Fisk, A.; deBakker, P.; Friant, J.; Anderson, A.

    1983-01-01

    Emplacement of heat-producing waste in long horizontal holes may offer several technical and economic advantages over shallow vertical hole emplacement. Less of the host rock suffers damage as a result of drift construction; the heat from the waste can be isolated from the access drifts for long periods of time; and the amount of rock which must be excavated is much less than in traditional disposal scenarios. One of the major reasons that has been used to reject the long hole concept in the past and adhere to the shallow vertical hole concept is the equipment required to drill the holes and to emplace and retrieve the waste. Such equipment does not currently exist. It clearly is more difficult to drill a 600 to 1000 foot horizontal hole, possibly 3 to 4 feet in diameter, and place a canister of waste at the end of it than to drill a 30 foot vertical hole and lower the waste to the bottom. A liner, for emplacement hole stabilization, appears to be feasible by adapting existing technology for concrete slip forming or jacking in a steel liner. The conceptual design of the equipment to drill long horizontal holes, emplace waste and retrieve waste will be discussed. Various options in concept will be presented as well as their advantages and disadvantages. The operating scenario of the selected concept will be described as well as solutions to potential problems encountered

  11. Equipment for the emplacement of heat-producing waste in long horizontal boreholes

    Young, K.D.; Fisk, A.; Friant, J.; Scully, L.W.

    1983-01-01

    Emplacement of heat-producing waste in long horizontal holes may offer several technical and economic advantages over shallow vertical hole emplacement. Less of the host rock suffers damage as a resul of drift construction; the heat from the waste can be isolated from the access drifts for long periods of time; and the amount of rock which must be excavated is much less than in traditional disposal scenarios. One of the major reasons that has been used to reject the long hole concept in the past and adhere to the shallow vertical hole concept is the equipment required to drill the holes and to emplace and retrieve the waste. Such equipment does not currently exist. It clearly is more difficult to drill a 600 to 100 foot horizontal hole, possibly 3 to 4 feet in diameter, and place a canister of waste at the end of it than to drill a 30 foot vertical hole and lower the waste to the bottom. A liner, for emplacement hole stabilization, appears to be feasible by adapting existing technology for concrete slip forming or jacking in a steel liner. The conceptual design of the equipment to drill long horizontal holes, emplace waste and retrieve waste is discussed. Various options in concept are presented as well as their advantages and disadvantages. The operating scenario of the selected concept is described as well as solutions to potential problems encountered

  12. Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment

    Somasundaram, Sriram; Armstrong, Peter R.; Belzer, David B.; Gaines, Suzanne C.; Hadley, Donald L.; Katipumula, S.; Smith, David L.; Winiarski, David W.

    2000-04-25

    The Energy Policy and Conservation Act (EPCA) as amended by the Energy Policy Act of 1992 (EPACT) establishes that the U.S. Department of Energy (DOE) regulate efficiency levels of certain categories of commercial heating, cooling, and water-heating equip-ment. EPACT establishes the initial minimum efficiency levels for products falling under these categories, based on ASHRAE/IES Standard 90.1-1989 requirements. EPCA states that, if ASHRAE amends Standard 90.1-1989 efficiency levels, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in the amended Standard 90.1 and that it can establish higher efficiency levels if they would result in significant additional energy savings. Standard 90.1-1999 increases minimum efficiency levels for some of the equipment categories covered by EPCA 92. DOE conducted a screening analysis to determine the energy-savings potential for EPACT-covered products meet and exceeding these levels. This paper describes the methodology, data assumptions, and results of the analysis.

  13. Heat transfer characteristics in a sudden expansion pipe equipped with swirl generators

    Zohir, A.E.; Abdel Aziz, A.A.; Habib, M.A.

    2011-01-01

    This investigation is aimed at studying the heat transfer characteristics and pressure drop for turbulent airflow in a sudden expansion pipe equipped with propeller type swirl generator or spiral spring with several pitch ratios. The investigation is performed for the Reynolds number ranging from 7500 to 18,500 under a uniform heat flux condition. The experiments are also undertaken for three locations for the propeller fan (N = 15 blades and blade angle of 65 o ) and three pitch ratios for the spiral spring (P/D = 10, 15 and 20). The influences of using the propeller rotating freely and inserted spiral spring on heat transfer enhancement and pressure drop are reported. In the experiments, the swirl generator and spiral spring are used to create a swirl in the tube flow. Mean and relative mean Nusselt numbers are determined and compared with those obtained from other similar cases. The experimental results indicate that the tube with the propeller inserts provides considerable improvement of the heat transfer rate over the plain tube around 1.69 times for X/H = 5. While for the tube with the spiral spring inserts, an improvement of the heat transfer rate over the plain tube around 1.37 times for P/d = 20. Thus, because of strong swirl or rotating flow, the propeller location and the spiral spring pitch become influential on the heat transfer enhancement. The increase in pressure drop using the propeller is found to be three times and for spiral spring 1.5 times over the plain tube. Correlations for mean Nusselt number, fan location and spiral spring pitch are provided.

  14. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  15. Screening analysis for EPACT-covered commercial HVAC and water-heating equipment

    S Somasundaram; PR Armstrong; DB Belzer; SC Gaines; DL Hadley; S Katipumula; DL Smith; DW Winiarski

    2000-05-25

    EPCA requirements state that if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. However, DOE can establish higher efficiency levels if it can show through clear and convincing evidence that a higher efficiency level, that is technologically feasible and economically justified, would produce significant additional energy savings. On October 29, 1999, ASHRAE approved the amended Standard 90.1, which increases the minimum efficiency levels for some of the commercial heating, cooling, and water-heating equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL) to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimates the annual national energy consumption and the potential for energy savings that would result if the EPACT-covered products were required to meet these efficiency levels. The analysis also estimates additional energy-savings potential for the EPACT-covered products if they were to exceed the efficiency levels prescribed in Standard 90-1-1999. In addition, a simple life-cycle cost (LCC) analysis was performed for some alternative efficiency levels. This paper will describe the methodology, data assumptions, and results of the analysis. The magnitude of HVAC and SWH loads imposed on equipment depends on the building's physical and operational characteristics and prevailing climatic conditions. To address this variation in energy use, coil loads for 7 representative building types at 11 climate locations were estimated based on a whole-building simulation.

  16. Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus

    Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

    2013-09-30

    The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air

  17. SPECIFIC DEGRADATION STRUCTURE FEATURES AND MECHANICAL PROPERTIES OF FURNACE AND HEAT POWER EQUIPMENT ELEMENTS AFTER LONG-TERM OPERATION

    F. I. Panteleenko

    2012-01-01

    Full Text Available The paper presents results of investigations on structure and mechanical properties of technological equipment elements made of heat-resistant steels. A scale of chrome and molybdenum steel microstructure degradation based on evaluation of  coagulated carbide size and material mechanical properties (a point from 0-operation without time limits, up to 4-operation prohibition has been proposed in the paper. It has been  established that an analysis of  steel microstructure directly on equipment elements by means of a portable microscope is an efficient express method for evaluation of equipment condition and structures due to control of material structure degradation rate of a diagnosed object.

  18. Development of equipments for remote dismantling of joule heated ceramic melter

    Badgujar, Kiran T.; Usarkar, Sachin G.; Kumar, Binu; Nair, K.N.S.

    2011-01-01

    Joule Heated Ceramic Melter (JHCM) technology has been adopted for industrial scale vitrification of high level liquid waste (HLLW) at Tarapur and Kalpakkam. The melter installed at Advanced Vitrification System (AVS), Tarapur has immobilized 175 m 3 of HLLW in 113 canisters containing 11533Kg of Vitrified Waste Product (VWP). The melter has been in operation for 3 years before shutdown. It is intended to demonstrate the complete procedure of dismantling of Joule Melter in 1:1 scale prior to going in for actual dismantling in the hot cell. The Melter consists of an assembly of Inconel/SS pipes and plates, fuse cast refractories, thermal insulations of various types inside a SS casing and possibly some glass which is left over in the melter. Dismantling of melter involves remote cutting of the outer casing, pipe connections, electrical connections and removal, sizing and packing of internals in a sequential manner to minimise generation of secondary waste. The challenge involves development of remotely operated multi-degrees of freedom fixtures, modification and performance testing of standard industrial cutting and breaking tools and adapting them for remote operations. The work also involves development of equipments for collection of waste generated during the dismantling operation and packaging thus in special packages. Remotely actuated fixtures have been developed for remote top plate and side electrodes cutting. Remotely operated grab has been developed for handling of loose material and grippers have been developed for handling of refractory blocks. Industrial vacuum suction device has been modified into split units to enable for reducing the spread of powder material, while dismantling in progress. The performance test of developed fixtures, equipments, cutting and breaking tools have been carried on 1:1 scale melter model. Various parameters like cutting speed, cutting tool performance, generation of waste volume has been measured and analysed for

  19. Effectiveness-NTU analyses in a double tube heat exchanger equipped with wavy strip considering various angles

    Pourahmad, Saman; Pesteei, S.M.

    2016-01-01

    Highlights: • Double tube heat exchanger equipped with wavy strip turbulators was studied. • The effects of wavy strip angles on the effectiveness were investigated. • Variation of the effectiveness with hot and cold water flow rate was presented. • The effectiveness increases with the decrease of wavy strip angle. • The friction factor increases with the decrease of wavy strip angle. - Abstract: In the present study, effectiveness-NTU analyses in a double tube heat exchanger equipped with wavy strip considering various angles were experimentally studied. Moreover, variation of the effectiveness with hot water Reynolds numbers for different cold water flow rates were presented. These turbulators with different angles of 45°, 60°, 90°, 120° and 150° were made of galvanized plates with thickness of 1 mm and were installed in the inner tube of heat exchanger. The experiments were carried out at Reynolds numbers of 3000–13,500 at turbulent flow regime. Throughout the experiments, hot and cold water flowed through the inner pipe and the space between the pipes (annulus), respectively. It was tried to keep the inlet hot and cold water temperatures at constant values. Effectiveness-NTU analyses were made for the conditions with and without wavy strips including their different angles and compared to each other. Results showed the considerable effect of turbulators on effectiveness (ε) and number of heat transfer units (NTU) of double tube heat exchanger. In addition, some empirical correlations expressing the results were also developed based on curve fitting.

  20. 76 FR 71835 - Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    2011-11-18

    ..., Public Meeting Transcript, No. 14 at pp. 94-95) The Air- conditioning, Heating, and Refrigeration... realistic simulation of a wood burning fire in a wood burning fireplace, not to provide heat. (R.H. Peterson...

  1. Development of a method for calculating steady-state equipment sensible heat ratio of direct expansion air conditioning units

    Xia Liang; Chan, M.Y.; Deng Shiming

    2008-01-01

    A complete set of calculation method for steady-state equipment sensible heat ratio (SHR) for a direct expansion (DX) cooling coil has been developed and reported. The method was based on the fundamentals of energy conservation and heat and mass transfer taking place in the DX cooling coil, and was experimentally validated using an experimental DX A/C rig. With the method developed, the effect of refrigerant evaporating temperature at fixed inlet air conditions on equipment SHR has been theoretically analyzed. The validated method can be useful in further studying the inherent operating characteristics of a DX air conditioning (A/C) unit and in developing suitable control strategies for achieving higher energy efficiency and better indoor thermal environment

  2. Equipment for heating the exhaust gases of internal combustion engines in order to improve afterburning

    Masaki,

    1976-04-15

    The device described here serves to heat exhaust gases of internal combustion engines by heat exchange with hot gases and also, in cold engines, to raise the temperature of the fuel-air mixture drawn in by the engine. The device is installed next to the outlet opening of the engine. It consists of a burner to generate the hot gas, as well as a heat exchanger permitting heat supply to the exhaust gases and a hot-gas line leading to the intake line. Heating of the air is taken in leads to a better atomization of the mixture and thus to improved combustion. Heating of the exhaust gases improves afterburning. The burner generating the hot gas is shut off when the normal operational temperature of the engine is reached. The temperature is controlled by means of a temperature sensor installed in the device.

  3. Behavior of households equipped with fuel oil heating facing the petroleum price sudden increase in 2000; Le comportement des menages equipes de chauffage au fioul face a la brutale augmentation du prix du petrole en 2000

    NONE

    2001-07-01

    This paper analyses the public attitudes facing the sudden increase of the fuel oil increase during the year 2000. This increase has got a great impact on the households equipped with fuel oil heating. The households adapted their strategy to obtain the best prices, to defer the deliveries or to reduce energy consumption by a improve of the heating performances. (A.L.B.)

  4. Investigation of monitoring technologies for heat transfer corrosion in reprocessing equipment

    Tsukatani, I.; Kiuchi, K.

    2004-01-01

    Two types of in-situ monitoring techniques using electrical resistance methods were developed for estimating the wall thinning of heat transfer tubes used in evaporators for Purex process on commercial reprocessing plants. The corrosion rate is accelerated with oxidizer ions formed by the thermal decomposition of nitric acid under heat flux. An in-situ corrosion sensor was developed for estimating the corrosion rate of heat transfer tubes using miniature heat transfer tube specimens under heat flux control. It is possible to simulate the heating condition as same as heat transfer tubes. The applicability was evaluated by setting it in gas-liquid separator in a mock-up evaporator for acid recovery. The sensitivity of electric resistance methods is increased with decreasing the residual thickness of probe tube. The other is the electrical potential drop method using direct current so-called the field signature method. It is applicable to estimate the corrosiveness of reprocessing nitric acid by setting it on the drain tube in evaporator. The sensitivity to the thinning rate of tubes wall machined artificially was obtained within ±10% to the wall thickness. It has the non-sensitive region nearly 0.1mm up to begin working. The practical applicability has been also evaluated by setting it in a mock-up evaporator. (author)

  5. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    Smitka, Martin; Nemec, Patrik; Malcho, Milan

    2014-01-01

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  6. Experimental Analysis of Variable Capacity Heat Pump Systems equipped with a liquid-cooled frequency inverter

    Ebraheem, Thair

    2013-01-01

    Using an inverter-driven compressor in variable capacity heat pump systems has a main drawback, which is the extra loss in the inverter. The present experimental study aims to recover the inverter losses by using brine-cooled and water-cooled inverters, thereby improving the total efficiency of the heat pump system. In order to achieve this goal, a test rig with the air-cooled, water-cooled and brine-cooled inverters is designed and built, and a comparative analysis of the recovered heat, inv...

  7. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    Smitka, Martin, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Nemec, Patrik, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Malcho, Milan, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engeneering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2014-08-06

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  8. Accident alarm equipment for steam generator, especially liquid sodium heated steam generator

    Matal, O.; Jung, J.; Banovec, J.

    1982-01-01

    The alarm equipment consists of a system of sensors mounted onto the steam generator and its accessories. Each of the sensors is used for a different accident characteristic, such as the flow of sodium, the acoustic spectrum, the concentration of hydrogen in sodium. The system of sensors is connected to the common accident alarm system. The equipment will not issue the alarm signal if it receives a message from only one sensor, only when the message is confirmed from other sensors. This excludes false alarm. (M.D.)

  9. Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes

    S. Eiamsa-ard

    2015-09-01

    Full Text Available Titanium dioxide (TiO2 in water as nanofluid was employed for heat transfer enhancement together with overlapped dual twisted tapes (O-DTs. The study encompassed Reynolds numbers from 5400 to 15,200, O-DTs with overlapped twist ratios (yo/y of 1.5, 2.0 and 2.5 and nanofluids with TiO2 volume concentrations (ϕ of 0.07%, 0.14% and 0.21%. The experimental and numerical results indicated that O-DTs with smaller overlapped twisted ratio delivered a stronger swirl intensity and higher turbulent kinetic energy (TKE. The use of O-DTs at the smallest overlapped twist ratio of 1.5 enhanced heat transfer rates up to 89%, friction factor by 5.43 times and thermal performance up to 1.13 times as compared to those of plain tube. In addition, heat transfer increased as TiO2 volume concentration of nanofluid increased, owing to the increases of contact surface and thermal conductivity. The simultaneous use of the O-DTs having twist ratios 1.5 with the nanofluid with TiO2 volume concentration of 0.21% resulted in heat transfer enhancement around 9.9–11.2% and thermal performance improvement up to 4.5% as compared to the use of O-DTs alone. The empirical correlations of heat transfer rate (Nu, friction factor (f and thermal performance (η in a constant wall heat flux tube equipped O-DTs at different overlapped twist ratios (yo/y and volume concentrations of TiO2 nanoparticles (ϕ are also reported for heat transfer applications.

  10. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner...

  11. Modeling Heat Flow In a Calorimeter Equipped With a Textured Solar Collector

    Jaworske, Donald A.; Allen, Bradley J.

    2001-01-01

    Heat engines are being considered for generating electric power for minisatellite applications, particularly for those missions in high radiation threat orbits. To achieve this objective, solar energy must be collected and transported to the hot side of the heat engine. A solar collector is needed having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity. To test candidate solar collector concepts, a simple calorimeter was designed, manufactured, and installed in a bench top vacuum chamber to measure heat flow. In addition, a finite element analysis model of the collector/calorimeter combination was made to model this heat flow. The model was tuned based on observations from the as-manufactured collector/calorimeter combination. In addition, the model was exercised to examine other collector concepts, properties, and scale up issues.

  12. Equipment for secondary water distribution in heat exchanger, especially saturated steam generator for nuclear power plants and heat plants

    Riman, J; Manek, O; Rybnicek, J

    1979-09-15

    A special structure consisting of a system of channels and a distribution plate with ports in-built above the tube-plate of a vertical-type steam generator prevents secondary water vaporization in the space above the tube-plate and thus also salt and sludge sedimentation which causes increased corrosion of heat transfer tubes. The size of the distribution plate ports is variable in the radial direction. The distribution plate is divided by means of the system of channels into at least two parts. The middle section of each part is of the through-flow type.

  13. Development of a tube-type solar still equipped with heat accumulation for irrigation

    Murase, Kazuo; Yamagishi, Yusuke; Iwashita, Yusuke; Sugino, Keita

    2008-01-01

    A tube-type solar still is found to be suitable for use in desert irrigation. The effectiveness of a heat accumulator with regard to distillate productivity is experimentally and numerically verified. The heat accumulator consists of tube bundles immersed in wax in order to utilize the latent heat of wax. The dynamic response to stepwise variation of irradiative intensity verified the contribution of wax to an increase of productivity only when the phase change of wax occurred. The effective distillate productivity was found to be 294.3 g/m 2 during the cyclic stepwise change of irradiative intensity, from 200 to 600 W/m 2 and back. Velocity vectors driven by natural convection and temperature contours estimated by numerical simulation verified the effectiveness of the heat accumulator especially after peak solar intensity. The latent heat of wax effectively contributed to a 15% increase in total distillate productivity per day. The still can feasibly meet irrigation water supply demands above an irrigative threshold of 17 MJ/m 2 d

  14. Numerical simulation of the thermal behavior of heat transfer equipment operated at low temperature

    Pearsica, C.; Zamfirache, M.; Bornea, A.; Gherghinescu, S.

    2003-01-01

    The paper presents a method for calculating the non-steady heat transfer in a shell and tube heat exchanger. The characteristic equations were solved with a Finite Element Method. As the geometry is cylindrical and axial symmetry was assumed, the equations were solved in a two dimensional geometry. The interpolation functions are linear and the Galerkin method was applied. The process occurred without phase change. For the solving of the algebraic equations associated with the differential equations, we used the method of steepest descendent (gradient method). As results, we present the temperature profile for the tube and shell gas. (author)

  15. Teaching Computer-Aided Design of Fluid Flow and Heat Transfer Engineering Equipment.

    Gosman, A. D.; And Others

    1979-01-01

    Describes a teaching program for fluid mechanics and heat transfer which contains both computer aided learning (CAL) and computer aided design (CAD) components and argues that the understanding of the physical and numerical modeling taught in the CAL course is essential to the proper implementation of CAD. (Author/CMV)

  16. 76 FR 43941 - Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    2011-07-22

    ... included the HPBA membership directory, Air-Conditioning, Heating, and Refrigeration Institute (AHRI.... Summary of the Proposed Rule II. History of the Energy Conservation Standards Rulemaking and Current... notice. DOE's rationale is presented in further detail immediately below. II. History of the Energy...

  17. Automatic differentiation for gradient-based optimization of radiatively heated microelectronics manufacturing equipment

    Moen, C.D.; Spence, P.A.; Meza, J.C.; Plantenga, T.D.

    1996-12-31

    Automatic differentiation is applied to the optimal design of microelectronic manufacturing equipment. The performance of nonlinear, least-squares optimization methods is compared between numerical and analytical gradient approaches. The optimization calculations are performed by running large finite-element codes in an object-oriented optimization environment. The Adifor automatic differentiation tool is used to generate analytic derivatives for the finite-element codes. The performance results support previous observations that automatic differentiation becomes beneficial as the number of optimization parameters increases. The increase in speed, relative to numerical differences, has a limited value and results are reported for two different analysis codes.

  18. Composite electric generator equipped with steam generator for heating reactor coolant

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato.

    1997-01-01

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  19. Fluidized-bed incineration plant equipped with waste heat boilers. Developed for mid-size municipalities

    Handa, Hitoshi

    1988-01-20

    A fluidized bed incineration plant with a waste heat boiler was installed to dispose wastes in Sakura City on March, 1987 and has waste disposing capacity of 120tons/d. Sands are fluidized in the furnace at 700-800/sup 0/C and wastes are burned completely for a short time. The waste heat boiler is used to utilize waste heat to send steam to aquiculturing farms and hot water to the community plaza and further supplies steam to two 90kW back pressure turbines for driving forced draft fan used for the incineration plant. Harmful gases in waste gas are removed by the harmful gas eliminator to lower HCl to 120ppm or less and K value of SOx to 9.0 or less and then cleaned gas is exhausted through the electostatic precipitator and the chimney. Dust and fly ash are transferred to a reservior through a superior seal tight air transportation system, pelletized and disposed for land fill. Bulk waste disposing capacity is 50 tons/d and harmful wastes, magnetic materials, unburnable and burnable wastes are classified and separated. Separated iron purity is 95% or more. (4 figs, 2 photos)

  20. Performance Analysis of Window Type Air Conditioning with Addition of Heat Exchanger Equipment

    I Ketut Gede Wirawan

    2012-11-01

    Full Text Available One manner to be used to increase refregration effect is by flowing hot refrigerant out from condensor, it is then touched with the refrigerant out from evaporator on a heat exchanger of counterflow type. Experiment was done by taking samples of pressure at suction (p1 and discharge (p2 of compressor and box temperature (Tr1, Tr2, Tr3, Tr4. By knowing of pressure at suction (p1, the enthalpy into compressor is known. By assuming the process is isentropic (compressor, isobar (condenser and evaporator, and isenthalpy (expansion valve, the enthalpy into condensor, expansion valve and evaporator were known. In 60 minutes, compression work of air conditioning with heat exchanger is 31,588 kJ/kg, and without heat exchanger is 33,796 kJ/kg. Effect refrigeration average with modification is 155,55 kJ/kg and without modification was 153,40 kJ/kg so that coefficient of performance with modification more than without modification. Air conditioning with modification had initial refrigration rate was 67,193 J/s and 0,043 J/s at the end minute, meanwhile, refrigeration without modification had cooling rate at start 66,538 J/s and 0,935 J/s at the end.

  1. Biomass equipments. The wood-fueled heating plants; Materiels pour la biomasse. Les chaudieres bois

    Chieze, B. [SA Compte R, 63 - Arlanc (France)

    1997-12-31

    This paper analyzes the consequences of the classification of biomass fuels in the French 2910 by-law on the classification of biomass-fueled combustion installations. Biomass fuels used in such installations must be only wood wastes without any treatment or coating. The design of biomass combustion systems must follow several specifications relative to the fueling system, the combustion chamber, the heat exchanger and the treatment of exhaust gases. Other technical solutions must be studied for other type of wood wastes in order to respect the environmental pollution laws. (J.S.)

  2. A survey of gas-side fouling in industrial heat-transfer equipment

    Marner, W. J.; Suitor, J. W.

    1983-11-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  3. Energy Efficiency of Technological Equipment at the Economic Agent by Identifying the Points with Recoverable Heat Potential

    Arina Negoiţescu

    2017-11-01

    Full Text Available For an energy-efficient future, the EU needs to step up its efforts to maximize energy savings. In this context, the paper addresses the steps needed to establish energy efficiency measures and proposes effective measures to reduce consumption by recovering large amounts of energy lost to industrial consumers. The points with the highest recoverable energy potential have been identified and it is proposed to install the heat recovery systems on the flue gas exhaust circuits and polluted air from Industrial Technological Equipment (ITE such as dyeing/drying cabins (DDC. Therefore, whenever possible and as small as energy saving, energy recovery solutions at any level, but especially at local level, need to be applied. In conclusion, by concentrating all the energy-saving efforts that are still being wasted, Europe can contribute, by saving energy, to ensuring a sustainable energy future

  4. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  5. Development of corrosion testing equipment under heat transfer and irradiation conditions to evaluate corrosion resistance of materials used in acid recovery evaporator. Contract research

    Motooka, Takafumi; Numata, Masami; Kiuchi, Kiyoshi

    2002-01-01

    We have been evaluated the safety for corrosion of various metals applied to acid recovery evaporators by the mock-up tests using small scaled equipment and the reference tests in laboratories with small specimens. These tests have been conducted under-radioactive environment. The environment in practical reprocessing plants has many radioactive species. Therefore, the effect of irradiation on corrosion should be evaluated in detail. In this study, we have developed the corrosion testing equipment, which is employed to simulate environments in the acid recovery evaporators. This report describes the specification of corrosion testing equipment and the results of primary, reference and hot tests. Using the equipment, the corrosion test under heat transfer and irradiation conditions have been carried out for 930 hours in safety. It is expectable that useful corrosion test data in radioactive environment are accumulated with this equipment in future, and help the adequate choice of corrosion test condition in laboratories. (author)

  6. Evaluation of the efficiency face to the NO{sub x} emissions from European gas-fired heat process equipment

    Fourniguet, M.J.; Quinqueneau, A. [Gaz de France, Saint-Denis la Plaine (France); Karll, B. [Dansk Gasteknisk Center, Hoersholm (Denmark); Breithaupt, P. Gasunie [Gasunie, Groningue (Netherlands); Jonsson, O. [Svensk Gastekniskt Center AB, Malmoe (Sweden); Navarri, P. [CETIAT, Villeurbanne (France)

    1999-10-01

    In the frame of the project, tests have been performed by Gaz de France, CETIAT, DGC, GASUNIE and SGC on 35 European industrial sites in order to depict what the European industry using natural gas as an energy source actually looks like in 1997, the levels of efficiency and nitrogen oxides (NOx) emissions currently being achieved. These 35 industrial sites were chosen among the three following sectors: steam or water boilers, engines or turbines and industrial processes (food processing industry, metallurgy, ceramic, paper and textile industries). The partners focused on relatively new installations or newly retrofitted which were equipped with low NOx technologies. To create an open database between the Partners, a common EXCEL sheet has been defined and used to report the results for the three sectors concerned including principally the following items: General background on the site: it includes the description of the installation, technical characteristics of the furnace, the boiler or the engine, operating scenarios, gas total rating, and depending of the type of installation power density, rated electric power or production rate; Description of the equipment: it includes, if available, the control system of the heating equipment and the low NOx techniques identified; Description of the measurement techniques: In order to compensate for the lack of international standard, this part has been particularly detailed. It includes the description of flue gas analysers (CO, CO{sub 2}, O{sub 2}, NOx, CH{sub 4}, UHC, N{sub 2}O, VOC), metering and pressure and temperature probes in terms of measurement principle, supplier, measurement rang and accuracy and gas calibration. It precise the position of the sampling points and the type of the sampling line; Results: The operating conditions (atmospheric data, type of natural gas burnt during the test and measurement period) are given before the results themselves (complete flue gas analysis and determination of combustion

  7. Heating equipment installation system

    Meuschke, R.E.; Pomaibo, P.P.

    1991-01-01

    Disclosed is a method for installing a heater unit assembly in a reactor pressure vessel for performance of an annealing treatment on the vessel, the vessel having a vertical axis, being open at the top, being provided at the top with a flange having a horizontal surface, and being provided internally, at a location below the flange, with orientation elements which are asymmetrical with respect to the vertical axis, by the steps of: providing an orientation fixture having an upwardly extending guide member and orientation elements and installing the orientation fixture in the vessel so that the orientation elements of the orientation fixture mate with the orientation elements of the pressure vessel in order to establish a defined position of the orientation fixture in the pressure vessel, and so that the guide member projects above the pressure vessel flange; placing a seal ring in a defined position on the pressure vessel flange with the aid of the guide member; mounting at least one vertical, upwardly extending guide stud upon the seal ring; withdrawing the orientation fixture from the pressure vessel; and moving the heater unit assembly vertically downwardly into the pressure vessel while guiding the heater unit assembly along a path with the aid of the guide stud. 5 figures

  8. An experimental investigation of supercritical heat transfer in a three-rod bundle equipped with wire-wrap and grid spacers and cooled by carbon dioxide

    Eter, Ahmad, E-mail: eng.eter@yahoo.com; Groeneveld, Dé, E-mail: degroeneveld@gmail.com; Tavoularis, Stavros, E-mail: stavros.tavoularis@uottawa.ca

    2016-07-15

    Highlights: • Heat transfer at supercritical pressures was studied experimentally in a three-rod bundle equipped with wire-wrap spacers or grid spacers. • Heat transfer deterioration occurred near the heated inlet under certain conditions. • Normal heat transfer was generally comparable to that in a tube and the predictions of a correlation. - Abstract: Heat transfer measurements in a three-rod bundle equipped with wire-wrap and grid spacers were obtained at supercritical pressures in the Supercritical University of Ottawa Loop (SCUOL). The tests were performed using carbon dioxide, as a surrogate fluid for water, flowing upwards for wide ranges of conditions, including conditions equivalent to the nominal and near-normal operating conditions of the proposed Canadian Super-Critical Water-Cooled Reactor. The test section contained three heated rods and three unheated rod segments with an outer diameter of 10 mm and a pitch-to-diameter ratio of 1.14; the heated length was 1500 mm. Detailed surface temperature measurements along and around the three heated rods were collected using internally traversed thermocouples. The following ranges of test conditions were covered, with equivalent water conditions given inside parentheses: pressure from 6.6 to 8.36 MPa (19.7–25 MPa); inlet temperature from 11 to 30 °C (330–371 °C); mass flux from 200 to 1175 kg m{sup −2} s{sup −1} (340–1822 kg m{sup −2} s{sup −1}); and wall heat flux from 1 to 175 kW m{sup −2} (11–1847 kW m{sup −2}). For one set of tests, the heated rods were fitted with a 1.3 mm OD wire wrap, having an axial pitch of 200 mm along the entire heated length; for a second set, the heated rods were fitted with grid spacers having a 5.3% flow blockage and located at 500 mm axial intervals. The effects of spacer configuration on heat transfer at supercritical pressures were documented and analyzed. The observed experimental trends were compared to those obtained in a experiment in a heated

  9. Process for heating a part of an equipment to bring a fluid flowing in this part at a fixed temperature

    Chavanne, Claude; Vanderchmitt, Andre.

