WorldWideScience

Sample records for heated pre-stellar core

  1. NH3 (10-00) in the pre-stellar core L1544

    DEFF Research Database (Denmark)

    Caselli, P.; Bizzocchi, L.; Keto, E.

    2017-01-01

    GHz and study the abundance profile of ammonia across the pre-stellar core L1544 to test current theories of its physical and chemical structure. Recently calculated collisional coefficients have been included in our non-LTE radiative transfer code to reproduce Herschel observations. A gas......Pre-stellar cores represent the initial conditions in the process of star and planet formation, therefore it is important to study their physical and chemical structure. Because of their volatility, nitrogen-bearing molecules are key to study the dense and cold gas present in pre-stellar cores....... The NH3 rotational transition detected with Herschel-HIFI provides a unique combination of sensitivity and spectral resolution to further investigate physical and chemical processes in pre-stellar cores. Here we present the velocity-resolved Herschel-HIFI observations of the ortho-NH3(10-00) line at 572...

  2. Sulphur chemistry in the L1544 pre-stellar core

    Science.gov (United States)

    Vastel, Charlotte; Quénard, D.; Le Gal, R.; Wakelam, V.; Andrianasolo, A.; Caselli, P.; Vidal, T.; Ceccarelli, C.; Lefloch, B.; Bachiller, R.

    2018-05-01

    The L1544 pre-stellar core has been observed as part of the ASAI IRAM 30m Large Program as well as follow-up programs. These observations have revealed the chemical richness of the earliest phases of low-mass star-forming regions. In this paper we focus on the twenty-one sulphur bearing species (ions, isotopomers and deuteration) that have been detected in this spectral-survey through fifty one transitions: CS, CCS, C3S, SO, SO2, H2CS, OCS, HSCN, NS, HCS+, NS+ and H2S. We also report the tentative detection (4 σ level) for methyl mercaptan (CH3SH). LTE and non-LTE radiative transfer modelling have been performed and we used the NAUTILUS chemical code updated with the most recent chemical network for sulphur to explain our observations. From the chemical modelling we expect a strong radial variation for the abundances of these species, which mostly are emitted in the external layer where non thermal desorption of other species has previously been observed. We show that the chemical study cannot be compared to what has been done for the TMC-1 dark cloud, where the abundance is supposed constant along the line of sight, and conclude that a strong sulphur depletion is necessary to fully reproduce our observations of the prototypical pre-stellar core L1544.

  3. Detection of the HC3NH+ and HCNH+ ions in the L1544 pre-stellar core

    Science.gov (United States)

    Quénard, D.; Vastel, C.; Ceccarelli, C.; Hily-Blant, P.; Lefloch, B.; Bachiller, R.

    2017-09-01

    The L1544 pre-stellar core was observed as part of the ASAI (Astrochemical Surveys At IRAM) Large Program. We report the first detection in a pre-stellar core of the HCNH+ and HC3NH+ ions. The high spectral resolution of the observations allows us to resolve the hyperfine structure of HCNH+. Local thermodynamic equilibrium (LTE) analysis leads to derive a column density equal to (2.0 ± 0.2) × 1013 cm-2 for HCNH+ and (1.5 ± 0.5) × 1011 cm-2 for HC3NH+. We also present non-LTE analysis of five transitions of HC3N, three transitions of H13CN and one transition of HN13C, all of them linked to the chemistry of HCNH+ and HC3NH+. We computed for HC3N, HCN and HNC a column density of (2.0 ± 0.4) × 1013 cm-2, (3.6 ± 0.9) × 1014 cm-2 and (3.0 ± 1.0) × 1014 cm-2, respectively. We used the gas-grain chemical code nautilus to predict the abundances of all these species across the pre-stellar core. Comparison of the observations with the model predictions suggests that the emission from HCNH+ and HC3NH+ originates in the external layer where non-thermal desorption of other species was previously observed. The observed abundance of both ionic species ([HCNH+] ≃ 3 × 10-10 and [HC3NH+] ≃ [1.5 - 3.0] × 10-12, with respect to H2) cannot be reproduced at the same time by the chemical modelling within the error bars of the observations only. We discuss the possible reasons for the discrepancy and suggest that the current chemical models are not fully accurate or complete. However, the modelled abundances are within a factor of 3, consistent with the observations, considering a late stage of the evolution of the pre-stellar core, compatible with previous observations.

  4. THE SPATIAL DISTRIBUTION OF COMPLEX ORGANIC MOLECULES IN THE L1544 PRE-STELLAR CORE

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Serra, Izaskun [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Vasyunin, Anton I.; Caselli, Paola [Max-Planck-Institut für extraterrestrische Physik (MPE), Gießenbachstr., D-85741 Garching (Germany); Marcelino, Nuria [INAF, Osservatorio di Radioastronomia, Via P. Gobetti 101, I-40129 Bologna (Italy); Billot, Nicolas [Instituto de Radioastronomía Milimétrica, Avenida Divina Pastora 7, E-18012 Granada (Spain); Viti, Serena [Department of Physics and Astronomy, University College London, 132 Hampstead Road, London NW1 2PS (United Kingdom); Testi, Leonardo [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Vastel, Charlotte [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); Lefloch, Bertrand [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France); Bachiller, Rafael, E-mail: i.jimenez-serra@qmul.ac.uk [Observatorio Astronómico Nacional (OAN, IGN), Calle Alfonso XII 3, E-28014 Madrid (Spain)

    2016-10-10

    The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T < 10 K) has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modeling on COM chemistry at low temperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly extinguished continuum peak with A{sub V}≥ 30 mag within the inner 2700 au; and a low-density shell with average A{sub V}∼ 7.5–8 mag located at 4000 au from the core’s center and bright in CH{sub 3}OH. Our observations show that CH{sub 3}O, CH{sub 3}OCH{sub 3}, and CH{sub 3}CHO are more abundant (by factors of ∼2–10) toward the low-density shell than toward the continuum peak. Other COMs such as CH{sub 3}OCHO, c-C{sub 3}H{sub 2}O, HCCCHO, CH{sub 2}CHCN, and HCCNC show slight enhancements (by factors ≤3), but the associated uncertainties are large. This suggests that COMs are actively formed and already present in the low-density shells of pre-stellar cores. The modeling of the chemistry of O-bearing COMs in L1544 indicates that these species are enhanced in this shell because (i) CO starts freezing out onto dust grains driving an active surface chemistry; (ii) the visual extinction is sufficiently high to prevent the UV photo-dissociation of COMs by the external interstellar radiation field; and (iii) the density is still moderate to prevent severe depletion of COMs onto grains.

  5. THE SPATIAL DISTRIBUTION OF COMPLEX ORGANIC MOLECULES IN THE L1544 PRE-STELLAR CORE

    International Nuclear Information System (INIS)

    Jiménez-Serra, Izaskun; Vasyunin, Anton I.; Caselli, Paola; Marcelino, Nuria; Billot, Nicolas; Viti, Serena; Testi, Leonardo; Vastel, Charlotte; Lefloch, Bertrand; Bachiller, Rafael

    2016-01-01

    The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T < 10 K) has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modeling on COM chemistry at low temperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly extinguished continuum peak with A_V≥ 30 mag within the inner 2700 au; and a low-density shell with average A_V∼ 7.5–8 mag located at 4000 au from the core’s center and bright in CH_3OH. Our observations show that CH_3O, CH_3OCH_3, and CH_3CHO are more abundant (by factors of ∼2–10) toward the low-density shell than toward the continuum peak. Other COMs such as CH_3OCHO, c-C_3H_2O, HCCCHO, CH_2CHCN, and HCCNC show slight enhancements (by factors ≤3), but the associated uncertainties are large. This suggests that COMs are actively formed and already present in the low-density shells of pre-stellar cores. The modeling of the chemistry of O-bearing COMs in L1544 indicates that these species are enhanced in this shell because (i) CO starts freezing out onto dust grains driving an active surface chemistry; (ii) the visual extinction is sufficiently high to prevent the UV photo-dissociation of COMs by the external interstellar radiation field; and (iii) the density is still moderate to prevent severe depletion of COMs onto grains.

  6. Star formation: study of the collapse of pre-stellar dense cores

    International Nuclear Information System (INIS)

    Commercon, Benoit

    2009-01-01

    One of the priorities of contemporary astrophysics remains to understand the mechanisms which lead to star formation. In the dense cores where star formation occurs, temperature, pressure, etc... are such that it is impossible to reproduce them in the laboratory. Numerical calculations remain the only mean to study physical phenomena that are involved in the star formation process. The focus of this thesis has been on the numerical methods that are used in the star formation context to describe highly non-linear and multi-scale phenomena. In particular, I have concentrated my work on the first stages of the pre-stellar dense cores collapse. This work is divided in 4 linked part. In a first study, I use a 1D Lagrangian code in spherical symmetry (Audit et al. 2002) to compare three models that incorporate radiative transfer and matter-radiation interactions. This comparison was based on simple gravitational collapse calculations which lead to the first Larson core formation. It was found that the Flux Limited Diffusion model is appropriate for star formation calculations. I also took benefit from this first work to study the properties of the accretion shock on the first Larson core. We developed a semi-analytic model based on well-known assumptions, which reproduces the jump properties at the shock. The second study consisted in implementing the Flux Limited Diffusion model with the radiation-hydrodynamics equations in the RAMSES code (Teyssier 2002). After a first step of numerical tests that validate the scheme, we used RAMSES to perform the first multidimensional collapse calculations that combine magnetic field and radiative transfer effects at small scales with a high numerical resolution. Our results show that the radiative transfer has a significant impact on the fragmentation in the collapse of pre-stellar dense cores. I also present a comparison we made between the RAMSES code (Eulerian approach) and the SPH code DRAGON (Goodwin 2004, Lagrangian approach

  7. Stellar core collapse and supernova

    International Nuclear Information System (INIS)

    Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.

    1985-04-01

    Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab

  8. Evolution and Photoevaporation of Protoplanetary Disks in Clusters: The Role of Pre-stellar Core Properties

    Science.gov (United States)

    Xiao, Lin; Chang, Qiang

    2018-01-01

    We explore the effects of progenitor pre-stellar core properties on the evolution of disks with external photoevaporation in clusters. Since the strength of external photoevaporation is largely determined by the depth of the gravitational potential well of the disk, the external photoevaporation rate is the function of star mass and disk size. The properties of a core collapse set up the initial conditions of protoplanetary disks, so they influence the evolutions of star mass and disk size. Our calculations show that the core properties can dramatically influence the efficiency of external photoevaporation. For the core with low angular velocity, most core mass directly falls onto the central star or onto the disk near the star. External photoevaporation is suppressed even if external radiation from nearby massive stars are strong. In this case, the disk evolution in clusters is primarily driven by its own internal viscosity. However, if the core angular velocity is high, most core mass falls onto the disk far from the central star. External photoevaporation is so strong that the disk mass is severely evaporated. Finally, the star mass is very low and the disk lifetime is very short. Our calculations could interpret some observational features of disks in clusters, such as the diameter distribution of disks in the Trapezium cluster and the correlation between mass accretion rate and star mass. We suggest that the disk mass determined by (sub)millimeter wavelength observations may be underestimated.

  9. Constraints on the initial conditions of stellar formation from ISOCAM observations of dense cores seen in absorption

    International Nuclear Information System (INIS)

    Bacmann, Aurore

    1999-01-01

    Stars form in molecular clouds by gravitational collapse of small condensations called pre-stellar cores. This stage of the star formation process is still relatively unknown since these dense cores are deeply embedded within a thick cocoon of matter. The collapse, as well as the accretion phase depend on the structure of these objects. In order to constrain the initial conditions of star formation. We have carried out a study of the density structure of a vast sample of pre-stellar cores that we observed with the mid-infrared camera ISOCAM aboard the ISO satellite. As the cores are very dense and cold, they are seen in absorption against the diffuse mid-infrared background. This absorption method is highly interesting for our study since it is sensitive to the density structure in the outer parts of the cores. The study of these cores enabled us to confirm the presence of a flattening in their central parts, to show that their column density profiles were composed of a portion close to a NH_2 ∝ r"-"1 power-law, and that some of them presented an edge, i.e. that the slope in the outer parts of the profiles became steeper than NH_2 ∝ r"-"2. An implication of the presence of an edge is that the mass reservoir available for star formation in these cores is finite, supporting the idea that the stellar initial mass function is partly determined at a pre-stellar stage. Comparison of our results with various models of core structure shows that the column density profiles we obtained are consistent with ambipolar diffusion models of magnetically supported cores, although they require a strong background magnetic field which has up to now not been observed in these kinds of regions. (author) [fr

  10. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly ...

  11. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  12. Energy and particle core transport in tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, Marc; Angioni, Clemente; Beidler, Craig; Dinklage, Andreas; Fuchert, Golo; Hirsch, Matthias; Puetterich, Thomas; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald/Garching (Germany)

    2016-07-01

    The paper discusses expectations for core transport in the Wendelstein 7-X stellarator (W7-X) and presents a comparison to tokamaks. In tokamaks, the neoclassical trapped-particle-driven losses are small and turbulence dominates the energy and particle transport. At reactor relevant low collisionality, the heat transport is limited by ion temperature gradient limited turbulence, clamping the temperature gradient. The particle transport is set by an anomalous inward pinch, yielding peaked profiles. A strong edge pedestal adds to the good confinement properties. In traditional stellarators the 3D geometry cause increased trapped orbit losses. At reactor relevant low collisionality and high temperatures, these neoclassical losses would be well above the turbulent transport losses. The W7-X design minimizes neoclassical losses and turbulent transport can become dominant. Moreover, the separation of regions of bad curvature and that of trapped particle orbits in W7-X may have favourable implications on the turbulent electron heat transport. The neoclassical particle thermodiffusion is outward. Without core particle sources the density profile is flat or even hollow. The presence of a turbulence driven inward anomalous particle pinch in W7-X (like in tokamaks) is an open topic of research.

  13. Gamma ray heating rates due to chromium isotopes in stellar core during late stages of high mass stars (>10M⊙

    Directory of Open Access Journals (Sweden)

    Nabi Jameel-Un

    2017-01-01

    Full Text Available Gamma ray heating rates are thought to play a crucial role during the pre-supernova stage of high mass stars. Gamma ray heating rates, due to β±-decay and electron (positron capture on chromium isotopes, are calculated using proton-neutron quasiparticle random phase approximation theory. The electron capture significantly affects the lepton fraction (Ye and accelerates the core contraction. The gamma rays emitted as a result of weak processes heat the core and tend to hinder the cooling and contraction due to electron capture and neutrino emission. The emitted gamma rays tend to produce enormous entropy and set the convection to play its role at this stage. The gamma heating rates, on 50-60Cr, are calculated for the density range 10 < ρ (g.cm-3 < 1011 and temperature range 107 < T (K < 3.0×1010.

  14. Collapsing stellar cores and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)

    1979-05-01

    The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.

  15. On the collapse of iron stellar cores

    International Nuclear Information System (INIS)

    Barkat, Z.; Rakavy, G.; Reiss, Y.; Wilson, J.R.

    1975-01-01

    The collapse of iron stellar cores is investigated to see whether the outward shock produced by the bounce at neutron star density is sufficient to burn appreciable amounts of the envelope around the iron core. Several models were tried, and in all cases no appreciable burn took place; hence no explosion results from the collapse of these models

  16. Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    Science.gov (United States)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2018-02-01

    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.

  17. Neutrino confinement in collapsing stellar cores

    International Nuclear Information System (INIS)

    Chung, K.C.

    1987-01-01

    Neutrino confinement is expected to occur in the core of highly evolved stars, leading to the formation of a degenerate neutrino gas. The main neutrino sources are briefly reviewed and the neutrino processes relevant to the neutrino opacity in the stellar matter are discussed. Implications for the equation of state of neutrino-trapped matter are examined. (author) [pt

  18. Convective heating of the inner core of red giants prior to the peak of the core helium flash

    International Nuclear Information System (INIS)

    Cole, P.W.; Demarque, P.; Deupree, R.G.

    1985-01-01

    The effects of convective overshooting across the temperature inversion in the cores of red giants are investigated from the onset of the core convection zone to the peak of the core helium flash using a model for overshooting in stellar evolution, based on two-dimensional and three-dimensional hydrodynamic simulations of the core helium flash. A major effect of the overshooting is the substantial heating of the material interior to the temperature inversion, producing a smoother temperature profile. This interior heating is thus unimportant until approximately 1 week preceding the time of maximum temperature, but then produces temperature changes on a time scale short with respect to the evolution time scale. Interior heating (1) alters the standard relation of the maximum temperature and the density at the point of maximum temperature, (2) makes the maximum temperature occur at a smaller mass fraction, (3) causes the time of maximum temperature to occur hundreds of years earlier in the red giant evolution, and (4) redistributes the mass from the location of maximum temperature. Since the degree of degeneracy is known to affect the violence of the flash in the hydrodynamic phase, internal heating may play an important role in determining the subsequent evolution of the core

  19. DARK MATTER HEATING AND EARLY CORE FORMATION IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Madau, Piero; Shen, Sijing; Governato, Fabio

    2014-01-01

    We present more results from a fully cosmological ΛCDM simulation of a group of isolated dwarf galaxies that has been shown to reproduce the observed stellar mass and cold gas content, resolved star formation histories, and metallicities of dwarfs in the Local Volume. Here we investigate the energetics and timetable of the cusp-core transformation. As suggested by previous work, supernova-driven gas outflows remove dark matter (DM) cusps and create kiloparsec-size cores in all systems having a stellar mass M * > 10 6 M ☉ . The D M core mass removal efficiency — dark mass ejected per unit stellar mass—ranges today from a few to a dozen, and increases with decreasing host mass. Because dwarfs form the bulk of their stars prior to redshift 1 and the amount of work required for DM heating and core formation scales approximately as M vir 5/3 , the unbinding of the DM cusp starts early and the formation of cored profiles is not as energetically onerous as previously claimed. DM particles in the cusp typically migrate to 2-3 core radii after absorbing a few percent of the energy released by supernovae. The present-day slopes of the inner DM mass profiles, Γ ≡ dlog M/dlog R ≅ 2.5-3, of the simulated ''Bashful'' and ''Doc'' dwarfs are similar to those measured in the luminous Fornax and Sculptor dwarf spheroidals. None of the simulated galaxies has a circular velocity profile exceeding 20 km s –1 in the inner 1 kpc, implying that supernova feedback is key to solve the ''too-big-to-fail'' problem for Milky Way subhalos

  20. Neutral beam heating in stellarators: a numerical approach

    International Nuclear Information System (INIS)

    Hokin, S.A.; Rome, J.A.; Hender, T.C.; Fowler, R.H.

    1983-03-01

    Calculation of neutral beam deposition and heating in stellarators is complicated by the twisty stellarator geometry and by the usual beam focusing, divergence, and cross-sectional shape considerations. A new deposition code has been written that takes all of this geometry into account. A unique feature of this code is that it gives particle deposition in field-line coordinates, enabling the thermalization problem to be solved more efficiently

  1. Confinement and heating in modular and continuous coil stellarators

    International Nuclear Information System (INIS)

    Anderson, D.T.; Anderson, F.S.B.; Bonomo, R.L.

    1983-01-01

    Major efforts on the Proto-Cleo stellarator have focused on ICRH of a net current-free plasma, measurements of plasma secondary currents, RF heating by externally induced magnetic reconnection through the formation and destruction of an internal separatrix, and RF current drive experiments. Efforts on the Proto-Cleo torsatron have focused on electron heat conduction. A modular stellarator has been designed and is under fabrication at the University of Wisconsin. The Interchangeable Module Stellarator (IMS) is designed to approximate closely the magnetic properties of the existing Proto-Cleo stellarator as much as possible. Monte-Carlo transport calculations have been made in flux coordinates using model fields patterned after magnetic fields in Proto-Cleo and IMS. Plasma simulation techniques using a 2.5-dimensional particle-in-cell method have been utilized in a numerical search for the bootstrap current. A current is found which is proportional to temperature and density gradients but is independent of poloidal field. The behaviour of charged particles moving in a stellarator under the influence of a steady magnetic field is analysed in terms of the Hamiltonian of the moving particle and the technique of repeated canonical transformations to identify possible adiabatic invariants and drift motions. An improved theory of collisionless particle motion in stellarators has been developed for a family of stellarator configurations. The broad range of configurations encompassed by this family permits an understanding of the differences in numerically observed transport coefficients. Two procedures have been developed to calculate the bootstrap current in non-axisymmetric stellarators. In fully toroidal stellarators the flows and consequent bootstrap current are reduced from their axisymmetric values by a factor of order l slash-l/m in the Pfirsch-Schlueter regime. (author)

  2. Confinement of Stellarator plasmas with neutral beam and RF heating in W VII-A

    International Nuclear Information System (INIS)

    Grieger, G.; Cattanei, G.; Dorst, D.

    1986-01-01

    WENDELSTEIN VII-A has been operated for ten years. It is a low-shear, high-aspect-ratio device. The confinement properties have been thoroughly studied for both ohmically heated and net-current free plasmas. For the latter case, NBI- and ECF-maintained plasmas were of particular importance. It was found that under optimized conditions the core of high-pressure, net-current free plasmas is mainly governed by collisional effects. The experiment will now be shut down for upgrading it into the Advanced Stellarator WEDNDELSTEIN VII-AS. (author)

  3. ECR heating in L-2M stellarator

    International Nuclear Information System (INIS)

    Grebenshchikov, S.E.; Batanov, G.M.; Fedyanin, O.I.

    1995-01-01

    The first results of ECH experiments in the L-2M stellarator are presented. The main goal of the experiments is to investigate the physics of ECH and plasma confinement at very high values of the volume heating power density. A current free plasma is produced and heated by extraordinary waves at the second harmonic of the electron cyclotron frequency. The experimental results are compared with the numerical simulations of plasma confinement and heating processes based on neoclassical theory using the full matrix of transport coefficients and with LHD-scaling. 4 refs., 2 figs

  4. Gravitational wave generation by stellar core collapse

    International Nuclear Information System (INIS)

    Moore, T.A.

    1981-01-01

    Stars which have masses greater than 5 to 8 solar masses are thought to undergo a stage of catastrophic core collapse and subsequent supernova explosion at the end of their lives. If the core is not spherically symmetric, the bounce which halts its collapse at transnuclear densities will generate a pulse of gravitational waves. This thesis presents a fully relativistic model of core collapse which treats deviations from spherical symmetry as small perturbations on a spherical background. This model may be used to predict qualitative and quantitative features of the gravitational radiation emitted by stellar cores with odd-parity, axisymmetric fluid perturbations, and represents a first step in the application of perturbative methods to more general asymmetries. The first chapter reviews the present consensus on the physics of core collapse and outlines the important features, assumptions, and limitations of the model. A series of model runs are presented and discussed. Finally, several proposals for future research are presented. Subsequent chapters explore in detail the mathematical features of the present model and its realization on the computer

  5. Electron internal transport barrier formation and dynamics in the plasma core of the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Krupnik, L [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Dreval, N [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Melnikov, A [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Khrebtov, S M [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Hidalgo, C [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Milligen, B van [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Castejon, F [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); AscasIbar, E [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Eliseev, L [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Chmyga, A A [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Komarov, A D [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Kozachok, A S [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Tereshin, V [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine)

    2004-01-01

    The influence of magnetic topology on the formation of electron internal transport barriers (e-ITBs) has been studied experimentally in electron cyclotron heated plasmas in the stellarator TJ-II. e-ITB formation is characterized by an increase in core electron temperature and plasma potential. The positive radial electric field increases by a factor of 3 in the central plasma region when an e-ITB forms. The experiments reported demonstrate that the formation of an e-ITB depends on the magnetic configuration. Calculations of the modification of the rotational transform due to plasma current lead to the interpretation that the formation of an e-ITB can be triggered by positioning a low order rational surface close to the plasma core region. In configurations without any central low order rational, no barrier is formed for any accessible value of heating power. Different mechanisms associated with neoclassical/turbulent bifurcations and kinetic effects are put forward to explain the impact of magnetic topology on radial electric fields and confinement.

  6. THE PROGENITOR DEPENDENCE OF THE PRE-EXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    O'Connor, Evan; Ott, Christian D.

    2013-01-01

    We perform spherically symmetric general-relativistic simulations of core collapse and the postbounce pre-explosion phase in 32 presupernova stellar models of solar metallicity with zero-age main-sequence masses of 12-120 M ☉ . Using energy-dependent three-species neutrino transport in the two-moment approximation with an analytic closure, we show that the emitted neutrino luminosities and spectra follow very systematic trends that are correlated with the compactness (∼M/R) of the progenitor star's inner regions via the accretion rate in the pre-explosion phase. We find that these qualitative trends depend only weakly on the nuclear equation of state (EOS), but quantitative observational statements will require independent constraints on the EOS and the rotation rate of the core as well as a more complete understanding of neutrino oscillations. We investigate the simulated response of water Cherenkov detectors to the electron antineutrino fluxes from our models and find that the large statistics of a galactic core collapse event may allow robust conclusions on the inner structure of the progenitor star.

  7. THE PROGENITOR DEPENDENCE OF THE PRE-EXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Evan; Ott, Christian D., E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu [TAPIR, California Institute of Technology, Mailcode 350-17, Pasadena, CA 91125 (United States)

    2013-01-10

    We perform spherically symmetric general-relativistic simulations of core collapse and the postbounce pre-explosion phase in 32 presupernova stellar models of solar metallicity with zero-age main-sequence masses of 12-120 M {sub Sun }. Using energy-dependent three-species neutrino transport in the two-moment approximation with an analytic closure, we show that the emitted neutrino luminosities and spectra follow very systematic trends that are correlated with the compactness ({approx}M/R) of the progenitor star's inner regions via the accretion rate in the pre-explosion phase. We find that these qualitative trends depend only weakly on the nuclear equation of state (EOS), but quantitative observational statements will require independent constraints on the EOS and the rotation rate of the core as well as a more complete understanding of neutrino oscillations. We investigate the simulated response of water Cherenkov detectors to the electron antineutrino fluxes from our models and find that the large statistics of a galactic core collapse event may allow robust conclusions on the inner structure of the progenitor star.

  8. Low frequency RF heating of plasmas in a toroidal stellarator

    International Nuclear Information System (INIS)

    Golovato, S.N.

    1977-01-01

    Studies of transit-time magnetic pumping and Alfven wave heating have been done in the Proto-Cleo stellarator. Both plasma heating and plasma confinement have been investigated. A traveling wave was launched around the Proto-Cleo l = 2, 6 field period stellarator to attempt transit-time magnetic pumping of a pulsed electron beam moving along the magnetic field lines. An apparent loss of the beam was seen when the transit-time magnetic pumping was applied. A random walk diffusion of the beam electrons with a step size determined by the radial EXB drift due to the poloidal electric field agrees well with the experimental results. Alfven wave heating was applied to plasmas in the Proto-Cleo l = 3, 7 field period stellarator. Global excitation of Alfven waves was accomplished by exciting an electrostatically shielded helical winding corresponding to a q = 3 rational field line with a pulsed, high-power RF source. Theoretical analysis of this helical wave launcher predicted effective energy absorption in the Proto-Cleo gun-produced plasma

  9. α Centauri A as a potential stellar model calibrator: establishing the nature of its core

    Science.gov (United States)

    Nsamba, B.; Monteiro, M. J. P. F. G.; Campante, T. L.; Cunha, M. S.; Sousa, S. G.

    2018-05-01

    Understanding the physical process responsible for the transport of energy in the core of α Centauri A is of the utmost importance if this star is to be used in the calibration of stellar model physics. Adoption of different parallax measurements available in the literature results in differences in the interferometric radius constraints used in stellar modelling. Further, this is at the origin of the different dynamical mass measurements reported for this star. With the goal of reproducing the revised dynamical mass derived by Pourbaix & Boffin, we modelled the star using two stellar grids varying in the adopted nuclear reaction rates. Asteroseismic and spectroscopic observables were complemented with different interferometric radius constraints during the optimisation procedure. Our findings show that best-fit models reproducing the revised dynamical mass favour the existence of a convective core (≳ 70% of best-fit models), a result that is robust against changes to the model physics. If this mass is accurate, then α Centauri A may be used to calibrate stellar model parameters in the presence of a convective core.

  10. Neutrino emission spectra of collapsing degenerate stellar cores - Calculations by the Monte Carlo method

    International Nuclear Information System (INIS)

    Levitan, Iu.L.; Sobol, I.M.; Khlopov, M.Iu.; Chechetkin, V.M.

    1982-01-01

    The variation of the hard part of the neutrino emission spectra of collapsing degenerate stellar cores with matter having a small optical depth to neutrinos is analyzed. The interaction of neutrinos with the degenerate matter is determined by processes of neutrino scattering on nuclei (without a change in neutrino energy) and neutrino scattering on degenerate electrons, in which the neutrino energy can only decrease. The neutrino emission spectrum of a collapsing stellar core in the initial stage of the onset of opacity is calculated by the Monte Carlo method: using a central density of 10 trillion g/cu cm and, in the stage of deep collapse, for a central density of 60 trillion g/cu cm. In the latter case the calculation of the spectrum without allowance for effects of neutrino degeneration in the central part of the collapsing stellar core corresponds to the maximum possible suppression of the hard part of the neutrino emission spectrum

  11. Testing the Formation Mechanism of Sub-Stellar Objects in Lupus (A SOLA Team Study)

    Science.gov (United States)

    De Gregorio-Monsalvo, Itziar; Lopez, C.; Takahashi, S.; Santamaria-Miranda

    2017-06-01

    The international SOLA team (Soul of Lupus with ALMA) has identified a set of pre- and proto-stellar candidates in Lupus 1 and 3 of substellar nature using 1.1mm ASTE/AzTEC maps and our optical to submillimeter database. We have observed with ALMA the most promising pre- and proto-brown dwarfs candidates. Our aims are to provide insights on how substellar objects form and evolve, from the equivalent to the pre-stellar cores to the Class II stage in the low mass regime of star formation. Our sample comprises 33 pre-stellar objects, 7 Class 0 and I objects, and 22 Class II objects.

  12. Morphologies and stellar populations of galaxies in the core of Abell 2218

    NARCIS (Netherlands)

    Sánchez, S. F.; Cardiel, N.; Verheijen, M. A. W.; Pedraz, S.; Covone, G.

    2007-01-01

    We present a study of the stellar populations and morphologies of galaxies in the core of the galaxy cluster Abell 2218. Integral field spectroscopy (IFS) observations were performed using PMAS in the PPAK mode covering a field of view of similar to 74 x 64 arcsec(2) centred on the core of the

  13. Variability in the pre-transit signal of HD 189733 b

    Science.gov (United States)

    Cauley, Paul W.; Redfield, Seth; Jensen, Adam G.; Barman, Travis; Endl, Michael; Cochran, William D.

    2016-01-01

    Hot planets, i.e., those with orbital periods of a few days, can interact strongly with their host stars via gravitational tides, magnetic interactions, or via collisions between planetary and stellar winds or the planetary magnetosphere and the stellar wind. Recently, pre-transit absorption signals, caused by material orbiting ahead of the planet, have been detected around a handful of exoplanets. Two of these measurements, those for WASP-12 b (Llama et al. 2011) and HD 189733 b (Cauley et al. 2015), were interpreted as being the result of compressed material in a bow shock formed by the planetary magnetosphere plowing through the stellar wind. These signals are expected to be variable at some level as the planet passes through an inhomogenous stellar wind or corona and stellar activity levels change. To investigate this potential variability and confirm the detected signal, we have recently obtained followup observations to the 2013 transit reported in Cauley et al. (2015). The new measurements confirm the existence of the pre- and in-transit absorption detected in the 2013 data. However, the new signal is not consistent with the specific bow shock geometry presented in Cauley et al. (2015). We have performed a more detailed examination of the Ca II H and K line core flux, which is a proxy for the stellar activity level, for the 2013 data. We find a weak correlation between the Hα core flux and the Ca II core flux, suggesting that some, but not all, of the pre-transit absorption signature may be a result of changing stellar activity levels during the observations. Our examination of the Ca II core flux measurements uncover variability that is not seen using the SHK activity index. We are evaluating techniques to calibrate our Hα signal with these more detailed Ca II measurements and suggest that the core flux is a better proxy of low level stellar variability for a single epoch. In addition, the 2015 transit confirms that pre-transit absorption signals are

  14. Computational models of stellar collapse and core-collapse supernovae

    International Nuclear Information System (INIS)

    Ott, Christian D; O'Connor, Evan; Schnetter, Erik; Loeffler, Frank; Burrows, Adam; Livne, Eli

    2009-01-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  15. Stellar model chromospheres. VI - Empirical estimates of the chromospheric radiative losses of late-type stars

    Science.gov (United States)

    Linsky, J. L.; Ayres, T. R.

    1978-01-01

    A method is developed for estimating the nonradiative heating of stellar chromospheres by measuring the net radiative losses in strong Fraunhofer line cores. This method is applied to observations of the Mg II resonance lines in a sample of 32 stars including the sun. At most a small dependence of chromospheric nonradiative heating on stellar surface gravity is found, which is contrary to the large effect predicted by recent calculations based on acoustic-heating theories.

  16. Energy confinement comparison of ohmically heated stellarators to tokamaks

    International Nuclear Information System (INIS)

    Chu, T.K.; Lee, Y.C.

    1979-12-01

    An empirical scaling prescribes that the energy confinement time in ohmically heated stellarators and tokamaks is proportional to the internal energy of the plasma and the minor radius, and inversely proportional to the current density. A thermal-conduction energy transport model, based on a heuristic assumption that the effective momentum transfer in the radial direction is proportional to the classical parallel momentum transfer which results in ohmic heating, is used to explain this scaling

  17. Analysis of core plasma heating and ignition by relativistic electrons

    International Nuclear Information System (INIS)

    Nakao, Y.

    2002-01-01

    Clarification of the pre-compressed plasma heating by fast electrons produced by relativistic laser-plasma interaction is one of the most important issues of the fast ignition scheme in ICF. On the basis of overall calculations including the heating process, both by relativistic hot electrons and alpha-particles, and the hydrodynamic evolution of bulk plasma, we examine the feature of core plasma heating and the possibility of ignition. The deposition of the electron energy via long-range collective mode, i.e. Langmuir wave excitation, is shown to be comparable to that through binary electron-electron collisions; the calculation neglecting the wave excitation considerably underestimates the core plasma heating. The ignition condition is also shown in terms of the intensity I(h) and temperature T(h) of hot electrons. It is found that I(h) required for ignition increases in proportion to T(h). For efficiently achieving the fast ignition, electron beams with relatively 'low' energy (e.g.T(h) below 1 MeV) are desirable. (author)

  18. Electron cyclotron resonance heating on the W VII A-stellarator

    International Nuclear Information System (INIS)

    Wilhelm, R.; Erckmann, V.; Janzen, G.

    1985-01-01

    Plasma build-up and heating of OH-current free plasmas by ECR-wave irradiation were investigated on the WENDELSTEIN VII-A stellarator using three kinds of wave launching: direct irradiation of the gyrotron modes from the low field side, or advanced wave launching in 0-mode polarization from the low field side, the nonabsorbed fraction being reflected back to the plasma from the high field side in X-mode polarization. An increase of the central electron temperature from 0.7 keV (TE 02 mode) to 1.2 keV (TE 11 , HE 11 mode) was observed which is explained by the narrow and well centred power deposition profiles for TE 11 , HE 11 modes. However, there is only a slight increase of the heating efficiency from 40% to 50%. The reflected X-mode fraction does not contribute to bulk plasma heating via Bernstein wave conversion and absorption as expected. The reason seems to be local absorption of the arising electron Bernstein waves due to a macroscopically turbulent structure around the upper hybrid resonance layer. Correlated with X-mode irradiation direct ion heating was observed (500 eV ion tail), possibly due to low frequency decay waves. In all ECRH experiments a toroidal plasma current was generated due to asymmetrically confined fast electrons. Optimum confinement in the shearless l=2 configuration was achieved at most irrational values of the rotational transform with small toroidal net current. It can be concluded from a numerical 1D-transport analysis that neoclassical electron confinement seems to be dominant in the hot central plasma core

  19. Rotating collapse of stellar iron cores in general relativity

    International Nuclear Information System (INIS)

    Ott, C D; Dimmelmeier, H; Marek, A; Janka, H-T; Zink, B; Hawke, I; Schnetter, E

    2007-01-01

    We present results from the first 2 + 1 and 3 + 1 simulations of the collapse of rotating stellar iron cores in general relativity employing a finite-temperature equation of state and an approximate treatment of deleptonization during collapse. We compare full 3 + 1 and conformally-flat spacetime evolution methods and find that the conformally-flat treatment is sufficiently accurate for the core-collapse supernova problem. We focus on the gravitational wave (GW) emission from rotating collapse, core bounce and early postbounce phases. Our results indicate that the GW signature of these phases is much more generic than previously estimated. In addition, we track the growth of a nonaxisymmetric instability of dominant m = 1 character in two of our models that leads to prolonged narrow-band GW emission at ∼920-930 Hz over several tens of milliseconds

  20. Transient behaviour in the plasma core of TJ-II stellarator and its relation with rational surfaces

    International Nuclear Information System (INIS)

    Estrada, T.; Luna, E. de la; Ascasibar, E; Jimenez, J.A.; Castejon, F.; Garcia-Cortes, I.; Lopez-Fraguas, A.; Sanchez, J.; Tribaldos, V.

    2002-01-01

    A transient behaviour is observed in the plasma core of TJ-II stellarator with fast drops in the electron temperature. Changes in the line-averaged density are observed synchronized with temperature drops. This phenomenon appears in plasmas created and heated using 300 kW of electron cyclotron heating with high power density. The transient behaviour resembles both, the electric pulsation discovered in CHS and the 'electron root' feature reported by the W7-AS team. The flexibility and low magnetic shear of TJ-II have permitted the identification of the plasma current as the control parameter for the appearance of this phenomenon. The results obtained during the magnetic configuration scans carried out in TJ-II points to the hypothesis that the transient behaviour is connected with the presence of a rational surface close to the plasma centre. Equilibrium calculations performed with the VMEC code reinforce this hypothesis. (author)

  1. Computational models of stellar collapse and core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Christian D; O' Connor, Evan [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA (United States); Schnetter, Erik; Loeffler, Frank [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Livne, Eli, E-mail: cott@tapir.caltech.ed [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

    2009-07-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  2. Transitions to improved core electron heat confinement triggered by low order rational magnetic surfaces in the stellarator TJ-II

    International Nuclear Information System (INIS)

    Estrada, T.; Medina, F.; Lopez-Bruna, D.; AscasIbar, E.; BalbIn, R.; Cappa, A.; Castejon, F.; Eguilior, S.; Fernandez, A.; Guasp, J.; Hidalgo, C.; Petrov, S.

    2007-01-01

    Transitions to improved core electron heat confinement are triggered by low order rational magnetic surfaces in TJ-II electron cyclotron heated (ECH) plasmas. Experiments are performed changing the magnetic shear around the rational surface n = 3/m = 2 to study its influence on the transition; ECH power modulation is used to look at transport properties. The improvement in the electron heat confinement shows no obvious dependence on the magnetic shear. Transitions triggered by the rational surface n = 4/m = 2 show, in addition, an increase in the ion temperature synchronized with the increase in the electron temperature. Ion temperature changes had not been previously observed either in TJ-II or in any other helical device. SXR measurements demonstrate that, under certain circumstances, the rational surface positioned inside the plasma core region precedes and provides a trigger for the transition

  3. The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars

    Science.gov (United States)

    Kalirai, Jason S.; Marigo, Paola; Tremblay, Pier-Emmanuel

    2014-02-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ⊙. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ⊙. Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ⊙. At larger masses, the core-mass growth decreases steadily to ~10% at M initial = 3.4 M ⊙, after which there is a small hint of a upturn out to M initial = 3.8 M ⊙. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ~ 3 Myr and E = 1.2 × 1010 L ⊙ yr for M initial ~ 2 M ⊙ (t ~ 2 Myr

  4. Pre-cometary ice composition from hot core chemistry.

    Science.gov (United States)

    Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe

    2005-10-01

    Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.

  5. Upper limits on gravitational-wave bursts radiated from stellar-core collapses in our galaxy

    International Nuclear Information System (INIS)

    Ando, Masaki; Akutsu, Tomomi; Akutsu, Tomotada

    2005-01-01

    We present the results of observations with the TAMA300 gravitational-wave detector, targeting burst signals from stellar-core collapse events. We used an excess-power filter to extract gravitational-wave candidates, and developed two methods to reduce fake events caused by non-stationary noises of the detector. These analysis methods were applied to real data from the TAMA300 interferometric gravitational wave detector. We compared the data-processed results with those of a Monte Carlo simulation with an assumed galactic-event distribution model and with burst waveforms expected from numerical simulations of stellar-core collapses, in order to interpret the event candidates from an astronomical viewpoint. We set an upper limit of 5.0 x 10 3 events s -1 on the burst gravitational-wave event rate in our galaxy with a confidence level of 90%

  6. 7 CFR 58.919 - Pre-heat, pasteurization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pre-heat, pasteurization. 58.919 Section 58.919... Procedures § 58.919 Pre-heat, pasteurization. When pasteurization is intended or required by either the vat... requirements outlined in § 58.128. Pre-heat temperatures prior to ultra pasteurization will be those that have...

  7. New Evidence that Magnetoconvection Drives Solar–Stellar Coronal Heating

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy R. [NASA Marshall Space Flight Center, Mail Code ST 13, Huntsville, AL 35812 (United States); Thalmann, Julia K., E-mail: sanjivtiwari80@gmail.com [Institute of Physics/IGAM, University of Graz, Universittsplatz 5/II, A-8010 Graz (Austria)

    2017-07-10

    How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. Coronal heating generally increases with increasing magnetic field strength. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot’s penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the loop’s body.

  8. Pre-heating mitigates composite degradation.

    Science.gov (United States)

    Silva, Jessika Calixto da; Rogério Vieira, Reges; Rege, Inara Carneiro Costa; Cruz, Carlos Alberto dos Santos; Vaz, Luís Geraldo; Estrela, Carlos; Castro, Fabrício Luscino Alves de

    2015-01-01

    Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm) and the composites Durafill VS (Heraeus Kulzer), Z-250 (3M/ESPE), and Z-350 (3M/ESPE), cured at 25°C (no pre-heating) or 60°C (pre-heating). Specimens were stored sequentially in the following solutions: 1) water for 7 days (60°C), plus 0.1 N sodium hydroxide (NaOH) for 14 days (60°C); 2) 50% silver nitrate (AgNO3) for 10 days (60°C). Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey's tests (α=5%). Results Radiopacity levels were as follows: Durafill VSZ-350>Z-250 (pheated specimens presented higher radiopacity values than non-pre-heated specimens (pheated specimens (pheating at 60°C mitigated the degradation of composites based on analysis of radiopacity and silver penetration depth.

  9. High frequency way of helium ash removal from stellarator-reactor

    International Nuclear Information System (INIS)

    Grekov, D.L.

    2005-01-01

    The paper deals with the problem of helium ash removal from stellarator-reactor. The lower hybrid heating of ash ions is proposed to solve this problem. The theory of ion stochastic heating, developed earlier by Karney, is generalized on the case of heating in stellarators. The features of the lower hybrid waves propagation and the ions motion in the stellarator confining field are taken into account. With proper choice of wave parameters (such as frequency, antenna position and initial spectrum of longitudinal refractive index) the slow mode of LH waves penetrates from the launching system to plasma core (and back) without conversion to kinetic plasma mode or to fast mode. With all these going on, the LH wave is absorbed by alpha particles only. The electron Landau damping is negligibly small, and there is no bulk ions stochastic heating. The motion of high energy (>100 keV) ions in the LHD heliotron with inwardly shifted magnetic axis, as an example of stellarator type device, is calculated numerically using the single particle simulation code which couples modified Karney's ion stochastic heating theory. The effect of collisions was taken into account through the Monte Carlo equivalent of the Lorentz collision operator. It is shown, that due to interaction with lower hybrid wave, initially well-confined alpha particles are expelled from the plasma during the time period less then collision time. At the same time, the low hybrid heating does not remove the ions with energy higher than 500 keV. Therefore, it is possible to use this method of RF heating for helium ash removal in stellarator-reactor. The required LH power is estimated to be of the order of 10 MW. (author)

  10. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel; Marigo, Paola

    2014-01-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ☉ . We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ☉ . Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ☉ . At larger masses, the core-mass growth decreases steadily to ∼10% at M initial = 3.4 M ☉ , after which there is a small hint of a upturn out to M initial = 3.8 M ☉ . These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ∼ 3 Myr and E = 1.2 × 10 10 L ☉ yr for M initial ∼ 2 M

  11. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marigo, Paola, E-mail: jkalirai@stsci.edu, E-mail: paola.marigo@unipd.it, E-mail: ptremblay@lsw.uni-heidelberg.de [Department of Physics and Astronomy, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy)

    2014-02-10

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M {sub initial} = 2.8-3.8 M {sub ☉}. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M {sub initial} = 1.6 and 2.0 M {sub ☉}. Over this range of initial masses, stellar evolutionary models for metallicity Z {sub initial} = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M {sub initial} = 1.6 to 2.0 M {sub ☉}. At larger masses, the core-mass growth decreases steadily to ∼10% at M {sub initial} = 3.4 M {sub ☉}, after which there is a small hint of a upturn out to M {sub initial} = 3.8 M {sub ☉}. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t

  12. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    International Nuclear Information System (INIS)

    Peters, M.

    1996-01-01

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity χ to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.)

  13. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M

    1996-01-16

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity {chi} to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.).

  14. Transient particle transport studies at the W7-AS stellarator

    International Nuclear Information System (INIS)

    Koponen, J.

    2000-01-01

    One of the crucial problems in fusion research is the understanding of the transport of particles and heat in plasmas relevant for energy production. Extensive experimental transport studies have unraveled many details of heat transport in tokamaks and stellarators. However, due to larger experimental difficulties, the properties of particle transport have remained much less known. In particular, very few particle transport studies have been carried out in stellarators. This thesis summarises the transient particle transport experiments carried out at the Wendelstein 7-Advanced Stellarator (W7-AS). The main diagnostics tool was a 10-channel microwave interferometer. A technique for reconstructing the electron density profiles from the multichannel interferometer data was developed and implemented. The interferometer and the reconstruction software provide high quality electron density measurements with high temporal and sufficient spatial resolution. The density reconstruction is based on regularization methods studied during the development work. An extensive program of transient particle transport studies was carried out with the gas modulation method. The experiments resulted in a scaling expression for the diffusion coefficient. Transient inward convection was found in the edge plasma. The role of convection is minor in the core plasma, except at higher heating power, when an outward directed convective flux is observed. Radially peaked density profiles were found in discharges free of significant central density sources. Such density profiles are usually observed in tokamaks, but never before in W7-AS. Existence of an inward pinch is confirmed with two independent transient transport analysis methods. The density peaking is possible if the plasma is heated with extreme off-axis Electron Cyclotron Heating (ECH), when the temperature gradient vanishes in the core plasma, and if the gas puffing level is relatively low. The transport of plasma particles and heat

  15. ELECTRON-CAPTURE AND β-DECAY RATES FOR sd-SHELL NUCLEI IN STELLAR ENVIRONMENTS RELEVANT TO HIGH-DENSITY O–NE–MG CORES

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshio [Department of Physics and Graduate School of Integrated Basic Sciences, College of Humanities and Sciences, Nihon University Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan); Toki, Hiroshi [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047 (Japan); Nomoto, Ken’ichi, E-mail: suzuki@phys.chs.nihon-u.ac.jp [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan)

    2016-02-01

    Electron-capture and β-decay rates for nuclear pairs in the sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O–Ne–Mg cores of stars with initial masses of 8–10 M{sub ⊙}. Electron capture induces a rapid contraction of the electron-degenerate O–Ne–Mg core. The outcome of rapid contraction depends on the evolutionary changes in the central density and temperature, which are determined by the competing processes of contraction, cooling, and heating. The fate of the stars is determined by these competitions, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. Since the competing processes are induced by electron capture and β-decay, the accurate weak rates are crucially important. The rates are obtained for pairs with A = 20, 23, 24, 25, and 27 by shell-model calculations in the sd-shell with the USDB Hamiltonian. Effects of Coulomb corrections on the rates are evaluated. The rates for pairs with A = 23 and 25 are important for nuclear Urca processes that determine the cooling rate of the O–Ne–Mg core, while those for pairs with A = 20 and 24 are important for the core contraction and heat generation rates in the core. We provide these nuclear rates at stellar environments in tables with fine enough meshes at various densities and temperatures for studies of astrophysical processes sensitive to the rates. In particular, the accurate rate tables are crucially important for the final fates of not only O–Ne–Mg cores but also a wider range of stars, such as C–O cores of lower-mass stars.

  16. ELECTRON-CAPTURE AND β-DECAY RATES FOR sd-SHELL NUCLEI IN STELLAR ENVIRONMENTS RELEVANT TO HIGH-DENSITY O–NE–MG CORES

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Toki, Hiroshi; Nomoto, Ken’ichi

    2016-01-01

    Electron-capture and β-decay rates for nuclear pairs in the sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O–Ne–Mg cores of stars with initial masses of 8–10 M ⊙ . Electron capture induces a rapid contraction of the electron-degenerate O–Ne–Mg core. The outcome of rapid contraction depends on the evolutionary changes in the central density and temperature, which are determined by the competing processes of contraction, cooling, and heating. The fate of the stars is determined by these competitions, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. Since the competing processes are induced by electron capture and β-decay, the accurate weak rates are crucially important. The rates are obtained for pairs with A = 20, 23, 24, 25, and 27 by shell-model calculations in the sd-shell with the USDB Hamiltonian. Effects of Coulomb corrections on the rates are evaluated. The rates for pairs with A = 23 and 25 are important for nuclear Urca processes that determine the cooling rate of the O–Ne–Mg core, while those for pairs with A = 20 and 24 are important for the core contraction and heat generation rates in the core. We provide these nuclear rates at stellar environments in tables with fine enough meshes at various densities and temperatures for studies of astrophysical processes sensitive to the rates. In particular, the accurate rate tables are crucially important for the final fates of not only O–Ne–Mg cores but also a wider range of stars, such as C–O cores of lower-mass stars

  17. Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity

    International Nuclear Information System (INIS)

    Shibata, Masaru; Sekiguchi, Yu-ichirou

    2004-01-01

    Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are solved in Cartesian coordinates and the axisymmetric condition is imposed around the y=0 plane, is adopted. The hydrodynamic equations are solved in cylindrical coordinates (on the y=0 plane in Cartesian coordinates) using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and Mueller. It is found that the evolution of the central density during the collapse, bounce, and formation of protoneutron stars agrees well with that in the work of Dimmelmeier, Font, and Mueller in which an approximate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good agreement with those by Dimmelmeier, Font, and Mueller. However, quantitatively, two waveforms do not agree well. The possible reasons for the disagreement are discussed

  18. The collapse of a molecular cloud core to stellar densities using radiation non-ideal magnetohydrodynamics

    Science.gov (United States)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-04-01

    We present results from radiation non-ideal magnetohydrodynamics (MHD) calculations that follow the collapse of rotating, magnetized, molecular cloud cores to stellar densities. These are the first such calculations to include all three non-ideal effects: ambipolar diffusion, Ohmic resistivity, and the Hall effect. We employ an ionization model in which cosmic ray ionization dominates at low temperatures and thermal ionization takes over at high temperatures. We explore the effects of varying the cosmic ray ionization rate from ζcr = 10-10 to 10-16 s-1. Models with ionization rates ≳10-12 s-1 produce results that are indistinguishable from ideal MHD. Decreasing the cosmic ray ionization rate extends the lifetime of the first hydrostatic core up to a factor of 2, but the lifetimes are still substantially shorter than those obtained without magnetic fields. Outflows from the first hydrostatic core phase are launched in all models, but the outflows become broader and slower as the ionization rate is reduced. The outflow morphology following stellar core formation is complex and strongly dependent on the cosmic ray ionization rate. Calculations with high ionization rates quickly produce a fast (≈14 km s-1) bipolar outflow that is distinct from the first core outflow, but with the lowest ionization rate, a slower (≈3-4 km s-1) conical outflow develops gradually and seamlessly merges into the first core outflow.

  19. Implications of Stellar Feedback for Dynamical Modeling of the Milky Way and Dwarf Galaxies

    Science.gov (United States)

    Wetzel, Andrew

    2018-04-01

    I will present recent results on dynamical modeling of stellar populations from the FIRE cosmological zoom-in baryonic simulations of Milky Way-like and dwarf galaxies. First, I will discuss the dynamical formation of the Milky Way, including the origin of thin+thick stellar disk morphology. I also will discuss the curious origin of metal-rich stars on halo-like orbits near the Sun, as recently measured by Gaia, with new insights from FIRE simulations on stellar radial migration/heating. Next, I will discuss role of stellar feedback in generating non-equilibrium fluctuations of the gravitational potential in low-mass 'dwarf' galaxies, which can explain the origin of cores in their dark-matter density profiles. In particular, we predict significant observable effects on stellar dynamics, including radial migration, size fluctuations, and population gradients, which can provide observational tests of feedback-driven core formation. Finally, this scenario can explain the formation of newly discovered 'ultra-diffuse' galaxies.

  20. Pre-main sequence sun: a dynamic approach

    International Nuclear Information System (INIS)

    Newman, M.J.; Winkler, K.H.A.

    1979-01-01

    The classical pre-main sequence evolutionary behavior found by Hayashi and his coworkers for the Sun depends crucially on the choice of initial conditions. The Hayashi picture results from beginning the calculation with an already centrally condensed, highly Jeans unstable object not terribly far removed from the stellar state initially. The present calculation follows the work of Larson in investigating the hydrodynamic collapse and self-gravitational accretion of an initially uniform, just Jeans unstable interstellar gas-dust cloud. The resulting picture for the early history of the Sun is quite different from that found by Hayashi. A rather small (R approx. = 2 R/sub sun/), low-luminosity (L greater than or equal to L/sub sun/) protostellar core develops. A fully convective stellar core, characteristic of Hayashi's work, is not found during the accretion process, and can only develop, if at all, in the subsequent pre-main sequence Kelvin-Helmholtz contraction of the core. 3 figures, 1 table

  1. Relativistic MHD simulations of stellar core collapse and magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A; Gabler, Michael [Departamento de AstronomIa y Astrofisica, Universitat de Valencia, 46100 Burjassot (Valencia) (Spain); Cerda-Duran, Pablo; Mueller, Ewald [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Stergioulas, Nikolaos, E-mail: j.antonio.font@uv.es [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2011-02-01

    We present results from simulations of magneto-rotational stellar core collapse along with Alfven oscillations in magnetars. These simulations are performed with the CoCoA/CoCoNuT code, which is able to handle ideal MHD flows in dynamical spacetimes in general relativity. Our core collapse simulations highlight the importance of genuine magnetic effects, like the magneto-rotational instability, for the dynamics of the flow. For the modelling of magnetars we use the anelastic approximation to general relativistic MHD, which allows for an effective suppression of fluid modes and an accurate description of Alfven waves. We further compute Alfven oscillation frequencies along individual magnetic field lines with a semi-analytic approach. Our work confirms previous results based on perturbative approaches regarding the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency. Additional material is presented in the accompanying contribution by Gabler et al (2010b) in these proceedings.

  2. Dependence of core heating properties on heating pulse duration and intensity

    Science.gov (United States)

    Johzaki, Tomoyuki; Nagatomo, Hideo; Sunahara, Atsushi; Cai, Hongbo; Sakagami, Hitoshi; Mima, Kunioki

    2009-11-01

    In the cone-guiding fast ignition, an imploded core is heated by the energy transport of fast electrons generated by the ultra-intense short-pulse laser at the cone inner surface. The fast core heating (˜800eV) has been demonstrated at integrated experiments with GEKKO-XII+ PW laser systems. As the next step, experiments using more powerful heating laser, FIREX, have been started at ILE, Osaka university. In FIREX-I (phase-I of FIREX), our goal is the demonstration of efficient core heating (Ti ˜ 5keV) using a newly developed 10kJ LFEX laser. In the first integrated experiments, the LFEX laser is operated with low energy mode (˜0.5kJ/4ps) to validate the previous GEKKO+PW experiments. Between the two experiments, though the laser energy is similar (˜0.5kJ), the duration is different; ˜0.5ps in the PW laser and ˜ 4ps in the LFEX laser. In this paper, we evaluate the dependence of core heating properties on the heating pulse duration on the basis of integrated simulations with FI^3 (Fast Ignition Integrated Interconnecting) code system.

  3. ON THE SIMULTANEOUS EVOLUTION OF MASSIVE PROTOSTARS AND THEIR HOST CORES

    International Nuclear Information System (INIS)

    Kuiper, R.; Yorke, H. W.

    2013-01-01

    Studies of the evolution of massive protostars and the evolution of their host molecular cloud cores are commonly treated as separate problems. However, interdependencies between the two can be significant. Here, we study the simultaneous evolution of massive protostars and their host molecular cores using a multi-dimensional radiation hydrodynamics code that incorporates the effects of the thermal pressure and radiative acceleration feedback of the centrally forming protostar. The evolution of the massive protostar is computed simultaneously using the stellar evolution code STELLAR, modified to include the effects of variable accretion. The interdependencies are studied in three different collapse scenarios. For comparison, stellar evolutionary tracks at constant accretion rates and the evolution of the host cores using pre-computed stellar evolutionary tracks are computed. The resulting interdependencies of the protostellar evolution and the evolution of the environment are extremely diverse and depend on the order of events, in particular the time of circumstellar accretion disk formation with respect to the onset of the bloating phase of the star. Feedback mechanisms affect the instantaneous accretion rate and the protostar's radius, temperature, and luminosity on timescales t ≤ 5 kyr, corresponding to the accretion timescale and Kelvin-Helmholtz contraction timescale, respectively. Nevertheless, it is possible to approximate the overall protostellar evolution in many cases by pre-computed stellar evolutionary tracks assuming appropriate constant average accretion rates

  4. AGN Heating in Simulated Cool-core Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Ruszkowski, Mateusz [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bryan, Greg L., E-mail: yuanlium@umich.edu [Department of Astronomy, Columbia University, Pupin Physics Laboratories, New York, NY 10027 (United States)

    2017-10-01

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss. However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.

  5. Analysis of core and core barrel heat-up under conditions simulating severe reactor accidents

    International Nuclear Information System (INIS)

    Chellaiah, S.; Viskanta, R.; Ranganathan, P.; Anand, N.K.

