WorldWideScience

Sample records for heated pedestal growth

  1. Automatic diameter control system applied to the laser heated pedestal growth technique

    Directory of Open Access Journals (Sweden)

    Andreeta M.R.B.

    2003-01-01

    Full Text Available We described an automatic diameter control system (ADC, for the laser heated pedestal growth technique, that reduces the diameter fluctuations in oxide fibers grown from unreacted and non-sinterized pedestals, to less than 2% of the average fiber diameter, and diminishes the average diameter fluctuation, over the entire length of the fiber, to less than 1%. The ADC apparatus is based on an artificial vision system that controls the pulling speed and the height of the molten zone within a precision of 30 mum. We also show that this system can be used for periodic in situ axial doping the fiber. Pure and Cr3+ doped LaAlO3 and pure LiNbO3 were usedas model materials.

  2. Single-crystal SrTiO3 fiber grown by laser heated pedestal growth method: influence of ceramic feed rod preparation in fiber quality

    Directory of Open Access Journals (Sweden)

    D. Reyes Ardila

    1998-10-01

    Full Text Available The rapidly spreading use of optical fiber as a transmission medium has created an interest in fiber-compatible optical devices and methods for growing them, such as the Laser Heated Pedestal Growth (LHPG. This paper reports on the influence of the ceramic feed rod treatment on fiber quality and optimization of ceramic pedestal processing that allows improvements to be made on the final quality in a simple manner. Using the LHPG technique, transparent crack-free colorless single crystal fibers of SrTiO3 (0.50 mm in diameter and 30-40 mm in length were grown directly from green-body feed rods, without using external oxygen atmosphere.

  3. Temporal evolution of H-mode pedestal in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Osborne, T.H.; Leonard, A.W.; Fenstermacher, M.E.

    2009-01-01

    The temporal evolution of pedestal parameters is examined in the initial edge localized mode (ELM)-free phase and inter-ELM phases of H-mode discharges in the DIII-D tokamak. These discharges are heated by deuterium neutral beam injection and achieve type-I ELMing conditions. Pedestal parameters exhibit qualitatively similar behaviour in both the ELM-free and inter-ELM phases. There is a trend for the widths and heights of pedestals for electron density, temperature and pressure to increase during these phases; the increase in width is most pronounced in the density and least pronounced in electron temperature. Near the separatrix, the ion temperature achieves higher values but a flatter profile as compared with the electron temperature. Higher heating powers lead to a faster evolution of the pedestal and to a shorter period until the onset of an ELM. For sufficiently long ELM-free or inter-ELM periods, some parameters, particularly gradients, approach a steady state. However, a simultaneous steady state in all parameters is not observed. The simultaneous increase in density width and pedestal density is opposite to the predictions of a simple model, which predicts that the density width is set by neutral penetration. Thus, additional physics must be added to the simple model to provide a more general description of pedestal behaviour. However, the barrier growth is qualitatively consistent with time-dependent theoretical models that predict a self-consistent temporal growth of the pedestal due to E x B shearing effects. In addition, an approximate linear correlation is observed between the density width and the square root of the pedestal ion temperature and also between the density width and the square root of the pedestal beta poloidal. These pedestal studies suggest that a complete model of the pedestal width in type-I ELMing discharges must be time dependent, include transport physics during inter-ELM periods and include the limits to pedestal evolution

  4. Analysis of pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Groebner, R.J.; Osborne, T.H.; Canik, J.M.; Owen, L.W.; Pankin, A.Y.; Rafiq, T.; Rognlien, T.D.; Stacey, W.M.

    2010-01-01

    An H-mode edge pedestal plasma transport benchmarking exercise was undertaken for a single DIII-D pedestal. Transport modelling codes used include 1.5D interpretive (ONETWO, GTEDGE), 1.5D predictive (ASTRA) and 2D ones (SOLPS, UEDGE). The particular DIII-D discharge considered is 98889, which has a typical low density pedestal. Profiles for the edge plasma are obtained from Thomson and charge-exchange recombination data averaged over the last 20% of the average 33.53 ms repetition time between type I edge localized modes. The modelled density of recycled neutrals is largest in the divertor X-point region and causes the edge plasma source rate to vary by a factor ∼10 2 on the separatrix. Modelled poloidal variations in the densities and temperatures on flux surfaces are small on all flux surfaces up to within about 2.6 mm (ρ N > 0.99) of the mid-plane separatrix. For the assumed Fick's-diffusion-type laws, the radial heat and density fluxes vary poloidally by factors of 2-3 in the pedestal region; they are largest on the outboard mid-plane where flux surfaces are compressed and local radial gradients are largest. Convective heat flows are found to be small fractions of the electron (∼ 2 s -1 . Electron heat transport is found to be best characterized by electron-temperature-gradient-induced transport at the pedestal top and paleoclassical transport throughout the pedestal. The effective ion heat diffusivity in the pedestal has a different profile from the neoclassical prediction and may be smaller than it. The very small effective density diffusivity may be the result of an inward pinch flow nearly balancing a diffusive outward radial density flux. The inward ion pinch velocity and density diffusion coefficient are determined by a new interpretive analysis technique that uses information from the force balance (momentum conservation) equations; the paleoclassical transport model provides a plausible explanation of these new results. Finally, the measurements

  5. Characteristics of edge pedestals in LHW and NBI heated H-mode plasmas on EAST

    Science.gov (United States)

    Zang, Q.; Wang, T.; Liang, Y.; Sun, Y.; Chen, H.; Xiao, S.; Han, X.; Hu, A.; Hsieh, C.; Zhou, H.; Zhao, J.; Zhang, T.; Gong, X.; Hu, L.; Liu, F.; Hu, C.; Gao, X.; Wan, B.; the EAST Team