    1978-01-01

    Processs for heating a valve, pump and connections of a circuit so as to bring or maintain the fluid flowing through them at a temperature such that its change of state or a modification of its physical characteristics is avoided, by means of a heating unit built in a high thermal conductivity material, made integral with the heated component and including electric heating facilities [fr

  10. Information technology equipment cooling system

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  11. Methodology of Supervision by Analysis of Thermal Flux for Thermal Conduction of a Batch Chemical Reactor Equipped with a Monofluid Heating/Cooling System

    Ghania Henini

    2012-01-01

    Full Text Available We present the thermal behavior of a batch reactor to jacket equipped with a monofluid heating/cooling system. Heating and cooling are provided respectively by an electrical resistance and two plate heat exchangers. The control of the temperature of the reaction is based on the supervision system. This strategy of management of the thermal devices is based on the usage of the thermal flux as manipulated variable. The modulation of the monofluid temperature by acting on the heating power or on the opening degrees of an air-to-open valve that delivers the monofluid to heat exchanger. The study shows that the application of this method for the conduct of the pilot reactor gives good results in simulation and that taking into account the dynamics of the various apparatuses greatly improves ride quality of conduct. In addition thermal control of an exothermic reaction (mononitration shows that the consideration of heat generated in the model representation improve the results by elimination any overshooting of the set-point temperature.

  12. Heat pipe heat storage performance

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  13. An active heat tracer experiment to determine groundwater velocities using fiber optic cables installed with direct push equipment

    Bakker, M.; Caljé, R.; Schaars, F.; Van der Made, K.J.; De Haas, S.

    2015-01-01

    A new approach is developed to insert fiber optic cables vertically into the ground with direct push equipment. Groundwater temperatures may be measured along the cables with high spatial and temporal resolution using a Distributed Temperature Sensing system. The cables may be inserted up to depths

  14. The structure and physical-mechanical properties of the heat-resistant Ni-Co-Cr-Al-Y intermetallic coating obtained using rebuilt plasma equipment

    Tarasenko, Yu. P.; Tsareva, I. N.; Berdnik, O. B.; Fel, Ya. A.; Kuzmin, V. I.; Mikhalchenko, A. A.; Kartaev, E. V.

    2014-12-01

    Results of a study of the structure, physico-mechanical properties, and the resistance to heat of Ni-Co-Cr-Al-Y intermetallic coatings obtained by powder spraying on the standard UPU-3D plasma spray facility (plasmatron with self-establishing arc length) and on the rebuilt facility equipped with the enhanced-power PNK-50 plasmatron with sectionalized inter-electrode insert, are reported. Coatings of higher density ( ρ = 7.9 g/cm3) and higher microhardness (H μ = 770 kg-force/mm2) with lower porosity values ( P = 5.7 %, P c = 5.1 %, and P 0 = 0.6 %) and high resistance to heat ((M - M0)/M0 = 1.2) were obtained. The developed coating is intended for protection of the working surfaces of turbine engine blades in gas-turbine power plants.

  15. Equipment sizing in a coal-fired municipal heating plant modernisation project with support for renewable energy and cogeneration technologies

    Kalina, Jacek

    2014-01-01

    Highlights: • Sizing of biomass fired cogeneration block is performed for existing heating plant. • Mathematical model for cogeneration block optimisation is presented. • Impact of financial support mechanisms on optimal solution is discussed. • Influence of short term variations of prices and support intensity is presented. • Different design parameters are suggested by economic and technical quality indices. - Abstract: The paper presents results of design parameters optimisation of a wood chips fired steam boiler based heat and power block in a sample project of coal fired municipal heating plant modernisation. The project assumes the conversion of the heating plant into a dual fuel heat and power plant. The problem that is presented is selection of cogeneration block structure and thermodynamic parameters taking into account financial support mechanisms for cogeneration and renewable energy technologies. There are examined energy conversion and financial performances of the project. The results show that without the financial support the project is not profitable although it generates savings of primary energy of fossil fuels. If an administrative incentives are applied the optimal technical solution is different than suggested by energy conversion efficiency or fossil fuel savings. Financial calculations were performed for Polish marked conditions in the years 2011 and 2014 showing the impact of relatively short term variations of prices and support intensity on optimal plant design parameters

  16. Characterisation of heat transfer and flame length in a semi-scale industrial furnace equipped with HiTAC burner

    Zhang, L.; Nehme, W.; Biswas, A.K.; Yang, W.; Blasiak, W.; Bertin, D. [Royal Institute of Technology, Stockholm (Sweden)

    2010-09-15

    This paper investigates the effects of multiple burner nozzles on the combustion characteristics, such as flame volume, heat transfer and NOx emission in a high temperature air combustion (HiTAC) industrial furnace. Experiments were carried out in one semi-industrial furnace located in Kungliga Tekniska Hogskolan (Stockholm, Sweden). Three different types of burners were tested, including both regenerative and recuperative types. Variable flame temperature and oxygen concentration were applied in experiments. Heat transfer characteristics of HiTAC are studied in this paper, and the influences of a variety of inertial fuel/air jets are investigated for both flame length and NOx emission. One improved correlation between chemical flame length and flame Froude number is established for HiTAC with manifold nozzles. NOx emission is also correlated to the flame Froude number. The HiTAC recirculation system effects on flame shape, NOx emission and heat transfer were also examined.

  17. Experimental Investigation of a Solar Greenhouse Heating System Equipped with a Parabolic Trough Solar Concentrator and a Double-Purpose Flat Plate Solar Collector

    M Jafari

    2017-10-01

    Full Text Available Introduction Greenhouses provide a suitable environment in which all the parameters required for growing the plants can be controlled throughout the year. Greenhouse heating is one of the most important issues in productivity of a greenhouse. In many countries, heating costs in the greenhouses are very high, having almost 60-80% of the total production costs. In recent years, several studies have attempted to reduce the heating costs of the greenhouses by applying more energy efficient equipment and using the renewable energy sources as alternatives or supplementary to the fossil fuels. In the present study a novel solar greenhouse heating system equipped with a parabolic trough solar concentrator (PTC and a flat-plate solar collector has been developed. Therefore, the aim of this paper is to investigate the performance of the proposed heating system at different working conditions. Materials and Methods The presented solar greenhouse heating system was comprised of a parabolic trough solar concentrator (PTC, a heat storage tank, a pump and a flat plate solar collector. The PTC was constructed from a polished stainless steel sheet (as the reflector and a vacuum tube receiver. The PTC was connected to the tank by using insulated tubes and a water pump was utilized to circulate the working fluid trough the PTC and the heat exchanger installed between walls of the tank. The uncovered solar collector was located inside the greenhouse. During the sunshine time, a fraction of the total solar radiation received inside the greenhouse is absorbed by the solar collector. This rises the temperature of the working fluid inside the collector which led to density reduction and natural flow of the fluid. In other words, the collector works as a natural flow flat plate solar collector during the sunshine time. At night, when the greenhouse temperature is lower than tank temperature, the fluid flows in a reverse direction through the solar collector and the

  18. Experimental investigation of heat transfer augmentation inside double pipe heat exchanger equipped with reduced width twisted tapes inserts using polymeric nanofluid

    Hazbehian, Mohammad; Maddah, Heydar; Mohammadiun, Hamid; Alizadeh, Mostafa

    2016-11-01

    In this study, we report a further enhancement in heat transfer coefficients of base fluid in combination with structural modifications of tape inserts. Polyvinyl Alcohol and TiO2 with mean diameter of 15 nm were chosen as base fluid and nano-particles, respectively. The experiments are carried out in plain tube with four longitudinal internal fins and reduced width twisted tape (RWTT) inserts of twist ratio varying form 2-5 and width of 12-16. Experiments are undertaken to determine heat transfer coefficients and friction factor of TiO2/PVA nanofluid up to 2.0 % volume concentration at an average temperature of 30 °C. The investigations are undertaken in the Reynolds number range of 800-30,000 for flow in tubes and with tapes of different width length ratios. The experiments was verified with well-known correlations. The average Nusselt number and friction factor in the tube fitted with the full-length twisted tapes at y/w = 3.0, and 5.0, are respectively 50-130, and 30-95 % higher than those in the plain tube; 90-220 and 100-270 % when the working fluid is nanofluid, respectively. For the reduced width twisted tapes, the heat transfer rate is decreased with decreasing tapes width. The average Nusselt numbers in the tube fitted with the RWTT of 16, 14 and 12 are respectively, 210-390, 190-320 and 170-290 % of that in the plain tube. With the similar trend mentioned above, RWTT with higher width length yield higher thermal enhancement factor in comparison with smaller width. The use of RWTT led to the highest thermal performance factor up to 1.75. Maximum thermal performance factor which was obtained belonged to twists with twist ratio of 2 and width of 16 with φ = 0.5 % and Reynolds number range of 800-30,000.

  19. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy

    Dolz Ruiz, Vicente; Novella Rosa, Ricardo; García Martínez, Antonio; Sánchez Serrano, Jaime

    2012-01-01

    This paper describes the study of different bottoming Rankine cycles with water-steam and/or ORC configurations in classical and innovative setups such as a waste heat recovery system in a Heavy Duty Diesel (HDD) Engine. This work has been divided in two parts. This first part describes the model of the studied HDD engine and the available waste energy sources in this HDD Engine. The waste energy sources are studied from the standpoint of energy analysis to determine which are the most approp...

  20. Performance Evaluation of an Active Solar Dryer Equipped with an Auxilliary Electrical Heater and Heat Recovery System

    Pourghasemi Ranjbar, M.; Alavi Naeini, N.; Mortezapour, H.

    2016-01-01

    Drying is a very sophisticated process which consumes a large amount of energy. Solar energy can be used as an alternative or supplementary energy source to fossil fuels. Solar dryers are common ways for saving fossil fuel consumption during agricultural products drying. In this study, the performance of an active solar dryer equipped with an energy recovery system was investigated at three levels of drying air temperature. The results showed that the energy recovery system was able to increase inlet air temperature by 16.8, 18.5 and 18.9 ° C at drying temperatures of 55, 65 and 75 ℃, respectively. Meanwhile 47.8, 42.9 and 40.9 percents of the dryer exhaust air energy were recovered respectively at these conditions which subsequently led to a reduction of 30.7, 19.2 and 14.7 percents in electrical heater energy consumption.

  1. Equipment and materials for coupling interfaces of a nuclear reactor with desalination and heating plants based on floating NHPS

    Panov, Yu.K.; Polunichev, V.I.

    1998-01-01

    Intensive design activity is currently underway in Russia on floating nuclear installations, relying on proven marine NSSSs of KLT-40-type, which are capable of generating electricity, producing potable water and heat for industrial and district heating purposes. In particular, design work of the first floating power unit for a pilot nuclear co-generation station, which is due to be situated at the Pevek port area in the Chukotsky national district (extreme north-east of Russia), is approaching completion, and preparatory work is being carried out for fabrication of its most labour-intensive components. Work is also in progress together with 'CANDESAL Inc. (Canada)' on the conceptual design of a floating power-desalination complex. Most suitable options of floating power-desalination complexes are being sought, addressing requirements of potential customers. Earlier, at the IAEA technical committee meeting (1993) it was shown that a complex, which combines a highly effective condensation turbine and a modem reverse-osmosis desalination facility, could be considered as most preferable from the view point of efficient utilisation of thermal energy generated by nuclear reactors for co-production of potable water and electricity. The prospective technology for sea water desalination by a reverse-osmosis method is being developed in particular by 'CANDESAL Inc.'. It was also pointed out that another sufficiently efficient installation for potable water and electricity co-production is a dual-purpose complex which integrates both condensation and back-pressure turbines and a distillation desalination facility. Similar flow configurations were adopted for the nuclear desalination complex at Aktau (Kazakhstan) which has been in operation since 1972. 'SverdNIIKhimMash' institute (Ekaterinburg) is a Russian leading designer of modem distillation desalination facilities. This paper presents heat and fluid diagrams of floating complexes, brief description of their key

  2. Information technology equipment cooling method

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  3. Cooling of electronic equipment

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  4. Heat transfer equipment performance diagnosis of auxiliary systems in electric power stations; Diagnostico de comportamiento de equipo de transferencia de calor de sistemas auxiliares de centrales termoelectricas

    Ruiz Esparza Gutierrez, Rogelio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    In this article the methodology followed to diagnose the performance of the equipment where heat is transferred from the feed water, condensate and circulation water systems in fossil power plants (FPP). The data collection is made with the unit in normal operation, using local instrumentation without taking the equipment out of service for its installation. The equipment diagnosis is made through the analysis of the collected data in actual operation and the design data; for this purpose a thermal balance of the interested systems is performed to obtain all the conditions an operation data. Later on the performance indicative parameters (PIP) of actual operation and design are calculated and compared one against the other. Such a comparison reveals the performance deterioration and the possible equipment faults. The data obtained and the supplementary information are stored in a data base whose objective is that Comision Federal de Electricidad has on hand a prompt access to them in order to control the performance, compare them among similar units and power stations, and inclusively verify possible recurrent causes of low availability in the referred systems. [Espanol] En este articulo se presenta la metodologia seguida para diagnosticar el comportamiento de equipos en los que se transfiere calor de los sistemas de agua de alimentacion, condensado y circulacion de las centrales termoelectricas (CTE). La toma de datos se realiza con la unidad en operacion normal, utilizando instrumentacion local sin necesidad de sacar de servicio a los equipos para su instalacion, ya que se ocupan los mismos puntos para instrumentos con que cuentan por diseno. El diagnostico de los equipos se realiza mediante el analisis de los datos recopilados, tanto de operacion real como de diseno; para ello, se efectua un balance termico de los sistemas de interes para obtener todas las condiciones y los datos de operacion. Posteriormente, se calculan los parametros indicativos de

  5. Heat transfer equipment performance diagnosis of auxiliary systems in electric power stations; Diagnostico de comportamiento de equipo de transferencia de calor de sistemas auxiliares de centrales termoelectricas

    Ruiz Esparza Gutierrez, Rogelio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    In this article the methodology followed to diagnose the performance of the equipment where heat is transferred from the feed water, condensate and circulation water systems in fossil power plants (FPP). The data collection is made with the unit in normal operation, using local instrumentation without taking the equipment out of service for its installation. The equipment diagnosis is made through the analysis of the collected data in actual operation and the design data; for this purpose a thermal balance of the interested systems is performed to obtain all the conditions an operation data. Later on the performance indicative parameters (PIP) of actual operation and design are calculated and compared one against the other. Such a comparison reveals the performance deterioration and the possible equipment faults. The data obtained and the supplementary information are stored in a data base whose objective is that Comision Federal de Electricidad has on hand a prompt access to them in order to control the performance, compare them among similar units and power stations, and inclusively verify possible recurrent causes of low availability in the referred systems. [Espanol] En este articulo se presenta la metodologia seguida para diagnosticar el comportamiento de equipos en los que se transfiere calor de los sistemas de agua de alimentacion, condensado y circulacion de las centrales termoelectricas (CTE). La toma de datos se realiza con la unidad en operacion normal, utilizando instrumentacion local sin necesidad de sacar de servicio a los equipos para su instalacion, ya que se ocupan los mismos puntos para instrumentos con que cuentan por diseno. El diagnostico de los equipos se realiza mediante el analisis de los datos recopilados, tanto de operacion real como de diseno; para ello, se efectua un balance termico de los sistemas de interes para obtener todas las condiciones y los datos de operacion. Posteriormente, se calculan los parametros indicativos de

  6. Evolution of metering and control equipment in district heating house substations. Smaller, smarter and unchangingly robust; Mess- und Regelungstechnik fuer Fernwaermehausstationen im Wandel der Zeit. Kleiner, intelligenter, unveraendert robust

    Hesse, Wolfgang; Hilbig, Thomas [Samson AG, Frankfurt am Main (Germany)

    2011-07-15

    The technical evolution of house substations in hot water networks reflects the trend towards greater efficiency. Changes are to be seen above all in the requirements placed on the measurement and control technology used in the energy management functions of the electronic district heating controller as well as on safety equipment. Here DDC (Direct Digital Control) technology has created possibilities for optimising energy consumption. The authors relate the evolution of drinking water heating, self-operated regulators, electrical actuators and of electronic district heating controllers.

  7. Optimization of the energy resolution and of the radioactive background rejection for ionization-heat detectors equipped with thermometric thin films for the direct WIMPs detection

    Dolgorouky, Y.W.

    2008-09-01

    The EDELWEISS experiment aims at the direct detection of WIMPs as possible candidates for dark matter. It uses heat-and-ionization detectors that can discriminate these particles from the radioactive background. To date, this method is limited by events with incomplete charge collection that occur just beneath the detectors electrodes. In order to identify and reject these undesirable events, we have developed detectors equipped with thin films used both as thermometers - and hence sensitive to the transient athermal regime - and as electrodes for the charge collection. This thesis focuses on the optimization of such thin films regarding surface events rejection and on the modelling of the physical processes enabling this identification. The optimization must both maximize the fiducial volume and conserve an energy resolution such that the recoil energy threshold is of the order of 30 keV. Our work explores four generations of detectors each of which corresponds to successive evolutions in their conception. In all cases, the electrode-thermometer is an amorphous Anderson insulator NbSi thin film polarized by two interleaved comb-shaped niobium electrodes. In spite of constant progress in the successive detectors performances, the latest generation does not display the performances required for the EDELWEISS II experiment. Our work has shown the difficulty of the transient thermal signal modelling due to the complex contribution of the charge collection. This works has lead to new ideas regarding the detectors configuration, so that the athermal regime can be optimized to enhance both the rejection capability and the resolution. (author)

  8. Development of producing equipment of mixed butane-air with low dew point. Energy saving dewatering apparatus and 6A-Gas producing apparatus utilizing vaporization latent heat of butane and potential heat of air

    Komine, Jin; Okada, Hiroto; Taniue, Nobuo; Tanoue, Keiju; Yamada, Tatsuhiko; Maekawa, Hisami; Murakami, Keiji

    1988-02-10

    A producing equipment of mixed butane-air with low dew point was developed. The dewatering was made during the period from the middle of May to the middle of October with high atmospheric humidity. The production capacity of the mixed gas is 3000 Nm/sup 3/ of 22% of butane and 78% of air per hour. The designed dew point is 18/sup 0/C or less under the pressure of 0.7 kg/cm/sup 2/G. The saturation temperature is 7.5/sup 0/C after the liquid butane is evacuated by a regulating valve. The air introduced into the dehumidifier through finned tubes is cooled to dewater based on those data. The partially vaporized butane is completely gasified by hot water in a vaporizer and mixed with the dewatered air by a venture mixer to produce the mixed butane-air. When the dewatering is incomplete, the spray nozzle must be just exchanged. The dew point of the produced gas was sufficiently below the designed value. The investment cost is low. The total operating cost is reduced by the remarkably decreased fuel cost though the power cost is increased. The noise level is low and the heat control is easy. (11 figs, 4 tabs, 1 photo)

  9. Equipment considerations

    Anon.

    1992-01-01

    Trace or ultratrace analyses require that the HPLC equipment used, including the detector, be optimal for such determinations. HPLC detectors are discussed at length in Chapter 4; discussion here is limited to the rest of the equipment. In general, commercial equipment is adequate for trace analysis; however, as the authors approach ultratrace analysis, it becomes very important to examine the equipment thoroughly and optimize it, where possible. For this reason they will review the equipment commonly used in HPLC and discuss the optimization steps. Detectability in HPLC is influenced by two factors (1): (a) baseline noise or other interferences that lead to errors in assigning the baseline absorbance; (b) peak width. 87 refs

  10. Building technical services - Compact equipment for heating, hot water preparation, ventilation and cooling - Final report; Haustechnik - Kompaktgeraete (Heizen, Warmwasser, Lueften, Kuehlen - alles aus einem). Erkenntnisse aus der Praxis - Schlussbericht

    Haessig, W.; Streit, S. [Haessig Sustech GmbH, Uster (Switzerland); Helfenfinger, D.; Keller, P. [Hochschule fuer Technik und Architektur Luzern (HSLU), Luzern (Switzerland)

    2009-06-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents and discusses the knowledge gained in practice concerning compact equipment that can be used for heating, hot water preparation, ventilation and cooling. Such units combine heat-pumps and the further equipment necessary. Data on various factors were collected over a period of one year in three apartment blocks that meet Swiss Minergie-P very low energy consumption standards. Apart from the above mentioned factors, the study also considered humidity and carbon dioxide levels in the apartments and inhabitant behaviour. The authors note that the energy consumption of several apartments fell below the Minergie-P limiting, annual value of 30 kWh/m2. An increase in electricity consumption dependent on room temperatures is noted and commented on. The economic feasibility of Minergie-P and so-called passive housing is commented on.

  11. Practical application of the benchmarking technique to increase reliability and efficiency of power installations and main heat-mechanic equipment of thermal power plants

    Rimov, A. A.; Chukanova, T. I.; Trofimov, Yu. V.

    2016-12-01

    Data on the comparative analysis variants of the quality of power installations (benchmarking) applied in the power industry is systematized. It is shown that the most efficient variant of implementation of the benchmarking technique is the analysis of statistical distributions of the indicators in the composed homogenous group of the uniform power installations. The benchmarking technique aimed at revealing the available reserves on improvement of the reliability and heat efficiency indicators of the power installations of the thermal power plants is developed in the furtherance of this approach. The technique provides a possibility of reliable comparison of the quality of the power installations in their homogenous group limited by the number and adoption of the adequate decision on improving some or other technical characteristics of this power installation. The technique provides structuring of the list of the comparison indicators and internal factors affecting them represented according to the requirements of the sectoral standards and taking into account the price formation characteristics in the Russian power industry. The mentioned structuring ensures traceability of the reasons of deviation of the internal influencing factors from the specified values. The starting point for further detail analysis of the delay of the certain power installation indicators from the best practice expressed in the specific money equivalent is positioning of this power installation on distribution of the key indicator being a convolution of the comparison indicators. The distribution of the key indicator is simulated by the Monte-Carlo method after receiving the actual distributions of the comparison indicators: specific lost profit due to the short supply of electric energy and short delivery of power, specific cost of losses due to the nonoptimal expenditures for repairs, and specific cost of excess fuel equivalent consumption. The quality loss indicators are developed

  12. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...

  13. Waste heat recovering device for reactors

    Sonoda, Masanobu; Shiraishi, Tadashi; Mizuno, Hiroyuki; Sekine, Yasuhiro.

    1982-01-01

    Purpose: To enable utilization of auxiliary-equipment-cooling water from a non-regenerative heat exchanger as a heat source, as well as prevent radioactive contamination. Constitution: A water warming device for recovering the heat of auxiliary equipment cooling water from a non-regenerative heat exchanger is disposed at the succeeding stage of the heat exchanger. Heat exchange is performed in the water warming device between the auxiliary equipment cooling water and a heat source water set to a higher pressure and recycled through the water warming device. The heat recovered from the auxiliary equipment cooling water is utilized in the heat source water for operating relevant equipments. (Aizawa, K.)

  14. 46 CFR 121.220 - Cooking equipment.

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cooking equipment. 121.220 Section 121.220 Shipping... SYSTEMS AND EQUIPMENT Cooking and Heating § 121.220 Cooking equipment. (a) Doors on a cooking appliance... cooking appliance must be installed to prevent movement in heavy seas. (c) For a grill or similar type of...

  15. 46 CFR 184.220 - Cooking equipment.

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Cooking equipment. 184.220 Section 184.220 Shipping...) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.220 Cooking equipment. (a) Doors on a cooking appliance must be provided with hinges and locking devices to prevent...

  16. [Hydrotherapy equipment].

    Tsibikov, V B; Ragozin, S I; Mikheeva, L V

    1985-01-01

    A flow-chart is developed demonstrating the relation between medical and prophylactic institutions within the organizational structure of the rehabilitation system and main types of rehabilitation procedures. In order to ascertain the priority in equipping rehabilitation services with adequate hardware the special priority criterion is introduced. The highest priority is assigned to balneotherapeutic and fangotherapeutic services. Based on the operation-by-operation analysis of clinical processes related to service and performance of balneologic procedures the preliminary set of clinical devices designed for baths, basins and showers in hospitals and rehabilitation departments is defined in a generalized form.

  17. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST): Volume 2: Cases E300-E545.

    Neymark J.; Judkoff, R.

    2004-12-01

    This report documents an additional set of mechanical system test cases that are planned for inclusion in ANSI/ASHRAE STANDARD 140. The cases test a program's modeling capabilities on the working-fluid side of the coil, but in an hourly dynamic context over an expanded range of performance conditions. These cases help to scale the significance of disagreements that are less obvious in the steady-state cases. The report is Vol. 2 of HVAC BESTEST Volume 1. Volume 1 was limited to steady-state test cases that could be solved with analytical solutions. Volume 2 includes hourly dynamic effects, and other cases that cannot be solved analytically. NREL conducted this work in collaboration with the Tool Evaluation and Improvement Experts Group under the International Energy Agency (IEA) Solar Heating and Cooling Programme Task 22.

  18. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  19. Cryogenic equipment

    Leger, L.; Javellaud, J.; Caro, C.; Gilguy, R.; Testard, O.

    1966-06-01

    The cryostats presented here were built from standard parts; this makes it possible to construct a great variety of apparatus at minimum cost. The liquid nitrogen and helium reservoirs were designed so as to reduce losses to a minimum, and so as to make the cryostats as autonomous as possible. The experimental enclosure which is generally placed in the lower part of the apparatus requires a separate study in every case. Furthermore, complete assemblies such as transfer rods, isolated traps and high vacuum valves, were designed with a similar regard for the economic aspects and for the need for standardization. This equipment thus satisfies a great variety of experimental needs; it is readily adaptable and the consumptions of helium and liquid nitrogen are very low. (authors) [fr

  20. Mixing systems for wet and dry plumes and cleaning equipment for the heat exchangers of the dry section. Two indispensible components of an effective and safe hybrid cooling tower

    Alt, W.

    1990-01-01

    At first glance, the hybrid cooling tower seems to be an ingenious combination of the well known components of an evaporative cooling tower and a dry cooling tower. The calculation of the air mass flows for both the wet and dry sections required to achieve an invisible plume does not represent an unsolvable problem to the engineer experienced in thermodynamics. The same also applies to the dimensioning of the heat exchangers and cooling fills. The hybrid cooling tower requires a well designed mixing system in order to ideally mix, the dry plume into the wet plume. If the cooling tower proves its efficiency during commissioning it is important that the ratio of the performance of the wet section to that of the dry section be maintained also in the long term. The performance of the fill in a wet cooling tower is consistently stable. Dirt deposits can form very quickly on the inner and outer surfaces of the heat exchangers of the dry section. In this case the thermal resistance increases rapidly. The respective performance of the wet and dry sections is then no longer balanced and the invisibility of the plume is no longer assured. This can be avoided by providing appropriate cleaning equipment

  1. Medical Issues: Equipment

    ... Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At ... curesma.org > support & care > living with sma > medical issues > equipment Equipment Individuals with SMA often require a ...

  2. Heat exchanger cleaning

    Gatewood, J.R.

    1980-01-01

    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  3. Semiconductor Manufacturing equipment introduction

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  4. High temperature heat exchange: nuclear process heat applications

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  5. Heat pipes and use of heat pipes in furnace exhaust

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  6. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  7. Mechanical (turbines and auxiliary equipment)

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  8. Selection of equipment for equipment qualification

    Torr, K.G.

    1989-01-01

    This report describes the methodology applied in selecting equipment in the special safety systems for equipment qualification in the CANDU 600 MW nuclear generating stations at Gentilly 2 and Point Lepreau. Included is an explanation of the selection procedure adopted and the rationale behind the criteria used in identifying the equipment. The equipment items on the list have been grouped into three priority categories as a planning aid to AECB staff for a review of the qualification status of the special safety systems

  9. Direct Heat

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  10. Optimization of the energy resolution and of the radioactive background rejection for ionization-heat detectors equipped with thermometric thin films for the direct WIMPs detection; Optimisation du pouvoir de resolution et du rejet du fond radioactif de detecteurs ionisation-chaleur equipes de couches minces thermometriques pour la detection directe de WIMPS

    Dolgorouky, Y.W.

    2008-09-15

    The EDELWEISS experiment aims at the direct detection of WIMPs as possible candidates for dark matter. It uses heat-and-ionization detectors that can discriminate these particles from the radioactive background. To date, this method is limited by events with incomplete charge collection that occur just beneath the detectors electrodes. In order to identify and reject these undesirable events, we have developed detectors equipped with thin films used both as thermometers - and hence sensitive to the transient athermal regime - and as electrodes for the charge collection. This thesis focuses on the optimization of such thin films regarding surface events rejection and on the modelling of the physical processes enabling this identification. The optimization must both maximize the fiducial volume and conserve an energy resolution such that the recoil energy threshold is of the order of 30 keV. Our work explores four generations of detectors each of which corresponds to successive evolutions in their conception. In all cases, the electrode-thermometer is an amorphous Anderson insulator NbSi thin film polarized by two interleaved comb-shaped niobium electrodes. In spite of constant progress in the successive detectors performances, the latest generation does not display the performances required for the EDELWEISS II experiment. Our work has shown the difficulty of the transient thermal signal modelling due to the complex contribution of the charge collection. This works has lead to new ideas regarding the detectors configuration, so that the athermal regime can be optimized to enhance both the rejection capability and the resolution. (author)

  11. 77 FR 75400 - Labeling Requirements for Commercial and Industrial Equipment

    2012-12-20

    ...-intensity discharge lamps, distribution transformers, and small electric motors as covered equipment. (42 U... following: Electric motors and pumps; commercial HVAC and water heating equipment (small, large, and very... prescribed for certain types of covered equipment. Specific requirements are established for electric motors...