    1987-01-01

    This paper reports on the development of a model for estimating the temperature distributions in the reactor core, core barrel, thermal shield and reactor pressure vessel of a PWR during an undercooling transient. A number of numerical calculations simulating the core uncovering of the TMI-2 reactor and the subsequent heat-up of the core have been performed. The results of the calculations show that the exothermic heat release due to Zircaloy oxidation contributes to the sharp heat-up of the core. However, the core barrel temperature rise which is driven by the temperature increase of the edge of the core (e.g., the core baffle) is very modest. The maximum temperature of the core barrel never exceeded 610 K (at a system pressure of 68 bar) after a 75 minute simulation following the start of core uncovering

  6. Targeting Transfer in a STELLAR PBL Course for Pre-Service Teachers

    OpenAIRE

    Hmelo-Silver, Cindy E.; Derry, Sharon J.; Bitterman, Alan; Hatrak, Natalie

    2009-01-01

    Helping students in the professions apply conceptual ideas to the problems of practice is a key goal of problem-based learning (PBL). Because PBL is organized around small, collaborative groups, scaling up PBL to large, heterogeneous classes poses significant challenges for implementation. This study presents a hybrid model that mixes online and face-to-face PBL. The STELLAR system was developed to support online and hybrid PBL courses for pre-service teachers. It allows PBL to be implemented...

  7. Dynamical effects of successive mergers on the evolution of spherical stellar systems

    International Nuclear Information System (INIS)

    Lee, H.M.

    1987-01-01

    Numerical investigations are carried out to study the dynamical effects of high-mass stars formed out of successive mergers among tidally captured binaries on the evolution of spherical stellar systems. It is assumed that all tidally captured systems become mergers in order to maximize these effects. Stellar systems with N greater than about 10 to the 7th are susceptible to merger instability which may lead to the formation of a central black hole. It is shown that globular clusters are likely to achieve postcollapse expansion due to three-body binary heating and stellar evolution, while galactic nuclei can easily be overcome by the merger instability in the core. 25 references

  8. PLASMA SLOSHING IN PULSE-HEATED SOLAR AND STELLAR CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Reale, F., E-mail: fabio.reale@unipa.it [Dipartimento di Fisica and Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (∼20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  9. The Einstein/CFA stellar survey - Overview of the data and interpretation of results

    Science.gov (United States)

    Vaiana, G. S.

    1981-01-01

    Results are presented from an extensive survey of stellar X-ray emission, using the Einstein Observatory. Over 140 stars have been detected to date, throughout the H-R diagram, thus showing that soft X-ray emission is the norm rather than the exception for stars in general. This finding is strongly at odds with pre-Einstein expectations based on standard acoustic theories of coronal heating. Typical examples of stellar X-ray detections and an overview of the survey data are presented. In combination with recent results from solar X-ray observations, the new Einstein data argue for the general applicability of magnetic field-related coronal heating mechanisms.

  10. Method for pre-heating lmfbr type reactors

    International Nuclear Information System (INIS)

    Yokozawa, Atsushi; Kataoka, Hajime.

    1978-01-01

    Purpose: To enable pre-heating for the inside of the reactor container and the inside of the coolant recycling system with no additional facilities. Method: The coolant recycling system is composed of a heat exchanger, a mechanical pump, a check valve, a flow meter or the like and it is connected in series by way of a pipe line to a reactor container. The mechanical pump is used as a gas recycling device upon pre-heating and it is designed so that a blower such as a fan can be replaced for the impeller of the pump. The inside of the reactor container and the inside of the coolant recycling system is at first filled with an inert gas such as for use with cover gas. Then, nuclear fuels are loaded to attain criticality. Simultaneously, the blower is started and the control rods are operated while cooling the nuclear fuel with the inert gas thus to obtain heat required for pre-heating the pipe line or the like from the nuclear fuels. After the completion of the pre-heating, the liquid metal is charged. (Ikeda, J.)

  11. Intracluster age gradients in numerous young stellar clusters

    Science.gov (United States)

    Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Bate, M. R.; Broos, P. S.; Garmire, G. P.

    2018-05-01

    The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyse the spatial distribution of ages within 19 young (median t ≲ 3 Myr on the Siess et al. time-scale), morphologically simple, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object (YSO) samples from the Massive Young Star-Forming Complex Study in Infrared and X-ray and Star Formation in Nearby Clouds surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80 per cent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time-scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 to 1.5 Myr pc-1. The empirical finding reported in the present study - late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions - has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vázquez-Semadeni et al.

  12. Some factors affecting radiative heat transport in PWR cores

    International Nuclear Information System (INIS)

    Hall, A.N.

    1989-04-01

    This report discusses radiative heat transport in Pressurized Water Reactor cores, using simple models to illustrate basic features of the transport process. Heat transport by conduction and convection is ignored in order to focus attention on the restrictions on radiative heat transport imposed by the geometry of the heat emitting and absorbing structures. The importance of the spacing of the emitting and absorbing structures is emphasised. Steady state temperature distributions are found for models of cores which are uniformly heated by fission product decay. In all of the models, a steady state temperature distribution can only be obtained if the central core temperature is in excess of the melting point of UO 2 . It has recently been reported that the MIMAS computer code, which takes into account radiative heat transport, has been used to model the heat-up of the Three Mile Island-2 reactor core, and the computations indicate that the core could not have reached the melting point of UO 2 at any time or any place. We discuss this result in the light of the calculations presented in this paper. It appears that the predicted stabilisation of the core temperatures at ∼ 2200 0 C may be a consequence of the artificially large spacing between the radial rings employed in the MIMAS code, rather than a result of physical significance. (author)

  13. STELLAR AGES AND CONVECTIVE CORES IN FIELD MAIN-SEQUENCE STARS: FIRST ASTEROSEISMIC APPLICATION TO TWO KEPLER TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Silva Aguirre, V.; Christensen-Dalsgaard, J.; Chaplin, W. J. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Basu, S.; Deheuvels, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Brandao, I. M.; Cunha, M. S.; Sousa, S. G. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Dogan, G. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Metcalfe, T. S. [Space Science Institute, Boulder, CO 80301 (United States); Serenelli, A. M.; Garcia, R. A. [Kavli Institute for Theoretical Physics, Santa Barbara, CA 93106 (United States); Ballot, J. [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue Edouard Belin, F-31400 Toulouse (France); Weiss, A. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching bei Muenchen (Germany); Appourchaux, T. [Institut d' Astrophysique Spatiale, Universite Paris Sud-CNRS (UMR8617) Batiment 121, F-91405 Orsay Cedex (France); Casagrande, L. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Cassisi, S. [INAF-Astronomical Observatory of Teramo, Via M. Maggini sn, I-64100 Teramo (Italy); Creevey, O. L. [Laboratoire Lagrange, Universite de Nice Sophia-Antipolis, CNRS, I-06300 Nice, France. (France); Lebreton, Y. [Observatoire de Paris, GEPI, CNRS UMR 8111, F-92195 Meudon (France); Noels, A. [Institute of Astrophysics and Geophysics, University of Liege, B-4000 Liege (Belgium); and others

    2013-06-01

    Using asteroseismic data and stellar evolution models we obtain the first detection of a convective core in a Kepler field main-sequence star, putting a stringent constraint on the total size of the mixed zone and showing that extra mixing beyond the formal convective boundary exists. In a slightly less massive target the presence of a convective core cannot be conclusively discarded, and thus its remaining main-sequence lifetime is uncertain. Our results reveal that best-fit models found solely by matching individual frequencies of oscillations corrected for surface effects do not always properly reproduce frequency combinations. Moreover, slightly different criteria to define what the best-fit model is can lead to solutions with similar global properties but very different interior structures. We argue that the use of frequency ratios is a more reliable way to obtain accurate stellar parameters, and show that our analysis in field main-sequence stars can yield an overall precision of 1.5%, 4%, and 10% in radius, mass, and age, respectively. We compare our results with those obtained from global oscillation properties, and discuss the possible sources of uncertainties in asteroseismic stellar modeling where further studies are still needed.

  14. Stable numerical method in computation of stellar evolution

    International Nuclear Information System (INIS)

    Sugimoto, Daiichiro; Eriguchi, Yoshiharu; Nomoto, Ken-ichi.

    1982-01-01

    To compute the stellar structure and evolution in different stages, such as (1) red-giant stars in which the density and density gradient change over quite wide ranges, (2) rapid evolution with neutrino loss or unstable nuclear flashes, (3) hydrodynamical stages of star formation or supernova explosion, (4) transition phases from quasi-static to dynamical evolutions, (5) mass-accreting or losing stars in binary-star systems, and (6) evolution of stellar core whose mass is increasing by shell burning or decreasing by penetration of convective envelope into the core, we face ''multi-timescale problems'' which can neither be treated by simple-minded explicit scheme nor implicit one. This problem has been resolved by three prescriptions; one by introducing the hybrid scheme suitable for the multi-timescale problems of quasi-static evolution with heat transport, another by introducing also the hybrid scheme suitable for the multi-timescale problems of hydrodynamic evolution, and the other by introducing the Eulerian or, in other words, the mass fraction coordinate for evolution with changing mass. When all of them are combined in a single computer code, we can compute numerically stably any phase of stellar evolution including transition phases, as far as the star is spherically symmetric. (author)

  15. Empirical tests of pre-main-sequence stellar evolution models with eclipsing binaries

    Science.gov (United States)

    Stassun, Keivan G.; Feiden, Gregory A.; Torres, Guillermo

    2014-06-01

    We examine the performance of standard pre-main-sequence (PMS) stellar evolution models against the accurately measured properties of a benchmark sample of 26 PMS stars in 13 eclipsing binary (EB) systems having masses 0.04-4.0 M⊙ and nominal ages ≈1-20 Myr. We provide a definitive compilation of all fundamental properties for the EBs, with a careful and consistent reassessment of observational uncertainties. We also provide a definitive compilation of the various PMS model sets, including physical ingredients and limits of applicability. No set of model isochrones is able to successfully reproduce all of the measured properties of all of the EBs. In the H-R diagram, the masses inferred for the individual stars by the models are accurate to better than 10% at ≳1 M⊙, but below 1 M⊙ they are discrepant by 50-100%. Adjusting the observed radii and temperatures using empirical relations for the effects of magnetic activity helps to resolve the discrepancies in a few cases, but fails as a general solution. We find evidence that the failure of the models to match the data is linked to the triples in the EB sample; at least half of the EBs possess tertiary companions. Excluding the triples, the models reproduce the stellar masses to better than ∼10% in the H-R diagram, down to 0.5 M⊙, below which the current sample is fully contaminated by tertiaries. We consider several mechanisms by which a tertiary might cause changes in the EB properties and thus corrupt the agreement with stellar model predictions. We show that the energies of the tertiary orbits are comparable to that needed to potentially explain the scatter in the EB properties through injection of heat, perhaps involving tidal interaction. It seems from the evidence at hand that this mechanism, however it operates in detail, has more influence on the surface properties of the stars than on their internal structure, as the lithium abundances are broadly in good agreement with model predictions. The

  16. RETENTION OF STELLAR-MASS BLACK HOLES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Morscher, Meagan; Umbreit, Stefan; Farr, Will M.; Rasio, Frederic A.

    2013-01-01

    Globular clusters should be born with significant numbers of stellar-mass black holes (BHs). It has been thought for two decades that very few of these BHs could be retained through the cluster lifetime. With masses ∼10 M ☉ , BHs are ∼20 times more massive than an average cluster star. They segregate into the cluster core, where they may eventually decouple from the remainder of the cluster. The small-N core then evaporates on a short timescale. This is the so-called Spitzer instability. Here we present the results of a full dynamical simulation of a globular cluster containing many stellar-mass BHs with a realistic mass spectrum. Our Monte Carlo simulation code includes detailed treatments of all relevant stellar evolution and dynamical processes. Our main finding is that old globular clusters could still contain many BHs at present. In our simulation, we find no evidence for the Spitzer instability. Instead, most of the BHs remain well mixed with the rest of the cluster, with only the innermost few tens of BHs segregating significantly. Over the 12 Gyr evolution, fewer than half of the BHs are dynamically ejected through strong binary interactions in the cluster core. The presence of BHs leads to long-term heating of the cluster, ultimately producing a core radius on the high end of the distribution for Milky Way globular clusters (and those of other galaxies). A crude extrapolation from our model suggests that the BH-BH merger rate from globular clusters could be comparable to the rate in the field.

  17. Gravitational wave extraction in simulations of rotating stellar core collapse

    International Nuclear Information System (INIS)

    Reisswig, C.; Ott, C. D.; Sperhake, U.; Schnetter, E.

    2011-01-01

    We perform simulations of general relativistic rotating stellar core collapse and compute the gravitational waves (GWs) emitted in the core-bounce phase of three representative models via multiple techniques. The simplest technique, the quadrupole formula (QF), estimates the GW content in the spacetime from the mass-quadrupole tensor only. It is strictly valid only in the weak-field and slow-motion approximation. For the first time, we apply GW extraction methods in core collapse that are fully curvature based and valid for strongly radiating and highly relativistic sources. These techniques are not restricted to weak-field and slow-motion assumptions. We employ three extraction methods computing (i) the Newman-Penrose (NP) scalar Ψ 4 , (ii) Regge-Wheeler-Zerilli-Moncrief master functions, and (iii) Cauchy-characteristic extraction (CCE) allowing for the extraction of GWs at future null infinity, where the spacetime is asymptotically flat and the GW content is unambiguously defined. The latter technique is the only one not suffering from residual gauge and finite-radius effects. All curvature-based methods suffer from strong nonlinear drifts. We employ the fixed-frequency integration technique as a high-pass waveform filter. Using the CCE results as a benchmark, we find that finite-radius NP extraction yields results that agree nearly perfectly in phase, but differ in amplitude by ∼1%-7% at core bounce, depending on the model. Regge-Wheeler-Zerilli-Moncrief waveforms, while, in general, agreeing in phase, contain spurious high-frequency noise of comparable amplitudes to those of the relatively weak GWs emitted in core collapse. We also find remarkably good agreement of the waveforms obtained from the QF with those obtained from CCE. The results from QF agree very well in phase and systematically underpredict peak amplitudes by ∼5%-11%, which is comparable to the NP results and is certainly within the uncertainties associated with core collapse physics.

  18. Stellar Physics 2: Stellar Evolution and Stability

    CERN Document Server

    Bisnovatyi-Kogan, Gennady S

    2011-01-01

    "Stellar Physics" is a an outstanding book in the growing body of literature on star formation and evolution. Not only does the author, a leading expert in the field, very thoroughly present the current state of knowledge on stellar physics, but he handles with equal care the many problems that this field of research still faces. A bibliography with well over 1000 entries makes this book an unparalleled reference source. "Stellar Evolution and Stability" is the second of two volumes and can be read, as can the first volume "Fundamental Concepts and Stellar Equilibrium," as a largely independent work. It traces in great detail the evolution of protostars towards the main sequence and beyond this to the last stage of stellar evolution, with the corresponding vast range from white dwarfs to supernovae explosions, gamma-ray bursts and black hole formation. The book concludes with special chapters on the dynamical, thermal and pulsing stability of stars. This second edition is carefully updated in the areas of pre...

  19. TEM heat transport and fluctuations in the HSX stellarator: experiments and comparison with gyrokinetic simulation

    Science.gov (United States)

    Smoniewski, J.; Faber, B. J.; Sánchez, E.; Calvo, I.; Pueschel, M. J.; Likin, K. M.; Deng, C. B.; Talmadge, J. N.

    2017-10-01

    The Helically Symmetric eXperiment (HSX) has demonstrated reduced neoclassical transport in the plasma core with quasi-symmetry [Lore Thesis 2010], while outside this region the electron thermal diffusivity is well above the neoclassical level, likely due to the Trapped Electron Mode (TEM) [Weir PoP 2015, Faber PoP 2015]. We compare gyrokinetic simulations of the TEM to experimental heat flux and density fluctuation measurements for two configurations: Quasi-Helical Symmetry (QHS) and broken symmetry (Mirror). Both experiment and simulation show that the heat flux for Mirror is larger than for QHS by about a factor of two. Initial interferometer measurements provide evidence that density-gradient-driven TEMs are driving turbulence. Calculations of the collisionless damping of zonal flows provide another perspective into the difference between geometries. Similar to other stellarators [Monreal PPCF 2016], the zonal flow residual goes to zero at long wavelengths in both configurations. Additionally, the very short time decay of the zonal flow due to neoclassical polarization is constant between configurations. However, the collisionless damping time is longer and the zonal flow oscillation frequency is smaller in QHS than Mirror, consistent with reduced radial particle drifts. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  20. An analytic distribution function for a mass-less cored stellar system in a cuspy dark-matter halo

    NARCIS (Netherlands)

    Breddels, Maarten A.; Helmi, Amina

    2013-01-01

    We demonstrate the existence of a distribution function that can be used to represent spherical mass-less cored stellar systems having constant mildly tangential velocity anisotropy embedded in cuspy dark-matter halos. In particular, we derived analytically the functional form of the distribution

  1. Laser Heating of the Core-Shell Nanowires

    Science.gov (United States)

    Astefanoaei, Iordana; Dumitru, Ioan; Stancu, Alexandru

    2016-12-01

    The induced thermal stress in a heating process is an important parameter to be known and controlled in the magnetization process of core-shell nanowires. This paper analyses the stress produced by a laser heating source placed at one end of a core-shell type structure. The thermal field was computed with the non-Fourier heat transport equation using a finite element method (FEM) implemented in Comsol Multiphysics. The internal stresses are essentially due to thermal gradients and different expansion characteristics of core and shell materials. The stress values were computed using the thermo elastic formalism and are depending on the laser beam parameters (spot size, power etc.) and system characteristics (dimensions, thermal characteristics). Stresses in the GPa range were estimated and consequently we find that the magnetic state of the system can be influenced significantly. A shell material as the glass which is a good thermal insulator induces in the magnetic core, the smaller stresses and consequently the smaller magnetoelastic energy. These results lead to a better understanding of the switching process in the magnetic materials.

  2. DENSE MOLECULAR CORES BEING EXTERNALLY HEATED

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwanjeong; Lee, Chang Won; Kim, Mi-Ryang [Radio Astronomy division, Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of); Gopinathan, Maheswar [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263129 (India); Jeong, Woong-Seob, E-mail: archer81@kasi.re.kr [Department of Astronomy and Space Science, University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon, 34113 (Korea, Republic of)

    2016-06-20

    We present results of our study of eight dense cores, previously classified as starless, using infrared (3–160 μ m) imaging observations with the AKARI telescope and molecular line (HCN and N{sub 2}H{sup +}) mapping observations with the KVN telescope. Combining our results with the archival IR to millimeter continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosities of ∼0.3–4.4 L {sub ⊙}. The other six cores are found to remain starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3–6 K toward the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an overdominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory motion, probably due to the external heating. Most of the starless cores show a coreshine effect due to the scattering of light by the micron-sized dust grains. This may imply that the age of the cores is of the order of ∼10{sup 5} years, which is consistent with the timescale required for the cores to evolve into an oscillatory stage due to external perturbation. Our observational results support the idea that the external feedback from nearby stars and/or interstellar radiation fields may play an important role in the dynamical evolution of the cores.

  3. Analysis of pre-heated fuel combustion and heat-emission dynamics in a diesel engine

    Science.gov (United States)

    Plotnikov, S. A.; Kartashevich, A. N.; Buzikov, S. V.

    2018-01-01

    The article explores the feasibility of diesel fuel pre-heating. The research goal was to obtain and analyze the performance diagrams of a diesel engine fed with pre-heated fuel. The engine was tested in two modes: at rated RPMs and at maximum torque. To process the diagrams the authors used technique developed by the Central Diesel Research Institute (CDRI). The diesel engine’s heat emission curves were obtained. The authors concluded that fuel pre-heating shortened the initial phase of the combustion process and moderated the loads, thus making it possible to boost a diesel engine’s mean effective pressure.

  4. Evidence for fast-electron-driven Alfvenic modes in the HSX stellarator

    International Nuclear Information System (INIS)

    Brower, D.L.; Deng, C.; Spong, D.A.; Abdou, A.; Almagri, A.F.; Anderson, D.T.; Anderson, F.S.B.; Guttenfelder, W.; Likin, K.; Oh, S.; Sakaguchi, V.; Talmadge, J.N.; Zhai, K.

    2005-01-01

    The helically-symmetric experiment (HSX) stellarator device is the first of a new generation of stellarators that exploit the concept of quasi-symmetric magnetic fields. In HSX, the plasma is both produced and heated by use of electron cyclotron resonance heating (ECRH) at the 2nd harmonic X-mode resonance. This heating configuration generates a nonthermal energetic electron population. Herein, we report on the first experimental evidence for fast-electron-driven Global Alfven Eigenmodes (GAE). This mode has previously been observed in both tokamaks and stellarators but it was always driven by energetic ions, not electrons. Evidence for this instability is obtained from quasi-helically symmetric HSX plasmas. Potential consequences of these measurements are twofold; (1) fast electrons can drive the GAE instability, and (2) quasi-symmetry makes a difference by better confining the particles that drive the instability as compared to the conventional stellarator configuration. We report on several features of this fluctuation. It is a coherent mode that is experimentally observed in the plasma core and edge by external magnetic coils, interferometry, ECE and Langmuir probes diagnostics. Fluctuations are observed in the frequency range of 20-120 kHz and scale with ion mass density according to expectations for Alfvenic modes. The mode is observed to be global with odd poloidal mode number (inferred from interferometry, possibly m=1) and is present in quasi-helically symmetric HSX plasmas. When quasi-helical symmetry is broken, the mode is no longer observed. Theory predicts a GAE mode in the gap below the Alfven continua can be excited in the frequency range of the measured fluctuations. By employing a biased electrode inserted deep into the plasma, flows can be generated. Under these conditions, the Alfvenic mode amplitude can increase and the fluctuation is even observed in the conventional stellarator configuration. Shifts in the measured frequency can be used to

  5. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. ... In banana, pre-cooling treatment (8 ºC) and heat treatment followed by cooling reduced CAT activity in peel and pulp, whereas POX activity increased. Pre-cooling and heat treatments altered normal homeostasis of these fruits, ...

  6. Numerical Analysis of Heat Storage and Heat Conductivity in the Concrete Hollow Core Deck Element

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    extent these simplified models estimate the heat storage potential of precast hollow-core concrete decks correctly. This study investigates various approaches on how to model the heat transfer within the air void in the deck. Furthermore, it is analysed how different heat transfer models influence...... the overall heat transfer and heat storage in the hollow-core decks. The presented results allow comparison between detailed results from 2D-COMSOL simulations and simple 1D calculations from the whole building simulation tool such as BSim program and moreover, it is possible to validate the calculation...... method in BSim for the concrete deck element with air voids. Finally, this paper presents a comparison of the calculated heat conductivity of the hollow-core concrete deck and the measured heat conductivity for the same deck by using hot box apparatus....

  7. Thermohydraulic behaviour and heat transfer in the molten core

    International Nuclear Information System (INIS)

    Reineke, H.H.

    1977-01-01

    Increasing the application of nuclear reactors to produce electrical power extremely unprobable accidents should be investigated too. In the Federal Republic of Germany, a research program is performed for some years engaged in accidents at light water reactors in which the melting of the reactor core is presumed. A part of this program is to investigate the thermohydraulic and the heat transfer behavior in an accumulation of molten core material. The knowledge of these events is necessary to analyse the accident exactly. Further on the results of this work are of great importance to build a catcher for the molten core material. As a result of the decay heat the molten material is heated up and the density differences induce a free convection motion. In this work the thermohydraulic behavior and the distribution of the escaping heat fluxes for several accumulations of molten core material were determined. The numerical methods for solving the system of partial differential equation were used to develop computer codes, able to compute the average and local heat fluxes at the walls enclosing the molten core material and the inside increase of the temperature. The numerical computations were confirmed and verified by experimental investigations. In these investigations the molten core material was always assumed as a homogeneous fluid. In this case, the results could be reproduced by simple power laws

  8. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat.

    Science.gov (United States)

    Cotter, J D; Sleivert, G G; Roberts, W S; Febbraio, M A

    2001-04-01

    Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (Pcooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.

  9. Disk Heating, Galactoseismology, and the Formation of Stellar Halos

    Directory of Open Access Journals (Sweden)

    Kathryn V. Johnston

    2017-08-01

    Full Text Available Deep photometric surveys of the Milky Way have revealed diffuse structures encircling our Galaxy far beyond the “classical” limits of the stellar disk. This paper reviews results from our own and other observational programs, which together suggest that, despite their extreme positions, the stars in these structures were formed in our Galactic disk. Mounting evidence from recent observations and simulations implies kinematic connections between several of these distinct structures. This suggests the existence of collective disk oscillations that can plausibly be traced all the way to asymmetries seen in the stellar velocity distribution around the Sun. There are multiple interesting implications of these findings: they promise new perspectives on the process of disk heating; they provide direct evidence for a stellar halo formation mechanism in addition to the accretion and disruption of satellite galaxies; and, they motivate searches of current and near-future surveys to trace these oscillations across the Galaxy. Such maps could be used as dynamical diagnostics in the emerging field of “Galactoseismology”, which promises to model the history of interactions between the Milky Way and its entourage of satellites, as well examine the density of our dark matter halo. As sensitivity to very low surface brightness features around external galaxies increases, many more examples of such disk oscillations will likely be identified. Statistical samples of such features not only encode detailed information about interaction rates and mergers, but also about long sought-after dark matter halo densities and shapes. Models for the Milky Way’s own Galactoseismic history will therefore serve as a critical foundation for studying the weak dynamical interactions of galaxies across the universe.

  10. BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    O'Connor, Evan; Ott, Christian D.

    2011-01-01

    We present results of a systematic study of failing core-collapse supernovae and the formation of stellar-mass black holes (BHs). Using our open-source general-relativistic 1.5D code GR1D equipped with a three-species neutrino leakage/heating scheme and over 100 presupernova models, we study the effects of the choice of nuclear equation of state (EOS), zero-age main sequence (ZAMS) mass and metallicity, rotation, and mass-loss prescription on BH formation. We find that the outcome, for a given EOS, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing protoneutron star (PNS) structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer PNS core is responsible for raising the maximum PNS mass by up to 25% above the cold NS value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions, establishing, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also study the effect of progenitor rotation and find that the dimensionless spin of nascent BHs may be robustly limited below a* = Jc/GM 2 = 1 by the appearance of nonaxisymmetric rotational instabilities.

  11. The Dependence of Convective Core Overshooting on Stellar Mass: Additional Binary Systems and Improved Calibration

    Science.gov (United States)

    Claret, Antonio; Torres, Guillermo

    2018-06-01

    Many current stellar evolution models assume some dependence of the strength of convective core overshooting on mass for stars more massive than 1.1–1.2 M ⊙, but the adopted shapes for that relation have remained somewhat arbitrary for lack of strong observational constraints. In previous work, we compared stellar evolution models to well-measured eclipsing binaries to show that, when overshooting is implemented as a diffusive process, the fitted free parameter f ov rises sharply up to about 2 M ⊙, and remains largely constant thereafter. Here, we analyze a new sample of eight binaries selected to be in the critical mass range below 2 M ⊙ where f ov is changing the most, nearly doubling the number of individual stars in this regime. This interval is important because the precise way in which f ov changes determines the shape of isochrones in the turnoff region of ∼1–5 Gyr clusters, and can thus affect their inferred ages. It also has a significant influence on estimates of stellar properties for exoplanet hosts, on stellar population synthesis, and on the detailed modeling of interior stellar structures, including the calculation of oscillation frequencies that are observable with asteroseismic techniques. We find that the derived f ov values for our new sample are consistent with the trend defined by our earlier determinations, and strengthen the relation. This provides an opportunity for future series of models to test the new prescription, grounded on observations, against independent observations that may constrain overshooting in a different way.

  12. Heat removal capability of core-catcher with inclined cooling channels

    International Nuclear Information System (INIS)

    Suzuki, Y.; Tahara, M.; Kurita, T.; Hamazaki, R.; Morooka, S.

    2009-01-01

    A core-catcher is one of the mitigation systems that provide functions of molten corium cooling and stabilization during a severe accident. Toshiba has been developing a compact core-catcher to be placed at the lower drywell floor in the containment vessel for the next generation BWR as well as near term ABWR. This paper presents the evaluation of heat removal capability of the core-catcher with inclined cooling channels, our verification status and plan. The heat removal capability of the core-catcher is analyzed by using the newly developed two-phase flow analysis code which incorporates drift flux parameters for inclined channels and the CHF correlation obtained from SULTAN tests. Effects of geometrical parameters such as the inclination and the gap size of the cooling channel on the heat removal capability are also evaluated. These results show that the core-catcher has sufficient capability to cool the molten corium during a severe accident. Based on the analysis, it has been shown that the core-catcher has an efficient capability of heat removal to cool the molten corium. (author)

  13. Status of stellarator research

    International Nuclear Information System (INIS)

    Wobig, H.

    1985-01-01

    In recent years main activities in stellarator research were focussed on production and investigation of currentless plasmas. Several heating methods have been applied: electron cyclotron heating, ion cyclotron heating and neutral beam injection. The parameters achieved in HELIOTRON E and W VII-A are: antin 20 m 3 , Tsub(i) <= 1 keV. The confinement is improved as compared with ohmically heated discharges. By ECRH (P = 200 kW) it is possible to heat electrons up to 1.4 keV, confinement in this regime is dominated already by trapped particle effects. Toroidal currents up to 2 kA - either bootstrap currents or externally driven currents - were observed. High β-values (antiβ = 2%) have been obtained in HELIOTRON E, in this regime already pressure driven MHD-modes were observed. Future experiments (ATF-1 and W VII-AS) will extend the parameter regime to temperatures of several keV. These experiments will give important information about critical problems of the stellarator line (β-limit, neoclassical confinement impurity transport). A few reactor studies of stellarators exist, attention is mainly concentrated on technical problems of the modular coil system

  14. Rhapsody-G simulations I: the cool cores, hot gas and stellar content of massive galaxy clusters

    International Nuclear Information System (INIS)

    Hahn, Oliver; Martizzi, Davide; Wu, Hao-Yi

    2017-01-01

    We present the rhapsody-g suite of cosmological hydrodynamic zoom simulations of 10 massive galaxy clusters at the M vir ~10 15 M ⊙ scale. These simulations include cooling and subresolution models for star formation and stellar and supermassive black hole feedback. The sample is selected to capture the whole gamut of assembly histories that produce clusters of similar final mass. We present an overview of the successes and shortcomings of such simulations in reproducing both the stellar properties of galaxies as well as properties of the hot plasma in clusters. In our simulations, a long-lived cool-core/non-cool-core dichotomy arises naturally, and the emergence of non-cool cores is related to low angular momentum major mergers. Nevertheless, the cool-core clusters exhibit a low central entropy compared to observations, which cannot be alleviated by thermal active galactic nuclei feedback. For cluster scaling relations, we find that the simulations match well the M 500 –Y 500 scaling of Planck Sunyaev–Zeldovich clusters but deviate somewhat from the observed X-ray luminosity and temperature scaling relations in the sense of being slightly too bright and too cool at fixed mass, respectively. Stars are produced at an efficiency consistent with abundance-matching constraints and central galaxies have star formation rates consistent with recent observations. In conclusion, while our simulations thus match various key properties remarkably well, we conclude that the shortcomings strongly suggest an important role for non-thermal processes (through feedback or otherwise) or thermal conduction in shaping the intracluster medium.

  15. Applications of the k – ω Model in Stellar Evolutionary Models

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan, E-mail: ly@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China)

    2017-05-20

    The k – ω model for turbulence was first proposed by Kolmogorov. A new k – ω model for stellar convection was developed by Li, which could reasonably describe turbulent convection not only in the convectively unstable zone, but also in the overshooting regions. We revised the k – ω model by improving several model assumptions (including the macro-length of turbulence, convective heat flux, and turbulent mixing diffusivity, etc.), making it applicable not only for convective envelopes, but also for convective cores. Eight parameters are introduced in the revised k – ω model. It should be noted that the Reynolds stress (turbulent pressure) is neglected in the equation of hydrostatic support. We applied it into solar models and 5 M {sub ⊙} stellar models to calibrate the eight model parameters, as well as to investigate the effects of the convective overshooting on the Sun and intermediate mass stellar models.

  16. Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses

    International Nuclear Information System (INIS)

    Ando, Masaki; Aso, Youichi; Iida, Yukiyoshi; Nishi, Yuhiko; Otsuka, Shigemi; Seki, Hidetsugu; Soida, Kenji; Taniguchi, Shinsuke; Tochikubo, Kuniharu; Tsubono, Kimio; Yoda, Tatsuo; Arai, Koji; Beyersdorf, Peter; Kawamura, Seiji; Sato, Shuichi; Takahashi, Ryutaro; Tatsumi, Daisuke; Tsunesada, Yoshiki; Zhu, Zong-Hong; Fujimoto, Masa-Katsu

    2005-01-01

    We present data-analysis schemes and results of observations with the TAMA300 gravitational wave detector, targeting burst signals from stellar-core collapse events. In analyses for burst gravitational waves, the detection and fake-reduction schemes are different from well-investigated ones for a chirp wave analysis, because precise waveform templates are not available. We used an excess -power filter for the extraction of gravitational wave candidates, and developed two methods for the reduction of fake events caused by nonstationary noises of the detector. These analysis schemes were applied to real data from the TAMA300 interferometric gravitational wave detector. As a result, fake events were reduced by a factor of about 1000 in the best cases. In addition, in order to interpret the event candidates from an astronomical viewpoint, we performed a Monte-Carlo simulation with an assumed Galactic event distribution model and with burst waveforms obtained from numerical simulations of stellar-core collapses. We set an upper limit of 5.0x10 3 events/sec on the burst gravitational wave event rate in our Galaxy with a confidence level of 90%. This work shows prospects on the search for burst gravitational waves, by establishing an analysis scheme for the observation data from an interferometric gravitational wave detector

  17. Electron internal transport barriers and magnetic topology in the stellarator TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T.; Lopez-Bruna, D.; Alosno, A.; Ascasibar, E.; Baciero, A.; Cappa, A.; Castejon, F.; Fernandez, A.; Herranz, J.; Hidalgo, C.; Pablos, J. L. de; Pastor, I.; Sanchez, E.; Sanchez, J.

    2005-07-01

    In most helical systems electron Internal Transport Barriers (e-ITB) are observed in Electron Cyclotron Heated (ECH) plasmas with high heating power density. In the stellarator TJ-II, e- ITBs are easily achievable by positioning a low order rational surface close to the plasma core, because this increases the density range in which the e-ITB can form. Experiments with different low order rationals show a dependence of the threshold density and barrier quality on the order of the rational (3/2, 4/2, 5/3, ...). In addition, during the formation of e-ITB quasicoherent modes are frequently observed in the plasma core region. The mode can exist before or after the e-ITB phenomenon at the radial location of the transport barrier foot but vanishes as the barrier is fully developed. (Author)

  18. Ray-tracing analysis of electron-cyclotron-resonance heating in straight stellarators

    International Nuclear Information System (INIS)

    Kato, K.

    1983-05-01

    A ray-tracing computer code is developed and implemented to simulate electron cyclotron resonance heating (ECRH) in stellarators. A straight stellarator model is developed to simulate the confinement geometry. Following a review of ECRH, a cold plasma model is used to define the dispersion relation. To calculate the wave power deposition, a finite temperature damping approximation is used. 3-D ray equations in cylindrical coordinates are derived and put into suitable forms for computation. The three computer codes, MAC, HERA, and GROUT, developed for this research, are described next. ECRH simulation is then carried out for three models including Heliotron E and Wendelstein VII A. Investigated aspects include launching position and mode scan, frequency detuning, helical effects, start-up, and toroidal effects. Results indicate: (1) an elliptical waveguide radiation pattern, with its long axis oriented half-way between the toroidal axis and the saddle point line, is more efficient than a circular one; and (2) mid-plane, high field side launch is favored for both O- and X-waves

  19. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  20. The Origin of Stellar Species: constraining stellar evolution scenarios with Local Group galaxy surveys

    Science.gov (United States)

    Sarbadhicary, Sumit; Badenes, Carles; Chomiuk, Laura; Maldonado, Jessica; Caprioli, Damiano; Heger, Mairead; Huizenga, Daniel

    2018-01-01

    Our understanding of the progenitors of many stellar species, such as supernovae, massive and low-mass He-burning stars, is limited because of many poorly constrained aspects of stellar evolution theory. For my dissertation, I have focused on using Local Group galaxy surveys to constrain stellar evolution scenarios by measuring delay-time distributions (DTD). The DTD is the hypothetical occurrence rate of a stellar object per elapsed time after a brief burst of star formation. It is the measured distribution of timescales on which stars evolve, and therefore serves as a powerful observational constraint on theoretical progenitor models. The DTD can be measured from a survey of stellar objects and a set of star-formation histories of the host galaxy, and is particularly effective in the Local Group, where high-quality star-formation histories are available from resolved stellar populations. I am currently calculating a SN DTD with supernova remnants (SNRs) in order to provide the strongest constraints on the progenitors of thermonuclear and core-collapse supernovae. However, most SNRs do not have reliable age measurements and their evolution depends on the ambient environment. For this reason, I wrote a radio light curve model of an SNR population to extract the visibility times and rates of supernovae - crucial ingredients for the DTD - from an SNR survey. The model uses observational constraints on the local environments from multi-wavelength surveys, accounts for missing SNRs and employs the latest models of shock-driven particle acceleration. The final calculation of the SN DTD in the Local Group is awaiting completion of a systematic SNR catalog from deep radio-continuum images, now in preparation by a group led by Dr. Laura Chomiuk. I have also calculated DTDs for the LMC population of RR Lyrae and Cepheid variables, which serve as important distance calibrators and stellar population tracers. We find that Cepheids can have delay-times between 10 Myrs - 1 Gyr

  1. Wisconsin torsatron/stellarator program, FY 1989

    International Nuclear Information System (INIS)

    Shohet, J.L.; Anderson, D.T.; Anderson, F.S.B.; Talmadge, J.N.

    1988-07-01

    This proposal documents recent activities within the University of Wisconsin-Madison Torsatron/Stellarator Laboratory and presents plans for future research activities for a three year period. Research efforts have focused on fundamental stellarator physics issues through experimental investigations on the Interchangeable Module Stellarator (IMS) and the Proto-Cleo Stellarator. Theoretical activities and studies of new configurations are being undertaken to support and broaden the experimental program. Experimental research at the Torsatron Stellarator Laboratory has been primarily concerned with effects induced through electron-cyclotron resonant frequency plasma production and heating in the IMS device. Plasma electric fields have been shown to play a major role in particle transport and confinement in IMS. ECRF heating at 6 kG has produced electron tail populations in agreement with Monte-Carlo models. Electric and magnetic fields have been shown to alter the particle flows to the IMS modular divertors. 48 refs

  2. Neoclassical transport in stellarators - a comparison of conventional stellarator/torsatrons with the advanced stellarator, Wendelstein 7X

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C D [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    A general expression for the magnitude of a stellarator's magnetic field, in terms of a Fourier decomposition, is too complicated to lend itself easily to analytic transport calculations. The great majority of stellarator-type devices, however, may be accurately described if one retains only those harmonics with m=0 and m=1. In the long-mean-free-path regime an analytical approximation to the particle's bounce-averaged kinetic equation can then be found. Using a numerical solution of this equation, it is possible to calculate the particle and heat fluxes due to helical-ripple transport in stellarators throughout the entire long-mean-free-path regime. 3 figs.

  3. Critical heat flux experiments in tight lattice core

    Energy Technology Data Exchange (ETDEWEB)

    Kureta, Masatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Fuel rods of the Reduced-Moderation Water Reactor (RMWR) are so designed to be in tight lattices as to reduce moderation and achieve higher conversion ratio. As for the BWR type reactor coolant flow rate is reduced small compared with the existing BWR, so average void fraction comes to be langer. In order to evaluate thermo hydraulic characteristics of designed cores, critical heat flux experiments in tight lattice core have been conducted using simulated high pressure coolant loops for both the PWR and BWR seven fuel rod bundles. Experimental data on critical heat flux for full bundles have been accumulated and applied to assess the critical power of designed cores using existing codes. Evaluated results are conservative enough to satisfy the limiting condition. Further experiments on axial power distribution effects and 37 fuel rod bundle tests will be performed to validate thermohydraulic characteristics of designed cores. (T. Tanaka)

  4. Critical heat flux experiments in tight lattice core

    International Nuclear Information System (INIS)

    Kureta, Masatoshi

    2002-01-01

    Fuel rods of the Reduced-Moderation Water Reactor (RMWR) are so designed to be in tight lattices as to reduce moderation and achieve higher conversion ratio. As for the BWR type reactor coolant flow rate is reduced small compared with the existing BWR, so average void fraction comes to be langer. In order to evaluate thermo hydraulic characteristics of designed cores, critical heat flux experiments in tight lattice core have been conducted using simulated high pressure coolant loops for both the PWR and BWR seven fuel rod bundles. Experimental data on critical heat flux for full bundles have been accumulated and applied to assess the critical power of designed cores using existing codes. Evaluated results are conservative enough to satisfy the limiting condition. Further experiments on axial power distribution effects and 37 fuel rod bundle tests will be performed to validate thermohydraulic characteristics of designed cores. (T. Tanaka)

  5. Electron cyclotron emission measurements during 28 GHz electron cyclotron resonance heating in Wendelstein WVII-A stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Gasparino, U.; Tutter, M.; Brakel, R.; Cattanei, G.; Dorst, D.; Elsner, A.; Engelhardt, K.; Erckmann, V.; Grieger, G.; Grigull, P.; Hacker, H.; Jaeckel, H.; Jaenicke, R.; Junker, J.; Kick, M.; Kroiss, H.; Kuehner, G.; Maassberg, H.; Mahn, C.; Mueller, G.; Ohlendorf, W.; Rau, F.; Renner, H.; Ringler, H.; Sardei, F.; Weller, A.; Wobig, H.; Wuersching, E.; Zippe, M.; Kasparek, W.; Mueller, G.A.; Raeuchle, E.; Schueller, P.G.; Schwoerer, K.; Thumm, M.

    1987-11-01

    Electron cyclotron emission measurements have been carried out on electron cyclotron resonance heated plasmas in the WENDELSTEIN VII-A Stellarator. Blackbody radiation from the thermalized plasma main body as well as radiation from a small amount of weakly relativistic suprathermal electrons has been detected. In addition sideband emission has been observed near the second harmonic of the heating line source. Harmonic generation and parametric wave decay at the upper hybrid layer may be a reasonable explanation. (orig.)

  6. Close stellar encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1989-01-01

    Stellar encounters are expected to produce a variety of interesting objects in the cores of globular clusters, either through the formation of binaries by tidal capture, or direct collisions. Here, I describe several attempts to observe the products of stellar encounters. In particular, the use of color maps has demonstrated the existence of a color gradient in the core of M15, which seems to be caused by a population of faint blue objects concentrated towards the cluster center. (author)

  7. Innovative research reactor core designed. Estimation and analysis of gamma heating distribution

    International Nuclear Information System (INIS)

    Setiyanto

    2014-01-01

    The Gamma heating value is an important factor needed for safety analysis of each experiments that will be realized on research reactor core. Gamma heat is internal heat source occurs in each irradiation facilities or any material irradiated in reactor core. This value should be determined correctly because of the safety related problems. The gamma heating value is in general depend on. reactor core characteristics, different one and other, and then each new reactor design should be completed by gamma heating data. The Innovative Research Reactor is one of the new reactor design that should be completed with any safety data, including the gamma heating value. For this reasons, calculation and analysis of gamma heating in the hole of reactor core and irradiation facilities in reflector had been done by using of modified and validated Gamset computer code. The result shown that gamma heating value of 11.75 W/g is the highest value at the center of reactor core, higher than gamma heating value of RSG-GAS. However, placement of all irradiation facilities in reflector show that safety characteristics for irradiation facilities of innovative research reactor more better than RSG-GAS reactor. Regarding the results obtained, and based on placement of irradiation facilities in reflector, can be concluded that innovative research reactor more safe for any irradiation used. (author)

  8. Demonstration of Efficient Core Heating of Magnetized Fast Ignition in FIREX project

    Science.gov (United States)

    Johzaki, Tomoyuki

    2017-10-01

    Extensive theoretical and experimental research in the FIREX ``I project over the past decade revealed that the large angular divergence of the laser generated electron beam is one of the most critical problems inhibiting efficient core heating in electron-driven fast ignition. To solve this problem, beam guiding using externally applied kilo-tesla class magnetic field was proposed, and its feasibility has recently been numerically demonstrated. In 2016, integrated experiments at ILE Osaka University demonstrated core heating efficiencies reaching > 5 % and heated core temperatures of 1.7 keV. In these experiments, a kilo-tesla class magnetic field was applied to a cone-attached Cu(II) oleate spherical solid target by using a laser-driven capacitor-coil. The target was then imploded by G-XII laser and heated by the PW-class LFEX laser. The heating efficiency was evaluated by measuring the number of Cu-K- α photons emitted. The heated core temperature was estimated by the X-ray intensity ratio of Cu Li-like and He-like emission lines. To understand the detailed dynamics of the core heating process, we carried out integrated simulations using the FI3 code system. Effects of magnetic fields on the implosion and electron beam transport, detailed core heating dynamics, and the resultant heating efficiency and core temperature will be presented. I will also discuss the prospect for an ignition-scale design of magnetized fast ignition using a solid ball target. This work is partially supported by JSPA KAKENHI Grant Number JP16H02245, JP26400532, JP15K21767, JP26400532, JP16K05638 and is performed with the support and the auspices of the NIFS Collaboration Research program (NIFS12KUGK057, NIFS15KUGK087).

  9. Experiment on heat transfer in simulated molten core/concrete interaction

    International Nuclear Information System (INIS)

    Katsumura, Yukihiro; Hashizume, Hidetoshi; Toda, Saburo; Kawaguchi, Takahiro.

    1993-01-01

    In order to investigate heat transfer between molten core and concrete in LWR severe accidents, experiments were performed using water as the molten core, paraffin as the concrete, and air as gases from the decomposition of concrete. It was found that the heat transfer on the interface between paraffin and water were promoted strongly by the air gas. (author)

  10. Materials for the plasma-facing components of steady state stellarators

    International Nuclear Information System (INIS)

    Bolt, H.; Boscary, J.; Greuner, H.; Grigull, P.; Maier, H.; Streibl, B.

    2005-01-01

    The specific advantage of current-free stellarators is their inherent capability for full steady-state operation. This will lead to long discharges and the corresponding stationary plasma exposure of the plasma-facing materials. Further to this, the absence of disruptions relaxes the requirements to the plasma-facing materials in terms of thermal shock stability, although ELM activity occurs also in stellarators and leads to fast transient surface loads on the ms-time scale. Another aspect regarding the plasma-material interactions in stellarators is the sensitivity to impurity accumulation in the core plasma. Thus, it is preferred to apply low-Z materials until operation scenarios are established which do not lead to this accumulation process. In the case of high-Z materials impurity accumulation will lead to a radiative plasma collapse. For the stellarator W7-X low-Z plasma-facing materials have been selected to protect the divertor and the wall surfaces. Due to the stationary operation, the plasma-facing materials have to be bonded or clamped to actively water-cooled substrates to remove the incident heat fluxes. The following materials have been selected to fulfil the operational requirements: 1. A three directionally carbon fibre reinforced carbon composite (CFC) with very high thermal conductivity bonded to a water cooled CuCrZr heat sink for the divertor which will be exposed to heat fluxes up to 10MW/m 2 . 2. Isotropic fine grain graphite tiles mechanically clamped to a CuCrZr heat sink which is brazed to a stainless steel cooling tube for the areas of moderate heat fluxes up to 0.5 MW/m 2 (baffles, inner wall). 3. Thick boron carbide coating on water cooled steel panels for the outer wall surfaces with low heat fluxes up to 0.2 MW/m 2 . This coating would be applied on most surfaces only after the initial operation. In the presentation the properties of these materials will be discussed with a view to the plasma-wall interaction in W7-X. In fusion reactors

  11. Performance enhancement of multi-core fiber transmission using real-time FPGA based pre-emphasis

    DEFF Research Database (Denmark)

    Hasanuzzaman, G. K.M.; Spolitis, Sandis; Salgals, T.

    2017-01-01

    We experimentally demonstrate pre-emphasis based performance for a 2 km long 7-core multicore fiber link. Simultaneous transmission below the FEC threshold is achievable for all cores by using signal equalization in a FPGA.......We experimentally demonstrate pre-emphasis based performance for a 2 km long 7-core multicore fiber link. Simultaneous transmission below the FEC threshold is achievable for all cores by using signal equalization in a FPGA....

  12. Evidence for top-heavy stellar initial mass functions with increasing density and decreasing metallicity

    Science.gov (United States)

    Marks, Michael; Kroupa, Pavel; Dabringhausen, Jörg; Pawlowski, Marcel S.

    2012-05-01

    Residual-gas expulsion after cluster formation has recently been shown to leave an imprint in the low-mass present-day stellar mass function (PDMF) which allowed the estimation of birth conditions of some Galactic globular clusters (GCs) such as mass, radius and star formation efficiency. We show that in order to explain their characteristics (masses, radii, metallicity and PDMF) their stellar initial mass function (IMF) must have been top heavy. It is found that the IMF is required to become more top heavy the lower the cluster metallicity and the larger the pre-GC cloud-core density are. The deduced trends are in qualitative agreement with theoretical expectation. The results are consistent with estimates of the shape of the high-mass end of the IMF in the Arches cluster, Westerlund 1, R136 and NGC 3603, as well as with the IMF independently constrained for ultra-compact dwarf galaxies (UCDs). The latter suggests that GCs and UCDs might have formed along the same channel or that UCDs formed via mergers of GCs. A Fundamental Plane is found which describes the variation of the IMF with density and metallicity of the pre-GC cloud cores. The implications for the evolution of galaxies and chemical enrichment over cosmological times are expected to be major.

  13. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models

    Science.gov (United States)

    Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Cantiello, Matteo; Paxton, Bill; Johnson, Benjamin D.

    2016-06-01

    This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages (5≤slant {log}({Age}) [{year}]≤slant 10.3), masses (0.1≤slant M/{M}⊙ ≤slant 300), and metallicities (-2.0≤slant [{{Z}}/{{H}}]≤slant 0.5). The models are self-consistently and continuously evolved from the pre-main sequence (PMS) to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the PMS to the end of core helium burning for -4.0≤slant [{{Z}}/{{H}}]\\lt -2.0. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at http://waps.cfa.harvard.edu/MIST/.

  14. ON THE ORIGIN OF STELLAR MASSES

    International Nuclear Information System (INIS)

    Krumholz, Mark R.

    2011-01-01

    It has been a longstanding problem to determine, as far as possible, the characteristic masses of stars in terms of fundamental constants; the almost complete invariance of this mass as a function of the star-forming environment suggests that this should be possible. Here I provide such a calculation. The typical stellar mass is set by the characteristic fragment mass in a star-forming cloud, which depends on the cloud's density and temperature structure. Except in the very early universe, the latter is determined mainly by the radiation released as matter falls onto seed protostars. The energy yield from this process is ultimately set by the properties of deuterium burning in protostellar cores, which determines the stars' radii. I show that it is possible to combine these considerations to compute a characteristic stellar mass almost entirely in terms of fundamental constants, with an extremely weak residual dependence on the interstellar pressure and metallicity. This result not only explains the invariance of stellar masses, it resolves a second mystery: why fragmentation of a cold, low-density interstellar cloud, a process with no obvious dependence on the properties of nuclear reactions, happens to select a stellar mass scale such that stellar cores can ignite hydrogen. Finally, the weak residual dependence on the interstellar pressure and metallicity may explain recent observational hints of a smaller characteristic mass in the high-pressure, high-metallicity cores of giant elliptical galaxies.

  15. Solid-Core Heat-Pipe Nuclear Batterly Type Reactor

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2008-01-01

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP). Like the SAFE 400 space nuclear reactor core, the HPENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The core is oriented horizontally and has a square rather cylindrical cross section for effective heat transfer. The HPs extend from the two axial reflectors in which the fission gas plena are embedded and transfer heat to an intermediate coolant that flows by natural-circulation. The HP-ENHS is designed to preserve many features of the ENHS including 20-year operation without refueling, very small excess reactivity throughout life, natural circulation cooling, walkaway passive safety, and robust proliferation resistance. The target power level and specific power of the HP-ENHS reactor are those of the reference ENHS reactor. Compared to previous ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system, the HP-ENHS reactor offers a number of advantageous features including: (1) significantly enhanced passive decay heat removal capability; (2) no positive void reactivity coefficients; (3) relatively lower corrosion of the cladding (4) a core that is more robust for transportation; (5) higher temperature potentially offering higher efficiency and hydrogen production capability. This preliminary study focuses on five areas: material compatibility analysis, HP performance analysis, neutronic analysis, thermal-hydraulic analysis and safety analysis. Of the four high-temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of working fluid type, operating temperature, wick design and HP diameter and length. Sodium is the

  16. Fresh fuel pre-heating device in reactor facility

    International Nuclear Information System (INIS)

    Samejima, Asakuni.

    1988-01-01

    Purpose: To simplify the structure of a fresh nuclear fuel pre-heating device and improve the reliability to gas supply. Constitution: Fresh fuels taken out from a fresh fuel stredge rack and contained in a fuel strage pipe of a fuel transportation cask are pre-heated at the pre-stage of transfer by sending heating gases from the outside. Gas outlet pipes of the device are led out from the lower portion of the strage pipe, disposed side by side at the top of the strage pipe and opened upwardly. Further, gas supply pipes are connected to the inside of a movable guiding cylinder on the side of the floor surface and the opening end of return pipes are opposed to the exit opening end of the strage pipe. In such a constitution, a gas recycling loop can be formed between the strage pipe and the gas heating device by way of the movable guiding cylinder only by the operation of combining the fuel strage pipe of the transportation cask and the movable guiding pipe disposed on the side of the floor surface. Thus, the coupling structure is facilitated, the connection operation can surely be conducted to improve the reliability as compared with the conventional case. (Horiuchi, T.)

  17. Development of slow and fast wave coupling and heating from the C-Stellarator to NSTX

    Directory of Open Access Journals (Sweden)

    Hosea Joel

    2017-01-01

    Full Text Available A historical perspective on key discoveries which contributed to understanding the properties of coupling both slow and fast waves and the effects on plasma heating and current drive will be presented. Important steps made include the demonstration that the Alfven resonance was in fact a mode conversion on the C-stellarator, that toroidal m = -1 eigenmodes were excited in toroidal geometry and impurity influx caused the Z mode on the ST tokamak, that the H minority regime provided strong heating and that 3He minority could be used as well on PLT, that the 2nd harmonic majority tritium regime was viable on TFTR, and that high harmonic fast wave heating was efficient when the SOL losses were avoided on NSTX.

  18. Bolometer Results in the Long-Microwave-Heated WEGA Stellarator

    International Nuclear Information System (INIS)

    Zhang, D.; Otte, M.; Giannone, L.

    2006-01-01

    A 12 channel bolometer camera based on a gold foil absorber has been installed on the WEGA stellarator to measure the radiation power losses of the plasma. The measured total radiation power is typically less than 30% of the ECRH input power. However, this radiated power fraction depends on the ECRH input power, the magnetic configuration and the field strength as well as the working gas. For separatrix-bounded configurations, core-peaked radiation intensity profiles are usually detected, while in a limiter-configuration they are flatter, broader and more asymmetric. In addition, significant radiation originating from the SOL region is measured for all the cases studied. The SOL radiation changes with changing the plasma-wave interaction region, indicating a strong correlation between radiation and power deposition. Under the WEGA-plasma conditions (Te<10 eV), it is considered that the radiation profile reflects the plasma pressure associated with the power deposition distribution of the ECRH

  19. Bolometer Results in the Long-Microwave-Heated WEGA Stellarator

    Science.gov (United States)

    Zhang, D.; Otte, M.; Giannone, L.

    2006-01-01

    A 12 channel bolometer camera based on a gold foil absorber has been installed on the WEGA stellarator to measure the radiation power losses of the plasma. The measured total radiation power is typically less than 30% of the ECRH input power. However, this radiated power fraction depends on the ECRH input power, the magnetic configuration and the field strength as well as the working gas. For separatrix-bounded configurations, core-peaked radiation intensity profiles are usually detected, while in a limiter-configuration they are flatter, broader and more asymmetric. In addition, significant radiation originating from the SOL region is measured for all the cases studied. The SOL radiation changes with changing the plasma-wave interaction region, indicating a strong correlation between radiation and power deposition. Under the WEGA-plasma conditions (Te<10 eV), it is considered that the radiation profile reflects the plasma pressure associated with the power deposition distribution of the ECRH.

  20. Tracing early stellar evolution with asteroseismology: pre-main sequence stars in NGC 2264

    Directory of Open Access Journals (Sweden)

    Zwintz Konstanze

    2015-01-01

    Full Text Available Asteroseismology has been proven to be a successful tool to unravel details of the internal structure for different types of stars in various stages of their main sequence and post-main sequence evolution. Recently, we found a relation between the detected pulsation properties in a sample of 34 pre-main sequence (pre-MS δ Scuti stars and the relative phase in their pre-MS evolution. With this we are able to demonstrate that asteroseismology is similarly powerful if applied to stars in the earliest stages of evolution before the onset of hydrogen core burning.

  1. Stellar evolution IV: evolution of a star of 1.5 M(S) from the main-sequence to the red-giant branch with and without overshooting from convective core

    International Nuclear Information System (INIS)

    Maeder, A.

    1975-01-01

    For a star of 1.5 M(S) with an initial composition given by X=0.70 and Z=0.03, three sets of evolutionary models are computed with different assumptions on the non-local effects characterizing the turbulent motions in the convective core. Some overshooting from the convective core may occur during Main-sequence evolution. The changes in the stellar structure, lifetimes and evolutionary tracks brought about by this process are studied. Some characteristics of the evolutionary tracks in the theoretical HR diagram have a very high sensitivity to the exact extent of the convective core, and this may provide powerful tests of events occurring in the deep stellar interior. (orig./BJ) [de

  2. Core-collapse supernovae - successes, problems, and perspectives

    CERN Document Server

    Janka, H T

    2000-01-01

    Multi-dimensional hydrodynamic simulations of the post-bounce evolution of collapsed stellar iron cores have demonstrated that convective overturn between the stalled shock and the neutrinosphere can have an important effect on the neutrino-driven explosion mechanism. Whether a model yields a successful explosion or not, however, still depends on the power of neutrino energy deposition behind the stalled shock. The neutrino interaction with the stellar gas in the 'hot bubble' also determines the duration of the shock stagnation phase, the explosion energy, and the composition of the neutrino-heated supernova ejecta. More accurate models require a more precise calculation of the neutrino luminosities and spectra and of the angular distributions of the neutrinos in the heating region. Therefore it is necessary to improve the numerical treatment of the neutrino transport, to take into account convective processes inside the newly formed neutron star, and to develop a better understanding of the neutrino opacitie...