    2016-10-01

    By using the recently developed Thomson scattering diagnostic, the pedestal structure of the H-mode with neutral beam injection (NBI) or/and lower hybrid wave (LHW) heating on EAST (Experimental Advanced Superconducting Tokamak) is analyzed in detail. We find that a higher ratio of the power of the NBI to the total power of the NBI and the lower hybrid wave (LHW) will produce a large and regular different edge-localized mode (ELM), and a lower ratio will produce a small and irregular ELM. The experiments show that the mean pedestal width has good correlation with β \\text{p,\\text{ped}}0.5 , The pedestal width appears to be wider than that on other similar machines, which could be due to lithium coating. However, it is difficult to draw any conclusion of correlation between ρ * and the pedestal width for limited ρ * variation and scattered distribution. It is also found that T e/\

  6. Particle simulation of pedestal buildup and study of pedestal scaling law in a quiescent plasma edge

    International Nuclear Information System (INIS)

    Chang, C.S.; Ku, S.; Weitzner, H.; Groebner, R.; Osborne, T.

    2005-01-01

    A discrete guiding-center particle code XGC (X-point included Guiding Center code) is used to study pedestal buildup and sheared E r formation in a quiescent plasma edge of a diverted tokamak. A neoclassical pedestal scaling law has been deduced, which shows that the density pedestal width is proportional to T i 1/2 M 1/2 /B t where T i is the ion temperature, M is ion mass and B t is the toroidal magnetic field. Dependence on the pedestal density or the poloidal magnetic field is found to be much weaker. Ion temperature pedestal is not as well defined as the density pedestal. Neoclassical electron transport rate, including the collisional heat exchange rate with ions, is too slow to be considered in the time scale of simulation (∼ 10 ms). (author)

  7. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139-4307 (United States); Snyder, P. B.; Osborne, T. [General Atomics, San Diego, CA 92186-5608 (United States); Dominguez, A [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Cziegler, I. [UCSD Center for Momentum Transport and Flow Organization, La Jolla, CA 92093-0417 (United States)

    2014-05-15

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  8. Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C

    Czech Academy of Sciences Publication Activity Database

    Frassinetti, L.; Saarelma, S.; Lomas, P.; Nunes, I.; Rimini, F.; Beurskens, M.N.A.; Bílková, Petra; Boom, J.E.; De La Luna, E.; Delabie, E.; Drewelow, P.; Flanagan, J.; Garzotti, L.; Giroud, C.; Hawks, N.; Joffrin, E.; Kempenaars, M.; Kim, H.-T.; Kruezi, U.; Loarte, A.; Lomanowski, B.; Lupelli, I.; Meneses, L.; Maggi, C.F.; Menmuir, S.; Peterka, Matěj; Rachlew, E.; Romanelli, M.; Stefanikova, E.

    2017-01-01

    Roč. 59, č. 1 (2017), č. článku 014014. ISSN 0741-3335. [EPS 2016: Conference on Plasma Physics/43./. Leuven, 04.07.2016-08.07.2016] EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : JET-ILW * dimensionless scaling * pedestal * confinement * pedestal stability * heat transport Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016 http://dx.doi.org/10.1088/0741-3335/59/1/014014

  9. An edge pedestal model

    International Nuclear Information System (INIS)

    Stacev, W.M.

    2001-01-01

    A new model for calculation of the gradient scale lengths in the edge pedestal region and of the edge transport barrier width in H-mode tokamak plasmas will be described. Model problem calculations which demonstrate the promise of this model for predicting experimental pedestal properties will be discussed. The density and Prague gradient scale lengths (L) in the edge are calculated from the particle and ion and electron energy radial transport equations, making use of (presumed) known particle and energy fluxes flowing across the edge transport barrier from the core into the SOL and of edge transport coefficients. The average values of the particle and heat fluxes in the edge transport barrier are calculated in terms of the fluxes crossing into the SOL and the atomic physics reaction rates (ionisation, charge-exchange, elastic scattering, impurity radiation) in the edge by integrating the respective transport equations from the pedestal to the separatrix. An important implication of this model is that the pedestal gradient scale lengths depend not just on local pedestal platers properties but also on particle and energy fluxes from the core plasma and on recycling neutral fluxes that penetrate into the plasma edge, both of which in turn depend on the pedestal properties. The MHD edge pressure gradient constraint α≤ α C is used to determine the pressure width of the edge transport barrier, Δ TB = Δ TB (α c ). Three different models for the MHD edge pressure gradient constraint have been investigated: (1) nominal ideal ballooning mode theory, (2) ballooning mode theory taking into account the edge geometry and shear to access He second stability region; and pedestal β-limit theory when the ballooning modes are stabilised by diamagnetic effects. A series of calculations have been made for a DIII-D model problem. The calculated gradient scale lengths and edge transport barrier widths are of the magnitude of values observed experimentally, and certain trends

  10. Global performance enhancements via pedestal optimisation on ASDEX Upgrade

    NARCIS (Netherlands)

    Dunne, M.G.; Frassinetti, L.; Beurkens, M.N.A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G.T.A.; Kurzan, B.; Laggner, F.; McCarhty, P.J.; McDermott, R.M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.

    2017-01-01

    Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is

  11. Numerical study of neoclassical plasma pedestal in a tokamak geometry

    International Nuclear Information System (INIS)

    Chang, C.S.; Ku, Seunghoe; Weitzner, H.