  12. Maintenance program guidelines for programmatic equipment

    1994-11-01

    The Division Directors at Lawrence Berkeley Laboratory are responsible for implementing a maintenance program for research equipment (also referred to as programmatic equipment) assigned to them. The program must allow maintenance to be accomplished in a manner that promotes operational safety, environmental protection and compliance, and cost effectiveness; that preserves the intended functions of the facilities and equipment; and that supports the programmatic mission of the Laboratory. Programmatic equipment -- such as accelerators, lasers, radiation detection equipment, and glove boxes -- is dedicated specifically to research. Installed equipment, by contrast, includes the mechanical and electrical systems installed as part of basic building construction, equipment essential to the normal functioning of the facility and its intended use. Examples of installed equipment are heating, ventilating, and air conditioning systems; elevators; and communications systems. The LBL Operating and Assurance Program Plan (PUB-3111, Revision 4) requires that a maintenance program be prepared for programmatic equipment and defines the basic maintenance program elements. Such a program of regular, documented maintenance is vital to the safety and quality of research activities. As a part of that support, this document offers guidance to Laboratory organizations for developing their maintenance programs. It clarifies the maintenance requirements of the Operating and Assurance Program (OAP) and presents an approach that, while not the only possibility, can be expected to produce an effective maintenance program for research equipment belonging to the Laboratory's organizations

  13. FY 2000 report on the plan to carry out a model project for recovery of waste heat from the cement sintering equipment in India and the survey of the feasibility; 2000 nendo Indo ni okeru cement shosei setsubi hainetsu kaishu model jigyo jisshi keikaku oyobi fukyu kanosei chosa hokokusho

    NONE

    2001-03-01

    For the purpose of conserving energy and reducing greenhouse effect gas emission, survey was conducted on a project for recovering waste heat from the cement production process and using it for power generation in India. In India, the production amount of cement has steadily been increasing in and after the complete liberalization of the cement industry in 1989, and now the production amount is second in the world. Duties of approximately 25% are imposed on the import of the cement waste heat equipment, which is still a high-rate tariff. The India Cement Co., which is a candidate local company for this project, is a typical cement company in an excellent financial state in India. As to the economical efficiency of the project, economical effects are very good as seen in the internal earning rate of more than 30% and the period of ROI of less than 4 years, even if high-rate duties of India are imposed. There seems to be a great possibility of the spread of the related technology in the light of the following reasons: the situation of electric power in India is not good, reduction in production cost is being urgently requested due to the drop in cement price, and the equipment in this project is clean equipment using waste heat and therefore meets with the policy of the Indian government in which emphasis is placed on the environment. (NEDO)

  14. Heat transfer enhancement

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  15. District heating

    Hansen, L.

    1993-01-01

    The environmental risks and uncertainties of a high-energy future are disturbing and give rise to several reservations concerning the use of fossil fuels. A number of technologies will help to reduce atmospheric pollution. In Denmark special importance is attached to the following: Energy conservation. Efficient energy conversion. Renewable energy sources. District heating, combined production of heat and power. Many agree that district heating (DH), produced by the traditional heat-only plant, and combined heat and power (CHP) have enormous potential when considering thermal efficiency and lowered environmental impacts: The basic technology of each is proven, it would be relatively simple to satisfy a substantial part of the energy demand, and their high efficiencies mean reduced pollution including greenhouse gas emissions. This is especially important in high population density areas - the obviously preferred sites for such energy generation. Compared with individual heating DH can provide a community with an operationally efficient and most often also an economically competitive heat supply. This is particularly true under the circumstances where the DH system is supplied from CHP plants. Their use results in very substantial improvements in overall efficiency. Further environmental improvements arise from the reduced air pollution obtainable in reasonably large CHP plants equipped with flue gas cleaning to remove particles, sulphur dioxide, and nitrogen acids. As a consequence of these considerations, DH plays an important role in fulfilling the space and water heating demand in many countries. This is especially the case in Denmark where this technology is utilised to a very great extent. Indeed, DH is one of the reasons why Denmark has relatively good air quality in the cities. (au)

  16. Shipboard and laboratory equipment

    Shyamprasad, M.; Ramaswamy, V.

    The polymetallic nodules occur at an average depth of 4500 m. Adequate equipment and techniques are required for the exploration at such depths. Shipboard and various laboratory equipments for the sampling of polymetallic nodules is described...

  17. Remote handling equipment

    Clement, G.

    1984-01-01

    After a definition of intervention, problems encountered for working in an adverse environment are briefly analyzed for development of various remote handling equipments. Some examples of existing equipments are given [fr

  18. Exercise Equipment: Neutral Buoyancy

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  19. BP volume reduction equipment

    Kitamura, Yoshinori; Muroo, Yoji; Hamanaka, Isao

    2003-01-01

    A new type of burnable poison (BP) volume reduction system is currently being developed. Many BP rods, a subcomponent of spent fuel assemblies are discharged from nuclear power reactors. This new system reduces the overall volume of BP rods. The main system consists of BP rod cutting equipment, equipment for the recovery of BP cut pieces, and special transport equipment for the cut rods. The equipment is all operated by hydraulic press cylinders in water to reduce operator exposure to radioactivity. (author)

  20. Electrical equipment qualification

    Farmer, W.S.

    1983-01-01

    Electrical equipment qualification research programs being carried out by CEA, JAERI, and Sandia Laboratories are discussed. Objectives of the program are: (1) assessment of accident simulation methods for electrical equipment qualification testing; lower coarse (2) evaluation of equipment aging and accelerated aging methods; (3) determine radiation dose spectrum to electrical equipment and assess simulation methods for qualification; (4) identify inadequacies in electrical equipment qualification procedures and standards and potential failure modes; and (5) provide data for verifying and improving standards, rules and regulatory guides

  1. Renewal of radiological equipment.

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  2. Characterization of industrial process waste heat and input heat streams

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  3. Heat recovery apparatus

    McFarland, I.

    1987-01-01

    Heat transfer is a living science and technical advances are constantly being made. However, in many cases, progress is limited by the equipment that is available on the market, rather than by knowledge of the heat transfer process. A case in point is the design of economizers: in such equipment a small quantity of water (with a relatively good heat transfer coefficient) is heated by a large quantity of low-pressure gas (with an inherently low heat transfer coefficient). As a first step in design finned tubing is used to lessen the discrepancy in coefficients. From this point, it becomes apparent that the equipment consists of a small number of tubes (to maintain good velocity on the water side) of considerable length (to provide sufficient area). In the process industries the base pressure, though low, may be in the region of 0.5 bar, and there is no convenient flue in which to place the heat recovery coil. It is therefore contained in a flat-sided enclosure, which is ill-fitted to pressure containment and is therefore reinforced with a plethora of structural sections. Such inelegant construction is quite common in North America; in Europe, cylindrical containments of vast size have been supplied for the same purposes. The real shortcoming is a successful marriage of different disciplines to produce reliable and efficient heat transfer equipment suitably contained

  4. Reconciliation of equipment flexibility effects on piping system dynamic response

    Geraets, L.H.

    1987-01-01

    Piping systems are connected to equipment; if the equipment cannot be considered as ''rigid'' relative to excitation frequencies, nozzle response spectra techniques, or equipment modeling techniques are used. If the equipment is considered rigid, a fixed anchor is assumed. However, occasionally after (seismic) dynamic analysis has been completed, tests or detailed equipment dynamic analyses demonstrate that the assumption of ''infinite stiff'' is questionable. This paper reviews several classes of equipment (pumps, vessels, reservoirs, heat exchangers), and the associated (piping stresses, support loads, equipment nozzle allowables). Significant divergences between design and ''as built'' results are shown (for heat exchangers in particular). The paper discusses the reconciliation process performed for a belgian PWR plant through the use of less conservative seismic damping data (Code Case N-411)

  5. RETRIEVAL EQUIPMENT DESCRIPTIONS

    J. Steinhoff

    1997-01-01

    The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) retrieval from the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. There are no quality assurance requirements or QA controls in this document. Retrieval under normal conditions is accomplished with the same fleet of equipment as is used for emplacement. Descriptions of equipment used for retrieval under normal conditions is found in Emplacement Equipment Descriptions, DI: BCAF00000-01717-5705-00002 (a document in progress). Equipment used for retrieval under abnormal conditions is addressed in this document and consists of the following: (1) Inclined Plane Hauler; (2) Bottom Lift Transporter; (3) Load Haul Dump (LHD) Loader; (4) Heavy Duty Forklift for Emplacement Drifts; (5) Covered Shuttle Car; (6) Multipurpose Vehicle; and (7) Scaler

  6. Medical equipment management

    Willson, Keith; Tabakov, Slavik

    2013-01-01

    Know What to Expect When Managing Medical Equipment and Healthcare Technology in Your Organization As medical technology in clinical care becomes more complex, clinical professionals and support staff must know how to keep patients safe and equipment working in the clinical environment. Accessible to all healthcare professionals and managers, Medical Equipment Management presents an integrated approach to managing medical equipment in healthcare organizations. The book explains the underlying principles and requirements and raises awareness of what needs to be done and what questions to ask. I

  7. Data communication equipment

    Kim, Hak Seon; Lee, Sang Mok

    1998-02-01

    The contents of this book are introduction of data communication on definition, purpose and history, information terminal about data communication system and data transmission system, data transmit equipment of summary, transmission cable, data port, concentrator and front-end processor, audio communication equipment like phones, radio communication equipment of summary on foundation of electromagnetic waves, AM transmitter, AM receiver, FM receiver and FM transmitter, a satellite and mobile communication equipment such as earth station, TT and C and Cellular phone, video telephone and new media apparatus.

  8. Capital Equipment Replacement Decisions

    Batterham, Robert L.; Fraser, K.I.

    1995-01-01

    This paper reviews the literature on the optimal replacement of capital equipment, especially farm machinery. It also considers the influence of taxation and capital rationing on replacement decisions. It concludes that special taxation provisions such as accelerated depreciation and investment allowances are unlikely to greatly influence farmers' capital equipment replacement decisions in Australia.

  9. Geothermal heat-pump systems of heat supply

    Vasil'ev, G.P.

    2004-01-01

    The data on the multilayer operation of the objects, located in the climatic conditions of the central area of Russia and equipped with the geothermal heat-pumping systems of the heat supply are presented. The results of the analytical studies on evaluating the geothermal heat-pumping systems of the heat supply integration efficiency into the structure of the energy supply system, prevailing in the country, are presented [ru

  10. Seismic qualification of non-safety class equipment whose failure would damage safety class equipment

    LaSalle, F.R.

    1991-01-01

    Both Code of Federal Regulations, Title 10, Part 50, and US Department of Energy Order 6340.1A have requirements to assess the interaction of non-safety and safety class structures and equipment during a seismic event to maintain the safety function. At the Hanford Site, a cost effective program has been developed to perform the evaluation of non-safety class equipment. Seismic qualification is performed by analysis, test, or upgrading of the equipment to ensure the integrity of safety class structures and equipment. This paper gives a brief overview and synopsis that address design analysis guidelines including applied loading, damping values, component anchorage, allowable loads, and stresses. Test qualification of equipment and walkdown acceptance criteria for heating ampersand ventilation (H ampersand V) ducting, conduit, cable tray, missile zone of influence, as well as energy criteria are presented

  11. 14 CFR 125.206 - Pitot heat indication systems.

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 125.206... Equipment Requirements § 125.206 Pitot heat indication systems. (a) Except as provided in paragraph (b) of... flight instrument pitot heating system unless the airplane is equipped with an operable pitot heat...

  12. 14 CFR 135.158 - Pitot heat indication systems.

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 135.158... Equipment § 135.158 Pitot heat indication systems. (a) Except as provided in paragraph (b) of this section... instrument pitot heating system unless the airplane is also equipped with an operable pitot heat indication...

  13. 10 CFR 434.404 - Building service systems and equipment.

    2010-01-01

    ... requirements require 24-hour pump operation. 404.5.2Heated swimming pools shall be equipped with pool covers... 10 Energy 3 2010-01-01 2010-01-01 false Building service systems and equipment. 434.404 Section 434.404 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND...

  14. Conjugate heat and mass transfer in heat mass exchanger ducts

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  15. 46 CFR 108.213 - Heating requirements.

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Heating requirements. 108.213 Section 108.213 Shipping... EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.213 Heating requirements. (a) Each accommodation space must be heated by a heating system that can maintain at least 20°C. (68°F.). (b) Radiators...

  16. HVAC systems and equipment

    Taylor, S.T. (Linford Air and Refrigeration Company, Oakland, CA (US))

    1990-02-01

    The author discusses the section of the ASHRAE Standard 90.1-1989 which addresses HVAC systems and equipment. New features of HVAC systems mandatory general requirements are described. New prescriptive requirements are detailed.

  17. Personal Protective Equipment

    1998-01-01

    ... of personal protective equipment A safety program for new employees is a necessary part of any orientation program An on-going safety program should be used to motivate employees to continue to use...

  18. Electronic equipment packaging technology

    Ginsberg, Gerald L

    1992-01-01

    The last twenty years have seen major advances in the electronics industry. Perhaps the most significant aspect of these advances has been the significant role that electronic equipment plays in almost all product markets. Even though electronic equipment is used in a broad base of applications, many future applications have yet to be conceived. This versatility of electron­ ics has been brought about primarily by the significant advances that have been made in integrated circuit technology. The electronic product user is rarely aware of the integrated circuits within the equipment. However, the user is often very aware of the size, weight, mod­ ularity, maintainability, aesthetics, and human interface features of the product. In fact, these are aspects of the products that often are instrumental in deter­ mining its success or failure in the marketplace. Optimizing these and other product features is the primary role of Electronic Equipment Packaging Technology. As the electronics industry continues to pr...

  19. CV equipment responsibilities

    Pirollet, B

    2008-01-01

    This document describes the limits of the responsibilities of the TS/CV for fire fighting equipment at the LHC. The various interfaces, providers and users of the water supply systems and clean water raising systems are described.

  20. Equipment for hydraulic testing

    Jacobsson, L.; Norlander, H.

    1981-07-01

    Hydraulic testing in boreholes is one major task of the hydrogeological program in the Stripa Project. A new testing equipment for this purpose was constructed. It consists of a downhole part and a surface part. The downhole part consists of two packers enclosing two test-sections when inflated; one between the packers and one between the bottom packer and the bottom of the borehole. A probe for downhole electronics is also included in the downhole equipment together with electrical cable and nylon tubing. In order to perform shut-in and pulse tests with high accuracy a surface controlled downhole valve was constructed. The surface equipment consists of the data acquisition system, transducer amplifier and surface gauges. In the report detailed descriptions of each component in the whole testing equipment are given. (Auth.)

  1. Automation of a thermogravimetric equipment

    Mussio, L.; Castiglioni, J.; Diano, W.

    1987-01-01

    A low cost automation of some instruments by means of simple electronic circuits and a microcomputer Apple IIe. type is discussed. The electronic circuits described are: a) a position detector including phototransistors connected as differential amplifier; b) a current source that, using the error signal of the position detector, changes the current through the coil of an electromagnetic balance to restore its zero position; c) a proportional temperature controller, zero volt switching to drive a furnace to a desired temperature; d) an interface temperature regulator-microcomputer to control the temperature regulator by software; e) a multiplexer for an analog input of a commercial interface. Those circuits are applied in a thermogravimetric equipment used also for vapours adsorption. A program in block diagram form is included and is able to record change of mass, time, furnace temperature and to drive the temperature regulator in order to have the heating rates or the temperature plateaux needed for the experiment. (author) [pt

  2. SCHOOL LUNCH, SUGGESTED GUIDES FOR SELECTING LARGE EQUIPMENT.

    South Carolina State Dept. of Education, Columbia.

    THE TYPE AND CAPACITY OF A WIDE RANGE OF SCHOOL KITCHEN EQUIPMENT IS RECOMMENDED WITH RESPECT TO THE NUMBER OF MEALS SERVED PER DAY. THESE RECOMMENDATIONS ARE GIVEN FOR RANGES, SINKS, ELECTRIC HEATING, GAS HEATING, REFRIGERATION, TABLES, KITCHEN MACHINES, TRUCK DOLLIES, SCALES, STORAGE CABINETS, OFFICE SPACES, LOUNGES, GARBAGE AND CAN WASHING…

  3. Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance

    Lotz, Albert

    2008-01-01

    Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…

  4. Equipment abnormality monitoring device

    Ando, Yasumasa

    1991-01-01

    When an operator hears sounds in a plantsite, the operator compares normal sounds of equipment which he previously heard and remembered with sounds he actually hears, to judge if they are normal or abnormal. According to the method, there is a worry that abnormal conditions can not be appropriately judged in a case where the number of objective equipments is increased and in a case that the sounds are changed gradually slightly. Then, the device of the present invention comprises a plurality of monitors for monitoring the operation sound of equipments, a recording/reproducing device for recording and reproducing the signals, a selection device for selecting the reproducing signals among the recorded signals, an acoustic device for converting the signals to sounds, a switching device for switching the signals to be transmitted to the acoustic device between to signals of the monitor and the recording/reproducing signals. The abnormality of the equipments can be determined easily by comparing the sounds representing the operation conditions of equipments for controlling the plant operation and the sounds recorded in their normal conditions. (N.H.)

  5. Prioritizing equipment for replacement.

    Capuano, Mike

    2010-01-01

    It is suggested that clinical engineers take the lead in formulating evaluation processes to recommend equipment replacement. Their skill, knowledge, and experience, combined with access to equipment databases, make them a logical choice. Based on ideas from Fennigkoh's scheme, elements such as age, vendor support, accumulated maintenance cost, and function/risk were used.6 Other more subjective criteria such as cost benefits and efficacy of newer technology were not used. The element of downtime was also omitted due to the data element not being available. The resulting Periop Master Equipment List and its rationale was presented to the Perioperative Services Program Council. They deemed the criteria to be robust and provided overwhelming acceptance of the list. It was quickly put to use to estimate required capital funding, justify items already thought to need replacement, and identify high-priority ranked items for replacement. Incorporating prioritization criteria into an existing equipment database would be ideal. Some commercially available systems do have the basic elements of this. Maintaining replacement data can be labor-intensive regardless of the method used. There is usually little time to perform the tasks necessary for prioritizing equipment. However, where appropriate, a clinical engineering department might be able to conduct such an exercise as shown in the following case study.

  6. After-heat removing system in FBR type reactor

    Ohashi, Yukio.

    1990-01-01

    The after-heat removing system of the present invention removes the after heat generated in a reactor core without using dynamic equipments such as pumps or blowers. There are disposed a first heat exchanger for heating a heat medium by the heat in a reactor container and a second heat exchanger situated above the first heat exchanger for spontaneously air-cooling the heat medium. Recycling pipeways connect the first and the second heat exchangers to form a recycling path for the heat medium. Then, since the second heat exchanger for spontaneously air-cooling the heat medium is disposed above the first heat exchanger and they are connected by the recycling pipeways, the heat medium can be circulated spontaneously. Accordingly, dynamic equipments such as pumps or blowers are no more necessary. As a result, the after-heat removing system of the FBR type reactor of excellent safety and reliability can be obtained. (I.S.)

  7. Heat pumps: heat recovery

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  8. Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program

    McGuire, L.L.

    1991-01-01

    The Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program serves two purposes. The first is to track temperature trends during normal plant operation in areas where suspected deviations from established environmental profiles exist. This includes the use of Resistance Temperature Detectors, Recorders, and Temperature Dots for evaluation of equipment qualified life for comparison with tested parameters and the established Environmental Design Profile. It also may be used to determine the location and duration of steam leaks for effect on equipment qualified life. The second purpose of this program is to aid HVAC design engineers in determining the source of heat outside anticipated design parameters. Resistance Temperature Detectors, Recorders, and Temperature Dots are also used for this application but the results may include design changes to eliminate the excess heat or provide qualified equipment (cable) to withstand the elevated temperature, splitting of environmental zones to capture accurate temperature parameters, or continued environmental monitoring for evaluation of equipment located in hot spots

  9. Radioactive decontamination of equipment

    1982-03-01

    After a recall of some definitions relating to decontamination techniques and of the regulation into effect, the principles to be respected to arrange rationally work zones are quoted while insisting more particularly on the types of coatings which facilitate maintenance operations and the dismantling of these installations. Then, the processes and equipments to use in decontamination units for routine or particular operations are described; the list of recommended chemical products to decontaminate the equipment is given. The influence of these treatments on the state and the duration of life of equipments is studied, and some perfectible methods are quoted. In the appendix, are given: the limits of surface contamination accepted in the centers; a standard project which defines the criteria of admissible residual contamination in wastes considered as cold wastes; some remarks on the interest that certain special ventilation and air curtain devices for the protection of operators working on apparatus generating contaminated dusts [fr

  10. Combined system of solar heating and cooling using heat pump

    Zakhidov, R.A.; Anarbaev, A.I.

    2014-01-01

    The heating and cooling systems of apartment buildings based on combined solar heat-pump equipment has been considered and the procedure of calculating its parameters has been worked out. A technical-economic analysis has been performed and compared with the boiler-setting version. (author)

  11. Equipment Operational Requirements

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  12. Charging equipment. Ladegeraet

    Neumann, E

    1981-09-17

    The invention refers to a charging equipment, particularly on board charging equipment for charging traction batteries of an electric vehicle from the AC mains supply, consisting of a DC converter, which contains a controlled power transistor, a switching off unloading circuit and a power transmitter, where the secondary winding is connected in series with a rectifier diode, and a smoothing capacitor is connected in parallel with this series circuit. A converter module is provided, which consists of two DC voltage converters, whose power transistors are controlled by a control circuit in opposition with a phase displacement of 180/sup 0/.

  13. The point of view of thermal equipment users; Le point de vue des gestionnaires d`equipements thermiques

    Barroyer, P. [Compagnie Generale de Chauffe, 59 - Saint Andre Lez Lille (France)

    1997-12-31

    The influence of new pollution regulations in France on the operation of thermal equipment for central heating systems or industrial heat process systems, is examined. The main French regulations concerning air pollution control and energy rational consumption are reviewed, and their effects on the design, equipment, operation and costs of heat plants are discussed: impacts of the decree on upgrading and disposal of fossil fuel ashes, the decree on special protection zone (large cities), the clean air law, the compulsory declaration for classified combustion plants and limit air pollution emission levels

  14. Experimental equipment, ch. 6

    Boomstra, F.; Hoogenboom, A.M.; Prins, C.M.; Strasters, B.A.; Vermeer, A.; Wit, P. de; Zwol, N.A. van.

    1977-01-01

    The experimental equipment in use at Utrecht university is discussed. Attention is paid to the tandem Van de Graaff accelerator and the 4MV and 1MV accelerators. The detection systems for gamma-ray spectroscopy are reviewed with emphasis on the compton-suppression spectrometer. The data-handling system used for experiments with the tandem is also briefly discussed

  15. Equipment gift to Monaco

    1970-01-01

    Research work at the Agency's Laboratory of Marine Radioactivity in Monaco, including that concerned with pollution of the sea, has been made more effective by its latest acquisition of equipment. This is a spectrophotometer donated by the Federal Republic of Germany. (author)

  16. Lifetime of Mechanical Equipment

    Leland, K.

    1999-07-01

    The gas plant at Kaarstoe was built as part of the Statpipe gas transport system and went on stream in 1985. In 1993 another line was routed from the Sleipner field to carry condensate, and the plant was extended accordingly. Today heavy additional supply- and export lines are under construction, and the plant is extended more than ever. The main role of the factory is to separate the raw gas into commercial products and to pump or ship it to the markets. The site covers a large number of well-known mechanical equipment. This presentation deals with piping, mechanical and structural disciplines. The lifetime of mechanical equipment is often difficult to predict as it depends on many factors, and the subject is complex. Mechanical equipment has been kept in-house, which provides detailed knowledge of the stages from a new to a 14 years old plant. The production regularity has always been very high, as required. The standard of the equipment is well kept, support systems are efficient, and human improvisation is extremely valuable.

  17. Safeguards techniques and equipment

    1997-01-01

    The current booklet is intended to give a full and balanced description of the techniques and equipment used for both nuclear material accountancy and containment and surveillance measures, and for the new safeguards measure of environmental sampling. As new verification measures continue to be developed, the material in the booklet will be periodically reviewed and updated versions issued. (author)

  18. Equipping tomorrow's fire manager

    Christopher A. Dicus

    2008-01-01

    Fire managers are challenged with an ever-increasing array of both responsibilities and critics. As in the past, fire managers must master the elements of fire behavior and ecology using the latest technologies. In addition, today’s managers must be equipped with the skills necessary to understand and liaise with a burgeoning group of vocal stakeholders while also...

  19. Electrical equipment design library

    1994-01-01

    This book guides the design supervision, construction order for electrical equipment. The contents of this library are let's use electricity like this, leading-in-pole and casual power, electric pole install below 300KVA, electric pole install below 301∼1000KVA, electric pole install exceed 1000KVA, rooftop install exceed 1000KVA, CUBICLE type, 154KV services. It adds an appendix.

  20. Orphee reactor experimental equipment

    1987-01-01

    Experimental equipment around the ORPHEE reactor is presented. The neutron source; and the spectrometers and sample environment (inelastic and quasi-elastic scattering, elastic scattering, spread scattering, small angle scattering) are described. An experiment proposal and reports guide is supplied [fr

  1. Seismic qualification of equipment

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  2. Underground coal equipment

    Chadwick, J.

    2002-12-01

    This paper reports on increasing automation and enhanced productivity on longwalls, new development cutting and bolting technologies and haulage systems. Amongst equipment discussed is DBT's Electra series EL3000 shearer, the Dosco LH1400 roadheader with onboard bolters, and Joy 12 CM30 continuous miners. 4 photos.

  3. Measuring of heat transfer coefficient

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  4. Heat transfer

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  5. Heat Waves

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  6. Heat Islands

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  7. Method for keeping equipment and pipeline of nuclear power plant

    Okubo, Osamu.

    1990-01-01

    The present invention intends to suppress corrosion of equipments and pipelines in condensate, feedwater and feedwater heater drain systems during operation of a nuclear power plant. That is, condensate, feedwater and drain remained in equipments and pipelines just after the stopping of operation are passed through pipelines comprising only conduits, or they are introduced to a condensator passing through the pipelines and condensate pipes. Further, the remaining droplets on the inner surfaces are evaporated by the remaining heat of the equipments and the pipelines themselves. Then, the equipments and pipelines are isolated from other regions and kept. In view of the above, since condensate, feedwater and water feeder drains are introduced directly to the condensator passing through the conduits in which other equipments such as tanks and pumps are not present and are isolated and kept, corrosion of the equipments and the pipelines is suppressed and radioactive contamination is suppressed from prevailing by way of cruds. (I.S.)

  8. Visual communication and terminal equipment

    Kang, Cheol Hui

    1988-06-01

    This book is divided two parts about visual communication and terminal equipment. The first part introduces visual communication, which deals with foundation of visual communication, technique of visual communication, equipment of visual communication, a facsimile and pictorial image system. The second part contains terminal equipment such as telephone, terminal equipment for data transmission on constitution and constituent of terminal equipment for data transmission, input device and output device, terminal device and up-to-date terminal device.

  9. Visual communication and terminal equipment

    Kang, Cheol Hui

    1988-06-15

    This book is divided two parts about visual communication and terminal equipment. The first part introduces visual communication, which deals with foundation of visual communication, technique of visual communication, equipment of visual communication, a facsimile and pictorial image system. The second part contains terminal equipment such as telephone, terminal equipment for data transmission on constitution and constituent of terminal equipment for data transmission, input device and output device, terminal device and up-to-date terminal device.

  10. Equipment cost optimization

    Ribeiro, E.M.; Farias, M.A.; Dreyer, S.R.B.

    1995-01-01

    Considering the importance of the cost of material and equipment in the overall cost profile of an oil company, which in the case of Petrobras, represents approximately 23% of the total operational cost or 10% of the sales, an organization for the optimization of such costs has been established within Petrobras. Programs are developed aiming at: optimization of life-cycle cost of material and equipment; optimization of industrial processes costs through material development. This paper describes the methodology used in the management of the development programs and presents some examples of concluded and ongoing programs, which are conducted in permanent cooperation with suppliers, technical laboratories and research institutions and have been showing relevant results

  11. X-ray equipment

    Redmayne, I.G.B.

    1988-01-01

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.)

  12. X-ray equipment

    Redmayne, I.G.B.

    1988-01-06

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.).

  13. Tube for irradiation equipment

    Goehrich, K.; Vogt, H.

    1979-01-01

    This patent describes a tube for irradiation equipment for limiting an emergent beam, with a baseplate, possessing a central aperture, intended for attaching to the equipment, as well as four carrier plates, each of which possesses a limiting edge and a sliding edge located at right angles thereto. The carrier plates are located parallel to the baseplate, the limiting edge of each carrier plate resting against the sliding edge of the adjacent carrier plate and each of the two mutually opposite pairs of carrier plates being displaceable, parallel to the direction of its sliding edges and symmetrically to the center of the transmission aperture, for the purpose of continuously varying the transmission aperture defined by the limiting edges, during which displacement each of the displaced carrier plates carries with it the carrier plate, resting against the limiting edge of the former plate, parallel to the direction of the limiting edge of the latter plate. 8 claims

  14. Equipment for isotope diagnostics

    Platz, W.

    1976-01-01

    The invention concerns an improvement of equipment for isotope diagnostics allowing to mark special intensity ranges of the recorded measurements by means of different colors. For undisturbed operation it is of advantage to avoid electric circuits between movable and unmovable parts of the color recorder. According to the invention, long gear wheels of glass fiber-reinforced polyamide are used for these connections. (ORU) [de

  15. Soviet equipment flies in

    CERN PhotoLab

    1978-01-01

    End of February 1977 a Soviet Ilyushin-76 heavy freight aircraft landed at Cointrin airport having on board fifty large wire proprtional chambers and associated apparatus, together weighing 10 tons, supplied by the Joint Institute for Nuclear Research, Dubna, USSR. The equipment was for the CERN- Dubna-Munich-Saclay experiment NA4 on deep inelastic muon scattering being set up in the North Area of SPS. See Weekly Bulletin 11/78.