  3. Stellar magnetic activity

    International Nuclear Information System (INIS)

    Schrijver, C.J.

    1986-01-01

    The stellar emission in the chromospheric Ca II H+K lines is compared with the coronal soft X-ray emission, measuring the effects of non-radiative heating in the outer atmosphere at temperatures differing two orders of magnitude. The comparison of stellar flux densities in Ca II H+K and X-rays is extended to fluxes from the transition-region and the high-temperature chromosphere. The stellar magnetic field is probably generated in the differentially rotating convective envelope. The relation between rotation rate and the stellar level of activity measured in chromospheric, transition-region, and coronal radiative diagnostics is discovered. X-ray observations of the binary λ Andromedae are discussed. The departure of M-type dwarfs from the main relations, and the implications for the structure of the chromospheres of these stars are discussed. Variations of the average surface flux densities of the Sun during the 11-year activity cycle agree with flux-flux relations derived for other cool stars, suggesting that the interpretation of the stellar relations may be furthered by studying the solar analogue in more detail. (Auth.)

  4. Whole-body pre-cooling does not alter human muscle metabolism during sub-maximal exercise in the heat.

    Science.gov (United States)

    Booth, J; Wilsmore, B R; Macdonald, A D; Zeyl, A; Mcghee, S; Calvert, D; Marino, F E; Storlien, L H; Taylor, N A

    2001-06-01

    Muscle metabolism was investigated in seven men during two 35 min cycling trials at 60% peak oxygen uptake, at 35 degrees C and 50% relative humidity. On one occasion, exercise was preceded by whole-body cooling achieved by immersion in water during a reduction in temperature from 29 to 24 degrees C, and, for the other trial, by immersion in water at a thermoneutral temperature (control, 34.8 degrees C). Pre-cooling did not alter oxygen uptake during exercise (P > 0.05), whilst the change in cardiac frequency and body mass both tended to be lower following pre-cooling (0.05 whole-body pre-cooling does not alter muscle metabolism during submaximal exercise in the heat. It is more likely that thermoregulatory and cardiovascular strain are reduced, through lower muscle and core temperatures.

  5. STRUCTURAL GLITCHES NEAR THE CORES OF RED GIANTS REVEALED BY OSCILLATIONS IN G-MODE PERIOD SPACINGS FROM STELLAR MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, M. S.; Avelino, P. P. [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Christensen-Dalsgaard, J. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Townsend, R. H. D., E-mail: mcunha@astro.up.pt [Department of Astronomy, University of Wisconsin–Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2015-06-01

    With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations—glitches—in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacing and inertia of non-radial modes during several phases of red giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the échelle diagram. Interestingly, along the red giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium core burning and at the beginning of helium shell burning, signifying the asymptotic giant branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild could affect the characteristics of the glitches, potentially providing a way to study these physical processes.

  6. Electron internal transport barrier in the core of TJ-II ECH plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T.; Hidalgo, C. [Laboratorio Nacional de Fusion por Confinamiento Magnetico. Asociacion EURATOM CIEMAT, Madrid (Spain); Dreval, N. [and others

    2003-07-01

    The influence of the magnetic topology on the formation of electron internal transport barriers (e-ITB) has been experimentally studied in the stellarator TJ-II. The formation of e-ITBs in electron cyclotron heated plasmas can be triggered by positioning a low order rational surface close to the plasma core region, while in configurations without any low order rational there are no indications of barrier formation within the available heating power. The e-ITB formation is characterized by an increase in the core electron temperature and plasma potential. Positive radial electric field increases in a factor of three in the plasma central region when the e-ITB forms. The results demonstrate that low order rational surfaces modify radial electric fields and electron heat transport. (orig.)

  7. Numerical simulation on coolant flow and heat transfer in core

    International Nuclear Information System (INIS)

    Yao Zhaohui; Wang Xuefang; Shen Mengyu

    1997-01-01

    To simulate the coolant flow and the heat transfer characteristics of a core, a computer code, THAPMA (Thermal Hydraulic Analysis Porous Medium Analysis) has been developed. In THAPMA code, conservation equations are based on a porous-medium formulation, which uses four parameters, i.e, volume porosity, directional surface porosity, distributed resistance, and distributed heat source (sink), to model the effects of fuel rods and other internal solid structures on flow and heat transfer. Because the scheme and the solution are very important in accuracy and speed of calculation, a new difference scheme (WSUC) has been used in the energy equation, and a modified PISO solution method have been employed to simulate the steady/transient states. The code has been proved reliable and can effectively solve the transient state problem by several numerical tests. According to the design of Qinshan NPP-II, the flow and heat transfer phenomena in reactor core have been numerically simulated. The distributions of the velocity and the temperature can provide a theoretical basis for core design and safety analysis

  8. Core-Sheath Paraffin-Wax-Loaded Nanofibers by Electrospinning for Heat Storage.

    Science.gov (United States)

    Lu, Yuan; Xiao, Xiudi; Zhan, Yongjun; Huan, Changmeng; Qi, Shuai; Cheng, Haoliang; Xu, Gang

    2018-04-18

    Paraffin wax (PW) is widely used for smart thermoregulation materials due to its good thermal performance. However, the leakage and low thermal conductivity of PW hinder its application in the heat storage field. Accordingly, developing effective methods to address these issues is of great importance. In this study, we explored a facile approach to obtain PW-loaded core-sheath structured flexible nanofibers films via coaxial electrospinning technique. The PW as the core layer was successfully encapsulated by the sheath-layer poly(methyl methacrylate). The diameter of the fiber core increased from 395 to 848 nm as the core solution speed rate increased from 0.1 to 0.5 mL/h. In addition, it can be seen that higher core solution speed rate could lead to higher PW encapsulation efficiency according to the transmission electron microscopy results. The core-sheath nanofiber films, moreover, possessed the highest latent heat of 58.25 J/g and solidifying enthalpy of -56.49 J/g. In addition, we found that after 200 thermal cycles, there was little change in latent heat, which demonstrated that it is beneficial for the PW-loaded core-sheath structure to overcome the leakage issue and enhance thermal stability properties for the thermoregulation film.

  9. The retrovirus MA and PreTM proteins follow immature MVL cores

    DEFF Research Database (Denmark)

    Andersen, Klaus Bahl

    2013-01-01

    Detergent can dissolve retrovirus, exept the immature core. Here we show that the Matrix protein (MA) and the Transmembrane protein in its immature form (PreTM) bind to the retrovirus core. These attachments explain the attachment in the virus particle and the dynamics of the ability to fuse with...

  10. The dynamics of massive starless cores with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Kong, Shuo; Butler, Michael J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Caselli, Paola [School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT (United Kingdom); Fontani, Francesco [INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy)

    2013-12-20

    How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (∼100 M {sub ☉}) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N{sub 2}H{sup +} in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N{sub 2}D{sup +} (3-2) line at 2.''3 resolution. We find six N{sub 2}D{sup +} cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number m{sub A} ∼ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ∼60 M {sub ☉}, our results suggest that moderately enhanced magnetic fields (so that m{sub A} ≅ 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.

  11. Heat Pipe Reactor Dynamic Response Tests: SAFE-100 Reactor Core Prototype

    Science.gov (United States)

    Bragg-Sitton, Shannon M.

    2005-01-01

    The SAFE-I00a test article at the NASA Marshall Space Flight Center was used to simulate a variety of potential reactor transients; the SAFEl00a is a resistively heated, stainless-steel heat-pipe (HP)-reactor core segment, coupled to a gas-flow heat exchanger (HX). For these transients the core power was controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. This type of non-nuclear test is expected to provide reasonable approximation of reactor transient behavior because reactivity feedback is very simple in a compact fast reactor (simple, negative, and relatively monotonic temperature feedback, caused mostly by thermal expansion) and calculations show there are no significant reactivity effects associated with fluid in the HP (the worth of the entire inventory of Na in the core is .tests, the point kinetics model was based on core thermal expansion via deflection measurements. It was found that core deflection was a strung function of how the SAFE-100 modules were fabricated and assembled (in terms of straightness, gaps, and other tolerances). To remove the added variable of how this particular core expands as compared to a different concept, it was decided to use a temperature based feedback model (based on several thermocouples placed throughout the core).

  12. Precessing vortex core in a swirling wake with heat release

    International Nuclear Information System (INIS)

    Gorbunova, A.; Klimov, A.; Molevich, N.; Moralev, I.; Porfiriev, D.; Sugak, S.; Zavershinskii, I.

    2016-01-01

    Highlights: • Precessing vortex core is left-handed co-rotated bending single-vortex structure. • The precession frequency grows with the heat-source power. • Growth of the heat-source power decreases vortex core oscillations. • The left-handed bending mode is the most unstable mode in the low-density wake. - Abstract: Numerical simulation of the non-stationary three-dimensional swirling flow is presented for an open tube with a paraxial heat source. In the considered type of swirling flows, it is shown that a precessing vortex core (PVC) appears. The obtained PVC is a left-handed co-rotated bending single-vortex structure. The influence of the heat release enhancement on parameters of PVC is investigated. Using various turbulence models (the Spalart–Allmaras, k–ω and SST models), it is shown that an increase in the heat-source power leads to an increase in the PVC frequency and to a decrease in the amplitude of PVC oscillations. Moreover, we conduct the linear stability analysis of the simplified flow model with paraxial heating (the Rankine vortex with the piecewise axial flow and density) and demonstrate that its results correspond to the results of numerical simulations rather well. In particular, we prove that the left-handed bending mode (m = +1) is the most unstable one in the low-density wake and its frequency increases with a decrease of density ratio that is similar to the behavior of precession frequency with an increase of heat-source power.

  13. Electron internal transport barriers and magnetic topology in the stellarator TJ-II

    International Nuclear Information System (INIS)

    Estrada, T.; Alonso, A.; Castejon, F.; Hidalgo, C.; Pablos, J.L. de; Tereshin, V.; Krupnik, L.; Chmyga, A.A.; Dreval, N.; Khrebtov, S.M.; Komarov, A.D.; Kozachok, A.S.; Eliseev, L.; Melnikov, A.V.

    2005-01-01

    Electron Internal Transport Barriers (e-ITBs) are frequently observed in helical systems. e-ITBs are characterized by an increase in core electron temperature and plasma potential as well as an improvement in core electron heat confinement. A comparative study of transport barriers in different helical devices will be presented by Yokoyama et al at this conference. In most helical systems, and in particular in TJ-II stellarator, the formation of e-ITBs is observed in Electron Cyclotron Heated plasmas with high heating power density. In TJ-II, e-ITBs are also formed in magnetic configurations having a low order rational surface close to the plasma core where the ECH power is deposited. In such configurations the key element to improve heat confinement, i.e. the strong radial electric field, results from a synergistic effect between enhanced electron heat fluxes through the low order rational surface and pump-out mechanisms in the heat deposition zone. Recent experiments show a quasi-coherent mode associated with a rational surface that triggers the formation of the e-ITB. This quasi-coherent mode is observed by both ECE and HIBP diagnostics. The mode is found to be localized within the radial range ρ: 0.0 - 0.4, with a maximum amplitude around ρ: 0.25 - 0.35, close to the foot of the e- ITB. The quasi-coherent mode evolves during the formation/annihilation of the e-ITB and vanishes as the barrier is fully developed. These observations indicate that the quasi-coherent modes are modified by the radial electric fields that develop at the transitions, thereby showing the importance of ExB flows in the evolution of MHD instabilities linked to low-order rational surfaces. Further studies are in progress to investigate the influence of the order of the low rational surfaces (3/2, 5/3,...) in triggering core transitions. (author)

  14. The major results from W7-AS stellarator

    Science.gov (United States)

    Wagner, Friedrich

    2002-11-01

    W7-AS has terminated operation this summer. In the last phase, W7-AS was equipped with an island divertor using the natural edge islands of the low-shear, n=5 design. NBI heating has been done with co-injection (3 MW), ECRH was successfully extended to high density with the OXB scheme, and ICRH was applied in all standard modes but also in beach wave heating. The island divertor allowed high β and provided excellent exhaust conditions thanks to the accessibility to high densities (ne rationals; in the plasma core the neo-classical bifurcation between ion and electron roots is observed. A distinct difference to tokamaks is the lack of Te - profile resilience. The H-mode operational range is governed by poloidal flow damping. At high density, a further bifurcation appears into a regime characterised by good energy and low impurity confinement (HDH). Because of its appealing features, this regime will be described in detail. The most visible MHD are beam driven global Alfven modes and ELMs. The operational limits are set by NBI power: The balance of heating and edge radiation determines the density limit; the maximal β is limited to 3.1%. The operation at high densities and high β is quiescent and quasi-steady state. The intrinsic stellarator features - steady state and no disruptions - remain close to operational limits. The results of W7-AS confirm the design criteria of W7-X and contribute to establish the stellarator line as independent route to a reactor.

  15. Transport in stellarators

    International Nuclear Information System (INIS)

    Maassberg, H.; Brakel, R.; Burhenn, R.; Gasparino, U.; Grigull, P.; Kick, M.; Kuehner, G.; Ringler, H.; Sardei, F.; Stroth, U.; Weller, A.

    1993-01-01

    The local electron and ion heat transport as well as the particle and impurity transport properties in stellarators are reviewed. In this context, neoclassical theory is used as a guideline for the comparison of the experimental results of the quite different confinement concepts. At sufficiently high temperatures depending on the specific magnetic configuration, neoclassical predictions are confirmed by experimental findings. The confinement properties in the LMFP collisionality regime are discussed with respect to the next stellarator generation, for which at higher temperatures the neoclassical transport is expected to become more important. (orig.)

  16. Effect of pre-heating on the viscosity and microhardness of a resin composite.

    LENUS (Irish Health Repository)

    Lucey, S

    2010-04-01

    The effect of pre-heating resin composite on pre-cured viscosity and post-cured surface hardness was evaluated. Groups of uncured specimens were heated to 60 degrees C and compared with control groups (24 degrees C) with respect to viscosity and surface hardness. Mean (SD) viscosities of the pre-heated specimens (n = 15) were in the range of 285 (13)-377 (11) (Pa) compared with 642 (35)-800 (23) (Pa) at ambient temperature. There was a statistically significant difference between the two groups (P < 0.001). Mean (SD) Vickers microhardness (VHN) of the pre-heated group (n = 15) was 68.6 (2.3) for the top surface and 68.7 (1.8) for the bottom surface measured at 24 h post curing (specimen thickness = 1.5 mm). The corresponding values for the room temperature group were 60.6 (1.4) and 59.0 (3.5). There was a statistically significant difference between corresponding measurements taken at the top and bottom for the pre-heated and room temperature groups (P < 0.001). There was no significant difference between top and bottom measurements within each group. Pre-heating resin composite reduces its pre-cured viscosity and enhances its subsequent surface hardness. These effects may translate as easier placement together with an increased degree of polymerization and depth-of-cure.

  17. ORIGEN2.1 Cycle Specific Calculation of Krsko Nuclear Power Plant Decay Heat and Core Inventory

    International Nuclear Information System (INIS)

    Vukovic, J.; Grgic, D.; Konjarek, D.

    2010-01-01

    This paper presents ORIGEN2.1 computer code calculation of Krsko Nuclear Power Plant core for Cycle 24. The isotopic inventory, core activity and decay heat are calculated in one run for the entire core using explicit depletion and decay of each fuel assembly. Separate pre-ori application which was developed is utilized to prepare corresponding ORIGEN2.1 inputs. This application uses information on core loading pattern to determine fuel assembly specific depletion history using 3D burnup which is obtained from related PARCS computer code calculation. That way both detailed single assembly calculations as well as whole core inventory calculations are possible. Because of the immense output of the ORIGEN2.1, another application called post-ori is used to retrieve and plot any calculated property on the basis of nuclide, element, summary isotope or group of elements for activation products, actinides and fission products segments. As one additional possibility, with the post-ori application it is able to calculate radiotoxicity from calculated ORIGEN2.1 inventory. The results which are obtained using the calculation model of ORIGEN2.1 computer code are successfully compared against corresponding ORIGEN-S computer code results.(author).

  18. Stellarator fusion neutronics research in Australia

    International Nuclear Information System (INIS)

    Zimin, S.; Cross, R.C.

    1997-01-01

    The new status of the H-INF Heliac Stellaralor as a National Facility and the signed international Implementing Agreement on 'Collaboration in the Development of the Stellarator Concept' represents a significant encouragement for further fusion research in Australia. In this report the future of fusion research in Australia is discussed with special attention being paid to the importance of Stellarator power plant studies and in particular stellarator fusion neutronics. The main differences between tokamak and stellarator neutronics analyses are identified, namely the neutron wall loading, geometrical modelling and total heating in in-vessel reactor components including toroidal field (TF) coils. Due to the more complicated nature of stellarator neutronics analyses, simplified approaches to fusion neutronics already developed for tokamaks are expected to be even more important and widely used for designing a Conceptual Stellarator Power Plant

  19. Spectral Effects on Fast Wave Core Heating and Current Drive

    International Nuclear Information System (INIS)

    Phillips, C.K.; Bell, R.E.; Berry, L.A.; Bonoli, P.T.; Harvey, R.W.; Hosea, J.C.; Jaeger, E.F.; LeBlanc, B.P.; Ryan, P.M.; Taylor, G.; Valeo, E.J.; Wilson, J.R.; Wright, J.C.; Yuh, H. and the NSTX Team

    2009-01-01

    Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations

  20. Core instrumentation and pre-operational procedures for core conversion HEU to LEU

    International Nuclear Information System (INIS)

    1984-02-01

    This report is intended for the reactor operator, to be used as a manual or checklist for general guidance on pre-startup activities that need to be addressed in preparation for conversion to Low Enriched Fuel (LEU). All nuclear, thermodynamic and safety calculations should have been performed prior to this stage of the core conversion process. During these calculations and certainly before ordering the new LEU fuel elements the reactor operator needs to very carefully consider additional important factors concerning the new fuel: fuel reliability, reliability of fuel fabricator, reprocessing contract or fuel element storage and disposal, economics of the new fuel cycle. At this stage, too, a preoperational experimental programme has to be developed and presented to the regulatory authorities for approval. This experimental programme could lead to additional requirements on: in-core instrumentation, out-of-core instrumentation or additional experimental devices. Detailed instructions on specific tests and measurements are not provided in this report since much information on the subject is available in the open literature

  1. Evaluating Stellarator Divertor Designs with EMC3

    Science.gov (United States)

    Bader, Aaron; Anderson, D. T.; Feng, Y.; Hegna, C. C.; Talmadge, J. N.

    2013-10-01

    In this paper various improvements of stellarator divertor design are explored. Next step stellarator devices require innovative divertor solutions to handle heat flux loads and impurity control. One avenue is to enhance magnetic flux expansion near strike points, somewhat akin to the X-Divertor concept in Tokamaks. The effect of judiciously placed external coils on flux deposition is calculated for configurations based on the HSX stellarator. In addition, we attempt to optimize divertor plate location to facilitate the external coil placement. Alternate areas of focus involve altering edge island size to elucidate the driving physics in the edge. The 3-D nature of stellarators complicates design and necessitates analysis of new divertor structures with appropriate simulation tools. We evaluate the various configurations with the coupled codes EMC3-EIRENE, allowing us to benchmark configurations based on target heat flux, impurity behavior, radiated power, and transitions to high recycling and detached regimes. Work supported by DOE-SC0006103.

  2. Heat wave experiments on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Erckmann, V.; Gasparino, U.; Giannone, L.; Maassberg, H.; Tutter, M.

    1993-01-01

    Power modulation with well localized ECRH power deposition at both 70 and 140 GHz, has been used to generate temperature perturbations which propagate away from the deposition region. Radiometry of the ECE is used to diagnose the generated temperature perturbation as a function of distance to the deposition zone. The decay of the amplitude and the delay of the wave provide the information to determine the electron thermal diffusivity. This value is then compared with the one derived from a global power balance. It is found that both values agree with the error bars. The technique has also been applied in recent experiments during L-H-mode transitions in W7-AS demonstrating a significant reduction in the effective heat diffusivity in the plasma core during the H-phase. The modulated ECRH causes a modulation of the Shafranov shift. Interference of the prompt shift with the heat wave results in an apparent asymmetry of the decay length of the heat wave with respect to the plasma centre. (orig.)

  3. Young Stellar Objects from Soft to Hard X-rays

    Science.gov (United States)

    Güdel, Manuel

    2009-05-01

    Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.

  4. Turbulence-induced heat transfer in PBMR core using LES and RANS

    International Nuclear Information System (INIS)

    Lee, Jung-Jae; Yoon, Su-Jong; Park, Goon-Cherl; Lee, Won-Jae

    2007-01-01

    This paper introduces the results of numerical simulations on flow fields and relevant heat transfer in the pebble bed reactor (PBR) core, since the coolant passes a highly complicated random flow path with a high Reynolds number, an appropriate treatment of the turbulence is required. A set of simple experiments for the flow over a circular cylinder with heat transfer was conducted to finally select the large eddy simulation (LES) and k-ω model among the considering Reynolds-averaged Navier-Stokes (RANS) models for PBR application. Using these models, the PBR cores, whose geometries were simplified to the body-centered cubical (BCC) and face-centered cubical (FCC) structures, were simulated. A larger pressure drop, a more random flow field, a higher vorticity magnitude and a higher temperature at the local hot spots on the pebble surface were found in the results of the LES than in those of RANS for both geometries. In cases of the LES, the flow structures were resolved up to the grid scales. Irregular distributions of the flow and local heat transfer were found in the BCC core, while relatively regular distributions for the FCC core. The turbulent nature of the coolant flow in the pebble core evidently affected the fuel surface temperature distribution. (author)

  5. CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core

    International Nuclear Information System (INIS)

    Kotas, J.F.; Stroh, K.R.

    1983-01-01

    The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident that simulates a control-rod withdrawal at full power

  6. Pre evaluation for heat balance of prototype sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Han, Ji Woong; Kim, De Hee; Yoon, Jung; Kim, Eui Kwang; Lee, Tae Ho

    2012-01-01

    Under the long term advanced SFR R and D plan, the design of prototype reactor has been carried out toward the construction of the prototype SFR plant by 2028. The R and D efforts in fluid system design will be focused on developing a prototype design of primary heat transport system(PHTS), intermediate heat transport system (IHTS), decay heat removal system(DHRS), steam generation system(SGS), and related auxiliary system design for a prototype reactor as shown in Fig. 1. In order to make progress system design, top tier requirements for prototype reactor related to design parameters of NSSS and BOP should be decided at first. The top tier requirement includes general design basis, capacity and characteristics of reactor, various requirements related to safety, performance, securities, economics, site, and etc.. Extensive discussion has been done within Korea Atomic Energy Research Institute(KAERI) for the decision of top tier requirements of the prototype reactor. The core outlet temperature, which should be described as top tier requirements, is one of the critical parameter for system design. The higher core exit temperature could contribute to increase the plant efficiency. However, it could also contribute to decrease the design margin for structure and safety. Therefore various operating strategies based on different core outlet temperatures should be examined and evaluated. For the prototype reactor two core outlet temperatures are taken into accounted. The lower temperature is for the operation condition and the higher temperature is for the system design and licensing process of the prototype reactor. In order to evaluate the operability of prototype reactor designed based on higher temperature, the heat balance calculations have been performed at different core outlet temperature conditions. The electrical power of prototype reactor was assumed to be 100MWe and reference operating conditions were decided based on existing available data. The

  7. Transient core-debris bed heat-removal experiments and analysis

    International Nuclear Information System (INIS)

    Ginsberg, T.; Klein, J.; Klages, J.; Schwarz, C.E.; Chen, J.C.

    1982-08-01

    An experimental investigation is reported of the thermal interaction between superheated core debris and water during postulated light-water reactor degraded core accidents. Data are presented for the heat transfer characteristics of packed beds of 3 mm spheres which are cooled by overlying pools of water. Results of transient bed temperature and steam flow rate measurements are presented for bed heights in the range 218 mm-433 mm and initial particle bed temperatures between 530K and 972K. Results display a two-part sequential quench process. Initial frontal cooling leaves pockets or channels of unquenched spheres. Data suggest that heat transfer process is limited by a mechanism of countercurrent two-phase flow. An analytical model which combines a bed energy equation with either a quasisteady version of the Lipinski debris bed model or a critical heat flux model reasonably well predicts the characteristic features of the bed quench process. Implications with respect to reactor safety are discussed

  8. Multiobjective optimization for design of multifunctional sandwich panel heat pipes with micro-architected truss cores

    International Nuclear Information System (INIS)

    Roper, Christopher S.

    2011-01-01

    A micro-architected multifunctional structure, a sandwich panel heat pipe with a micro-scale truss core and arterial wick, is modeled and optimized. To characterize multiple functionalities, objective equations are formulated for density, compressive modulus, compressive strength, and maximum heat flux. Multiobjective optimization is used to determine the Pareto-optimal design surfaces, which consist of hundreds of individually optimized designs. The Pareto-optimal surfaces for different working fluids (water, ethanol, and perfluoro(methylcyclohexane)) as well as different micro-scale truss core materials (metal, ceramic, and polymer) are determined and compared. Examination of the Pareto fronts allows comparison of the trade-offs between density, compressive stiffness, compressive strength, and maximum heat flux in the design of multifunctional sandwich panel heat pipes with micro-scale truss cores. Heat fluxes up to 3.0 MW/m 2 are predicted for silicon carbide truss core heat pipes with water as the working fluid.

  9. Numerical Analysis on Heat Flux Distribution through the Steel Liner of the Ex-vessel Core Catcher

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Hong; Choi, Choeng Ryul [ELSOLTEC, Yongin (Korea, Republic of); Kim, Byung Jo; Lee, Kyu Bok [KEPCO, Gimcheon (Korea, Republic of); Hwang, Do Hyun [KHNP-CRI, Daejeon (Korea, Republic of)

    2016-05-15

    In order to prevent material failure of steel container of the core catcher system due to high temperatures, heat flux through the steel liner wall must be kept below the critical heat flux (CHF), and vapor dry-out of the cooling channel must be avoided. In this study, CFD methodology has been developed to simulate the heat flux distribution in the core catcher system, involving following physical phenomena: natural convection in the corium pool, boiling heat transfer and solidification/melting of the corium. A CFD methodology has been developed to simulate the thermal/hydraulic phenomena in the core catcher system, and a numerical analysis has been carried out to estimate the heat flux through the steel liner of the core catcher. High heat flux values are formed at the free surface of the corium pool. However, the heat flux through the steel liner is maintained below the critical heat flux.

  10. Simulation of heat and mass transfer processes in molten core debris-concrete systems. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Felde, D K

    1979-01-01

    The heat and mass transport phenomena taking place in volumetrically-heated fluids have become of interest in recent years due to their significance in assessments of fast reactor safety and post-accident heat removal (PAHR). Following a hypothetical core disruptive accident (HCDA), the core and reactor internals may melt down. The core debis melting through the reactor vessel and guard vessel may eventually contact the concrete of the reactor cell floor. The interaction of the core debris with the concrete as well as the melting of the debris pool into the concrete will significantly affect efforts to prevent breaching of the containment and the resultant release of radioactive effluents to the environment.

  11. Remote-Steering Antennas for 140 GHz Electron Cyclotron Heating of the Stellarator W7-X

    Directory of Open Access Journals (Sweden)

    Lechte C.

    2017-01-01

    Full Text Available For electron cyclotron resonance heating of the stellarator W7-X at IPP Greifswald, a 140 GHz/10 MW cw millimeter wave system has been built. Two out of 12 launchers will employ a remote-steering design. This paper describes the overall design of the two launchers, and design issues like input coupling structures, manufacturing of corrugated waveguides, optimization of the steering range, integration of vacuum windows, mitrebends and vacuum valves into the launchers, as well as low power tests of the finished waveguides.

  12. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Clark, J.S.; Walton, J.T.; Mcguire, M.L.

    1992-07-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines. 11 refs

  13. THE INFLUENCE OF PRE-HEAT TREATMENT ON WHITE CAST IRONS PLASTICITY

    Directory of Open Access Journals (Sweden)

    T. M. Myronova

    2013-11-01

    Full Text Available Purpose. The development of heat treatment modes of white cast irons for structure changes in their eutectic constituent, namely in disturbing the monolithic structure of ledeburite colonies cementite structure and eutectic net continuity. Also the mentioned heat treatment modes are targeted to the eutectic net shift for the most suitable position from the point of plastic deforming. Methodology. The hypoeutectic white cast irons with 2.92…3.35 % carbon content and additionally alloyed by 3.18 % vanadium have been used as the research materials. The mentioned alloys have been pre-heat treated and hot twist tested. Findings. The research results showed that the carbide net breaking by plastic deforming leads to cast irons mechanical properties increasing but has difficulties in implementation due to the white cast irons low plasticity. The influence of different pre-heat treatment modes on structure and plasticity of white hypoeutectic cast irons have been investigated. They include the isotherm soaking under the different temperatures as well as multiply soakings and thermo-cycling. The influence of eutectic level, as well as pre heat treatment modes on different composition white cast irons hot plasticity have been investigated. Originality. It was determined that the heat treatment, which leads to double α→γ recrystallization under 860 – 950 °С and reperlitization under 720-680 °С results in significant increase of plasticity, as well as in un-alloyed and alloyed by vanadium white cast irons. It takes place due to carbide matrix phase separation in ledeburite colonies by new phase boundaries forming especially due to carbide transformations under vanadium alloying. Practical value. The implementation of pre-heat treatment with phase recrystallization resulted in hypoeutectic white cast irons plasticity increasing. The obtained level of cast iron plasticity corresponds to the one of carbide class steels, which ensures the successful

  14. Microwave pre-heating of natural rubber using a rectangular wave guide (MODE: TE10

    Directory of Open Access Journals (Sweden)

    Doo-ngam, N.

    2007-11-01

    Full Text Available This paper presents an application of microwave radiation for pre-heating of natural rubbercompounding with various sulphur contents. The natural rubber-compounding was pre-heated by microwave radiation using a rectangular wave guide system (MODE: TE10 operating at frequency of 2.45 GHz in which the power can vary from 0 to 1500 W. In the present work, the influence of power input, sample thickness, and sulphur content were examined after applying microwave radiation to the rubber samples. Results are discussed regarding the thermal properties, 3-D network, dielectric properties and chemical structures. From the result, firstly, it was found that microwave radiation can be applied to pre-heating natural rubber-compounding before the vulcanization process. Secondly, microwave radiation was very useful for pre-heating natural rubber-compounding that has a thickness greater than 5mm. Thirdly, crosslinking in natural rubber-compounding may occurs after pre-heating by microwave radiation though Fourier Transform Infrared Spectroscopy(FTIR. Finally, there a little effect of sulphur content on temperature profiles after applying microwave radiation to the natural rubber-compounding. Moreover, natural rubber-compounding without carbon black showed a lower heat absorption compared with natural rubbercompounding filled carbon black. This is due to the difference in dielectric loss factor. This preliminary result will be useful information in terms of microwave radiation for pre-heating natural rubber-compounding and rubber processing in industry.

  15. Core heat transfer analysis during a BWR LOCA simulation experiment at ROSA-III

    International Nuclear Information System (INIS)

    Yonomoto, T.; Koizumi, Y.; Tasaka, K.

    1987-01-01

    The ROSA-III test facility is a 1/424-th volumetrically scaled BWR/6 simulator with an electrically heated core to study the thermal-hydraulic response during a postulated loss-of-coolant accident (LOCA). Heat transfer analyses for 5, 15, 50 and 200% break tests were conducted to understand the basic heat transfer behavior in the core under BWR LOCA conditions and to obtain a data base of post-critical heat flux (CHF) heat transfer coefficients and quench temperature. The results show that the convective heat transfer coefficient of dried-out rods at the core midplane during a steam cooling period is less than approximately 120 W/m 2 K. It is larger than existing data measured at lower pressures during a spray cooling period. Bottom-up quench temperatures are given by a simple equations: The sum of the saturation temperature and a constant of 262 K. Then the heat transfer model in the RELAP4/MOD6/U4/J3 code was revised using the present results. The rod surface temperature behavior in the 200% break test was calculated better by using the revised model although the model is very simple. (orig.)

  16. The Updated BaSTI Stellar Evolution Models and Isochrones. I. Solar-scaled Calculations

    Science.gov (United States)

    Hidalgo, Sebastian L.; Pietrinferni, Adriano; Cassisi, Santi; Salaris, Maurizio; Mucciarelli, Alessio; Savino, Alessandro; Aparicio, Antonio; Silva Aguirre, Victor; Verma, Kuldeep

    2018-04-01

    We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar-scaled heavy element distribution. The main input physics that have been changed from the previous BaSTI release include the solar metal mixture, electron conduction opacities, a few nuclear reaction rates, bolometric corrections, and the treatment of the overshooting efficiency for shrinking convective cores. The new model calculations cover a mass range between 0.1 and 15 M ⊙, 22 initial chemical compositions between [Fe/H] = ‑3.20 and +0.45, with helium to metal enrichment ratio dY/dZ = 1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, consistently take into account the pre-main-sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been calculated. We compare our isochrones with results from independent databases and with several sets of observations to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties, and isochrones are made available through a dedicated web site.

  17. Microwave heating and diagnostic of suprathermal electrons in an overdense stellarator plasma

    International Nuclear Information System (INIS)

    Stange, Torsten

    2014-01-01

    The resonant coupling of microwaves into a magnetically confined plasma is one of the fundamental methods for the heating of such plasmas. Identifying and understanding the processes of the heating of overdense plasmas, in which the wave propagation is generally not possible because the wave frequency is below the plasma frequency, is becoming increasingly important for high density fusion plasmas. This work focuses on the heating of overdense plasmas in the WEGA stellarator. The excitation of electron Bernstein waves, utilizing the OXB-conversion process, provides a mechanism for the wave to reach the otherwise not accessible resonant absorption layer. In WEGA these OXB-heated plasmas exhibit a suprathermal electron component with energies up to 80 keV. The fast electrons are located in the plasma center and have a Maxwellian energy distribution function within the soft X-ray related energy range. The corresponding averaged energy is a few keV. The OXB-discharges are accompanied by a broadband microwave radiation spectrum with radiation temperatures of the order of keV. Its source was identified as a parametric decay of the heating wave and has no connection to the suprathermal electron component. For the detailed investigation of the microwave emission, a quasioptical mirror system, optimized for the OX-conversion, has been installed. Based on the measurement of the broadband microwave stray radiation of the decay process, the OX-conversion efficiency has been determined to 0.56 being in good agreement with full-wave calculations. In plasmas without an electron cyclotron resonance, corresponding to the wave frequency used, non-resonant heating mechanisms have been identified in the overdense plasma regions. Whistler waves or R-like waves are the only propagable wave types within the overdense plasmas. The analysis of the heating efficiency in dependence on the magnetic flux density leads to tunneling as the most probable coupling mechanism. For the determination

  18. Heat transfer analysis to investigate the core catcher plate assembly in SFR

    International Nuclear Information System (INIS)

    Patil, Swapnil; Sharma, Anil Kumar; Velusamy, K.; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    Severe accident scenario in Sodium Cooled Fast Reactor (SFR) is the major concern for public acceptance. After severe accident, the molten core continuously generates substantial decay heat. However, an in-vessel core catcher plate is provided to remove the decay heat passively. The numerical investigation of pool hydraulics phenomena in sodium pool of typical Indian SFR has been carried out. The debris may form a heap with different angle over the core catcher plate due to molten fuel density and interaction force. Therefore, the debris bed with different heap angle has been analyzed for steady and transient state conditions. The governing equation of fluid flow and heat transfer are solved by finite volume method based solver with the k-ε turbulent model. The time period Δ for which temperature is exceeding above safety limit with different debris heap angle have been established. (author)

  19. Performance enhancement of multi-core fiber transmission using real-time FPGA based pre-emphasis

    NARCIS (Netherlands)

    Hasanuzzaman, G. K.M.; Spolitis, S.; Salgals, T.; Braunfelds, J.; Morales, A.; Gonzalez, L. E.; Rommel, S.; Puerta, R.; Asensio, P.; Bobrovs, V.; Iezekiel, S.; Tafur Monroy, I.

    2017-01-01

    We experimentally demonstrate pre-emphasis based performance for a 2 km long 7-core multicore fiber link. Simultaneous transmission below the FEC threshold is achievable for all cores by using signal equalization in a FPGA.

  20. The WEGA Stellarator: Results and Prospects

    International Nuclear Information System (INIS)

    Otte, M.; Andruczyk, D.; Koenig, R.; Laqua, H. P.; Lischtschenko, O.; Marsen, S.; Schacht, J.; Podoba, Y. Y.; Wagner, F.; Warr, G. B.; Holzhauer, E.; Howard, J.; Krupnik, L.; Zhezhera, A.; Urban, J.; Preinhalter, J.

    2008-01-01

    In this article an overview is given on results from magnetic flux surface measurements, applied ECR heating scenarios for 2.45 GHz and 28 GHz, fluctuation and transport studies and plasma edge biasing experiments performed in the WEGA stellarator. Examples for the development of new diagnostics and the machine control system are given that will be used at Wendelstein 7-X stellarator, which is currently under construction in Greifswald

  1. 8. stellarator workshop

    International Nuclear Information System (INIS)

    1991-07-01

    The technical reports in this collection of papers were presented at the 8th International Workshop on Stellarators, and International Atomic Energy Agency Technical Committee Meeting. They include presentations on transport, magnetic configurations, fluctuations, equilibrium, stability, edge plasma and wall aspects, heating, diagnostics, new concepts and reactor studies. Refs, figs and tabs

  2. Stellarator physics

    International Nuclear Information System (INIS)

    1990-07-01

    This document consists of the proceedings of the Seventh International Workshop on Stellarators, held in Oak Ridge, Tennessee, USA, 10-14 April, 1989. The document consists of a summary of presentations, an overview of experimental results, and papers presented at the workshop on transport, impurities and divertors, diagnostics, ECH confinement experiments, equilibrium and stability studies, RF heating, confinement, magnetic configurations, and new experiments. Refs, figs and tabs

  3. Evaluation of focused ultrasound algorithms: Issues for reducing pre-focal heating and treatment time.

    Science.gov (United States)

    Yiannakou, Marinos; Trimikliniotis, Michael; Yiallouras, Christos; Damianou, Christakis

    2016-02-01

    Due to the heating in the pre-focal field the delay between successive movements in high intensity focused ultrasound (HIFU) are sometimes as long as 60s, resulting to treatment time in the order of 2-3h. Because there is generally a requirement to reduce treatment time, we were motivated to explore alternative transducer motion algorithms in order to reduce pre-focal heating and treatment time. A 1 MHz single element transducer with 4 cm diameter and 10 cm focal length was used. A simulation model was developed that estimates the temperature, thermal dose and lesion development in the pre-focal field. The simulated temperature history that was combined with the motion algorithms produced thermal maps in the pre-focal region. Polyacrylimde gel phantom was used to evaluate the induced pre-focal heating for each motion algorithm used, and also was used to assess the accuracy of the simulation model. Three out of the six algorithms having successive steps close to each other, exhibited severe heating in the pre-focal field. Minimal heating was produced with the algorithms having successive steps apart from each other (square, square spiral and random). The last three algorithms were improved further (with small cost in time), thus eliminating completely the pre-focal heating and reducing substantially the treatment time as compared to traditional algorithms. Out of the six algorithms, 3 were successful in eliminating the pre-focal heating completely. Because these 3 algorithms required no delay between successive movements (except in the last part of the motion), the treatment time was reduced by 93%. Therefore, it will be possible in the future, to achieve treatment time of focused ultrasound therapies shorter than 30 min. The rate of ablated volume achieved with one of the proposed algorithms was 71 cm(3)/h. The intention of this pilot study was to demonstrate that the navigation algorithms play the most important role in reducing pre-focal heating. By evaluating in

  4. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Zhejiang 300027 (China)

    2008-06-15

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC.

  5. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC

  6. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Kawaji, Masahiro [City College of New York, NY (United States); Valentin, Francisco I. [City College of New York, NY (United States); Artoun, Narbeh [City College of New York, NY (United States); Banerjee, Sanjoy [City College of New York, NY (United States); Sohal, Manohar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-21

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spots in the VHTR core.

  7. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    International Nuclear Information System (INIS)

    Kawaji, Masahiro; Valentin, Francisco I.; Artoun, Narbeh; Banerjee, Sanjoy; Sohal, Manohar; Schultz, Richard; McEligot, Donald M.

    2015-01-01

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spots in the VHTR core.

  8. Numerical simulation of passive heat removal under severe core meltdown scenario in a sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    David, Dijo K.; Mangarjuna Rao, P., E-mail: pmr@igcar.gov.in; Nashine, B.K.; Selvaraj, P.; Chellapandi, P.

    2015-09-15

    Highlights: • PAHR in SFR under large core relocation to in-vessel core catcher is numerically analyzed. • A 1-D thermal conduction model and a 2-D axisymmetric CFD model are developed for turbulent natural convection phenomenon. • The side pool (cold pool) was found out to be instrumental in storing heat and dissipating it to the heat sink. • Single tray type in-vessel core catcher is found to be thermally effective under one-fourth core relocation. - Abstract: A sequence of highly unlikely events leading to significant meltdown of the Sodium cooled Fast Reactor (SFR) core can cause the failure of reactor vessel if the molten fuel debris settles at the bottom of the reactor main vessel. To prevent this, pool type SFRs are usually provided with an in-vessel core catcher above the bottom wall of the main vessel. The core catcher should collect, retain and passively cool these debris by facilitating decay heat removal by natural convection. In the present work, the heat removal capability of the existing single tray core catcher design has been evaluated numerically by analyzing the transient development of natural convection loops inside SFR pool. A 1-D heat diffusion model and a simplified 2-D axi-symmetric CFD model are developed for the same. Maximum temperature of the core catcher plate evaluated for different core meltdown scenarios using these models showed that there is much higher heat removal potential for single tray in-vessel SFR core catcher compared to the design basis case of melting of 7 subassemblies under total instantaneous blockage of a subassembly. The study also revealed that the side pool of cold sodium plays a significant role in decay heat removal. The maximum debris bed temperature attained during the initial hours of PAHR does not depend much on when the Decay Heat Exchanger (DHX) gets operational, and it substantiates the inherent safety of the system. The present study paves the way for better understanding of the thermal

  9. Integrated CFD investigation of heat transfer enhancement using multi-tray core catcher in SFR

    International Nuclear Information System (INIS)

    Rakhi; Sharma, Anil Kumar; Velusamy, K.

    2017-01-01

    Highlights: • Heat transfer enhancement using multi-tray core catcher for SFR is investigated. • The capability of a single core collector tray is estimated. • Double and triple collector trays with innovative designs is discussed. • Provision of openings in the trays contributed to enhanced natural circulation. - Abstract: To render future SFR more robust and safe, certain BDBE have been considered in the recent years. A Core Disruptive Accident leading to a whole core meltdown scenario has gained the interest of researchers. Various design concepts and safety measures have been suggested and incorporated in design to address such a low probability scenario. A core catcher concept, in particular, has proved to be inevitable as an in-vessel core retention device in SFR for safe retention of core debris arising out after the severe accident. This study aims to analyse the cooling capability of the innovative design concept of core catcher to remove decay heat of degraded core after the accident. First, the capability of single collection tray is established and then the study is extended to two and three collection trays with different design concepts. Transient forms of governing equations of mass, momentum and energy conservations along with k-ε turbulence model are solved by finite volume based CFD solver. Boussinesq approximation is invoked to model buoyancy in sodium. The study shows that a single collection tray is capable of removing up to 20 MW decay heat load in a typical 500 MWe pool type SFR. Further, studies are carried out to improve the natural circulation of sodium around the source, in the lower plenum and to distribute core debris of the whole core to multiple collection trays. It is found that the double and triple collection trays can accommodate decay loads up to 29 MW. Provision of openings in the collection trays has proved to be effective in improving the heat transfer and sodium flow as well as in distributing the core debris to the

  10. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  11. MONTE CARLO SIMULATIONS OF GLOBULAR CLUSTER EVOLUTION. V. BINARY STELLAR EVOLUTION

    International Nuclear Information System (INIS)

    Chatterjee, Sourav; Umbreit, Stefan; Rasio, Frederic A.; Fregeau, John M.

    2010-01-01

    We study the dynamical evolution of globular clusters containing primordial binaries, including full single and binary stellar evolution using our Monte Carlo cluster evolution code updated with an adaptation of the single and binary stellar evolution codes SSE and BSE from Hurley et al. We describe the modifications that we have made to the code. We present several test calculations and comparisons with existing studies to illustrate the validity of the code. We show that our code finds very good agreement with direct N-body simulations including primordial binaries and stellar evolution. We find significant differences in the evolution of the global properties of the simulated clusters using stellar evolution compared with simulations without any stellar evolution. In particular, we find that the mass loss from the stellar evolution acts as a significant energy production channel simply by reducing the total gravitational binding energy and can significantly prolong the initial core contraction phase before reaching the binary-burning quasi-steady state of the cluster evolution. We simulate a large grid of models varying the initial cluster mass, binary fraction, and concentration parameter, and we compare properties of the simulated clusters with those of the observed Galactic globular clusters (GGCs). We find that simply including stellar evolution in our simulations and assuming the typical initial cluster half-mass radius is approximately a few pc independent of mass, our simulated cluster properties agree well with the observed GGC properties such as the core radius and the ratio of the core radius to the half-mass radius. We explore in some detail qualitatively different clusters in different phases of their evolution and construct synthetic Hertzsprung-Russell diagrams for these clusters.

  12. A Spectroscopic Study of Young Stellar Objects in the Serpens Cloud Core and NGC 1333

    Science.gov (United States)

    Winston, E.; Megeath, S. T.; Wolk, S. J.; Hernandez, J.; Gutermuth, R.; Muzerolle, J.; Hora, J. L.; Covey, K.; Allen, L. E.; Spitzbart, B.; Peterson, D.; Myers, P.; Fazio, G. G.

    2009-06-01

    We present spectral observations of 130 young stellar objects (YSOs) in the Serpens Cloud Core and NGC 1333 embedded clusters. The observations consist of near-IR spectra in the H and K bands from SpeX on the IRTF and far-red spectra (6000-9000 Å) from Hectospec on the Multi-Mirror Telescope. These YSOs were identified in previous Spitzer and Chandra observations, and the evolutionary classes of the YSOs were determined from the Spitzer mid-IR photometry. With these spectra we search for corroborating evidence for the pre-main-sequence nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed YSOs. The temperatures implied by the spectral types are combined with luminosities determined from the near-IR photometry to construct Hertzsprung-Russell (H-R) diagrams for the clusters. By comparing the positions of the YSOs in the H-R diagrams with the pre-main-sequence tracks of Baraffe (1998), we determine the ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks. The apparent isochronal ages of the YSOs in both clusters range from less than 1 Myr to 10 Myr, with most objects below 3 Myr. The observed distributions of ages for the Class II and Class III objects are statistically indistinguishable. We examine the spatial distribution and extinction of the YSOs as a function of their isochronal ages. We find the sources dispersed and are not deeply embedded. Nonetheless, the sources with isochronal ages >3 Myr show all the characteristics of YSOs in their spectra, their IR spectral energy distributions, and their X-ray emission; we find no evidence that they are contaminating background giants or foreground dwarfs. However, we find no corresponding decrease in the fraction of sources with infrared excess with isochronal age; this suggests that the older isochronal ages may not measure the true age of the >3

  13. Cytotoxic T lymphocytes and CD4 epitope mutations in the pre-core/core region of hepatitis B virus in chronic hepatitis B carriers in Northeast Iran.

    Science.gov (United States)

    Zhand, Sareh; Tabarraei, Alijan; Nazari, Amineh; Moradi, Abdolvahab

    2017-07-01

    Hepatitis B virus (HBV) is vulnerable to many various mutations. Those within epitopes recognized by sensitized T cells may influence the re-emergence of the virus. This study was designed to investigate the mutation in immune epitope regions of HBV pre-core/core among chronic HBV patients of Golestan province, Northeast Iran. In 120 chronic HBV carriers, HBV DNA was extracted from blood plasma samples and PCR was done using specific primers. Direct sequencing and alignment of the pre-core/core region were applied using reference sequence from Gene Bank database (Accession Number AB033559). The study showed 27 inferred amino acid substitutions, 9 of which (33.3%) were in CD4 and 2 (7.4%) in cytotoxic T lymphocytes' (CTL) epitopes and 16 other mutations (59.2%) were observed in other regions. CTL escape mutations were not commonly observed in pre-core/core sequences of chronic HBV carriers in the locale of study. It can be concluded that most of the inferred amino acid substitutions occur in different immune epitopes other than CTL and CD4.

  14. Critical evaluation of molybdenum and its alloys for use in space reactor core heat pipes

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is examined, and the advantages and disadvantages of this material are brought into focus. Even though pure molybdenum heat pipes have been built and tested, this metal's high ductile-brittle transition temperature and modest creep strength place significant design restrictions on a core heat pipe made from it. Molybdenum alloys are examined with regard to their promise as potential replacements for pure molybdenum. The properties of TZM and molybdenum-rhenium alloys are examined, and it appears that Mo-Re alloys with 10 to 15 wt % rhenium offer the most advantage as an alternative to pure molybdenum in space reactor core heat pipes

  15. Turbulence optimisation in stellarator experiments

    Energy Technology Data Exchange (ETDEWEB)

    Proll, Josefine H.E. [Max-Planck/Princeton Center for Plasma Physics (Germany); Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstr. 1, 17491 Greifswald (Germany); Faber, Benjamin J. [HSX Plasma Laboratory, University of Wisconsin-Madison, Madison, WI 53706 (United States); Helander, Per; Xanthopoulos, Pavlos [Max-Planck/Princeton Center for Plasma Physics (Germany); Lazerson, Samuel A.; Mynick, Harry E. [Plasma Physics Laboratory, Princeton University, P.O. Box 451 Princeton, New Jersey 08543-0451 (United States)

    2015-05-01

    Stellarators, the twisted siblings of the axisymmetric fusion experiments called tokamaks, have historically suffered from confining the heat of the plasma insufficiently compared with tokamaks and were therefore considered to be less promising candidates for a fusion reactor. This has changed, however, with the advent of stellarators in which the laminar transport is reduced to levels below that of tokamaks by shaping the magnetic field accordingly. As in tokamaks, the turbulent transport remains as the now dominant transport channel. Recent analytical theory suggests that the large configuration space of stellarators allows for an additional optimisation of the magnetic field to also reduce the turbulent transport. In this talk, the idea behind the turbulence optimisation is explained. We also present how an optimised equilibrium is obtained and how it might differ from the equilibrium field of an already existing device, and we compare experimental turbulence measurements in different configurations of the HSX stellarator in order to test the optimisation procedure.

  16. Pre-HEAT: submillimeter site testing and astronomical spectra from Dome A, Antarctica

    Science.gov (United States)

    Kulesa, C. A.; Walker, C. K.; Schein, M.; Golish, D.; Tothill, N.; Siegel, P.; Weinreb, S.; Jones, G.; Bardin, J.; Jacobs, K.; Martin, C. L.; Storey, J.; Ashley, M.; Lawrence, J.; Luong-Van, D.; Everett, J.; Wang, L.; Feng, L.; Zhu, Z.; Yan, J.; Yang, J.; Zhang, X.-G.; Cui, X.; Yuan, X.; Hu, J.; Xu, Z.; Jiang, Z.; Yang, H.; Li, Y.; Sun, B.; Qin, W.; Shang, Z.

    2008-07-01

    Pre-HEAT is a 20 cm aperture submillimeter-wave telescope with a 660 GHz (450 micron) Schottky diode heterodyne receiver and digital FFT spectrometer for the Plateau Observatory (PLATO) developed by the University of New South Wales. In January 2008 it was deployed to Dome A, the summit of the Antarctic plateau, as part of a scientific traverse led by the Polar Research Institute of China and the Chinese Academy of Sciences. Dome A may be one of the best sites in the world for ground based Terahertz astronomy, based on the exceptionally cold, dry and stable conditions which prevail there. Pre-HEAT is measuring the 450 micron sky opacity at Dome A and mapping the Galactic Plane in the 13CO J=6-5 line, constituting the first submillimeter measurements from Dome A. It is field-testing many of the key technologies for its namesake -- a successor mission called HEAT: the High Elevation Antarctic Terahertz telescope. Exciting prospects for submillimeter astronomy from Dome A and the status of Pre-HEAT will be presented.

  17. Weakly interacting massive particles and stellar structure

    International Nuclear Information System (INIS)

    Bouquet, A.

    1988-01-01

    The existence of weakly interacting massive particles (WIMPs) may solve both the dark matter problem and the solar neutrino problem. Such particles affect the energy transport in the stellar cores and change the stellar structure. We present the results of an analytic approximation to compute these effects in a self-consistent way. These results can be applied to many different stars, but we focus on the decrease of the 8 B neutrino flux in the case of the Sun

  18. A pre-heating method based on sinusoidal alternating current for lithium-ion battery

    Science.gov (United States)

    Fan, Wentao; Sun, Fengchun; Guo, Shanshan

    2018-04-01

    In this paper, a method of low temperature pre-heating of sinusoidal alternating current (SAC) is proposed. Generally, the lower the frequency of the AC current, the higher the heat generation rate. Yet at low frequency, there is a risk of lithium-ion deposition during the half cycle of charging. This study develops a temperature-adaptive, deposition-free AC pre-heating method. a equivalent electric circuit(EEC) model is established to predict the heat generation rate and temperature status, whose parameters are calibrated from the EIS impedance measurements. The effects of current frequency and amplitude on the heating effect are investigated respectively. A multistep temperature-adaptive amplitude strategy is proposed and the cell can be heated from -20°C to 5°C within 509s at 100Hz frequency with this method.

  19. Heating analysis of cobalt adjusters in reactor core

    International Nuclear Information System (INIS)

    Mei Qiliang; Li Kang; Fu Yaru

    2011-01-01

    In order to produce 60 Co source for industry and medicine applications in CANDU-6 reactor, the stainless steel adjusters were replaced with the cobalt adjusters. The cobalt rod will generate the heat when it is irradiated by neutron and γ ray. In addition, 59 Co will be activated and become 60 Co, the ray released due to 60 Co decay will be absorbed by adjusters, and then the adjusters will also generate the heat. So the heating rate of adjusters to be changed during normal operation must be studied, which will be provided as the input data for analyzing the temperature field of cobalt adjusters and the relative heat load of moderator. MCNP code was used to simulate whole core geometric configuration in detail, including reactor fuel, control rod, adjuster, coolant and moderator, and to analyze the heating rate of the stainless steel adjusters and the cobalt adjusters. The maximum heating rate of different cobalt adjuster based on above results will be provided for the steady thermal hydraulic and accident analysis, and make sure that the reactor is safe on the thermal hydraulic. (authors)

  20. Constructing a small modular stellarator in Latin America

    International Nuclear Information System (INIS)

    Vargas, V I; Mora, J; Asenjo, J; Zamora, E; Otárola, C; Barillas, L; Carvajal-Godínez, J; González-Gómez, J; Soto-Soto, C; Piedras, C

    2015-01-01

    This paper aims at briefly describing the design and construction issues of the stellarator of Costa Rica 1 (SCR-1). The SCR-1 is a small modular stellarator for magnetic confinement of plasma developed by the Plasma Laboratory for Fusion Energy and Applications of the Instituto Tecnológico de Costa Rica (ITCR). SCR-1 will be a 2-field period small modular stellarator with an aspect ratio > 4.4; low shear configuration with core and edge rotational transform equal to 0.32 and 0.28; it will hold plasma in a 6061-T6 aluminum torus shaped vacuum vessel with an minor plasma radius 54.11 mm, a volume of 13.76 liters (0.01 m3), and major radius R = 238 mm. Plasma will be confined in the volume by on axis magnetic field 43.8 mT generated by 12 modular coils with 6 turns each, carrying a current of 767.8 A per turn providing a total toroidal field (TF) current of 4.6 kA-turn per coil. The coils will be supplied by a bank of cell batteries of 120 V. Typical length of the plasma pulse will be between 4 s to 10 s. The SCR-1 plasmas will be heated by ECH second harmonic at 2.45 GHz with a plasma density cut-off value of 7.45 × 10 16 m -3 . Two magnetrons with a maximum output power of 2 kW and 3 kW will be used. (paper)

  1. CAUSE AND EFFECT OF FEEDBACK: MULTIPHASE GAS IN CLUSTER CORES HEATED BY AGN JETS

    International Nuclear Information System (INIS)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-01-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI /t ff ) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments 'rain' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI /t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI /t ff ∼< 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  2. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  3. Possible generation of heat from nuclear fusion in Earth's inner core.

    Science.gov (United States)

    Fukuhara, Mikio

    2016-11-23

    The cause and source of the heat released from Earth's interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: 2 D +  2 D +  2 D → 2 1 H +  4 He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 10 12  J/m 3 , based on the assumption that Earth's primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth's interior to the universe, and pass through Earth, respectively.

  4. Pre-design stage of the intermediate heat exchanger for experimental fast reactor

    International Nuclear Information System (INIS)

    Luz, M.; Borges, E.M.; Braz Filho, F.A.; Hirdes, V.R.

    1986-09-01

    This report presents the outlines of a thermal-hydraulic calculation procedure for the pre-design stage of the Intermediate Heat Exchanger for a 5 MW Experimental Fast Reactor (EFR), which can be used in other similar projects, at the same stage of evolution. Heat transfer and heat loss computations for the preliminary design of the heat exchanger are presented. (author) [pt

  5. Study of heat removal by natural convection from the internal core catcher in PFBR using water model experiments

    International Nuclear Information System (INIS)

    Jasmin Sudha, A.; Punitha, G.; Das, S.K.; Lydia, G.; Murthy, S.S.; Malarvizhi, B.; Harvey, J.; Kannan, S.E.

    2005-01-01

    Full text of publication follows: In the event of a core meltdown accident in a Fast Breeder Reactor, the molten core material settling on the bottom of the main vessel can endanger the structural integrity of the main vessel. In the design of Prototype Fast Breeder Reactor in India, the construction of which is about to commence, a core catcher is provided as the internal core retention device to collect and retain the core debris in a coolable configuration. Heat transfer by natural convection above and below the core catcher plate, in the zone beneath the core support structure is evaluated from water mockup experiments in the 1:4 geometrically scaled setup. These studies were undertaken towards comparison of experimentally measured temperatures at different locations with the numerical results. The core catcher assembly consists of a core catcher plate, a heat shield plate and a chimney. Decay heat from the core debris is simulated by electrical heating of the heat shield plate. An opening is provided in the cover plate to reproduce the situation in the actual accident where the core debris would have breached a part of the core support structure. Experiments were carried out with different heat flux levels prevailing upon the heat shield plate. Temperature monitoring was done at more than 100 locations, distributed both on the solid components and in water. The temperature data was analysed to get the temperature profile at different steady state conditions. Flow visualisation was also carried out using water soluble dye to establish the direction of the convective currents. The captured images show that water flows through the slots provided in the top portion of the chimney in the upward direction as evidenced from the diffusion of dye injected inside the chimney. Both the temperature data and flow visualisation confirm mixing of water through the opening in the core support structure which indicates that natural convection is set up in that zone

  6. Formation of massive, dense cores by cloud-cloud collisions

    Science.gov (United States)

    Takahira, Ken; Shima, Kazuhiro; Habe, Asao; Tasker, Elizabeth J.