    2004-01-01

    The fundamental properties of steep neoclassical plasma pedestals in a quiescent tokamak plasma have been investigated with a new guiding center particle code XGC: an X-point included Guiding Center code. It is shown that the width of the steepest neoclassical pedestals is similar to an experimentally observed edge pedestal width, and that a steep pedestal must be accompanied by a self-consistent negative radial electric field well. It is also shown that a steep neoclassical pedestal can form naturally at a quiescent diverted edge as the particle source from the neutral penetration (and heat flux from the core plasma) is balanced by the sharply increasing convective ion loss toward the separatrix. The steep neoclassical pedestal and the strong radial electric field well are suppressed by an anomalous diffusion coefficient of a strength appropriate to an L-mode state; nonetheless, the ExB shearing rate increases rapidly with pedestal temperature. Additionally, the present study shows that a steep pedestal at the diverted edge acts as a cocurrent parallel momentum source

  12. Compatibility of detached divertor operation with robust edge pedestal performance

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A.W., E-mail: leonard@fusion.gat.com [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M.A.; McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Osborne, T.H.; Snyder, P.B. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States)

    2015-08-15

    The compatibility of detached radiative divertor operation with a robust H-mode pedestal is examined in DIII-D. A density scan produced low temperature plasmas at the divertor target, T{sub e} ⩽ 2 eV, with high radiation leading to a factor of ⩾4 drop in peak divertor heat flux. The cold radiative plasma was confined to the divertor and did not extend across the separatrix in X-point region. A robust H-mode pedestal was maintained with a small degradation in pedestal pressure at the highest densities. The response of the pedestal pressure to increasing density is reproduced by the EPED pedestal model. However, agreement of the EPED model with experiment at high density requires an assumption of reduced diamagnetic stabilization of edge Peeling–Ballooning modes.

  13. Contribution to the multi-machine pedestal scaling from the COMPASS tokamak

    Science.gov (United States)

    Komm, M.; Bílková, P.; Aftanas, M.; Berta, M.; Böhm, P.; Bogár, O.; Frassinetti, L.; Grover, O.; Háček, P.; Havlicek, J.; Hron, M.; Imríšek, M.; Krbec, J.; Mitošínková, K.; Naydenkova, D.; Pánek, R.; Peterka, M.; Snyder, P. B.; Stefanikova, E.; Stöckel, J.; Sos, M.; Urban, J.; Varju, J.; Vondráček, P.; Weinzettl, V.; the COMPASS Team

    2017-05-01

    First systematic measurements of pedestal structure during Ohmic and NBI-assisted Type I ELMy H-modes were performed on the COMPASS tokamak in two dedicated experimental campaigns during 2015 and 2016. By adjusting the NBI heating and a toroidal magnetic field, the electron pedestal temperature was increased from 200 eV up to 300 eV, which allowed reaching pedestal collisionality ν \\text{ped}\\ast   <  1 at q95 ~3. COMPASS has approached conditions for the Identity experiment done at JET & DIII-D, complementing the range of scanned ρ \\text{ped}\\ast . The pedestal pressure was successfully reproduced by the EPED model. The dependence of pedestal pressure width on ν \\text{ped}\\ast and β \\text{ped ~ }\\text{pol} is discussed.

  14. Near-infrared and upconversion properties of neodymium-doped RE0.8La0.2VO4 (RE = Y, Gd) single-crystal fibres grown by the laser-heated pedestal growth technique

    International Nuclear Information System (INIS)

    Camargo, A S S de; Nunes, L A O; Andreeta, M R B; Hernandes, A C

    2002-01-01

    Neodymium-doped Y 0.8 La 0.2 VO 4 and Gd 0.8 La 0.2 VO 4 single-crystal fibres were successfully grown by the laser-heated pedestal growth (LHPG) technique. The fibres were completely transparent and no dark inclusions were observed by optical microscopy. In the characterization process, microprobe Raman, optical absorption, fluorescence, lifetime, and gain-excited state absorption spectra were investigated in addition to upconversion measurements. The fibres' structural and spectroscopic properties are very similar to those of YVO 4 and GdVO 4 bulk laser crystals, with the advantageous characteristic of broadened spectral linewidths that facilitate the pumping of the 1064 nm emission by a diode laser. These fairly new crystal compositions, that can be grown in fast and economical processes, are potential candidates for use as compact laser-active media

  15. The pinch of cold ions from recycling in the tokamak edge pedestal

    International Nuclear Information System (INIS)

    Wan Weigang; Parker, Scott E.; Chen Yang; Park, Gun-Young; Chang, Choong-Seock; Stotler, Daren

    2011-01-01

    We apply the ''natural fueling mechanism'' [W. Wan, S. E. Parker, Y. Chen, and F. W. Perkins, Phys. Plasmas 17, 040701 (2010)] to the edge pedestal. The natural fueling mechanism is where cold ions naturally pinch radially inward for a heat-flux dominated plasma. It is shown from neoclassical-neutral transport coupled simulations that the recycling neutrals and the associated source ions are colder than the main ions in the edge pedestal. These recycling source ions will pinch radially inward due to microturbulence. Gyrokinetic turbulence simulations indicate that near the top of the pedestal, the pinch velocity of the recycling source ions is much higher than the main ion outgoing flow velocity. The turbulent pinch of the recycling source ions may play a role in the edge pedestal transport and dynamics. The cold ion temperature significantly enhances the pinch velocity of the recycling source ions near to the pedestal top. Neoclassical calculations show a cold ion pinch in the pedestal as well.