  16. Labelling of equipment dispensers.

    Gray, D C

    1993-01-01

    A new labelling system for use on medical equipment dispensers is tested. This system uses one of the objects stored in each unit of the dispenser as the 'label', by attaching it to the front of the dispenser with tape. The new system was compared to conventional written labelling by timing subjects asked to select items from two dispensers. The new system was 27% quicker than the conventional system. Images Fig. 1 PMID:8110335

  17. Equipment Obsolescence Management Program

    Redmond, J.

    2014-07-01

    Nuclear Power Plant (NPP) Operators are challenged with securing reliable supply channels for safety related equipment due to equipment obsolescence. Many Original Equipment Manufacturers (OEMs) have terminated production of spare parts and product life-cycle support. The average component life cycles are much shorter than the NPP design life, which means that replacement components and parts for the original NPP systems are not available for the complete design life of the NPPs. The lack or scarcity of replacement parts adversely affects plant reliability and ultimately the profitability of the affected NPPs. This problem is further compounded when NPPs pursue license renewal and approval for plant-life extension. A reliable and predictable supply of replacement co components is necessary for NPPs to remain economically competitive and meet regulatory requirements and guidelines. Electrical and I and C components, in particular, have short product life cycles and obsolescence issues must be managed pro actively and not reactively in order to mitigate the risk to the NPP to ensure reliable and economic NPP operation. (Author)

  18. Personal protective equipment

    2004-01-01

    This Practical Radiation Technical Manual is one of a series that has been designed to provide guidance on radiological protection for employers, radiation protection officers, managers and other technically competent persons who have responsibility for ensuring the safety of employees working with ionizing radiation. The Manual may be used with the appropriate IAEA Practical Radiation Safety Manuals to provide training, instruction and information for all employees engaged in work with ionizing radiation. Personal protective equipment (PPE) includes clothing or other special equipment that is issued to individual workers to provide protection against actual or potential exposure to ionizing radiations. It is used to protect each worker against the prevailing risk of external or internal exposure in circumstances in which it is not reasonably practicable to provide complete protection by means of engineering controls or administrative methods. Adequate personal protection depends on PPE being correctly selected, fitted and maintained. Appropriate training for the users and arrangements to monitor usage are also necessary to ensure that PPE provides the intended degree of protection effectively. This Manual explains the principal types of PPE, including protective clothing and respiratory protective equipment (RPE). Examples of working procedures are also described to indicate how PPE should be used within a safe system of work. The Manual will be of most benefit if it forms part of a more comprehensive training programme or is supplemented by the advice of a qualified expert in radiation protection. Some of the RPE described in this Manual should be used under the guidance of a qualified expert

  19. Heat pipe applications workshop report

    Ranken, W.A.

    1978-04-01

    The proceedings of the Heat Pipe Applications Workshop, held at the Los Alamos Scientific Laboratory October 20-21, 1977, are reported. This workshop, which brought together representatives of the Department of Energy and of a dozen industrial organizations actively engaged in the development and marketing of heat pipe equipment, was convened for the purpose of defining ways of accelerating the development and application of heat pipe technology. Recommendations from the three study groups formed by the participants are presented. These deal with such subjects as: (1) the problem encountered in obtaining support for the development of broadly applicable technologies, (2) the need for applications studies, (3) the establishment of a heat pipe technology center of excellence, (4) the role the Department of Energy might take with regard to heat pipe development and application, and (5) coordination of heat pipe industry efforts to raise the general level of understanding and acceptance of heat pipe solutions to heat control and transfer problems

  20. Solar/electric heating systems for the future energy system

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  1. Nuclear heat sources for cryogenic refrigerator applications

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  2. Heat exchangers

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  3. Scientific Equipment Division - Overview

    Halik, J.

    2001-01-01

    Full text: The Scientific Equipment Division consists of the Design Group and the Mechanical Workshop. The activity of the Division includes the following: - designing of devices and equipment for experiments in physics, their mechanical construction and assembly. In particular, there are vacuum chambers and installations for HV and UHV; - maintenance and upgrading of the existing installations and equipment in our Institute; - participation of our engineers and technicians in design works, equipment assembly and maintenance for experiments in foreign laboratories. The Design Group is equipped with PC-computers and AutoCAD graphic software (release 2000 and Mechanical Desktop 4.0) and a AO plotter, what allows us to make drawings and 2- and 3-dimensional mechanical documentation to the world standards. The Mechanical Workshop can offer a wide range of machining and treatment methods with satisfactory tolerances and surface quality. It offers the following possibilities: - turning - cylindrical elements of a length up to 2000 mm and a diameter up to 400 mm, and also disc-type elements of a diameter up to 600 mm and a length not exceeding 300 mm; - milling - elements of length up to 1000 mm and gear wheels of diameter up to 300 mm; - grinding - flat surfaces of dimensions up to 300 mm x 1000 mm and cylindrical elements of a diameter up to 200 mm and a length up to 800 mm; - drilling - holes of a diameter up to 50 mm; - welding - electrical and gas welding, including TIG vacuum-tight welding; - soft and hard soldering; - mechanical works including precision engineering; - plastics treatment - machining and polishing using diamond milling, modelling, lamination of various shapes and materials, including plexiglas, scintillators and light-guides; - painting - paint spraying with possibility of using furnace-fred drier of internal dimensions of 800 mm x 800 mm x 800 mm. Our workshop posses CNC milling machine which can be used for machining of work-pieces up to 500 kg

  4. Mining face equipment

    G, Litvinskiy G; Babyuk, G V; Yakovenko, V A

    1981-01-07

    Mining face equipment includes drilling advance wells, drilling using explosives on the contour bore holes, loading and transporting the crushed mass, drilling reinforcement shafts, injecting reinforcement compounds and moving the timber. Camouflet explosives are used to form relaxed rock stress beyond the mining area to decrease costs of reinforcing the mining area by using nonstressed rock in the advance well as support. The strengthening solution is injected through advanced cementing wells before drilling the contour bores as well as through radial cementing wells beyond the timbers following loading and transport of the mining debris. The advance well is 50-80 m.

  5. Coal ash monitoring equipment

    Clayton, C G; Wormald, M R

    1978-10-02

    The monitoring equipment is used to determine the remainder from combustion (ash slack) of coal in wagons designed for power stations. Next to the rails, a neutron source (252 Cf, 241 Am/Be) is situated, which irradiates the coal with neutrons at a known dose, which produces the reaction 27 Al (n ..gamma..) Al 28. The aluminium content is a measure of the remainder. The 1.78 MeV energy is measured downstream of the rail with a detector. The neutron source can only act in the working position of a loaded wagon.

  6. Management of Transportation Equipment.

    1982-11-01

    Record% % %. "jP -M -. M LIh TRANSPORTATION MAENTKENAI4CE SHOP WORKLOAD CONTROL WORK CENTER SADR A-OR .a’* tLR 4.,R53 8114LM 0 o 251 50 75 100 125 ISO ...PDBP 06 7 4892 TRACTOR, WHEEL, INDUST, 14001-20000 PDBP 06 7 4893 TRACTOR, WHEEL, INDUST, 20001-27000 PDBP 06 7 4894 TRACTOR, WHEEL, INDUST, 27001 PDBP...27K TRACTOR, WHEEL, INDUST, 27001 PDBP & UP P-i LINE ITEM 07 LIGHTING AND POWER GENERATION EQUIPMENT 5110 T FLOODLIGHT ELEC FLOODLIGHT, ELEC, TRUCK

  7. Design manual. [High temperature heat pump for heat recovery system

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  8. Californium-252 Program Equipment Evaluation

    Chattin, Fred Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Kenton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ezold, Julie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    To successfully continue the 252Cf production and meet the needs of the customers, a comprehensive evaluation of the Building 7920 processing equipment was requested to identify equipment critical to the operational continuity of the program.

  9. Heat Stress

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  10. Characterization equipment essential drawing plan

    WILSON, G.W.

    1999-01-01

    The purpose of this document is to list the Characterization equipment drawings that are classified as Essential Drawings. Essential Drawings: Are those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment (HNF 1997a). The Characterization equipment drawings identified in this report are deemed essential drawings as defined in HNF-PRO-242, Engineering Drawing Requirements (HNF 1997a). These drawings will be prepared, revised, and maintained per HNF-PRO-440, Engineering Document Change Control (HNF 1997b). All other Characterization equipment drawings not identified in this document will be considered Support drawings until the Characterization Equipment Drawing Evaluation Report is completed

  11. Coal mining equipment

    Stein, R.R.; Martin, T.W.

    1991-01-01

    The word in longwall components is big, and these larger components have price tags to match. The logic behind the greater investment is that it will yield high production rates and good uptime statistics. This is true in most cases. More important than single-shift tonnage records, average shift production continues to climb upwards. This paper reports on the quality, and more significantly, the quantity of service supplied for long-wall equipment, which has reached levels that would have been seen as unachievable when longwall mining was first introduced in the U.S. The school of thought then was that longwall would increase productivity in part by reducing the number of production units and thus reducing the number of personnel employed underground. The expectation of fewer employees turned out to be unrealistic. That was probably one reason that some early attempts to install longwall system looked more like failures than vision of the future

  12. Reactor fuel charging equipment

    Wade, Elman.

    1977-01-01

    In many types of reactor fuel charging equipment, tongs or a grab, attached to a trolley, housed in a guide duct, can be used for withdrawing from the core a selected spent fuel assembly or to place a new fuel assembly in the core. In these facilities, the trolley may have wheels that roll on rails in the guide duct. This ensures the correct alignment of the grab, the trolley and fuel assembly when this fuel assembly is being moved. By raising or lowering such a fuel assembly, the trolley can be immerged in the coolant bath of the reactor, whereas at other times it can be at a certain level above the upper surface of the coolant bath. The main object of the invention is to create a fuel handling apparatus for a sodium cooled reactor with bearings lubricated by the sodium coolant and in which the contamination of these bearings is prevented [fr

  13. The point of view from thermal equipment managers; Le point de vue des gestionnaires d`equipements thermiques

    Barroyeur, P. [Compagnie General de Chauffe, 59 - Saint Andre Lez Lille (France)

    1997-12-31

    The new French regulations on air pollution and classified installations have increased the technical and economical constraints of thermal equipment managers in the domain of collective space heating and industrial heating. The aim of this paper is to precise the impact of these regulations in particular, on the valorization and elimination of fossil fuel ashes, and on the design, operation and maintenance of combustion installations (maximum acceptable limits of pollutant emissions). (J.S.)

  14. Heat pumps

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  15. Equipment repair in coal mines

    Zhang, S

    1982-01-01

    Most equipment in Chinese coal mines consists of machinery and equipment produced in the 1950s; the efficiency of 4-62, CTD-57 and 70B/sub 2/ ventilators is 15% lower than that of new ones; that of SSM and AYaP pumps, 10% lower than of modern ones. Equipment renovation is done in three ways: replacing obsolete equipment with new equipment of the same type; improving the performance of existing equipment by introducing efficiency and reconstruction; and replacing obsolete equipment with advanced equipment. It is indicated that the second way, for example, replacement of 4-62 ventilator blades with a maximum efficiency of 73% by 4-72 ventilator blades raises its efficiency to 90%. Replacing the 8DA-8x3 water pump, having a maximum efficiency of 63%, with the 200D 43x3 pump with a maximum efficiency of 78%, enables an electricity savings of 7000 yuan per year, which exceeds all replacement costs (600 yuan). The need to improve equipment maintenance and preventive work to increase equipment service life and to introduce new techniques and efficiency is noted.

  16. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  17. 46 CFR 154.178 - Contiguous hull structure: Heating system.

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Heating system. 154.178... Equipment Hull Structure § 154.178 Contiguous hull structure: Heating system. The heating system for transverse and longitudinal contiguous hull structure must: (a) Be shown by a heat load calculation to have...

  18. 46 CFR 169.703 - Cooking and heating.

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Cooking and heating. 169.703 Section 169.703 Shipping... Control, Miscellaneous Systems, and Equipment § 169.703 Cooking and heating. (a) Cooking and heating... cooking, heating or lighting is prohibited on all vessels. (c) The use of liquefied petroleum gas (LPG) or...

  19. 21 CFR 866.4540 - Immunonephelometer equipment.

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4540 Immunonephelometer equipment. (a) Identification. Immunonephelometer equipment for clinical use...

  20. 21 CFR 866.4520 - Immunofluorometer equipment.

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4520 Immunofluorometer equipment. (a) Identification. Immunofluorometer equipment for clinical use with...

  1. Construction, assembling and operation of an equipment for sodium purity

    Becquart, E.T.; Botbol, J.; Echenique, P.N.; Fruchtenicht, F.W.; Gil, D.A.; Perillo, P.; Vardich, R.N.; Vigo, D.E.

    1993-01-01

    The purpose of this work is the production of high purity metallic sodium for bench-scale, research studies. A stainless steel equipment was built and assembled, including high vacuum, heating and cooling systems. It was satisfactorily operated in two successive steps, filtration and vacuum distillation, with a good yield. (Author). 5 refs., 5 figs

  2. Equipment, components and production of x-ray

    Idris Besar

    2004-01-01

    The contents of this chapter are follows - Equipment, Components and Production of x-Ray: x-ray system, generator, control panel. x-ray tube, cathode, anode, envelope, housing, collimator, other components, x-ray production, Bremsstrahlung x-ray, characteristic x-ray, heat production

  3. Equipment standards for interventional cardiology

    Dowling, A.; Gallagher, A.; Walsh, C.; Malone, J.

    2005-01-01

    Interventional radiology has seen rapid growth in cardiology and represents an alternative to hazardous surgery. Recently there has been a substantial growth in the number of procedures being performed and interventional cardiology (IC) procedures are the most common interventional procedures in Europe. Advances in imaging technology have facilitated the development of increasingly complex radiological IC equipment. Currently, the technology is developing at a rate ahead of supporting research, equipment standards and a regulatory framework. International standards play a key role in the design, manufacture and performance of radiological IC equipment. A survey of 12 IC systems (15 imaging chains) was conducted in Irish hospitals. The aim of the study was to assess the imbalance between rapidly advancing technology and existing standards and to propose recommendations for new IC equipment standards. The results demonstrate the need for definitive equipment requirements and standardisation in the design, manufacture, acceptance and maintenance of IC equipment. (authors)

  4. Generation of equipment response spectrum considering equipment-structure interaction

    Lee, Sang Hoon; Yoo, Kwang Hoon

    2005-01-01

    Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plant are usually generated without considering dynamic interaction between main structure and subsystem. Since the dynamic structural response generally has the narrow-banded shapes, the resulting floor response spectra developed for various locations in the structure usually have high spectral peak amplitudes in the narrow frequency bands corresponding to the natural frequencies of the structural system. The application of such spectra for design of subsystems often leads to excessive design conservatisms, especially when the equipment frequency and structure are at resonance condition. Thus, in order to provide a rational and realistic design input for dynamic analysis and design of equipment, dynamic equipment-structure interaction (ESI) should be considered in developing equipment response spectrum which is particularly important for equipment at the resonance condition. Many analytical methods have been proposed in the past for developing equipment response spectra considering ESI. However, most of these methods have not been adapted to the practical applications because of either the complexities or the lack of rigorousness of the methods. At one hand, mass ratio among the equipment and structure was used as an important parameter to obtain equipment response spectra. Similarly, Tseng has also proposed the analytical method for developing equipment response spectra using mass ratio in the frequency domain. This method is analytically rigorous and can be easily validated. It is based on the dynamic substructuring method as applied to the dynamic soil-structure interaction (SSI) analysis, and can relatively easily be implemented for practical applications without to change the current dynamic analysis and design practice for subsystems. The equipment response spectra derived in this study are also based on Tseng's proposed method

  5. Welding technologies for nuclear machinery and equipment

    Kobayashi, Masahiro; Yokono, Tomomi.

    1991-01-01

    The main welding methods applied to nuclear machinery and equipment are shielded metal arc welding, submerged arc welding, MAG welding and TIG welding. But in the last 10 years, in order to improve the reliability required for the welding of nuclear machinery and equipment, the welding technologies aiming at the reduction of heat input, the decrease of the number of welding pass and the automatic control of welding factors have been applied for the main purpose of bettering the quality and excluding human errors. The merits and the technology of narrow gap, pulsed MAG welding and melt-through welding are explained. As the automation of TIG welding, image processing type narrow gap, hot wire TIG welding and remote control type automatic TIG welding are described. For the longitudinal welding of active metal sheet products, plasma key-hole welding is applied. Since the concentration of its arc is good, high speed welding with low heat input can be done. For the stainless steel cladding by welding, electroslag welding has become to be employed in place of conventional submerged arc welding. Arc is not generated in the electroslag welding, and the penetration into base metal is small. (K.I.)

  6. High heat flux facility GLADIS

    Greuner, H.; Boeswirth, B.; Boscary, J.; McNeely, P.

    2007-01-01

    The new ion beam facility GLADIS started the operation at IPP Garching. The facility is equipped with two individual 1.1 MW power ion sources for testing actively cooled plasma facing components under high heat fluxes. Each ion source generates heat loads between 3 and 55 MW/m 2 with a beam diameter of 70 mm at the target position. These parameters allow effective testing from probes to large components up to 2 m length. The high heat flux allows the target to be installed inclined to the beam and thus increases the heated surface length up to 200 mm for a heat flux of 15 MW/m 2 in the standard operating regime. Thus the facility has the potential capability for testing of full scale ITER divertor targets. Heat load tests on the WENDELSTEIN 7-X pre-series divertor targets have been successfully started. These tests will validate the design and manufacturing for the production of 950 elements

  7. Overall Equipment Effectiveness Implementation Criteria

    Abramova, I. G.; Abramov, D. A.

    2018-01-01

    This article documents the methods applied in production control technics specifically focused on commonly used parameter OEE (Overall Equipment Effectiveness). The indicators of extensive and intensive use of equipment are considered. Their appointment this is comparison in the same type of production within the industry and comparison of single-type and / or different types of equipment in terms of capacity. However, it is shown that there is no possibility of revealing the reasons for the machine’s operation: productive / unproductive, with disturbances. Therefore, in the article reveals the approaches to calculating the indicator characterizing the direct operation of the equipment. The Machine Load coefficient is approaching closely to the indicator of the efficiency of the use of equipment. Methods analysis is proceeded through the historically applied techniques such as “Stopwatch” and “Motion” studies. Was performed the analysis of the efficiency index of OEE equipment using the comparable indexes performance of equipment in the Russian practice. An important indicator of OEE contains three components. The meaning of each of them reflects historically applicable indicators. The value of the availability of equipment indicator is close to the value of the equipment extensibility index. The value of the indicator of the efficiency of work can be compared with the characteristic of the capacity of the equipment and the indicator of the quality level can meet the requirements for compliance with the manufacturing technology. Shown that the sum of the values of the coefficient of “Availability” of the equipment and the value of the “Factor of compaction of working hours” are one. As well as the total value of the indicator “level of quality” and the coefficient of marriage given in the result unit. The measurability of the indicators makes it possible to make a prediction about efficiency of the equipment.

  8. Low-energy house in Sisimiut - Measurement equipment

    Hvidthoeft Delff Andersen, P.; Rode, C.; Madsen, Henrik

    2013-08-15

    This paper documents the measurement equipment in a low-energy house in Sisimiut, Greenland. Detailed measurements are being taken on energy consumption, indoor temperatures, floor heating, ventilation, open/closed state of doors and windows, and indoors climate. Equipped with a central control unit, experiments can be designed in order to study heat dynamics of the building. It is described how to plan and execute such experiments in one apartment in the building. The building also features both a solar thermal system and extra buffer tank facilitating testing of storage strategies on the power generated by the solar thermal system. A weather station equipped with thermometer, pyranometer and anemometer is installed on the building as well. Finally, it is described how to retrieve data from an SQL server which is configured to take monthly backups. R functions have been implemented to fetch and prepare the data for time series analysis. Examples are given on the use of these. (Author)

  9. Management methodology for pressure equipment

    Bletchly, P. J.

    Pressure equipment constitutes a significant investment in capital and a major proportion of potential high-risk plant in many operations and this is particularly so in an alumina refinery. In many jurisdictions pressure equipment is also subject to statutory regulation that imposes obligations on Owners of the equipment with respect to workplace safety. Most modern technical standards and industry codes of practice employ a risk-based approach to support better decision making with respect to pressure equipment. For a management system to be effective it must demonstrate that risk is being managed within acceptable limits.

  10. Cryogenic equipment; Materiel cryogenique

    Leger, L; Javellaud, J; Caro, C; Gilguy, R; Testard, O

    1966-06-01

    The cryostats presented here were built from standard parts; this makes it possible to construct a great variety of apparatus at minimum cost. The liquid nitrogen and helium reservoirs were designed so as to reduce losses to a minimum, and so as to make the cryostats as autonomous as possible. The experimental enclosure which is generally placed in the lower part of the apparatus requires a separate study in every case. Furthermore, complete assemblies such as transfer rods, isolated traps and high vacuum valves, were designed with a similar regard for the economic aspects and for the need for standardization. This equipment thus satisfies a great variety of experimental needs; it is readily adaptable and the consumptions of helium and liquid nitrogen are very low. (authors) [French] De nombreuses experiences utilisant les basses temperatures, necessitent l'emploi d'un materiel cryogenique complexe n'existant pas dans le commerce. Les cryostats presentes ici ont ete realises a partir d'elements standard, ce qui permet, malgre la diversite des appareils, de realiser un ensemble a moindre frais. Les reservoirs d'azote et d'helium liquides ont ete concus de facon a limiter les pertes et a conferer au cryostat la plus grande autonomie possible. L'enceinte experimentale situee en general dans la partie inferieure de l'appareil necessite dans tous les cas une etude speciale. D'autre part des ensembles complets tels que les cannes de transfert, piege isole, robinet pour vide secondaire, ont ete concus dans le meme souci de rentabilite et de standardisation. Ce materiel peut donc repondre a un grand nombre d'exigences experimentales, il est facilement adaptable, et les consommations d'helium et d'azote liquide sont tres reduites. (auteurs)

  11. Heat pumps

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  12. 29 CFR 1926.952 - Mechanical equipment.

    2010-07-01

    ... equipment that are not covered with insulating protective equipment. (c) Derrick trucks, cranes and other lifting equipment. (1) All derrick trucks, cranes and other lifting equipment shall comply with subpart N...

  13. 22 CFR 135.32 - Equipment.

    2010-04-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  14. 21 CFR 1403.32 - Equipment.

    2010-04-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  15. 45 CFR 602.32 - Equipment.

    2010-10-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  16. 49 CFR 18.32 - Equipment.

    2010-10-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  17. 34 CFR 80.32 - Equipment.

    2010-07-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  18. 10 CFR 600.232 - Equipment.

    2010-01-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  19. 45 CFR 1183.32 - Equipment.

    2010-10-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  20. Analysis of the heat transfer in double and triple concentric tube heat exchangers

    Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.

    2016-08-01

    The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.

  1. 14 CFR 121.342 - Pitot heat indication systems.

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 121.342... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.342 Pitot... a flight instrument pitot heating system unless the airplane is also equipped with an operable pitot...

  2. Contact heating of water products of combustion of natural gas

    Aronov, I Z

    1978-01-01

    The USSR's NIIST examined the processes and equipment for heating water by submerged combustion using natural gas. Written for engineers involved with the design and application of thermal engineering equipment operating with natural gas, the book emphasizes equipment, test results, and methods of calculating heat transfer for contact gas economizers developed by Scientific Research Institute of Sanitary Engineering and other Soviet organizations. The economic effectiveness of submerged-combustion heating depends on several factors, including equipment design. Recommendations cover cost-effective designs and applications of contact economizers and boilers.

  3. Food Service Equipment and Appurtenances.

    National Sanitation Foundation, Ann Arbor, MI.

    Equipment design specifications are presented relating to tables of all kinds, counters, sinks and drainboards, bins, shelves, drawers, hoods and similar kitchen appurtenances, not including baking, roasting, toasting, broiling or frying equipment, food preparation machinery such as slicers, choppers, and cutters, mixers and grinders, steam…

  4. Equipe de trabalho

    Gabriel Gerber Hornink

    2014-08-01

    Full Text Available   Equipe de Trabalho 2014 1. Equipe editorial Editor-Chefe Bayardo Bapstista Torres, Instituto de Química - USP, Brasil Eduardo Galembeck, Departamento de Bioquímica Instituto de Biologia UNICAMP, Brasil   Editores Gabriel Gerber Hornink, Depto. Bioquímica, Instituto de Ciências Biomédicas, Universidade - Federal de Alfenas - Unifal-MG, Brasil Vera Maria Treis Trindade, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Brasil   Corpo Editorial Adriana Cassina, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguai Angel Herráez, Departamento de Bioquímica y Biología molecular, Universidad de Alcalá de Henares, Madrid, Espanha André Amaral Gonçalves Bianco, Universidade Federal de São Paulo (Unifesp, Brasil Denise Vaz de Macedo, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas - Unicamp, Brasil Eneida de Paula, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas - Unicamp, Brasil Guilherme Andrade Marson, Instituto de Química - USP, Brasil Jose Antonio Martinez Oyanedel, Universidad de Concepción, Chile Josep Maria Fernández Novell, Dept. Bioquímica i Biologia Molecular Universitat de Barcelona, Espanha Leila Maria Beltramini, Instituto de Física de São Carlos, Universidade Estadual de São Paulo - USP, Brasil Manuel João da Costa, Escola de Ciências da Saúde, Universidade do Minho, Portugal Maria Lucia Bianconi, Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro (UFRJ, Brasil María Noel Alvarez, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguai Miguel Ángel Medina Torres, Department of Molecular Biology & Biochemistry Faculty of Sciences University of Málaga, Espanha Nelma Regina Segnini Bossolan, Instituto de Física de São Carlos, Universidade de São Paulo - USP, Brasil Paulo De Avila

  5. Heat transfer

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  6. U.S. Army and Marine Corps Equipment Requirements: Background and Issues for Congress

    Feickert, Andrew

    2006-01-01

    ... on a rotational basis in combat conditions." In a similar manner, the Marine Corps has deployed its forces and equipment in what has been described as "the harsh operating environments of Iraq and Afghanistan" where the heat, sand, and dust...

  7. The reduction of noise from hydraulic equipments; La reduction du bruit provenant des equipements hydrauliques

    Gential, R.

    1996-09-01

    Noise pollution from hydraulic equipments (bath filling, toilets taps, waste waters flow, vibrations, knocks in water pipes, dilatation clattering in heating pipes, hissing of heater taps etc..) are one of the principal causes of nuisance inside residential buildings. Solutions exist and consist in the replacement of old cocks and fittings, the use of soundproof clamps for pipes and noise absorbing supports for baths etc.. This paper summarizes the available modern equipments with a low-noise warranty (cocks and fittings, noise dampers, anti-backflow valves, pressure reducers) and the practical solutions for the modification of existing installations (increase of pipe diameters, reduction of pipe lengths, use of flexible fittings, hydraulic counterbalancing of water flows in heaters etc..). (J.S.)

  8. Heat exchanger

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  9. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  10. Heat pumps in western Switzerland

    Freymond, A.

    2003-01-01

    The past ten years have seen an extraordinary expansion of heat-pump market figures in the western (French speaking) part of Switzerland. Today, more than 14,000 units are in operation. This corresponds to about 18% of all the machines installed in the whole country, compared to only 10 to 12% ten years ago. This success illustrates the considerable know-how accumulated by the leading trade and industry during these years. It is also due to the promotional program 'Energy 2000' of the Swiss Federal Department of Energy that included the heat pump as a renewable energy source. Already in 1986, the Swiss Federal Institute of Technology in Lausanne was equipped with a huge heat pump system comprising two electrically driven heat pumps of 3.5 MW thermal power each. The heat source is water drawn from the lake of Geneva at a depth of 70 meters. An annual coefficient of performance of 4.5 has been obtained since the commissioning of the plant. However, most heat pump installations are located in single-family dwellings. The preferred heat source is geothermal heat, using borehole heat exchangers and an intermediate heat transfer fluid. The average coefficient of performance of these installations has been increased from 2.5 in 1995 to 3.1 in 2002

  11. Numerical Modelling of Indution Heating - Fundamentals

    Zhang, Wenqi

    Induction heating is extensively used for brazing and heat treatment of materials to produce consumer and industrial products; structural assemblies; electrical and electronic products; mining, machine, and hand tools; ordnance equipment; and aerospace assemblies. It is often applied when rapid a...

  12. Experimental evaluation of vibrations in heat exchangers

    Martin Ghiselli, A.

    1997-01-01

    Flow induced vibrations may produce damage of heat exchangers, condensers and steam generators tubes. To evaluate this problem a set of tests were developed to know the real support state of the tubes, which have great influence on the vibration response. This paper include a description of the tests and the results obtained applying them on a heat exchanger equipment. (author) [es

  13. Self-heating, gamma heating and heat loss effects on resistance temperature detector (RTD) accuracy

    Qian, T.; Hinds, H.W.; Tonner, P.

    1997-01-01

    Resistance temperature detectors (RTDs) are extensively used in CANDU nuclear power stations for measuring various process and equipment temperatures. Accuracy of measurement is an important performance parameter of RTDs and has great impact on the thermal power efficiency and safety of the plant. There are a number of factors that contribute to some extent to RTD measurement error. Self-heating, gamma heating and the heat-loss throughout conduction of the thermowell are three of these factors. The degree to which these three affect accuracy of RTDs used for the measurement of reactor inlet header temperature (RIHT) has been analyzed and is presented in this paper. (author)

  14. Development of manufacturing equipment and QC equipment for DUPIC fuel

    Yang, Myung Seung; Park, J.J.; Lee, J.W.; Kim, S.S.; Yim, S.P.; Kim, J.H.; Kim, K.H.; Na, S.H.; Kim, W.K.; Shin, J.M.; Lee, D.Y.; Cho, K.H.; Lee, Y.S.; Sohn, J.S.; Kim, M.J.