    2018-05-01

    We performed sub-parsec (˜ 0.014 pc) scale simulations of cloud-cloud collisions of two idealized turbulent molecular clouds (MCs) with different masses in the range of (0.76-2.67) × 104 M_{⊙} and with collision speeds of 5-30 km s-1. Those parameters are larger than in Takahira, Tasker, and Habe (2014, ApJ, 792, 63), in which study the colliding system showed a partial gaseous arc morphology that supports the NANTEN observations of objects indicated to be colliding MCs using numerical simulations. Gas clumps with density greater than 10-20 g cm-3 were identified as pre-stellar cores and tracked through the simulation to investigate the effects of the mass of colliding clouds and the collision speeds on the resulting core population. Our results demonstrate that the smaller cloud property is more important for the results of cloud-cloud collisions. The mass function of formed cores can be approximated by a power-law relation with an index γ = -1.6 in slower cloud-cloud collisions (v ˜ 5 km s-1), and is in good agreement with observation of MCs. A faster relative speed increases the number of cores formed in the early stage of collisions and shortens the gas accretion phase of cores in the shocked region, leading to the suppression of core growth. The bending point appears in the high-mass part of the core mass function and the bending point mass decreases with increase in collision speed for the same combination of colliding clouds. The higher-mass part of the core mass function than the bending point mass can be approximated by a power law with γ = -2-3 that is similar to the power index of the massive part of the observed stellar initial mass function. We discuss implications of our results for the massive-star formation in our Galaxy.

  7. Solar pre-heating of water for steam generation in the friendship textile mill

    International Nuclear Information System (INIS)

    Sid -Ahmed, M.O.; Hussien, T.

    1994-01-01

    The technology of solar water heating is simple and can be used for pre-heating of water entering a boiler. In this paper the economics of solar pre-heating of water was calculated. The calculations were based on the performance and cost of a locally-made flat plate collector, and the performance and fuel consumption of a boiler in a textile mill. The results showed that a collector area of about 800 meter square with initial cost of about LS 5,000,000, could save annually about 130 tons of furnace oil. ( Author )

  8. Experimental and neoclassical electron heat transport in the LMFP regime for the stellarators W7-A, L-2, and W7-AS

    International Nuclear Information System (INIS)

    Maassberg, H.; Burhenn, R.; Gasparino, U.; Kuehner, G.; Ringler, H.; Dyabilin, K.S.

    1993-01-01

    The electron energy balance is analyzed for equivalent low-density electron cyclotron resonance heated (ECRH) discharges with highly peaked central power deposition in the stellarators W7-A [Plasma Phys. Controlled Fusion 28, 43 (1986)], L-2 [Proceedings of the 6th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Berchtesgaden, 1976 (International Atomic Energy Agency, Vienna, 1977), Vol. 2, p. 115] and W7-AS [Proceedings of the 9th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Baltimore, 1982 (International Atomic Energy Agency, Vienna, 1983), Vol. 3, p. 141]. Within the long mean-free path (LMFP) collisionality regime in stellarators, the neoclassical electron heat diffusivity χ e can overcome the ''anomalous'' one. The neoclassical transport coefficients are calculated by the DKES code (Drift Kinetic Equation Solver) [Phys. Fluids 29, 2951 (1986); Phys. Fluids B 1, 563 (1989)] for these configurations, and the particle and energy fluxes are estimated based on measured density and temperature profiles

  9. Formation of toroidal pre-heat plasma without residual magnetic field for high-beta pinch experiments

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)

  10. Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics

    International Nuclear Information System (INIS)

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.; Bender, Ralf; Thomas, Jens; Van den Bosch, Remco C. E.; Van de Ven, Glenn; Barentine, John C.; Gebhardt, Karl; Hill, Gary J.; Murphy, Jeremy D.; Swaters, R. A.

    2014-01-01

    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these

  11. Stellar wind theory

    International Nuclear Information System (INIS)

    Summers, D.

    1980-01-01

    The theory of stellar winds as given by the equations of classical fluid dynamics is considered. The equations of momentum and energy describing a steady, spherically symmetric, heat-conducting, viscous stellar wind are cast in a dimensionless form which involves a thermal conduction parameter E and a viscosity parameter γ. An asymptotic analysis is carried out, for fixed γ, in the cases E→O and E→infinity (corresponding to small and large thermal conductivity, respectively), and it is found that it is possible to construct critical solutions for the wind velocity and temperature over the entire flow. The E→O solution represents a wind which emanates from the star at low, subsonic speeds, accelerates through a sonic point, and then approaches a constant asymptotic speed, with its temperature varying as r/sup -4/3/ at large distances r from the star; the E→infinity solution represents a wind which, after reaching an approximately constant speed, with temperature varying as r/sup -2/7/, decelerates through a diffuse shock and approaches a finite pressure at infinity. A categorization is made of all critical stellar wind solutions for given values of γ and E, and actual numerical examples are given. Numerical solutions are obtained by integrating upstream 'from infinity' from initial values of the flow parameters given by appropriate asymptotic expansions. The role of viscosity in stellar wind theory is discussed, viscous and inviscid stellar wind solutions are compared, and it is suggested that with certain limitations, the theory presented may be useful in analyzing winds from solar-type stars

  12. Visualization of Heat Transfer and Core Damage With RGUI 1.5

    International Nuclear Information System (INIS)

    Mesina, George L.

    2002-01-01

    Graphical User Interfaces (GUI) have become an integral and essential part of computer software. In the ever-changing world of computing, they provide the user with a valuable means to learn, understand, and use the application software while also helping applications adapt to and span different computing paradigms, such as different operating systems. For these reasons, GUI development for nuclear plant analysis programs has been ongoing for a decade and a half and much progress has been made. With the development of codes such as RELAP5-3D [1] and SCDAP/RELAP5 that have multi-dimensional modeling capability, it has become necessary to represent three-dimensional, calculated data. The RELAP5-3D Graphical User Interface (RGUI) [4] was designed specifically for this purpose. It reduces the difficulty of analyzing complex three-dimensional models and enhances the analysts' ability to recognize plant behavior visually. Previous versions of RGUI [5] focused on visualizing reactor coolant behavior during a simulated transient or accident. Recent work has extended RGUI to display two other phenomena, heat transfer and core damage. Heat transfer is depicted through the visualization of RELAP5-3D heat structures. Core damage is visualized by displaying fuel rods and other core structures in a reactor vessel screen. Conditions within the core are displayed via numerical results and color maps. These new features of RGUI 1.5 are described and illustrated. (authors)

  13. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets

    Science.gov (United States)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-02-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  14. The Galactic stellar disc

    International Nuclear Information System (INIS)

    Feltzing, S; Bensby, T

    2008-01-01

    The study of the Milky Way stellar discs in the context of galaxy formation is discussed. In particular, we explore the properties of the Milky Way disc using a new sample of about 550 dwarf stars for which we have recently obtained elemental abundances and ages based on high-resolution spectroscopy. For all the stars we also have full kinematic information as well as information about their stellar orbits. We confirm results from previous studies that the thin and the thick discs have distinct abundance patterns. But we also explore a larger range of orbital parameters than what has been possible in our previous studies. Several new results are presented. We find that stars that reach high above the Galactic plane and have eccentric orbits show remarkably tight abundance trends. This implies that these stars formed out of well-mixed gas that had been homogenized over large volumes. We find some evidence that suggest that the event that most likely caused the heating of this stellar population happened a few billion years ago. Through a simple, kinematic exploration of stars with super-solar [Fe/H], we show that the solar neighbourhood contains metal-rich, high velocity stars that are very likely associated with the thick disc. Additionally, the HR1614 moving group and the Hercules and Arcturus stellar streams are discussed and it is concluded that, probably, a large fraction of the groups and streams so far identified in the disc are the result of evolution and interactions within the stellar disc rather than being dissolved stellar clusters or engulfed dwarf galaxies.

  15. A dynamic model for helium core heat exchangers

    International Nuclear Information System (INIS)

    Schiesser, W.E.; Shih, H.J.; Hartozog, D.G.; Herron, D.M.; Nahmias, D.; Stuber, W.G.; Hindmarsh, A.C.

    1990-04-01

    To meet the helium (He) requirements of the superconducting supercollider (SSC), the cryogenic plants must be able to respond to time-varying loads. Thus the design and simulation of the cryogenic plants requires dynamic models of their principal components, and in particular, the core heat exchangers. In this paper, we detail the derivation and computer implementation of a model for core heat exchangers consisting of three partial differential equations (PDES) for each fluid stream (the continuity, energy and momentum balances for the He), and one PDE for each parting sheet (the energy balance for the parting sheet metal); the PDEs have time and axial position along the exchanger as independent variables. The computer code can accommodate any number of fluid streams and parting sheets in an adiabatic group. Features of the code include: rigorous or approximate thermodynamic properties for He, upwind and downwind approximation of the PDE spatial derivatives, and sparse matrix time integration. The outputs from the code include the time-dependent axial profiles of the fluid He mass flux, density, pressure, temperature, internal energy and enthalpy. The code is written in transportable Fortran 77, and can therefore be executed on essentially any computer

  16. A dynamic model for helium core heat exchangers

    International Nuclear Information System (INIS)

    Schiesser, W.E.; Shih, H.J.; Hartzog, D.G.; Herron, D.M.; Nahmias, D.; Stuber, W.G.; Hindmarsh, A.C.

    1990-01-01

    To meet the helium (He) requirements of the superconducting supercollider (SSC), the cryogenic plants must be able to respond to time-varying loads. Thus the design and simulation of the cryogenic plants requires dynamic models of their principal components, and in particular, the core heat exchangers. In this paper, we detail the derivation and computer implementation of a model for core heat exchangers consisting of three partial differential equations (PDEs) for each fluid stream (the continuity, energy and momentum balances for the He), and one PDE for each parting sheet (the energy balance for the parting sheet metal); the PDEs have time and axial position along the exchanger as independent variables. The computer code can accommodate any number of fluid streams and parting sheets in an adiabatic group. Features of the code include: rigorous or approximate thermodynamic properties for He, upwind and downwind approximation of the PDE spatial derivatives, and sparse matrix time integration. The outputs from the code include the time-dependent axial profiles of the fluid He mass flux, density, pressure, temperature, internal energy and enthalpy. The code is written in transportable Fortran 77, and can therefore be executed on essentially any computer. 10 refs., 10 figs

  17. Two-phase flow pattern and heat transfer during core uncovery

    International Nuclear Information System (INIS)

    Osakabe, Masahiro; Koizumi, Yasuo; Tasaka, Kanji

    1987-01-01

    The low and high power core uncovery patterns were observed in the high-pressure quasi-steady core uncovery experiments in a 25-rod bundle. The boundary between the two patterns was obtained in the experiments. The difference of two patterns was considered to be due to the slug-annular transition below the dryout points. The Osakabe's slug-annular transition model was the good boundary between the two patterns. The small break loss-of-coolant accident (LOCA) experiments were conducted by using the integral experimental facility with the 1,168-rod core. The transient core uncovery pattern was expected as the low power core uncovery pattern based on the quasisteady experiments mentioned above. The transient core uncovery patterns were classified into the boiloff and hydraulic core uncovery. In the boiloff core uncovery, the dryout points were controlled with the mixture level like the quasi-steady state. In the hydraulic core uncovery, the dryout points were not controlled with the mixture level alone, and the multi-dimensional dryout process in the core and the relatively high heat transfer above the dryout points were observed. It was considered that a part of water was remained above the dryout points due to the rapid depression of core liquid level. (author)

  18. Core optimization studies for a small heating reactor

    International Nuclear Information System (INIS)

    Galperin, A.

    1986-11-01

    Small heating reactor cores are characterized by a high contribution of the leakage to the neutron balance and by a large power density variation in the axial direction. A limited number of positions is available for the control rods, which are necessary to satisfy overall reactivity requirements subject to a safety related constraint on the maximum worth of each rod. Design approaches aimed to improve safety and fuel utilization performance of the core include separation of the cooling and moderating functions of the water with the core in order to reduce hot-to-cold reactivity shift and judicious application of the axial Gd zoning aimed to improve the discharge burnup distribution. Several design options are analyzed indicating a satisfactory solution of the axial burnup distribution problem. The feasibility of the control rod system including zircaloy, stainless steel, natural boron and possibly enriched boron rods is demonstrated. A preliminary analysis indicates directions for further improvements of the core performance by an additional reduction of the hot-to-cold reactivity shift and by a reduction of the depletion reactivity swing adopting a higher gadolinium concentration in the fuel or a two-batch fuel management scheme. (author)

  19. Post shut-down decay heat removal from nuclear reactor core by natural convection loops in sodium pool

    Energy Technology Data Exchange (ETDEWEB)

    Rajamani, A. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Sundararajan, T., E-mail: tsundar@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Prasad, B.V.S.S.S. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Parthasarathy, U.; Velusamy, K. [Nuclear Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2016-05-15

    Highlights: • Transient simulations are performed for a worst case scenario of station black-out. • Inter-wrapper flow between various sub-assemblies reduces peak core temperature. • Various natural convection paths limits fuel clad temperatures below critical level. - Abstract: The 500 MWe Indian pool type Prototype Fast Breeder Reactor (PFBR) has a passive core cooling system, known as the Safety Grade Decay Heat Removal System (SGDHRS) which aids to remove decay heat after shut down phase. Immediately after reactor shut down the fission products in the core continue to generate heat due to beta decay which exponentially decreases with time. In the event of a complete station blackout, the coolant pump system may not be available and the safety grade decay heat removal system transports the decay heat from the core and dissipates it safely to the atmosphere. Apart from SGDHRS, various natural convection loops in the sodium pool carry the heat away from the core and deposit it temporarily in the sodium pool. The buoyancy driven flow through the small inter-wrapper gaps (known as inter-wrapper flow) between fuel subassemblies plays an important role in carrying the decay heat from the sub-assemblies to the hot sodium pool, immediately after reactor shut down. This paper presents the transient prediction of flow and temperature evolution in the reactor subassemblies and the sodium pool, coupled with the safety grade decay heat removal system. It is shown that with a properly sized decay heat exchanger based on liquid sodium and air chimney stacks, the post shutdown decay heat can be safely dissipated to atmospheric air passively.

  20. STELLTRANS: A Transport Analysis Suite for Stellarators

    Science.gov (United States)

    Mittelstaedt, Joseph; Lazerson, Samuel; Pablant, Novimir; Weir, Gavin; W7-X Team

    2016-10-01

    The stellarator transport code STELLTRANS allows us to better analyze the power balance in W7-X. Although profiles of temperature and density are measured experimentally, geometrical factors are needed in conjunction with these measurements to properly analyze heat flux densities in stellarators. The STELLTRANS code interfaces with VMEC to find an equilibrium flux surface configuration and with TRAVIS to determine the RF heating and current drive in the plasma. Stationary transport equations are then considered which are solved using a boundary value differential equation solver. The equations and quantities considered are averaged over flux surfaces to reduce the system to an essentially one dimensional problem. We have applied this code to data from W-7X and were able to calculate the heat flux coefficients. We will also present extensions of the code to a predictive capacity which would utilize DKES to find neoclassical transport coefficients to update the temperature and density profiles.

  1. Multiregional coupled conduction--convection model for heat transfer in an HTGR core

    International Nuclear Information System (INIS)

    Giles, G.E. Jr.; Childs, K.W.; Sanders, J.P.

    1978-01-01

    HEXEREI is a three-dimensional, coupled conduction-convection heat transfer and multichannel fluid dynamic analysis computer code with both steady-state and transient capabilities. The program was developed to provide thermal-fluid dynamic analysis of a core following the general design for high-temperature gas-cooled reactors (HTGRs); its purpose was to provide licensing evaluations for the U.S. Nuclear Regulatory Commission. In order to efficiently model the HTGR core, the nodal geometry of HEXEREI was chosen as a regular hexagonal array perpendicular to the axis of and bounded by a right circular cylinder. The cylindrical nodal geometry surrounds the hexagonal center portion of the mesh; these two different types of nodal geometries must be connected by interface nodes to complete the accurate modeling of the HTGR core. HEXEREI will automatically generate a nodal geometry that will accurately model a complex assembly of hexagonal and irregular prisms. The accuracy of the model was proven by a comparison of computed values with analytical results for steady-state and transient heat transfer problems. HEXEREI incorporates convective heat transfer to the coolant in many parallel axial flow channels. Forced and natural convection (which permits different flow directions in parallel channels) is included in the heat transfer and fluid dynamic models. HEXEREI incorporates a variety of steady-state and transient solution techniques that can be matched with a particular problem to minimize the computational time. HEXEREI was compared with a code of similar capabilities that was based on a Cartesian mesh. This code modeled only one specific core design, and the mesh spacing was closer than that generated by HEXEREI. Good agreement was obtained with the detail provided by the representations

  2. Mass ejection in failed supernovae: variation with stellar progenitor

    Science.gov (United States)

    Fernández, Rodrigo; Quataert, Eliot; Kashiyama, Kazumi; Coughlin, Eric R.

    2018-05-01

    We study the ejection of mass during stellar core-collapse when the stalled shock does not revive and a black hole forms. Neutrino emission during the protoneutron star phase causes a decrease in the gravitational mass of the core, resulting in an outward going sound pulse that steepens into a shock as it travels out through the star. We explore the properties of this mass ejection mechanism over a range of stellar progenitors using spherically symmetric, time-dependent hydrodynamic simulations that treat neutrino mass-loss parametrically and follow the shock propagation over the entire star. We find that all types of stellar progenitor can eject mass through this mechanism. The ejected mass is a decreasing function of the surface gravity of the star, ranging from several M⊙ for red supergiants to ˜0.1 M⊙ for blue supergiants and ˜10-3 M⊙ for Wolf-Rayet stars. We find that the final shock energy at the surface is a decreasing function of the core-compactness, and is ≲ 1047-1048 erg in all cases. In progenitors with a sufficiently large envelope, high core-compactness, or a combination of both, the sound pulse fails to unbind mass. Successful mass ejection is accompanied by significant fallback accretion that can last from hours to years. We predict the properties of shock breakout and thermal plateau emission produced by the ejection of the outer envelope of blue supergiant and Wolf-Rayet progenitors in otherwise failed supernovae.

  3. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  4. Core-concrete molten pool dynamics and interfacial heat transfer

    International Nuclear Information System (INIS)

    Benjamin, A.S.

    1980-01-01

    Theoretical models are derived for the heat transfer from molten oxide pools to an underlying concrete surface and from molten steel pools to a general concrete containment. To accomplish this, two separate effects models are first developed, one emphasizing the vigorous agitation of the molten pool by gases evolving from the concrete and the other considering the insulating effect of a slag layer produced by concrete melting. The resulting algebraic expressions, combined into a general core-concrete heat transfer representation, are shown to provide very good agreement with experiments involving molten steel pours into concrete crucibles

  5. Transitions to improved core electron heat confinement in JT-II plasmas

    International Nuclear Information System (INIS)

    Estrada, T.; Medina, F.; Ascasibar, E.; Balbin, R.; Castejon, F.; Hidalgo, C.; Lopez-Bruna, D.; Petrov, S.

    2008-01-01

    Transitions to improved core electron heat confinement are triggered by low order rational magnetic surfaces in TJ-II ECH plasmas. Transitions triggered by the rational surface n=4/m=2 show an increase in the ion temperature synchronized with the increase in the electron temperature. SXR measurements demonstrate that, under certain circumstances, the rational surface positioned inside the plasma core region precedes and provides a trigger for the transition. (author)

  6. Warm gas towards young stellar objects in Corona Australis

    DEFF Research Database (Denmark)

    Lindberg, Johan; Jørgensen, Jes Kristian; D. Green, Joel

    2014-01-01

    The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an interm......The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated...... by an intermediate-mass young star. We study the effects on the warm gas and dust in a group of low-mass young stellar objects from the irradiation by the young luminous Herbig Be star R CrA. Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented...... Be star R CrA. Our results show that a nearby luminous star does not increase the molecular excitation temperatures in the warm gas around a young stellar object (YSO). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated...

  7. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  8. Development of heat transfer package for core thermal-hydraulic design and analysis of upgraded JRR-3

    International Nuclear Information System (INIS)

    Sudo, Yukio; Ikawa, Hiromasa; Kaminaga, Masanori

    1985-01-01

    A heat transfer package was developed for the core thermal-hydraulic design and analysis of the Japan Research Reactor-3 (JRR-3) which is to be remodeled to a 20 MWt pool-type, light water-cooled reactor with 20 % low enriched uranium (LEU) plate-type fuel. This paper presents the constitution of the developed heat transfer package and the applicability of the heat transfer correlations adopted in it, based on the heat transfer experiments in which thermal-hydraulic features of the new JRR-3 core were properly reflected. (author)

  9. Design of a remote steering antenna for ECRH heating in the stellarator Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Plaum, B., E-mail: plaum@igvp.uni-stuttgart.de [Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP), Univ. Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Lechte, C.; Kasparek, W.; Gaiser, S.; Zeitler, A. [Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP), Univ. Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Erckmann, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-IPP, D-17491 Greifswald (Germany); Weißgerber, M. [Max-Planck-Institut für Plasmaphysik, EURATOM-IPP, D-85748 Garching (Germany); Bechtold, A. [NTG Neue Technologie GmbH & Co KG, D-63571 Gelnhausen (Germany); Busch, M.; Szcepaniak, B. [Galvano-T electroplating-electroforming GmbH, D-51570 Windeck-Rosbach (Germany)

    2015-10-15

    Highlights: • We report about the design activities for the remote steering antennas for the stellarator W7-X. • The integration into the W7-X system and the manufacturing procedure are described. • Simulations and loss measurements for the waveguide walls were done and are in good agreement. • A method for extending the steering range is presented. • A mechanical deformation analysis showed that the deformation is not critical for the beam quality. - Abstract: For the ECRH heating system of the stellarator Wendelstein 7-X, two remote steering antennas are developed and manufactured. The principle of remote steering antennas is based on the imaging characteristics of corrugated rectangular waveguides, which is well understood and can accurately be simulated. Several details, however, require deeper investigation. The antenna needs a miter-bend and a 24 mm gap. The positions of these elements need to be chosen carefully to reduce losses and stray radiation. The antennas are manufactured from copper by electroforming. This allows to integrate all components, including the corrugated inner walls and the cooling channels, in one vacuum-tight piece. This paper reviews the design process of the remote steering antennas for W7-X as well as technological issues and experimental results from test pieces.

  10. 3-D thermal hydraulic analysis of transient heat removal from fast reactor core using immersion coolers

    International Nuclear Information System (INIS)

    Chvetsov, I.; Volkov, A.

    2000-01-01

    For advanced fast reactors (EFR, BN-600M, BN-1600, CEFR) the special complementary loop is envisaged in order to ensure the decay heat removal from the core in the case of LOF accidents. This complementary loop includes immersion coolers that are located in the hot reactor plenum. To analyze the transient process in the reactor when immersion coolers come into operation one needs to involve 3-D thermal hydraulics code. Furthermore sometimes the problem becomes more complicated due to necessity of simulation of the thermal hydraulics processes into the core interwrapper space. For example on BN-600M and CEFR reactors it is supposed to ensure the effective removal of decay heat from core subassemblies by specially arranged internal circulation circuit: 'inter-wrapper space'. For thermal hydraulics analysis of the transients in the core and in the whole reactor including hot plenum with immersion coolers and considering heat and mass exchange between the main sodium flow and sodium that moves in the inter-wrapper space the code GRIFIC (the version of GRIF code family) was developed in IPPE. GRIFIC code was tested on experimental data obtained on RAMONA rig under conditions simulating decay heat removal of a reactor with the use of immersion coolers. Comparison has been made of calculated and experimental result, such as integral characteristics (flow rate through the core and water temperature at the core inlet and outlet) and the local temperatures (at thermocouple location) as well. In order to show the capabilities of the code some results of the transient analysis of heat removal from the core of BN-600M - type reactor under loss-of-flow accident are presented. (author)

  11. Rayleigh-Taylor convective overturn in stellar collapse

    International Nuclear Information System (INIS)

    Bruenn, S.W.; Buchler, J.R.; Livio, M.

    1979-01-01

    Rayleigh--Taylor convective overturn in collapsing stellar cores is modeled with a one-dimensional parametrization. The results of a numerical hydrodynamic study are very encouraging and indicate that such an overturn could well be a dominant feature in the supernova explosion mechanism

  12. Search for gravitational waves on short duration in TAMA300 data: stellar core collapse and black hole

    International Nuclear Information System (INIS)

    Honda, R; Kanda, N; Akutsu, T; Ando, M; Tsunesada, Y

    2008-01-01

    We present in the results of TAMA300 data analysis for short duration gravitational waves. The excess power filter, alternative linear filter (ALF) and TF(time-frequency) clustering methods have been employed for burst gravitational waves from stellar-core collapse, and matched filtering method used for the ringdown gravitational waves from black hole quasi-normal oscillations. The observational range of TAMA for the burst gravitational waves is roughly ∼ 1 kpc, and the range for black hole ringdown covers most of our galaxy. We have been developed new method 'time-frequency (TF) clustering' to find the burst waves. This is a TF clustering method on spectrogram (sonogram). Using this method, we can efficiently identify some predicted gravitational wave forms and can exclude typical unstable spike like noises

  13. THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87

    International Nuclear Information System (INIS)

    Gebhardt, Karl; Thomas, Jens

    2009-01-01

    We model the dynamical structure of M87 (NGC4486) using high spatial resolution long-slit observations of stellar light in the central regions, two-dimensional stellar light kinematics out to half of the effective radius, and globular cluster velocities out to eight effective radii. We simultaneously fit for four parameters: black hole mass, dark halo core radius, dark halo circular velocity, and stellar mass-to-light (M/L) ratio. We find a black hole mass of 6.4(±0.5) x 10 9 M sun (the uncertainty is 68% confidence marginalized over the other parameters). The stellar M/L V = 6.3 ± 0.8. The best-fit dark halo core radius is 14 ± 2 kpc, assuming a cored logarithmic potential. The best-fit dark halo circular velocity is 715 ± 15 km s -1 . Our black hole mass is over a factor of 2 larger than previous stellar dynamical measures, and our derived stellar M/L ratio is two times lower than previous dynamical measures. When we do not include a dark halo, we measure a black hole mass and stellar M/L ratio that is consistent with previous measures, implying that the major difference is in the model assumptions. The stellar M/L ratio from our models is very similar to that derived from stellar population models of M87. The reason for the difference in the black hole mass is because we allow the M/L ratio to change with radius. The dark halo is degenerate with the stellar M/L ratio, which is subsequently degenerate with the black hole mass. We argue that dynamical models of galaxies that do not include the contribution from a dark halo may produce a biased result for the black hole mass. This bias is especially large for a galaxy with a shallow light profile such as M87, and may not be as severe in galaxies with steeper light profiles unless they have a large stellar population change with radius.

  14. TEM turbulence optimisation in stellarators

    Science.gov (United States)

    Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.

    2016-01-01

    With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.

  15. THE ENIGMATIC CORE L1451-mm: A FIRST HYDROSTATIC CORE? OR A HIDDEN VeLLO?

    Energy Technology Data Exchange (ETDEWEB)

    Pineda, Jaime E.; Goodman, Alyssa A.; Bourke, Tyler; Foster, Jonathan B.; Robitaille, Thomas; Kauffmann, Jens [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Arce, Hector G.; Tanner, Joel [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Schnee, Scott [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Tafalla, Mario [Observatorio Astronomico Nacional (IGN), Alfonso XII 3, E-28014 Madrid (Spain); Caselli, Paola [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Anglada, Guillem, E-mail: jaime.pineda@manchester.ac.uk [Instituto de Astrofisica de Andalucia, CSIC, Apartado 3004, E-18080 Granada (Spain)

    2011-12-20

    We present the detection of a dust continuum source at 3 mm (CARMA) and 1.3 mm (Submillimeter Array, SMA), and {sup 12}CO (2-1) emission (SMA) toward the L1451-mm dense core. These detections suggest a compact object and an outflow where no point source at mid-infrared wavelengths is detected using Spitzer. An upper limit for the dense core bolometric luminosity of 0.05 L{sub Sun} is obtained. By modeling the broadband spectral energy distribution and the continuum interferometric visibilities simultaneously, we confirm that a central source of heating is needed to explain the observations. This modeling also shows that the data can be well fitted by a dense core with a young stellar object (YSO) and a disk, or by a dense core with a central first hydrostatic core (FHSC). Unfortunately, we are not able to decide between these two models, which produce similar fits. We also detect {sup 12}CO (2-1) emission with redshifted and blueshifted emission suggesting the presence of a slow and poorly collimated outflow, in opposition to what is usually found toward YSOs but in agreement with prediction from simulations of an FHSC. This presents the best candidate, so far, for an FHSC, an object that has been identified in simulations of collapsing dense cores. Whatever the true nature of the central object in L1451-mm, this core presents an excellent laboratory to study the earliest phases of low-mass star formation.

  16. THE ENIGMATIC CORE L1451-mm: A FIRST HYDROSTATIC CORE? OR A HIDDEN VeLLO?

    International Nuclear Information System (INIS)

    Pineda, Jaime E.; Goodman, Alyssa A.; Bourke, Tyler; Foster, Jonathan B.; Robitaille, Thomas; Kauffmann, Jens; Arce, Héctor G.; Tanner, Joel; Schnee, Scott; Tafalla, Mario; Caselli, Paola; Anglada, Guillem

    2011-01-01

    We present the detection of a dust continuum source at 3 mm (CARMA) and 1.3 mm (Submillimeter Array, SMA), and 12 CO (2-1) emission (SMA) toward the L1451-mm dense core. These detections suggest a compact object and an outflow where no point source at mid-infrared wavelengths is detected using Spitzer. An upper limit for the dense core bolometric luminosity of 0.05 L ☉ is obtained. By modeling the broadband spectral energy distribution and the continuum interferometric visibilities simultaneously, we confirm that a central source of heating is needed to explain the observations. This modeling also shows that the data can be well fitted by a dense core with a young stellar object (YSO) and a disk, or by a dense core with a central first hydrostatic core (FHSC). Unfortunately, we are not able to decide between these two models, which produce similar fits. We also detect 12 CO (2-1) emission with redshifted and blueshifted emission suggesting the presence of a slow and poorly collimated outflow, in opposition to what is usually found toward YSOs but in agreement with prediction from simulations of an FHSC. This presents the best candidate, so far, for an FHSC, an object that has been identified in simulations of collapsing dense cores. Whatever the true nature of the central object in L1451-mm, this core presents an excellent laboratory to study the earliest phases of low-mass star formation.

  17. Influence of low-order rational magnetic surfaces on heat transport in TJ-II heliac ECRH plasmas

    International Nuclear Information System (INIS)

    Castejon, F.; Lopez-Bruna, D.; Estrada, T.; Ascasibar, E.; Zurro, B.; Baciero, A.

    2004-01-01

    We study the effect of low-order rational surfaces on electron heat transport in plasmas confined in the TJ-II stellarator (Alejaldre et al 1990 Fusion Technol. 17 131) and heated by electron cyclotron waves. Enhancement of core electron heat confinement is observed when the rational surface is placed in the vicinity of the power deposition zone, either by performing a magnetic configuration scan or by inducing Ohmic current in a single discharge. The key to improving heat confinement seems to be a locally strong positive radial electric field, which is made possible by a synergistic effect between enhanced electron heat fluxes through radial positions around low-order rationals and pump out mechanisms in the heat deposition zone. (author)

  18. ISOTROPIC HEATING OF GALAXY CLUSTER CORES VIA RAPIDLY REORIENTING ACTIVE GALACTIC NUCLEUS JETS

    International Nuclear Information System (INIS)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-01-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 10 44–45 erg s –1 , typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  19. ON THE RELIABILITY OF STELLAR AGES AND AGE SPREADS INFERRED FROM PRE-MAIN-SEQUENCE EVOLUTIONARY MODELS

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Offner, Stella S. R.; Krumholz, Mark R.

    2011-01-01

    We revisit the problem of low-mass pre-main-sequence stellar evolution and its observational consequences for where stars fall on the Hertzsprung-Russell diagram (HRD). In contrast to most previous work, our models follow stars as they grow from small masses via accretion, and we perform a systematic study of how the stars' HRD evolution is influenced by their initial radius, by the radiative properties of the accretion flow, and by the accretion history, using both simple idealized accretion histories and histories taken from numerical simulations of star cluster formation. We compare our numerical results to both non-accreting isochrones and to the positions of observed stars in the HRD, with a goal of determining whether both the absolute ages and the age dispersions inferred from non-accreting isochrones are reliable. We show that non-accreting isochrones can sometimes overestimate stellar ages for more massive stars (those with effective temperatures above ∼3500 K), thereby explaining why non-accreting isochrones often suggest a systematic age difference between more and less massive stars in the same cluster. However, we also find the only way to produce a similar overestimate for the ages of cooler stars is if these stars grow from ∼0.01 M sun seed protostars that are an order of magnitude smaller than predicted by current theoretical models, and if the size of the seed protostar correlates systematically with the final stellar mass at the end of accretion. We therefore conclude that, unless both of these conditions are met, inferred ages and age spreads for cool stars are reliable, at least to the extent that the observed bolometric luminosities and temperatures are accurate. Finally, we note that the time dependence of the mass accretion rate has remarkably little effect on low-mass stars' evolution on the HRD, and that such time dependence may be neglected for all stars except those with effective temperatures above ∼4000 K.

  20. Critical heat flux predictions for the Sandia Annular Core Research Reactor

    International Nuclear Information System (INIS)

    Rao, D.V.; El-Genk, M.S.

    1994-08-01

    This study provides best estimate predictions of the Critical Heat Flux (CHF) and the Critical Heat Flux Ratio (CHFR) to support the proposed upgrade of the Annual Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) from its present value of 2 MWt to 4 MWt. These predictions are based on the University of New Mexico (UNM) - CHF correlation, originally developed for uniformly heated vertical annuli. The UNM-CHF correlation is applicable to low-flow and low-pressure conditions, which are typical of those in the ACRR. The three hypotheses that examined the effect of the nonuniform axial heat flux distribution in the ACRR core are (1) the local conditions hypotheses, (2) the total power hypothesis, and (3) the global conditions hypothesis. These hypotheses, in conjunction with the UNM-CHF correlation, are used to estimate the CHF and CHFR in the ACRR. Because the total power hypothesis predictions of power per rod at CHF are approximately 15%-20% lower than those corresponding to saturation exit conditions, it can be concluded that the total power hypothesis considerably underestimates the CHF for nonuniformly heated geometries. This conclusion is in agreement with previous experimental results. The global conditions hypothesis, which is more conservative and more accurate of the other two, provides the most reliable predictions of CHF/CHFR for the ACRR. The global conditions hypothesis predictions of CHFR varied between 2.1 and 3.9, with the higher value corresponding to the lower water inlet temperature of 20 degrees C

  1. Modular Stellarator Reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  2. Modular stellarator reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  3. Review of stellarator research world wide

    International Nuclear Information System (INIS)

    Shonet, J.L.

    1987-01-01

    The world-wide effort in stellarators has evolved considerably during the past few years. Stellarator facilities are located in the Australia, Federal Republic of Germany, Japan, the Soviet Union, Spain, the United Kingdom and the United States. Dimensions of stellarators range from less than 20 centimeters in major radius to more than 2 meters, and magnetic field values between 0.2 Tesla to more than 3.0 Tesla. Stellarators are made in a variety of magnetic configurations with wide ranges of toroidal aspect ratios and methods of generating the stellarator magnetic surfaces. In particular, continuous helical coils, twisted modular coils, or twisted vacuum chambers all provide different means to generate nested toroidal magnetic surfaces without the need for currents flowing in the plasma. The goal of present day experiments is to accumulate a physics data base. This is being done by increasing electron and ion temperatures with non-ohmic heating, by transport and scaling studies considering neoclassical scaling, global scaling, effects of electric fields, the bootstrap current and magnetic islands. Higher betas are being attempted by designing suitable magnetic configurations, pellet injection and/or minimizing transport losses. Plasma-wall interactions and particle control are being examined by divertor, pumped-limiter and carbonization experiments

  4. Core heat transfer experiment for JRR-3 to be upgraded at 20 MWt, 2

    International Nuclear Information System (INIS)

    Sudo, Yukio; Miyata, Keiichi; Ikawa, Hiromasa; Ohgawara, Masami; Kaminaga, Masanori

    1985-09-01

    Experiments were carried out to investigate the condition of onset of nucleate boiling (ONB) and the departure from nucleate boiling (DNB) heat flux under forced convection in a vertical rectangular channel, both of which take important roles in the core thermal-hydraulic design of the upgraded JRR-3. This report presents the validity and applicability of the correlations proposed for ONB condition and DNB heat flux, based on the analysis of the experimental results. The upgraded JRR-3 is a low-pressure, low-temperature research reactor and the core heat generation is removed by two cooling modes, one is natural circulation under upflow up to 200 kW and the other is forced circulation under downflow up to 20 MW. Therefore, the difference in heat transfer characteristics between upflow and downflow were investigated in the experiments, which were carried out by using a heated channel properly simulating a subchannel of fuel element because the heat transfer characteristics are considered to be strongly dependent on the configuration of flow channel. (author)

  5. Electron Capture Cross Sections for Stellar Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    P. G. Giannaka

    2015-01-01

    Full Text Available In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasiparticle random-phase approximation (pn-QRPA and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the abovementioned e--capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the 66Zn isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  6. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  7. CoRes utilization for building PCK in pre-service teacher education on the digestive system topic

    Science.gov (United States)

    Nugraha, Ikmanda

    2017-05-01

    Knowledge of teachers in learning activities in the classroom has a close relationship with how well and how much students learn. Recently, a promising development in teacher education has appeared that centers on the academic construct of pedagogical content knowledge (PCK). This study was an exploratory study into a science teacher education program that seeks to build the foundations on which pre-service teachers can begin to build their pedagogical content knowledge (PCK). The program involved the use of Content Representations (CoRes), which was initially applied as component of a strategy for exploring and gaining insights into the PCK of in-service science teachers. This study involved the researcher and 20 students (third year) in a pre-service teacher education course (School Science I) in science education when the students worked to make content analysis on the digestive system topic. During the course, the students make their own CoRes through a workshop for digestive system topic individually, in pairs and whole class discussion. Data were recorded from students' CoRes, student reflective journals, interviews, and field notes recorded in the researcher's reflective journal. Pre-service teachers' comments from interviews and reflective journals were coded in relation to references about: (1) the effectiveness of variety strategies in building the knowledge bases required to design a CoRes and (2) their awareness and/or development of tentative components of future PCK for a digestive system topic as a result of CoRes construction. Observational data were examined for indications of increasing independence and competency on the part of student teachers when locating appropriate information for designing their CoRes. From this study, it is hoped that the pre-service science teachers are able to build knowledge and then transform it into a form of PCK for digestive system topic for their first classroom planning and teaching to teach digestive system

  8. Analysis of gamma heating at TRIGA mark reactor core Bandung using plate type fuel

    International Nuclear Information System (INIS)

    Setiyanto; Tukiran Surbakti

    2016-01-01

    In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities) and central irradiation position (CIP), especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0.87 W/g), but very low value for Lazy Susan position (lest then 0.11 W/g). Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. (author)

  9. Results of out-of-pile experiments to investigate the possibilities of cooling a core melt with internal heat production

    International Nuclear Information System (INIS)

    Fieg, G.

    1976-01-01

    After serious hypothetical reactor accidents, melted core materials with internal heat production can occur in large quantities. A retention of these molten core masses within the containment must be ensured. The knowledge of the heat transport from volume-heated layers is necessary to clarify this matter. (orig./LH) [de

  10. In core instrumentation for online nuclear heating measurements of material testing reactor

    International Nuclear Information System (INIS)

    Reynard, C.; Andre, J.; Brun, J.; Carette, M.; Janulyte, A.; Merroun, O.; Zerega, Y.; Lyoussi, A.; Bignan, G.; Chauvin, J-P.; Fourmentel, D.; Glayse, W.; Gonnier, C.; Guimbal, P.; Iracane, D.; Villard, J.-F.

    2010-01-01

    The present work focuses on nuclear heating. This work belongs to a new advanced research program called IN-CORE which means 'Instrumentation for Nuclear radiations and Calorimetry Online in REactor' between the LCP (University of Provence-CNRS) and the CEA (French Atomic Energy Commission) - Jules Horowitz Reactor (JHR) program. This program started in September 2009 and is dedicated to the conception and the design of an innovative mobile experimental device coupling several sensors and ray detectors for on line measurements of relevant physical parameters (photonic heating, neutronic flux ...) and for an accurate parametric mapping of experimental channels in the JHR Core. The work presented below is the first step of this program and concerns a brief state of the art related to measurement methods of nuclear heating phenomena in research reactor in general and MTR in particular. A special care is given to gamma heating measurements. A first part deals with numerical codes and models. The second one presents instrumentation divided into various kinds of sensor such as calorimeter measurements and gamma ionization chamber measurements. Their basic principles, characteristics such as metrological parameters, operating mode, disadvantages/advantages, ... are discussed. (author)

  11. Core thermal response during Semiscale Mod-1 blowdown heat transfer tests

    International Nuclear Information System (INIS)

    Larson, T.K.

    1976-06-01

    Selected experimental data and results calculated from experimental data obtained from the Semiscale Mod-1 PWR blowdown heat transfer test series are analyzed. These tests were designed primarily to provide information on the core thermal response to a loss-of-coolant accident. The data are analyzed to determine the effect of core flow on the heater rod thermal response. The data are also analyzed to determine the effects of initial operating conditions on the rod cladding temperature behavior during the transient. The departure from nucleate boiling and rewetting characteristics of the rod surfaces are examined for radial and axial patterns in the response. Repeatability of core thermal response data is also investigated. The test data and the core thermal response calculated with the RELAP4 code are compared

  12. Structure of stellar hydroxyl masers

    International Nuclear Information System (INIS)

    Reid, M.J.; Muhleman, D.O.; Moran, J.M.; Johnston, K.J.; Schwartz, P.R.

    1977-01-01

    This paper presents the results of two spectral-line very long baseline (VLB) interferometric experiments on stellar OH masers. These masers are usually associated with long-period variable stars, and exhibit a characteristic double-peaked 1612 MHz OH spectrum. The sources IRC +10011, R Aql, and U Ori were carefully studied in order to determine the spatial structure of their masers. Maser components in these sources exhibited a complex structure which can be interpreted in terms of ''core-halo'' models. For these sources, the emission at any velocity appears to originate from a small (approximately-less-than0.''03) region of brightness approximately-greater-than10 9 K, and from a large (approximately-greater-than0.''5) region of brightness approximately-less-than10 8 K. In IRC+10011, ''core'' components in the two OH peaks probably are separated by less than the apparent size of the ''halos.'' A map of the low-velocity emission of U Ori with a resolution of 0.''01 indicates that the ''cores'' are distributed over a region of only 0.''2. This region is smaller than the apparent sizes of the ''halos.'' Other sources surveyed to determine apparent maser sizes include IRC+50137, OH 1821--12, OH 1837--05, OH 26.5+0.6, W43 A, and VX Sgr at 1612 MHz; and W Hya, R Aql, and IRC--10529 at 1667 MHz. The results of all VLB observations of 1612 MHz stellar OH masers are summarized.The apparent sizes of the strongest components (''halos'') of stellar OH masers typically are approximately-greater-than0.''5, corresponding to linear dimensions of approximately-greater-than3 x 10 15 cm. These surprisingly large sizes imply brightness temperatures much lower than those observed in most other types of astronomical masers. The large sizes rule out models of the 1612 MHz OH masers that require contracting or rotating circumstellar envelopes to explain the double-peaked OH spectra, or that try to explain the apparent maser sizes in terms of interstellar or interplanetary scattering

  13. Degradation of energy confinement or degradation of plasma-heating. What is the main definite process for Plasma transport in stellarator?

    International Nuclear Information System (INIS)

    Fedynin, O.I.; Andryuklina, E.D.

    1995-01-01

    The analysis of plasma energy balance in stellarators and tokamaks depends on the different assumptions made and may give different and even contradictory results. When assuming full power absorption by thermal plasmas, paradoxical results can be obtained: degradation of the energy confinement time with heating power as well as degradation of plasma thermal conductivity in very short times (t<< tau:E) during power modulation experiments are deduced. On the other hand, assuming that plasma transport characteristics do not change while pain plasma parameters (density and temperature, their gradients, etc.) are kept constant, leads to conclude that heating efficiency is not unity and that it depends on both, plasma parameters and heating power. In this case no contradiction is found when analyzing plasma energy balances. In this paper the results of ECRH experiments on L-2M will be presented. The experiments were aimed to try to answer this important question. Analyses of the fast processes occurring during the switch off phase of the ECR heating, modulation of the heating power, and specific plasma decay phase, have lead to the conclusion that plasma transport characteristics remaining unchanged during fast variations of the heating power is the correct assumption. 2 refs

  14. Heat and fission product transport in molten core material pool with crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2005-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the reactor vessel during a severe accident. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool is estimated by product of the mass concentration and energy conversion factor of each fission product. Twenty-nine elements are chosen and classified by their chemical properties to calculate heat generation rate in the pool. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis is performed for heat and fission product transport in a molten core material pool during the Three Mile Island Unit 2 (TMI-2) accident. The pool is assumed to be a partially filled hemisphere, whose change in geometry is neglected during the numerical calculation. Calculated results indicate that the peak temperature in the molten pool is significantly lowered, since a substantial amount of the volatile fission products is released from the molten pool during progression of the accident. The results may directly be applied to the existing severe accident analysis codes to more mechanistically determine the thermal load to the reactor vessel lower head during the in-vessel retention

  15. Coronal seismology waves and oscillations in stellar coronae

    CERN Document Server

    Stepanov, Alexander; Nakariakov, Valery M

    2012-01-01

    This concise and systematic account of the current state of this new branch of astrophysics presents the theoretical foundations of plasma astrophysics, magneto-hydrodynamics and coronal magnetic structures, taking into account the full range of available observation techniques -- from radio to gamma. The book discusses stellar loops during flare energy releases, MHD waves and oscillations, plasma instabilities and heating and charged particle acceleration. Current trends and developments in MHD seismology of solar and stellar coronal plasma systems are also covered, while recent p

  16. SOFIA/EXES High Spectral Resolution Observations of the Orion Hot Core

    Science.gov (United States)

    Rangwala, Naseem; Colgan, Sean; Le Gal, Romane; Acharya, Kinsuk; Huang, Xinchuan; Herbst, Eric; Lee, Timothy J.; Richter, Matthew J.; Boogert, Adwin

    2018-01-01

    The Orion hot core has one of the richest molecular chemistries observed in the ISM. In the MIR, the Orion hot core composition is best probed by the closest, compact, bright background continuum source in this region, IRc2. We present high-spectral resolution observations from 12.96 - 13.33 μm towards Orion IRc2 using the mid-infrared spectrograph, EXES, on SOFIA, to probe the physical and chemical conditions of the Orion hot core. All ten of the rovibrational C2H2 transitions expected in our spectral coverage, are detected with high S/N, yielding continuous coverage of the R-branch lines from J=9-8 to J=18-17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. These data show distinct ortho and para ladders towards the Orion hot core for the first time, with an ortho to para ratio (OPR) of only 0.6 - much lower than the high temperature equilibrium value of 3. A non-equilibrium OPR is a further indication of the Orion hot core being heated externally by shocks likely resulting from a well-known explosive event which occurred 500 yrs ago. The OPR conversion timescales are much longer than the 500 yr shock timescale and thus a low OPR might be a remnant from an earlier colder pre-stellar phase before the density enhancement (now the hot core) was impacted by shocks.We will also present preliminary results from an on-going SOFIA Cycle-5 impact program to use EXES to conduct an unbiased, high-S/N, continuous, molecular line survey of the Orion hot core from 12.5 - 28.3 microns. This survey is expected to be 50 times better than ISO in detecting isolated, narrow lines to (a) resolve the ro-vibrational structure of the gas phase molecules and their kinematics, (b) detect new gas phase molecules missed by ISO, and (c) provide useful constraints on the hot core chemistry and the source of Orion hot core excitation. This survey will greatly enhance the inventory of resolved line features in the MIR for hot cores

  17. Effect of binary stars on the dynamical evolution of stellar clusters. II. Analytic evolutionary models

    International Nuclear Information System (INIS)

    Hills, J.G.

    1975-01-01

    We use analytic models to compute the evolution of the core of a stellar system due simultaneously to stellar evaporation which causes the system (core) to contract and to its binaries which cause it to expand by progressively decreasing its binding energy. The evolution of the system is determined by two parameters: the initial number of stars in the system N 0 , and the fraction f/subb/ of its stars which are binaries. For a fixed f/subb/, stellar evaporation initially dominates the dynamical evolution if N 0 is sufficiently large due to the fact that the rate of evaporation is determined chiefly by long-range encounters which increase in importance as the number of stars in the system increases. If stellar evaporation initially dominates, the system first contracts, but as N/subc/, the number of remaining stars in the system, decreases by evaporation, the system reaches a minimum radius and a maximum density and then it expands monotonically as N/subc/ decreases further. Open clusters expand monotonically from the beginning if they have anything approaching average Population I binary frequencies. Globular clusters are highly deficient in binaries in order to have formed and retained the high-density stellar cores observed in most of them. We estimate that for these system f/subb/ < or = 0.15

  18. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui, E-mail: rhu@anl.gov; Yu, Yiqi

    2016-11-15

    Highlights: • Developed a computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors. • Applied fully-coupled JFNK solution scheme to avoid the operator-splitting errors. • The accuracy and efficiency of the method is confirmed with a 7-assembly test problem. • The effects of different spatial discretization schemes are investigated and compared to the RANS-based CFD simulations. - Abstract: For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneously in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. Additionally, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.

  19. Influence of composition and rate heating on formation of black core in bodies obtained with red ceramic

    International Nuclear Information System (INIS)

    Santana, L.N.L.; Goncalves, W.P.; Silva, B.J. da; Macedo, R.S.; Santos, R.C.; Lisboa, D.

    2011-01-01

    In the heating of pieces of red pottery can the defect known as black core, this may deteriorate the technical and aesthetic characteristics of the final product. This study evaluated the influence of chemical composition and heating rate on the formation of black core in bodies red ceramic. The masses were treated and samples were extruded, dried, sintered at 900 °C, with heating rates of 5, 10, 15, 20 and 30 °C / min. and determined the following properties: water absorption, linear shrinkage and flexural strength. The pieces made with the mass containing lower content of iron oxide showed better resistance to bending when subjected to rapid heating. The presence of the black core was identified through visual analysis of the pieces after the break, being more apparent in parts subject to rates above 5 °C / min. (author)

  20. Stellar CCD Photometry: New Approach, Principles and Application

    Science.gov (United States)

    El-Bassuny Alawy, A.

    A new approach is proposed and developed to handle pre-processed CCD frames in order to identify stellar images and derive their relevant parameters. It relies on: 1) Identifying stellar images and assigning approximate positions of their centres using an artificial intelligence technique, (Knowledge Based System), 2) Accurate determination of the centre co-ordinates applying an elementary statistical concept and 3) Estimating the image peak intensity as a stellar magnitude measure employing simple numerical analysis approach. The method has been coded for personal computer users. A CCD frame of the star cluster M67 was adopted as a test case. The results obtained are discussed in comparison with the DAOPHOTII ones and the corresponding published data. Exact coincidence has been found between both results except in very few cases. These exceptions have been discussed in the light of the basis of both methods and the cluster plates. It has been realised that the method suggested represents a very simple, extremely fast, high precision method of stellar CCD photometry. Moreover, it is more capable than DAOPHOTII of handling blended and distorted stellar images. These characteristics show the usefulness of the present method in some astronomical applications, such as auto-focusing and auto-guiding, beside the main purpose, viz. stellar photometry.

  1. Status of the Astrid core at the end of the pre-conceptual design phase 1

    International Nuclear Information System (INIS)

    Chenaud, Ms.; Devictor, N.; Mignot, G.; Varaine, F.; Venard, C.; Martin, L.; Phelip, M.; Lorenzo, D.; Serre, F.; Bertrand, F.; Alpy, N.; Le-Flem, M.; Gavoille, P.; Lavastre, R.; Richard, P.; Verrier, D.; Schmitt, D.

    2013-01-01

    Within the framework of the ASTRID project, core design studies are being conducted by the CEA with support from AREVA and EDF. The pre-conceptual design studies are being conducted in accordance with the GEN IV reactor objectives, particularly in terms of improving safety. This involves limiting the consequences of 1) a hypothetical control rod withdrawal accident (by minimizing the core reactivity loss during the irradiation cycle), and 2) an hypothetical loss-of-flow accident (by reducing the sodium void worth). Two types of cores are being studied for the ASTRID project. The first is based on a 'large pin/small spacing wire' concept derived from the SFR V2b, while the other is based on an innovative CFV design. A distinctive feature of the CFV core is its negative sodium void worth. In 2011, the evaluation of a preliminary version (v1) of this CFV core for ASTRID underlined its potential capacity to improve the prevention of severe accidents. An improved version of the ASTRID CFV core (v2) was proposed in 2012 to comply with all the control rod withdrawal criteria, while increasing safety margins for all unprotected-loss-of-flow (ULOF) transients and improving the general design. This paper describes the CFV v2 design options and reports on the progress of the studies at the end of pre-conceptual design phase 1 concerning: - Core performance, - Intrinsic behavior during unprotected transients, - Simulation of severe accident scenarios, - Qualification requirements. The paper also specifies the open options for the materials, sub-assemblies, absorbers, and core monitoring that will continue to be studied during the conceptual design phase. (authors)

  2. Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in Cassiopeia A

    DEFF Research Database (Denmark)

    Grefenstette, B W; Harrison, F A; Boggs, S E

    2014-01-01

    Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive (44)Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing...... core and that ejected into the surrounding medium, directly probes the explosion asymmetries. Cassiopeia A is a young, nearby, core-collapse remnant from which (44)Ti emission has previously been detected but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio...... and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead...

  3. Simulation of nonlinear dynamics of a PWR core by an improved lumped formulation for fuel heat transfer

    International Nuclear Information System (INIS)

    Su, Jian; Cotta, Renato M.

    2000-01-01

    In this work, thermohydraulic behaviour of PWR, during reactivity insertion and partial loss-of-flow, is simulated by using a simplified mathematical model of reactor core and primary coolant. An improved lumped parameter formulation for transient heat conduction in fuel rod is used for core heat transfer modelling. Transient temperature response of fuel, cladding and coolant is analysed. (author)

  4. Human hepatocytes apoptosis induced by replication of hepatitis B virus subgenotypes F1b and F4: Role of basal core promoter and preCore mutations.

    Science.gov (United States)

    Elizalde, María Mercedes; Sevic, Ina; González López Ledesma, María Mora; Campos, Rodolfo Héctor; Barbini, Luciana; Flichman, Diego Martin

    2018-01-01

    In the context of pathogenesis of HBV infection, HBV genotypes and mutants have been shown to affect the natural course of chronic infection and treatment outcomes. In this work, we studied the induction of apoptosis by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. Both subgenotypes F1b and F4 HBV genome transfections induced cell death by apoptosis in human hepatocytes. The BCPdm (A1762T/G1764A) and preCore (G1896A) mutants induced higher levels of apoptosis than the wt virus. This increase in apoptosis was not associated with the enhanced viral replication of the variants. HBV-mediated apoptosis was independent of viral subgenotypes, and associated with the modulation of members of the regulatory Bcl-2 family proteins expression in the mitochondrial apoptotic pathway. Finally, the apoptosis induction increase observed for the preCore mutants suggests that HBeAg might have an anti-apoptotic effect in human hepatocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Reactors with pressure vessel in pre-stressed concrete

    International Nuclear Information System (INIS)

    Devillers, Christian; Lafore, Pierre

    1964-12-01

    After having proposed a general description of the evolution of the general design of reactors with a vessel in pre-stressed concrete, this report outlines the interest of this technical solution of a vessel in pre-stressed concrete with integrated exchangers, which is to replace steel vessel. This solution is presented as much safer. The authors discuss the various issues related to protection: inner and outer biological protection of the vessel, material protection (against heating, steel irradiation, Wigner effect, and moderator radiolytic corrosion). They report the application of calculation methods: calculation of vessel concrete heating, study of the intermediate zone in integrated reactors, neutron spectrum and flows in the core of a graphite pile

  6. Scientific visualization of 3-dimensional optimized stellarator configurations

    International Nuclear Information System (INIS)

    Spong, D.A.

    1998-01-01

    The design techniques and physics analysis of modern stellarator configurations for magnetic fusion research rely heavily on high performance computing and simulation. Stellarators, which are fundamentally 3-dimensional in nature, offer significantly more design flexibility than more symmetric devices such as the tokamak. By varying the outer boundary shape of the plasma, a variety of physics features, such as transport, stability, and heating efficiency can be optimized. Scientific visualization techniques are an important adjunct to this effort as they provide a necessary ergonomic link between the numerical results and the intuition of the human researcher. The authors have developed a variety of visualization techniques for stellarators which both facilitate the design optimization process and allow the physics simulations to be more readily understood

  7. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    Science.gov (United States)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high

  8. BREATHING FIRE: HOW STELLAR FEEDBACK DRIVES RADIAL MIGRATION, RAPID SIZE FLUCTUATIONS, AND POPULATION GRADIENTS IN LOW-MASS GALAXIES

    International Nuclear Information System (INIS)

    El-Badry, Kareem; Geha, Marla; Wetzel, Andrew; Hopkins, Philip F.; Kereš, Dusan; Chan, T. K.; Faucher-Giguère, Claude-André

    2016-01-01

    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (M star  = 2 × 10 6  − 5 × 10 10 M ⊙ ) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ∼1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the global potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ∼200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed M star . Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at M star  ≈ 10 7–9.6 M ⊙ , the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM

  9. A concept of passive safety pressurized water reactor system with inherent matching nature of core heat generation and heat removal

    International Nuclear Information System (INIS)

    Murao, Yoshio; Araya, Fumimasa; Iwamura, Takamichi; Okumura, Keisuke

    1995-01-01

    The reduction of manpower in operation and maintenance by simplification of the system are essential to improve the safety and the economy of future light water reactors. At the Japan Atomic Energy Research Institute (JAERI), a concept of a simplified passive safety reactor system JPSR was developed for this purpose and in the concept minimization of developing work and conservation of scale-up capability in design were considered. The inherent matching nature of core heat generation and heat removal rate is introduced by the core with high reactivity coefficient for moderator density and low reactivity coefficient for fuel temperature (Doppler effect) and once-through steam generators (SGs). This nature makes the nuclear steam supply system physically-slave for the steam and energy conversion system by controlling feed water mass flow rate. The nature can be obtained by eliminating chemical shim and adopting in-vessel control rod drive mechanism (CRDM) units and a low power density core. In order to simplify the system, a large pressurizer, canned pumps, passive residual heat removal systems with air coolers as a final heat sink and passive coolant injection system are adopted and the functions of volume and boron concentration control and seal water supply are eliminated from the chemical and volume control system (CVCS). The emergency diesel generators and auxiliary component cooling system of 'safety class' for transferring heat to sea water as a final heat sink in emergency are also eliminated. All of systems are built in the containment except for the air coolers of the passive residual heat removal system. The analysis of the system revealed that the primary coolant expansion in 100% load reduction in 60 s can be mitigated in the pressurizer without actuating the pressure relief valves and the pressure in 50% load change in 30 s does not exceed the maximum allowable pressure in accidental conditions in regardless of pressure regulation. (author)

  10. Heat transfer in reactor cavity during core-concrete interaction

    International Nuclear Information System (INIS)

    Adroguer, B.; Cenerino, G.