  16. Pedestal Temperature Model for Type III ELMy H-mode Plasma

    International Nuclear Information System (INIS)

    Buangam, W.; Suwanna, S.; Onjun, T.; Poolyarat, N.; Picha, R.; Singhsomroje, W.

    2009-07-01

    Full text: It is widely known that the improved performance of H-mode plasma results mainly from a formation of the pedestal, which is a narrow region of strong pressure gradient near the edge of plasma. A predictive capability for the conditions at the top of the pedestal is important, especially for predictive simulations of future experiments. New models for predicting the temperature values at the top of the pedestal for type III ELMy H-mode plasma are developed by using two different approaches: a theory-based approaches and an empirical approach. For a theory-based approach, a model is developed based on the calculation of thermal energy in the pedestal region and on accepted scaling laws of energy confinement time. For an empirical model, a scaling law for pedestal temperature in terms of plasma controlled parameters, such as plasma current, magnetic field, heating power, is deduced from experimental data. Predictions from these models are compared with experimental data from the Pedestal International Database. Statistical quantities, such as Root-Mean Square Error (RMSE) and offset values, are computed to quantify the predictive capability of the models. It is found that the theory-based model predicts the pedestal temperature values moderately well yielding RMSE between 30% and 40%. The IPB98(y,3) scaling law yields with best agreement with RMSE of 30.4%. The empirical model predicts the pedestal temperature value with better agreement, yield RMSE of 25.9%

  17. Edge localized modes and edge pedestal in NBI and ICRF heated H, D and T-plasmas in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.; Lingertat, J.; Barnsley, R.

    1998-12-01

    Based on experiments carried out in JET in D:T mixtures varying from 100:0 to 5:95 and those carried out in hydrogen plasmas, the isotopic mass dependence of ELM parameters and the edge pedestal pressure in neutral beam (NBI) and ion cyclotron resonance (ICRF) heated H-mode plasmas is presented. The ELM frequency is found to decrease with the atomic mass number both in ICRH and NBI discharges. However, the frequency in the case of ICRH is about 8 - 10 times higher than in the NBI case. Assuming that ELMs occur at a critical edge pressure gradient, limited by the ballooning instability, the scaling of the maximum edge pressure is most consistent with the assumption that the width of the transport barrier scales as the ion poloidal Larmor radius governed by the average energy of fast ions at the edge. The critical edge pressure in NBI heated discharges increases with the isotopic mass which. is consistent with the higher deduced width of the edge transport, barrier in tritium than in deuterium and hydrogen. The critical edge pressure in ICRH discharges is smaller, presumably, due to the smaller fast-ion contribution to the edge region. As a consequence of the edge pressure scaling with isotopic mass, the edge operational space in the n e - T e diagram increases with operation in tritium. If the evidence that the edge pedestal width is governed by the average energy of fast ions in the edge prevails, the pedestal in ITER would be controlled by the slowing down energy spectrum of α-particles in the edge. (author)

  18. H-mode pedestal characteristics on MAST

    International Nuclear Information System (INIS)

    Kirk, A; Counsell, G F; Arends, E; Meyer, H; Taylor, D; Valovic, M; Walsh, M; Wilson, H

    2004-01-01

    The H-mode pedestal characteristics on the mega ampere spherical tokamak (MAST) are measured in a variety of disconnected double null discharges and the effect of edge localized modes (ELMs) on the pedestal is presented. The edge density pedestal width in spatial co-ordinates is similar on both the inboard and outboard sides. Neutral penetration may be able to explain the density pedestal width but it alone cannot explain the characteristics of the temperature pedestal. The data from MAST can be used to improve temperature pedestal width scalings by extending the ranges in pedestal collisionality, magnetic field, elongation and aspect ratio studied by other machines. Convective transport is found to dominate energy losses during ELMs and the fractional loss of pedestal energy during an ELM on MAST correlates better with SOL ion transit time than with pedestal collisionality

  19. Magnetic-flutter-induced pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.; Cole, A.J.

    2013-01-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δB ρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δB ρ s induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δB ρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δB ρ /B 0 ) 2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an

  20. Magnetic-flutter-induced pedestal plasma transport

    Science.gov (United States)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron

  1. Kinetic neoclassical transport in the H-mode pedestal

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, D. J.; Chang, C. S.; Ku, S.; Grierson, B. A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08540 (United States); Burrell, K. H.; Grassie, J. S. de [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2014-07-15

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrape-off layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density, and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. The radial electric field (E{sub r}) that maintains ambipolar transport across flux surfaces and to the wall is computed self-consistently on closed and open magnetic field lines and is in excellent agreement with experiment. The E{sub r} inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport are primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-I{sub p} parallel flows in the pedestal, ion temperature anisotropy, and large impurity temperatures in the scrape-off layer.

  2. Effect of pedestal fluctuation on ELM frequency in the EAST tokamak

    Science.gov (United States)

    Zhong, F. B.; Zhang, T.; Liu, Z. X.; Qu, H.; Liu, H. Q.; Li, G. Q.; Liu, Y.; Gao, W.; Duan, Y. M.; Yang, Y.; Zeng, L.; Xiang, H. M.; Geng, K. N.; Wen, F.; Zhang, S. B.; Gao, X.; the EAST Team