    1999-05-01

    In this study, DUPIC powder and pellet fabrication equipment, welding system, QC equipment, and fission gas treatment are developed to fabricate DUPIC fuel at IMEF M6 hot cell. The systems are improved to be suitable for remote operation and maintenance with the manipulator at hot cell. Powder and pellet fabrication equipment have been recently developed. The systems are under performance test to check remote operation and maintenance. Welding chamber and jigs are designed and developed to remotely weld DUPIC fuel rod with manipulators at hot cell. Remote quality control equipment are being tested for analysis and inspection of DUPIC fuel characteristics at hot cell. And trapping characteristics is analyzed for cesium and ruthenium released under oxidation/reduction and sintering processes. The design criteria and process flow diagram of fission gas treatment system are prepared incorporating the experimental results. The fission gas treatment system has been successfully manufactured. (Author). 33 refs., 14 tabs., 91 figs

  15. Heat pipe

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  16. Innovative heat exchangers

    Scholl, Stephan

    2018-01-01

    This accessible book presents unconventional technologies in heat exchanger design that have the capacity to provide solutions to major concerns within the process and power-generating industries. Demonstrating the advantages and limits of these innovative heat exchangers, it also discusses micro- and nanostructure surfaces and micro-scale equipment, and introduces pillow-plate, helical and expanded metal baffle concepts. It offers step-by-step worked examples, which provide instructions for developing an initial configuration and are supported by clear, detailed drawings and pictures. Various types of heat exchangers are available, and they are widely used in all fields of industry for cooling or heating purposes, including in combustion engines. The market in 2012 was estimated to be U$ 42.7 billion and the global demand for heat exchangers is experiencing an annual growth of about 7.8 %. The market value is expected to reach U$ 57.9 billion in 2016, and approach U$ 78.16 billion in 2020. Providing a valua...

  17. Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger

    S. A. Burtsev

    2016-01-01

    Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at

  18. TRANSPORT AND EMPLACEMENT EQUIPMENT DESCRIPTIONS

    1997-01-01

    The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) Transport and Emplacement in the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. The Transport and Emplacement equipment described in this document consists of the following: (1) WP Transporter; (2) Reusable Rail Car; (3) Emplacement Gantry; (4) Gantry Carrier; and (5) Transport Locomotive

  19. Containment and Surveillance Equipment Compendium

    Luetters, F.O.

    1980-02-01

    The Containment and Surveillance Equipment Compendium contains information sections describing the application and status of seals, optical surveillance systems, and monitors for international safeguards systems. The Compendium is a collection of information on equipment in use (generally by the IAEA) or under development in the US in diverse programs being conducted at numerous facilities under different sponsors. The Compendium establishes a baseline for the status and applications of C/S equipment and is a tool to assist in the planning of future C/S hardware development activities. The Appendix contains design concepts which can be developed to meet future goals

  20. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  1. Data Center Equipment Location and Monitoring System

    2013-01-01

    Abstract: Data center equipment location systems include hardware and software to provide information on the location, monitoring, and security of servers and other equipment in equipment racks. The systems provide a wired alternative to the wireless RFID tag system by using electronic ID tags...... connected to each piece of equipment, each electronic ID tag connected directly by wires to an equipment rack controller on the equipment rack. The equipment rack controllers link to a central control computer that provides an operator ...

  2. EAS Equipment Authorization Grantee Registrations

    Federal Communications Commission — EAS (Equipment Authorization System). Radio Frequency (RF) devices are required to be properly authorized under 47 CFR Part 2 prior to being marketed or imported...

  3. ENERGY STAR Certified Imaging Equipment

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Imaging Equipment that are effective as of...

  4. EMR Measurements on NDA Equipment

    Macdonell, Alexander Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meierbachtol, Krista Cruse [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Evans, James Walter Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mayo, Douglas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-10

    Electromagnetic radiation (EMR) emission strength measurements were performed on a suite of passive non-destructive assay (NDA) radiation detection equipment. Data were collected from 9 kHz up to 6 GHz on each of the assembled systems.

  5. Mongolia - Vocational Education - Equipment Upgrades

    Millennium Challenge Corporation — Evaluation design The impact evaluation sought to identify the causal impact of exposure to equipment upgrades on subsequent outcomes. Insofar as we were not able to...

  6. Origins of eponymous orthopaedic equipment.

    Meals, Clifton; Wang, Jeffrey

    2010-06-01

    Orthopaedists make great use of eponymous equipment, however the origins of these tools are unknown to many users. This history enriches, enlightens, and enhances surgical education, and may inspire modern innovation. We explored the origins of common and eponymous orthopaedic equipment. We selected pieces of equipment named for their inventors and in the broadest use by modern orthopaedists. We do not describe specialized orthopaedic implants and instruments owing to the overwhelming number of these devices. The history of this equipment reflects the coevolution of orthopaedics and battlefield medicine. Additionally, these stories evidence the primacy of elegant design and suggest that innovation is often a process of revision and refinement rather than sudden inspiration. Their history exposes surgical innovators as brilliant, lucky, hardworking, and sometimes odd. These stories amuse, enlighten, and may inspire modern orthopaedists to develop creative solutions of their own. The rich history of the field's eponymous instruments informs an ongoing tradition of innovation in orthopaedics.

  7. Operation monitor for plant equipment

    Kondo, Tetsufumi; Kanemoto, Shigeru.

    1991-01-01

    In a nuclear power plant, states of each of equipment in the plant are monitored accurately even under such a operation condition that the power is changed. That is, the fundamental idea is based on a model comparison method. A deviation between an output signal upon normal plant state obtained in a forecasting model device and that of the objective equipment in the plant are compared with a predetermined value. The result of the comparison is inputted to an alarm device to alarm the abnormality of the states of the equipment to an operator. The device of the present invention thus constituted can monitor the abnormality of the operation of equipment accurately even under such a condition that a power level fluctuates. As a result, it can remarkably contribute to mitigate operator's monitoring operation under the condition such as during load following operation. (I.S.)

  8. Technical preparation of the Yuzhteploehnergomontazh trust for technological equipment mounting

    Zayats, A.I.

    1982-01-01

    Measures of technical preparation for equipment mounting at the Zaporozhe NPP developed with the Yuzhteploehnergomontazh trust experts are considered. These measures envisage the construction of mounting base of heat facilities, calculation of labour contents and determination of necessary quantity of mounters, development of optimal flowsheet of mounting control, improvement of mounting qualification and creation of stable collective body, improvement of technical level of mounting and welding works, organizational-technical measures on mounting logistics. Factors affecting negatively technical preparation quality of equipment mounting at the Zaporozhe NPP are discussed. The flowsheet of mounting control is presented

  9. Information booklet on personal protective equipment: arm and hand protection

    1992-01-01

    Fire, heat, cold, electro-magnetic and ionising radiation, electricity, chemicals, impacts, cuts, abrasion, etc. are the common hazards for arms and hands at work. The gloves chosen for protection of the arm and hand should cover those parts adequately and the material of the gloves should be capable of offering protection against the specific hazard involved. Criteria for choosing arm and hand protection equipment will be based on their shape and part of the arm and hand protected. Guide lines for choosing such personal protection equipment for nuclear facilities are given. (M.K.V.). 3 annexures, 1 appendix

  10. Sensor equipment for quantification of spatial heterogeneity in large bioreactor

    Nørregaard, Anders; Formenti, Luca Riccardo; Stocks, Stuart M.

    of sensors and in order to apply more sensor equipment the bioreactor has to be modified which is both costly and results in production downtime. The presence of three phases (gas, liquid, and solid), and the opaque nature of the fermentation broth together with the necessity of heat sterilization further...... increases the requirements to the sensor equipment. In order to address these issues this study aims to make an investigation into freely floating, battery driven sensor particles that can follow the liquid movement in the reactor and make measurements while being distributed in the whole volume...

  11. Technical project of complex fast cycle heat treatment of hydrogenous coal preparation

    Moiseev, V. A.; Andrienko, V. G.; Pileckij, V. G.; Urvancev, A. I.; Gvozdyakov, Dmitry Vasilievich; Gubin, Vladimir Evgenievich; Matveev, Aleksandr Sergeevich; Savostiyanova, Ludmila Viktorovna

    2015-01-01

    Problems of heat-treated milled hydrogenous coal preparation site creation in leading fast cycle heat treatment complex were considered. Conditions for effective use of electrostatic methods of heat-treated milled hydrogenous coal preparation were set. Technical project of heat treatment of milled hydrogenous coal preparation site was developed including coupling of working equipment complex on fast heat treatment and experimental samples of equipment being designed for manufacturing. It was ...

  12. Optimization of heat supply systems employing nuclear power plants

    Urbanek, J.

    1988-01-01

    Decision making on the further development of heat supply systems requires optimization of the parameters. In particular, meeting the demands of peak load ranges is of importance. The heat supply coefficient α and the annual utilization of peak load equipment τ FS have been chosen as the characteristic quantities to describe them. The heat price at the consumer, C V , offers as the optimization criterion. The transport distance, temperature spread of the heating water, and different curves of annual variation of heat consumption on heat supply coefficient and heat price at the consumer. A comparison between heat supply by nuclear power plants and nuclear heating stations verifies the advantage of combined heat and power generation even with longer heat transport distances as compared with local heat supply by nuclear district heating stations based on the criterion of minimum employment of peak load boilers. (author)

  13. Equipment improvements for performance enhancement

    Gaestel, P.; Guesnon, H.; Sauze, G.

    1994-01-01

    In order to enhance the reactor availability, several improvements on reactor equipment have been developed: design optimization for stator maintenance replacement in the main alternator; adjustment modification of stator coils in the main alternator for an easier maintenance; improvement of the fuel handling line (pole crane, transfer equipment, loading machine); development of a loose part trapping system in the steam generator secondary circuit. 1 tab

  14. Low level photoneutron detection equipment

    Ji Changsong; Zhang Yuqin; Li Yuansui

    1991-01-01

    A low level photoneutron detection equipment has been developed. The photoneutrons produced by interaction of 226 Ra gamma quanta and deutron (D) target are detected with n-n discrimination detector made up of 3 He proportional counter array. The D-content information in the target can be obtained from the measured photoneutron counts. The equipment developed is mainly used for nondestructive D-content measurement of D-devices

  15. FUSRAP equipment concept development study

    Hinerman, K.B.; Smith, R.E.

    1981-01-01

    Under DOE contract, Dalton-Dalton-Newport, Inc. is performing an engineering evaluation of three selected FUSRAP sites in an effort to generate equipment concepts to perform remedial action for retrieval, packaging, storing, and transporting contaminated soil and other debris. Along with this engineering evaluation, an analysis of state and Federal regulations was made which had significant impact on the selected equipment and costs for each remedial action concept

  16. Remotely operated replaceable process equipment

    Westendorf, H.

    1987-01-01

    The coupling process of pneumatic and electrical auxiliary lines of a pneumatic control pressure line in a large cell of the reprocessing plant is carried out, together with the coupling process of the connecting flange of the process equipment. The coupling places of the auxiliary lines, such as control or supply lines, are laid in the flange parts of the flanges to be connected. The pipe flange on the frame side remains flush with the connecting flange of the process equipment. (DG) [de

  17. Partners in qualified equipment supply

    Rygg, D.E.; O'Hare, G.J.

    1993-01-01

    Industry initiatives have been taken to improve procurement practices and commercial dedication programs, formation of procurement engineering groups, emphasis on product quality, and increased engineering involvement in procurement and maintenance of qualified equipment. This poses new challenges for many licensees in terms of resources, product knowledge, and access to information normally held proprietary by equipment suppliers. Alternative approaches to future licensee/Westinghouse relationships which will allow licensees to adapt to the changing environment are discussed. 2 figs

  18. Timing criteria for supplemental BWR emergency response equipment

    Bickel, John H.

    2015-01-01

    The Great Tohuku Earthquake and subsequent Tsunami represented a double failure event which destroyed offsite power connections to Fukushima-Daiichi site and then destroyed on-site electrical systems needed to run decay heat removal systems. The accident could have been mitigated had there been supplemental portable battery chargers, supplemental pumps, and in-place piping connections to provide alternate decay heat removal. In response to this event in the USA, two national response centers, one in Memphis, Tennessee, and another in Phoenix, Arizona, will begin operation. They will be able to dispatch supplemental emergency response equipment to any nuclear plant in the U.S. within 24 hours. In order to define requirements for supplemental nuclear power plant emergency response equipment maintained onsite vs. in a regional support center it is necessary to confirm: (a) the earliest time such equipment might be needed depending on the specific scenario, (b) the nominal time to move the equipment from a storage location either on-site or within the region of a nuclear power plant, and (c) the time required to connect in the supplemental equipment to use it. This paper describes an evaluation process for a BWR-4 with a Mark I Containment starting with: (a) severe accident simulation to define best estimate times available for recovery based on the specific scenario, (b) identify the key supplemental response equipment needed at specific times to accomplish recovery of key safety functions, and (c) evaluate what types of equipment should be warehoused on-site vs. in regional response centers. (authors)

  19. Operation control equipment for BWR type reactor

    Izumi, Masayuki; Takeda, Renzo.

    1981-01-01

    Purpose: To improve the temperature balance in a feedwater heater by obtaining the objective value of a feedwater enthalpy upon calculation of respective measured values and controlling the opening or closing of an extraction valve so that the objective value may coincide with the measured value, thereby averaging the axial power distribution. Constitution: A plurality of stages of extraction lines are connected to a turbine, and extraction valves are respectively provided at the lines. By calculating the measured values of ractor pressure, reactor core flow rate, vapor flow rate and reactor core inlet enthalpy determined to predetermined value using heat balance the objective feedwater enthalpy is obtained, is fed as an extraction valve opening or closing signal from a control equipment, the extraction stages of the turbine extraction are altered in accordance with this signal, and the feedwater enthalpy is controlled. (Sekiya, K.)

  20. Compact heat exchanger for power plants

    Kinnunen, L.

    2001-01-01

    Vahterus Oy, located at Kalanti, has manufactured heat exchangers since the beginning of 1990s. About 90% of the equipment produced are exported. In the PSHE (Plate and Shell) solution of the Vahterus heat exchanger the heat is transferred by round plated welded to form a compact package, which is assembled into a cylindrical steel casing. The heat exchanger contains no gaskets or soldered joints, which eliminates the leak risks. Traditional heat exchanges are usually operated at higher temperatures and pressures, but the heat transfer capacities of them are lower. Plate heat exchangers, on the other hand, are efficient, but the application range of them is narrow. Additionally, the rubber gasket of the heat exchange plates, sealing the joints of the heat exchanging plates, does not stand high pressures or temperatures, or corroding fluids. The new welded plate heat exchanger combine the pressure and temperature resistance of tube heat exchangers and the high heat exchange capacity of plate heat exchangers. The new corrosion resisting heat exchanger can be applied for especially hard conditions. The operating temperature range of the PSHE heat exchanger is - 200 - 900 deg C. The pressure resistance is as high as 100 bar. The space requirement of PSHE is only one tenth of the space requirement of traditional tube heat exchangers. Adjusting the number of heat exchanging plates can change the capacity of the heat exchanger. Power range of the heat exchanger can be as high as 80 MW. Due to the corrosion preventive construction and the small dimension the PSHE heat exchanger can be applied for refrigerators using ammonia as refrigerant. These kinds of new Vahterus heat exchangers are in use in 60 countries in more than 2000 refrigerators

  1. 29 CFR 97.32 - Equipment.

    2010-07-01

    ...) When acquiring replacement equipment, the grantee or subgrantee may use the equipment to be replaced as... equipment (including replacement equipment), whether acquired in whole or in part with grant funds, until... established to ensure the highest possible return. (e) Disposition. When original or replacement equipment...

  2. 44 CFR 13.32 - Equipment.

    2010-10-01

    ...) When acquiring replacement equipment, the grantee or subgrantee may use the equipment to be replaced as... equipment (including replacement equipment), whether acquired in whole or in part with grant funds, until... established to ensure the highest possible return. (e) Disposition. When original or replacement equipment...

  3. 24 CFR 85.32 - Equipment.

    2010-04-01

    ...) When acquiring replacement equipment, the grantee or subgrantee may use the equipment to be replaced as... equipment (including replacement equipment), whether acquired in whole or in part with grant funds, until... established to ensure the highest possible return. (e) Disposition. When original or replacement equipment...

  4. 41 CFR 105-71.132 - Equipment.

    2010-07-01

    .... (4) When acquiring replacement equipment, the grantee or subgrantee may use the equipment to be... managing equipment (including replacement equipment), whether acquired in whole or in part with grant funds... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Equipment. 105-71.132...

  5. 43 CFR 12.72 - Equipment.

    2010-10-01

    ...) When acquiring replacement equipment, the grantee or subgrantee may use the equipment to be replaced as... equipment (including replacement equipment), whether acquired in whole or in part with grant funds, until... established to ensure the highest possible return. (e) Disposition. When original or replacement equipment...

  6. 1968 Listing of Swimming Pool Equipment.

    National Sanitation Foundation, Ann Arbor, MI. Testing Lab.

    An up-to-date listing of swimming pool equipment including--(1) companies authorized to display the National Sanitation Foundation seal of approval, (2) equipment listed as meeting NSF swimming pool equipment standards relating to diatomite type filters, (3) equipment listed as meeting NSF swimming pool equipment standard relating to sand type…

  7. Waste Heat to Power Market Assessment

    Elson, Amelia [ICF International, Fairfax, VA (United States); Tidball, Rick [ICF International, Fairfax, VA (United States); Hampson, Anne [ICF International, Fairfax, VA (United States)

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  8. Waste heat recovery for offshore applications

    Pierobon, Leonardo; Kandepu, Rambabu; Haglind, Fredrik

    2012-01-01

    vary in the range 20-30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity...... production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water. A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal...... energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized...

  9. 24 CFR 3285.905 - Heating oil systems.

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heating oil systems. 3285.905... Installation Instructions § 3285.905 Heating oil systems. It is recommended that the installation instructions include the following information related to heating oil systems, when applicable: (a) Homes equipped with...

  10. Performance monitoring of safeguards equipment

    Sirisena, K.; Peltoranta, M.; Goussarov, V.; Vodrazka, P.

    1999-01-01

    SGTCS is responsible for monitoring and reporting the performance of the SG equipment. Performance monitoring (PM) has been implemented in most important safeguards equipment operating unattended in nuclear facilities. Inspectors acquire equipment performance data in facilities. After inspection, the data package is submitted to SGTCS for processing and analysis. The performance data is used for identification of systems or components, which should be changed in the field and for identification of modules which, should be diagnosed at HQ in order to determine the cause of failure. Moreover, the performance data is used for preventive maintenance and spares distribution planning, and to provide statistics for official reports and management decision making. An important part of the performance monitoring is reporting. Equipment performance reports contain information about equipment inventory, utilization, failure types, failure distribution, and reliability. Trends in performance are given in graphical form in cases, where past data is available. Reliability estimates such as expected times between failures are provided. The automated reporting tools are obtainable through EMIS database application. (author)

  11. AVM branch vibration test equipment

    Anne, J.P.

    1995-01-01

    An inventory of the test equipment of the AVM Branch ''Acoustic and Vibratory Mechanics Analysis Methods'' group has been undertaken. The purpose of this inventory is to enable better acquaintance with the technical characteristics of the equipment, providing an accurate definition of their functionalities, ad to inform potential users of the possibilities and equipment available in this field. The report first summarizes the various experimental surveys conduced. Then, using the AVM equipment database to draw up an exhaustive list of available equipment, it provides a full-scope picture of the vibration measurement systems (sensors, conditioners and exciters) and data processing resources commonly used on industrial sites and in laboratories. A definition is also given of a mobile test unit, called 'shelter', and a test bench used for the testing and performance rating of the experimental analysis methods developed by the group. The report concludes with a description of two fixed installations: - the calibration bench ensuring the requisite quality level for the vibration measurement systems ; - the training bench, whereby know-how acquired in the field in the field of measurement and experimental analysis processes is made available to others. (author). 27 refs., 15 figs., 2 appends

  12. Use of ice storage equipment in the food industry

    Vries, H. de

    1984-01-01

    The manufacture of foods in its widest sense demands a 'balanced supply of cooling'. Whenever 'cold requirement' occurs in different ways during production, the ice storage equipment in particular for 'cooling supplies'. The cooling performance (amount of cold from horizontal tubes and slabs or from horizontal pipes given off to the water flowing past) that can be expected from modern ice storage equipment, is made clear numerically. The way the storage vessel is constructed and its design have particular influence on the energy-saving quality (stirring mechanism with high performance at low pump capacity). Optimisation results for a plate evaporator design combined with a heat exchange system are presented. These include running cost savings of up to 18% in a yoghurt factory, a maltery and an ice cream factory. By means of this heat pump compound, environmental energy can be used in cold storage.

  13. Urgent reconstruction and re-equipping of coking plants

    Kvitkin, I.A.; Martynenko, V.M.; Rozenfel' d, M.S.; Svyatogorov, A.A.; Shvartsman, I.G.

    1986-03-01

    This paper discusses the various options involved: complete or partial reconstruction of existing buildings and equipment or new construction with new equipment and new underground and surface communications. It explains that reconstruction work is divided into three phases: initial phase (clearance, dismantling, closing down coking batteries); basic phase (fitting heat-resistant materials, prestart-up assembly work); final phase (drying out, heating up, adjustments, start-up). A structured scheme for a typical initial phase is described and a method of calculating the durations of the various phases is discussed. Conclusion is that there is an urgent requirement for a document to be produced for the control of reconstruction work; it should contain standard durations and could serve as a standard for coking plant reconstruction work.

  14. 78 FR 25916 - Authorization of Radiofrequency Equipment

    2013-05-03

    ...] Authorization of Radiofrequency Equipment AGENCY: Federal Communications Commission. ACTION: Proposed rule... bodies, and measurement procedures used to determine RF equipment compliance. The Commission believes... Commission is responsible for an equipment authorization program for radiofrequency (RF) devices under part 2...

  15. An energy and cost analysis of residential heat pumps in northern climates

    Martin, J. K.; Oneal, D. L.

    1980-04-01

    Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.

  16. Heat exchanger

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  17. Plasma heating

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs

  18. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  19. Electric heating guidelines: power smart home; 2. ed.

    NONE

    1994-12-31

    Guidelines, for use by B. C. Hydro, were established for proper planning and design of an electric heating system for residential buildings. The guidebook is divided into five sections: (1) comfort and electric heating systems, (2) contractors` guide to heat loss calculation, (3) imperial heat loss factors, (4) metric heat loss factors, and (5) installation guidelines for electric heating systems. Individual topics discussed include heat loss and the human body, heating systems and comfort, heat loss design, air leakage, and soil conductivity factors. Design considerations and equipment standards were described for the following electric heating systems: electric resistance baseboard systems, forced flow unitary heaters, electric radiant cable in-floor systems, radiant ceiling systems, forced warm air heating systems, furnaces, and heat pumps. 68 tabs., 29 figs.

  20. Heat Stroke

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat......Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...

  1. Comparison between conventional heat exchanger performance and an heat pipes exchanger

    Souza, J.R.G. de; Rocha, N.R.

    1989-01-01

    The thermal performance of conventional compact heat exchanger and of exchanger with heat pipes are simulated using a digital computer, for equal volumes and the same process conditions. The comparative analysis is depicted in graphs that indicate which of the situations each equipment is more efficient. (author)

  2. High level radioactive waste vitrification process equipment component testing

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  3. Equipment of Thomson scattering measurement on DIVA plasma

    Yamauchi, Toshihiko; Kumagai, Katsuaki; Funahashi, Akimasa; Matoba, Thoru; Sengoku, Seio

    1980-02-01

    Equipment of Thomson scattering measurement using ruby-laser light is explained. DIVA device was shut down in September 1979; it gave numerous fruitful experimental results during its five years operation. We measured the profiles of electron temperature and density with the Thomson scattering equipment, which played an important role in research of the energy confinement and heating characteristics. In Thomson scattering measurements on DIVA, studies and improvements were made for reduction of stray light, increase of measuring points and data processing. The profile of electron temperature and density were thus measured successful. In this report is given an over-all view of the Thomson scattering equipment together with the above improvements. As two representative examples, the measured results of electron temperature profiles on DIVA plasma under divertor operation and low-q discharge respectively are described. (author)

  4. Measurement and control system for ITER remote maintenance equipment

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  5. Measurement and control system for ITER remote maintenance equipment

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro

    1998-01-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  6. Ballooning test equipment for use in hot cells

    Broendsted, P.; Adrian, F.

    1979-12-01

    An equipment for testing the LOCA behaviour of irradiated cladding materials is described. The details of the construction and of the installation in the Hot Cells are reported. Pilot tests carried out showed that the performance of the system fulfills the basic experimental prerequisites, which were: heating rate of 2-3degC/s, final temperature 1150degC/s, internal pressure max. 30 atm, external pressure max. 1 atm, test atmosphere either air or steam. (author)

  7. Another donation of computer equipment

    Anaïs Schaeffer

    2014-01-01

    On Thursday 27 February, CERN was pleased to donate computer equipment to a physics institute in the Philippines.   H.E. Leslie J. Baja and Rolf Heuer. Following donations of computer equipment to institutes in Morocco, Ghana, Bulgaria, Serbia and Egypt, CERN is to send 50 servers and 4 network switches to the National Institute of Physics at the University of the Philippines Diliman. CERN’s Director-General Rolf Heuer and the Ambassador of the Philippines to Switzerland and Lichtenstein, H.E. Leslie J. Baja, spoke of their enthusiasm for the project during an official ceremony. The equipment will be used for various high energy physics research programmes in the Philippines and for the University’s development of digital resources for science.

  8. Characteristics analysis of salt vacuum distillation equipment

    Im, Hun Suk; Oh, Seung Chul; Hong, Sun Seok; Hur, Jin Mok; Lee, Hyo Jik

    2016-01-01

    A new technique for pyroprocessing was designed by adding an oxide reduction process to the previous one. It is regarded as a promising process to treat and recycle oxide spent fuels owing to its enhanced nuclear proliferation resistance and the simplified process equipment and the low process costing. Spent oxide fuel is reduced into a metal by an electrochemical method while using a high-temperature molten salt as the reaction medium. After being subjected to electrorefining and electrowinning processes, the reduced metal fuel can be used in sodium-cooled fast reactors. The salt vacuum distillation process termed cathode processing follows the oxide reduction stage and has been developed to remove the residual salt, allowing for clear fuel metal to be supplied to the next step, which is electrorefining. KAERI has manufactured this apparatus in several sizes and has been able to achieve a fuel recovery rate of 95%. However it is very difficult to scale up the equipment. Because all transport phenomena, including heat transfer and fluid flow, depend on the size and structure of the apparatus used. The ideal method for overcoming this issue is nondimensionalization, which allows one to determine the characteristic properties of a system. A comparison of the dimensionless variables corresponding to the M-type and P-type apparatuses performed on the basis of phase-transition phenomena as well as the results of the above-mentioned analysis elucidated the differences between the two apparatuses. It also means that the structure of the nozzle throat can be the one of the several causes for the recovery performance. First, the standard model (i.e., the M-type apparatus) was analyzed using dimensionless parameters. The characteristics of this apparatus were the following: 1) the diameter of the outlet of the nozzle throat was twice that of the inlet, 2) the ratio of the length to the diameter (L/D) was 8, and 3) the modified heat-transfer factor was 220-270. It indicates

  9. Characteristics analysis of salt vacuum distillation equipment

    Im, Hun Suk; Oh, Seung Chul; Hong, Sun Seok; Hur, Jin Mok; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A new technique for pyroprocessing was designed by adding an oxide reduction process to the previous one. It is regarded as a promising process to treat and recycle oxide spent fuels owing to its enhanced nuclear proliferation resistance and the simplified process equipment and the low process costing. Spent oxide fuel is reduced into a metal by an electrochemical method while using a high-temperature molten salt as the reaction medium. After being subjected to electrorefining and electrowinning processes, the reduced metal fuel can be used in sodium-cooled fast reactors. The salt vacuum distillation process termed cathode processing follows the oxide reduction stage and has been developed to remove the residual salt, allowing for clear fuel metal to be supplied to the next step, which is electrorefining. KAERI has manufactured this apparatus in several sizes and has been able to achieve a fuel recovery rate of 95%. However it is very difficult to scale up the equipment. Because all transport phenomena, including heat transfer and fluid flow, depend on the size and structure of the apparatus used. The ideal method for overcoming this issue is nondimensionalization, which allows one to determine the characteristic properties of a system. A comparison of the dimensionless variables corresponding to the M-type and P-type apparatuses performed on the basis of phase-transition phenomena as well as the results of the above-mentioned analysis elucidated the differences between the two apparatuses. It also means that the structure of the nozzle throat can be the one of the several causes for the recovery performance. First, the standard model (i.e., the M-type apparatus) was analyzed using dimensionless parameters. The characteristics of this apparatus were the following: 1) the diameter of the outlet of the nozzle throat was twice that of the inlet, 2) the ratio of the length to the diameter (L/D) was 8, and 3) the modified heat-transfer factor was 220-270. It indicates

  10. Waste Electrical and Electronic Equipment

    Bigum, Marianne Kristine Kjærgaard; Christensen, Thomas Højlund

    2011-01-01

    Waste electrical and electronic equipment (WEEE) is one of the fastest growing special waste types with an estimated growth of 3–5% per year (Cui and Forssberg, 2003). WEEE is a very heterogeneous waste type that contains many compounds that are considered to be harmful to both humans and the env......Waste electrical and electronic equipment (WEEE) is one of the fastest growing special waste types with an estimated growth of 3–5% per year (Cui and Forssberg, 2003). WEEE is a very heterogeneous waste type that contains many compounds that are considered to be harmful to both humans...

  11. The development of superconducting equipment

    Ueda, T; Hiue, H

    2003-01-01

    Fuji Electric has been developing various types of superconducting equipment for over a quarter of a century. This paper describes the development results achieved for superconducting equipment and especially focuses on large-capacity current leads and superconducting transmission systems, the development of which is being promoted for application to the field of nuclear fusion. High temperature superconductor (HTS) is becoming the mainstream in the field of superconductivity, and the HTS floating coil and conduction-cooled HTS transformed are also introduced as recent developments for devices that utilize this technology. (author)

  12. Heat transfer in heterogeneous propellant combustion systems

    Brewster, M.Q.

    1992-01-01

    This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles

  13. Heat pipes

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  14. Heat conduction

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  15. Damage limits of accelerator equipment

    Rosell, Gemma

    2014-01-01

    Beam losses occur in particle accelerators for various reasons. The effect of lost particles on accelerator equipment becomes more severe with the increasing energies and intensities. The present study is focused on the damage potential of the proton beam as a function of particle energy and beam size. Injection and extraction energies of different accelerators at CERN were considered.

  16. Pocket dictionary of laboratory equipment

    Junge, H.D.