    1989-08-01

    In the unlikely event of a severe accident in a nuclear power plant, the core may melt through the vessel and slump into the concrete reactor cavity. The hot mixture of the core material called corium interacts thermally with the concrete basemat. The WECHSL code, developed at K.f.K. Karlsruhe in Germany is used at the Protection and Nuclear Safety Institute (I.P.S.N.) of CEA to compute this molten corium concrete interaction (MCCI). Some uncertainties remain in the partition of heat from the corium between the basemat and the upper surrounding structures in the cavity where the thermal conditions are not computer. The CALTHER code, under development to perform a more mechanistic evaluation of the upward heat flux has been linked to WECHSL-MOD2 code. This new version enables the modelling of the feedback effects from the conditions in the cavity to the MCCI and the computation of the fraction of upward flux directly added to the cavity atmosphere. The present status is given in the paper. Preliminary calculations of the reactor case for silicate and limestone common sand (L.C.S.) concretes are presented. Significant effects are found on concrete erosion, gases release and temperature of the upper part of corium, particularly for L.C.S. concrete

  11. Proceedings of US-Japan heliotron-stellarator workshop: Volume 2

    International Nuclear Information System (INIS)

    1987-01-01

    This paper is the second of four volumes on the US-Japan Heliotron-Stellarator workshop. It contains talks on the following: Ripple Transport at Arbitrary Collision Frequency, Transport Scaling in the Collisionless-Detrapping Regime, Transport Analysis for Heliotron E, Transport Analysis for ATF, Simulation Analysis of Heating and Transport, Analysis of W VII-A Data, Numerical Study of Fast Ion Confinement, Benchmarks of NBI Codes for Stellarators, ECH Commissioning and Plans for ATF, and ECH and ICH Startup Analysis

  12. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Šturm, Roman, E-mail: roman.sturm@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Štefanikova, Maria [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Steiner Petrovič, Darja [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)

    2015-01-15

    Graphical abstract: - Highlights: • Heat-treatment protocol for laser surface melting of cold-work tool steel is proposed. • The laser melted steel surface is hardened, and morphologically modified. • The pre-heating of substrate creates a crack-and pore-free steel surface. • The optimum pre-heating temperature is determined to be 350 °C. • Using pre-heating the quantity of retained austenite is reduced. - Abstract: In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  13. Small ex-core heat pipe thermionic reactor concept (SEHPTR)

    International Nuclear Information System (INIS)

    Jacox, M.G.; Bennett, R.G.; Lundberg, L.B.; Miller, B.G.; Drexler, R.L.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has developed an innovative space nuclear power concept with unique features and significant advantages for both Defense and Civilian space missions. The Small Ex-core Heat Pipe Thermionic Reactor (SEHPTR) concept was developed in response to Air Force needs for space nuclear power in the range of 10 to 40 kilowatts. This paper describes the SEHPTR concept and discusses the key technical issues and advantages of such a system

  14. Concept Design of a Gravity Core Cooling Tank as a Passive Residual Heat Removal System for a Research Reactor

    International Nuclear Information System (INIS)

    Lee, Kwonyeong; Chi, Daeyoung; Kim, Seong Hoon; Seo, Kyoungwoo; Yoon, Juhyeon

    2014-01-01

    A core downward flow is considered to use a plate type fuel because it is benefit to install the fuel in the core. If a flow inversion from a downward to upward flow in the core by a natural circulation is introduced within a high heat flux region of residual heat, the fuel fails instantly due to zero flow. Therefore, the core downward flow should be sufficiently maintained until the residual heat is in a low heat flux region. In a small power research reactor, inertia generated by a flywheel of the PCP can maintain a downward flow shortly and resolve the problem of a flow inversion. However, a high power research reactor more than 10 MW should have an additional method to have a longer downward flow until a low heat flux. Usually, other research reactors have selected an active residual heat removal system as a safety class. But, an active safety system is difficult to design and expensive to construct. A Gravity Core Cooling Tank (GCCT) beside the reactor pool with a Residual Heat Removal Pipe connecting two pools was developed and designed preliminarily as a passive residual heat removal system for an open-pool type research reactor. It is very simple to design and cheap to construct. Additionally, a non-safety, but active residual heat removal system is applied with the GCCT. It is a Pool Water Cooling and Purification System. It can improve the usability of the research reactor by removing the thermal waves, and purify the reactor pool, the Primary Cooling System, and the GCCT. Moreover, it can reduce the pool top radiation level

  15. The treatment of mixing in core helium-burning models - III. Suppressing core breathing pulses with a new constraint on overshoot

    Science.gov (United States)

    Constantino, Thomas; Campbell, Simon W.; Lattanzio, John C.

    2017-12-01

    Theoretical predictions for the core helium burning phase of stellar evolution are highly sensitive to the uncertain treatment of mixing at convective boundaries. In the last few years, interest in constraining the uncertain structure of their deep interiors has been renewed by insights from asteroseismology. Recently, Spruit proposed a limit for the rate of growth of helium-burning convective cores based on the higher buoyancy of material ingested from outside the convective core. In this paper we test the implications of such a limit for stellar models with a range of initial mass and metallicity. We find that the constraint on mixing beyond the Schwarzschild boundary has a significant effect on the evolution late in core helium burning, when core breathing pulses occur and the ingestion rate of helium is fastest. Ordinarily, core breathing pulses prolong the core helium burning lifetime to such an extent that models are at odds with observations of globular cluster populations. Across a wide range of initial stellar masses (0.83 ≤ M/M⊙ ≤ 5), applying the Spruit constraint reduces the core helium burning lifetime because core breathing pulses are either avoided or their number and severity reduced. The constraint suggested by Spruit therefore helps to resolve significant discrepancies between observations and theoretical predictions. Specifically, we find improved agreement for R2 (the observed ratio of asymptotic giant branch to horizontal branch stars in globular clusters), the luminosity difference between these two groups, and in asteroseismology, the mixed-mode period spacing detected in red clump stars in the Kepler field.

  16. TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE HERSCHEL CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A

    International Nuclear Information System (INIS)

    Polychroni, D.; Schisano, E.; Elia, D.; Molinari, S.; Turrini, D.; Rygl, K. L. J.; Benedettini, M.; Busquet, G.; Di Giorgio, A. M.; Pestalozzi, M.; Pezzuto, S.; Roy, A.; André, Ph.; Hennemann, M.; Hill, T.; Könyves, V.; Martin, P.; Di Francesco, J.; Arzoumanian, D.; Bontemps, S.

    2013-01-01

    We present Herschel survey maps of the L 1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of the dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there, is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 M ☉ and drives the shape of the core mass function (CMF) at higher masses, which we fit with a power law of the form dN/dlogM∝M –1.4±0.4 . The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 M ☉ and leads to a flattening of the CMF at masses lower than ∼4 M ☉ . We postulate that this difference between the mass distributions is due to the higher proportion of gas that is available in the filaments, rather than in the diffuse cloud

  17. TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE HERSCHEL CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A

    Energy Technology Data Exchange (ETDEWEB)

    Polychroni, D. [Department of Astrophysics, University of Athens, Astronomy and Mechanics, Faculty of Physics, Panepistimiopolis, 15784 Zografos, Athens (Greece); Schisano, E.; Elia, D.; Molinari, S.; Turrini, D.; Rygl, K. L. J.; Benedettini, M.; Busquet, G.; Di Giorgio, A. M.; Pestalozzi, M.; Pezzuto, S. [Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Roy, A.; André, Ph.; Hennemann, M.; Hill, T.; Könyves, V. [Laboratoire AIM, CEA/IRFU CNRS/INSU Université Paris Diderot, Paris-Saclay, F-91191 Gif-sur-Yvette (France); Martin, P. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Di Francesco, J. [National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Arzoumanian, D. [IAS, CNRS (UMR 8617), Université Paris-Sud, Bâtiment 121, F-91400 Orsay (France); Bontemps, S., E-mail: dpolychroni@phys.uoa.gr [Université de Bordeaux, Laboratoire d' Astrophysique de Bordeaux, CNRS/INSU, UMR 5804, BP 89, F-33271, Floirac Cedex (France); and others

    2013-11-10

    We present Herschel survey maps of the L 1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of the dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there, is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 M {sub ☉} and drives the shape of the core mass function (CMF) at higher masses, which we fit with a power law of the form dN/dlogM∝M {sup –1.4±0.4}. The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 M {sub ☉} and leads to a flattening of the CMF at masses lower than ∼4 M {sub ☉}. We postulate that this difference between the mass distributions is due to the higher proportion of gas that is available in the filaments, rather than in the diffuse cloud.

  18. Performance Evaluation of the Concept of Hybrid Heat Pipe as Passive In-core Cooling Systems for Advanced Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Kim, Kyung Mo; Kim, In Guk; Bang, In Cheol

    2015-01-01

    As an arising issue for inherent safety of nuclear power plant, the concept of hybrid heat pipe as passive in-core cooling systems was introduced. Hybrid heat pipe has unique features that it is inserted in core directly to remove decay heat from nuclear fuel without any changes of structures of existing facilities of nuclear power plant, substituting conventional control rod. Hybrid heat pipe consists of metal cladding, working fluid, wick structure, and neutron absorber. Same with working principle of the heat pipe, heat is transported by phase change of working fluid inside metal cask. Figure 1 shows the systematic design of the hybrid heat pipe cooling system. In this study, the concept of a hybrid heat pipe was introduced as a Passive IN-core Cooling Systems (PINCs) and demonstrated for internal design features of heat pipe containing neutron absorber. Using a commercial CFD code, single hybrid heat pipe model was analyzed to evaluate thermal performance in designated operating condition. Also, 1-dimensional reactor transient analysis was done by calculating temperature change of the coolant inside reactor pressure vessel using MATLAB. As a passive decay heat removal device, hybrid heat pipe was suggested with a concept of combination of heat pipe and control rod. Hybrid heat pipe has distinct feature that it can be a unique solution to cool the reactor when depressurization process is impossible so that refueling water cannot be injected into RPV by conventional ECCS. It contains neutron absorber material inside heat pipe, so it can stop the reactor and at the same time, remove decay heat in core. For evaluating the concept of hybrid heat pipe, its thermal performance was analyzed using CFD and one-dimensional transient analysis. From single hybrid heat pipe simulation, the hybrid heat pipe can transport heat from the core inside to outside about 18.20 kW, and total thermal resistance of hybrid heat pipe is 0.015 .deg. C/W. Due to unique features of long heat

  19. Stellar evolution and the triple-α reactions

    International Nuclear Information System (INIS)

    Suda, Takuma

    2014-01-01

    Nuclear reaction rates play a crucial role in the evolution of stars. For low-mass stars, the triple-α reaction controls the helium burning stars in the red giant and asymptotic giant branch (AGB) phase. More importantly, the cross section of the triple-α reaction has a great impact on the helium ignition at the center of the electron degenerate helium core of red giants and on the helium shell flashes of AGB stars. It is to be noted that stellar evolution models are influenced not only by the value of the cross section, but also by the temperature dependence of the reaction rate. In this paper, I present the impact of the triple-α reaction rates on the evolution of low-mass metal-free stars and intermediate-mass AGB stars. According to the previous study, the constraint on the triple-α reaction rate is derived based on stellar evolution theory. It is found that the recent revisions of the rate proposed by nuclear physics calculations satisfy the condition for the ignition of the helium core flash in low-mass stars

  20. Effect of pre-heating on the thermal decomposition kinetics of cotton

    Science.gov (United States)

    The effect of pre-heating at low temperatures (160-280°C) on the thermal decomposition kinetics of scoured cotton fabrics was investigated by thermogravimetric analysis under nonisothermal conditions. Isoconversional methods were used to calculate the activation energies for the pyrolysis after one-...

  1. Heat Transfer Analysis of the European Pressurized Water Reactor (EPR) Core Catcher Test Facility Volley

    Energy Technology Data Exchange (ETDEWEB)

    Pikkarainen, Mika; Laine, Jani; Purhonen, Heikki; Kyrki-Rajamaeki, Riitta [Lappeenranta University of Technology, P.O. 20 53851 Lappeenranta (Finland); Sairanen, Risto [Radiation and Nuclear Safety Authority, P.O. 14 00881 Helsinki (Finland)

    2008-07-01

    The EPR is designed to cope with severe accidents, involving core meltdown. A specific melt spreading area has been designed within the containment. This core catcher will be flooded by water, which transfers the decay heat to the containment heat removal system. To improve cooling, horizontal flow channels made of cast iron are located also below the core catcher. STUK, the radiation and nuclear safety authority in Finland, wanted an independent study of the functionality of the core catcher design. Effect of the presence of insulation material and boric acid in the cooling water was to be studied, as well as the general behavior of the system in different phases of the flooding of the core melt spreading area. To verify the function of the core catcher design, a scaled down test facility was built at Lappeenranta University of Technology. Since there are some physical restrictions of a test facility computational tools were applied especially for the tests where steady state conditions could not be reached without endangering the integrity of the test facility. This paper introduces the Volley test facility, computational simulations and compares them with the test results. Simulated temperatures of those Volley tests, which could be run until steady state conditions, are very close to the measured temperatures. It can be concluded also, that the temperatures are evidently below the cast iron melting point with heat fluxes used in the tests, if there is a small flow inside the cooling channels or even in case when only a few adjacent cooling channels are totally dry. (authors)

  2. Heat Transfer Analysis of the European Pressurized Water Reactor (EPR) Core Catcher Test Facility Volley

    International Nuclear Information System (INIS)

    Pikkarainen, Mika; Laine, Jani; Purhonen, Heikki; Kyrki-Rajamaeki, Riitta; Sairanen, Risto

    2008-01-01

    The EPR is designed to cope with severe accidents, involving core meltdown. A specific melt spreading area has been designed within the containment. This core catcher will be flooded by water, which transfers the decay heat to the containment heat removal system. To improve cooling, horizontal flow channels made of cast iron are located also below the core catcher. STUK, the radiation and nuclear safety authority in Finland, wanted an independent study of the functionality of the core catcher design. Effect of the presence of insulation material and boric acid in the cooling water was to be studied, as well as the general behavior of the system in different phases of the flooding of the core melt spreading area. To verify the function of the core catcher design, a scaled down test facility was built at Lappeenranta University of Technology. Since there are some physical restrictions of a test facility computational tools were applied especially for the tests where steady state conditions could not be reached without endangering the integrity of the test facility. This paper introduces the Volley test facility, computational simulations and compares them with the test results. Simulated temperatures of those Volley tests, which could be run until steady state conditions, are very close to the measured temperatures. It can be concluded also, that the temperatures are evidently below the cast iron melting point with heat fluxes used in the tests, if there is a small flow inside the cooling channels or even in case when only a few adjacent cooling channels are totally dry. (authors)

  3. Development and test of a space-reactor-core heat pipe

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Runyan, J.E.; Martinez, H.E.; Keddy, E.S.

    1983-01-01

    A heat pipe designed to meet the heat transfer requirements of a 100-kW/sub e/ space nuclear power system has been developed and tested. General design requirements for the device included an operating temperature of 1500 0 K with an evaporator radial flux density of 100 w/cm 2 . The total heat-pipe length of 2 m comprised an evaporator length of 0.3 m, a 1.2-m adiabatic section, and a condenser length of 0.5 m. A four-artery design employing screen arteries and distribution wicks was used with lithium serving as the working fluid. Molybdenum alloys were used for the screen materials and tube shell. Hafnium and zirconium gettering materials were used in connection with a pre-purified distilled lithium charge to ensure internal chemical compatibility. After initial performance verification, the 14.1-mm i.d. heat pipe was operated at 15 kW throughput at 1500 0 K for 100 hours. No performance degradation was observed during the test

  4. Self-consistent simulations of nonlinear magnetohydrodynamics and profile evolution in stellarator configurations

    Energy Technology Data Exchange (ETDEWEB)

    Schlutt, M. G.; Hegna, C. C.; Sovinec, C. R. [University of Wisconsin-Madison, 1500 Engineering Dr., Madison, Wisconsin 53706 (United States); Held, E. D. [Utah State University, Logan, Utah 84322 (United States); Kruger, S. E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80303 (United States)

    2013-05-15

    Self-consistent extended MHD framework is used to investigate nonlinear macroscopic dynamics of stellarator configurations. In these calculations, initial conditions are given by analytical 3-D vacuum solutions. Finite beta discharges in a straight stellarator are simulated. Vacuum magnetic fields are applied to produce stellarator-like rotational transform profiles with iota(0) ≤ 0.5 and iota(0) ≥ 0.5. The vacuum magnetic fields are either helically symmetric or spoiled by the presence of magnetic harmonics of incommensurate helicity. As heat is added to the system, pressure-driven instabilities are excited when a critical β is exceeded. These instabilities may grow to large amplitude and effectively terminate the discharge, or they may saturate nonlinearly as the configuration evolves. In all of these studies, anisotropic heat conduction is allowed with κ{sub ∥}/κ{sub ⊥}=10{sup 4}−10{sup 7}.

  5. The effect of humidified heated breathing circuit on core body temperature in perioperative hypothermia during thyroid surgery.

    Science.gov (United States)

    Park, Hue Jung; Moon, Ho Sik; Moon, Se Ho; Do Jeong, Hyeon; Jeon, Young Jae; Do Han, Keung; Koh, Hyun Jung

    2017-01-01

    Purpose: During general anesthesia, human body easily reaches a hypothermic state, which is mainly caused by heat redistribution. Most studies suggested that humidified heated breathing circuits (HHBC) have little influence on maintenance of the core temperature during early phase of anesthesia. This study was aimed at examining heat preservation effect with HHBC in case of undergoing surgery with less exposure of surgical fields and short surgical duration. Methods: Patients aged 19 to 70 yr - old, ASA-PS I or II who were scheduled for elective thyroidectomy were assigned and divided to the group using HHBC (G1) and the group using conventional circuit (G2) by random allocation. During operation, core, skin, and room temperatures were measured every 5minutes by specific thermometer. Results: G1 was decreased by a lesser extent than G2 in core temperature, apparently higher at 30 and 60 minutes after induction. Skin and room temperatures showed no differences between the two groups (p>0.05). Consequently, we confirmed HHBC efficiently prevented a decrease in core temperature during early period in small operation which has difficulty in preparing warming devices or environments were not usually considered. Conclusions: This study showed that HHBC influences heat redistribution in early period of operation and can lessen the magnitude of the decrease in core body temperature. Therefore, it can be applied efficiently for other active warming devices in mild hypothermia.

  6. On impurity handling in high performance stellarator/heliotron plasmas

    International Nuclear Information System (INIS)

    Burhenn, R.; Feng, Y.; Ida, K.

    2008-10-01

    The Large Helical Device (LHD) and Wendelstein 7-X (W7-X, under construction) are experiments specially designed to demonstrate long pulse (quasi steady-state) operation, which is an intrinsic property of Stellarators and Heliotrons. Significant progress was made in establishment of high performance plasmas. A crucial point is the increasing impurity confinement towards high density as observed at several machines (TJ-II, W7-AS, LHD) which can lead to impurity accumulation and early pulse termination by radiation collapse at high density. In addition, theoretical predictions for non-axisymmetric configurations prognosticate the absence of impurity screening by ion temperature gradients in standard ion root plasmas. Nevertheless, scenarios were found where impurity accumulation was successfully avoided in LHD and/or W7-AS by the onset of drag forces in the high density and low temperature scrape-off-layer, the generation of magnetic islands at the plasma boundary and to a certain degree also by ELMs, flushing out impurities and reducing the net-impurity influx into the core. Additionally, a reduction of impurity core confinement was observed in the W7-AS High Density H-mode (HDH) regime and by application of sufficient ECRH heating power. The exploration of such purification mechanisms is a demanding task for successful steady-state operation. The impurity transport at the plasma edge/SOL was identified to play a major role for the global impurity behaviour in addition to the core confinement. (author)

  7. Stellar evolution as seen by mixed modes

    Directory of Open Access Journals (Sweden)

    Mosser Benoît

    2015-01-01

    Full Text Available The detection of mixed modes in subgiants and red giants allows us to monitor stellar evolution from the main sequence to the asymptotic giant branch and draw seismic evolutionary tracks. Quantified asteroseismic definitions that characterize the change in the evolutionary stages have been defined. This seismic information can now be used for stellar modelling, especially for studying the energy transport in the helium burning core or for specifying the inner properties of stars all along their evolution. Modelling will also allow us to study stars identified in the helium subflash stage, high-mass stars either arriving or quitting the secondary clump, or stars that could be in the blue-loop stage.

  8. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    O'Connor, Evan; Ott, Christian D

    2010-01-01

    We present the new open-source spherically symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical equations of state and neutrino leakage/heating of a failing core-collapse supernova and black hole formation in a presupernova model of a 40 M o-dot zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.

  9. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Evan; Ott, Christian D, E-mail: evanoc@tapir.caltech.ed, E-mail: cott@tapir.caltech.ed [TAPIR, Mail Code 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2010-06-07

    We present the new open-source spherically symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical equations of state and neutrino leakage/heating of a failing core-collapse supernova and black hole formation in a presupernova model of a 40 M{sub o-dot} zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.

  10. Addressing Pre-Service Teachers' Understandings and Difficulties with Some Core Concepts in the Special Theory of Relativity

    Science.gov (United States)

    Selcuk, Gamze Sezgin

    2011-01-01

    The aim of this study is to investigate pre-service teachers' understanding of and difficulties with some core concepts in the special theory of relativity. The pre-service teachers (n = 185) from the Departments of Physics Education and Elementary Science Education at Dokuz Eylul University (in Turkey) participated. Both quantitative and…

  11. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.

    Science.gov (United States)

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-05-07

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.

  12. ECRH scenarios with selective heating of trapped/passing electrons in the W7-X Stellarator

    Directory of Open Access Journals (Sweden)

    Marushchenko N.B.

    2015-01-01

    Full Text Available Using specific features of the magnetic equilibrium in the W7-X stellarator, the ECRH scenarios with combined X2 and X3 modes are discussed. The RF beams for operation with X2 and X3 modes need to be launched from low- and, via the remote steering launcher, high-field-side, respectivaly, in the different crosssections of the device where the maximum and minimum of the magnetic field located. The aim is to explore the possibility of selective heating of the different classes of electrons, passing and trapped, by changing direction of the beam for X3 or switching between the beams for X2 and X3 launched from the different ports. The numerical predictions for this kind of experiments in W7-X are performed by coupled transport and ray tracing codes

  13. Stellar systems fed by outside stars: the evolution of model galactic nuclei

    International Nuclear Information System (INIS)

    Dokuchaev, V.I.; Ozernoi, L.M.

    1985-01-01

    Through relaxation mechanisms, a dense central core surrounded by an extended, rarefied stellar system in a nonisothermal galactic nuclear region can be kept supplied with energy and mass conveyed by incoming stars. These factors may significantly influence the secular evolution of the core, competing with the conventional star-evaporation process. Under certain circumstances the outside environment will in fact dominate the core evolution, causing not collapse but expansion

  14. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Pleiss

    2007-04-01

    Full Text Available Appropriate expression of most eukaryotic genes requires the removal of introns from their pre-messenger RNAs (pre-mRNAs, a process catalyzed by the spliceosome. In higher eukaryotes a large family of auxiliary factors known as SR proteins can improve the splicing efficiency of transcripts containing suboptimal splice sites by interacting with distinct sequences present in those pre-mRNAs. The yeast Saccharomyces cerevisiae lacks functional equivalents of most of these factors; thus, it has been unclear whether the spliceosome could effectively distinguish among transcripts. To address this question, we have used a microarray-based approach to examine the effects of mutations in 18 highly conserved core components of the spliceosomal machinery. The kinetic profiles reveal clear differences in the splicing defects of particular pre-mRNA substrates. Most notably, the behaviors of ribosomal protein gene transcripts are generally distinct from other intron-containing transcripts in response to several spliceosomal mutations. However, dramatically different behaviors can be seen for some pairs of transcripts encoding ribosomal protein gene paralogs, suggesting that the spliceosome can readily distinguish between otherwise highly similar pre-mRNAs. The ability of the spliceosome to distinguish among its different substrates may therefore offer an important opportunity for yeast to regulate gene expression in a transcript-dependent fashion. Given the high level of conservation of core spliceosomal components across eukaryotes, we expect that these results will significantly impact our understanding of how regulated splicing is controlled in higher eukaryotes as well.

  15. BREATHING FIRE: HOW STELLAR FEEDBACK DRIVES RADIAL MIGRATION, RAPID SIZE FLUCTUATIONS, AND POPULATION GRADIENTS IN LOW-MASS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, Kareem; Geha, Marla [Department of Astronomy, Yale University, New Haven, CT (United States); Wetzel, Andrew; Hopkins, Philip F. [TAPIR, California Institute of Technology, Pasadena, CA USA (United States); Kereš, Dusan; Chan, T. K. [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla (United States); Faucher-Giguère, Claude-André, E-mail: kareem.el-badry@yale.edu [Department of Physics and Astronomy and CIERA, Northwestern University, Evanston, IL (United States)

    2016-04-01

    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (M{sub star} = 2 × 10{sup 6} − 5 × 10{sup 10} M{sub ⊙}) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ∼1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the global potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ∼200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed M{sub star}. Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at M{sub star} ≈ 10{sup 7–9.6} M{sub ⊙}, the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM.

  16. Core debris cooling with flooded vessel or core-catcher. Heat exchange coefficients under natural convection

    International Nuclear Information System (INIS)

    Rouge, S.; Seiler, J.M.

    1994-09-01

    External cooling by natural water circulation is necessary for molten core retention in LWR lower head or in a core-catcher. Considering the expected heat flux levels (between 0.2 to 1.5 MW/m 2 ) film boiling should be avoided. This rises the question of the knowledge of the level of the critical heat flux for the considered geometries and flow paths. The document proposes a state of the art of the research in this field. Mainly small scale experiments have been performed in a very recent past. These experiments are not sufficient to extrapolate to large scale reactor structures. Limited large scale experimental results exist. These results together with some theoretical investigations show that external cooling by natural water circulation may be considered as a reasonable objective of severe accident R and D. Recently (in fact since the beginning of 1994) new results are available from large scale experiments (CYBL, ULPU 2000, SULTAN). These results indicate that CHF larger than 1 MW/m 2 can be obtained under natural water circulation conditions. In this report, emphasis is given to the pursuit of finding predictive models for the critical heat flux in large, naturally convective channels with thick walls. This theoretical understanding is important for the capability to extrapolate to different situations (various geometries, flow paths....). The outcome of this research should be the ability to calculate Boundary Layer Boiling situations (2D), channelling boiling situations (1D) and related CHF conditions. However, a more straightforward approach can be used for the analysis of specific designs. Today there are already some CHF data available for hemispherical geometry and these data can be used before a mechanistic understanding is achieved

  17. Diversified emergency core cooling in CANDU with a passive moderator heat rejection system

    Energy Technology Data Exchange (ETDEWEB)

    Spinks, N [AECL Research, Chalk River Labs., Chalk River, ON (Canada)

    1996-12-01

    A passive moderator heat rejection system is being developed for CANDU reactors which, combined with a conventional emergency-coolant injection system, provides the diversity to reduce core-melt frequency to order 10{sup -7} per unit-year. This is similar to the approach used in the design of contemporary CANDU shutdown systems which leads to a frequency of order 10{sup -8} per unit-year for events leading to loss of shutdown. Testing of a full height 1/60 power-and-volume-scaled loop has demonstrated the feasibility of the passive system for removal of moderator heat during normal operation and during accidents. With the frequency of core-melt reduced, by these measures, to order 10{sup -7} per unit year, no need should exist for further mitigation. (author). 3 refs, 2 figs.

  18. Heat-transfer analysis of the existing HEU and proposed LEU cores of Pakistan research reactor

    International Nuclear Information System (INIS)

    Khan, L.A.; Nabbi, R.

    1987-02-01

    In connection with conversion of Pakistan Research Reactor (PARR) from the use of Highly Enriched Uranium (HEU) fuel to the use of Low Enriched Uranium (LEU) fuel, steady-state thermal hydraulic analysis of both existing HEU and proposed LEU cores has been carried out. Keeping in mind the possibility of power upgrading, the performance of proposed LEU core, under 10 MW operating conditions, has also been evaluated. Computer code HEATHYD has been used for this purpose. In order to verify the reliability of the code, IAEA benchmark 2 MW reactor was analyzed. The cooling parameters evaluated include: coolant velocity, critical velocity, pressure drop, temperature distribution in the core, heat fluxes at onset of nucleate boiling, flow instability and burnout and corresponding safety margins. From the results of the study it can be concluded that the conversion of the core to LEU fuel will result in higher safety margins, as compared to existing HEU core, mainly because the increased number of fuel plates in the proposed design will reduce the average heat flux significantly. Anyhow upgrading of the reactor power to 10 MW will need the flow rate to be adjusted between 850 to 900 m 3 /hr, to achieve reasonable safety margins, at least, comparable with the existing HEU core. (orig.)

  19. The Contribution of Stellar Winds to Cosmic Ray Production

    Science.gov (United States)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  20. Plasma equilibrium and stability in stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.; Shafranov, V.D.

    1987-01-01

    A review of theoretical methods of investigating plasma equilibrium and stability in stellarators is given. Principles forming the basis of toroidal plasma equilibrium and its stabilization, and the main results of analytical theory and numerical calculations are presented. Configurations with spiral symmetry and usual stellarators with plane axis and spiral fields are considered in detail. Derivation of scalar two-dimensional equations, describing equilibrium in these systems is given. These equations were used to obtain one-dimensional equations for displacement and ellipticity of magnetic surfaces. The model of weak-elliptic displaced surfaces was used to consider the evolution of plasma equilibrium in stellarators after elevation of its pressure: change of profile of rotational transformation after change of plasma pressure, current generation during its fast heating and its successive damping due to finite plasma conductivity were described. The derivation of equations of small oscillations in the form, suitable for local disturbance investigation is presented. These equations were used to obtain Mercier criteria and ballon model equations. General sufficient conditions of plasma stability in systems with magnetic confinement were derived

  1. Studies of Deteriorated Heat Transfer in Prismatic Cores Stemming from Irradiation-Induced Geometry Distortion

    International Nuclear Information System (INIS)

    Williams, Brian G.; Schultz, Richard R.; McEligot, Don M.; McCreery, Glenn

    2015-01-01

    A reference design for the Next Generation Nuclear Plant (NGNP) is to use General Atomics Modular High Temperature Gas-cooled Reactor (MHTGR). For such a configuration in normal operation, the helium coolant flow proceeds from the upper plenum to the lower plenum principally through the core coolant channels and the interstitial gaps (bypass flow) that separate the prismatic blocks from one another. Only the core prismatic blocks have coolant channels. The interstitial gaps are present throughout the core, the inner reflector region, and the out reflector region. The bypass flows in a prismatic gas-cooled reactor (GCR) are of potential concern because they reduce the desired flow rates in the coolant channels and, thereby, can increase outlet gas temperatures and maximum fuel temperatures. Consequently, it is appropriate to account for bypass flows in reactor thermal gas dynamic analyses. The objectives of this project include the following: fundamentally understand bypass flow and heat transfer at scaled, undistorted conditions and with geometry distortions; develop improved estimates of associated loss coefficients, surface friction and heat transfer for systems and network codes; and obtain related data for validation of CFD (computational fluid dynamic) or system (e.g., RELAP5) codes which can be employed in predictions for a GCR for normal power, reduced power, and residual heat removal operations.

  2. Studies of Deteriorated Heat Transfer in Prismatic Cores Stemming from Irradiation-Induced Geometry Distortion

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Brian G. [Idaho State Univ., Pocatello, ID (United States); Schultz, Richard R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McEligot, Don M. [Univ. of Idaho, Moscow, ID (United States); McCreery, Glenn [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-08-31

    A reference design for the Next Generation Nuclear Plant (NGNP) is to use General Atomics Modular High Temperature Gas-cooled Reactor (MHTGR). For such a configuration in normal operation, the helium coolant flow proceeds from the upper plenum to the lower plenum principally through the core coolant channels and the interstitial gaps (bypass flow) that separate the prismatic blocks from one another. Only the core prismatic blocks have coolant channels. The interstitial gaps are present throughout the core, the inner reflector region, and the out reflector region. The bypass flows in a prismatic gas-cooled reactor (GCR) are of potential concern because they reduce the desired flow rates in the coolant channels and, thereby, can increase outlet gas temperatures and maximum fuel temperatures. Consequently, it is appropriate to account for bypass flows in reactor thermal gas dynamic analyses. The objectives of this project include the following: fundamentally understand bypass flow and heat transfer at scaled, undistorted conditions and with geometry distortions; develop improved estimates of associated loss coefficients, surface friction and heat transfer for systems and network codes; and obtain related data for validation of CFD (computational fluid dynamic) or system (e.g., RELAP5) codes which can be employed in predictions for a GCR for normal power, reduced power, and residual heat removal operations.

  3. Addressing pre-service teachers' understandings and difficulties with some core concepts in the special theory of relativity

    International Nuclear Information System (INIS)

    Selcuk, Gamze Sezgin

    2011-01-01

    The aim of this study is to investigate pre-service teachers' understanding of and difficulties with some core concepts in the special theory of relativity. The pre-service teachers (n = 185) from the Departments of Physics Education and Elementary Science Education at Dokuz Eylul University (in Turkey) participated. Both quantitative and qualitative research methods were used in this study. Students' understanding of and difficulties with core elements (time, length, mass and density) were tested using a paper-and-pencil questionnaire (including four questions) and in-depth interviews after the instruction of related modern physics topics. The analyses of the collected data were based on quantitative and qualitative techniques. The results indicate that pre-service teachers at different academic levels have specific and considerable difficulties with proper time, time dilation, proper length, mass and relativistic density concepts. In this paper, the conclusions of the study and implications for physics teaching are discussed.

  4. Thermodynamic analysis of application of organic Rankine cycle for heat recovery from an integrated DIR-MCFC with pre-reformer

    International Nuclear Information System (INIS)

    Vatani, Ali; Khazaeli, Ali; Roshandel, Ramin; Panjeshahi, Mohammad Hassan

    2013-01-01

    Highlights: ► Using an integrated pre-reformer before feeding a DIR-MCFC is proposed. ► An ORC with different working fluid is used for waste heat recovery from the proposed plant. ► Performance of compound system is evaluated by thermodynamic analysis. ► An improvement on simultaneously heat integration between the units and waste heat recovery is performed. ► Overall energy and exergy efficiencies are found to be 60.45% and 57.75%. - Abstract: This work deals with waste heat recovery from a proposed direct internal reforming molten carbonate fuel cell (DIR-MCFC), including an integrated pre-reformer. In this regard, some advantages are attainable over exhaust gas recycling. For instance, due to low temperature in the pre-reformer, carbon deposition and coke formation resulting from higher hydrocarbons can be eliminated. In this study, the cathode outlet provides the heat requirement for the pre-reforming process. After partial heat recovery from the cathode outlet, the stream still has a considerable energy and exergy (352.55 °C and 83.687 kW respectively). This study investigates waste heat recovery from the proposed DIR-MCFC, using an organic Rankine cycle (ORC) with two different configurations. In the first case, the cathode outlet provides the heat requirement for the pre-reforming process; then, it enters the heat recovery vapor generator of the organic Rankine cycle. In the second case, the cathode outlet is split into two streams for using in an ORC and supplying the pre-reforming process required heat. Several substances are selected as working fluids in order to compare their performance in the waste heat recovery system. The overall results at optimum conditions indicate that the energy and exergy efficiencies of the compound system are increased and its exergy loss is decreased with cathode splitting for all substances (1.1% average over all fluids). It is concluded that cathode splitting has a significant impact on the substances which

  5. A study on pre-heat conditions in equivalent-dose estimation of holocene loess using single-aliquot regenerative-dose (SAR) protocol

    International Nuclear Information System (INIS)

    Jia Yaofeng; Huang Chunchang; Pang Jiangli; Lu Xinwei; Zhang Xu

    2007-01-01

    Through various arrangements of pre-heat and cut-heat temperatures in the equivalent-dose estimation of Holocene loess using a Double-SAR dating protocol, the paper estimated the equivalent-doses from several loess samples by application of IRSL and Post-IR OSL signals, respectively. The measured results present that the equivalent-dose depends on the heat temperature, especially depends on the cut-heat temperature, showing the equivalent-dose increases with the cut-heat temperature; a plateau of equivalent-dose appears at the 200-300 degree C preheat temperatures and the 200-240 degree C cut-heat temperatures, furthermore, the equivalent-doses estimated by IRSL and Post-IR OSL signals respectively are close to each other, which resulted from the similar sensitivity change directions of optical stimulated signals and their smaller change ranges in the measurement cycles using the various temperatures of pre-heat and cut-heat. This suggests that the 200-300 degree C pre-heat temperatures and the 200-240 degree C cut-heat temperatures are fit for dating young Holocene loess samples. (authors)

  6. Development of whole core thermal-hydraulic analysis program ACT. 3. Coupling core module with primary heat transport system module

    International Nuclear Information System (INIS)

    Ohtaka, Masahiko; Ohshima, Hiroyuki

    1998-10-01

    A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including inter-wrapper flow under various reactor operation conditions. In this work, the core module as a main part of the ACT developed last year, which simulates thermal-hydraulics in the subassemblies and the inter-subassembly gaps, was coupled with an one dimensional plant system thermal-hydraulic analysis code LEDHER to simulate transients in the primary heat transport system and to give appropriate boundary conditions to the core model. The effective algorithm to couple these two calculation modules was developed, which required minimum modification of them. In order to couple these two calculation modules on the computing system, parallel computing technique using PVM (Parallel Virtual Machine) programming environment was applied. The code system was applied to analyze an out-of-pile sodium experiment simulating core with 7 subassemblies under transient condition for code verification. It was confirmed that the analytical results show a similar tendency of experimental results. (author)

  7. AK SCO, FIRST DETECTION OF A HIGHLY DISTURBED ATMOSPHERE IN A PRE-MAIN-SEQUENCE CLOSE BINARY

    International Nuclear Information System (INIS)

    Gomez de Castro, Ana I.

    2009-01-01

    AK Sco is a unique source: a ∼10 Myr old pre-main-sequence (PMS) spectroscopic binary composed of two nearly equal F5 stars that at periastron are separated by barely 11 stellar radii, so the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes AK Sco the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during PMS evolution. In this Letter, the detection of a highly disturbed (σ ≅ 100 km s -1 ) and very dense atmosphere (n e = 1.6 x 10 10 cm -3 ) is reported. Significant line broadening blurs any signs of ion belts or bow shocks in the spectrum of the atmospheric plasma. The radiative losses cannot be accounted for solely by the dissipation of energy from the tidal wave propagating in the stellar atmosphere or by the accreting material. The release of internal energy from the star seems to be the most likely source of the plasma heating. This is the first clear indication of a highly disturbed atmosphere surrounding a PMS close binary.

  8. AK Sco, First Detection of a Highly Disturbed Atmosphere in a Pre-Main-Sequence Close Binary

    Science.gov (United States)

    Gómez de Castro, Ana I.

    2009-06-01

    AK Sco is a unique source: a ~10 Myr old pre-main-sequence (PMS) spectroscopic binary composed of two nearly equal F5 stars that at periastron are separated by barely 11 stellar radii, so the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes AK Sco the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during PMS evolution. In this Letter, the detection of a highly disturbed (σ sime 100 km s-1) and very dense atmosphere (n e = 1.6 × 1010 cm-3) is reported. Significant line broadening blurs any signs of ion belts or bow shocks in the spectrum of the atmospheric plasma. The radiative losses cannot be accounted for solely by the dissipation of energy from the tidal wave propagating in the stellar atmosphere or by the accreting material. The release of internal energy from the star seems to be the most likely source of the plasma heating. This is the first clear indication of a highly disturbed atmosphere surrounding a PMS close binary.

  9. DENSE CORES IN THE PIPE NEBULA: AN IMPROVED CORE MASS FUNCTION

    International Nuclear Information System (INIS)

    Rathborne, J. M.; Lada, C. J.; Muench, A. A.; Alves, J. F.; Kainulainen, J.; Lombardi, M.

    2009-01-01

    In this paper, we derive an improved core mass function (CMF) for the Pipe Nebula from a detailed comparison between measurements of visual extinction and molecular-line emission. We have compiled a refined sample of 201 dense cores toward the Pipe Nebula using a two-dimensional threshold identification algorithm informed by recent simulations of dense core populations. Measurements of radial velocities using complimentary C 18 O (1-0) observations enable us to cull out from this sample those 43 extinction peaks that are either not associated with dense gas or are not physically associated with the Pipe Nebula. Moreover, we use the derived C 18 O central velocities to differentiate between single cores with internal structure and blends of two or more physically distinct cores, superposed along the same line of sight. We then are able to produce a more robust dense core sample for future follow-up studies and a more reliable CMF than was possible previously. We confirm earlier indications that the CMF for the Pipe Nebula departs from a single power-law-like form with a break or knee at M ∼ 2.7 ± 1.3 M sun . Moreover, we also confirm that the CMF exhibits a similar shape to the stellar initial mass function (IMF), but is scaled to higher masses by a factor of ∼4.5. We interpret this difference in scaling to be a measure of the star formation efficiency (22% ± 8%). This supports earlier suggestions that the stellar IMF may originate more or less directly from the CMF.

  10. Occupational heat strain in a hot underground metal mine.

    Science.gov (United States)

    Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R

    2014-04-01

    In a hot underground metal mine, this study evaluated the relationship between job task, physical body type, work shift, and heat strain. Thirty-one miners were evaluated during 98 shifts while performing deep shaft-sinking tasks. Continuous core body temperature, heart rate, pre- and postshift urine specific gravity (USG), and body mass index were measured. Cutting and welding tasks were associated with significantly (P < 0.05) increased core body temperature, maximum heart rate, and increased postshift urine specific gravity. Miners in the obese level II and III body mass index categories, as well as those working night shift, had lower core body temperatures (P < 0.05). This study confirms that job task, body type, and shift are risk factors for heat strain.

  11. THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Morscher, Meagan; Pattabiraman, Bharath; Rodriguez, Carl; Rasio, Frederic A.; Umbreit, Stefan, E-mail: m.morscher@u.northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL (United States)

    2015-02-10

    Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M {sub ☉}. Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 10{sup 6} stars. In almost all models we find that significant numbers of BHs (up to ∼10{sup 3}) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer {sup m}ass segregation instability{sup )} is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.

  12. Natural convection and radiation heat transfer in a vertical porous layer with a hexagonal honeycomb core. 2nd Report. Experiment on heat transfer; Honeycomb core de shikirareta enchoku takoshitsu sonai no shizen tairyu - fukusha fukugo netsu dentatsu. 2. Dennetsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Y; Asako, Y [Tokyo Metropolitan Univ., Tokyo (Japan). Faculty of Technology

    1997-06-25

    The combined natural convection and radiation heat transfer characteristics in a vertical porous layer with a hexagonal honeycomb core were investigate experimentally. The temperature distributions on the honeycomb core wall and the combined heat transfer rates through the porous layer were measured. The measurements of the heat transfer were accomplished using the guarded hot plate (GHP) method. The honeycomb core wall was made of paper and large mesh foamed resins were inserted into the honeycomb enclosures. The measurements were performed while varying the radiation parameters between 0.5 to 0.65, varying the temperature ratios between 0.01 to 0.1 and varying the Darcy-Rayleigh numbers between 5 to 80, and for a fixed aspect ratio of H/L=1. The experimental results for Nusselt numbers agreed well with our available numerical results. 9 refs., 8 figs.

  13. Confinement studies in the TJ-II stellarator

    NARCIS (Netherlands)

    Alejaldre, C.; Alonso, J.; Almoguera, L.; Ascasibar, E.; Baciero, A.; Balbin, R.; Blaumoser, M.; Botija, J.; Branas, B.; De La Cal, E.; Cappa, A.; Carrasco, R.; Castejon, F.; Cepero, J. R.; Cremy, C.; Delgrado, J. M.; Doncel, J.; Dulya, C.; Estrada, T.; Fernandez, A.; Fuentes, C.; Garcia, A.; Garcia-Cortes, I.; Guasp, J.; Herranz, J.; Hidalgo, C.; Jimenez, J. A.; Kirpitchev, I.; Krivenski, V.; Labrador, I.; Lapayese, F.; Likin, K.; Linier, M.; Lopez-Fraguas, A.; Lopez-Sanchez, A.; de la Luna, E.; Martin, R.; Martinez, A.; Martinez-Laso, L.; Medrano, M.; Mendez, P.; McCarthy, K. J.; Medina, F.; van Milligen, B.; Ochando, M.; Pacios, L.; Pastor, I.; Pedrosa, M. A.; de la Pena, A.; Portas, A.; Qin, J.; Rodriguez-Rodrigo, L.; Salas, A.; Sanchez, E.; Sanchez, J.; Tabares, F.; Tafalla, D.; Tribaldos, V.; Vega, J.; Zurro, B.; Akulina, D.; Fedyanin, O. I.; Grebenshchikov, S.; Kharchev, N.; Meshcheryakov, A.; Sarksian, K. A.; Barth, R.; van Dijk, G.; van der Meiden, H.

    1999-01-01

    ECR (electron cyclotron resonance) heated plasmas have been studied in the low magnetic shear TJ-II stellarator (R = 1.5 m, a < 0.22 m, B = 1 T, f = 53.2 GHz, P-ECRH = 300 kW, power density = 1-25 W cm(-3)). Recent experiments have explored the flexibility of the TJ-II across a wide range of

  14. The origin of kinematically distinct cores and misaligned gas discs in galaxies from cosmological simulations

    Science.gov (United States)

    Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki

    2018-06-01

    Integral field spectroscopy surveys provide spatially resolved gas and stellar kinematics of galaxies. They have unveiled a range of atypical kinematic phenomena, which require detailed modelling to understand. We present results from a cosmological simulation that includes stellar and AGN feedback. We find that the distribution of angles between the gas and stellar angular momenta of galaxies is not affected by projection effects. We examine five galaxies (≈6 per cent of well resolved galaxies) that display atypical kinematics; two of the galaxies have kinematically distinct cores (KDC), while the other three have counter-rotating gas and stars. All five form the majority of their stars in the field, subsequently falling into cosmological filaments where the relative orientation of the stellar angular momentum and the bulk gas flow leads to the formation of a counter-rotating gas disc. The accreted gas exchanges angular momentum with pre-existing co-rotating gas causing it to fall to the centre of the galaxy. This triggers low-level AGN feedback, which reduces star formation. Later, two of the galaxies experience a minor merger (stellar mass ratio ˜1/10) with a galaxy on a retrograde orbit compared to the spin of the stellar component of the primary. This produces the KDCs, and is a different mechanism than suggested by other works. The role of minor mergers in the kinematic evolution of galaxies may have been under-appreciated in the past, and large, high-resolution cosmological simulations will be necessary to gain a better understanding in this area.

  15. SCALING LAWS AND TEMPERATURE PROFILES FOR SOLAR AND STELLAR CORONAL LOOPS WITH NON-UNIFORM HEATING

    International Nuclear Information System (INIS)

    Martens, P. C. H.

    2010-01-01

    The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of active regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a set of temperature- and pressure-dependent heating functions that encompass heating concentrated at the footpoints, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution-not sufficiently to be of significant diagnostic value-and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the Rosner-Tucker-Vaiana scaling law (P 0 L ∼ T 3 max ) depending on the specific heating function. Furthermore, quasi-static solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the results to a set of solutions for strands with a functionally prescribed variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are accurate and stable.

  16. Crystal Structure of the HEAT Domain from the Pre-mRNA Processing Factor Symplekin

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Sarah A.; Frazier, Monica L.; Steiniger, Mindy; Mast, Ann M.; Marzluff, William F.; Redinbo, Matthew R.; (UNC)

    2010-09-30

    The majority of eukaryotic pre-mRNAs are processed by 3'-end cleavage and polyadenylation, although in metazoa the replication-dependent histone mRNAs are processed by 3'-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the {approx} 1160-residue protein Symplekin. Secondary-structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 {angstrom} resolution with single-wavelength anomalous dispersion phasing methods. The structure exhibits five canonical HEAT repeats along with an extended 31-amino-acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3'-end processing. Together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process.

  17. Hydromagnetic instability in a stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Kruskal, M D; Gottlieb, M B; Johnson, J L; Goldman, L M [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    It was noted that when there is a uniform externally imposed longitudinal field much larger than the field of the discharge current, one should expect instabilities in the form of a lateral displacement of the plasma column into a helix of large pitch. At the wavelength of fastest growth the e-folding time approximates the time it takes a sound wave in the plasma to traverse the radius of the plasma column. This problem has been re-examines under the conditions which might be expected to occur in the stellarator during ohmic heating, including the presence of external conductors. The theory is applied to the stellarator; and it is shown that the external conductors are in fact unimportant. The important effects due to the finite length of the Machine are discussed and the effects of more general current distributions are considered. The results from the experiments are given.

  18. INCREASES IN CORE TEMPERATURE COUNTERBALANCE EFFECTS OF HEMOCONCENTRATION ON BLOOD VISCOSITY DURING PROLONGED EXERCISE IN THE HEAT

    Science.gov (United States)

    Buono, Michael J.; Krippes, Taylor; Kolkhorst, Fred W.; Williams, Alexander T.; Cabrales, Pedro

    2015-01-01

    Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and post-exercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced hemoconcentration and hyperthermia, as well as determine their combined effects, on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% rH), which resulted in significant increases from pre-exercise values for rectal temperature (37.11 ± 0.35 °C to 38.76 ± 0.13 °C), hemoconcentration (hematocrit = 43.6 ± 3.6% to 45.6 ± 3.5%), and dehydration (Δbody weight = −3.6 ± 0.7%). Exercise-induced hemoconcentration significantly (P viscosity by 9% (3.97 to 4.30 cP at 300 s−1) while exercise-induced hyperthermia significantly decreased blood viscosity by 7% (3.97 to 3.70 cP at 300 s−1). However, when both factors were considered together, there was no overall change in blood viscosity (3.97 to 4.03 cP at 300 s−1). The effects of exercise-induced hemoconcentration, increased plasma viscosity, and increased red blood cell aggregation, all of which increased blood viscosity, were counterbalanced by increased RBC deformability (e.g., RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. PMID:26682653

  19. Effect of heat transfer in the fog region during core reflooding

    International Nuclear Information System (INIS)

    Rouai, N. M.; El-sawy, H. M.

    1993-01-01

    Core reflooding following a loss of coolant accident (LOCA) in a pressurized water reactor (PWR) received considerable attention during the past thirty years. In this paper a one dimensional model is used to study the effect of the heat transfer in the fog region ahead of the wet front reflooding rate of a cylindrical fuel element following a LOCA in a PWR. The heat conduction equation in the cladding is solved in coordinate system moving with the wet front under a variety of condition to investigate the effects of such parameters as the initial cladding surface temperature, the decay heat generation rate in the fuel and the mode of heat transfer prevailing. The cladding surface is divided into three axial regions according to the mechanism of heat transfer, namely, a boiling region behind the wet front, a fog region ahead of the wet front and a dry region further downstream of the wet front. The effect of changing the heat transfer coefficient in the fog region on the rewetting rate and on the fog length is investigated. The results of this simple model show that increasing the heat transfer in the fog region increases the rewetting velocity and consequently decreases the fog length. The results are in general agreement with a more accurate two-dimensional model and experimental data. (author)

  20. Natural convection as the way of heat removal from fast reactor core at cooldown regimes

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Kuzina, J.A.; Uhov, V.A.; Sorokin, G.A.

    2000-01-01

    The problems of thermohydraulics in fast reactors at cooldown regimes at heat removal by natural convection are considered The results of experiments and calculations obtained in various countries in this area are presented. The special attention is given to heat removal through inter-assembly space in the core and also to problems of thermohydraulics in the upper plenum. (author)

  1. The structure of protostellar dense cores: a millimeter continuum study

    International Nuclear Information System (INIS)

    Motte, Frederique

    1998-01-01

    A comprehensive theoretical scenario explains low-mass star formation and describes the gravitational collapse of an isolated 'ideal' dense core. The major aim of this thesis is to check the standard model predictions on the structure of protostellar dense cores (or envelopes). The earliest stages of star formation remain poorly known because the protostars are still deeply embedded in massive, opaque circumstellar cocoons. On the one hand, sensitive bolometer arrays very recently allow us to measure the millimeter continuum emission arising from dense cores. Such observations are a powerful tool to constrain the density structure of proto-stellar dense cores (on large length scale). In particular, we studied the structure of isolated proto-stellar envelopes in Taurus and protostars in the ρ Ophiuchi cluster. In order to accurately derive their envelope density power law, we simulated the observation of several envelope models. Then we show that most of the Taurus protostars present a density structure consistent with the standard model predictions. In contrast, dense cores in ρ Ophiuchi main cloud are highly fragmented and protostellar envelope have finite size. Moreover fragmentation appears to be essential in determining the final stellar mass of ρ Oph forming stars. In clusters, fragmentation may thus be at the origin of the stellar initial mass function (IMF). On the other hand, our interferometric millimeter continuum observations are tracing (with higher angular resolution) the inner part of protostellar envelopes. Our study show that disks during protostellar stages are not yet massive and thus do not perturb the analysis of envelope density structure. (author) [fr

  2. A tale of two anomalies: Depletion, dispersion, and the connection between the stellar lithium spread and inflated radii on the pre-main sequence

    Energy Technology Data Exchange (ETDEWEB)

    Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43201 (United States)

    2014-07-20

    We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age, and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass-dependent, in the sense of more depletion at low mass. A dispersion in Li abundance at fixed T{sub eff} is nearly universal, and sets in by ∼200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispersion in stars of fixed mass and age, during the epoch of pre-MS Li destruction, is responsible for the spread in Li abundances and the correlation between rotation and Li in young cool stars, most well known in the Pleiades. We calculate stellar models, inflated to match observed radius anomalies in magnetically active systems, and the resulting range of Li abundances reproduces the observed patterns of young clusters. We discuss ramifications for pre-MS evolutionary tracks and age measurements of young clusters, and suggest an observational test.

  3. A tale of two anomalies: Depletion, dispersion, and the connection between the stellar lithium spread and inflated radii on the pre-main sequence

    International Nuclear Information System (INIS)

    Somers, Garrett; Pinsonneault, Marc H.

    2014-01-01

    We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age, and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass-dependent, in the sense of more depletion at low mass. A dispersion in Li abundance at fixed T eff is nearly universal, and sets in by ∼200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispersion in stars of fixed mass and age, during the epoch of pre-MS Li destruction, is responsible for the spread in Li abundances and the correlation between rotation and Li in young cool stars, most well known in the Pleiades. We calculate stellar models, inflated to match observed radius anomalies in magnetically active systems, and the resulting range of Li abundances reproduces the observed patterns of young clusters. We discuss ramifications for pre-MS evolutionary tracks and age measurements of young clusters, and suggest an observational test.

  4. Impacts of WIMP dark matter upon stellar evolution: main-sequence stars

    CERN Document Server

    Scott, Pat; Edsjo, Joakim

    2008-01-01

    The presence of large amounts of WIMP dark matter in stellar cores has been shown to have significant effects upon models of stellar evolution. We present a series of detailed grids of WIMP-influenced stellar models for main sequence stars, computed using the DarkStars code. We describe the changes in stellar structure and main sequence evolution which occur for masses ranging from 0.3 to 2.0 solar masses and metallicities from Z = 0.0003-0.02, as a function of the rate of energy injection by WIMPs. We then go on to show what rates of energy injection can be obtained using realistic orbital parameters for stars near supermassive black holes, including detailed considerations of dark matter halo velocity and density profiles. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits, causing WIMP annihilation to provide up to 100 times the energy of hydrogen fusion in stars at the Galactic centre.

  5. The galaxy population of Abell 1367: the stellar mass-metallicity relation

    Science.gov (United States)

    Mouhcine, M.; Kriwattanawong, W.; James, P. A.

    2011-04-01

    Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell 1367. The sample galaxies are distributed from the cluster centre out to approximately half the cluster Abell radius. The optical/near-infrared colours are compared with simple stellar population synthesis models from which the luminosity-weighted stellar population ages and metallicities are determined. The locus of the colours of elliptical galaxies traces a sequence of varying metallicity at a narrow range of luminosity-weighted stellar ages. Lenticular galaxies in the red sequence, however, exhibit a substantial spread of luminosity-weighted stellar metallicities and ages. For red-sequence lenticular galaxies and blue cloud galaxies, low-mass galaxies tend to be on average dominated by stellar populations of younger luminosity-weighted ages. Sample galaxies exhibit a strong correlation between integrated stellar mass and luminosity-weighted stellar metallicity. Galaxies with signs of morphological disturbance and ongoing star formation activity, tend to be underabundant with respect to passive galaxies in the red sequence of comparable stellar masses. We argue that this could be due to tidally driven gas flows towards the star-forming regions, carrying less enriched gas and diluting the pre-existing gas to produce younger stellar populations with lower metallicities than would be obtained prior to the interaction. Finally, we find no statistically significant evidence for changes in the luminosity-weighted ages and metallicities for either red-sequence or blue-cloud galaxies, at fixed stellar mass, with location within the cluster. We dedicate this work to the memory of our friend and colleague C. Moss who died suddenly recently.

  6. Influence of heat treatment on hole transfer dynamics in core-shell quantum dot/organic hole conductor hybrid films

    Science.gov (United States)

    Sun, Mingye; Zheng, Youjin; Zhang, Lei; Zhao, Liping; Zhang, Bing

    2017-08-01

    The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4‧,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.