    2018-05-01

    The dependence of ELM frequency on heating power has been studied on the Experimental Advanced Superconducting Tokamak (EAST). It is found that the ELM frequency (f ELM) generally increases with the power through separatrix (P sep), indicating type-I ELM in these plasmas. However, there are two data points, named ‘abnormal ELM’ in the present paper, which have much lower f ELM than the ‘normal ELM’, while both types of ELM have similar ELM energy losses. The ‘abnormal ELM’ occurs at a phase with increased radiation power due to metal impurity influx events. The increased radiation power cannot explain the much lower f ELM for ‘abnormal ELM’, since the reduction of P sep is weaker than proportional to the observed reduction of the ELM frequency. The ‘abnormal ELM’ feature can be attributed to the enhanced amplitude of a coherent mode in the pedestal region. Comparing the pedestal evolutions for the two types of ELM with similar separatrix power P sep, it is actually found that the more pronounced pedestal coherent mode in the plasma with ‘abnormal ELM’ leads to a slower pressure pedestal recovery during the inter-ELM phase. This experimental result implies that the physical mechanism for ‘abnormal ELM’ is that the more pronounced pedestal fluctuation induces larger outward transport, slows down the pedestal evolution and leads to longer inter-ELM phase, i.e. lower ELM frequency.

  3. Multiscale modelling for tokamak pedestals

    Science.gov (United States)

    Abel, I. G.

    2018-04-01

    Pedestal modelling is crucial to predict the performance of future fusion devices. Current modelling efforts suffer either from a lack of kinetic physics, or an excess of computational complexity. To ameliorate these problems, we take a first-principles multiscale approach to the pedestal. We will present three separate sets of equations, covering the dynamics of edge localised modes (ELMs), the inter-ELM pedestal and pedestal turbulence, respectively. Precisely how these equations should be coupled to each other is covered in detail. This framework is completely self-consistent; it is derived from first principles by means of an asymptotic expansion of the fundamental Vlasov-Landau-Maxwell system in appropriate small parameters. The derivation exploits the narrowness of the pedestal region, the smallness of the thermal gyroradius and the low plasma (the ratio of thermal to magnetic pressures) typical of current pedestal operation to achieve its simplifications. The relationship between this framework and gyrokinetics is analysed, and possibilities to directly match our systems of equations onto multiscale gyrokinetics are explored. A detailed comparison between our model and other models in the literature is performed. Finally, the potential for matching this framework onto an open-field-line region is briefly discussed.

  4. Plasma shaping and its impact on the pedestal of ASDEX Upgrade: edge stability and inter-ELM dynamics at varied triangularity

    Science.gov (United States)

    Laggner, F. M.; Wolfrum, E.; Cavedon, M.; Dunne, M. G.; Birkenmeier, G.; Fischer, R.; Willensdorfer, M.; Aumayr, F.; The EUROfusion MST1 Team; The ASDEX Upgrade Team

    2018-04-01

    The plasma shape, in particular the triangularity (δ), impacts on the pedestal stability. A scan of δ including a variation of heating power (P heat) and gas puff was performed to study the behaviour of edge localised modes (ELMs) and the pre-ELM pedestal stability for different plasma shapes. Generally, at higher δ the pedestal top electron density (n e) is enhanced and the ELM repetition frequency (f ELM) is reduced. For all δ, the pedestal top n e is already fully established to its pre-ELM value during the initial recovery phase of the n e pedestal, which takes place immediately after the ELM crash. The lowering of the f ELM with increasing δ is related to longer pedestal recovery phases, especially the last pre-ELM phase with clamped pedestal gradients (after the recovery phases of the n e and electron temperature (T e) pedestal) is extended. In all investigated discharge intervals, the pre-ELM pedestal profiles are in agreement with peeling-ballooning (PB) theory. Over the investigated range of δ, two well-separated f ELM bands are observed in several discharge intervals. Their occurrence is linked to the inter-ELM pedestal stability. In both kinds of ELM cycles the pedestal evolves similarly, however, the ‘fast’ ELM cycle occurs before the global plasma stored energy (W MHD) increases, which then provides a stabilising effect on the pedestal, extending the inter-ELM period in the case of the ‘slow’ ELM cycle. At the end of a ‘fast’ ELM cycle the n e profile is radially shifted inwards relative to the n e profile at the end of a ‘slow’ ELM cycle, leading to a reduced pressure gradient. The appearance of two f ELM bands suggests that the pedestal becomes more likely PB unstable in certain phases of the inter-ELM evolution. Such a behaviour is possible because the evolution of the global plasma is not rigidly coupled to the evolution of the pedestal structure on the timescales of an ELM cycle.

  5. Isotope and mixture effects on neoclassical transport in the pedestal

    Science.gov (United States)

    Pusztai, Istvan; Buller, Stefan; Omotani, John T.; Newton, Sarah L.

    2017-10-01

    The isotope mass scaling of the energy confinement time in tokamak plasmas differs from gyro-Bohm estimates, with implications for the extrapolation from current experiments to D-T reactors. Differences in mass scaling in L-mode and various H-mode regimes suggest that the isotope effect may originate from the pedestal. In the pedestal, sharp gradients render local diffusive estimates invalid, and global effects due to orbit-width scale profile variations have to be taken into account. We calculate neoclassical cross-field fluxes from a radially global drift-kinetic equation using the PERFECT code, to study isotope composition effects in density pedestals. The relative reduction to the peak heat flux due to global effects as a function of the density scale length is found to saturate at an isotope-dependent value that is larger for heavier ions. We also consider D-T and H-D mixtures with a focus on isotope separation. The ability to reproduce the mixture results via single-species simulations with artificial ``DT'' and ``HD'' species has been considered. These computationally convenient single ion simulations give a good estimate of the total ion heat flux in corresponding mixtures. Funding received from the International Career Grant of Vetenskapsradet (VR) (330-2014-6313) with Marie Sklodowska Curie Actions, Cofund, Project INCA 600398, and Framework Grant for Strategic Energy Research of VR (2014-5392).