    1987-01-01

    This pocket dictionary contains the 2500 most common terms for scientific and technical equipment in chemical laboratories. It is a useful tool for those who are used to communicating in German and English, but have to learn the special terminology in this field. (orig.) [de

  17. Using Gaming Equipment to Teach

    Curriculum Review, 2009

    2009-01-01

    Gaming equipment (such as Nintendo's Wii[TM]) is making its way to schools and classrooms. However, most of the discussion regarding how to use this technology and integrate it into lesson plans is happening in blogs on the Internet. An advocate of interactive media in the classroom, Dr. Dawn Hawkins, a faculty member for the Art Institute of…

  18. Isotope-equipped measuring instruments

    Miyagawa, Kazuo; Amano, Hiroshi

    1980-01-01

    In the steel industry, though the investment in isotope-equipped measuring instruments is small as compared with that in machinery, they play important role in the moisture measurement in sintering and blast furnaces, the thickness measurement in rolling process and others in automatic control systems. The economic aspect of the isotope-equipped measuring instruments is described on the basis of the practices in Kimitsu Works of Nippon Steel Corporation: distribution of such instruments, evaluation of economic effects, usefulness evaluation in view of raising the accuracy, and usefulness evaluation viewed from the failure of the isotope instruments. The evaluation of economic effects was made under the premise that the isotope-equipped measuring instruments are not employed. Then, the effects of raising the accuracy are evaluated for a γ-ray plate thickness gauge and a neutron moisture gauge for coke in a blast furnace. Finally, the usefulness was evaluated, assuming possible failure of the isotope-equipped measuring instruments. (J.P.N.)

  19. Hydraulic turbines and auxiliary equipment

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  20. Lightweight Heat Pipes Made from Magnesium

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  1. Alternative Fuels Data Center: Biodiesel Equipment Options

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels

  2. 40 CFR 792.61 - Equipment design.

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Equipment design. 792.61 Section 792.61...) GOOD LABORATORY PRACTICE STANDARDS Equipment § 792.61 Equipment design. Equipment used in the... of appropriate design and adequate capacity to function according to the protocol and shall be...

  3. 40 CFR 160.61 - Equipment design.

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Equipment design. 160.61 Section 160... LABORATORY PRACTICE STANDARDS Equipment § 160.61 Equipment design. Equipment used in the generation... appropriate design and adequate capacity to function according to the protocol and shall be suitably located...

  4. 21 CFR 58.61 - Equipment design.

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Equipment design. 58.61 Section 58.61 Food and... PRACTICE FOR NONCLINICAL LABORATORY STUDIES Equipment § 58.61 Equipment design. Equipment used in the... of appropriate design and adequate capacity to function according to the protocol and shall be...

  5. 34 CFR 74.34 - Equipment.

    2010-07-01

    ... as program income. (e) When acquiring replacement equipment, the recipient may use the equipment to... replacement equipment subject to the approval of the Secretary. (f) The recipient's property management... 34 Education 1 2010-07-01 2010-07-01 false Equipment. 74.34 Section 74.34 Education Office of the...

  6. 20 CFR 437.32 - Equipment.

    2010-04-01

    ... contemplated by Federal statute. (4) When acquiring replacement equipment, the grantee or subgrantee may use.... Procedures for managing equipment (including replacement equipment), whether acquired in whole or in part... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Equipment. 437.32 Section 437.32 Employees...

  7. 45 CFR 2541.320 - Equipment.

    2010-10-01

    ... replacement equipment, the grantee or subgrantee may use the equipment to be replaced as a trade-in or sell... replacement equipment), whether acquired in whole or in part with grant funds, until disposition takes place... ensure the highest possible return. (e) Disposition. When original or replacement equipment acquired...

  8. 45 CFR 1174.32 - Equipment.

    2010-10-01

    ... contemplated by Federal statute. (4) When acquiring replacement equipment, the grantee or subgrantee may use... requirements. Procedures for managing equipment (including replacement equipment), whether acquired in whole or... original or replacement equipment acquired under a grant or subgrant is no longer needed for the original...

  9. 45 CFR 1157.32 - Equipment.

    2010-10-01

    ... contemplated by Federal statute. (4) When acquiring replacement equipment, the grantee or subgrantee may use... requirements. Procedures for managing equipment (including replacement equipment), whether acquired in whole or... original or replacement equipment acquired under a grant or subgrant is no longer needed for the original...

  10. The Cost of Maintaining Educational Communications Equipment.

    Humphrey, David A.

    Tentative formulas for calculating the cost of maintaining educational communications equipment are proposed. The formulas are based on a survey of campuses of the State University of New York. The survey analyzed the types of equipment to be maintained, types of maintenance, who uses the equipment, who services the equipment, and the cost…

  11. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  12. [Equipment and technology in robotics].

    Murphy, Declan; Challacombe, Ben; Nedas, Tim; Elhage, Oussama; Althoefer, Kaspar; Seneviratne, Lakmal; Dasgupta, Prokar

    2007-05-01

    We review the evolution and current status of robotic equipment and technology in urology. We also describe future developments in the key areas of virtual reality simulation, mechatronics and nanorobotics. The history of robotic technology is reviewed and put into the context of current systems. Experts in the associated fields of nanorobotics, mechatronics and virtual reality simulation simulation review the important future developments in these areas.

  13. Remote handling equipment for SNS

    Poulten, B.H.

    1983-01-01

    This report gives information on the areas of the SNS, facility which become highly radioactive preventing hands-on maintenance. Levels of activity are sufficiently high in the Target Station Area of the SNS, especially under fault conditions, to warrant reactor technology to be used in the design of the water, drainage and ventilation systems. These problems, together with the type of remote handling equipment required in the SNS, are discussed

  14. Margins related to equipment design

    Devos, J.

    1994-01-01

    Safety margins related to design of reactor equipment are defined according to safety regulations. Advanced best estimate methods are proposed including some examples which were computed and compared to experimental results. Best estimate methods require greater computation effort and more material data but give better variable accuracy and need careful experimental validation. Simplified methods compared to the previous are less sensitive to material data, sometimes are more accurate but very long to elaborate

  15. Temperature radiation measuring equipment. Temperaturstrahlungsmessgeraet

    Lotzer, W

    1981-01-22

    The invention is concerned with a temperature radiation measuring equipment for non-contact temperature measurement by the light intensity variation method, with a photoelectric resistance as the measuring element. By having a circuit with a transistor, the 'dark resistance' occurring in the course of time is compensated for and thus gives a genuine reading (ie. the voltage drop across the photoelectric resistance remains constant).

  16. Review: heat pipe heat exchangers at IROST

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  17. Heat pipes and heat pipe exchangers for heat recovery systems

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  18. CERN computing equipment for Senegal

    Anaïs Schaeffer

    2014-01-01

    On 26 May, CERN once again had the honour of donating computing equipment to a foreign institute.   This time, around 100 servers and five network hubs were sent to Senegal, making it the seventh country, after Morocco, Ghana, Bulgaria, Serbia, Egypt and the Philippines, to receive a donation of computing equipment from the Organization. The official ceremony was held at CERN on 26 May in the presence of the Director-General, Rolf Heuer, and Senegal's ambassador to Geneva, Fodé Seck, who both expressed their enthusiasm for the project. The equipment is intended for Cheikh Anta Diop University (UCAD) in Dakar and will be of particular use to students attending the African School of Fundamental Physics and its Applications (ASP 2014) taking place from 3 to 23 August, for which CERN is a partner. The ASP allows a large number of African students to hone their skills in high-energy physics and to forge professional links with fellow physicists in Africa and Europe. ...

  19. Unwanted heat

    Benka, M.

    2006-01-01

    The number of small heating plants using biomass is growing. According to TREND's information, Hrinovska energeticka, is the only one that controls the whole supplier chain in cooperation with its parent company in Bratislava. Starting with the collection and processing of wood chips by burning, heat production and heat distribution to the end user. This gives the company better control over costs and consequently its own prices. Last year, the engineering company, Hrinovske storjarne, decided to focus only on its core business and sold its heating plant, Hrinovske tepelne hospodarstvo, to Intech Slovakia and changed the company name to Hrinovska energeticka. Local companies and inhabitants were concerned that the new owner would increase prices. But the company publicly declared and kept promises that the heat price for households would remain at 500 Slovak crowns/gigajoule (13.33 EUR/gigajoule ), one of the lowest prices in Slovakia. This year the prices increased slightly to 570 Slovak crowns (15.2 EUR). 'We needed - even at the cost of lower profit - to satisfy our customers so that we would not lose them. We used this time for transition to biomass. This will allow us to freeze our prices in the coming years,' explained the statutory representative of the company, Ivan Dudak. (authors)

  20. Heat Pipes

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  1. 46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...

  2. Supercritical water gasification with decoupled pressure and heat transfer modules

    Dibble, Robert W.; Ng, Kim Choon; Sarathy, Mani

    2017-01-01

    decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed

  3. Coal-Fired Power Plant Heat Rate Reductions

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  4. JCE Online: Equipment Buyers Guide

    Holmes, Jon L.

    1999-01-01

    The Equipment Buyers Guide was edited by Jo Rita Jordan. The new Equipment Buyers Guide, bound into the back of this issue, is also a new resource of JCE Internet. This resource provides an online source for the information contained in the printed guide. Placing this information online allows us to regularly update it and to provide live links to the suppliers' WWW sites. The organization of the online version parallels that of the print version. There is an alphabetical list of suppliers and a categorical listing. Links to these lists are provided on every page in the left-hand navigation bar. To quickly find information about a particular supplier, you click Supplier List, click the letter that begins the supplier's name, and scroll through the list to find the supplier. To find which suppliers provide a particular type of instrument or equipment, use the Categories link; click the category of the equipment you are looking for and then click the link to a supplier. You will then be taken to an alphabetical supplier listing page where you can scroll until you find the particular supplier of the item for which you are looking. Once you have found a supplier, the online Equipment Buyers Guide gives you the traditional contact information. But in addition, you also get one-click access to the WWW sites of the suppliers that have them. Depending on the site, you should be able to find information about the items that you seek and may even be able to order the items online! We think that you will find the online version of the Equipment Buyers Guide useful. To make it more useful, please send your suggestions, any errors or omissions you find, and any additional categories to the editor at jjordan@world.std.com The online Equipment Buyers Guide can be found at JCE Online at http://JChemEd.chem.wisc.edu/JCEWWW/Resources/EBG/ JCE Online in '99 JCE Online is your online source of "all things JCE". In order to provide you with an even more useful online resource, JCE

  5. Division of Scientific Equipment - Overview

    Halik, J.

    2002-01-01

    Full text: The Scientific Equipment Division consists of the Design Group and the Mechanical Workshop. The activity of the Division includes the following: * designs of devices and equipment for experiments in physics; their mechanical construction and assembly. In particular, these are vacuum chambers and installations for HV and UHV;* maintenance and upgrading of the existing installations and equipment in our Institute; * participation of our engineers and technicians in design works, equipment assembly and maintenance for experiments in foreign laboratories. The Design Group is equipped with PC-computers and AutoCAD graphic software (release 2000 and Mechanical Desktop 4.0) and an A0 plotter, which allow us to make drawings and 2- and 3-dimensional mechanical documentation to the world standards. The Mechanical Workshop offers a wide range of machining and treatment methods with satisfactory tolerances and surface quality. They include: * turning - cylindrical elements of a length up to 2000 mm and a diameter up to 400 mm, and also disc type elements of a diameter up to 600 mm and a length not exceeding 300 mm, * milling - elements of length up to 1000 mm and gear wheels of diameter up to 300 mm, * grinding - flat surfaces of dimensions up to 300 mm x 1000 mm and cylindrical elements of a diameter up to 200 mm and a length up to 800 mm, * drilling - holes of a diameter up to 50 mm, * welding - electrical and gas welding, including TIG vacuum-tight welding, * soft and hard soldering, * mechanical works including precision engineering, * plastics treatment - machining and polishing using diamond milling, modelling, lamination of various shapes and materials, including plexiglas, scintillators and light-guides, * painting - paint spraying with possibility of using furnace-fired drier of internal dimensions of 800 mm x 800 mm x 800 mm. Our workshop is equipped with the CNC milling machine which can be used for machining of work pieces up to 500 kg. The machine

  6. Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog

    1994-07-01

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  7. Data center equipment location and monitoring system

    2011-01-01

    A data center equipment location system includes both hardware and software to provide for location, monitoring, security and identification of servers and other equipment in equipment racks. The system provides a wired alternative to the wireless RFID tag system by using electronic ID tags...... connected to each piece of equipment, each electronic ID tag connected directly by wires to a equipment rack controller on the equipment rack. The equipment rack controllers then link over a local area network to a central control computer. The central control computer provides an operator interface......, and runs a software application program that communicates with the equipment rack controllers. The software application program of the central control computer stores IDs of the equipment rack controllers and each of its connected electronic ID tags in a database.; The software application program...

  8. Monopole heat

    Turner, M.S.

    1983-01-01

    Upper bounds on the flux of monopoles incident on the Earth with velocity -5 c(10 16 GeV m -1 ) and on the flux of monopoles incident on Jupiter with velocity -3 c(10 16 GeV m -1 ), are derived. Monopoles moving this slowly lose sufficient energy to be stopped, and then catalyse nucleon decay, releasing heat. The limits are obtained by requiring the rate of energy release from nucleon decay to be less than the measured amount of heat flowing out from the surface of the planet. (U.K.)

  9. Heat exchanger

    Drury, C.R.

    1988-01-01

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  10. Heat Convection

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  11. Improving Process Heating System Performance v3

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  12. Advances in technologies for decay heat removal

    Yadigaroglu, G.; Berkovich, V.; Bianchi, A.; Chen B.; Meseth, J.; Vecchiarelli, J.; Vidard, M.

    1999-01-01

    The various decay heat removal concepts that have been used for the evolutionary water reactor plant designs developed worldwide are examined and common features identified. Although interesting new features of the 'classical' plants are mentioned, the emphasis is on passive core and containment decay heat removal systems. The various systems are classified according to the function they have to accomplish; they often share common characteristics and similar equipment. (author)

  13. Specifying the auxiliary heating system on TFCX

    Metzler, D.H.

    1983-01-01

    This paper reviews the status of heating systems for the TFCX-S (all superconducting coil) and TFCX-H (hybrid coil) options. Three systems were defined; preheating (electron), current drive, and bulk (ion) heating. Application of systems engineering techniques facilitated fruitful discussions of requirements and their impact on equipment between physicists and engineers. A low-cost, flexible combination of systems allows plasma experiments using all rf startup and current drive

  14. Modified DHTT Equipment for Crystallization Studies of Mold Slags

    Kölbl, Nathalie; Harmuth, Harald; Marschall, Irmtraud

    2018-04-01

    The double hot thermocouple technique (DHTT) enables simulations of the temperature gradient at near-service conditions during continuous casting of steel. With the equipment applied so far, a rectangular slag film of even thickness often cannot be achieved. Further, the minimum temperature frequently lies within the slag film. Modified equipment can avoid these disadvantages via the following design features. The entire furnace chamber is heated to the selected temperature of the cold wire, and the minimum temperature is not located within the slag film. Furthermore, the shape of the heating wire is improved, which enables mounting of a thin, rectangular slag film between four platinum wires. This modification allows for investigations on transparent and translucent slags. So far, the results from DHTT investigations were represented via snapshots of the samples at certain experimental times. Therefore, appropriate methods for the graphical representation of the results were suggested: the maximum crystallinity, the time related to certain crystallinities with a dependence on the position within the slag film, and the crystal growth rate. The CaO-MgO-Al2O3-SiO2 slag investigated with this equipment was mineralogically examined additionally, and based on thermodynamic calculations, the allocation of temperatures to certain positions within the crystallized slag film was possible.

  15. Heat and mass transfer in particulate suspensions

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  16. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Olkowski Tomasz

    2017-01-01

    Full Text Available The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  17. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Olkowski, Tomasz; Lipiński, Seweryn; Olędzka, Aneta

    2017-10-01

    The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  18. Essentials of radiation heat transfer

    Balaji

    2014-01-01

    Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...

  19. Renewable Heating And Cooling

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  20. Heat exchanger

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  1. Heat exchangers

    1975-01-01

    The tubes of a heat exchanger tube bank have a portion thereof formed in the shape of a helix, of effective radius equal to the tube radius and the space between two adjacent tubes, to tangentially contact the straight sections of the tubes immediately adjacent thereto and thereby provide support, maintain the spacing and account for differential thermal expansion thereof

  2. Heat exchanger

    Harada, F; Yanagida, T; Fujie, K; Futawatari, H

    1975-04-30

    The purpose of this construction is the improvement of heat transfer in finned tube heat exchangers, and therefore the improvement of its efficiency or its output per unit volume. This is achieved by preventing the formation of flow boundary layers in gaseous fluid. This effect always occurs on flow of smooth adjacent laminae, and especially if these have pipes carrying liquid passing through them; it worsens the heat transfer of such a boundary layer considerably compared to that in the turbulent range. The fins, which have several rows of heat exchange tubes passing through them, are fixed at a small spacing on theses tubes. The fins have slots cut in them by pressing or punching, where the pressed-out material remains as a web, which runs parallel to the level of the fin and at a small distance from it. These webs and slots are arranged radially around every tube hole, e.g. 6 in number. For a suitable small tube spacing, two adjacent tubes opposite each other have one common slot. Many variants of such slot arrangements are illustrated.

  3. Heat exchanger

    Wolowodiuk, W.

    1976-01-01

    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  4. Establishment for Nuclear Equipment: Overview

    Pracz, J.

    2001-01-01

    Full text: The activity of ZdAJ in 2000 was focused on realisation of the Government-Ordered Project - 6/15 MeV Accelerator. The realisation was accomplished in two stages: - stage I should result in deriving principal operational parameters of the accelerator - stage 2 will result in full implementation of the control system providing optimum control of the equipment and automatic maintaining of its parameters. Within the frames of the first stage, a klystron modulator panel was finished and the design documentation of the mechanical supporting structure, the arm, accelerating structure, collimator and control panel were advanced. Manufacturing of the above sub-units in the workshop has started. In the frames of the Specific Project of the State Committee for Scientific Research, the improvement of Neptun lOPC accelerator was undertaken. The read-out of the monitor dose with atmospheric pressure and ambient temperature compensation has been introduced. New filters for equalising the photon and electron beam and new wedge filters have been designed. Changes in programming have been introduced, which improve the patient's safety by eliminating possible personnel errors and increase the accuracy of radiation fields read-out. In 2000 ZdAJ progressed in development of the Quality System conforming EN-ISO 9001 Standard by including the provisions of EN 46001 Standard. The Standard EN 46001: ''Quality Systems - Medical Equipment''. Detailed requirements related to application of EN ISO 9001 is an European Quality Standard extending the provisions of EN ISO 9001 Standard over the manufacturers of medical equipment. (author)

  5. Development and capital investment tasks involved in the production of charge transfer equipment

    Simon, Sandor

    1983-01-01

    Stringent requirements had to be considered in the course of the production development of charge transfer equipment. The production of structures demanding extremely high endurance was based on extensive co-operation. Special alloys were needed for parts and bearings, special heat-treatment was required at certain sections for large dimensions etc. Appropriate mashine stock, assembly and test hall have been built for assembling and testing the equipment with both 440 and 100 MW.(Sz.J.)

  6. Reactor vital equipment determination techniques

    Bott, T.F.; Thomas, W.S.

    1983-01-01

    The Reactor Vital Equipment Determination Techniques program at the Los Alamos National Laboratory is discussed. The purpose of the program is to provide the Nuclear Regulatory Commission (NRC) with technical support in identifying vital areas at nuclear power plants using a fault-tree technique. A reexamination of some system modeling assumptions is being performed for the Vital Area Analysis Program. A short description of the vital area analysis and supporting research on modeling assumptions is presented. Perceptions of program modifications based on the research are outlined, and the status of high-priority research topics is discussed

  7. Energy efficient ammonia heat pump. Final report

    Madsen, Claus; Pijnenburg, B.; Schumann Grindorf, H. [Danish Technological Institute, Aarhus (Denmark); Christensen, Rolf [Alfa Laval, Lund (Sweden); Rasmussen, Bjarne D. [Grundfos, Bjerringbro (Denmark); Gram, S.; Fredborg Jakobsen, D. [Svedan Industri Koeleanlaeg, Greve (Denmark)

    2013-09-15

    The report describes the development of a highly effective ammonia heat pump. Heat pumps play an increasingly important role in the search for more effective use of energy in our society. Highly efficient heat pumps can contribute to reduced energy consumption and improved economy of the systems which they are a part of. An ammonia heat pump with high pressure reciprocating compressor and a novel split condenser was developed to prove potential for efficiency optimization. The split of the condenser in two parts can be utilized to obtain smaller temperature approaches and, thereby, improved heat pump efficiency at an equal heat exchanger area, when compared to the traditional solution with separate condenser and de-superheater. The split condenser design can also be exploited for heating a significant share of the total heating capacity to a temperature far above the condensing temperature. Furthermore, the prototype heat pump was equipped with a plate type evaporator combined with a U-turn separator with a minimum liquid height and a liquid pump with the purpose of creating optimum liquid circulation ratio for the highest possible heat transfer coefficients at the lowest possible pressure drop. The test results successfully confirmed the highest possible efficiency; a COP of 4.3 was obtained when heating water from 40 deg. C to 80 deg. C while operating with evaporating/condensing temperatures of +20 deg C/+73 deg C. (Author)

  8. Performance of ultra low temperature district heating systems with utility plant and booster heat pumps

    Ommen, Torben Schmidt; Thorsen, Jan Eric; Markussen, Wiebke Brix

    2017-01-01

    The optimal integration of booster heat pumps in ultra low temperature district heating (ULTDH) was investigated and compared to the performance of low temperature district heating. Two possible heat production technologies for the DH networks were analysed, namely extraction combined heat...... temperature and the heat consumption profile. For reference conditions, the optimal return of ULTDH varies between 21 °C and 27 °C. When using a central HP to supply the DH system, the resulting coefficient of system performance (COSP) was in the range of 3.9 (-) to 4.7 (-) for equipment with realistic...... component efficiencies and effectiveness, when including the relevant parameters such as DH system pressure and heat losses. By using ULTDH with booster HPs, performance improvements of 12% for the reference calculations case were found, if the system was supplied by central HPs. Opposite results were found...

  9. Safety equipment in a reactor

    Shiratori, Hirozo; Ishiyama, Satoshi; Ugawa, Yukio.

    1976-01-01

    Object: To safely retain, even if fuel should be molten and flown through the bottom of a container in a reactor, the molten fuel to remove heat generation of the fuel to prevent occurrence of a critical trouble. Structure: A reactor container housing a core and coolant has thereunder a separation dome in a central portion thereof and a partitioning plate coaxially and circularly disposed in the periphery of the separation dome, with a tray formed of magnesium oxide being disposed. Further, a cooling path system is provided so as to surround the tray. The cooling path system and the reactor container are surrounded and protected by a reactor wall provided with heat insulating refractory bricks, a coolant pouring system extends through the reactor wall, and the coolant is supplied to the tray. (Furukawa, Y.)

  10. The replace repair decision for heavy equipment.

    2004-01-01

    The fleet of equipment operated by the Virginia Department of Transportation (VDOT) constitutes a large investment, on the order of half a billion dollars. A means of identifying earlier and more accurately those pieces of equipment whose timely repl...

  11. Proceedings of FED remote maintenance equipment workshop

    Sager, P.; Garin, J.; Hager, E.R.; Spampinato, P.T.; Tobias, D.; Young, N.

    1981-11-01

    A workshop was convened in two sessions in January and March 1981, on the remote maintenance equipment for the Fusion Engineering Device (FED). The objectives of the first session were to familiarize the participants with the status of the design of the FED and to develop a remote maintenance equipment list for the FED. The objective of the second session was to have the participants present design concepts for the equipment which had been identified in the first session. The equipment list was developed for general purpose and special purpose equipment. The general purpose equipment was categorized as manipulators and other, while the special purpose equipment was subdivided according to the reactor subsystem it serviced: electrical, magnetic, and nuclear. Both mobile and fixed base manipulators were identified. Handling machines were identified as the major requirement for special purpose equipment

  12. Heat pipe heat exchangers in heat recovery systems

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  13. Musical Sound, Instruments, and Equipment

    Photinos, Panos

    2017-12-01

    'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.

  14. Concerning equipment procurement for NPPs

    Pana, N.

    2002-01-01

    After a stagnation in investments for nuclear power which extended over a period of 10-15 years, assessments done by energy forecast institutes, as well as, evaluations by UE institutions, OECD, and DOE (USA) point to the conclusion solid and argued that the electric energy of nuclear origin will record a new boost beginning probably with the year 2005. Particular efforts were concentrated upon improving the performances of existing plants and, on the other hand, towards new, evolutionary concepts in nuclear engineering. Advanced equipment for nuclear reactors and plants resulted and were already implemented. In Europe construction of both advanced PWR and BWR type reactors are underway. The paper consider the issues of Romanian nuclear power and presents the prospects for advanced CANDU reactors in connection with the Romania's infrastructure and necessities. The problem of modernizing the equipment and components for NPP is discussed in the context of financing and investment conditions. In conclusion, the share of nuclear power in Romania is expected to rise in order to compensate the decline in fossil fuel thermal power and to better solve the environmental issues

  15. Equipment available for automating rig operations

    McNair, W.L.

    1990-01-01

    Several manufacturers are producing automated rig equipment, from complete systems to individual functions for existing drilling rigs. Significant improvements in well site time, costs of operations, and improved drilling performance have led drilling contractors to install this equipment on their rigs. This paper details some of the equipment available for automating rigs

  16. 13 CFR 143.32 - Equipment.

    2010-01-01

    ... awarding agency. (d) Management requirements. Procedures for managing equipment (including replacement... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Equipment. 143.32 Section 143.32...

  17. 32 CFR 33.32 - Equipment.

    2010-07-01

    ... awarding agency. (d) Management requirements. Procedures for managing equipment (including replacement... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no... 32 National Defense 1 2010-07-01 2010-07-01 false Equipment. 33.32 Section 33.32 National Defense...

  18. 45 CFR 92.32 - Equipment.

    2010-10-01

    ... awarding agency. (d) Management requirements. Procedures for managing equipment (including replacement... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no... 45 Public Welfare 1 2010-10-01 2010-10-01 false Equipment. 92.32 Section 92.32 Public Welfare...

  19. 40 CFR 31.32 - Equipment.

    2010-07-01

    ... awarding agency. (d) Management requirements. Procedures for managing equipment (including replacement... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Equipment. 31.32 Section 31.32...

  20. 14 CFR 1273.32 - Equipment.

    2010-01-01

    ... awarding agency. (d) Management requirements. Procedures for managing equipment (including replacement... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Equipment. 1273.32 Section 1273.32...

  1. 29 CFR 1470.32 - Equipment.

    2010-07-01

    ... awarding agency. (d) Management requirements. Procedures for managing equipment (including replacement... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no... 29 Labor 4 2010-07-01 2010-07-01 false Equipment. 1470.32 Section 1470.32 Labor Regulations...

  2. 15 CFR 24.32 - Equipment.

    2010-01-01

    ... awarding agency. (d) Management requirements. Procedures for managing equipment (including replacement... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Equipment. 24.32 Section 24.32...

  3. 38 CFR 43.32 - Equipment.

    2010-07-01

    ... awarding agency. (d) Management requirements. Procedures for managing equipment (including replacement... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Equipment. 43.32 Section...

  4. 30 CFR 250.602 - Equipment movement.

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Equipment movement. 250.602 Section 250.602... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.602 Equipment movement. The movement of well-workover rigs and related equipment on and off a platform or from well to well on...

  5. 30 CFR 250.502 - Equipment movement.

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Equipment movement. 250.502 Section 250.502... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.502 Equipment movement. The movement of well-completion rigs and related equipment on and off a platform or from well to well...

  6. Special equipment for etching nitrocellulose film

    Domanus, J.C.

    1983-08-01

    Nitrocellulose film and converter screens used for neutron radiography are described. Difficulties in visualization of radiographs on those films are mentioned. Because there is no equipment for etching nitrocellulose film available on the market Risoe has designed and produced such equipment at an estimated cost of Dkr. 15,000. Design criteria for this equipment are given and its performance described

  7. Developing equipment for AGR remote visual inspection

    James, P.W.; Walton, P.J.

    1985-01-01

    The Remote Inspection Group is part of the CEGB's Generation Development and Construction Division, and has responsibility for the design, development, procurement, testing and setting to work of the equipment provided to carry out routine remote visual inspections of its AGRs. This equipment includes both the viewing devices and the necessary placement equipment. (author)

  8. Sample-related peripheral equipment at IPNS

    Bohringer, D.E.; Crawford, R.K.

    1985-01-01

    This paper describes samples environment equipment provided by IPNS to visiting users and staff scientists. Of the twelve horizontal neutron beam stations, (ten now operational, two under construction) all use one or more form of such support equipment. An in-house support group devotes a significant fraction of its time to development, calibration, and maintenance of this equipment

  9. 14 CFR 121.605 - Airplane equipment.

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  10. Fire prevention and protection for trackless equipment

    Burger, A.J.

    1988-10-01

    With the increased use of trackless diesel and electrical equipment underground, the fire danger associated with this equipment has increased. The need for adequate fire prevention and protection on all aspects of trackless mechanised mining must be taken into consideration. This paper describes briefly the causes of fires on trackless equipment and the precautions taken to reduce the risk of ignition. 1 tab.

  11. Load Bearing Equipment for Bone and Muscle

    Shackelford, Linda; Griffith, Bryan

    2015-01-01

    Resistance exercise on ISS has proven effective in maintaining bone mineral density and muscle mass. Exploration missions require exercise with similar high loads using equipment with less mass and volume and greater safety and reliability than resistance exercise equipment used on ISS (iRED, ARED, FWED). Load Bearing Equipment (LBE) uses each exercising person to create and control the load to the partner.

  12. Heat exchanger

    Bennett, J.C.

    1975-01-01

    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  13. Is prevention of acute pesticide poisoning effective and efficient, with Locally Adapted Personal Protective Equipment?

    Varma, Anshu; Neupane, Dinesh; Ellekilde Bonde, Jens Peter

    2016-01-01

    BACKGROUND: Farmers' risk of pesticide poisoning can be reduced with personal protective equipment but in low-income countries farmers' use of such equipment is limited. OBJECTIVE: To examine the effectiveness and efficiency of Locally Adapted Personal Protective Equipment to reduce organophosphate...... exposure among farmers. METHODS: In a crossover study, 45 male farmers from Chitwan, Nepal, were randomly allocated to work as usual applying organophosphate pesticides wearing Locally Adapted Personal Protective Equipment or Daily Practice Clothing. For seven days before each experiment, each farmer.......08;0.06]. Wearing the Locally Adapted Personal Protective Equipment versus Daily Practice Clothing gave the following results, respectively: comfort 75.6% versus 100%, sense of heat 64.4% versus 31.3%, other problems 44.4% versus 33.3%, likeability 95.6% versus 77.8%. CONCLUSION: We cannot support the expectation...