  7. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B W [Rijksuniversiteit Utrecht (Netherlands). Inst. of Astronomy; Rutten, R G.M. [Astronomical Inst. ' Anton Pannekoek' , Amsterdam (Netherlands); Callanan, P J [Oxford Univ. (UK). Dept. of Astrophysics; Seitzer, Patrick [Space Telescope Science Inst., Baltimore, MD (USA); Charles, P A [Oxford Univ. (UK). Dept. of Astrophysics Observatorio del Roque do los Muchachos, Santa Cruz de La Palma, Tenerife, Canary Islands (Spain); Cohn, H N; Lugger, P M [Indiana Univ., Bloomington, IN (USA). Dept. of Astronomy

    1991-05-09

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author).

  8. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    International Nuclear Information System (INIS)

    Murphy, B.W.; Callanan, P.J.; Charles, P.A.; Cohn, H.N.; Lugger, P.M.

    1991-01-01

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author)

  9. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Preynas, M.; Laqua, H. P.; Marsen, S.; Reintrog, A. [Max-Planck-Institut für Plasmaphysik (IPP), D-17491 Greifswald (Germany); Corre, Y.; Moncada, V.; Travere, J.-M. [IRFM, CEA-Cadarache, 13108 Saint Paul lez Durance Cedex (France)

    2015-11-15

    The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the camera and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.

  10. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    Science.gov (United States)

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  11. Assessment of global stellarator confinement: Status of the international stellarator confinement scaling data base

    International Nuclear Information System (INIS)

    Dinklage, A.; Beidler, C.D.; Dose, V.; Geiger, J.; Kus, A.; Preuss, R.; Ascasibar, E.; Tribaldos, V.; Harris, J.H.; Murakami, S.; Sano, F.; Okamura, S.; Suzuki, Y.; Watanabe, K.Y.; Yamada, H.; Yokoyama, M.; Stroth, U.; Talmadge, J.

    2005-01-01

    Different stellarator/heliotron devices along with their respective flexibility cover a large magnetic configuration space. Since the ultimate goal of stellarator research aims at an alternative fusion reactor concept, the exploration of the most promising configurations requires a comparative assessment of the plasma performance and how different aspects of a 3D configuration influence it. Therefore, the International Stellarator Confinement Database (ISCDB) has been re- initiated in 2004 and the ISS95 database has been extended to roughly 3000 discharges from eight different devices. Further data-sets are continuously added. A revision of a data set restricted to comparable scenarios lead to the ISS04 scaling law which confirmed ISS95 but also revealed clearly the necessity to incorporate configuration descriptive parameters. In other words, an extension beyond the set of regression parameters used for ISS95/ISS04 appears to be necessary and candidates, such as the elongation are investigated. Since grouping of data is a key-issue for deriving ISS04, basic assumptions are revised, e.g. the dependence on the heating scheme. Moreover, an assessment of statistical approaches is investigated with respect to their impact on the scaling. A crucial issue is the weighting of data groups which is discussed in terms of error-in-variable techniques and Bayesian model comparison. The latter is employed for testing scaling ansatzes depending on scaling invariance principles hence allowing the assessment of applicability of theory-based scaling laws on stellarator confinement. 1. ISCDB resources are jointly hosted by NIFS and IPP, see http://iscdb.nifs.ac.jp and http://www.ipp.mpg.de/ISS. (author)

  12. Electrically Heated Testing of the Kilowatt Reactor Using Stirling Technology (KRUSTY) Experiment Using a Depleted Uranium Core

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James

    2017-01-01

    The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one

  13. Early phases in the stellar and substellar formation and evolution. Infrared and submillimeter data in the Barnard 30 dark cloud

    Science.gov (United States)

    Barrado, D.; de Gregorio Monsalvo, I.; Huélamo, N.; Morales-Calderón, M.; Bayo, A.; Palau, A.; Ruiz, M. T.; Rivière-Marichalar, P.; Bouy, H.; Morata, Ó.; Stauffer, J. R.; Eiroa, C.; Noriega-Crespo, A.

    2018-04-01

    Aims: The early evolutionary stage of brown dwarfs (BDs) is not very well characterized, especially during the embedded phase. Our goal is to gain insight into the dominant formation mechanism of very low-mass objects and BDs. Methods: We have conducted deep observations at 870 μm obtained with the LABOCA bolometer at the APEX telescope in order to identify young submillimeter (submm) sources in the Barnard 30 dark cloud. We have complemented these data with multi-wavelength observations from the optical to the far-IR and compiled complete spectral energy distributions in order to identify the counterparts, characterize the sources and to assess their membership to the association and stellar or substellar status based on the available photometric information. Results: We have identified 34 submm sources and a substantial number of possible and probable Barnard 30 members within each individual APEX/LABOCA beam. They can be classified into three distinct groups. First, 15 of these 34 have a clear optical or IR counterpart to the submm peak and nine of them are potential proto-BD candidates. Moreover, a substantial number of them could be multiple systems. A second group of 13 sources comprises candidate members with significant infrared excesses located away from the central submm emission. All of them include BD candidates, some displaying IR excess, but their association with submm emission is unclear. In addition, we have found six starless cores and, based on the total dust mass estimate, three might be pre-substellar (or pre-BDs) cores. Finally, the complete characterization of our APEX/LABOCA sources, focusing on those detected at 24 and/or 70 μm, indicates that in our sample of 34 submm sources there are, at least: two WTTs, four CTTs, five young stellar objects, eight proto-BD candidates (with another three dubious cases), and one very low luminosity objects. Conclusions: Our findings provide additional evidence concerning the BD formation mechanism

  14. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Wünsch, R.; Palouš, J.; Ehlerová, S. [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic); Tenorio-Tagle, G. [Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, México (Mexico)

    2017-01-20

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  15. Heat flow at the proposed Appalachian Ultradeep Core Hole (ADCOH) Site: Tectonic implications

    Science.gov (United States)

    Costain, John K.; Decker, Edward R.

    The heat flow in northwestern South Carolina at the Appalachian Ultradeep Core Hole (ADCOH) site area is approximately 55 mW/m². This data supplements other data to the east in the Piedmont and Atlantic Coastal Plain provinces where heat flows > 55 mW/m² are characteristic of post- and late-synmetamorphic granitoids. Piedmont heat flow and heat generation data for granites, metagranites, and one Slate Belt site, in a zone approximately parallel to major structural Appalachian trends, define a linear relation. Tectonic truncation of heat-producing crust at a depth of about 8 km (a depth equal to the slope of the heat flow-heat production line) is proposed to explain the linear relation. Using the value of reduced heat flow estimated from this empirical relation, and assuming thicknesses of heat-producing crust defined by new ADCOH seismic data, the heat flow and heat production at the ADCOH site are consistent with a depth to the base of the Inner Piedmont crystalline allochthon of about 5.5 km. Seismic data at the ADCOH site confirm that the Inner Piedmont is tectonically truncated at about 5.5 km by the Blue Ridge master decollement. Temperatures at 10 km at the ADCOH site are predicted to be less than 200 °C.

  16. AK Sco: a tidally induced atmospheric dynamo in a pre-main sequence binary?

    Science.gov (United States)

    Gómez de Castro, A. I.

    2009-02-01

    AK Sco is a unique source: a 10-30 Myrs old pre-main sequence spectroscopic binary composed by two nearly equal F5 stars that at periastron are separated by barely eleven stellar radii so, the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes of AK Sco, the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during pre-main sequence evolution. Evidence of this effect is reported in this contribution.

  17. EFFECT OF PRE-HEAT TREATMENT ON MECHANICAL PROPERTIES OF Ti-6Al-4V WELDS

    Directory of Open Access Journals (Sweden)

    Gnofam Jacques TCHEIN

    2016-11-01

    Full Text Available The work presented here is related to the optimization of the Friction Stir Welding (FSW process. The objective is to study the influence of some parameters used in the production of welded joints by FSW. The most important parameters are the welding speed and the rotational speed of the tool. The effect of pre-heat treatment on the plates to be welded is also studied by the design of experimental methods. These pre-heat treatments result not only in a change of mechanical properties of plates to be welded, but also of their microstructure. The experiments were performed following a 16 lines fractional Taguchi table.

  18. The long way to steady state fusion plasmas - the superconducting stellarator device Wendelstein 7-X

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The stable generation of high temperature Hydrogen plasmas (ion and electron temperature in the range 10-20 keV) is the basis for the use of nuclear fusion to generate heat and thereby electric power. The most promising path is to use strong, toroidal, twisted magnetic fields to confine the electrically charged plasma particles in order to avoid heat losses to the cold, solid wall elements. Two magnetic confinement concepts have been proven to be most suitable: (a) the tokamak and (b) the stellarator. The stellarator creates the magnetic field by external coils only, the tokamak by combining the externally created field with the magnetic field generated by a strong current in the plasma. “Wendelstein 7-X” is the name of a large superconducting stellarator that went successfully into operation after 15 years of construction. With 30 m3 plasma volume, 3 T magnetic field on axis, and 10 MW micro wave heating power, Hydrogen plasmas are generated that allow one to establish a scientific basis for the extrapol...

  19. Core radial electric field and transport in Wendelstein 7-X plasmas

    Science.gov (United States)

    Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team

    2018-02-01

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.

  20. The effect of pre-heating and pre-irradiation with gamma rays on thermal annealing in bis [n-benzoil-n-phenyl hydroxilaminate] copper (II)

    International Nuclear Information System (INIS)

    Nakanishi, C.; Silva, C.P.G. da.

    1988-10-01

    The main purpose of this work was to make a contribution to the study of the chemical effects of the (n,γ) reaction on copper chelate. The influence of some factors such as pre-heating and pre-irradiation with gamma-rays on the retention and thermal annealing of bis-[N-benzoil-N-phenlhydroxilaminate] copper (II) was investigated. The complex was synthesized and later characterized by means of: determination of the melting-Point, elemental analysis, infra-red and vesible range absortion spectrophotometry. The compound was heated and also irradiated with gamma-rays in order to verify the effect of thermolysis and radiolysis on the retention. It seems that heat gamma-radiation can produce deffects which will lower the susceptibility of the compound to thermal annealing. On the model envolving electronic species some explanation of ours results were made and a mechanism was proposed for the retention and thermal annealing aasuming the capture of free electrons and also the existence of holes. (author) [pt

  1. The effect of pre-heating and pre-irradiation with gamma-rays on thermal annealing in-bis-[n-benzoil-n-(o) tolylhydroxylaminate] cooper (II)

    International Nuclear Information System (INIS)

    Nakanishi, C.; Silva, C.P.G. da.

    1990-02-01

    The main purpose of this work was to make a contribution on the study of the chemical effects of the (N,γ) reaction on copper chelate. The influence of some factors such as pre-heating and pre-irradiation with gama-rays on the retention and thermal annealing of bis [N-benzoyl-N-(o)tolylhydroxylaminate] copper (II) was investigated. The complex was synthesized and later characterized by means of: determination of the melting-point, elemental analysis, infra-red and visible range absortion spectrophotometry. The compound was heated and also irradiated with gamma-rays in order to verify the effect of thermolysis on the retention. It seems that heat and gamma-radiaition can produce deffects which will lower the susceptibility of the compound to thermal annealling. On the basis on the model envolving electronic species some explanation of ours results were made and a mechanism was proposed for the retention and thermal annealing assuming the capture of free electrons and also the existence of holes. (author) [pt

  2. The study on pre-heat conditions in the equivalent-dose estimation of holocene loess using the single-aliquot regenerative-dose (SAR) protocol

    International Nuclear Information System (INIS)

    Jia Yaofeng; Huang Chunchang; Pang Jiangli; Lu Xinwei; Zhang Xu

    2008-01-01

    The thermal treatment in the equivalent-dose estimation often is carried in the OSL dating, and pre-heat is a main thermal treatment. Due to which will originate the problems of thermal transfer and thermal activation, the thermal treatment and the setup of their conditions are key problems influencing the accuracy of OSL dating. The paper combined the temperature of pre-heat and cut-heat used in the routine measurement of IRSL and Post-IR OSL, and then estimated the equivalent-dose of several loess samples. The estimated result presents that the equivalent-dose depends on the heat temperature, especially depends on the cut-heat temperature, which is to say that the equivalent-dose increases with the cut-heat temperature; a plateau of equivalent-dose appears when using the 200-240 degree C cut-heat in the range of 200-300 degree C pre-heat, and the equivalent-doses estimated by IRSL and Post-IR OSL respectively are close to each other, which resulted from the similar sensitivity change direction of optical stimulated signals and its smaller change range in the measurement cycles using the combined temperature of pre- heat and cut-heat, and the incomplete calibration of sensitivity change of optical stimulated signals in the whole measurement cycles caused the variation of estimated equivalent-dose corresponding to the cut-heat temperature. (authors)

  3. Edge transport barrier modification in the L-2M stellarator depending on the heating power and plasma parameters

    International Nuclear Information System (INIS)

    Voronov, G S; Voronova, E V; Akulina, D K; Gladkov, G A

    2006-01-01

    Boronization of the vacuum chamber of the L-2M stellarator has resulted in modification of the electron temperature profile. In particular, a well-defined jump in the electron temperature to T e ∼ 100 eV in a narrow region Δr/r ∼ 0.05 is observed in the temperature profile at the plasma edge. In the present paper, the value and shape of the jump in T e are studied at different values of plasma parameters and ECR heating power. A jump in T e is absent at a power of P ∼ 100 kW, whereas at P ∼ 200 kW the electron temperature drops from 150 eV to zero within Δr ∼ 0.5 cm. The value of threshold power for the formation of a jump in T e at n e ∼ 1.7 x 10 19 m -3 lies within the range P ∼ 100-160 kW. In terms of power per particle this power threshold is P/V/N e ∼ 0.2-0.3 Mw/m 3 /10 19 m -3 , the value of which coincides with threshold power for ETB formation found recently in the CHS stellarator. When the helical-field strength is 25% or 50% below its standard value, a jump in T e at the plasma edge in L-2M is absent

  4. Two stellar-mass black holes in the globular cluster M22.

    Science.gov (United States)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Seth, Anil C

    2012-10-04

    Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star ('black-hole/X-ray binaries') in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known. Although a few black holes have been seen in globular clusters around other galaxies, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each ∼10-20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models, and we argue that M22 may contain a total population of ∼5-100 black holes. The large core radius of M22 could arise from heating produced by the black holes.

  5. Monte Carlo estimation of neoclassical transport for the TJ-II stellarator

    International Nuclear Information System (INIS)

    Tribaldos, V.

    2001-01-01

    The neoclassical transport properties of TJ-II stellarator [C. Alejaldre et al., Fusion Technol. 13, 521 (1988)] are studied with the monoenergetic Monte Carlo technique. A compromise between the number of modes and particles and the required computing time to obtain reliable estimates, from the computational point of view, of the monoenergetic diffusion coefficients is shown to be of one thousand particles and one hundred harmonics, because of the rich magnetic-field structure of TJ-II. Although, these requirements are probably too demanding in making the transport estimations. The data base containing the normalized monoenergetic diffusion coefficient for several radial positions, radial electric fields and collisionalities have been fitted using a neural network. This fit reduces the number of points necessary in the data base and allows a smooth interpolation and extrapolation to perform the convolutions of the monoenergetic coefficients with the Maxwellian. For two different typical TJ-II discharges the ambipolar radial electric field, and the neoclassical particle and heat fluxes are presented both showing rather large positive radial electric fields at the plasma core and small negative fields at the edge. The neoclassical particle and energy confinement time are in surprisingly good agreement with the experimental energy balance analysis and the international stellarator scaling. Although no satisfactory explanation is available yet the large neoclassical diffusion caused by the complex ripple structure of TJ-II magnetic field may be an important ingredient

  6. Gamow-Teller strength and lepton captures rates on 66-71Ni in stellar matter

    Science.gov (United States)

    Nabi, Jameel-Un; Majid, Muhammad

    Charge-changing transitions play a significant role in stellar weak-decay processes. The fate of the massive stars is decided by these weak-decay rates including lepton (positron and electron) captures rates, which play a consequential role in the dynamics of core collapse. As per previous simulation results, weak interaction rates on nickel (Ni) isotopes have significant influence on the stellar core vis-à-vis controlling the lepton content of stellar matter throughout the silicon shell burning phases of high mass stars up to the presupernova stages. In this paper, we perform a microscopic calculation of Gamow-Teller (GT) charge-changing transitions, in the β-decay and electron capture (EC) directions, for neutron-rich Ni isotopes (66-71Ni). We further compute the associated weak-decay rates for these selected Ni isotopes in stellar environment. The computations are accomplished by employing the deformed proton-neutron quasiparticle random phase approximation (pn-QRPA) model. A recent study showed that the deformed pn-QRPA theory is well suited for the estimation of GT transitions. The astral weak-decay rates are determined over densities in the range of 10-1011g/cm3 and temperatures in the range of 0.01 × 109-30 × 109K. The calculated lepton capture rates are compared with the previous calculation of Pruet and Fuller (PF). The overall comparison demonstrates that, at low stellar densities and high temperatures, our EC rates are bigger by as much as two orders of magnitude. Our results show that, at higher temperatures, the lepton capture rates are the dominant mode for the stellar weak rates and the corresponding lepton emission rates may be neglected.

  7. The Influence of Heat Flux Boundary Heterogeneity on Heat Transport in Earth's Core

    Science.gov (United States)

    Davies, C. J.; Mound, J. E.

    2017-12-01

    Rotating convection in planetary systems can be subjected to large lateral variations in heat flux from above; for example, due to the interaction between the metallic cores of terrestrial planets and their overlying silicate mantles. The boundary anomalies can significantly reorganise the pattern of convection and influence global diagnostics such as the Nusselt number. We have conducted a suite of numerical simulations of rotating convection in a spherical shell geometry comparing convection with homogeneous boundary conditions to that with two patterns of heat flux variation at the outer boundary: one hemispheric pattern, and one derived from seismic tomographic imaging of Earth's lower mantle. We consider Ekman numbers down to 10-6 and flux-based Rayleigh numbers up to 800 times critical. The heterogeneous boundary conditions tend to increase the Nusselt number relative to the equivalent homogeneous case by altering both the flow and temperature fields, particularly near the top of the convecting region. The enhancement in Nusselt number tends to increase as the amplitude and wavelength of the boundary heterogeneity is increased and as the system becomes more supercritical. In our suite of models, the increase in Nusselt number can be as large as 25%. The slope of the Nusselt-Rayleigh scaling also changes when boundary heterogeneity is included, which has implications when extrapolating to planetary conditions. Additionally, regions of effective thermal stratification can develop when strongly heterogeneous heat flux conditions are applied at the outer boundary.

  8. Heated wire humidification circuit attenuates the decrease of core temperature during general anesthesia in patients undergoing arthroscopic hip surgery.

    Science.gov (United States)

    Park, Sooyong; Yoon, Seok-Hwa; Youn, Ann Misun; Song, Seung Hyun; Hwang, Ja Gyung

    2017-12-01

    Intraoperative hypothermia is common in patients undergoing general anesthesia during arthroscopic hip surgery. In the present study, we assessed the effect of heating and humidifying the airway with a heated wire humidification circuit (HHC) to attenuate the decrease of core temperature and prevent hypothermia in patients undergoing arthroscopic hip surgery under general anesthesia. Fifty-six patients scheduled for arthroscopic hip surgery were randomly assigned to either a control group using a breathing circuit connected with a heat and moisture exchanger (HME) (n = 28) or an HHC group using a heated wire humidification circuit (n = 28). The decrease in core temperature was measured from anesthetic induction and every 15 minutes thereafter using an esophageal stethoscope. Decrease in core temperature from anesthetic induction to 120 minutes after induction was lower in the HHC group (-0.60 ± 0.27℃) compared to the control group (-0.86 ± 0.29℃) (P = 0.001). However, there was no statistically significant difference in the incidence of intraoperative hypothermia or the incidence of shivering in the postanesthetic care unit. The use of HHC may be considered as a method to attenuate intraoperative decrease in core temperature during arthroscopic hip surgery performed under general anesthesia and exceeding 2 hours in duration.

  9. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf.

    Science.gov (United States)

    Giammichele, N; Charpinet, S; Fontaine, G; Brassard, P; Green, E M; Van Grootel, V; Bergeron, P; Zong, W; Dupret, M-A

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars-in particular their oxygen content and the stratification of their cores-is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  10. Physics of Stellar Convection

    Science.gov (United States)

    Arnett, W. David

    2009-05-01

    We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1

  11. Stationary neoclassical profiles of plasma parameters in stellarators

    International Nuclear Information System (INIS)

    Danilkin, I.S.; Mineev, A.B.

    1991-01-01

    Peculiarities of neoclassical model of heat and particle transfer, occuring by calculations of plasma stationary profile parameters in stellarators are considered. The main peculiarity out of all consists in ineadequate compatibility with real physical conditions on the boundary, requiring application of supplementary 'anomalous' transfer or special (but technically possible) adjustment of particle and heat sources to achieve solution in form of 'correct' monotonically sloping profile. It is stated, that neoclassical theory does not provide for well-known ambiguity of solutions for ambipolar electrical field by search of monotonous stationary profiles supported by outside sources

  12. Heat Transfer in Pebble-Bed Nuclear Reactor Cores Cooled by Fluoride Salts

    Science.gov (United States)

    Huddar, Lakshana Ravindranath

    With electricity demand predicted to rise by more than 50% within the next 20 years and a burgeoning world population requiring reliable emissions-free base-load electricity, can we design advanced nuclear reactors to help meet this challenge? At the University of California, Berkeley (UCB) Fluoride-salt-cooled High Temperature Reactors (FHR) are currently being investigated. FHRs are designed with better safety and economic characteristics than conventional light water reactors (LWR) currently in operation. These reactors operate at high temperature and low pressure making them more efficient and safer than LWRs. The pebble-bed FHR (PB-FHR) variant includes an annular nuclear reactor core that is filled with randomly packed pebble fuel. It is crucial to characterize the heat transfer within this unique geometry as this informs the safety limits of the reactor. The work presented in this dissertation focused on furthering the understanding of heat transfer in pebble-bed nuclear reactor cores using fluoride salts as a coolant. This was done through experimental, analytical and computational techniques. A complex nuclear system with a coolant that has never previously been in commercial use requires experimental data that can directly inform aspects of its design. It is important to isolate heat transfer phenomena in order to understand the underlying physics in the context of the PB-FHR, as well as to make decisions about further experimental work that needs to be done in support of developing the PB-FHR. Certain organic oils can simulate the heat transfer behaviour of the fluoride salt if relevant non-dimensional parameters are matched. The advantage of this method is that experiments can be done at a much lower temperature and at a smaller geometric scale compared to FHRs, thereby lowering costs. In this dissertation, experiments were designed and performed to collect data demonstrating similitude. The limitations of these experiments were also elucidated by

  13. Development of Scientific Simulation 3D Full Wave ICRF Code for Stellarators and Heating/CD Scenarios Development

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin V.L.

    2005-08-15

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly

  14. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    Science.gov (United States)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; hide

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  15. Solar-stellar Coffee: A Model For Informal Interdisciplinary Professional Development

    Science.gov (United States)

    Metcalfe, Travis S.

    2007-12-01

    Initiated at NCAR more than two years ago, solar-stellar coffee is a weekly informal discussion of recent papers that are relevant to solar and stellar physics. The purpose is to generate awareness of new papers, to discuss their connections to past and current work, and to encourage a broader and more interdisciplinary view of solar physics. The discussion is local, but traffic to the website (http://coffee.solar-stellar.org/) is global -- suggesting that solar and stellar astronomers around the world find value in this intelligent pre-filter for astro-ph and other sources (papers are selected by local participants). In addition to enhancing the preprint posting and reading habits of solar physicists (with the associated boost in citation rates), the weekly discussion also provides an interdisciplinary professional development opportunity for graduate students, postdocs, and early career scientists. The web page is driven by a simple set of scripts (available on request), so this interaction model can easily be replicated at other institutions for topics of local interest. The concept of solar-stellar coffee began with support from an NSF Astronomy & Astrophysics Postdoctoral Fellowship under award AST-0401441. The National Center for Atmospheric Research is a federally funded research and development center sponsored by the National Science Foundation.

  16. Shivering heat production and core cooling during head-in and head-out immersion in 17 degrees C water.

    Science.gov (United States)

    Pretorius, Thea; Cahill, Farrell; Kocay, Sheila; Giesbrecht, Gordon G

    2008-05-01

    Many cold-water scenarios cause the head to be partially or fully immersed (e.g., ship wreck survival, scuba diving, cold-water adventure swim racing, cold-water drowning, etc.). However, the specific effects of head cold exposure are minimally understood. This study isolated the effect of whole-head submersion in cold water on surface heat loss and body core cooling when the protective shivering mechanism was intact. Eight healthy men were studied in 17 degrees C water under four conditions: the body was either insulated or exposed, with the head either out of the water or completely submersed under the water within each insulated/exposed subcondition. Submersion of the head (7% of the body surface area) in the body-exposed condition increased total heat loss by 11% (P < 0.05). After 45 min, head-submersion increased core cooling by 343% in the body-insulated subcondition (head-out: 0.13 +/- 0.2 degree C, head-in: 0.47 +/- 0.3 degree C; P < 0.05) and by 56% in the body-exposed subcondition (head-out: 0.40 +/- 0.3 degree C and head-in: 0.73 +/- 0.6 degree C; P < 0.05). In both body-exposed and body-insulated subconditions, head submersion increased the rate of core cooling disproportionally more than the relative increase in total heat loss. This exaggerated core-cooling effect is consistent with a head cooling induced reduction of the thermal core, which could be stimulated by cooling of thermosensitive and/or trigeminal receptors in the scalp, neck, and face. These cooling effects of head submersion are not prevented by shivering heat production.

  17. Age gradients in the stellar populations of massive star forming regions based on a new stellar chronometer

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.; Broos, Patrick S.; Townsley, Leisa K.; Luhman, Kevin L. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Naylor, Tim [School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL (United Kingdom); Povich, Matthew S. [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768 (United States); Garmire, Gordon P. [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2014-06-01

    A major impediment to understanding star formation in massive star-forming regions (MSFRs) is the absence of a reliable stellar chronometer to unravel their complex star formation histories. We present a new estimation of stellar ages using a new method that employs near-infrared (NIR) and X-ray photometry, Age {sub JX} . Stellar masses are derived from X-ray luminosities using the L{sub X} -M relation from the Taurus cloud. J-band luminosities are compared to mass-dependent pre-main-sequence (PMS) evolutionary models to estimate ages. Age {sub JX} is sensitive to a wide range of evolutionary stages, from disk-bearing stars embedded in a cloud to widely dispersed older PMS stars. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) project characterizes 20 OB-dominated MSFRs using X-ray, mid-infrared, and NIR catalogs. The Age {sub JX} method has been applied to 5525 out of 31,784 MYStIX Probable Complex Members. We provide a homogeneous set of median ages for over 100 subclusters in 15 MSFRs; median subcluster ages range between 0.5 Myr and 5 Myr. The important science result is the discovery of age gradients across MYStIX regions. The wide MSFR age distribution appears as spatially segregated structures with different ages. The Age {sub JX} ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed populations. The NIR color index J – H, a surrogate measure of extinction, can serve as an approximate age predictor for young embedded clusters.

  18. Do we really know Mup (i.e. the transition mass between Type Ia and core-collapse supernova progenitors)?

    International Nuclear Information System (INIS)

    Straniero, O; Piersanti, L; Cristallo, S

    2016-01-01

    M up is the minimum stellar mass that, after the core-helium burning, develops temperature and density conditions for the occurrence of a hydrostatic carbon burning. Stars whose mass is lower than this limit are the progenitors of C-O white dwarfs and, when belong to a close binary system, may give rise to explosive phenomena, such as novae or type Ia supernovae. Stars whose mass is only slightly larger than M up ignite C in a degenerate core and, in turn, experience a thermonuclear runaway. Their final fate may be a massive O-Ne WDs or, if the core mass approaches the Chandrasekhar limit, an e-capture SNe. More massive objects ignite C in non-degenerate conditions. These “massive “ stars are the progenitors of various kind of core-collapse supernovae (type IIp. IIL, IIN, Ib, Ic). It goes without saying that M up is a fundamental astrophysical parameter. From its knowledge depends our understanding of the SNe progenitors, of their rates, of the chemical evolution, of the WD luminosity functions and much more. A precise evaluation of M up relies on our knowledge of various input physics used in stellar modeling, such as the plasma neutrino rate, responsible of the cooling of the core, the equation of state of high density plasma, which affects the heating of the contracting core and its compressibility, and some key nuclear reaction rates, such as, in particular, the 12 C+ 12 C and the 12 C+α. In this paper we review the efforts made to determine this important parameter and we provide an up-to-date evaluation of the uncertainties due to the relevant nuclear physics inputs. (paper)

  19. Effects of the radial electric field in a quasisymmetric stellarator

    International Nuclear Information System (INIS)

    Landreman, Matt; Catto, Peter J

    2011-01-01

    Recent calculations have shown that a radial electric field can significantly alter the neoclassical ion heat flux, ion flow, bootstrap current and residual zonal flow in a tokamak, even when the E x B drift is much smaller than the ion thermal speed. Here we show the novel analytical methods used in these calculations can be adapted to a quasisymmetric stellarator. The methods are based on using the conserved helical momentum ψ * instead of the poloidal or toroidal flux as a radial coordinate in the kinetic equation. The banana-regime calculations also employ a model collision operator that keeps only the velocity-space derivatives normal to the trapped-passing boundary, even as this boundary is shifted and deformed by the E x B drift. We prove the isomorphism between quasisymmetric stellarators and tokamaks extends to the finite-E x B generalizations of both banana-regime and plateau-regime neoclassical theory and the residual zonal flow. The plateau-regime results may be relevant to the HSX stellarator, and both the plateau- and banana-regime results can be used to validate stellarator transport codes.

  20. Core-adjacent instrumentation systems for pebble bed reactors for process heat application - state of planning

    International Nuclear Information System (INIS)

    Benninghofen, G.; Serafin, N.; Spillekothen, H.G.; Hecker, R.; Brixy, H.; Serpekian, T.

    1982-06-01

    Planning and theoretical/experimental development work for core surveillance instrumentation systems is being performed to meet requirements of pebble bed reactors for process heat application. Detailed and proved instrumentation concepts are now available for the core-adjacent instrumentation systems. The current work and the results of neutron flux measurements at high temperatures are described. Operation devices for long-term accurate gas outlet temperature measurements up to approximately 1423 deg. K will also be discussed. (author)

  1. Intrinsic Turbulence Stabilization in a Stellarator

    Directory of Open Access Journals (Sweden)

    P. Xanthopoulos

    2016-06-01

    Full Text Available The magnetic surfaces of modern stellarators are characterized by complex, carefully optimized shaping and exhibit locally compressed regions of strong turbulence drive. Massively parallel computer simulations of plasma turbulence reveal, however, that stellarators also possess two intrinsic mechanisms to mitigate the effect of this drive. In the regime where the length scale of the turbulence is very small compared to the equilibrium scale set by the variation of the magnetic field, the strongest fluctuations form narrow bandlike structures on the magnetic surfaces. Thanks to this localization, the average transport through the surface is significantly smaller than that predicted at locations of peak turbulence. This feature results in a numerically observed upshift of the onset of turbulence on the surface towards higher ion temperature gradients as compared with the prediction from the most unstable regions. In a second regime lacking scale separation, the localization is lost and the fluctuations spread out on the magnetic surface. Nonetheless, stabilization persists through the suppression of the large eddies (relative to the equilibrium scale, leading to a reduced stiffness for the heat flux dependence on the ion temperature gradient. These fundamental differences with tokamak turbulence are exemplified for the QUASAR stellarator [G. H. Neilson et al., IEEE Trans. Plasma Sci. 42, 489 (2014].

  2. Optimized confinement discharges in the stellarator W7-AS

    International Nuclear Information System (INIS)

    Baldzuhn, J.; Giannone, L.; Kick, M.; McCormick, K. J.

    2000-01-01

    In addition to the well known H-mode, other types of discharges with enhanced core energy confinement can be observed in the stellarator W7-AS. In this contribution, the properties of some particular examples of those optimized confinement (OC) discharges are presented. These are characterized, besides improved core energy confinement, by strong negative radial electric fields and high ion temperatures in the gradient region, steep density profile gradients and a high penetration depth of neutrals, and small edge electron densities. The role of these plasma parameters for the OC discharges is investigated quantitatively by a numerical model. (author)

  3. CORTAP: a coupled neutron kinetics-heat transfer digital computer program for the dynamic simulation of the high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Cleveland, J.C.

    1977-01-01

    CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP

  4. AP1000 passive core cooling system pre-operational tests procedure definition and simulation by means of Relap5 Mod. 3.3 computer code

    International Nuclear Information System (INIS)

    Lioce, D.; Asztalos, M.; Alemberti, A.; Barucca, L.; Frogheri, M.; Saiu, G.

    2012-01-01

    Highlights: ► Two AP1000 Core Make-up Tanks pre-operational tests procedures have been defined. ► The two tests have been simulated by means of the Relap5 computer code. ► Results show the tests can be successfully performed with the selected procedures. - Abstract: The AP1000 ® plant is an advanced Pressurized Water Reactor designed and developed by Westinghouse Electric Company which relies on passive safety systems for core cooling, containment isolation and containment cooling, and maintenance of main control room emergency habitability. The AP1000 design obtained the Design Certification by NRC in January 2006, as Appendix D of 10 CFR Part 52, and it is being built in two locations in China. The AP1000 plant will be the first commercial nuclear power plant to rely on completely passive safety systems for core cooling and its licensing process requires the proper operation of these systems to be demonstrated through some pre-operational tests to be conducted on the real plant. The overall objective of the test program is to demonstrate that the plant has been constructed as designed, that the systems perform consistently with the plant design, and that activities culminating in operation at full licensed power including initial fuel load, initial criticality, and power increase to full load are performed in a controlled and safe manner. Within this framework, Westinghouse Electric Company and its partner Ansaldo Nucleare S.p.A. have strictly collaborated, being Ansaldo Nucleare S.p.A. in charge of the simulation of some pre-operational tests and supporting Westinghouse in the definition of tests procedures. This paper summarizes the work performed at Ansaldo Nucleare S.p.A. in collaboration with Westinghouse Electric Company for the Core Makeup Tank (CMT) tests, i.e. the CMTs hot recirculation test and the CMTs draindown test. The test procedure for the two selected tests has been defined and, in order to perform the pre-operational tests simulations, a

  5. AP1000 passive core cooling system pre-operational tests procedure definition and simulation by means of Relap5 Mod. 3.3 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Lioce, D., E-mail: donato.lioce@aen.ansaldo.it [Ansaldo Nucleare S.p.A., Corso F. M. Perrone 25, 16161, Genova (Italy); Asztalos, M., E-mail: asztalmj@westinghouse.com [Westinghouse Electric Company, Cranberry Twp, PA 16066 (United States); Alemberti, A., E-mail: alessandro.alemberti@aen.ansaldo.it [Ansaldo Nucleare S.p.A., Corso F. M. Perrone 25, 16161, Genova (Italy); Barucca, L. [Ansaldo Nucleare S.p.A., Corso F. M. Perrone 25, 16161, Genova (Italy); Frogheri, M., E-mail: monicalinda.frogheri@aen.ansaldo.it [Ansaldo Nucleare S.p.A., Corso F. M. Perrone 25, 16161, Genova (Italy); Saiu, G., E-mail: gianfranco.saiu@aen.ansaldo.it [Ansaldo Nucleare S.p.A., Corso F. M. Perrone 25, 16161, Genova (Italy)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Two AP1000 Core Make-up Tanks pre-operational tests procedures have been defined. Black-Right-Pointing-Pointer The two tests have been simulated by means of the Relap5 computer code. Black-Right-Pointing-Pointer Results show the tests can be successfully performed with the selected procedures. - Abstract: The AP1000{sup Registered-Sign} plant is an advanced Pressurized Water Reactor designed and developed by Westinghouse Electric Company which relies on passive safety systems for core cooling, containment isolation and containment cooling, and maintenance of main control room emergency habitability. The AP1000 design obtained the Design Certification by NRC in January 2006, as Appendix D of 10 CFR Part 52, and it is being built in two locations in China. The AP1000 plant will be the first commercial nuclear power plant to rely on completely passive safety systems for core cooling and its licensing process requires the proper operation of these systems to be demonstrated through some pre-operational tests to be conducted on the real plant. The overall objective of the test program is to demonstrate that the plant has been constructed as designed, that the systems perform consistently with the plant design, and that activities culminating in operation at full licensed power including initial fuel load, initial criticality, and power increase to full load are performed in a controlled and safe manner. Within this framework, Westinghouse Electric Company and its partner Ansaldo Nucleare S.p.A. have strictly collaborated, being Ansaldo Nucleare S.p.A. in charge of the simulation of some pre-operational tests and supporting Westinghouse in the definition of tests procedures. This paper summarizes the work performed at Ansaldo Nucleare S.p.A. in collaboration with Westinghouse Electric Company for the Core Makeup Tank (CMT) tests, i.e. the CMTs hot recirculation test and the CMTs draindown test. The test procedure for the two

  6. W7-AS contributions to the 18th European conference on controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1991-06-01

    Optimum confinement in the Wendelstein 7-AS Stellarator - Ion heat conductivity, radial electric fields and CX-losses in the W7-AS stellarator - Thermal diffusivity from heat wave propagation in Wendelstein 7-AS - Impurity behaviour in W7-AS plasmas under different wall conditions - Particle transport and plasma edge behaviour in the W7-AS stellarator - Neutral injection experiments on W7-AS stellarator - MHD activity driven by NBI in the W7-AS stellarator - Simulation of the influence of coherent and random density fluctuations on the propagation of ECRH-beams in the W7-AS stellarator. (orig.)

  7. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  8. Departures from radiative equilibrium in stellar atmospheres grey absorption

    International Nuclear Information System (INIS)

    Cram, L.E.

    1978-01-01

    We discuss some of the consequences of departures from radiative equilibrium in stellar atmospheres. Using a discrete ordinates method we solve the radiative transfer equation in a grey atmosphere subjected to a specified distribution of mechanical heating, and determine the resulting temperature changes in LTE and non LTE conditions. We show how radiative transfer leads to temperature changes in regions that are not directly heated, and how non LTE effects lead to an amplification of the temperature rise produced by a given distribution of heating. An attempt is made to resolve a controversy surrounding the estimation of excess radiative losses in the solar chromosphere. (orig.) [de

  9. Shock Compression and Melting of an Fe-Ni-Si Alloy: Implications for the Temperature Profile of the Earth's Core and the Heat Flux Across the Core-Mantle Boundary

    Science.gov (United States)

    Zhang, Youjun; Sekine, Toshimori; Lin, Jung-Fu; He, Hongliang; Liu, Fusheng; Zhang, Mingjian; Sato, Tomoko; Zhu, Wenjun; Yu, Yin

    2018-02-01

    Understanding the melting behavior and the thermal equation of state of Fe-Ni alloyed with candidate light elements at conditions of the Earth's core is critical for our knowledge of the region's thermal structure and chemical composition and the heat flow across the liquid outer core into the lowermost mantle. Here we studied the shock equation of state and melting curve of an Fe-8 wt% Ni-10 wt% Si alloy up to 250 GPa by hypervelocity impacts with direct velocity and reliable temperature measurements. Our results show that the addition of 10 wt% Si to Fe-8 wt% Ni alloy slightly depresses the melting temperature of iron by 200-300 (±200) K at the core-mantle boundary ( 136 GPa) and by 600-800 (±500) K at the inner core-outer core boundary ( 330 GPa), respectively. Our results indicate that Si has a relatively mild effect on the melting temperature of iron compared with S and O. Our thermodynamic modeling shows that Fe-5 wt% Ni alloyed with 6 wt% Si and 2 wt% S (which has a density-velocity profile that matches the outer core's seismic profile well) exhibits an adiabatic profile with temperatures of 3900 K and 5300 K at the top and bottom of the outer core, respectively. If Si is a major light element in the core, a geotherm modeled for the outer core indicates a thermal gradient of 5.8-6.8 (±1.6) K/km in the D″ region and a high heat flow of 13-19 TW across the core-mantle boundary.

  10. Pre-project study on a demonstration plant for seawater desalination using a nuclear heating reactor in Morocco

    International Nuclear Information System (INIS)

    Achour, M.

    2000-01-01

    This paper gives in the first part detailed information on the pre-project study on a demonstration plant for seawater desalination using heating reactor implemented by both Moroccan and Chinese sides. The main findings of the pre-project study are given in the second part. (author)

  11. Flow visualization study of post critical heat flux region for inverted bubbly, slug and annular flow regimes

    International Nuclear Information System (INIS)

    Denten, J.G.; Ishii, M.

    1988-11-01

    A visual study of film boiling using still photographic and high- speed motion picture methods was carried out in order to analyze the post-CHF hydrodynamics for steady-state inlet pre-CHF two-phase flow regimes. Pre-CHF two-phase flow regimes were established by introducing Freon 113 liquid and nitrogen gas into a jet core injection nozzle. An idealized, post-CHF two-phase core initial flow geometry (cylindrical multiphase jet core surrounded by a coaxial annulus of gas) was established at the nozzle exit by introducing nitrogen gas into the annular gap between the jet nozzle two-phase effluent and the heated test section inlet. For the present study three basic post-CHF flow regimes have been observed: the rough wavy regime (inverted annular flow preliminary break down), the agitated regime (transition between inverted annular and dispersed droplet flow), and the dispersed ligament/droplet regime. For pre-CHF bubbly flow in the jet nozzle, the post-CHF flow (beginning from jet nozzle exit/heated test section inlet) consists of the rough wavy regime, followed by the agitated and then the dispersed ligament/droplet regime. In the same way, for pre-CHF slug flow in the jet core, the post-CHF flow is comprised of the agitated regime at the nozzle exit, followed by the dispersed regime. Pre-CHF annular jet core flow results in a small, depleted post-CHF agitated flow regime at the nozzle exit, immediately followed by the dispersed ligament/droplet regime. Observed post dryout hydrodynamic behavior is reported, with particular attention given to the transition flow pattern between inverted annular and dispersed droplet flow. 43 refs., 20 figs., 5 tabs

  12. Gravitational effects of condensate dark matter on compact stellar objects

    International Nuclear Information System (INIS)

    Li, X.Y.; Wang, F.Y.; Cheng, K.S.

    2012-01-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed

  13. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Jian, Dong

    2011-01-01

    and enhanced cell membrane peroxidation, as exemplified by increased O2-• production rate and reduction in activities of antioxiditave enzymes. However, under post-anthesis heat stress, plants with pre-anthesis hightemperature acclimation (HH)showedmuchhigher photosynthetic rates than those without pre...... all up-regulated under HH, whereas a gene encoding a major chlorophyll a/b-binding protein (Cab) was up-regulated by post-anthesis heat stress at 10 DAA, but was down-regulated at 13 DAA. The changes in the expression levels of the HH plants were more pronounced than those for the CH. Collectively......, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant...

  14. Warm gas towards young stellar objects in Corona Australis. Herschel/PACS observations from the DIGIT key programme

    Science.gov (United States)

    Lindberg, Johan E.; Jørgensen, Jes K.; Green, Joel D.; Herczeg, Gregory J.; Dionatos, Odysseas; Evans, Neal J.; Karska, Agata; Wampfler, Susanne F.

    2014-05-01

    Context. The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an intermediate-mass young star. Aims: We study the effects of the irradiation coming from the young luminous Herbig Be star R CrA on the warm gas and dust in a group of low-mass young stellar objects. Methods: Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented. The distributions of CO, OH, H2O, [C ii], [O i], and continuum emission are investigated. We have developed a deconvolution algorithm which we use to deconvolve the maps, separating the point-source emission from the extended emission. We also construct rotational diagrams of the molecular species. Results: By deconvolution of the Herschel data, we find large-scale (several thousand AU) dust continuum and spectral line emission not associated with the point sources. Similar rotational temperatures are found for the warm CO (282 ± 4 K), hot CO (890 ± 84 K), OH (79 ± 4 K), and H2O (197 ± 7 K) emission in the point sources and the extended emission. The rotational temperatures are also similar to those found in other more isolated cores. The extended dust continuum emission is found in two ridges similar in extent and temperature to molecular millimetre emission, indicative of external heating from the Herbig Be star R CrA. Conclusions: Our results show that nearby luminous stars do not increase the molecular excitation temperatures of the warm gas around young stellar objects (YSOs). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated with these protostars and their surroundings compared to similar objects not subjected to external irradiation. Table 9 and appendices are available in

  15. Magnetic heating in the sun

    International Nuclear Information System (INIS)

    Chiuderi, C.

    1981-01-01

    The observational evidence for magnetic heating in the solar corona is presented. The possible ways of investigating theoretically the nature of the heating processes are critically discussed. Merits and disadvantages of the basic mechanisms so far proposed are reviewed. Finally, a preliminary application of the magnetic heating concept to stellar coronae is presented. (orig.)

  16. Transient Mass-loss Analysis of Solar Observations Using Stellar Methods

    Energy Technology Data Exchange (ETDEWEB)

    Crosley, M. K.; Norman, C. [Johns Hopkins University, Department of Physics and Astronomy, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Osten, R. A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-08-10

    Low-frequency dynamic spectra of radio bursts from nearby stars offer the best chance to directly detect the stellar signature of transient mass loss on low-mass stars. Crosley et al. (2016) proposes a multi-wavelength methodology to determine coronal mass ejection (CME) parameters, such as speed, mass, and kinetic energy. We test the validity and accuracy of the results derived from the methodology by using Geostationary Operational Environmental Satellite X-ray observations and Bruny Island Radio Spectrometer radio observations. These are analogous observations to those that would be found in the stellar studies. Derived results from these observations are compared to direct white light measurements of the Large Angle and Spectrometric Coronagraph. We find that, when a pre-event temperature can be determined, the accuracy of CME speeds are within a few hundred km s{sup −1}, and are reliable when specific criteria has been met. CME mass and kinetic energies are only useful in determining the approximate order of magnitude measurements when considering the large errors associated to them. These results will be directly applicable to the interpretation of any detected stellar events and the derivation of stellar CME properties.

  17. Calculation and analysis of generator limiting regimes with respect to stator end core heating

    Directory of Open Access Journals (Sweden)

    Kostić Miloje

    2015-01-01

    Full Text Available A new simplified procedure for defining the limiting operating regimes on the generator capability curve, with respect to stator end core heating, is proposed and described in this paper. First of all, a simplified analysis of axial flux leakage that penetrates into the end plates of the stator is carried out and the corresponding power losses are calculated. Then the analysis of measured point temperature increases over the stator end core, and a qualitative and quantitative overview of the effects, are presented. A simplified procedure for defining the limiting regime with regard to the heating stator end core, which is illustrated for the case of an operating diagram for a given generator of apparent power of 727 MVA (B2 is also described. The given limiting line constructed using this method is similar to the appropriate line constructed on the basis of complex and lengthy factory and on-site tests performed by the manufacturer and the user. According to the results and the check, the proposed method has been proved and the application of the simplified procedure can be recommended for use along with other procedures, at least when it comes to similar synchronous generators in Serbia's Electric Power Industry.

  18. IN-SYNC I: Homogeneous stellar parameters from high-resolution apogee spectra for thousands of pre-main sequence stars

    International Nuclear Information System (INIS)

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Da Rio, Nicola; Chojnowski, S. Drew; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail; Flaherty, Kevin M.; Frinchaboy, Peter M.

    2014-01-01

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.

  19. Asteroseismic Constraints on the Models of Hot B Subdwarfs: Convective Helium-Burning Cores

    Science.gov (United States)

    Schindler, Jan-Torge; Green, Elizabeth M.; Arnett, W. David

    2017-10-01

    Asteroseismology of non-radial pulsations in Hot B Subdwarfs (sdB stars) offers a unique view into the interior of core-helium-burning stars. Ground-based and space-borne high precision light curves allow for the analysis of pressure and gravity mode pulsations to probe the structure of sdB stars deep into the convective core. As such asteroseismological analysis provides an excellent opportunity to test our understanding of stellar evolution. In light of the newest constraints from asteroseismology of sdB and red clump stars, standard approaches of convective mixing in 1D stellar evolution models are called into question. The problem lies in the current treatment of overshooting and the entrainment at the convective boundary. Unfortunately no consistent algorithm of convective mixing exists to solve the problem, introducing uncertainties to the estimates of stellar ages. Three dimensional simulations of stellar convection show the natural development of an overshooting region and a boundary layer. In search for a consistent prescription of convection in one dimensional stellar evolution models, guidance from three dimensional simulations and asteroseismological results is indispensable.

  20. Constraints on The Coupled Thermal Evolution of the Earth's Core and Mantle, The Age of The Inner Core, And The Origin of the 186Os/188Os Core(?) Signal in Plume-Derived Lavas

    Science.gov (United States)

    Lassiter, J. C.

    2005-12-01

    Thermal and chemical interaction between the core and mantle has played a critical role in the thermal and chemical evolution of the Earth's interior. Outer core convection is driven by core cooling and inner core crystallization. Core/mantle heat transfer also buffers mantle potential temperature, resulting in slower rates of mantle cooling (~50-100 K/Ga) than would be predicted from the discrepancy between current rates of surface heat loss (~44 TW) and internal radioactive heat production (~20 TW). Core/mantle heat transfer may also generate thermal mantle plumes responsible for ocean island volcanic chains such as the Hawaiian Islands. Several studies suggest that mantle plumes, in addition to transporting heat from the core/mantle boundary, also carry a chemical signature of core/mantle interaction. Elevated 186Os/188Os ratios in lavas from Hawaii, Gorgona, and in the 2.8 Ga Kostomuksha komatiites have been interpreted as reflecting incorporation of an outer core component with high time-integrated Pt/Os and Re/Os ( Brandon et al., 1999, 2003; Puchtel et al., 2005). Preferential partitioning of Os relative to Re and Pt into the inner core during inner core growth may generate elevated Re/Os and Pt/Os ratios in the residual outer core. Because of the long half-life of 190Pt (the parent of 186Os, t1/2 = 489 Ga), an elevated 186Os/188Os outer core signature in plume lavas requires that inner core crystallization began early in Earth history, most likely prior to 3.5 Ga. This in turn requires low time-averaged core/mantle heat flow (<~2.5 TW) or large quantities of heat-producing elements in the core. Core/mantle heat flow may be estimated using boundary-layer theory, by measuring the heat transported in mantle plumes, by estimating the heat transported along the outer core adiabat, or by comparing the rates of heat production, surface heat loss, and secular cooling of the mantle. All of these independent methods suggest time-averaged core/mantle heat flow of ~5

  1. Diagnostics design for steady-state operation of the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, R.; Baldzuhn, J.; Biedermann, C.; Burhenn, R.; Bozhenkov, S.; Cantarini, J.; Dreier, H.; Endler, M.; Hartfuss, H.-J.; Hildebrandt, D.; Hirsch, M.; Jakubowski, M.; Kornejev, P.; Krychowiak, M.; Laqua, H. P.; Laux, M.; Pasch, E.; Richert, T.; Schneider, W.; Svensson, J. [Max-Planck-Institute fuer Plasmaphysik, EURATOM Association, Greifswald D-1749 (Germany); and others

    2010-10-15

    The status of the diagnostic developments for the quasistationary operable stellarator Wendelstein 7-X (maximum pulse length of 30 min at 10 MW ECRH heating at 140 GHz) will be reported on. Significant emphasis is being given to the issue of ECRH stray radiation shielding of in-vessel diagnostic components, which will be critical at high density operation requiring O2 and OXB heating.

  2. Investigation of the role of electron cyclotron resonance heating and magnetic configuration on the suprathermal ion population in the stellarator TJ-II using a luminescent probe

    Science.gov (United States)

    Martínez, M.; Zurro, B.; Baciero, A.; Jiménez-Rey, D.; Tribaldos, V.

    2018-02-01

    Numerous observation exist of a population of high energetic ions with energies well above the corresponding thermal values in plasmas generated by electron cyclotron resonance (ECR) heating in TJ-II stellarator and in other magnetically confined plasmas devices. In this work we study the impact of ECR heating different conditions (positions and powers) on fast ions escaping from plasmas in the TJ-II stellarator. For this study, an ion luminescent probe operated in counting mode is used to measure the energy distribution of suprathermal ions, in the range from 1 to 30 keV. It is observed that some suprathermal ions characteristics (such as temperature, particle and energy fluxes) are related directly with the gyrotron power and focus position of the heating beam in the plasma. Moreover, it is found that suprathermal ion characteristics vary during a magnetic configuration scan (performed along a single discharge). By investigating the suprathermal ions escaping from plasmas generated using two gyrotrons, one with fixed power and the other modulated (on/off) at low frequency (10 Hz), the de-confinement time of the suprathermal ions can be measured, which is of the order of a few milliseconds (power balance is used to understand the de-confinement times in terms of the interaction of suprathermal ions and plasma components. This model also can be used to interpret experimental results of energy loss due to suprathermal ions. Finally, observations of increases (peaks) in the population of escaping suprathermal ions, which are well localized at discrete energies, is documented, these peaks being observed in the energy distributions along a discharge.

  3. The Effects of the Heat and Moisture Exchanger on Humidity, Airway Temperature, and Core Body Temperature

    National Research Council Canada - National Science Library

    Delventhal, Mary

    1999-01-01

    Findings from several studies have demonstrated that the use of a heat and moisture exchanger increases airway humidity, which in turn increases mean airway temperature and prevents decreases in core body temperature...

  4. Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Cerda-Duran, P; Obergaulinger, M; Mueller, E [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-st. 1, 85748 Garching (Germany); Aloy, M A; Font, J A, E-mail: cerda@mpa-garching.mpg.de [Departamento de Astronomia y Astrofisica, Universidad de Valencia, 46100 Burjassot, Valencia (Spain)

    2011-09-22

    Some of the most violent events in the universe, the gamma ray burst, could be related to the gravitational collapse of massive stellar cores. The recent association of long GRBs to some class of type Ic supernova seems to support this view. In such scenario fast rotation, strong magnetic fields and general relativistic effects are key ingredients. It is thus important to understand the mechanism that amplifies the magnetic field under that conditions. I present global simulations of the magneto-rotational collapse of stellar cores in general relativity and semi-global simulations of hydromagnetic instabilities under core collapse conditions. I discuss effect of the magneto-rotational instability and the magnetic field amplification during the collapse, the uncertainties in this process and the dynamical effects in the supernova explosion.

  5. An Impurity Emission Survey in the near UV and Visible Spectral Ranges of Electron Cyclotron Heated (ECH) Plasma in the TJ-II Stellarator

    International Nuclear Information System (INIS)

    McCarthy, K. J.; Zurro, B.; Baciero, A.

    2001-01-01

    We report on a near-ultraviolet and visible spectroscopic survey (220-600 nm) of electron cyclotron resonance (ECR) heated plasmas created in the TJ-II stellarator, with central electron temperatures up to 2 keV and central electron densities up to 1.7 x 10 ''19 m''-3. Approximately 1200 lines from thirteen elements have been identified. The purpose of the work is to identify the principal impurities and spectral lines present in TJ-II plasmas, as well as their possible origin to search for transitions from highly ionised ions. This work will act as a base for identifying suitable transitions for following the evolution of impurities under different operating regimens and multiplet systems for line polarisation studies. It is intended to use the database creates as a spectral line reference for comparing spectra under different operating and plasma heating regimes. (Author)

  6. Heat Removal Performance of Hybrid Control Rod for Passive In-Core Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Jeong, Yeong Shin; Kim, In Guk; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    The two-phase closed heat transfer device can be divided by thermosyphon heat pipe and capillary wicked heat pipe which uses gravitational force or capillary pumping pressure as a driving force of the convection of working fluid. If there is a temperature difference between reactor core and ultimate heat sink, the decay heat removal and reactor shutdown is possible at any accident conditions without external power sources. To apply the hybrid control rod to the commercial nuclear power plants, its modelling about various parameters is the most important work. Also, its unique geometry is coexistence of neutron absorber material and working fluid in a cladding material having annular vapor path. Although thermosyphon heat pipe (THP) or wicked heat pipe (WHP) shows high heat transfer coefficients for limited space, the maximum heat removal capacity is restricted by several phenomena due to their unique heat transfer mechanism. Validation of the existing correlations on the annular vapor path thermosyphon (ATHP) which has different wetted perimeter and heated diameter must be conducted. The effect of inner structure, and fill ratio of the working fluid on the thermal performance of heat pipe has not been investigated. As a first step of the development of hybrid heat pipe, the ATHP which contains neutron absorber in the concentric thermosyphon (CTHP) was prepared and the thermal performance of the annular thermosyphon was experimentally studied. The heat transfer characteristics and flooding limit of the annular vapor path thermosyphon was studied experimentally to model the performance of hybrid control rod. The following results were obtained: (1) The annular vapor path thermosyphon showed better evaporation heat transfer due to the enhanced convection between adiabatic and condenser section. (2) Effect of fill ratio on the heat transfer characteristics was negligible. (3) Existing correlations about flooding limit of thermosyphon could not reflect the annular vapor

  7. Chromospheric scaling laws, width-luminosity correlations, and the Wilson-Bappu effect

    International Nuclear Information System (INIS)

    Ayres, T.R.