  6. Pedestal performance dependence upon plasma shape in DIII-D

    International Nuclear Information System (INIS)

    Leonard, A.W.; Casper, T.A.; Groebner, R.J.; Osborne, T.H.; Snyder, P.B.; Thomas, D.M.

    2007-01-01

    Higher moments of the plasma shape than triangularity are found to significantly affect the pedestal pressure and the edge localized mode (ELM) characteristics in DIII-D. The shape dependence of the pedestal pressure was experimentally examined by varying the squareness in the proposed ITER configuration while holding the triangularity fixed. Over this scan the pedestal pressure increased by ∼50% from highest squareness to lowest squareness. The variation of pedestal energy is found to be consistent with the stability analysis of the measured profiles. The ELM energy also varied with the shape to maintain a nearly constant fraction of the pedestal energy. Stability analysis using model shapes and pressure profiles indicates that much of the advantage of high triangularity for high pedestal pressure can be achieved in lower triangularity shapes by optimizing squareness and/or the distance of the secondary upper separatrix from the primary separatrix. In high beta discharges an increase in pedestal pressure is observed with higher global stored energy. The greatest pedestal pressure increase is at low squareness due to an increase in both the pressure gradient stability limit and the width of the pedestal. The variation in pedestal pressure with squareness was also used to optimize 'hybrid' discharges in DIII-D where a lower pedestal pressure was required for an improved overall performance. In the 'hybrid' regime low squareness resulted in a high pedestal pressure with large infrequent ELMs that eventually triggered an internal 2/1 tearing mode that locked, resulting in a disruption. At higher squareness the pedestal pressure was reduced with smaller and more rapid ELMs, resulting in the maintenance of a steady beneficial internal 3/2 tearing mode and good confinement. For all the cases studied, an increase in the pedestal width at low squareness appears to be a significant factor in the increase in the total pedestal pressure

  7. Integrated predictive modeling of high-mode tokamak plasmas using a combination of core and pedestal models

    International Nuclear Information System (INIS)

    Bateman, Glenn; Bandres, Miguel A.; Onjun, Thawatchai; Kritz, Arnold H.; Pankin, Alexei

    2003-01-01

    A new integrated modeling protocol is developed using a model for the temperature and density pedestal at the edge of high-mode (H-mode) plasmas [Onjun et al., Phys. Plasmas 9, 5018 (2002)] together with the Multi-Mode core transport model (MMM95) [Bateman et al., Phys. Plasmas 5, 1793 (1998)] in the BALDUR integrated modeling code to predict the temperature and density profiles of 33 H-mode discharges. The pedestal model is used to provide the boundary conditions in the simulations, once the heating power rises above the H-mode power threshold. Simulations are carried out for 20 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. These discharges include systematic scans in normalized gyroradius, plasma pressure, collisionality, isotope mass, elongation, heating power, and plasma density. The average rms deviation between experimental data and the predicted profiles of temperature and density, normalized by central values, is found to be about 10%. It is found that the simulations tend to overpredict the temperature profiles in discharges with low heating power per plasma particle and to underpredict the temperature profiles in discharges with high heating power per particle. Variations of the pedestal model are used to test the sensitivity of the simulation results

  8. Concrete pedestals for high-performance semiconductor production equipment

    Science.gov (United States)

    Vogen, Wayne; Franklin, Craig L.; Morneault, Joseph

    1999-09-01

    Concrete pedestals have many vibration and stiffness characteristics that make them a superior choice for sensitive semiconductor production equipment including scanners, scanning electron microscopes, focused ion beam millers and optical inspection equipment. Among the advantages of concrete pedestals are high inherent damping, monolithic construction that eliminates low stiffness joints common in steep pedestals, ability to reuse and ease of installation. Steel pedestals that have plates attached to the top of the frame are easily excited by acoustic excitation, especially in the range from 50 Hertz to 400 Hertz. Concrete pedestals do not suffer from this phenomenon because of the high mass and damping of the top surface.

  9. Progress towards a predictive model for pedestal height in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Leonard, A.W.; Snyder, P.B.; Osborne, T.H.; Petty, C.C.; Maggi, C.F.; Fenstermacher, M.E.; Owen, L.W.

    2009-01-01

    Recent DIII-D pedestal studies provide improved characterization of pedestal scaling for comparison with models. A new pedestal model accurately predicts the maximum achieved pedestal width and height in type I ELMing discharges over a large range of DIII-D operational space, including ITER demonstration discharges. The model is a combination of the peeling-ballooning theory for the MHD stability limits on the pedestal with a simple pedestal width scaling in which the width is proportional to the square root of the pedestal poloidal beta. Width scalings based on the ion toroidal or poloidal gyroradius are much poorer descriptions of DIII-D data. A mass scaling experiment in H and D provides support for a poloidal beta scaling and is not consistent with an ion poloidal gyroradius scaling. Studies of pedestal evolution during the inter-ELM cycle provide evidence that both the pedestal width and height increase during pedestal buildup. Model studies with a 1D kinetic neutrals calculation show that the temporal increase in density width cannot be explained in terms of increased neutral penetration depth. These studies show a correlation of pedestal width with both the square root of the pedestal poloidal beta and the square root of the pedestal ion temperature during the pedestal buildup.