  14. Applications guide for waste heat recovery

    Moynihan, P. I.

    1983-01-01

    The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R&D.

  15. Establishment for Nuclear Equipment -Overview

    Pracz, J.

    2006-01-01

    Research and development works conducted in the Establishment for Nuclear Equipment (ZdAJ) were focused around 3 subject areas: an accelerator for cancer treatment, therapeutical tables, systems and methods for controlling objects that cross international borders. The new, medium energy accelerator for cancer therapy cases is being designed in the Establishment for several years. In 2005 progress was achieved. A physical part, containing an electron beam has been completed and the parameters of that beam make it useful for therapeutical purposes. Consequently, the work on designing and testing of beam control systems, ensuring its high stability, repetition of irradiation parameters and accuracy of dosage have been started. Results of these tests make it very probable that 2006 will be the final year of scientific works and in 2007 the new apparatus will be ready for sales. Therapeutical tables have become a leading product of ZdAJ IPJ. Their technical parameters, reliability and universality in uses are appreciated by many customers of ZdAJ. In 2005, the table Polkam 16 was registered by the national Office for Registration of Medical Equipment as the first product of ZdAJ that meets all technical and formal requirements of the safety mark CE. This allows sales of the product on the market of the European Union. The research and development part of designing a therapeutical table for uses in the total body irradiation technique was also concluded in 2005. After the September 11 terrorist attacks on WTC a matter of controlling international borders have become a priority for many countries. In 2005 in ZdAJ IPJ, we conducted many preliminary calculations and experiments analyzing systems of irradiation sources, both photon and neutron as well as systems of detection and designing of signals triggered by controlling objects crossing the border. The results so far have enabled us to formulate a research project which has been positively evaluated by experts and found

  16. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed

  17. Design Modification of Kori Unit 1 for the Equipment Qualification

    Park, J. W.; Kim, M. Y.; Han, K. T.; Park, J. D.

    2007-01-01

    There has not been a strict regulatory requirements for the Equipment Qualification(EQ) in 1970's when Kori Unit 1 had begun the construction and the commercial operation. The Korean regulatory body requested the EQ on the various safety-related components, as a result of Periodic Safety Review. However, the EQ itself is impossible in some areas, due to the high pressure/temperature and flooding environment conditions from the pipe breaks. Design modification is being considered in the Auxiliary Building, the Intermediate Building, the Component Cooling Water Heat Exchanger Building and the Turbine Building, in order to mitigate the environmental conditions for the EQ

  18. Equipment for Preparing Pipeline Position Butts for Welding

    Lobanov L.M.

    2015-09-01

    Full Text Available The results of developments of the Ye.O.Paton Electric Welding Institute and its specialized departments on the designing national equipment models for preparation during the assembly the edges and butt ends of pipeline position butts with the diameter from 14 up to 159 mm, repair and modernization of power engineering objects, including the power units of nuclear and heat electric stations, in chemical and machine building, at enterprises of oil-gas complex and other branches of industry are presented.

  19. Communication equipment radiation resistance ensurance

    Myrova, L.O.; Chelizhenko, A.Z.

    1983-01-01

    A review of works on radiation resistance of electronic equipment (epsilon epsilon) for 15 years is presented. The effect of ionizing radiation appearing as a result of nuclear explosions in nuclear facilities and in outerspace on epsilon epsilon has been considered. Types of radiation effects in epsilon epsilon, radiation effect on semiconductor devices and integrated circUits, types of epsilon epsilon failures, as well as the procass of radiation-resistant epsilon epsilon designing and selection of its main parameters have been described. The methods of epsilon epsilon flowsheet optimization, application of mathematical simulation and peculiarities of ensurance of epsilon epsilon radiation resistance of communication systems are considered. Peculiarities of designing of radiation-resistant quartz generators, secondary power supply sources and amplifiers are discussed

  20. Purex: process and equipment performance

    Orth, D.A.

    1986-01-01

    The Purex process is the solvent extraction system that uses tributyl phosphate as the extractant for separating uranium and plutonium from irradiated reactor fuels. Since the first flowsheet was proposed at Oak Ridge National Laboratory in 1950, the process has endured for over 30 years with only minor modifications. The spread of the technology was rapid, and worldwide use or research on Purex-type processes was reported by the time of the 1955 Geneva Conference. The overall performance of the process has been so good that there are no serious contenders for replacing it soon. This paper presents: process description; equipment performance (mixer-settlers, pulse columns, rapid contactors); fission product decontamination; solvent effects (solvent degradation products); and partitioning of uranium and plutonium

  1. Establishment for Nuclear Equipment: Overview

    Pracz, J.

    2000-01-01

    Full text: The main objective of the activity of the Establishment for Nuclear Equipment (ZdAJ) in 1999 was to obtain the ISO 9001 certificate. Work on this problem has been successfully completed. The changes introduced in agreement with requirements of ISO in supervising the construction, manufacturing and servicing eliminate possible deficiencies of our products and will pay in the future. Two new important ventures have been undertaken: design of an accelerator with two photon energies and a reconstruction of simulator directed towards better geometrical parameters. The completion of the improvements in accelerator is foreseen for the year 2002. The changes comprise almost all sub-assemblies of the device. The modernized simulator will be installed in the hospital already in the year 2000 - the ameliorations concern mainly the arm of the apparatus, collimator, driving gears and control system. Of course - apart from this, the routine production activity of the Establishment was continued in 1999. (author)

  2. Heat transfer and thermal stress analysis in grooved tubes

    Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...

  3. A structured approach to heat exchanger network retrofit design

    Van Reisen, J.L.B.

    2008-01-01

    Process plants have high energy consumption. Much energy can be saved by a proper design of the heat exchanger network, which contains the main heat transferring equipment of the plant. Existing plants can often be made more energy-efficient by a retrofit: the (physical) modification of the

  4. Research and Development Roadmap for Water Heating Technologies

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  5. Prepare for Diabetes Care in Heat and Emergencies

    ... directly on ice or on a gel pack. Heat can damage your blood sugar monitor, insulin pump, and other diabetes equipment. ... test strips. But don’t let the summer heat stop you from taking your ... need to be able to test your blood sugar and take steps if it’s too high ...

  6. An optimisation framework for thermal energy storage integration in a residential heat pump heating system

    Renaldi, R.; Kiprakis, A.; Friedrich, D.

    2017-01-01

    Highlights: • An integrated framework for the optimal design of low carbon heating systems. • Development of a synthetic heat demand model with occupancy profiles. • Linear model of a heat pump with thermal energy storage heating system. • Evaluation of domestic heating system from generally available input parameters. • The lower carbon heating system can be cost competitive with conventional systems. - Abstract: Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.

  7. Protective equipment use among female rugby players.

    Comstock, R Dawn; Fields, Sarah K; Knox, Christy L

    2005-07-01

    Our objective was to assess the prevalence of protective equipment use and the motivation for using protective equipment among a sample of US female rugby players. We surveyed a convenience sample of 234 current US female rugby players from 14 teams participating in a US women's rugby tournament, obtaining self-reported demographic, rugby exposure, and protective equipment use information. Mouthguards were the most commonly used piece of protective equipment: 90.8% of players reported having always worn a mouthguard while playing or practicing rugby within their most recent 3 months of play. Fewer than 15% of players reported having always worn other types of protective equipment. Equipment use varied by playing position. Whereas over 80% of players in all other positions always wore a mouthguard, 66.7% of scrum halves reported always wearing one. Both backs and forwards reported wearing shoulder pads, but only forwards reported always wearing padded headgear. Mouthguards, padded headgear, and shoulder pads were worn "to prevent injury," whereas ankle braces, neoprene sleeves, and athletic tape on joints were worn "to protect a current/recent injury." This is the first study of female rugby players to assess the prevalence of protective equipment use by playing position and the motivation for using protective equipment. With the exception of mouthguards, US female rugby players infrequently use protective equipment. Protective equipment use varies by playing position. Some types of protective equipment appear to be used as primary prevention mechanisms, whereas others are used as secondary or tertiary prevention mechanisms.

  8. Changing nature of equipment and parts qualification

    Bucci, R.M.

    1988-01-01

    Ideally, the original supplier of a piece of nuclear safety-related equipment has performed a qualification program and will continue to support that equipment throughout the lifetime of the nuclear power plants in which in equipment is installed. The supplier's nuclear quality assurance program will be maintained and he will continue to offer all necessary replacement parts. These parts will be identical to the original parts, certified to the original purchase order requirements, and the parts will be offered at competitive prices. Due to the changing nature of the nuclear plant equipment market, however, one or more of those ideal features are frequently unavailable when safety-related replacement equipment or parts are required. Thus, the process of equipment and parts qualification has had to adjust in order to ensure obtaining qualified replacements when needed. This paper presents some new directions taken in the qualification of replacement equipment and parts to meet changes in the marketplace

  9. Free-world microelectronic manufacturing equipment

    Kilby, J. S.; Arnold, W. H.; Booth, W. T.; Cunningham, J. A.; Hutcheson, J. D.; Owen, R. W.; Runyan, W. R.; McKenney, Barbara L.; McGrain, Moira; Taub, Renee G.

    1988-12-01

    Equipment is examined and evaluated for the manufacture of microelectronic integrated circuit devices and sources for that equipment within the Free World. Equipment suitable for the following are examined: single-crystal silicon slice manufacturing and processing; required lithographic processes; wafer processing; device packaging; and test of digital integrated circuits. Availability of the equipment is also discussed, now and in the near future. Very adequate equipment for most stages of the integrated circuit manufacturing process is available from several sources, in different countries, although the best and most widely used versions of most manufacturing equipment are made in the United States or Japan. There is also an active market in used equipment, suitable for manufacture of capable integrated circuits with performance somewhat short of the present state of the art.

  10. Performance test of ex-core high temperature and high pressure water loop test equipment (Contract research)

    Nakano, Hiroko; Uehara, Toshiaki; Takeuchi, Tomoaki; Shibata, Hiroshi; Nakamura, Jinichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

    2016-03-01

    In Japan Atomic Energy Agency, we started research and development so as to monitor the situations in the Nuclear Plant Facilities during a severe accident, such as a radiation-resistant monitoring camera, a radiation-resistant transmission system for conveying the in-core information, and a heat-resistant signal cable. As a part of developments of the heat-resistant signal cable, we prepared ex-core high-temperature and high-pressure water loop test equipment, which can simulate the conditions of BWRs and PWRs, for evaluating reliability and properties of sheath materials of the cable. This equipment consists of autoclave, water conditioning tank, high-pressure metering pump, preheater, heat exchanger and water purification equipment, etc. This report describes the basic design and the performance test results of ex-core high-temperature and high-pressure water loop test equipment. (author)

  11. 9 CFR 590.502 - Equipment and utensils; PCB-containing equipment.

    2010-01-01

    ... Sanitary Standards and accepted practices currently in effect for such equipment. (c) New or replacement equipment or machinery (including any replacement parts) brought onto the premises of any official plant... equipment and machinery, and any replacement parts for such equipment and machinery. Totally enclosed...

  12. Heating networks and domestic central heating systems

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  13. Hydride heat pump with heat regenerator

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  14. Heating systems for heating subsurface formations

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  15. Planning and dimensioning installations that use the heat of waste water; Planung und Dimensionierung von Abwasserwaermenutzungslangen

    Buri, R.

    2005-07-01

    This article takes a look at the specialised know-how needed to be able to plan and dimension installations that extract heating energy from wastewater sewers. Knowledge is needed not only in the wastewater area but also in the heating, ventilation and air-conditioning business. The necessity of avoiding negative impacts on the treatment of wastewater is discussed, as is the provision of a reliable and cost-effective means of using the heat extracted. The use of heat pumps for the extraction of heat in various combinations with other heating equipment such as combined heat and power units and conventional heating boilers is discussed. Dimensioning considerations such as wastewater quantities and the dimensioning of the heat exchangers are looked at and the influence of soiling is examined. Limiting conditions for the extraction of heat from sewage are proposed. Examples are given of equipment used.

  16. Heat pipes

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  17. Heat exchanger

    Dostatni, A.W.; Dostatni, Michel.

    1976-01-01

    In the main patent, a description was given of a heat exchanger with an exchange surface in preformed sheet metal designed for the high pressure and temperature service particularly encountered in nuclear pressurized water reactors and which is characterised by the fact that it is composed of at least one exchanger bundle sealed in a containment, the said bundle or bundles being composed of numerous juxtaposed individual compartments whose exchange faces are built of preformed sheet metal. The present addendun certificate concerns shapes of bundles and their positioning methods in the exchanger containment enabling its compactness to be increased [fr

  18. Development of Methods and Equipment for Sheet Stamping

    Botashev, A. Yu; Bisilov, N. U.; Malsugenov, R. S.

    2018-03-01

    New methods of sheet stamping were developed: the gas forming with double-sided heating of a blank part and the gas molding with backpressure. In case of the first method the blank part is heated to the set temperature by means of a double-sided impact of combustion products of gas mixtures, after which, under the influence of gas pressure a stamping process is performed. In case of gas molding with backpressure, the blank part is heated to the set temperature by one-sided impact of the combustion products, while backpressure is created on the opposite side of the blank part by compressed air. In both methods the deformation takes place in the temperature range of warm or hot treatment due to the heating of a blank part. This allows one to form parts of complicated shape within one technological operation, which significantly reduces the cost of production. To implement these methods, original devices were designed and produced, which are new types of forging and stamping equipment. Using these devices, an experimental research on the stamping process was carried out and high-quality parts were obtained, which makes it possible to recommend the developed methods of stamping in the industrial production. Their application in small-scale production will allow one to reduce the cost price of stamped parts 2 or 3 times.

  19. Regenerative Hydride Heat Pump

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  20. Low temperature nuclear heat

    Kotakorpi, J.; Tarjanne, R. [comps.

    1977-08-01

    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  1. Radiofrequency plasma heating: proceedings

    Swenson, D.G.

    1985-01-01

    The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately

  2. Technical and Economic Working Domains of Industrial Heat Pumps: Part 1 - Vapour Compression Heat Pumps

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix

    2014-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions is carried out considering...... the constraints of available refrigeration equipment and a requirement of a positive Net Present Value of the investment. The considered sink outlet temperature range is from 40 °C to 140 °C, but for the heat pumps considered in this paper, the upper limit is 100 °C. Five heat pumps are studied. For each set...... of heat sink and source temperatures the optimal solution is determined. At low sink temperature glide R717 heat pumps show best performance, while at higher sink glide transcritical R744 may become important. In a second paper, the results of the VCHP are compared to a similar study considering...

  3. Fundamental experiment of potassium heat exchanger using principle of heat pipe

    Sumida, Isao; Kotani, Koichi

    1976-01-01

    In order to provide compact and reliable sodium equipments including a steam generator, performance tests are conducted with a potassium heat exchanger, which is featured by the separate construction of primary and secondary coolant systems. A small amount of potassium plays a role as an intermediate media of heat transportation between these two coolant systems. Heat is transferred by evaporation and condensation of potassium on the surface of the primary and the secondary coolant pipings, respectively. The tests are performed in the temperature range of 200 -- 300 0 C and the maximum heat transfer reaches 1.3kW (heat transfer rate at the primary heating source: 8.6W/cm 2 at 300 0 C). The experimental results are analyzed by using Langmuir's and Schrage's equation and close agreement between experiment and theory is obtained. (auth.)

  4. Microencapsulated Phase-Change Materials For Storage Of Heat

    Colvin, David P.

    1989-01-01

    Report describes research on engineering issues related to storage and transport of heat in slurries containing phase-change materials in microscopic capsules. Specific goal of project to develop lightweight, compact, heat-management systems used safely in inhabited areas of spacecraft. Further development of obvious potential of technology expected to lead to commercialization and use in aircraft, electronic equipment, machinery, industrial processes, and other sytems in which requirements for management of heat compete with severe restrictions on weight or volume.

  5. Problems of the heat transfer during the irradiation of solids

    Jahn, G.

    1981-03-01

    This report deals with the thermal problems during the irradiation of solids. Analytical and constructive solutions are outlined by some examples. Two cases are looked at: 1) the samples and the equipment are warmed up during irradiation. Thus they have to be cooled which yields a negative heat flux direction. 2) The samples shall have a suitable temperature higher than room temperature. Thus they have to be heated which yields a positive heat flux direction. (BHO)

  6. Quality assurance for radiodiagnostic equipment in Uruguay

    Cotelo, Elena D.

    2001-01-01

    Since Uruguay did not have an study on X-ray equipment, students of Radiation Protection course (RP) made this field work throughout the country. The objective is to obtain information on the number and kind of X-ray radiodiagnostic equipment. Some of the results are: there are 666 radiodiagnostic equipment. The ratio of population to equipment is 4.515 to 1 in the capital and the mean rate in the rest of the country is 4.383 to one, with a minimum of 1.707 and a maximum of 8.220. The Public Health Ministry (MSP) and the Instituciones de Asistencia Medica Colectiva (a kind of private heath assurance) (IAMC) have less equipment in the capital than in the rest of the country. The 37% of the capital population receives assistance through the IAMC , with a 42.5 % of the equipment. Uruguay except the capital has 18 districts and 17 computed tomography equipment, from which only 3 belong to the MSP. Five districts do not have any. In Montevideo, there are 11.500 females over forty years of age per X-ray mammography equipment, and this relation in the rest of the country is 13.900. There are 21 X-ray Interventional radiology equipment, 16 of them are in the capital. Is from relating the radiodiagnostic equipment, the population and the procedures, that quality assistance indicators emerge. This owns high importance on the way to create a RP National Programme. (author)

  7. Airside HVAC BESTEST. Adaptation of ASHRAE RP 865 Airside HVAC Equipment Modeling Test Cases for ASHRAE Standard 140. Volume 1, Cases AE101-AE445

    Neymark, J. [J. Neymark & Associates, Golden, CO (United States); Kennedy, M. [Mike D. Kennedy, Inc., Townsend, WA (United States); Judkoff, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gall, J. [AAON, Inc., Tulsa, OK (United States); Knebel, D. [AAON, Inc., Tulsa, OK (United States); Henninger, R. [GARD Analytics, Inc., Arlington Heights, IL (United States); Witte, M. [GARD Analytics, Inc., Arlington Heights, IL (United States); Hong, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDowell, T. [Thermal Energy System Specialists, Madison, WI (United States); Yan, D. [Tsinghua Univ., Beijing (China); Zhou, X. [Tsinghua Univ., Beijing (China)

    2016-03-01

    This report documents a set of diagnostic analytical verification cases for testing the ability of whole building simulation software to model the air distribution side of typical heating, ventilating and air conditioning (HVAC) equipment. These cases complement the unitary equipment cases included in American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, which test the ability to model the heat-transfer fluid side of HVAC equipment.

  8. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  9. Method of bituminization equipment decontamination

    Alexa, J.

    1982-01-01

    Overheated water vapour is fed into the contaminated area containing substances insoluble in water but soluble in organic solvents. Prior to entry into the decontaminated area the vapour bubbles through the aqueous solution layer of suitable detergents and a layer of suitable organic solvent. In this process the distillation takes place of the solvent and the aerosols of the aqueous solution are carried away with the vapour stream, condense on the inner surface of the vessel and thus wash it. The condensate flows down the walls and in its place condense other fractions of pure solvent and the aqueous solution. The walls of the vessel are slowly heated and the liquid waste is discharged via a mud discharge pipe. (J.B.)

  10. Method for Calculation of Steam-Compression Heat Transformers

    S. V. Zditovetckaya

    2012-01-01

    Full Text Available The paper considers a method for joint numerical analysis of cycle parameters and heatex-change equipment of steam-compression heat transformer contour that takes into account a non-stationary operational mode and irreversible losses in devices and pipeline contour. The method has been realized in the form of the software package and can be used while making design or selection of a heat transformer with due account of a coolant and actual equipment being included in its structure.The paper presents investigation results revealing influence of pressure loss in an evaporator and a condenser from the side of the coolant caused by a friction and local resistance on power efficiency of the heat transformer which is operating in the mode of refrigerating and heating installation and a thermal pump. Actually obtained operational parameters of the thermal pump in the nominal and off-design operatinal modes depend on the structure of the concrete contour equipment.

  11. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Sabanskis A.

    2016-04-01

    Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  12. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  13. Inspection device for buried equipment

    Hanawa, Jun.

    1994-01-01

    In an inspection device for a buried equipment, a rail is suspended at the upper portion of a vessel of a pit-vessel type pump buried in a plant building floor, and a truck movable vertical in the vessel along the rail, and an ultrasonic wave probe contained in the truck and urged to the vessel by an electromagnet are disposed. In addition, an elevator moving vertically along a shaft is disposed, and an arm having the ultrasonic probe disposed at the end portion and driven by a piston are disposed to the elevator. The ultrasonic wave probe moves vertically together with the truck along the rail in the vessel while being urged to the vessel by the electromagnet to inspect and measure the state at the inner and outer surfaces of the vessel. Further, the length of the arm is controlled so as to set a predetermined distance between the ultrasonic wave probe and the vessel. Subsequently, the elevator is moved vertically along a shaft passing through a shaft hole of a mount, and the shaft is rotated thereby enabling to inspect and measure the state of the inner and outer surfaces of the vessel. (N.H.)

  14. Equipment used in nuclear medicine

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Detection of radiation is the common purpose of all equipment's and instruments used in radioisotope laboratories. The first and most important instrument that was used in nuclear medicine was Geiger tube developed by H.W. Geiger as early in 1908. He in association with Mueller developed the so called Geiger-Muller tube (GM tube) which could be used to detect beta and gamma radiations. In spite of its severe limitations, GM tube remained the only external counting device until 1949. In 1948, Kallman reported that the scintillations can be detected and amplified with the help of photomultiplier tubes (PMTs). In comparison with gas filled detectors, scintillation detectors have two principal advantages that augment their use in nuclear medicine. Firstly, they are capable of much higher counting rates because of fast resolving times and secondly, because they are much more efficient for gamma ray detection. The scintillation detector is the most basic block of any modern radioisotope detection instrument like rate meter, counter, scanner, gamma camera or single photon emission computed tomography. (author)

  15. Ageing management and equipment qualification

    Stahl, Gunnar

    2014-01-01

    The knowledge of how the environment and load of organic material in general and especially polymers and lubricants, is affecting the degradation of important properties, have increased during the last decade. However the restrictions using established additives like some color pigments due to their poisonousness e.g. pigments based at cadmium, lead, mercury etc. have caused problems when replacing additives to polymers. The replacement additives have often been used in new design without going through the required material qualification procedure. There have also been observed that some non-qualified and non-approved materials have been installed in some power plants due to false documentation. There are also a lot of new manufacturers, of materials similar to the previously qualified materials, active at the market. This increases the difficulty to ensure that the required material quality is used. New materials, new additives and new manufacturers makes if more and more difficult to assure that the expected material is present. This causes more strict demands of how the new materials often used in equipment at type-testing and in replacement materials are analyzed and documented. By implementing new steps for chemical, mechanical and electrical analysis and increase the general quality assurance content this issue can be managed. (authors)

  16. Equipment selection for atmospheric drying

    Sharma, P D; Bhattacharyya, S [Nuclear Power Corporation, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Heavy water management is a major factor in deciding the economics of the PHWRs. Hence it is necessary to have an efficient recovery system, for the heavy water vapour escaping from various process systems and maintain a dry atmosphere in the recovery areas. While the basic objective of the atmospheric drying system is to maximize recovery and to minimize stack losses, it is equally important to optimally design the system with due consideration to operational and maintenance aspects. At present, heavy water vapour recovery in the existing Nuclear Power Plants (NPPs) is carried out by dryers of dual fixed bed design. While moving bed design could have some advantages, this has not been adopted so far because of the cumbersome mechanical design involved and special requirements for nuclear application. Developmental work done in this direction has resulted in compact alternative designs. In one of the designs, the change over from adsorption to regeneration is achieved by rotating the bed slowly. This concept is further refined in another alternative using a dessicant wheel. This paper contains brief equipment description of different designs; enumerates the design requirements of an atmospheric drying system for reactor building; describes steps for designing fixed bed type D{sub 2}O vapour recovery system, and highlights advances in dryer technology. (author). 2 refs., 4 figs., 1 ill.

  17. Materials division facilities and equipment

    Biest, O. v.d.

    1984-01-01

    The research activities of the Division at the Petten Establishment have the aims of characterising the properties of high temperature materials in industrial process environments and of understanding the structures involved in order to gain an insight into behavioural mechanisms. Metallic materials fall within the scope of the programme; the activities are, at present, almost entirely concerned with austenitic steels and nickel based alloys. Starting in 1984, advanced ceramic materials will be studied as well. The equipment available permits the study of mechanical properties in controlled gaseous environments, of the rates and mechanisms of corrosive reactions between materials and those environments, and of the surface and bulk structures by advanced physical techniques. Special preparation and treatment techniques are available. The Division has developed a Data Bank on high temperature alloys. It also operates an information Centre, the activities of which include the organisation of scientific meetings, the commissioning of ''state of the art'' studies on topics in the field of high temperature materials and their applications and the development of a inventory of current research activities in the field in Europe. This booklet is intended to present the facilities and services of the Division to the organizations which are interested in its programmes of work

  18. ISS qualified thermal carrier equipment

    Deuser, Mark S.; Vellinger, John C.; Jennings, Wm. M.

    2000-01-01

    Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments, which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. For over eight years, the thermal carrier development team at SHOT has been working with government and commercial sector scientists who are conducting microgravity experiments that require thermal control. SHOT realized several years ago that the hardware currently being used for microgravity thermal control was becoming obsolete. It is likely that the government, academic, and industrial bioscience community members could utilize SHOT's hardware as a replacement to their current microgravity thermal carrier equipment. Moreover, SHOT is aware of several international scientists interested in utilizing our space qualified thermal carrier. SHOT's economic financing concept could be extremely beneficial to the international participant, while providing a source of geographic return for their particular region. Beginning in 2000, flight qualified thermal carriers are expected to be available to both the private and government sectors. .

  19. Diagnostics of Electric Equipment Windings

    I. I. Branovitsky

    2007-01-01

    Full Text Available The paper presents methodology and results of the investigations pertaining to study of influence of short-circuited turns on transient electrical processes in electric motor windings. Dependence of their damped speed and value of the difference signal, obtained at reciprocal subtraction of damped oscillation curves in absence and in presence of short-circuited turns, on number of turns in the tested windings. It has been determined that damped oscillation curves, immediately attributed to short-circuited turns, have peak values along temporary axis which are areas of the largest transient process sensitivity to КЗ turns.Methodology for diagnostics of single- and three-phase electric motor windings and also other electric equipment, being realized in DO-1 device, has been developed in the paper. The men­tioned device makes it possible to carry out visual comparison and quantitative analysis of damped oscillation curves in the tested windings with standard ones which are set in the device memory and their difference signals.

  20. Proceedings of the twenty third national heat and mass transfer conference and first international ISHMT-ASTFE heat and mass transfer conference: souvenir and book of abstracts

    2015-01-01

    The conference covered various aspects of heat and mass transfer like Aero-thermodynamics, Atmospheric flows, Biological heat and mass transfer, Combustion and reactive flows, Cryogenics, Electronic and photonic cooling, Energy engineering, Environmental engineering, Experimental techniques, Heat transfer enhancement, Heat transfer equipment's, Heat transfer in nuclear applications, Mass transfer, Materials processing and manufacturing, Microscale and nanoscale transport, Multiphase transport and phase change, Multi mode heat transfer, Numerical methods, Refrigeration and air conditioning, Space heat transfer, Transport phenomena in porous media, and Turbulent transport. Papers relevant to INIS are indexed separately

  1. 40 CFR 63.489 - Batch front-end process vents-monitoring equipment.

    2010-07-01

    ... heater of less than 44 megawatts design heat input capacity is used, a temperature monitoring device in... operator may determine gas stream flow using the design blower capacity, with appropriate adjustments for... are required, each equipped with a continuous recorder. (6) Where a condenser is used, a condenser...

  2. Essential Specification Elements for Heat Exchanger Replacement

    Bower, L.

    2015-07-01

    Performance upgrade and equipment degradation are the primary impetuses for a nuclear power plant to engage in the large capital cost project of heat exchanger replacement. Along with attention to these issues, consideration of heat exchanger Codes and Standards, material improvements, thermal redesign, and configuration are essential for developing User’s Design Specifications for successful replacement projects. The User’s Design Specification is the central document in procuring ASME heat exchangers. Properly stated objectives for the heat exchanger replacement are essential for obtaining the materials, configurations and thermal designs best suited for the nuclear power plant. Additionally, the code of construction required and the applied manufacturing standard (TEMA or HEI) affects how the heat exchanger may be designed or configured to meet the replacement goals. Knowledge of how Codes and Standards affect design and configuration details will aid in writing the User’s Design Specification. Joseph Oat Corporation has designed and fabricated many replacement heat exchangers for the nuclear power industry. These heat exchangers have been constructed per ASME Section III to various Code-Years or ASME Section VIII-1 to the current Code-Year also in accordance with TEMA and HEI. These heat exchangers have been a range of like-for-like replacement to complete thermal, material and configuration redesigns. Several examples of these heat exchangers with their Code, Standard and specification implications are presented. (Author.

  3. High heat flux device of thermonuclear device

    Tachikawa, Nobuo.

    1994-01-01

    The present invention provides an equipments for high heat flux device (divertor) of a thermonuclear device, which absorbs thermal deformation during operation, has a high installation accuracy, and sufficiently withstands for thermal stresses. Namely, a heat sink member is joined to a structural base. Armour tiles are joined on the heat sink member. Cooling pipes are disposed between the heat sink member and the armour tiles. With such a constitution, the heat sink member using a highly heat conductive material having ductility, such as oxygen free copper, the cooling pipes using a material having excellent high temperature resistance and excellent elongation, such as aluminum-dispersed reinforced copper, and the armour tiles are completely joined on the structural base. Therefore, when thermal deformation tends to cause in the high heat flux device such as a divertor, cooling pipes cause no plastic deformation because of their high temperature resistance, but the heat sink member such as a oxygen free copper causes plastic deformation to absorb thermal deformation. As a result, the high heat flux device such as a divertor causes no deformation. (I.S.)