    1979-01-01

    Simple scaling laws are developed to explain the thickness and mean electron density of late-type stellar chromospheres in an effort to understand why the emission cores of effectively thick resonance lines such as Ca II H and K broaden with increasing stellar luminosity (the Wilson-Bappu effect). It is shown that stellar chromospheres become thicker in mass column density as stellar gravity g decreases and that the mean chromospheric electric density n/sub e/ decreases if the chromospheric heating dF/dm is constant with height and if the total heating F/sup tot/ is independent of g. It is also shown that chromospheres becomes thicker and the mean electron density becomes larger than the total chromospheric heating increases. The predicted behavior of the K 1 minimum separation and full width at half-maximum of the Ca II emission core (W 0 ) based on the derived scaling laws agree quantitatively with the observed correlations of these widths with fundamental stellar parameters, particularly surface gravity. In addition, the predicted behavior of the K 2 peak separation and base emission width with increasing chromospheric heating is consistent with the behavior of the Ca II emission core shapes in solar plages. The analytical arguments suggest that the Wilson-Bappu effect is largely a consequence of hydrostatic equilibrium rather than chromospheric dynamics

  8. A new quasi-stationary, very high density plasma regime on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Jaenicke, R; Baeumel, S; Baldzuhn, J; Brakel, R; Burhenn, R; Ehmler, H; Endler, M; Erckmann, V; Feng, Y; Gadelmeier, F; Geiger, J; Giannone, L; Grigull, P; Hartfuss, H J; Hartmann, D; Hildebrandt, D; Hirsch, M; Holzhauer, E; Kick, M; Kisslinger, J; Klinger, T; Klose, S; Knauer, J; Koenig, R; Kuehner, G; Laqua, H; Maassberg, H; McCormick, K; Narayanan, R; Niedermeyer, H; Pasch, E; Ruhs, N; Rust, N; Saffert, J; Sardei, F; Schneider, F; Schubert, M; Speth, E; Wagner, F; Weller, A; Wenzel, U; Werner, A; Wuersching, E

    2002-01-01

    Stellarators have the intrinsic property of steady state operation. However, on present-day stellarators the pulse length is usually not only limited due to technical reasons, but also by physical problems. Lack of density control and a subsequent radiation collapse terminate the discharges quite often at high densities. To improve the control of the plasma-wall interaction, the island divertor concept was developed for optimized stellarators. To test this divertor concept on W7-AS, all limiters were removed and replaced by ten divertor modules. In subsequent divertor experiments a promising new plasma operational regime has been discovered which is termed 'high density H-mode' (HDH-mode). During the transition into that regime a clear reduction of ELM-like events and turbulent fluctuations is observed. The HDH-mode combines good energy confinement with very low impurity confinement resulting in low core radiation, but high edge-localized radiation. Consequently, stationary discharges at densities of typically 2x10 20 m -3 can be performed within the accessible pulse length of about 1 s. At densities above 3x10 20 m -3 a controlled transition from attached to partially detached plasmas is observed. The still edge-localized radiation reaches 90% of the heating power so that the power load onto the divertor target plates is further reduced. At a lower toroidal field of 0.9 T average β-values could be raised from earlier 2% to more than 3% in magnetic field configurations with rather smooth flux surfaces at the plasma boundary. The recently obtained results render excellent prospects for W7-X, the larger superconducting successor experiment of W7-AS

  9. Concepts for passive heat removal and filtration systems under core meltdown conditions

    International Nuclear Information System (INIS)

    Wilhelm, J.G.; Neitzel, H.-J.

    1993-01-01

    The objective of the new containment concept being developed by KfK is the complete passive enclosure of a power reactor after a core meltdown accident by means of a solid containment structure and passive removal of the decay heat. This is to be accomplished by cooling the containment walls with ambient air, with thermoconvection as the driving force. The concept of the containment is described. Data are given of the heat removal and the requirements for filtration of the exhaust air, which is contaminated due to the leak rate assumed for the inner containment. The concept for the filter system is described. Various solutions for reduction of the large volumetric flow to be filtered are discussed. 3 refs., 8 figs

  10. A non-local mixing-length theory able to compute core overshooting

    Science.gov (United States)

    Gabriel, M.; Belkacem, K.

    2018-04-01

    Turbulent convection is certainly one of the most important and thorny issues in stellar physics. Our deficient knowledge of this crucial physical process introduces a fairly large uncertainty concerning the internal structure and evolution of stars. A striking example is overshoot at the edge of convective cores. Indeed, nearly all stellar evolutionary codes treat the overshooting zones in a very approximative way that considers both its extent and the profile of the temperature gradient as free parameters. There are only a few sophisticated theories of stellar convection such as Reynolds stress approaches, but they also require the adjustment of a non-negligible number of free parameters. We present here a theory, based on the plume theory as well as on the mean-field equations, but without relying on the usual Taylor's closure hypothesis. It leads us to a set of eight differential equations plus a few algebraic ones. Our theory is essentially a non-mixing length theory. It enables us to compute the temperature gradient in a shrinking convective core and its overshooting zone. The case of an expanding convective core is also discussed, though more briefly. Numerical simulations have quickly improved during recent years and enabling us to foresee that they will probably soon provide a model of convection adapted to the computation of 1D stellar models.

  11. Fast transport changes and power degradation in the W7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Giannone, L.; Hartfuss, H -J [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); and others

    1996-04-01

    The turbulent heat transport in high-temperature fusion plasmas is not understood. It increases with power heating. The physical mechanism of this process is investigated in the W7-AS stellarator. The fundamental question addressed here is whether transport is governed by local plasma parameters or by a global quantity. Three different types of experiments with critical sensitivity are carried out. They can consistently be described on the basis of a non-local dependence of the transport coefficient on the global heating power. (author).

  12. Fast transport changes and power degradation in the W7-AS stellarator

    International Nuclear Information System (INIS)

    Stroth, U.; Giannone, L.; Hartfuss, H.-J.

    1996-01-01

    The turbulent heat transport in high-temperature fusion plasmas is not understood. It increases with power heating. The physical mechanism of this process is investigated in the W7-AS stellarator. The fundamental question addressed here is whether transport is governed by local plasma parameters or by a global quantity. Three different types of experiments with critical sensitivity are carried out. They can consistently be described on the basis of a non-local dependence of the transport coefficient on the global heating power. (author)

  13. Stellarator-Spheromak

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-03-01

    A novel concept for magnetic plasma confinement, Stellarator-Spheromak (SSP), is proposed. Numerical analysis with the classical-stellarator-type outboard stellarator windings demonstrates a number of potential advantages of SSP for controlled nuclear fusion. Among the main ones are: simple and compact magnet coil configuration, absence of material structures (e.g. magnet coils or conducting walls) in the center of the torus, high rotational transform, and a possibility of MHD equilibria with very high β (pressure/magnetic pressure) of the confined plasma

  14. High heat flux tests of the WENDELSTEIN 7-X pre-series target elements

    International Nuclear Information System (INIS)

    Greuner, H.; Boeswirth, B.; Boscary, J.; Plankensteiner, A.; Schedler, B.

    2007-01-01

    The high heat flux (HHF) testing of WENDELSTEIN 7-X pre-series target elements is an indispensable step in the qualification of the manufacturing process. A set of 20 full scale pre-series elements was manufactured by PLANSEE SE to validate the materials and manufacturing technologies prior to the start of the series production. The HHF tests were performed in the ion beam test facility GLADIS. All actively water-cooled elements were tested for about 100 cycles at 10 MW/m 2 (10-15 s pulse duration). Several elements were loaded with even higher cycle numbers (up to 1000) and heat loads up to 24 MW/m 2 . Hot spots were, observed at the edges of several tiles during the HHF tests indicating local bonding problems of the CFC. The thermo-mechanical behaviour under HHF loading has been evaluated and compared to the FEM predictions. The measured temperatures and strains confirm the chosen FEM approach. This allows a component optimisation to achieve a successful series production of the W7-X divertor target elements

  15. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  16. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  17. Pre-anthesis high temperature acclimation alleviates the negative effects of postanthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Liu, Fulai

    2012-01-01

    The potential role of pre-anthesis high temperature acclimation in alleviating the negative effects of post-anthesis heat stress on stem stored carbohydrate remobilization and grain starch accumulation in wheat was investigated. The treatments included no heat-stress (CC), heat stress at pre...... had much higher starch content, and caused less modified B-type starch granule size indicators than the CH plants. Our results indicated that, compared with the non-acclimated plants, the pre-anthesis high temperature acclimation effectively enhanced carbohydrate remobilization from stems to grains...

  18. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    Science.gov (United States)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  19. Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils.

    Science.gov (United States)

    Biache, Coralie; Lorgeoux, Catherine; Andriatsihoarana, Sitraka; Colombano, Stéfan; Faure, Pierre

    2015-04-09

    Three chemical oxidation treatments (KMnO4, H2O2 and Fenton-like) were applied on three PAH-contaminated soils presenting different properties to determine the potential use of these treatments to evaluate the available PAH fraction. In order to increase the available fraction, a pre-heating (100 °C under N2 for one week) was also applied on the samples prior oxidant addition. PAH and extractable organic matter contents were determined before and after treatment applications. KMnO4 was efficient to degrade PAHs in all the soil samples and the pre-heating slightly improved its efficiency. H2O2 and Fenton-like treatments presented low efficiency to degrade PAH in the soil presenting poor PAH availability, however, the PAH degradation rates were improved with the pre-heating. Consequently H2O2-based treatments (including Fenton-like) are highly sensitive to contaminant availability and seem to be valid methods to estimate the available PAH fraction in contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Adiabatic invariants in stellar dynamics, 3: Application to globular cluster evolution

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    The previous two companion papers demonstrate that slowly varying perturbations may not result in adiabatic cutoffs and provide a formalism for computing the long-term effects of time-dependent perturbations on stellar systems. Here, the theory is implemented in a Fokker-Planck code and a suite of runs illustrating the effects of shock heating on globular cluster evolution are described. Shock heating alone results in considerable mass loss for clusters with R(sub g) less than or approximately 8 kpc: a concentration c = 1.5 cluster with R(sub g) kpc loses up to 95% of its initial mass in 15 Gyr. Only those with concentration c greater than or approximately 1.3 survive disk shocks inside of this radius. Other effects, such as mass loss by stellar evolution, will decrease this survival bound. Loss of the initial halo together with mass segregation leads to mass spectral indices, x, which may be considerably larger than their initial values.

  1. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  2. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-01-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear

  3. Control system pre-feedbacked for the super heated steam temperature in heat recovering units; Sistema de control pre-retroalimentado para la temperatura de vapor sobrecalentado en recuperadores de calor

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Alvarez, Hilario; Madrigal Espinosa, Guadalupe [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The study that is presented corresponds to the analysis, design and development of a pre-feedbacked control system for the superheated steam temperature regulation in the heat recovery units of a combined cycle thermoelectric power plant. The designs of the feedback controller and the pre-feedback control system were implemented based in a linear model of the tempering zone. This linear model was obtained through the application of parametric identification techniques to the non-linear mathematical model of a combined cycle power plant. [Espanol] El estudio que se presenta corresponde al analisis, diseno y desarrollo de un sistema de control pre-retroalimentado para regular la temperatura de vapor sobrecalentado en los recuperadores de calor de una central termoelectrica de ciclo combinado. Los disenos del controlador retroalimentado y del sistema de control prealimentado se realizaron con base en un modelo lineal de la zona de atemperacion. Este modelo lineal se obtuvo aplicando tecnicas de identificacion parametrica al modelo matematico no-lineal de una central de ciclo combinado.

  4. Control system pre-feedbacked for the super heated steam temperature in heat recovering units; Sistema de control pre-retroalimentado para la temperatura de vapor sobrecalentado en recuperadores de calor

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Alvarez, Hilario; Madrigal Espinosa, Guadalupe [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The study that is presented corresponds to the analysis, design and development of a pre-feedbacked control system for the superheated steam temperature regulation in the heat recovery units of a combined cycle thermoelectric power plant. The designs of the feedback controller and the pre-feedback control system were implemented based in a linear model of the tempering zone. This linear model was obtained through the application of parametric identification techniques to the non-linear mathematical model of a combined cycle power plant. [Espanol] El estudio que se presenta corresponde al analisis, diseno y desarrollo de un sistema de control pre-retroalimentado para regular la temperatura de vapor sobrecalentado en los recuperadores de calor de una central termoelectrica de ciclo combinado. Los disenos del controlador retroalimentado y del sistema de control prealimentado se realizaron con base en un modelo lineal de la zona de atemperacion. Este modelo lineal se obtuvo aplicando tecnicas de identificacion parametrica al modelo matematico no-lineal de una central de ciclo combinado.

  5. ANALYSIS OF GAMMA HEATING AT TRIGA MARK REACTOR CORE BANDUNG USING PLATE TYPE FUEL

    Directory of Open Access Journals (Sweden)

    Setiyanto Setiyanto

    2016-10-01

    Full Text Available ABSTRACT In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities and central irradiation position (CIP, especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0,87 W/g, but very low value for Lazy Susan position (lest then 0,11 W/g. Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. Keywords: gamma heating, nuclear reactor, research reactor, reactor safety.   ABSTRAK Dengan dihentikannya produksi elemen bakar reaktor jenis Triga oleh produsen, maka semua reaktor TRIGA di dunia terganggu operasinya, termasuk juga reaktor TRIGA 2000 di Bandung. Untuk mendukung pengoperasian reaktor TRIGA Bandung

  6. Compact stellar object: the formation and structure

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, S.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Full text: The formation of compact objects is viewed at the final stages of stellar evolution. The supernova explosion events are then focalized to explain the formation of pulsars, hybrid neutron star and the limit case of the latter, the quark stars. We discuss the stability and structure of these objects in connection with the properties of the hadron and quark-gluon plasma equation of state. The hadron-quark phase transition in deep interior of these objects is discussed taking into account the implications on the density distribution of matter along the radial direction. The role of neutrinos confinement in the ultradense stellar medium in the early stages of pulsar formation is another interesting aspect to be mentioned in this presentation. Recent results for maximum mass of compact stellar objects for different forms of equations of state will be shown, presenting some theoretical predictions for maximum mass of neutron stars allowed by different equations of state assigned to dense stellar medium. Although a density greater than few times the nuclear equilibrium density appears in deep interior of the core, at the crust the density decreases by several orders of magnitude where a variety of hadronic states appears, the 'pasta'-states of hadrons. More externally, a lattice of nuclei can be formed permeated not only by electrons but also by a large amount of free neutrons and protons. These are possible structure of neutron star crust to have the density and pressures with null values at the neutron star surface. The ultimate goal of this talk is to give a short view of the compact star area for students and those who are introducing in this subject. (author)

  7. LMFR core and heat exchanger thermohydraulic design: former USSR and present Russian approaches

    International Nuclear Information System (INIS)

    1999-01-01

    The information presented in this report is dealing with liquid metal cooled fast reactors some of which are in operation (France, Japan, Russian federation) or under construction. Comprehensive thermal hydraulic research both experimental and numeric applied to such reactors was carried out in the Institute of Physics and Power Engineering (IPPE), Obninsk, Russian Federation. The IAEA Working Group on fast Reactors (IWGFR) recommended that IPPE should generalize its thermal hydraulic studies as well as results of other countries published previously in the field of liquid metal flow distribution and heat transfer in fuel pin and heat exchanger rod bundles (France, Germany, Japan, India, Russian Federation, United Kingdom and United States). The validity of computer codes and design approaches was proven by comparison of calculated results with measured values of velocity, pressure, temperature distributions in rod bundles cooled/heated by liquid metal, usually sodium. The report includes the methodology and philosophy of the analytical and experimental investigations when applied to core and heat exchanger thermal hydraulic design of Light Water Moderated Fast Reactors (LMFRs)

  8. YOUNG STELLAR CLUSTERS CONTAINING MASSIVE YOUNG STELLAR OBJECTS IN THE VVV SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Borissova, J.; Alegría, S. Ramírez; Kurtev, R.; Medina, N.; Navarro, C.; Kuhn, M.; Gromadzki, M.; Retamales, G.; Fernandez, M. A.; Agurto-Gangas, C.; Amigo, P. [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030 (Chile); Alonso, J.; Decany, I. [Millennium Institute of Astrophysics (MAS), Santiago (Chile); Lucas, P. W.; Pena, C. Contreras; Thompson, M. A. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Chené, A.-N. [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Minniti, D. [Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago (Chile); Catelan, M. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Morales, E. F. E., E-mail: jura.borissova@uv.cl [Max-Planck-Institute for Astronomy (Germany)

    2016-09-01

    The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800  M {sub ⊙}), the slope Γ of the obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M {sub ⊙}). Using VVV and GLIMPSE color–color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.

  9. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    International Nuclear Information System (INIS)

    Wit, Julien de; Lewis, Nikole K.; Knutson, Heather A.; Batygin, Konstantin; Fuller, Jim; Antoci, Victoria; Fulton, Benjamin J.; Laughlin, Gregory; Deming, Drake; Shporer, Avi; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam S.; Fortney, Jonathan J.; Langton, Jonathan; Showman, Adam P.

    2017-01-01

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  10. Adiabatic invariants in stellar dynamics. 1: Basic concepts

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    The adiabatic criterion, widely used in astronomical dynamics, is based on the harmonic oscillator. It asserts that the change in action under a slowly varying perturbation is exponentially small. Recent mathematical results that precisely define the conditions for invariance show that this model does not apply in general. In particular, a slowly varying perturbation may cause significant evolution stellar dynamical systems even if its time scale is longer than any internal orbital time scale. This additional 'heating' may have serious implications for the evolution of star clusters and dwarf galaxies which are subject to long-term environmental forces. The mathematical developments leading to these results are reviewed, and the conditions for applicability to and further implications for stellar systems are discussed. Companion papers present a computational method for a general time-dependent disturbance and detailed example.

  11. Core-powered mass-loss and the radius distribution of small exoplanets

    Science.gov (United States)

    Ginzburg, Sivan; Schlichting, Hilke E.; Sari, Re'em

    2018-05-01

    Recent observations identify a valley in the radius distribution of small exoplanets, with planets in the range 1.5-2.0 R⊕ significantly less common than somewhat smaller or larger planets. This valley may suggest a bimodal population of rocky planets that are either engulfed by massive gas envelopes that significantly enlarge their radius, or do not have detectable atmospheres at all. One explanation of such a bimodal distribution is atmospheric erosion by high-energy stellar photons. We investigate an alternative mechanism: the luminosity of the cooling rocky core, which can completely erode light envelopes while preserving heavy ones, produces a deficit of intermediate sized planets. We evolve planetary populations that are derived from observations using a simple analytical prescription, accounting self-consistently for envelope accretion, cooling and mass-loss, and demonstrate that core-powered mass-loss naturally reproduces the observed radius distribution, regardless of the high-energy incident flux. Observations of planets around different stellar types may distinguish between photoevaporation, which is powered by the high-energy tail of the stellar radiation, and core-powered mass-loss, which depends on the bolometric flux through the planet's equilibrium temperature that sets both its cooling and mass-loss rates.

  12. Simplified PCR protocols for INNO-LiPA HBV Genotyping and INNO-LiPA HBV PreCore assays

    NARCIS (Netherlands)

    Qutub, Mohammed O.; Germer, Jeffrey J.; Rebers, Sjoerd P. H.; Mandrekar, Jayawant N.; Beld, Marcel G. H. M.; Yao, Joseph D. C.

    2006-01-01

    INNO-LiPA HBV Genotyping (LiPA HBV GT) and INNO-LiPA HBV PreCore (LiPA HBV PC) are commercially available assays for hepatitis B virus (HBV) characterization. These assays are labor-intensive and may be prone to exogenous DNA contamination due to their use of nested PCR amplification procedures and

  13. Complex organic molecules in organic-poor massive young stellar objects

    DEFF Research Database (Denmark)

    Fayolle, Edith C.; Öberg, Karin I.; Garrod, Robin T.

    2015-01-01

    to search for complex organic molecules over 8-16 GHz in the 1 mm atmospheric window toward three MYSOs with known ice abundances, but without luminous molecular hot cores. Results. Complex molecules are detected toward all three sources at comparable abundances with respect to CH3OH to classical hot core......Context. Massive young stellar objects (MYSOs) with hot cores are classic sources of complex organic molecules. The origins of these molecules in such sources, as well as the small-and large-scale differentiation between nitrogen-and oxygen-bearing complex species, are poorly understood. Aims. We...... aim to use complex molecule abundances toward a chemically less explored class of MYSOs with weak hot organic emission lines to constrain the impact of hot molecular cores and initial ice conditions on the chemical composition toward MYSOs. Methods. We use the IRAM 30 m and the Submillimeter Array...

  14. An Equation Governing Ultralow-Velocity Zones: Implications for Holes in the ULVZ, Lateral Chemical Reactions at the Core-Mantle Boundary, and Damping of Heat Flux Variations in the Core

    Science.gov (United States)

    Hernlund, J. W.; Matsui, H.

    2017-12-01

    Ultralow-velocity zones (ULVZ) are increasingly illuminated by seismology, revealing surprising diversity in size, shape, and physical characteristics. The only viable hypotheses are that ULVZs are a compositionally distinct FeO-enriched dense material, which could have formed by fractional crystallization of a basal magma ocean, segregation of subducted banded iron formations, precipitation of solids from the outer core, partial melting and segregation of iron-rich melts from subducted basalts, or most likely a combination of many different processes. But many questions remain: Are ULVZ partially molten in some places, and not in others? Are ULVZ simply the thicker portions of an otherwise global thin layer, covering the entire CMB and thus blocking or moderating chemical interactions between the core and overlying mantle? Is such a layer inter-connected and able to conduct electrical currents that allow electro-magnetic coupling of core and mantle angular momentum? Are they being eroded and shrinking in size due to viscous entrainment, or is more material being added to ULVZ over time? Here we derive an advection-diffusion-like equation that governs the dynamical evolution of a chemically distinct ULVZ. Analysis of this equation shows that ULVZ should become readily swept aside by viscous mantle flows at the CMB, exposing "ordinary mantle" to the top of the core, thus inducing chemical heterogeneity that drives lateral CMB chemical reactions. These reactions are correlated with heat flux, thus maintaining large-scale pressure variations atop the core that induce cyclone-like flows centered around ULVZ and ponded subducted slabs. We suggest that turbulent diffusion across adjacent cyclone streams inside a stratified region atop the core readily accommodates lateral transport and re-distribution of components such as O and Si, in addition to heat. Our model implies that the deeper core is at least partly shielded from the influence of strong heat flux variations at

  15. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hilding R.; Lester, John B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Baron, Fabien; Norris, Ryan; Kloppenborg, Brian, E-mail: neilson@astro.utoronto.ca [Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.

  16. The fundamentals of stellar astrophysics

    International Nuclear Information System (INIS)

    Collins, G.W. II.

    1989-01-01

    A broad overview of theoretical stellar astrophysics is presented in a textbook intended for graduate students. Chapters are devoted to fundamental principles, assumptions, theorems, and polytropes; energy sources and sinks; the flow of energy through the star and the construction of stellar models; the theory of stellar evolution; relativistic stellar structure; the structure of distorted stars; stellar pulsation and oscillation. Also discussed are the flow of radiation through the stellar atmosphere, the solution of the radiative-transfer equation, the environment of the radiation field, the construction of a stellar model atmosphere, the formation and shape of spectral lines, LTE breakdown, illuminated and extended stellar atmospheres, and the transfer of polarized radiation. Diagrams, graphs, and sample problems are provided. 164 refs

  17. Recent advances in stellarator optimization

    Science.gov (United States)

    Gates, D. A.; Boozer, A. H.; Brown, T.; Breslau, J.; Curreli, D.; Landreman, M.; Lazerson, S. A.; Lore, J.; Mynick, H.; Neilson, G. H.; Pomphrey, N.; Xanthopoulos, P.; Zolfaghari, A.

    2017-12-01

    Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. The purpose of this paper is to outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—was written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. To this end, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also

  18. THE QUADRUPLE PRE-MAIN-SEQUENCE SYSTEM LkCa 3: IMPLICATIONS FOR STELLAR EVOLUTION MODELS

    International Nuclear Information System (INIS)

    Torres, Guillermo; Latham, David W.; Ruíz-Rodríguez, Dary; Prato, L.; Wasserman, Lawrence H.; Badenas, Mariona; Schaefer, G. H.; Mathieu, Robert D.

    2013-01-01

    We report the discovery that the pre-main-sequence (PMS) object LkCa 3 in the Taurus-Auriga star-forming region is a hierarchical quadruple system of M stars. It was previously known to be a close (∼0.''5) visual pair, with one component being a moderately eccentric 12.94 day single-lined spectroscopic binary. A re-analysis of archival optical spectra complemented by new near-infrared (NIR) spectroscopy shows both visual components to be double lined; the second one has a period of 4.06 days and a circular orbit. In addition to the orbital elements, we determine optical and NIR flux ratios, effective temperatures, and projected rotational velocities for all four stars. Using existing photometric monitoring observations of the system that had previously revealed the rotational period of the primary in the longer-period binary, we also detect the rotational signal of the primary in the 4.06 day binary, which is synchronized with the orbital motion. With only the assumption of coevality, a comparison of all of these constraints with current stellar evolution models from the Dartmouth series points to an age of 1.4 Myr and a distance of 133 pc, consistent with previous estimates for the region and suggesting that the system is on the near side of the Taurus complex. Similar comparisons of the properties of LkCa 3 and the well-known quadruple PMS system GG Tau with the widely used models from the Lyon series for a mixing length parameter of α ML = 1.0 strongly favor the Dartmouth models

  19. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    Science.gov (United States)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  20. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores

    International Nuclear Information System (INIS)

    El Ganaoui, K.

    2006-09-01

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  1. Dense Cores in Galaxies Out to z = 2.5 in SDSS, UltraVISTA, and the Five 3D-HST/CANDELS Fields

    Science.gov (United States)

    van Dokkum, Pieter G.; Bezanson, Rachel; van der Wel, Arjen; Nelson, Erica June; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine E.; Brammer, Gabriel; Conroy, Charlie; Förster Schreiber, Natascha M.; Fumagalli, Mattia; Kriek, Mariska; Labbé, Ivo; Leja, Joel; Marchesini, Danilo; Muzzin, Adam; Oesch, Pascal; Wuyts, Stijn

    2014-08-01

    The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 1010 M ⊙ inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ~50% at z = 2.5 to ~15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M 1 kpc > 3 × 1010 M ⊙ make up ~0.1% of the stellar mass density of the universe today but 10%-20% at z ~ 2, depending on their initial mass function. The formation of these cores required the conversion of ~1011 M ⊙ of gas into stars within ~1 kpc, while preventing significant star formation at larger radii.

  2. Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.; Choi, Sang Kyu; Chung, Suk-Ho

    2015-01-01

    The stabilization characteristics of laminar non-premixed jet flames of pre-vaporized iso-octane, one of the primary reference fuels for octane rating, have been studied experimentally in heated coflow air. Non-autoignited and autoignited lifted

  3. Increases in core temperature counterbalance effects of haemoconcentration on blood viscosity during prolonged exercise in the heat.

    Science.gov (United States)

    Buono, Michael J; Krippes, Taylor; Kolkhorst, Fred W; Williams, Alexander T; Cabrales, Pedro

    2016-02-01

    What is the central question of this study? The purpose of the present study was to determine the effects of exercise-induced haemoconcentration and hyperthermia on blood viscosity. What is the main finding and its importance? Exercise-induced haemoconcentration, increased plasma viscosity and increased blood aggregation, all of which increased blood viscosity, were counterbalanced by increased red blood cell (RBC) deformability (e.g. RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and postexercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced haemoconcentration and hyperthermia and to determine their combined effects on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% relative humidity), which resulted in significant increases from pre-exercise values for rectal temperature (from 37.11 ± 0.35 to 38.76 ± 0.13 °C), haemoconcentration (haematocrit increased from 43.6 ± 3.6 to 45.6 ± 3.5%) and dehydration (change in body weight = -3.6 ± 0.7%). Exercise-induced haemoconcentration significantly (P blood viscosity by 9% (from 3.97 to 4.33 cP at 300 s(-1)), whereas exercise-induced hyperthermia significantly decreased blood viscosity by 7% (from 3.97 to 3.69 cP at 300 s(-1)). When both factors were considered together, there was no overall change in blood viscosity (from 3.97 to 4.03 cP at 300 s(-1)). The effects of exercise-induced haemoconcentration, increased plasma

  4. The Updated BaSTI Stellar Evolution Models and Isochrones. I. Solar-scaled Calculations

    DEFF Research Database (Denmark)

    Hidalgo, Sebastian L.; Pietrinferni, Adriano; Cassisi, Santi

    2018-01-01

    We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar-scaled heavy element distribution. The main input physics that have been changed from the previous BaSTI release include the solar metal mixture, electron conduction...... to metal enrichment ratio dY/dZ = 1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, consistently take into account the pre-main-sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been...... calculated. We compare our isochrones with results from independent databases and with several sets of observations to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties, and isochrones are made available through a dedicated web site....

  5. Stationary neoclassical profiles of plasma parameters in stellarators

    International Nuclear Information System (INIS)

    Danilkin, I.S.; Mineev, A.B.

    1991-01-01

    The properties of the neoclassical model of heat and particle transport are considered in connection with calculations of stationary profiles of the plasma parameters in stellarators. The most important feature is the poor agreement with real physical conditions of the boundary, which imposes the necessity of invoking either an additional anomalous transport or a special (although technically possible) consistency between the particle and heat sources in order to obtain a solution in the form of a correct monotonically decreasing profile. In search for monotonic stationary profiles maintained by external sources, it is ascertained that the neoclassical theory does not give rise to the well-known multivalued solutions for the ambipolar electric field

  6. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1983-01-01

    A heterogeneous gas core nuclear reactor is disclosed comprising a core barrel provided interiorly with an array of moderator-containing tubes and being otherwise filled with a fissile and/or fertile gaseous fuel medium. The fuel medium may be flowed through the chamber and through an external circuit in which heat is extracted. The moderator may be a fluid which is flowed through the tubes and through an external circuit in which heat is extracted. The moderator may be a solid which may be cooled by a fluid flowing within the tubes and through an external heat extraction circuit. The core barrel is surrounded by moderator/coolant material. Fissionable blanket material may be disposed inwardly or outwardly of the core barrel

  7. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    Science.gov (United States)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  8. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  9. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  10. Pulsational instabilities in hot pre-horizontal branch stars

    Directory of Open Access Journals (Sweden)

    Battich Tiara

    2017-01-01

    Full Text Available The ϵ mechanism is a self-excitation mechanism of pulsations which acts on the regions where nuclear burning takes place. It has been shown that the ϵ mechanism can excite pulsations in models of hot helium-core flash, and that the pulsations of LS IV-14· 116, a He-enriched hot subdwarf star, could be explained that way. We aim to study the ϵmechanism effects on models of hot pre-horizontal branch stars and determine, if possible, a domain of instability in the log g — log Teff plane. We compute non-adiabatic non-radial pulsations on such stellar models, adopting different values of initial chemical abundances and mass of the hydrogen envelope at the time of the main helium flash. We find an instability domain of long-period (400 s ≲ P ≲ 2500 s g-modes for models with 22000K ≲ Teff ≲ 50000K and 4.67 ≲ log g ≲ 6.15.

  11. Confinement studies in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Alejaldre, C.; Alonso, J.; Almoguera, L.; Ascasibar, E.; Baciero, A.; Balbin, R.; Blaumoser, M.; Botija, J.; Branas, B.; Cal, E. de la; Cappa, A.; Carrasco, R.; Castejon, F.; Cepero, J.R.; Cremy, C.; Delgado, J.M.; Doncel, J.; Dulya, C.; Estrada, T.; Fernandez, A.; Fuentes, C.; Garcia, A.; Garcia-Cortes, I.; Guasp, J.; Herranz, J.; Hidalgo, C.; Jimenez, J.A.; Kirpitchev, I.; Krivenski, V.; Labrador, I.; Lapayese, F.; Likin, K.; Linier, M.; Lopez-Fraguas, A.; Lopez-Sanchez, A.; Luna, E. de la; Martin, R.; Martinez, A.; Martinez-Laso, L.; Medrano, M.; Mendez, P.; McCarthy, K.J.; Medina, F.; Milligen, B. van; Ochando, M.; Pacios, L.; Pastor, I.; Pedrosa, M.A.; Pena, A. de la; Portas, A.; Qin, J.; Rodriguez-Rodrigo, L.; Salas, A.; Sanchez, E.; Sanchez, J.; Tabares, F.; Tafalla, D.; Tribaldos, V.; Vega, J.; Zurro, B.; Akulina, D.; Fedyanin, O.I.; Grebenshchikov, S.; Kharchev, N.; Meshcheryakov, A.; Sarksian, K.A.; Barth, R.; Dijk, G. van; Meiden, H. van der

    1999-01-01

    ECR (electron cyclotron resonance) heated plasmas have been studied in the low magnetic shear TJ-II stellarator (R = 1.5 m, a ECRH = 300 kW, power density = 1-25 W cm -3 ). Recent experiments have explored the flexibility of the TJ-II across a wide range of plasma volumes with different rotational transforms and rational surface densities. In this paper, the main results of this campaign are presented and, in particular, the influence of iota and rational surfaces on plasma profiles is discussed. (author)

  12. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  13. Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    Shibata, Masaru

    2003-01-01

    We report a new implementation for axisymmetric simulation in full general relativity. In this implementation, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests, we performed the following simulations: (i) long-term evolution of nonrotating and rapidly rotating neutron stars, (ii) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with shock formation, (iii) collapse of unstable neutron stars to black holes, and (iv) stellar collapses to neutron stars. Tests (i)-(iii) were carried out with the Γ-law equation of state, and test (iv) with a more realistic parametric equation of state for high-density matter. We found that this new implementation works very well: It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star, and black hole, phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic initial condition is also presented

  14. Improving heat generation of magnetic nanoparticles by pre-orientation of particles in a static three tesla magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Mathias M., E-mail: Mathias.Beck@tum.de [Institute for Machine Tools and Industrial Management, Technical University of Munich, Boltzmannstr. 15, 85748 Garching (Germany); Lammel, Christian [Institute for Machine Tools and Industrial Management, Technical University of Munich, Boltzmannstr. 15, 85748 Garching (Germany); Gleich, Bernhard [Institute of Medical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching (Germany)

    2017-04-01

    Inductive heating of electrically insulating materials like fiberglass reinforced thermoplastics (FRTP) without susceptors is not possible. However, due to their low thermal conductivity a volumetric heat generation method is advisable to reach short heating times to melt this material for reshaping. This can be done with magnetic nanoparticles as susceptors within the thermoplastic of the FRTP using Néel relaxation. During the heating process the particle's magnetic moment rotates with the field while the particle itself is fixed within the thermoplastic. Therefore the heat dissipation of each particle depends on its orientation within the field. To achieve the maximum heat generation of the particles we pre-oriented the particles within a plastic at the best angle to the applied AC field for induction. To do this, five mass percent nanoparticles were dispersed in an epoxy resin, which was then hardened at room temperature in a static three Tesla magnetic field. After its solidification the heating behavior of the sample was compared to a reference sample, which was hardened without a field. The oriented particles showed an increased heating rate when oriented parallel to the applied AC field. The absorption rate was 3.3 times as high as the undirected reference sample. When the alternating electromagnetic field was perpendicular to the oriented particles, the specific absorption rate was similar to that of the reference sample. We compare this result with theory and with calculations from literature, and conduct a numerical simulation. - Highlights: • Magnetic nanoparticles are aligned using a static three tesla magnetic field. • Inductive heating depends on the particles pre-orientation in a solid matrix. • Alignment increases the heat generation significantly.

  15. Multiplicity in Early Stellar Evolution

    Science.gov (United States)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  16. TOWARD A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Agertz, Oscar; Kravtsov, Andrey V.; Leitner, Samuel N.; Gnedin, Nickolay Y.

    2013-05-21

    We investigate the momentum and energy budget of stellar feedback during different stages of stellar evolution, and study its impact on the interstellar medium (ISM) using simulations of local star-forming regions and galactic disks at the resolution affordable in modern cosmological zoom-in simulations. In particular, we present a novel subgrid model for the momentum injection due to radiation pressure and stellar winds from massive stars during early, pre-supernova (pre-SN) evolutionary stages of young star clusters. Early injection of momentum acts to clear out dense gas in star-forming regions, hence limiting star formation. The reduced gas density mitigates radiative losses of thermal feedback energy from subsequent SN explosions. The detailed impact of stellar feedback depends sensitively on the implementation and choice of parameters. Somewhat encouragingly, we find that implementations in which feedback is efficient lead to approximate self-regulation of the global star formation efficiency. We compare simulation results using our feedback implementation to other phenomenological feedback methods, where thermal feedback energy is allowed to dissipate over timescales longer than the formal gas cooling time. We find that simulations with maximal momentum injection suppress star formation to a similar degree as is found in simulations adopting adiabatic thermal feedback. However, different feedback schemes are found to produce significant differences in the density and thermodynamic structure of the ISM, and are hence expected to have a qualitatively different impact on galaxy evolution.

  17. TOWARD A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS

    International Nuclear Information System (INIS)

    Agertz, Oscar; Kravtsov, Andrey V.; Leitner, Samuel N.; Gnedin, Nickolay Y.

    2013-01-01

    We investigate the momentum and energy budget of stellar feedback during different stages of stellar evolution, and study its impact on the interstellar medium (ISM) using simulations of local star-forming regions and galactic disks at the resolution affordable in modern cosmological zoom-in simulations. In particular, we present a novel subgrid model for the momentum injection due to radiation pressure and stellar winds from massive stars during early, pre-supernova (pre-SN) evolutionary stages of young star clusters. Early injection of momentum acts to clear out dense gas in star-forming regions, hence limiting star formation. The reduced gas density mitigates radiative losses of thermal feedback energy from subsequent SN explosions. The detailed impact of stellar feedback depends sensitively on the implementation and choice of parameters. Somewhat encouragingly, we find that implementations in which feedback is efficient lead to approximate self-regulation of the global star formation efficiency. We compare simulation results using our feedback implementation to other phenomenological feedback methods, where thermal feedback energy is allowed to dissipate over timescales longer than the formal gas cooling time. We find that simulations with maximal momentum injection suppress star formation to a similar degree as is found in simulations adopting adiabatic thermal feedback. However, different feedback schemes are found to produce significant differences in the density and thermodynamic structure of the ISM, and are hence expected to have a qualitatively different impact on galaxy evolution.

  18. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    Energy Technology Data Exchange (ETDEWEB)

    Wit, Julien de [Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Knutson, Heather A.; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Fuller, Jim [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Antoci, Victoria [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Fulton, Benjamin J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Laughlin, Gregory [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Shporer, Avi [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91009 (United States); Cowan, Nicolas B. [Department of Physics, Department of Earth and Planetary Sciences, McGill University, 3550 rue University, Montreal, QC H3A 2A7 (Canada); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-02-20

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  19. Summary of experimental core turbulence characteristics in ohmic and electron cyclotron resonance heated discharges in T-10 tokamak plasmas

    International Nuclear Information System (INIS)

    Vershkov, V.A.; Shelukhin, D.A.; Soldatov, S.V.; Urazbaev, A.O.; Grashin, S.A.; Eliseev, L.G.; Melnikov, A.V.

    2005-01-01

    This report summarizes the results of experimental turbulence investigations carried out at T-10 for more than 10 years. The turbulence characteristics were investigated using correlation reflectometry, multipin Langmuir probe (MLP) and heavy ion beam probe diagnostics. The reflectometry capabilities were analysed using 2D full-wave simulations and verified by direct comparison using a MLP. The ohmic and electron cyclotron resonance heated discharges show the distinct transition from the core turbulence, having complex spectral structure, to the unstructured one in the scrape-off layer. The core turbulence includes 'broad band, quasi-coherent' features, arising due to the excitation of rational surfaces with high poloidal m-numbers, with a low frequency near zero and specific oscillations at 15-30 kHz. All experimentally measured properties of low frequency and high frequency quasi-coherent oscillations are in good agreement with predictions of linear theory for the ion temperature gradient/dissipative trapped electron mode instabilities. Significant local changes in the turbulence characteristics were observed at the edge velocity shear layer and in the core near q = 1 radius after switching off the electron cyclotron resonance heating (ECRH). The local decrease in the electron heat conductivity and decrease in the turbulence level could be evidence of the formation of an electron internal transport barrier. The dynamic behaviour of the core turbulence was also investigated for the case of fast edge cooling and the beginning phase of ECRH

  20. Natural Convection Heat Transfer of Oxide Pool During In-Vessel Retention of Core Melts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Kyun; Chung, Bum-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The integrity of reactor vessel may be threatened by the heat generation at the oxide pool and to the natural convection heat transfer to the reactor vessel by those two layers. Therefore, External Reactor Vessel Cooling (ERVC) is performed in order to secure the integrity of the reactor vessel. Whether the IVR(In-Vessel Retention) Strategy can be applicable to a larger reactor is the technical concern, which nourished the research interest for the natural convection heat transfer of metal and oxide pool and ERVC performance. Especially, it is hard to simulate oxide pool by experimentally due to the high level of buoyancy. Moreover, the volumetrically exothermic working fluid should be adopted to simulate the behavior of the core melts. Therefore, the volumetric heat sources that immersed in the working fluid have been adopted to simulate oxide pool by experiment. We investigated oxide pool with two different designs of the volumetric heat sources that adopted previous experiments. The investigation was performed by mass transfer experiment using analogy between heat and mass transfers. The results were compared to previous studies. We simulated the natural convection heat transfer of the oxide pool by mass transfer experiment. The isothermally cooled condition was established by limiting current technique firstly. The results were compared to previous studies under identical design of the volumetric heat sources. The average Nu's of the curvature and the top plate were close to the previous studies.

  1. Dynamic screening in solar and stellar nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Daeppen, W. [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA (United States); Mussack, K. [Los Alamos National Laboratory, XTD-2, Los Alamos, NM (United States)

    2012-02-15

    In the hot, dense plasma of solar and stellar interiors, Coulomb potentials are screened, resulting in increased nuclear reaction rates. Although Salpeter's approximation for static screening is widely accepted and used in stellar modeling, the question of screening in nuclear reactions was revisited in the 1990s. In particular the issue of dynamic effects was raised by Shaviv and Shaviv, who applied the techniques of molecular dynamics to the conditions in the Sun's core in order to numerically determine the effect of screening. By directly calculating the motion of ions and electrons due to Coulomb interactions, the simulations are used to compute the effect of screening without the mean-field assumption inherent in Salpeter's approximation. In the last few years, the USC group has first reproduced Shaviv and Shaviv's numerical analysis of the screening energy, showing an effect of dynamic screening. When the consequence for the reaction-rate was computed, a rather surprising resulted, which is contrary to that from static screening theory. Our calculations showed that dynamic screening does not significantly change the reaction rate from that of the bare Coulomb potential. If this can be independently confirmed, then the effects of dynamic screening are highly relevant and should be included in stellar nuclear reaction rates (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Heat storage in Asian elephants during submaximal exercise: behavioral regulation of thermoregulatory constraints on activity in endothermic gigantotherms.

    Science.gov (United States)

    Rowe, M F; Bakken, G S; Ratliff, J J; Langman, V A

    2013-05-15

    Gigantic size presents both opportunities and challenges in thermoregulation. Allometric scaling relationships suggest that gigantic animals have difficulty dissipating metabolic heat. Large body size permits the maintenance of fairly constant core body temperatures in ectothermic animals by means of gigantothermy. Conversely, gigantothermy combined with endothermic metabolic rate and activity likely results in heat production rates that exceed heat loss rates. In tropical environments, it has been suggested that a substantial rate of heat storage might result in a potentially lethal rise in core body temperature in both elephants and endothermic dinosaurs. However, the behavioral choice of nocturnal activity might reduce heat storage. We sought to test the hypothesis that there is a functionally significant relationship between heat storage and locomotion in Asian elephants (Elephas maximus), and model the thermoregulatory constraints on activity in elephants and a similarly sized migratory dinosaur, Edmontosaurus. Pre- and post-exercise (N=37 trials) measurements of core body temperature and skin temperature, using thermography were made in two adult female Asian elephants at the Audubon Zoo in New Orleans, LA, USA. Over ambient air temperatures ranging from 8 to 34.5°C, when elephants exercised in full sun, ~56 to 100% of active metabolic heat production was stored in core body tissues. We estimate that during nocturnal activity, in the absence of solar radiation, between 5 and 64% of metabolic heat production would be stored in core tissues. Potentially lethal rates of heat storage in active elephants and Edmontosaurus could be behaviorally regulated by nocturnal activity.

  3. A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES

    International Nuclear Information System (INIS)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-01

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R ⊕ ) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters

  4. Assessment of Two-Phase Flow Heat Transfer Correlations for Molten Core-Concrete Interaction Study

    International Nuclear Information System (INIS)

    Tourniaire, B.; Varo, O.

    2006-01-01

    The prediction of heat transfer between corium pool and concrete basemat is of particular significance in the framework of the study of PWR's severe accident. Heat transfer directly governs the ablation velocity of concrete in case of molten core-concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. From a restricted hydrodynamic point of view, this issue is related to heat transfer between a heated bubbling pool and a porous wall with gas injection. Several experimental studies have been performed with simulant materials and many correlations have been provided to address this issue. The main purpose of this paper is to assess these correlations from comparisons against the available experimental data. After a review of these data, the different correlations are presented. Attention focuses here on the correlations generally used in MCCI study: Kutateladze-Malenkov, Konsetov and BALI correlations. The Deckwer's correlation is also included in this review. The comparisons between the results of these correlations and the experimental data are then discussed. (authors)

  5. Heating/ethanol-response of poly methyl methacrylate (PMMA) with gradient pre-deformation and potential temperature sensor and anti-counterfeit applications

    International Nuclear Information System (INIS)

    Lu, Haibao; Huang, Wei Min; Ge, Yu Chun; Zhang, Fan; Zhao, Yong; Wu, Xue Lian; Geng, Junfeng

    2014-01-01

    In this paper, the heating/ethanol-response of a commercial poly methyl methacrylate (PMMA) is investigated. All PMMA samples are pre-deformed by means of impression (surface compression with a mold) to introduce a gradient pre-strain/stress field. Two types of molds are applied in impression. One is a Singaporean coin and the other is a particularly designed mold with a variable protrusive feature on top. Two potential applications—temperature sensors to monitor overheating temperatures and anti-counterfeit labels with a water-mark that appears only upon heating to a particular temperature—are demonstrated. Since the heating-responsive shape memory effect (SME) is an intrinsic feature of almost all polymers, other conventional polymers may be used in such applications as well. (technical note)

  6. First Toroidal Rotation Measurements of Protons and Impurities in the TJ-II Stellarator; Primeras Medidas de Rotacion Toroidal de Protones e Impurezas en el Stellarator TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Rapisarda, D.; Zurro, B.; Baciero, A.

    2006-07-01

    First absolute toroidal rotation measurements in the TJ-II stellarator, by using passive emission spectroscopy, are presented. The wavelength calibration is performed by using a spectral system which combines the spectra coming from the plasma and from a lamp in real time. Measurements have been made both for protons and some impurity ions (C4+, He+), in discharges created by electron cyclotron resonance heating, and in discharges with neutral beam injection heating. In addition, a description of the systems as well as the calibration procedures an data analysis is addressed. (Author) 10 refs.

  7. sunstardb: A Database for the Study of Stellar Magnetism and the Solar-stellar Connection

    Science.gov (United States)

    Egeland, Ricky

    2018-05-01

    The “solar-stellar connection” began as a relatively small field of research focused on understanding the processes that generate magnetic fields in stars and sometimes lead to a cyclic pattern of long-term variability in activity, as demonstrated by our Sun. This area of study has recently become more broadly pertinent to questions of exoplanet habitability and exo-space weather, as well as stellar evolution. In contrast to other areas of stellar research, individual stars in the solar-stellar connection often have a distinct identity and character in the literature, due primarily to the rarity of the decades-long time-series that are necessary for studying stellar activity cycles. Furthermore, the underlying stellar dynamo is not well understood theoretically, and is thought to be sensitive to several stellar properties, e.g., luminosity, differential rotation, and the depth of the convection zone, which in turn are often parameterized by other more readily available properties. Relevant observations are scattered throughout the literature and existing stellar databases, and consolidating information for new studies is a tedious and laborious exercise. To accelerate research in this area I developed sunstardb, a relational database of stellar properties and magnetic activity proxy time-series keyed by individual named stars. The organization of the data eliminates the need for the problematic catalog cross-matching operations inherent when building an analysis data set from heterogeneous sources. In this article I describe the principles behind sunstardb, the data structures and programming interfaces, as well as use cases from solar-stellar connection research.

  8. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS

    International Nuclear Information System (INIS)

    Paxton, Bill; Cantiello, Matteo; Bildsten, Lars; Arras, Phil; Brown, Edward F.; Dotter, Aaron; Mankovich, Christopher; Montgomery, M. H.; Stello, Dennis; Timmes, F. X.; Townsend, Richard

    2013-01-01

    We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ☉ stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results

  9. Pressurized Hybrid Heat Pipe for Passive IN-Core Cooling System (PINCs) in Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-05-15

    The representative operating limit of the thermosyphon heat pipe is flooding limit that arises from the countercurrent flow of vapor and liquid. The effect of difference between wetted perimeter and heated perimeter on the flooding limit of the thermosyphons has not been studied; despite the effect of cross-sectional area of the vapor path on the heat transfer characteristics of thermosyphons have been studied. Additionally, the hybrid heat pipe must operate at the high temperature and high pressure environment because it will be inserted to the active core to remove the decay heat. However, the previously studied heat pipes operated below the atmospheric pressure. Therefore, the effect of the unique geometry for hybrid heat pipe and operating pressure on the heat transfer characteristics including the flooding limit of hybrid heat pipe was experimentally measured. Hybrid heat pipe as a new conceptual decay heat removal device was proposed. For the development of hybrid heat pipe operating at high temperature and high pressure conditions, the pressurized hybrid heat pipe was prepared and the thermal performances including operation limits of hybrid heat pipe were experimentally measured. Followings were obtained: (1) As operating pressure of the heat pipe increases, the evaporation heat transfer coefficient increases due to heat transfer with convective pool boiling mode. (2) Non-condensable gas charged in the test section for the pressurization lowered the condensation heat transfer by impeding the vapor flow to the condenser. (3) The deviations between experimentally measured flooding limits for hybrid heat pipes and the values from correlation for annular thermosyphon were observed.

  10. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  11. The dynamical fingerprint of core scouring in massive elliptical galaxies

    International Nuclear Information System (INIS)

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-01-01

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r b , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  12. Rates of chemical reaction and atmospheric heating during core debris expulsion from a pressurized vessel

    International Nuclear Information System (INIS)

    Powers, D.A.; Tarbell, W.W.; Brockman, J.E.; Pilch, M.

    1986-01-01

    Core debris may be expelled from a pressurized reactor vessel during a severe nuclear reactor accident. Experimental studies of core debris expulsion from pressurized vessels have established that the expelled material can be lofted into the atmosphere of the reactor containment as particulate 0.4 to 2 mm in diameter. These particles will vigorously react with steam and oxygen in the containment atmosphere. Data on such reactions during tests with 80 kg of expelled melt will be reported. A model of the reaction rates based on gas phase mass transport will be described and shown to account for atmospheric heating and aerosol generation observed in the tests

  13. Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spores with increased core water content and with or without major DNA-binding proteins

    International Nuclear Information System (INIS)

    Popham, D.L.; Sengupta, S.; Setlow, P.

    1995-01-01

    Spores of a Bacillus subtilis strain with an insertion mutation in the dacB gene, which codes for an enzyme involved in spore cortex biosynthesis, have a higher core water content than wild-type spores. Spores lacking the two major α/β-type small, acid-soluble proteins (SASP) (termed a α - β - spores) have the same core water content as do wild-type spores, but α - β - dacB spores had more core water than did dacB spores. The resistance of α - β - , α - β - dacB, dacB, and wild-type spores to dry and moist heat, hydrogen peroxide, and UV radiation has been determined, as has the role of DNA damage in spore killing by moist heat and hydrogen peroxide. These data (1) suggest that core water content has little if any role in spore UV resistance and are consistent with binding of α/β-type SASP to DNA being the major mechanism providing protection to spores from UV radiation; (2) suggest that binding of αβ-type SASP to DNA is the major mechanism unique to spores providing protection from dry heat; (3) suggest that spore resistance to moist heat and hydrogen peroxide is affected to a large degree by the core water content, as increased core water resulted in large decreases in spore resistance to these agents; and (4) indicate that since this decreased resistance (i.e., in dacB spores) is not associated with increased spore killing by DNA damage, spore DNA must normally be extremely well protected against such damage, presumably by the saturation of spore DNA by α/β-type SASP. 19 refs., 2 figs., 5 tabs

  14. Cas A and the Crab were not stellar binaries at death

    Science.gov (United States)

    Kochanek, C. S.

    2018-01-01

    The majority of massive stars are in binaries, which implies that many core collapse supernovae should be binaries at the time of the explosion. Here we show that the three most recent, local (visual) SNe (the Crab, Cas A and SN 1987A) were not stellar binaries at death, with limits on the initial mass ratios of q = M2/M1 ≲ 0.1. No quantitative limits have previously been set for Cas A and the Crab, while for SN 1987A we merely updated existing limits in view of new estimates of the dust content. The lack of stellar companions to these three ccSNe implies a 90 per cent confidence upper limit on the q ≳ 0.1 binary fraction at death of fb runaway stars.

  15. Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater

    International Nuclear Information System (INIS)

    Hamid, Mohammed O.A.; Zhang, Bo; Yang, Luopeng

    2014-01-01

    The big problems facing solar-assisted MED (multiple-effect distillation) desalination unit are the low efficiency and bulky heat exchangers, which worsen its systematic economic feasibility. In an attempt to develop heat transfer technologies with high energy efficiency, a mathematical study is established, and optimization analysis using FSP (field synergy principle) is proposed to support meaning of heat transfer enhancement of a pre-heater in a solar-assisted MED desalination unit. Numerical simulations are performed on fluid flow and heat transfer characteristics in a circular and elliptical tube bundle. The numerical results are analyzed using the concept of synergy angle and synergy number as an indication of synergy between velocity vector and temperature gradient fields. Heat transfer in elliptical tube bundle is enhanced significantly with increasing initial velocity of the feed seawater and field synergy number and decreasing of synergy angle. Under the same operating conditions of the two designs, the total average synergy angle is 78.97° and 66.31° in circular and elliptical tube bundle, respectively. Optimization of the pre-heater by FSP shows that in case of elliptical tube bundle design, the average synergy number and heat transfer rate are increased by 22.68% and 35.98% respectively. - Highlights: • FSP (field synergy principle) is used to investigate heat transfer enhancement. • Numerical simulations are performed in circular and elliptical tubes pre-heater. • Numerical results are analyzed using concept of synergy angle and synergy number. • Optimization of elliptical tube bundle by FSP has better performance

  16. GFR fuel and core pre-conceptual design studies

    International Nuclear Information System (INIS)

    Chauvin, N.; Ravenet, A.; Lorenzo, D.; Pelletier, M.; Escleine, J.M.; Munoz, I.; Bonnerot, J.M.; Malo, J.Y.; Garnier, J.C.; Bertrand, F.; Bosq, J.C.

    2007-01-01

    The revision of the GFR core design - plate type - has been undertaken since previous core presented at Global'05. The self-breeding searched for has been achieved with an optimized design ('12/06 E'). The higher core pressure drop was a matter of concern. First of all, the core coolability in natural circulation for pressurized conditions has been studied and preliminary plant transient calculations have been performed. The design and safety criteria are met but no more margin remains. The project is also addressing the feasibility and the design of the fuel S/A. The hexagonal shape together with the principle of closed S/A (wrapper tube) is kept. Ceramic plate type fuel element combines a high enough core power density (minimization of the Pu inventory) and plutonium and minor actinides recycling capabilities. Innovative for many aspects, the fuel element is central to the GFR feasibility. It is supported already by a significant R and D effort also applicable to a pin concept that is considered as the other fuel element of interest. This combination of fuel/core feasibility and performance analysis, safety dispositions and performances analysis will compose the 'GFR preliminary feasibility' which is a project milestone at the end of the year 2007. (authors)

  17. Stellar astrophysics

    International Nuclear Information System (INIS)

    1988-01-01

    Enhanced mass loss occurs at critical stages in the evolution of stars over a wide range of stellar mass. Observationally, these stages are difficult to identify because of their short duration and because the star is often obscured by dust which condenses in the ejecta. A study of a G-type star, of which only the outer envelope was directly visible, was undertaken by the South African Astronomical Observatory (SAAO). The star itself was obscured by dust clouds and its light was only feebly seen by reflection from some of these clouds. Other studies of the galaxy undertaken by the SAAO include observations of the following: the extreme carbon star IRAS 15194-5115; RV Tauri and T Tauri stars; pre-main sequence stars; the properties of circumstellar dust; rotational modulation and flares on RS CVn and BY Dra stars; heavy-element stars; hydrogen-deficient stars; the open cluster NGC6192; stars in Omega Centauri, and lunar occulations of stars. Simultaneous x-ray, radio and optical data of the flare star YZ CMi were also obtained. 1 fig

  18. Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions.

    Science.gov (United States)

    Kay, D; Taaffe, D R; Marino, F E

    1999-12-01

    The aim of this study was to establish the effect that pre-cooling the skin without a concomitant reduction in core temperature has on subsequent self-paced cycling performance under warm humid (31 degrees C and 60% relative humidity) conditions. Seven moderately trained males performed a 30 min self-paced cycling trial on two separate occasions. The conditions were counterbalanced as control or whole-body pre-cooling by water immersion so that resting skin temperature was reduced by approximately 5-6 degrees C. After pre-cooling, mean skin temperature was lower throughout exercise and rectal temperature was lower (P body sweat fell from 1.7+/-0.1 l x h(-1) to 1.2+/-0.1 l h(-1) (P < 0.05). The distance cycled increased from 14.9+/-0.8 to 15.8+/-0.7 km (P < 0.05) after pre-cooling. The results indicate that skin pre-cooling in the absence of a reduced rectal temperature is effective in reducing thermal strain and increasing the distance cycled in 30 min under warm humid conditions.

  19. W7-AS: One step of the Wendelstein stellarator linea)

    Science.gov (United States)

    Wagner, F.; Bäumel, S.; Baldzuhn, J.; Basse, N.; Brakel, R.; Burhenn, R.; Dinklage, A.; Dorst, D.; Ehmler, H.; Endler, M.; Erckmann, V.; Feng, Y.; Gadelmeier, F.; Geiger, J.; Giannone, L.; Grigull, P.; Hartfuss, H.-J.; Hartmann, D.; Hildebrandt, D.; Hirsch, M.; Holzhauer, E.; Igitkhanov, Y.; Jänicke, R.; Kick, M.; Kislyakov, A.; Kisslinger, J.; Klinger, T.; Klose, S.; Knauer, J. P.; König, R.; Kühner, G.; Laqua, H. P.; Maassberg, H.; McCormick, K.; Niedermeyer, H.; Nührenberg, C.; Pasch, E.; Ramasubramanian, N.; Ruhs, N.; Rust, N.; Sallander, E.; Sardei, F.; Schubert, M.; Speth, E.; Thomsen, H.; Volpe, F.; Weller, A.; Werner, A.; Wobig, H.; Würsching, E.; Zarnstorff, M.; Zoletnik, S.