  10. Inter-ELM pedestal structure development in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Laggner, Florian Martin

    2017-06-15

    The performance of a magnetically confined, fusion plasma is strongly impacted by the plasma edge, which is the boundary between the hot, confined plasma and the reactor walls. In a tokamak, which uses a toroidally axis-symmetric magnetic field configuration, a regime of improved plasma confinement, the high confinement mode (H-mode), has been observed. The confinement improvement originates from an edge transport barrier (ETB), which is accompanied by steep gradients of the plasma pressure, named pedestal. The maximum sustainable pedestal, i.e. the maximum pressure gradient, is usually set by an ideal magnetohydrodynamic limit, which if exceeded is leading to edge localised modes (ELMs). ELMs are instabilities that relax the pedestal and lead to a loss of the order of 10% from the plasma stored energy. The mechanisms, which set the pedestal structure before an ELM crash, keeping the pedestal stable up to this point, are not fully understood. Here, microturbulent instabilities, e.g. kinetic ballooning modes (KBMs), are expected to play an important role. The presented PhD thesis investigates the temporal development of the pedestal density and temperature profiles in between ELM crashes at the ASDEX Upgrade tokamak. The aims were comparisons of different plasma conditions, i.e. plasma collisionality (ν{sup *}), main isotope species and plasma shapes. Further, the impact of the conditions outside the confined plasma on the pedestal development was investigated. The extensive study of these parameters resulted in one key observation: The pedestal recovers in distinct phases in between ELM crashes with always the same sequence. Immediately after the ELM crash, the electron density (n{sub e}) pedestal is established, followed by the electron temperature (T{sub e}) pedestal. Finally, a period with constant pressure gradient appears, which can vary in duration. For a large range of ν{sup *} it has been found that the onset of radial magnetic fluctuations with

  11. Theory and theory-based models for the pedestal, edge stability and ELMs in tokamaks

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Mahajan, S.M.; Yoshida, Z.; Dorland, W.; Rogers, B.N.; Bateman, G.; Kritz, A.H.; Pankin, A.; Voitsekhovitch, I.; Onjun, T.; Snyder, S.

    2005-01-01

    Theories for equilibrium and stability of H-modes, and models for use within integrated modeling codes with the objective of predicting the height, width and shape of the pedestal at the edge of H-mode plasmas in tokamaks, as well as the onset and frequency of Edge Localized Modes (ELMs), are developed. A theory model for relaxed plasma states with flow, which uses two-fluid Hall-MHD equations, predicts that the natural scale length of the pedestal is the ion skin depth and the pedestal width is larger than the ion poloidal gyro-radius, in agreement with experimental observations. Computations with the GS2 code are used to identify micro-instabilities, such as electron drift waves, that survive the strong flow shear, diamagnetic flows, and magnetic shear that are characteristic of the pedestal. Other instabilities on the pedestal and gyro-radius scale, such as the Kelvin-Helmholtz instability, are also investigated. Time-dependent integrated modeling simulations are used to follow the transition from L-mode to H-mode and the subsequent evolution of ELMs as the heating power is increased. The flow shear stabilization that produces the transport barrier at the edge of the plasma reduces different modes of anomalous transport and, consequently, different channels of transport at different rates. ELM crashes are triggered in the model by pressure-driven ballooning modes or by current-driven peeling modes. (author)

  12. Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    Science.gov (United States)

    Stefanikova, E.; Frassinetti, L.; Saarelma, S.; Loarte, A.; Nunes, I.; Garzotti, L.; Lomas, P.; Rimini, F.; Drewelow, P.; Kruezi, U.; Lomanowski, B.; de la Luna, E.; Meneses, L.; Peterka, M.; Viola, B.; Giroud, C.; Maggi, C.; contributors, JET

    2018-05-01

    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (δ) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift.

  13. Predictive modeling of pedestal structure in KSTAR using EPED model

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyunsun; Kim, J. Y. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Kwon, Ohjin [Department of Physics, Daegu University, Gyeongbuk 712-714 (Korea, Republic of)

    2013-10-15

    A predictive calculation is given for the structure of edge pedestal in the H-mode plasma of the KSTAR (Korea Superconducting Tokamak Advanced Research) device using the EPED model. Particularly, the dependence of pedestal width and height on various plasma parameters is studied in detail. The two codes, ELITE and HELENA, are utilized for the stability analysis of the peeling-ballooning and kinetic ballooning modes, respectively. Summarizing the main results, the pedestal slope and height have a strong dependence on plasma current, rapidly increasing with it, while the pedestal width is almost independent of it. The plasma density or collisionality gives initially a mild stabilization, increasing the pedestal slope and height, but above some threshold value its effect turns to a destabilization, reducing the pedestal width and height. Among several plasma shape parameters, the triangularity gives the most dominant effect, rapidly increasing the pedestal width and height, while the effect of elongation and squareness appears to be relatively weak. Implication of these edge results, particularly in relation to the global plasma performance, is discussed.

  14. Non-shoring construction for T/G pedestal beams

    International Nuclear Information System (INIS)

    Abe, T.

    1992-01-01

    The T/G pedestal construction work has been the critical path within the T/B construction work of BWR type nuclear power plant. In order to meet the requirement of shortening the construction period and improved in safety on a Turbine Building (T/B) construction work, Non-soring construction for T/G Pedestal Beams was developed. By applying this method to T/G pedestal construction work, we succeeded in shortening the T/B construction period and improvement in safety significantly. (author)

  15. Theory of Rapid Formation of Pedestal and Pedestal width due to Anomalous Particle Pinch in the Edge of H-mode Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kaw, P.K., E-mail: kaw@ipr.res.in [Institute for Plasma Research, Bhat (India); Singh, R. [Institute for Plasma Research, Bhat (India); ITER Organization, Saint Paul-lez-Durance [France; Nordman, H. [Chamlers Institute of Technology, Goteborg (Sweden); Garbet, X.; Bourdelle, C. [CEA, Saint Paul-lez-Durance (France); Campbell, D.; Loarte, A.; Bora, D. [ITER Organization, Saint Paul-lez-Durance (France)