  4. Split heat pipe heat recovery system

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  5. District heating and combined heat and power generation from biomass

    Veski, Rein

    1999-01-01

    An Altener programme seminar District Heating and Combined Heat and Power Generation from Biomass. Minitraining seminar and study tours and also Business forum, Exhibition and Short company presentations were held in Tallinn on March 21-23, 1999. The Seminar was organised by the VTT Energy, the Estonian Bioenergy Association and the Estonian Heat and Power Association in co-operation with the AFB-net. The Agricultural and Forestry Biomass Network (AFB-net) is part of the ALTENER programme. The Network aims at promoting and stimulating the implementation and commercial utilisation of energy from biomass and waste, through the initiation of business opportunities. This includes national and international co-operation and the exchange of the personnel. The Seminar was attended by consulting companies, scientists, municipal authorities and representatives of co-ordinating bodies engaged in renewable energy management as well as DH and CHP plant managers, equipment manufacturers and local energy planners from Finland, Estonia, Latvia, Lithuania, Sweden, Denmark, Belgium, Slovenia and Slovak Republic. At the Seminar minitraining issues were dealt with: the current situation and future trends in biomass DH in the Baltic Sea countries, and biomass DH and CHP in Eastern and Central Europe, planning and construction of biomass-based DH plants, biomass fuel procurement and handling technology, combustion technology, DH networks, financing of biomass projects and evaluating of projects, and case projects in Eastern and Central European countries. The following were presented: boilers with a capacity of 100 kW or more, stoker burners, wood and straw handling equipment, wood fuel harvesters, choppers, pelletisers, district heating pipelines and networks. (author)

  6. WP EMPLACEMENT CONTROL AND COMMUNICATION EQUIPMENT DESCRIPTIONS

    Raczka, N.T.

    1997-01-01

    The objective and scope of this document are to list and briefly describe the major control and communication equipment necessary for waste package emplacement at the proposed nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the required equipment are explained and summarized in the individual subsections of this document. This task was evaluated in accordance with QAP-2-0 and found not to be quality affecting. Therefore, this document was prepared in accordance with NAP-MG-012. The following control and communication equipment are addressed in this document: (1) Programmable Logic Controllers (PLC's); (2) Leaky Feeder Radio Frequency Communication Equipment; (3) Slotted Microwave guide Communication Equipment; (4) Vision Systems; (5) Radio Control Equipment; and (6) Enclosure Cooling Systems

  7. Procurement strategic analysis of nuclear safety equipment

    Wu Caixia; Yang Haifeng; Li Xiaoyang; Li Shixin

    2013-01-01

    The nuclear power development plan in China puts forward a challenge on procurement of nuclear safety equipment. Based on the characteristics of the procurement of nuclear safety equipment, requirements are raised for procurement process, including further clarification of equipment technical specification, establishment and improvement of the expert database of the nuclear power industry, adoption of more reasonable evaluation method and establishment of a unified platform for nuclear power plants to procure nuclear safety equipment. This paper makes recommendation of procurement strategy for nuclear power production enterprises from following aspects, making a plan of procurement progress, dividing procurement packages rationally, establishing supplier database through qualification review and implementing classified management, promoting localization process of key equipment continually and further improving the system and mechanism of procurement of nuclear safety equipment. (authors)

  8. Improved servicing equipment for steam generators

    Hedtke, James C.

    1998-01-01

    To help keep personnel exposure as low as reasonably achievable and reduce critical path outage time, most nuclear plants of PWR design in the USA are now using improved equipment to service their steam generators (SGs) during outages. Because of the success of this equipment in the USA, two Belgian plants and one English plant have purchased this equipment, and other nuclear plants in Europe are also considering procurement. The improved SG servicing equipment discussed in this paper discusses consists of nozzle dams, segmented multi-stud tensioner, primary manway cover handling tool set, shield door and fastener cleaner. This equipment is specifically designed for the individual plant application and can also be specified for replacement SG projects. All of the equipment can be used without modification of the existing SGs. (author)

  9. Segmented heat exchanger

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  10. Dual source heat pump

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  11. Thermal analysis of the failed equipment storage vault system

    Jerrell, J.; Lee, S.Y.; Shadday, A.

    1995-07-01

    A storage facility for failed glass melters is required for radioactive operation of the Defense Waste Processing Facility (DWPF). It is currently proposed that the failed melters be stored in the Failed Equipment Storage Vaults (FESV's) in S area. The FESV's are underground reinforced concrete structures constructed in pairs, with adjacent vaults sharing a common wall. A failed melter is to be placed in a steel Melter Storage Box (MSB), sealed, and lowered into the vault. A concrete lid is then placed over the top of the FESV. Two melters will be placed within the FESV/MSB system, separated by the common wall. There is no forced ventilation within the vault so that the melter is passively cooled. Temperature profiles in the Failed Equipment Storage Vault Structures have been generated using the FLOW3D software to model heat conduction and convection within the FESV/MSB system. Due to complexities in modeling radiation with FLOW3D, P/THERMAL software has been used to model radiation using the conduction/convection temperature results from FLOW3D. The final conjugate model includes heat transfer by conduction, convection, and radiation to predict steady-state temperatures. Also, the FLOW3D software has been validated as required by the technical task request

  12. Equipment Replacement Decision Making: Opportunities and Challenges

    Fan, Wei (David); Gemar, Mason D.; Machemehl, Randy

    2012-01-01

    The primary function of equipment managers is to replace the right equipment at the right time and at the lowest overall cost. In this paper, the opportunities and challenges associated with equipment replacement optimization (ERO) are discussed in detail. First, a comprehensive review of the state-of-the art and state-of-the practice literature for the ERO problem is conducted. Second, a dynamic programming (DP) based optimization solution methodology is presented to solve the ERO problem. T...

  13. History and development of the tennis equipment

    Horáková, Kateřina

    2007-01-01

    Title: History and development of the tennis equipment. Aim of the work: Process an integral, tabular and synoptic historical development overview of the tennis equipment. This owerview will cover the period since the early beginnings of the game to present days. Methods: Advance work has historical charakter therefore used methods are historiogaphical methods such as chronological method and historical method. Results: Produce tabular description of the tennis equipment by means of reading a...

  14. Mine railway equipments management information system

    Zhang, X.; Han, K.; Duan, T.; Liu, Z.; Lu, H. [China University of Mining and Technology, Xuzhou (China)

    2007-06-15

    Based on client/server and browser/server models, the management information system described realized the entire life-cycle management of mine railway equipment which included universal equipment and special equipment in the locomotive depot, track maintenance division, electrical depot and car depot. The system has other online functions such as transmitting reports, graphics management, statistics, searches, graphics wizard and web propaganda. It was applied in Pingdingshan Coal Co. Ltd.'s Railway Transport Department. 5 refs., 4 figs.

  15. Principles of commercially available pretreatment and feeding equipment for baled biomass

    Koch, T. [Thomas Koch Energi, Vanloese (Denmark); Hummelshoej, R.M. [COWIconsult, Lyngby (Denmark)

    1993-12-31

    During the last 15 years, there has been a growing interest in utilizing waste biomass for energy production in Denmark. Since 1990, it has been unlawful to burn surplus straw on open land. Before the year 2000, it is intended to utilize most of the 2--3 million tons of surplus straw as an energy resource. The type of plants that were built in the beginning were combustion plants for district heating. The feeding equipment for these plants has been developed to an acceptable standard. Later, combustion plants for combined heat and power production based on a steam turbine were introduced. This type of plant demands a much greater continuity in the fuel flow, and the consequences of minor discontinuities are to be dropped from the grid. Gasification and pyrolysis demands a high sealing ability of the feeding equipment, because of the explosive and poisonous gas in the plant and a need for a very high continuity in the fuel feed. The first plants were built with the equipment and experiences from the farming industries, which have a long tradition in working with biomass-handling. The experiences gained with this type of equipment were not very promising, and in the early eighties, a more industrial type of biomass-handling equipment was developed. This paper presents the principles of the heavy-duty biomass pretreatment and feeding equipment that was commercially available in Denmark in May, 1993.

  16. Cold Atmospheric Plasma Technology for Decontamination of Space Equipment

    Thomas, Hubertus; Rettberg, Petra; Shimizu, Tetsuji; Thoma, Markus; Morfill, Gregor; Zimmermann, Julia; Müller, Meike; Semenov, Igor

    2016-07-01

    Cold atmospheric plasma (CAP) technology is very fast and effective in inactivation of all kinds of pathogens. It is used in hygiene and especially in medicine, since the plasma treatment can be applied to sensitive surfaces, like skin, too. In a first study to use CAP for the decontamination of space equipment we could show its potential as a quite promising alternative to the standard "dry heat" and H2O2 methods [Shimizu et al. Planetary and Space Science, 90, 60-71. (2014)]. In a follow-on study we continue the investigations to reach high application level of the technology. First, we redesign the actual setup to a plasma-gas circulation system, increasing the effectivity of inactivation and the sustainability. Additionally, we want to learn more about the plasma chemistry processes involved in the inactivation. Therefore, we perform detailed plasma and gas measurements and compare them to numerical simulations. The latter will finally be used to scale the decontamination system to sizes useful also for larger space equipment. Typical materials relevant for space equipment will be tested and investigated on surface material changes due to the plasma treatment. Additionally, it is planned to use electronic boards and compare their functionality before and after the CAP expose. We will give an overview on the status of the plasma decontamination project funded by the Bavarian Ministry of Economics.

  17. Process and equipment development for hot isostatic pressing treatability study

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP within INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.

  18. Guidelines for nuclear reactor equipments safety-analysis

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  19. Heat from domestic and industrial wastewater

    Gasharov, S.

    2006-01-01

    More than 40% of the energy produced in the world is utilized by the building sector - mainly for heating of buildings and water. Different methods are used for the reduction of this energy - new thermo-isolating materials in the new building process, treating of the already existing buildings with thermo-isolating coverings, new aluminium and PVC frames for the windows, application of different solar equipment. At the same time the energy necessary for the heating of water for domestic usage increases permanently. Besides, the need for hot water is constant - every day, all the years. Here the possibilities for saving energy are more limited - limitation of the quantities of consumed hot water (but the statistics show just the opposite tendency), or recycling of the residual heat that is contained in the sewerage hot water, domestic and industrial. This solution is possible and technologically feasible through the usage of thermo-exchanging devices and thermo-pumps, and a process in which only the heat / thermal energy / of the sewerage water is accumulated, and then returned to the equipment for heating water. The heating module could be repaid for a period of 3.5 - 4 years as a result of the savings of thermal energy, which is economically very advantageous. And last but not least, the process has favourable ecological effect, following the world's latest tendencies. (author)

  20. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  1. Making petroleum equipment safe, a priority

    1999-01-01

    Changes to the 'Act respecting the use of petroleum products' have been announced effective May 1, 1999. The changes have been made to reduce problems which can be attributed to petroleum product leaks. The new regulations will make owners and users of petroleum equipment, including underground and above-ground storage equipment and commercial storage tanks, more accountable for the use of their own equipment. The emphasis in the new regulations is based upon the storage capacity of petroleum equipment and the risks associated with this equipment, rather than the on the activities of the owners concerned. Accordingly, the new regulations call for stricter requirements for high-risk equipment, a private equipment inspection plan, a two-year operating permit, replacing the current permits and certificates, a tariff structure based on the risks associated with the equipment, and deregulation of commercial activities involving petroleum products that require no equipment. Additionally, the amendments to the Act transfer responsibility for administration to the Regie du batiment and to the Ministere des Transports. Details of each of these changes are explained

  2. Utility equipment systems: promising more for less

    1987-10-01

    This paper discusses current developments in utility equipment systems, a term applied to carrier vehicles, mostly evolved from well-known forms of construction or mining equipment modified to work with a variety of different front or back end attachments. One of the equipment ranges discussed is the Normet cassette system produced by the Orion corporation of Finland, which allows a basic chassis to be converted from a personnel carrier to an ANFO carrier within minutes. LHD vehicles which are being adapted to fulfil multipurpose roles, such as carrying roof supports, chocks and other heavy mining equipment underground are also discussed. 5 figs.

  3. Detection of Equipment Faults Before Beam Loss

    Galambos, J.

    2016-01-01

    High-power hadron accelerators have strict limits on fractional beam loss. In principle, once a high-quality beam is set up in an acceptable state, beam loss should remain steady. However, in practice, there are many trips in operational machines, owing to excessive beam loss. This paper deals with monitoring equipment health to identify precursor signals that indicate an issue with equipment that will lead to unacceptable beam loss. To this end, a variety of equipment and beam signal measurements are described. In particular, several operational examples from the Spallation Neutron Source (SNS) of deteriorating equipment functionality leading to beam loss are reported.

  4. 21 CFR 866.4500 - Immunoelectrophoresis equipment.

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents... clinical use with its electrical power supply is a device used for separating protein molecules...

  5. PROMSYS, Plant Equipment Maintenance and Inspection Scheduling

    Morgan, D.L.; Srite, B.E.

    1986-01-01

    1 - Description of problem or function: PROMSYS is a computer system designed to automate the scheduling of routine maintenance and inspection of plant equipment. This 'programmed maintenance' provides the detailed planning and accomplishment of lubrication, inspection, and similar repetitive maintenance activities which can be scheduled at specified predetermined intervals throughout the year. The equipment items included are the typical pumps, blowers, motors, compressors, automotive equipment, refrigeration units, filtering systems, machine shop equipment, cranes, elevators, motor-generator sets, and electrical switchgear found throughout industry, as well as cell ventilation, shielding, containment, and material handling equipment unique to nuclear research and development facilities. Four related programs are used to produce sorted schedule lists, delinquent work lists, and optional master lists. Five additional programs are used to create and maintain records of all scheduled and unscheduled maintenance history. 2 - Method of solution: Service specifications and frequency are established and stored. The computer program reviews schedules weekly and prints, on schedule cards, instructions for service that is due the following week. The basic output from the computer program comes in two forms: programmed-maintenance schedule cards and programmed-maintenance data sheets. The data sheets can be issued in numerical building, route, and location number sequence as equipment lists, grouped for work assigned to a particular foreman as the foreman's equipment list, or grouped by work charged to a particular work order as the work-order list. Data sheets grouped by equipment classification are called the equipment classification list

  6. Equipment Reliability Process in Krsko NPP

    Gluhak, M.

    2016-01-01

    To ensure long-term safe and reliable plant operation, equipment operability and availability must also be ensured by setting a group of processes to be established within the nuclear power plant. Equipment reliability process represents the integration and coordination of important equipment reliability activities into one process, which enables equipment performance and condition monitoring, preventive maintenance activities development, implementation and optimization, continuous improvement of the processes and long term planning. The initiative for introducing systematic approach for equipment reliability assuring came from US nuclear industry guided by INPO (Institute of Nuclear Power Operations) and by participation of several US nuclear utilities. As a result of the initiative, first edition of INPO document AP-913, 'Equipment Reliability Process Description' was issued and it became a basic document for implementation of equipment reliability process for the whole nuclear industry. The scope of equipment reliability process in Krsko NPP consists of following programs: equipment criticality classification, preventive maintenance program, corrective action program, system health reports and long-term investment plan. By implementation, supervision and continuous improvement of those programs, guided by more than thirty years of operating experience, Krsko NPP will continue to be on a track of safe and reliable operation until the end of prolonged life time. (author).

  7. An office building of Paris city air-conditioned by an aquifer-source heat pump; Un immeuble parisien climatise par une thermofrigopompe sur nappe phreatique

    Anon.

    2003-09-01

    A 7000 m{sup 2} office building of Paris (France) is equipped with an aquifer-source heat pump for the space heating and cooling. This choice allows to save 28400 euros of heating/cooling expenses each year with respect to other solutions. The equipment ensures also the production of hot and chilled water and the calories recovered from the refrigeration system are used to supply the space heating needs of the building. This paper describes the equipments (heat pump, heat exchangers, ventilation-convection systems), the centralized control system and the cost-benefit aspects. (J.S.)

  8. Additional Equipment for Soil Biodegradation

    Vondráčková, Terezie; Kraus, Michal; Šál, Jiří

    2017-12-01

    Intensification of industrial production, increasing citizens’ living standards, expanding the consumer assortment mean in the production - consumption cycle a constantly increasing occurrence of waste material, which by its very nature must be considered as a source of useful raw materials in all branches of human activity. In addition to strict legislative requirements, a number of circumstances characterize waste management. It is mainly extensive transport associated with the handling and storage of large volumes of substances with a large assortment of materials (substances of all possible physical and chemical properties) and high demands on reliability and time coordination of follow-up processes. Considerable differences in transport distances, a large number of sources, processors and customers, and not least seasonal fluctuations in waste and strong price pressures cannot be overlooked. This highlights the importance of logistics in waste management. Soils that are contaminated with oil and petroleum products are hazardous industrial waste. Methods of industrial waste disposal are landfilling, biological processes, thermal processes and physical and chemical methods. The paper focuses on the possibilities of degradation of oil pollution, in particular biodegradation by bacteria, which is relatively low-cost among technologies. It is necessary to win the fight with time so that no ground water is contaminated. We have developed two additional devices to help reduce oil accident of smaller ranges. In the case of such an oil accident, it is necessary to carry out the permeability test of contaminated soil in time and, on this basis, to choose the technology appropriate to the accident - either in-sit biodegradation - at the site of the accident, or on-sit - to remove the soil and biodegrade it on the designated deposits. A special injection drill was developed for in-sit biodegradation, tossing and aeration equipment of the extracted soil was developed for

  9. Lunar construction/mining equipment

    Ozdemir, Levent

    1990-01-01

    For centuries, mining has utilized drill and blast as the primary method of rock excavation. Although this technique has undergone significant improvements, it still remains a cyclic, labor intensive operation with inherent safety hazards. Other drawbacks include damage to the surrounding ground, creation of blast vibrations, rough excavation walls resulting in increased ventilation requirements, and the lack of selective mining ability. Perhaps the most important shortcoming of drill and blast is that it is not conducive to full implementation of automation or robotics technologies. Numerous attempts have been made in the past to automate drill and blast operations to remove personnel from the hazardous work environment. Although most of the concepts devised look promising on paper, none of them was found workable on a sustained production basis. In particular, the problem of serious damage to equipment during the blasting cycle could not be resolved regardless of the amount of charge used in excavation. Since drill and blast is not capable of meeting the requirements of a fully automated rock fragmentation method, its role is bound to gradually decrease. Mechanical excavation, in contrast, is highly suitable to automation because it is a continuous process and does not involve any explosives. Many of the basic principles and trends controlling the design of an earth-based mechanical excavator will hold in an extraterrestrial environment such as on the lunar surface. However, the economic and physical limitations for transporting materials to space will require major rethinking of these machines. In concept, then, a lunar mechanical excavator will look and perform significantly different from one designed for use here on earth. This viewgraph presentation gives an overview of such mechanical excavator systems.

  10. Heat pipes in modern heat exchangers

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  11. DEVELOPMENT OF PROTOTYPE SYSTEM FOR REGULATING THERMAL CONDITIONS OF TELECOMMUNICATIONS EQUIPMENT CABINETS

    A. T. Rashidkhanov

    2017-01-01

    Full Text Available Objectives. The main objective of the study was to regulate the thermal regime and ensure the reliability of electronic equipmentMethods. In order to conduct experimental studies of the thermoelectric cooling system using heat pipes, a stand was assembled on which the developed and manufactured prototype was studied. The object of the experimental studies was a prototype cooling system, consisting of a thermoelectric battery made of conventional unified thermoelectric materials of ICE-71 type. The solution of the research problems carried out by the method of reduction to ordinary differential equations (Kantorovich method provides acceptable accuracy for such a class of problems.Results. A design of a telecommunication equipment cabinet with a thermal management system based on the use of heat pipes and thermoelectric cooling units is proposed. A mathematical model for the determination of the thermal field in the cabinet volume is considered; an experimental stand for the prototype study is described; the results of experimental studies for various power sources of heat release are presented.Conclusion. Experimental studies confirm the operability of the developed cooling system for cabinets with telecommunication equipment; this cooling method has advantages over conventional forced or natural cooling; the temperature in the block volume and the peak values of the heat sources are significantly reduced; at dissipation powers on one board within 50 W there is no need to use special means to remove heat from hot junctions of the thermoelectric battery.

  12. Investigation on thermal environment improvement by waste heat recovery in the underground station in Qingdao metro

    Liu, Jianwei; Liu, Jiaquan; Wang, Fengyin; Wang, Cuiping

    2018-03-01

    The thermal environment parameters, like the temperature and air velocity, are measured to investigate the heat comfort status of metro staff working area in winter in Qingdao. The temperature is affected obviously by the piston wind from the train and waiting hall in the lower Hall, and the temperature is not satisfied with the least heat comfort temperature of 16 °C. At the same time, the heat produced by the electrical and control equipments is brought by the cooling air to atmosphere for the equipment safety. Utilizing the water-circulating heat pump, it is feasible to transfer the emission heat to the staff working area to improve the thermal environment. Analyzed the feasibility from the technique and economy when using the heat pump, the water-circulating heat pump could be the best way to realize the waste heat recovery and to help the heat comfort of staff working area in winter in the underground metro station in north China.

  13. TPX heating and cooling system

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  14. Heat pipe heat exchanger for heat recovery in air conditioning

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  15. Nonazeotropic Heat Pump

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  16. Heat transfer: Pittsburgh 1987

    Lyczkowski, R.W.

    1987-01-01

    This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers

  17. Industrial waste heat for district heating

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  18. Improving the efficiency of thermal power equipment based on technologies using surfactants

    Nikolaeva, L. A.; Zueva, O. S.

    2015-10-01

    The formation of deposits on the functional surfaces of the equipment of heating systems and their corrosion are one of the major energetic problems. To improve the operational efficiency of thermal power equipment, surface-active agents (surfactants) are widely used, which are applied for the treatment of the working surfaces before use, during use, to prevent the parking corrosion, as well as while performing periodic chemical cleanings of power equipment. The tests have been performed, and the technology of application of Auge Neo Ac 56 acid product (MAHIM, Kazan) has been developed, designed to remove mineral deposits and scale from cooling and boiler systems without mechanical influence on them and without disassembly of technological equipment.

  19. Explosion Clad for Upstream Oil and Gas Equipment

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  20. Explosion Clad for Upstream Oil and Gas Equipment

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO 2 and/or H 2 S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  1. Plasma Decontamination of Space Equipment for Planetary Protection

    Thomas, Hubertus; Barczyk, Simon; Rettberg, Petra; Shimizu, Satoshi; Shimizu, Tetsuji; Klaempfl, Tobias; Morfill, Gregor; Zimmermann, Julia; Weber, Peter

    The search for extraterrestrial life is one of the most challenging science topics for the next decades. Space missions, like ExoMars, plan to land and search for biological remnants on planets and moons in our nearby Solar system. Planetary protection regulations defined by COSPAR prevent that during the mission biological contamination of the bodies occur through the space probes. Therefore decontamination of the probes and more general space equipment is necessary before the launch. The up-to-date accepted decontamination procedure originate from the old NASA Viking missions and use dry heat (T>110°C for 30h) - a technology not well suited for sensitive equipment nowadays. We investigated in a study financed by the German Space Agency* cold atmospheric plasma (CAP) as an alternative for such decontamination. It is well known that CAP can kill bacteria or spores within seconds or minutes, respectively, if the plasma is in direct contact with the treated sample. This procedure might also be quite aggressive to the treated surface materials. Therefore, we developed an afterglow CAP device specially designed for the soft treatment of space equipment. Afterglow plasma produced by a SMD device in air is transported into a “larger” treatment chamber where the samples are positioned. It could be shown that samples of different bacteria and spores, the latter defined by COSPAR as a means to show the effectiveness of the decontamination process, positioned on different materials (steel, Teflon, quartz) could be effectively inactivated. The surface materials were investigated after the plasma treatment to identify etching or deposition problems. The afterglow in the treatment chamber could even overcome obstacles (tubes of different height and diameter) which simulate more complicated structures of the relevant surfaces. Up to now, CAP looks like a quite promising alternative to decontaminate space equipment and need to be studied in greater detail in the near future

  2. Special Equipment and/or Devices.

    National Sanitation Foundation, Ann Arbor, MI.

    This standard covers the sanitation requirements for equipment and/or devices used in the storage, preparation, or handling of foods and beverages. The National Sanitation Foundation's basic criteria for the evaluation of special equipment and/or devices has been prepared to fulfill several specific needs, its major function being to serve as a…

  3. 21 CFR 1250.67 - Watering equipment.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Watering equipment. 1250.67 Section 1250.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... of drinking water or other beverages, or for food preservation purposes, equipment constructed so as...

  4. Using ADA Tasks to Simulate Operating Equipment

    DeAcetis, Louis A.; Schmidt, Oron; Krishen, Kumar

    1990-01-01

    A method of simulating equipment using ADA tasks is discussed. Individual units of equipment are coded as concurrently running tasks that monitor and respond to input signals. This technique has been used in a simulation of the space-to-ground Communications and Tracking subsystem of Space Station Freedom.

  5. Enhancement of equipment services for Kozloduy NPP

    Schultz, Christophe

    2013-01-01

    Conclusion After 5 years of maintenance services, KNPP and AREVA have continuously intensified their partnership Close cooperation between KNPP, AREVA Local Office Engineers and OEM experts Involvement of sophisticated tools for diagnostics and condition monitoring Performance of engineering services and obsolescence evaluation Possibilities to perform equipment modernization of Electrical and IC equipment in future

  6. Emergency team personnel and technical equipment

    Muralt, R.

    1989-01-01

    The most important requirements for the emergency team can be summarized in three points. 1) The emergency team must be made up of top personnel from all fields and it should be functionally equiped. 2) The emergency teams must have complete command of their equipment. 3) The members of the team must be well motivated. 1 fig

  7. Weight/balance portable test equipment

    Whitlock, R.W.

    1994-01-01

    This document shows the general layout, and gives a part description for the weight/balance test equipment. This equipment will aid in the regulation of the leachate loading of tanker trucks. The report contains four drawings with part specifications. The leachate originates from lined trenches

  8. 7 CFR 550.38 - Equipment.

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE POLICY FOR NON-ASSISTANCE COOPERATIVE AGREEMENTS Management of Agreements... Agency, the Cooperator shall use the equipment to be replaced as trade-in or sell the equipment and use...

  9. Quantitative techniques for medical equipment maintenance management

    Ben Houria, Zeineb; Masmoudi, Malek; Al Hanbali, Ahmad; Khatrouch, Ikram; Masmoudi, Faouzi

    2016-01-01

    The maintenance department in a hospital is responsible for ensuring the safety of medical equipment and their availability while keeping the operation costs minimal. The selection of the best maintenance strategy is a key decision to reduce the equipment downtime, increase the availability, and

  10. 21 CFR 606.60 - Equipment.

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Equipment. 606.60 Section 606.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS CURRENT... following frequency, include but are not limited to: Equipment Performance check Frequency Frequency of...

  11. Plutonium Immobilization Can Loading Equipment Review

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.

    1998-05-01

    This report lists the operations required to complete the Can Loading steps on the Pu Immobilization Plant Flow Sheets and evaluates the equipment options to complete each operation. This report recommends the most appropriate equipment to support Plutonium Immobilization Can Loading operations

  12. Radio monitoring problems, methods, and equipment

    Rembovsky, Anatoly; Kozmin, Vladimir; Smolskiy, Sergey

    2009-01-01

    Offers a unified approach to fundamental aspects of Automated Radio Monitoring (ARM). This book discusses the development, modeling, design, and manufacture of ARM systems. It provides classification and descriptions of modern high-efficient hardware-software ARM equipment, including the equipment for detection and radio direction-finding.

  13. Development of Equipment for Use in Sport

    James, David

    2012-01-01

    No one has ever been able to create a running shoe that can make one run faster, but in other sports the design of equipment has the potential to offer considerable enhancement. Judgement has to be made as to whether such advantage becomes unfair. This article indicates many possible sports in which the equipment plays an important part in the…

  14. 36 CFR 1207.32 - Equipment.

    2010-07-01

    ... 1207.32 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES... as follows: (1) Items of equipment with a current per-unit fair market value of less than $5,000 may...) Items of equipment with a current per unit fair market value in excess of $5,000 may be retained or sold...

  15. 21 CFR 211.65 - Equipment construction.

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Equipment construction. 211.65 Section 211.65 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... construction. (a) Equipment shall be constructed so that surfaces that contact components, in-process materials...

  16. 47 CFR 18.203 - Equipment authorization.

    2010-10-01

    ... information already on file with the Commission. (2) A technical report pursuant to §§ 18.207 and 18.311. (b... 47 Telecommunication 1 2010-10-01 2010-10-01 false Equipment authorization. 18.203 Section 18.203 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL EQUIPMENT...

  17. Automation of heating system with heat pump

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  18. Automatic monitoring of vibration welding equipment

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  19. Requirements for industrial x-ray equipment

    1987-01-01

    This safety code is concerned with the protection of all individuals who may be exposed to radiation emitted by X-ray equipment operating at energies up to 1 MeV as used in industrial radiography. This code presents basic radiation safety information for the protection of personnel operating and servicing X-ray equipment and other workers and the general public in the vicinity of areas where X-ray equipment is in operation. It specifies general safety features of design, construction and functioning of X-ray equipment and facilities; describes the responsibilities of the user, operator and maintenance personnel; contains recommendations to ensure that the X-ray equipment is used and maintained in accordance with the ALARA principle; and describes a program of personnel monitoring and radiation safety surveys. ( 6 refs., 5 tabs., 4 figs.)

  20. Equipment qualification research program: program plan

    Dong, R.G.; Smith, P.D.

    1982-01-01

    The Lawrence Livermore National Laboratory (LLNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has developed this program plan for research in equipment qualification (EQA). In this report the research program which will be executed in accordance with this plan will be referred to as the Equipment Qualification Research Program (EQRP). Covered are electrical and mechanical equipment under the conditions described in the OBJECTIVE section of this report. The EQRP has two phases; Phase I is primarily to produce early results and to develop information for Phase II. Phase I will last 18 months and consists of six projects. The first project is program management. The second project is responsible for in-depth evaluation and review of EQ issues and EQ processes. The third project is responsible for detailed planning to initiate Phase II. The remaining three projects address specific equipment; i.e., valves, electrical equipment, and a pump