    2005-07-01

    This paper is a summary of some of the major results from the Wendelstein 7-AS stellarator (W7-AS). W7-AS [G. Grieger et al., Phys. Fluids B 4, 2081 (1992)] has demonstrated the feasibility of modular coils and has pioneered the island divertor and the modeling of its three-dimensional characteristics with the EMC3/EIRENE code [Y. Feng, F. Sardei et al., Plasma Phys. Controlled Fusion 44, 611 (2002)]. It has extended the operational range to high density (4×1020m-3 at 2.5T) and high ⟨β⟩ (3.4% at 0.9T); it has demonstrated successfully the application of electron cyclotron resonance heating (ECRH) beyond cutoff via electron Bernstein wave heating, and it has utilized the toroidal variation of the magnetic field strength for ion cyclotron resonance frequency beach-wave heating. In preparation of W7-X [J. Nührenberg et al., Trans. Fusion Technol. 27, 71 (1995)], aspects of the optimization concept of the magnetic design have been successfully tested. W7-AS has accessed the H-mode, the first time in a "non-tokamak" and has extended H-mode operation toward high density by the discovery of the high-density H-mode (HDH), characterized by H-mode energy and L-mode-level impurity confinement. In the HDH-mode quasisteady state operation is possible close to operational limits without noticeable degradation in the plasma properties. High-β phases up to tpulse/τE=65 have been achieved, which can already be taken as an indication of the intrinsic stellarator capability of steady-state operation. Confinement issues will be discussed with emphasis on the similarities to tokamak confinement (general transport properties, H-mode transition physics) but also with respect to distinct differences (no confinement degradation toward operational boundaries, positive density scaling, lack of profile resilience, no distinct isotope effect, H-mode operational window). W7-AS turned out to be an important step in the development of the Wendelstein stellarator line towards an

  20. Effect of mass loss by stellar wind on the chemical enrichment of the galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Chiosi, C [Padua Univ. (Italy). Istituto di Astronomia

    1979-01-01

    The rate of production of heavy elements is rediscussed using the models of Arnett (1978) for late stage nucleosynthesis in massive stars, the M(M,) relationship of Chiosi et al. (1978b) for losing mass models in the core H and He-Burning phases, and the stellar birth rate of Miller and Scalo (1978). Contrary to that found by Wheeler et al (1978), we do not encounter the difficulty of heavy element overproduction. The explosive nucleosynthesis from massive stars is still compatible with the observed abundance distribution of the solar system, and a stellar birth rate decreasing over the history of the galactic disk.

  1. YOUNG STARLESS CORES EMBEDDED IN THE MAGNETICALLY DOMINATED PIPE NEBULA

    International Nuclear Information System (INIS)

    Frau, P.; Girart, J. M.; Alves, F. O.; Beltran, M. T.; Morata, O.; Masque, J. M.; Busquet, G.; Sanchez-Monge, A.; Estalella, R.; Franco, G. A. P.

    2010-01-01

    The Pipe Nebula is a massive, nearby dark molecular cloud with a low star formation efficiency which makes it a good laboratory in which to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary and appears to be threaded by a uniform magnetic field at scales of a few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster-forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30 m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace the densest regions better than previous Two Micron All Sky Survey (2MASS) extinction maps, while 2MASS extinction maps trace the diffuse gas better. The properties of the cores derived from dust emission show average radii of ∼0.09 pc, densities of ∼1.3x10 5 cm -3 , and core masses of ∼2.5 M sun . Our results confirm that the Pipe Nebula starless cores studied are in a very early evolutionary stage and present a very young chemistry with different properties that allow us to propose an evolutionary sequence. All of the cores present early-time molecular emission with CS detections in the whole sample. Two of them, cores 40 and 109, present strong late-time molecular emission. There seems to be a correlation between the chemical evolutionary stage of the cores and the local magnetic properties that suggests that the evolution of the cores is ruled by a local competition between the magnetic energy and other mechanisms, such as turbulence.

  2. Heat Storage Performance of the Prefabricated Hollow Core Concrete Deck Element with Integrated Microencapsulated Phase Change Material

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    The paper presents the numerically calculated dynamic heat storage capacity of the prefabricated hollow core concrete deck element with and without microencapsulated phase change material (PCM). The reference deck is the ordinary deck made of standard concrete material and that is broadly used...

  3. Optical Monitoring of Young Stellar Objects

    Science.gov (United States)

    Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.

    2018-06-01

    Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.

  4. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation - II

    Science.gov (United States)

    Banerjee, Sambaran

    2018-01-01

    The study of stellar-remnant black holes (BH) in dense stellar clusters is now in the spotlight, especially due to their intrinsic ability to form binary black holes (BBH) through dynamical encounters, which potentially coalesce via gravitational-wave (GW) radiation. In this work, which is a continuation from a recent study (Paper I), additional models of compact stellar clusters with initial masses ≲ 105 M⊙ and also those with small fractions of primordial binaries (≲ 10 per cent) are evolved for long term, applying the direct N-body approach, assuming state-of-the-art stellar-wind and remnant-formation prescriptions. That way, a substantially broader range of computed models than that in Paper I is achieved. As in Paper I, the general-relativistic BBH mergers continue to be mostly mediated by triples that are bound to the clusters rather than happen among the ejected BBHs. In fact, the number of such in situ BBH mergers, per cluster, tends to increase significantly with the introduction of a small population of primordial binaries. Despite the presence of massive primordial binaries, the merging BBHs, especially the in situ ones, are found to be exclusively dynamically assembled and hence would be spin-orbit misaligned. The BBHs typically traverse through both the LISA's and the LIGO's detection bands, being audible to both instruments. The 'dynamical heating' of the BHs keeps the electron-capture-supernova (ECS) neutron stars (NS) from effectively mass segregating and participating in exchange interactions; the dynamically active BHs would also exchange into any NS binary within ≲1 Gyr. Such young massive and open clusters have the potential to contribute to the dynamical BBH merger detection rate to a similar extent as their more massive globular-cluster counterparts.

  5. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions

  6. Contribution to the modelling of flows and heat transfers during the reflooding phase of a PWR core

    International Nuclear Information System (INIS)

    Colas, D.

    1984-01-01

    This thesis contributes to modelise thermohydraulic phenomena occuring in a pressurized water nuclear reactor core during the reflood phase of a LOCA. The reference accident and phenomena occuring during reflooding are described as well as flow regime and heat transfer proposed models. With these models, we developed a code to compute fluid conditions and fuel rods temperatures in a reactor core chanel. In order to test this code, results of computation are compared with experiments (FLECHT Skewed Tests) and a conclusion is drawn [fr

  7. The Effect of Using an Explicit General Problem Solving Teaching Approach on Elementary Pre-Service Teachers' Ability to Solve Heat Transfer Problems

    Science.gov (United States)

    Mataka, Lloyd M.; Cobern, William W.; Grunert, Megan L.; Mutambuki, Jacinta; Akom, George

    2014-01-01

    This study investigate the effectiveness of adding an "explicit general problem solving teaching strategy" (EGPS) to guided inquiry (GI) on pre-service elementary school teachers' ability to solve heat transfer problems. The pre-service elementary teachers in this study were enrolled in two sections of a chemistry course for pre-service…

  8. Heat content variability in the tropical Indian Ocean during second pre-INDOEX campaign (boreal winter 1996-1997)

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, E.P.R.; RameshBabu, V.; Rao, L.V.G.

    Surface meteorological data and upper ocean temperature profiles are obtained on-board ORV Sagar Kanya (cruise 120) during the second pre-INDOEX Campaign (December 1996-January 1997) for evaluating the north-south variability of surface heat fluxes...

  9. Stellar 'Incubators' Seen Cooking up Stars

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2Figure 3Figure 4Figure 5 This image composite compares visible-light and infrared views from NASA's Spitzer Space Telescope of the glowing Trifid Nebula, a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius. Visible-light images of the Trifid taken with NASA's Hubble Space Telescope, Baltimore, Md. (inside left, figure 1) and the National Optical Astronomy Observatory, Tucson, Ariz., (outside left, figure 1) show a murky cloud lined with dark trails of dust. Data of this same region from the Institute for Radioastronomy millimeter telescope in Spain revealed four dense knots, or cores, of dust (outlined by yellow circles), which are 'incubators' for embryonic stars. Astronomers thought these cores were not yet ripe for stars, until Spitzer spotted the warmth of rapidly growing massive embryos tucked inside. These embryos are indicated with arrows in the false-color Spitzer picture (right, figure 1), taken by the telescope's infrared array camera. The same embryos cannot be seen in the visible-light pictures (left, figure 1). Spitzer found clusters of embryos in two of the cores and only single embryos in the other two. This is one of the first times that multiple embryos have been observed in individual cores at this early stage of stellar development.

  10. Formation of core transport barrier and CH-Mode by ion Bernstein wave heating in PBX-M

    International Nuclear Information System (INIS)

    Ono, M.; Bell, R.; Bernabei, S.; Gettelfinger, G.; Hatcher, R.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Manickam, J.

    1995-01-01

    Observation of core transport barrier formation (for particles, ion and electron energies, and toroidal momentum) by ion Bernstein wave heating (IBWH) in PBX-M plasma is reported. The formation of a transport barrier leads to a strong peaking and significant increase of the core pressure (70%) and toroidal momentum (20%), and has been termed the core-high confinement mode (CH-Mode). This formation of a transport barrier is consistent, in terms of the expected barrier location as well as the required threshold power, with a theoretical model based on the poloidal sheared flow generation by the ion Bernstein wave power. The use of ion Bernstein wave (IBW) induced sheared flow as a tool to control plasma pressure and bootstrap current profiles shows a favorable scaling for the use in future reactor grade tokamak plasmas

  11. Bentonite buffer pre-test. Core drilling of drillholes ONK-PP264...267 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-12-01

    Suomen Malmi Oy (Smoy) core drilled four drillholes for bentonite buffer pre-test in ONKALO at Eurajoki, Olkiluoto in July 2010. The identification numbers of the holes are ONK-PP264..267, and the lengths of the drillholes are approximately 4.30 metres each. The drillholes are 75.7 mm by diameter. The drillholes were drilled in a niche at access tunnel chainage 1475. The hydraulic DE 130 drilling rig was used for the work. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. In addition to drilling, the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock type in the drillholes is pegmatitic granite. The average fracture frequency in the drill cores is 4.0 pcs / m and the average RQD value 94.2 %. (orig.)

  12. Experimental and numerical investigations of high temperature gas heat transfer and flow in a VHTR reactor core

    Science.gov (United States)

    Valentin Rodriguez, Francisco Ivan

    High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat

  13. Expanded calculation of weak-interaction-mediated neutrino cooling rates due to 56Ni in stellar matter

    International Nuclear Information System (INIS)

    Nabi, Jameel-Un

    2010-01-01

    An accurate estimate of the neutrino cooling rates is required in order to study the various stages of stellar evolution of massive stars. Neutrino losses from proto-neutron stars play a crucial role in deciding whether these stars would be crushed into black holes or explode as supernovae. Both pure leptonic and weak-interaction processes contribute to the neutrino energy losses in stellar matter. At low temperatures and densities, the characteristics of the early phase of presupernova evolution, cooling through neutrinos produced via the weak interaction, are important. Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has recently been used with success for the calculation of stellar weak-interaction rates of fp-shell nuclide. The lepton-to-baryon ratio (Y e ) during early phases of stellar evolution of massive stars changes substantially, mainly due to electron captures on 56 Ni. The stellar matter is transparent to the neutrinos produced during the presupernova evolution of massive stars. These neutrinos escape the site and assist the stellar core in maintaining a lower entropy. Here, an expanded calculation of weak-interaction-mediated neutrino and antineutrino cooling rates due to 56 Ni in stellar matter using the pn-QRPA theory is presented. This detailed scale is appropriate for interpolation purposes and is of greater utility for simulation codes. The calculated rates are compared with earlier calculations. During the relevant temperature and density regions of stellar matter the reported rates show few differences compared with the shell model rates and might contribute in fine-tuning of the lepton-to-baryon ratio during the presupernova phases of stellar evolution of massive stars.

  14. Supernova mass ejection and core hydrodynamics

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1978-01-01

    Simplifications that have emerged in the descriptions of stellar unstable collapse to a neutron star are discussed. The neutral current weak interaction leads to almost complete neutrino trapping in the collapse and to an electron fraction Y/sub e/ congruent to 0.35 in equilibrium with trapped electron neutrinos and ''iron'' nuclei. A soft equation of state (γ congruent to 1.30) leads to collapse, and bounce occurs on a hard core, γ = 2.5, at nuclear densities. Neutrino emission is predicted from a photosphere at r congruent to 2 x 10 7 cm and E/sub ν/ congruent to 10 MeV. The ejection of matter by an elastic core bounce and a subsequent escaping shock is marginal and may not be predicted for accurate values of the equation of state. A new concept of Rayleigh-Taylor driven core instabilities is invoked to predict an increased mass ejection either due to an increased flux and energy of neutrinos at second bounce time and, or, the rapid 0.1 to 0.4 second formation of a more energetically bound neutron star. The instability is caused by highly neutronized external matter from which neutrinos have escaped being supported by lighter matter of the lepton trapped core. An initial anisotropy of 10 -2 to 10 -3 should lead to adequately rapid (several milliseconds) overturn following several (2 to 4) bounces. Subsequent to the overturnwith or without a strong ejection shock, a weak ejection shock will allow an accretion shock to form on the ''cold'' neutron star core due to the reimplosion or rarefaction wave in the weakly ejected matter. The accretion shock forms at low enough mass accumulation rate, 1 / 2 M/sub solar/ sec -1 , such that a black body neutrino flux can escape from the shock front (kT congruent to 10 MeV, [E/sub ν/] congruent to 30 MeV). This strongly augments the weaker bounce ejection shock by heating the external matter in the mantle by electron neutrino scattering (congruent to 10 52 ergs) causing adequate mass ejection

  15. Backscattering of gyrotron radiation and short-wavelength turbulence during electron cyclotron resonance plasma heating in the L-2M stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Batanov, G. M.; Borzosekov, V. D., E-mail: tinborz@gmail.com; Kovrizhnykh, L. M.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-06-15

    Backscattering of gyrotron radiation ({theta} = {pi}) by short-wavelength density fluctuations (k{sub Up-Tack} = 30 cm{sup -1}) in the plasma of the L-2M stellarator was studied under conditions of electron cyclotron resonance (ECR) plasma heating at the second harmonic of the electron gyrofrequency (75 GHz). The scattering of the O-wave emerging due to the splitting of the linearly polarized gyrotron radiation into the X- and O-waves was analyzed. The signal obtained after homodyne detection of scattered radiation is a result of interference of the reference signal, the quasi-steady component, and the fast oscillating component. The coefficients of reflection of the quasi-steady component, R{sub =}{sup 2}(Y), and fast oscillating component, R{sub {approx}}{sup 2}(Y), of scattered radiation are estimated. The growth of the R{sub {approx}}{sup 2}(Y) coefficient from 3.7 Multiplication-Sign 10{sup -4} to 5.2 Multiplication-Sign 10{sup -4} with increasing ECR heating power from 190 to 430 kW is found to correlate with the decrease in the energy lifetime from 1.9 to 1.46 ms. The relative density of short-wavelength fluctuations is estimated to be Left-Pointing-Angle-Bracket n{sub {approx}}{sup 2} Right-Pointing-Angle-Bracket / Left-Pointing-Angle-Bracket n{sub e}{sup 2} Right-Pointing-Angle-Bracket = 3 Multiplication-Sign 10{sup -7}. It is shown that the frequencies of short-wavelength fluctuations are in the range 10-150 kHz. The recorded short-wavelength fluctuations can be interpreted as structural turbulence, the energy of which comprises {approx}10% of the total fluctuations energy. Simulations of transport processes show that neoclassical heat fluxes are much smaller than anomalous ones. It is suggested that short-wavelength turbulence plays a decisive role in the anomalous heat transport.

  16. Color superconductivity in compact stellar hybrid configurations

    Science.gov (United States)

    Ranea-Sandoval, Ignacio F.; Orsaria, Milva G.; Han, Sophia; Weber, Fridolin; Spinella, William M.

    2017-12-01

    The discovery of pulsars PSR J1614-2230 and PSR J0348+0432 with masses of around 2 M⊙ imposes strong constraints on the equations of state of cold, ultradense matter. If a phase transition from hadronic matter to quark matter were to occur in the inner cores of such massive neutron stars, the energetically favorable state of quark matter would be a color superconductor. In this study, we analyze the stability and maximum mass of such neutron stars. The hadronic phase is described by nonlinear relativistic mean-field models, and the local Nambu-Jona Lasinio model is used to describe quark matter in the 2SC+s quark phase. The phase transition is treated as a Maxwell transition, assuming a sharp hadron-quark interface, and the "constant-sound-speed" (CSS) parametrization is employed to discuss the existence of stellar twin configurations. We find that massive neutron stars such as J1614-2230 and J0348+0432 can only exist on the connected stellar branch but not on the disconnected twin-star branch. The latter can only support stars with masses that are strictly below 2 M⊙ .

  17. BOOK REVIEW: Stellarator and Heliotron Devices

    Science.gov (United States)

    Johnson, John L.

    1999-02-01

    Pfirsch-Schlüter current driven magnetic islands and the interpretation of sawtooth instabilities in Heliotron E. The treatment of particle orbits in Chapter 6 includes a derivation of drift equations, a discussion of the characteristics of trapped particle confinement in a heliotron and one of the Monte Carlo method for studying transport phenomena. A good treatment of neoclassical transport in a stellarator, with emphasis on the relation between parallel viscosity driven fluxes and bootstrap current, is given in Chapter 7. This is the best treatment I have found, outside of the original references, but it is still demanding. In addition, a radial electric field is introduced into the energy transport equations. The treatment of heating and confinement of heliotron plasmas in Chapter 8 is a good combination of providing results from experiments on the Heliotron E and DR heliotrons and the ATF and CHS stellarators and showing how theoretical interpretation is formulated. The discussions of ray tracing and energy absorption for both ECRH and ICRF heating techniques, as well as a treatment of neutral beam injection, are very clear. Measurements of bootstrap current and plasma rotation, as well as the density limits associated with pellet injection, are discussed. The chapter ends with a discussion of what may be the author's favourite topic, pressure gradient driven turbulence, in which he describes mixing length and scale invariance techniques. Finally, a discussion of the characteristics of a steady state fusion reactor, including a treatment of the containment, slowing down and energy transfer of the alpha particles, one of the toroidal Alfvén modes driven by these particles and some physics of divertors are given in Chapter 9. A reviewer is usually expected to find some faults. I had no problem in finding one as soon as I received the book: indeed, I did not like its title. I have always maintained that Lyman Spitzer defined a stellarator as any toroidal device in

  18. A Simplified Method for Stationary Heat Transfer of a Hollow Core Concrete Slab Used for TABS

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per Kvols; Lei, Bo

    2014-01-01

    Thermally activated building systems (TABS) have been an energy efficient way to improve the indoor thermal comfort. Due to the complicated structure, heat transfer prediction for a hollow core concrete used for TABS is difficult. This paper proposes a simplified method using equivalent thermal...... resistance for the stationary heat transfer of this kind of system. Numerical simulations are carried out to validate this method, and this method shows very small deviations from the numerical simulations. Meanwhile, this method is used to investigate the influence of the thickness of insulation on the heat...... transfer. The insulation with a thickness of more than 0.06 m can keep over 95 % of the heat transferred from the lower surface, which is beneficial to the radiant ceiling cooling. Finally, this method is extended to involve the effect of the pipe, and the numerical comparison results show that this method...

  19. Short Duration Heat Acclimation in Australian Football Players.

    Science.gov (United States)

    Kelly, Monica; Gastin, Paul B; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J

    2016-03-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg(-1)·min(-1)) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac(-)]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac(-)] (all p competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key pointsSome minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat.The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season.Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat training session or some pre-heating prior to exercise.

  20. Heat capacity of the neutron star inner crust within an extended nuclear statistical equilibrium model

    Science.gov (United States)

    Burrello, S.; Gulminelli, F.; Aymard, F.; Colonna, M.; Raduta, Ad. R.

    2015-11-01

    Background: Superfluidity in the crust is a key ingredient for the cooling properties of proto-neutron stars. Present theoretical calculations employ the quasiparticle mean-field Hartree-Fock-Bogoliubov theory with temperature-dependent occupation numbers for the quasiparticle states. Purpose: Finite temperature stellar matter is characterized by a whole distribution of different nuclear species. We want to assess the importance of this distribution on the calculation of heat capacity in the inner crust. Method: Following a recent work, the Wigner-Seitz cell is mapped into a model with cluster degrees of freedom. The finite temperature distribution is then given by a statistical collection of Wigner-Seitz cells. We additionally introduce pairing correlations in the local density BCS approximation both in the homogeneous unbound neutron component, and in the interface region between clusters and neutrons. Results: The heat capacity is calculated in the different baryonic density conditions corresponding to the inner crust, and in a temperature range varying from 100 KeV to 2 MeV. We show that accounting for the cluster distribution has a small effect at intermediate densities, but it considerably affects the heat capacity both close to the outer crust and close to the core. We additionally show that it is very important to consider the temperature evolution of the proton fraction for a quantitatively reliable estimation of the heat capacity. Conclusions: We present the first modelization of stellar matter containing at the same time a statistical distribution of clusters at finite temperature, and pairing correlations in the unbound neutron component. The effect of the nuclear distribution on the superfluid properties can be easily added in future calculations of the neutron star cooling curves. A strong influence of resonance population on the heat capacity at high temperature is observed, which deserves to be further studied within more microscopic calculations.

  1. Overview on W7-AS results with relevance for Wendelstein 7-X and the low-shear stellarator line

    International Nuclear Information System (INIS)

    Wagner, F.; Anton, M.; Baldzuhn, J.

    1999-01-01

    The Wendelstein stellarator programme of Garching has developed low shear stellarators with successively optimised designs to remove the intrinsic deficiencies of this 3D concept. W7-X, presently under construction, is in internal terminology a fully optimised stellarator. W7-AS, the presently operated device, is a partly optimised stellarator. The optimisation of stellarators aims at improved neoclassical confinement in the long mean free path regime and improved equilibrium and stability properties. In this report, we address equilibrium, stability, turbulent and collisional energy confinement aspects (role of magnetic shear, role of the radial electric field, low and improved confinement regimes), particle transport, transport and turbulence at the plasma edge, high density operation, ECRH (OXB scheme) and ICRF heating and the development of the island divertor for exhaust. The maximal parameters achieved in W7-AS (at different discharge types) are: T e = 5.8 keV, T i = 1.5 keV, n e = 3 x 10 20 m -3 , = 2%, τ E = 50 ms. (author)

  2. Overview on W7-AS results with relevance for WENDELSTEIN 7-X and the low-shear stellarator line

    International Nuclear Information System (INIS)

    Wagner, F.; Anton, M.; Baldzuhn, J.

    2001-01-01

    The Wendelstein stellarator programme of Garching has developed low shear stellarators with successively optimised designs to remove the intrinsic deficiencies of this 3D concept. W7-X, presently under construction, is in internal terminology a fully optimised stellarator. W7-AS, the presently operated device, is a partly optimised stellarator. The optimisation of stellarators aims at improved neoclassical confinement in the long mean free path regime and improved equilibrium and stability properties. In this report, we address equilibrium, stability, turbulent and collisional energy confinement aspects (role of magnetic shear, role of the radial electric field, low and improved confinement regimes), particle transport, transport and turbulence at the plasma edge, high density operation, ECRH (OXB scheme) and ICRF heating and the development of the island divertor for exhaust. The maximal parameters achieved in W7-AS (at different discharge types) are: T e = 5.8 keV, T i = 1.5 keV, n e = 3x10 20 m -3 , = 2%, τ E = 50 ms. (author)

  3. Models for stellar flares

    International Nuclear Information System (INIS)

    Cram, L.E.; Woods, D.T.

    1982-01-01

    We study the response of certain spectral signatures of stellar flares (such as Balmer line profiles and the broad-band continuum) to changes in atmospheric structure which might result from physical processes akin to those thought to occur in solar flares. While each physical process does not have a unique signature, we can show that some of the observed properties of stellar flares can be explained by a model which involves increased pressures and temperatures in the flaring stellar chromosphere. We suggest that changes in stellar flare area, both with time and with depth in the atmosphere, may play an important role in producing the observed flare spectrum

  4. Connecting pre-marketing clinical research and medical practice : opinion-based study of core issues and possible changes in drug regulation

    NARCIS (Netherlands)

    Wieringa, N.F; Peschar, J.L.; Denig, P; de Graeff, P.A.; Vos, R

    2003-01-01

    Objectives: To identify core issues that contribute to the gap between pre-marketing clinical research and practice as seen from the perspective of medical practice, as well as possible changes and potential barriers for closing this gap. Methods: Interviews with 47 physicians and pharmacists who

  5. Results from X-ray measurements on the Wendelstein W7-AS stellarator

    International Nuclear Information System (INIS)

    Weller, A.; Brakel, R.; Burhenn, R.; Hacker, H.; Lazaros, A.

    1991-01-01

    X-ray imaging measurements have contributed to studies of the plasma equilibrium, plasma fluctuations, impurity radiation and impurity transport effects in the advanced stellarator Wendelstein W7-AS (R = 2 m, a = 17 cm). In addition, time resolved electron temperature profiles are deduced from X-ray intensity ratios according to the two absorber foil method. The plasma is generated and heated by fundamental and 2nd harmonic ECRH (P ≤ 800 kW at 70 GHz). Neutral beam injection heating (P ≤ 1.5 MW) was applied also, assisted by D 2 pellet injection. (orig.)

  6. Numerical study of the connection lengths for various magnetic configurations in Wendelstein 7-X to optimize the heat load on the divertor

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Priyanjana; Hoelbe, Hauke; Sunn Pedersen, Thomas [Max Planck Institute of Plasma Physics, Greifswald (Germany)

    2016-07-01

    Fusion has the potential to play an important role as a future energy resource. It has the capacity to produce large-scale clean energy. The two main confinement concepts are the tokamak and the stellarator. The W7-X machine is based on stellarator principle and is using special form of coils to achieve steady-state plasma confinement. Divertors are used in tokamaks and stellarator to control the exhaust of waste gases and impurities from the machine. The divertor concept of W7-X is a so-called island divertor. The island chain isolates the confinement core from regions where the plasma-wall interaction takes place. The area of the divertor that receives the main part of the heat loads, the so-called wetted area, increases with the distance along the magnetic field from the outboard midplane to the divertor target. The connection length is relatively short in tokamaks with conventional divertors. In the stellarator island divertor, the connection length can be varied significantly, which should allow for optimization of the wetted area. We present here a numerical study of the achievable connection lengths in various W7-X configurations and discuss the possibilities for running dedicated experiments to understand the physics of what sets the wetted area.

  7. ULTRAVIOLET-BRIGHT STELLAR POPULATIONS AND THEIR EVOLUTIONARY IMPLICATIONS IN THE COLLAPSED-CORE CLUSTER M15

    International Nuclear Information System (INIS)

    Haurberg, Nathalie C.; Lubell, Gabriel M. G.; Cohn, Haldan N.; Lugger, Phyllis M.; Anderson, Jay; Cool, Adrienne M.; Serenelli, Aldo M.

    2010-01-01

    We performed deep photometry of the central region of the Galactic globular cluster M15 from archival Hubble Space Telescope data taken on the High Resolution Channel and Solar Blind Channel of the Advanced Camera for Surveys. Our data set consists of images in far-UV (FUV 140 ; F140LP), near-UV (NUV 220 ; F220W), and blue (B 435 ; F435W) filters. The addition of an optical filter complements previous UV work on M15 by providing an additional constraint on the UV-bright stellar populations. Using color-magnitude diagrams (CMDs), we identified several populations that arise from non-canonical evolution including candidate blue stragglers, extreme horizontal branch (HB) stars, blue hook (BHk) stars, cataclysmic variables (CVs), and helium-core white dwarfs (He WDs). Due to preliminary identification of several He WD and BHk candidates, we add M15 as a cluster containing an He WD sequence and suggest it be included among clusters with a BHk population. We also investigated a subset of CV candidates that appear in the gap between the main sequence (MS) and WDs in FUV 140 -NUV 220 but lie securely on the MS in NUV 220 -B 435 . These stars may represent a magnetic CV or detached WD-MS binary population. Additionally, we analyze our candidate He WDs using model cooling sequences to estimate their masses and ages and investigate the plausibility of thin versus thick hydrogen envelopes. Finally, we identify a class of UV-bright stars that lie between the HB and WD cooling sequences, a location not usually populated on cluster CMDs. We conclude these stars may be young, low-mass He WDs.

  8. Influence of an energetic-particle component on ballooning modes in an optimized stellarator

    International Nuclear Information System (INIS)

    Nuehrenberg, J.; Zheng, L.J.

    1993-01-01

    Besides quasi-helically symmetric configurations, which have particle drift properties analogous to tokamaks, a second interesting route for stellarator investigations is the choice of the optimized stellarator configuration, which has been adopted for the W7-X stellarator project. Of the many remarkably good properties of the optimized stellarator, two are mentioned here: One is the low geodesic curvature, which leads to a small Pfirsch-Schlueter current and fosters the MHD stability together with a vacuum field magnetic well; the other is that trapped energetic particles are well confined being reflected around the triangular cross section with maximum J - the second invariant. Maximum J configuration could be favorable for the stabilization of the low-frequency thermal-trapped-particle modes. On the other hand, for the energetic particles this means drift-reversal prevailing, and therefore the kinetic energy of the trapped energetic particles is destabilizing. Furthermore, when trapped energetic particles are drift-reversed, two β limits emerge: One is due to the ballooning modes, which relates to the Van Dam-Lee-Nelson limit for EBT; the other is due to the interchange modes. Nevertheless, these two theories predict that - when the core plasma β is high enough - stability may resume. The purpose of this work is to determine whether one of these two limits - the Van Dam-Lee-Nelson limit for ballooning modes - harms the optimized stellarator or not. (author) 12 refs., 1 fig

  9. Stellar structure and evolution

    International Nuclear Information System (INIS)

    Kippernhahn, R.; Weigert, A.

    1990-01-01

    This book introduces the theory of the internal structure of stars and their evolution in time. It presents the basic physics of stellar interiors, methods for solving the underlying equations, and the most important results necessary for understanding the wide variety of stellar types and phenomena. The evolution of stars is discussed from their birth through normal evolution to possibly spectacular final stages. Chapters on stellar oscillations and rotation are included

  10. Modeling of heat and mass transfer processes during core melt discharge from a reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R. [Royal Institute of Technology, Stockholm (Sweden)] [and others

    1995-09-01

    The objective of the paper is to study heat and mass transfer processes related to core melt discharge from a reactor vessel is a severe light water reactor accident. The phenomenology of the issue includes (1) melt convection in and heat transfer from the melt pool in contact with the vessel lower head wall; (2) fluid dynamics and heat transfer of the melt flow in the growing discharge hole; and (3) multi-dimensional heat conduction in the ablating lower head wall. A program of model development, validation and application is underway (i) to analyse the dominant physical mechanisms determining characteristics of the lower head ablation process; (ii) to develop and validate efficient analytic/computational methods for estimating heat and mass transfer under phase-change conditions in irregular moving-boundary domains; and (iii) to investigate numerically the melt discharge phenomena in a reactor-scale situation, and, in particular, the sensitivity of the melt discharge transient to structural differences and various in-vessel melt progression scenarios. The paper presents recent results of the analysis and model development work supporting the simulant melt-structure interaction experiments.

  11. The effect of mass loss by stellar wind on the chemical enrichment of the galaxy

    International Nuclear Information System (INIS)

    Chiosi, C.

    1979-01-01

    The rate of production of heavy elements is rediscussed using the models of Arnett (1978) for late stage nucleosynthesis in massive stars, the M(M,) relationship of Chiosi et al. (1978b) for losing mass models in the core H and He-Burning phases, and the stellar birth rate of Miller and Scalo (1978). Contrary to that found by Wheeler et al (1978), we do not encounter the difficulty of heavy element overproduction. The explosive nucleosynthesis from massive stars is still compatible with the observed abundance distribution of the solar system, and a stellar birth rate decreasing over the history of the galactic disk. (orig.)

  12. Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    Science.gov (United States)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Forbes, Duncan; Hargis, Jonathan R.; Peter, Annika; Pucha, Ragadeepika; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2018-06-01

    We discuss our ongoing observational program to comprehensively map the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. Our results will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. This program has already yielded the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB, and at least two additional candidate satellites. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  13. A Study of THT Cold Cores Population in the Star-Forming Region in Serpens

    Science.gov (United States)

    Fiorellino, Eleonora

    2017-11-01

    The purpose of this work is to produce the Core Mass Function (CMF) of the Serpens star-forming region and confront it with the Initial Mass Function (IMF), the statistical distribution of initial star mass. As Testi & Sergent (1998) discovered, the power-law index of the slope of the CMF is very close to the one of the Salpeter's IMF (Salpeter, 1955): dN/dM / M2.35. This strongly suggests that the stellar IMF results from the fragmentation process in turbulent cloud cores rather than from stellar accretion mechanisms and gives a huge contribute to undestanding the star formation. For this work, we started from the data delivered by the European satellite Herschel and produced the maps of the Serpens with Unimap code (Piazzo et al, 2015). Hence we obtained a core catalogue with two different softwares getsources (Men'shchikov et al, 2012) and CuTEx (Molinari et al, 2011) and we eliminated from it any source that is not a core. A full discussion of the cores physical propreties as well as the whole region is under preparation.

  14. Natural convection heat transfer in SIGMA experiment

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Gang Hee; Suh, Kune Yull

    2004-01-01

    A loss-of-coolant accident (LOCA) results in core melt formation and relocation at various locations within the reactor core over a considerable period of time. If there is no effective cooling mechanism, the core debris may heat up and commence natural circulation. The high temperature pool of molten core material will threaten the structural integrity of the reactor vessel. The extent and urgency of this threat depend primarily upon the intensity of the internal heat sources and upon the consequent distribution of the heat fluxes on the vessel walls in contact with the molten core material pools. In such a steady molten pool convection state, the thermal loads against the vessel would be determined by the in-vessel heat transfer distribution involving convective and conductive heat transfer from the decay-heated core material pool to the lower head wall in contact with the core material. In this study, upward and downward heat transfer fraction ratio is focused on

  15. Stellar kinematics and structural properties of virgo cluster dwarf early-type galaxies from the SMAKCED project. I. Kinematically decoupled cores and implications for infallen groups in clusters

    Energy Technology Data Exchange (ETDEWEB)

    Toloba, E.; Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Van de Ven, G. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Boissier, S.; Boselli, A. [Laboratoire d' Astrophysique de Marseille-LAM, Université d' Aix-Marseille and CNRS, UMR 7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Den Brok, M. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Falcón-Barroso, J.; Ryś, A. [Instituto de Astrofísica de Canarias, Vía Láctea s/n, La Laguna, Tenerife (Spain); Hensler, G. [Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna (Austria); Janz, J.; Lisker, T. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Laurikainen, E.; Salo, H. [Division of Astronomy, Department of Physics, University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland); Paudel, S. [Laboratoire AIM Paris-Saclay, CNRS/INSU, Université Paris Diderot, CEA/IRFU/SAp, F-91191 Gif-sur-Yvette Cedex (France); Peletier, R. F., E-mail: toloba@ucolick.org [Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen (Netherlands)

    2014-03-10

    We present evidence for kinematically decoupled cores (KDCs) in two dwarf early-type (dE) galaxies in the Virgo cluster, VCC 1183 and VCC 1453, studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. These KDCs have radii of 1.''8 (0.14 kpc) and 4.''2 (0.33 kpc), respectively. Each of these KDCs is distinct from the main body of its host galaxy in two ways: (1) inverted sense of rotation and (2) younger (and possibly more metal-rich) stellar population. The observed stellar population differences are probably associated with the KDC, although we cannot rule out the possibility of intrinsic radial gradients in the host galaxy. We describe a statistical analysis method to detect, quantify the significance of, and characterize KDCs in long-slit rotation curve data. We apply this method to the two dE galaxies presented in this paper and to five other dEs for which KDCs have been reported in the literature. Among these seven dEs, there are four significant KDC detections, two marginal KDC detections, and one dE with an unusual central kinematic anomaly that may be an asymmetric KDC. The frequency of occurrence of KDCs and their properties provide important constraints on the formation history of their host galaxies. We discuss different formation scenarios for these KDCs in cluster environments and find that dwarf-dwarf wet mergers or gas accretion can explain the properties of these KDCs. Both of these mechanisms require that the progenitor had a close companion with a low relative velocity. This suggests that KDCs were formed in galaxy pairs residing in a poor group environment or in isolation whose subsequent infall into the cluster quenched star formation.

  16. On the universal stellar law

    Science.gov (United States)

    Krot, Alexander

    In this work, we consider a statistical theory of gravitating spheroidal bodies to derive and develop the universal stellar law for extrasolar systems. Previously, the statistical theory for a cosmogonic body forming (so-called spheroidal body)has been proposed [1-3]. This theory starts from the conception for forming a spheroidal body inside a gas-dust protoplanetary nebula; it permits us to derive the form of distribution functions, mass density, gravitational potentials and strengths both for immovable and rotating spheroidal bodies as well as to find the distribution function of specific angular momentum[1-3]. If we start from the conception for forming a spheroidal body as a protostar (in particular, proto-Sun) inside a prestellar (presolar) nebula then the derived distribution functions of particle (as well as the mass density of an immovable spheroidal body) characterizes the first stage of evolution: from a prestellar molecular cloud (the presolar nebula) to the forming core of protostar (the proto-Sun) together with its shell as a stellar nebula (the solar nebula). This work derives the equation of state of an ideal stellar substance based on conception of gravitating spheroidal body. Using this equation, we obtain the universal stellar law (USL) for the planetary systems connecting temperature, size and mass of each of stars. This work also considers the Solar corona in the connection with USL. Then it is accounting under calculation of the ratio of temperature of the Solar corona to effective temperature of the Sun’ surfaceand modification of USL. To test justice of the modified USLfor different types of stars, the temperature of stellar corona is estimated. The prediction of parameters of stars is carrying out by means of the modified USL,as well as the Hertzsprung-Russell’s dependence [5-7]is derivedby means of USL directly. This paper also shows that knowledge of some characteristics for multi-planet extrasolar systems refines own parameters of

  17. Double-helix stellarator

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A ∼ 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-β MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications

  18. Adiabatic invariants in stellar dynamics. 2: Gravitational shocking

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    A new theory of gravitational shocking based on time-dependent perturbation theory shows that the changes in energy and angular momentum due to a slowly varying disturbance are not exponentially small for stellar dynamical systems in general. It predicts significant shock heating by slowly varying perturbations previously thought to be negligible according to the adiabatic criterion. The theory extends the scenarios traditionally computed only with the impulse approximation and is applicable to a wide class of disturbances. The approach is applied specifically to the problem of disk shocking of star clusters.

  19. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes

    NARCIS (Netherlands)

    Beck, P.G.; Montalban, J.; Kallinger, T.; De Ridder, J.; Aerts, C.; García, R.A.; Hekker, S.; Dupret, M.-A.; Mosser, B.; Eggenberger, P.; Stello, D.; Elsworth, Y.; Frandsen, S.; Carrier, F.; Hillen, M.; Gruberbauer, M.; Christensen-Dalsgaard, J.; Miglio, A.; Valentini, M.; Bedding, T.R.; Kjeldsen, H.; Girouard, F.R.; Hall, J.R.; Ibrahim, K.A.

    2012-01-01

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars

  20. Energetic Ion Loss Diagnostic for the Wendelstein 7-AS Stellarator

    International Nuclear Information System (INIS)

    Darrow, D. S.; Werner, A.; Weller, A.

    2000-01-01

    A diagnostic to measure the loss of energetic ions from the Wendelstein 7-AS (W7-AS) stellarator has been built. It is capable of measuring losses of both neutral beam ions and energetic ions arising from ion cyclotron resonant heating. The probe can measure losses of both clockwise and counterclockwise-going energetic ions simultaneously, and accepts a wide range of pitch angles in both directions. Initial measurements by the diagnostic are reported

  1. Learners’ perspective: where and when pre-residency trainees learn more to achieve their core clinical competencies

    Directory of Open Access Journals (Sweden)

    Eusang Ahn

    2016-12-01

    Full Text Available Purpose While it is known that effective clinical education requires active involvement of its participants, regular feedback, communication skills and interprofessional training, limited studies have been conducted in Korea that demonstrate how pre-residency trainees acquire their core clinical skills. This is a cross-sectional study of interns and students across a third-tier university hospital in Korea to examine where and when they acquire core clinical skills. Methods A total of 74 students and 91 interns were asked to participate in a closed-ended questionnaire, and 50 participants (20 students and 30 interns were involved in semistructured individual interviews. The questionnaire was based on the Accreditation Council for Graduate Medical Education core competencies. Results The majority of core clinical skills were acquired during their rotations in emergency medicine, general surgery, and cardiothoracic surgery. The semistructured interviews revealed that these departments required their trainees to be highly involved and analytical, and participate in clinical discourse. Conclusion The common factor among the three departments is an environment in which trainees are highly involved in clinical duties, and are expected to make first-contact patient encounters, participate in clinical discourse, interpret investigative results and arrive at their own conclusions. Work-based learning appear to be key to the trends observed, and further study is warranted to determine whether these findings are indicative of true acquisition of clinical competence.

  2. Learners' perspective: where and when pre-residency trainees learn more to achieve their core clinical competencies.

    Science.gov (United States)

    Ahn, Eusang; Ahn, Ducksun; Lee, Young-Mee

    2016-12-01

    While it is known that effective clinical education requires active involvement of its participants, regular feedback, communication skills and interprofessional training, limited studies have been conducted in Korea that demonstrate how pre-residency trainees acquire their core clinical skills. This is a cross-sectional study of interns and students across a third-tier university hospital in Korea to examine where and when they acquire core clinical skills. A total of 74 students and 91 interns were asked to participate in a closed-ended questionnaire, and 50 participants (20 students and 30 interns) were involved in semistructured individual interviews. The questionnaire was based on the Accreditation Council for Graduate Medical Education core competencies. The majority of core clinical skills were acquired during their rotations in emergency medicine, general surgery, and cardiothoracic surgery. The semistructured interviews revealed that these departments required their trainees to be highly involved and analytical, and participate in clinical discourse. The common factor among the three departments is an environment in which trainees are highly involved in clinical duties, and are expected to make first-contact patient encounters, participate in clinical discourse, interpret investigative results and arrive at their own conclusions. Work-based learning appear to be key to the trends observed, and further study is warranted to determine whether these findings are indicative of true acquisition of clinical competence.

  3. THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW

    International Nuclear Information System (INIS)

    Kun, M.; Moór, A.; Wolf-Chase, G.; Apai, D.; Balog, Z.; O’Linger-Luscusk, J.; Moriarty-Schieven, G. H.

    2016-01-01

    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27 flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.

  4. THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW

    Energy Technology Data Exchange (ETDEWEB)

    Kun, M.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege út 15-17 (Hungary); Wolf-Chase, G. [Astronomy Department, Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States); Apai, D. [Steward Observatory, 933 N. Cherry Avenue, Tucson, AZ 85719 (United States); Balog, Z. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); O’Linger-Luscusk, J. [On leave from California Institute of Technology, 1200 E. California Avenue, Pasadena, CA 91125 (United States); Moriarty-Schieven, G. H., E-mail: kun@konkoly.hu [National Research Council—Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2016-06-01

    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27 flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.

  5. The Magellanic Analog Dwarf Companions and Stellar Halos (MADCASH) Survey: Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    Science.gov (United States)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Peter, Annika; Price, Paul A.; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2017-01-01

    We discuss the first results of our observational program to comprehensively map nearly the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. These will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. We will detail our discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  6. Recent results of studies of plasma fluctuations in stellarators by microwave scattering technique

    International Nuclear Information System (INIS)

    Skvortsova, N.N.; Batanov, G.M.; Kolik, L.V.; Petrov, A.E.; Pshenichnikov, A.A.; Sarksyan, K.A.; Kharchev, N.K.; Khol'nov, Yu.V.; Kubo, S.; Sanchez, J.

    2005-01-01

    Microwave scattering diagnostics are described that allow direct measurements of the turbulent processes in a high-temperature plasma of magnetic confinement systems. Plasma density fluctuations in the heating region of the L-2M stellarator were measured from microwave scattering at the fundamental and the second harmonics of the heating gyrotron radiation. In the TJ-II stellarator, a separate 2-mm microwave source was used to produce a probing beam; the measurements were performed at the middle of the plasma radius. Plasma density fluctuations in the axial (heating) region of the LHD stellarator were measured from microwave scattering at the fundamental harmonic of the heating gyrotron radiation. Characteristic features of fluctuations, common for all three devices, are revealed with the methods of statistical and spectral analysis. These features are the wide frequency Fourier and wavelet spectra, autocorrelation functions with slowly decreasing tails, and non-Gaussian probability distributions of the magnitudes and the increments of the magnitude of fluctuations. The drift-dissipative instability and the instability driven by trapped electrons are examined as possible sources of turbulence in a high-temperature plasma. Observations showed the high level of coherence between turbulent fluctuations in the central region and at the edge of the plasma in L-2M. It is shown in L-2M that the relative intensity of the second harmonic of gyrotron radiation on the axis of a microwave beam after quasi-optical filtering in a four-mirror quasi-optical transmission line is about -50 dB of the total radiation intensity. Spatiotemporal structures in plasma density fluctuations were observed in the central region of the plasma column. The correlation time between the structures was found to be on the order of 1 ms. It is shown that, the spectrum of the signal from the second-harmonic scattering extends to higher frequencies in comparison with that from the fundamental

  7. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  8. A study of the isotopic and geochemical gradients in the old granite of the Vredefort structure, with implications for continental heat flow

    International Nuclear Information System (INIS)

    Hart, R.J.

    1978-01-01

    The presence of granite of pre-Witwatersrand age forming the core of an updomed and overturned sequence of strata at Vredefort, South Africa, has been known for over seventy years. It is only recent geophysical, geochemical and geological evidence that has given rise to the proposal that the basement core has also been overturned, presenting a section of the earth's granitic crust to view. Comprehensive geochemical and isotope studies on this section are presented in the thesis. Detailed trace element profiles across the granite basement inidicate that (i) the central part of the core is depleted in the large ion lithophile elements U, Th and Rb, relative to the perimeter, (ii) the concentrations of U, Th and Rb falls of regularly from the granite margin inwards, and the distribution of these elements over the outer 8 km is consistent with an exponential depth-function, and (iii) the central part of the core is characterised by high K/Rb, Th/U, K/U, K/Th, Ba/Rb and low Rb/Sr ratios, and it is only the outer 5 km of the basement core that has elemental ratios which approach those found in 'normal' surface granites. The heat generation from the entire exposed vertical section of the Vredefort granite, together with heat production in the overlying stratified rocks, has been examined. By comparing the heat production in the crust to heat flow in the nearby Far West Witwatersrand goldfield, a reasonable estimate of the heat flow from the mantle has been made. A value of between .25 and .36 HFU has been estimated. The mantle heat flow has an important bearing on the depth of the lithosphere - asthenosphere boundary. Whole rock Rb-Sr, Th-Pb isotopic investigations were made on the granite and basic rocks of the Vredefort basement. The measured ages and initial ratios provide evidence that well preserved remnants of sedimentary supracrustals and basic to intermediate volcanics existed as a protocrust in pre-3.5 b.y. times

  9. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory

  10. Growth problems of stellar black holes in early galaxies

    Science.gov (United States)

    Orofino, M. C.; Ferrara, A.; Gallerani, S.

    2018-06-01

    The nature of the seeds of the observed high-z super-massive black holes (SMBH) is unknown. Although different options have been proposed, involving e.g. intermediate mass direct collapse black holes, BH remnants of massive stars remain the most natural explanation. To identify the most favorable conditions (if any) for their rapid growth, we study the accretion rate of a M• = 100M⊙ BH formed in a typical z = 10 galaxy under different conditions (e.g. galaxy structure, BH initial position and velocity). We model the galaxy baryonic content and follow the BH orbit and accretion history for 300 Myr (the time span in 10 > z > 7), assuming the radiation-regulated accretion model by Park & Ricotti (2013). We find that, within the limits of our model, BH seeds cannot grow by more than 30%, suggesting that accretion on light-seed models are inadequate to explain high-z SMBH. We also compute the X-ray emission from such accreting stellar BH population in the [0.5 - 8] keV band and find it comparable to the one produced by high-mass X-ray binaries. This study suggests that early BHs, by X-ray pre-heating of the intergalactic medium at cosmic dawn, might leave a specific signature on the HI 21 cm line power spectrum potentially detectable with SKA.

  11. Research on imploded plasma heating by short pulse laser for fast ignition

    International Nuclear Information System (INIS)

    Kodama, R.; Kitagawa, Y.; Mima, K.

    2001-01-01

    Since the peta watt module (PWM) laser was constructed in 1995, investigated are heating processes of imploded plasmas by intense short pulse lasers. In order to heat the dense plasma locally, a heating laser pulse should be guided into compressed plasmas as deeply as possible. Since the last IAEA Fusion Conference, the feasibility of fast ignition has been investigated by using the short pulse GEKKO MII glass laser and the PWM laser with GEKKO XII laser. We found that relativistic electrons are generated efficiently in a preformed plasma to heat dense plasmas. The coupling efficiency of short pulse laser energy to a solid density plasma is 40% when no plasmas are pre-formed, and 20% when a large scale plasma is formed by a long pulse laser pre-irradiation. The experimental results are confirmed by numerical simulations using the simulation code 'MONET' which stands for the Monte-Carlo Electron Transport code developed at Osaka. In the GEKKO XII and PWM laser experiments, intense heating pulses are injected into imploded plasmas. As a result of the injection of heating pulse, it is found that high energy electrons and ions could penetrate into imploded core plasmas to enhance neutron yield by factor 3∼5. (author)

  12. High-resolution imaging and crowded-field photometry of the stellar populations in the cores of the Globular Clusters M15 and M4

    Science.gov (United States)

    Butler, R. F.

    1999-02-01

    This thesis presents work performed at the Department of Physics, University College Galway from 1992 to 1997. It is concerned with ground- and space-based high-resolution optical imaging of globular cluster cores, and the subsequent application of image-restoration and crowded-field photometry techniques; thus we may gain an improved understanding of the nature of their stellar populations, by either monitoring their temporal behaviour over moderate periods for the first time, or by obtaining a more precise "static" picture than was hitherto possible. These goals can be achieved by the development of innovative instrumentation and data analysis techniques. The particularly unique aspect of this work is that it deals with the first application of two-dimensional photon-counting detectors (2D-PCDs) and post-exposure image sharpening (PEIS) for crowded-field photometry. The thesis starts by introducing some basic concepts and characteristics of globular clusters and the diverse stellar species which they contain, in particular those predicted to have formed as a result of dynamical processes in the cluster cores, and those which exhibit variability in emission over time. It then reviews the fields of high-resolution imaging through the turbulent atmosphere & image deconvolution, optical stellar photometry, and Hubble Space Telescope observing and data reduction, each concluded with a description of the systems used in the work reported here (for the HST chapter this involves photometry of WFPC2 (Wide Field & Planetary Camera 2) observations of M15 (NGC 7078) released into the archives in 1995). The core of the thesis begins with a review of the observations to date of the objects with which this thesis is chiefly concerned, M15 and M4 (NGC 6121). In the following sections we describe the observations of these clusters which were made using the TRIFFID camera between 1992 and 1995, the image sharpening and calibration steps performed, and the photometric techniques

  13. Effect of tearing modes on temperature and density profiles and on the perpendicular transport in the W VII-A stellarator

    International Nuclear Information System (INIS)

    Jaenicke, R.

    1988-01-01

    In the ohmically heated W VII-A stellarator, the behaviour of which is similar to that of a medium sized tokamak, the additional shearless external rotational transform t 0 (Δt 0 /t 0 0 perpendicular,e in a one-dimensional heat transport code. In this way, the measured temperature profiles can be reproduced quite well and the energy confinement time of discharges with tearing mode activity can be predicted quantitatively. The transport model is used to investigate the explicit dependence of κ perpendicular,e on the plasma current and to study the importance of plasma current driven instabilities for the energy confinement in the W VII-A stellarator as well as in tokamaks. (author). 19 refs, 14 figs

  14. Impact of nuclear 'pasta' on neutrino transport in collapsing stellar cores

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Takiwaki, Tomoya; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2007-01-01

    Nuclear 'pasta', nonspherical nuclei in dense matter, is predicted to occur in collapsing supernova cores. We show how pasta phases affect the neutrino transport cross section via weak neutral current using several nuclear models. This is the first calculation of the neutrino opacity of the phases with rod-like and slab-like nuclei taking account of finite temperature effects, which are well described by the quantum molecular dynamics. We also show that pasta phases can occupy 10-20% of the mass of supernova cores in the later stage of the collapse

  15. Einstein X-ray survey of the Pleiades - The dependence of X-ray emission on stellar age

    Science.gov (United States)

    Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Bookbinder, J.; Golub, L.; Harnden, F. R., Jr.; Rosner, R.

    1985-01-01

    The data obtained with two pointed observations of 1 deg by 1 deg fields of the Pleiades region have been analyzed, and the results are presented. The maximum-likelihood X-ray luminosity functions for the Pleiades G and K stars in the cluster are derived, and it is shown that, for the G stars, the Pleiades X-ray luminosity function is significantly brighter than the corresponding function for Hyades G dwarf stars. This finding indicates a dependence of X-ray luminosity on stellar age, which is confirmed by comparison of the same data with median X-ray luminosities of pre-main sequence and local disk population dwarf G stars. It is suggested that the significantly larger number of bright X-ray sources associated with G stars than with K stars, the lack of detection of M stars, and the relatively rapid rotation of the Pleiades K stars can be explained in terms of the onset of internal differential rotation near the convective envelope-radidative core interface after the spin-up phase during evolution to the main sequence.

  16. Towards assembly completion and preparation of experimental campaigns of Wendelstein 7-X in the perspective of a path to a stellarator fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, T., E-mail: thomas.klinger@ipp.mpg.de; Baylard, C.; Beidler, C.D.; Boscary, J.; Bosch, H.S.; Dinklage, A.; Hartmann, D.; Helander, P.; Maßberg, H.; Peacock, A.; Pedersen, T.S.; Rummel, T.; Schauer, F.; Wegener, L.; Wolf, R.

    2013-10-15

    superconducting current leads, one pair for each coil type; and (c) assembly of the device periphery including diagnostics and heating systems. In the second part we report on the present status of planning for the first operation phase (5–10 s discharge duration at 8 MW heating power), the completion and hardening of the device for full power steady-state operation, and the second operation phase (up to 30 min discharge duration at 10 MW heating power). It is the ultimate goal of operation phase one to develop credible and robust discharge scenarios for the high-power steady-state operation phase two. Beyond the improved equilibrium, confinement, and stability properties owing to stellarator optimization, this requires density control, impurity control, edge iota control as well as high density microwave heating. Of paramount importance is the operation of the island divertor, which is realized in the first operation phase as an inertially cooled conventional graphite target divertor. It will be replaced later on by the steady-state capable island divertor with its water-cooled carbon fiber reinforced carbon target elements.

  17. Major issues in the design and construction of the stellarator of Costa Rica: SCR-1

    International Nuclear Information System (INIS)

    Mora, J; Vargas, V I; Villegas, L F; Barillas, L; Monge, J I; Rivas, L

    2012-01-01

    This paper aims at briefly describing the design and construction issues of the stellarator of Costa Rica 1 (SCR-1). The SCR-1 is a small modular Stellarator for magnetic confinement of plasma developed by the Plasma Physics Group of the Instituto Tecnologico de Costa Rica (ITCR). The SCR-1 is based on the small Spanish Stellarator UST 1 (Ultra Small Torus 1), created by Eng. Vicente Queral. These mains issues consist of the size of the Stellarator, closeness between coils, coupling of ECH to the vacuum chamber and the device for support. The size has become a problem because the vacuum chamber does not allow a lot of space to attach diagnosis devices, the heating system, the vacuum system and the very same support of the chamber. As a result of this lack of space, the Stellarator's coils are placed very close to each other; this means that two of the coils around of the vacuum chamber clash and cannot be placed as designed. The issue regarding the coupling of the ECH (electron cyclotron radio-frequency) to the vacuum chamber comprises the fact that the wave guide with rectangular shape does not match the CF port with circular shape on the vacuum chamber. In addition, the device for supporting the Stellarator has presented a challenge because of its size and the placement of the coils; in other words, there is not enough space between the ports and coils in the Stellarator to place appropriately the device for support.

  18. First Toroidal Rotation Measurements of Protons and Impurities in the TJ-II Stellarator

    International Nuclear Information System (INIS)

    Rapisarda, D.; Zurro, B.; Baciero, A.

    2006-01-01

    First absolute toroidal rotation measurements in the TJ-II stellarator, by using passive emission spectroscopy, are presented. The wavelength calibration is performed by using a spectral system which combines the spectra coming from the plasma and from a lamp in real time. Measurements have been made both for protons and some impurity ions (C4+, He+), in discharges created by electron cyclotron resonance heating, and in discharges with neutral beam injection heating. In addition, a description of the systems as well as the calibration procedures an data analysis is addressed. (Author) 10 refs

  19. Ripple transport in helical-axis advanced stellarators - a comparison with classical stellarator/torsatrons

    International Nuclear Information System (INIS)

    Beidler, C.D.; Hitchon, W.N.G.

    1993-08-01

    Calculations of the neoclassical transport rates due to particles trapped in the helical ripples of a stellarator's magnetic field are carried out, based on solutions of the bounce-averaged kinetic equation. These calculations employ a model for the magnetic field strength, B, which is an accurate approximation to the actual B for a wide variety of stellarator-type devices, among which are Helical-Axis Advanced Stellarators (Helias) as well as conventional stellarators and torsatrons. Comparisons are carried out in which it is shown that the Helias concept leads to significant reductions in neoclassical transport rates throughout the entire long-mean-free-path regime, with the reduction being particularly dramatic in the ν -1 regime. These findings are confirmed by numerical simulations. Further, it is shown that the behavior of deeply trapped particles in Helias can be fundamentally different from that in classical stellarator/torsatrons; as a consequence, the beneficial effects of a radial electric field on the transport make themselves felt at lower collision frequency than is usual. (orig.)

  20. Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions

    Science.gov (United States)

    Paxton, Bill; Schwab, Josiah; Bauer, Evan B.; Bildsten, Lars; Blinnikov, Sergei; Duffell, Paul; Farmer, R.; Goldberg, Jared A.; Marchant, Pablo; Sorokina, Elena; Thoul, Anne; Townsend, Richard H. D.; Timmes, F. X.

    2018-02-01

    We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the physics of convection, and yields reliable values of the convective-core mass during both hydrogen- and helium-burning phases. Stars with Meffects of Rayleigh-Taylor instabilities that, in combination with the coupling to a public version of the STELLA radiation transfer instrument, creates new avenues for exploring Type II supernova properties. These capabilities are exhibited with exploratory models of pair-instability supernovae, pulsational pair-instability supernovae, and the formation of stellar-mass black holes. The applicability of MESA is now widened by the capability to import multidimensional hydrodynamic models into MESA. We close by introducing software modules for handling floating point exceptions and stellar model optimization, as well as four new software tools - MESA-Web, MESA-Docker, pyMESA, and mesastar.org - to enhance MESA's education and research impact.