    2012-09-15

    Full text: A theory based on a turbulent particle pinch is proposed to explain the rapid formation of sharp density gradients in tokamak edge plasmas, in particular the pedestal region. The inward radial particle flux in the pedestal results from the interaction between small scale electron temperature gradient driven (ETG) turbulence and self-consistently formed 'electron geodesic acoustic modes' (el-GAMs). To address this phenomenon, the el-GAM modulational instability driven by the ETG turbulence background is studied. The ETG level of fluctuations and particle pinch are estimated through the back reaction of eGAMs on ETG turbulence. It is found that the particle pinch is quite sensitive to magnetic shear, safety factor, ratio of electron to ion temperatures and atomic mass number. In the absence of particle source in the pedestal, the density gradient length scale, of the order of the pedestal width, is estimated. It is shown that it is proportional to the major radius, up to some dependence on the poloidal beta. Moreover it does not depend on the normalized gyro-radius. This scaling agrees with DIII-D and JET similarity experiments. This dependence is favorable when extrapolated to the pedestal width in ITER in spite of its low normalized gyro radius. It is also shown that the density scale length becomes sharper by increasing the magnetic shear. A new H-mode pedestal pressure scaling is derived assuming that the pressure gradient is limited by the ballooning instability. (author)

  16. Differences in the H-mode pedestal width of temperature and density

    International Nuclear Information System (INIS)

    Schneider, P A; Wolfrum, E; Günter, S; Kurzan, B; Lackner, K; Zohm, H; Groebner, R J; Osborne, T H; Ferron, J R; Snyder, P B; Beurskens, M N A; Dunne, M G

    2012-01-01

    A pedestal database was built using data from type-I ELMy H-modes of ASDEX Upgrade, DIII-D and JET. ELM synchronized pedestal data were analysed with the two-line method. The two-line method is a bilinear fit which shows better reproducibility of pedestal parameters than a modified hyperbolic tangent fit. This was tested with simulated and experimental data. The influence of the equilibrium reconstruction on pedestal parameters was investigated with sophisticated reconstructions from CLISTE and EFIT including edge kinetic profiles. No systematic deviation between the codes could be observed. The flux coordinate system is influenced by machine size, poloidal field and plasma shape. This will change the representation of the width in different coordinates, in particular, the two normalized coordinates Ψ N and r/a show a very different dependence on the plasma shape. The scalings derived for the pedestal width, Δ, of all machines suggest a different scaling for the electron temperature and the electron density. Both cases show similar dependence with machine size, poloidal magnetic field and pedestal electron temperature and density. The influence of ion temperature and toroidal magnetic field is different on each of Δ T e and Δ n e . In dimensionless form the density pedestal width in Ψ N scales with ρ 0.6 i* , the temperature pedestal width with β p,ped 0.5 . Both widths also show a strong correlation with the plasma shape. The shape dependence originates from the coordinate transformation and is not visible in real space. The presented scalings predict that in ITER the temperature pedestal will be appreciably wider than the density pedestal. (paper)

  17. Influence of plasma pedestal profiles on access to ELM-free regimes in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru; Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru; Poshekhonov, Yu. Yu., E-mail: naida@a5.kiam.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Konovalov, S. V., E-mail: konoval-sv@nrcki.ru [National Research Nuclear University “MEPhI,” (Russian Federation); Polevoi, A. R., E-mail: alexei.polevoi@iter.org [ITER Organization (France)

    2016-05-15

    The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reaching high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10−40 to n = 3−20.

  18. Comparison of H-mode pedestals in different confinement regimes in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, R J [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Luce, T C [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Fenstermacher, M E [Lawrence Livermore National Laboratory, Livermore, California (United States); Jackson, G L [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Osborne, T H [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Wade, M R [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States)

    2006-05-15

    A survey of global performance parameters and their correlation with pedestal parameters is performed for standard H-mode, QH-mode and the enhanced confinement regimes of VH-mode, hybrid and advanced tokamak in the DIII-D tokamak. This study shows that there is a trend for global confinement quality or global beta to increase as the pedestal electron pressure or beta increases. However, there are also improvements in core confinement and beta, observed at fixed pedestal pressure or beta, which indicate that factors other than pedestal parameters also contribute to the best core performance. Several other pedestal structure parameters are found to be similar among these regimes. The scale lengths for electron pressure in the pedestal are in the range 0.8-1.6 cm at the outer midplane, most {eta}{sub e} values are in the range 1-3 in the middle of the T{sub e} pedestal and the T{sub e} and n{sub e} pedestals tend to penetrate the same distance into the plasma.

  19. Scaling of H-mode pedestal characteristics in DIII-D and C-Mod

    International Nuclear Information System (INIS)

    Granetz, R.S.; Boivin, R.L.; Osborne, T.H.

    1999-01-01

    Since the H-mode edge pedestal effectively sets the boundary conditions for energy transport throughout the core, a better understanding of the pedestal region is necessary in order to fully predict H-mode performance. Pedestal characteristics in the DIII-D and Alcator C-Mod tokamaks are described, and scalings of the pedestal width with various plasma parameters are shown. The pedestal width in both tokamaks varies in an inverse sense with plasma current, and is independent of toroidal field. Other similarities, as well as differences, are discussed. It is also found that the pedestal widths of the various physical quantities involved (T e , T i , n e , n i ) may be different. (author)

  20. Global gyrokinetic simulation of Tokamak edge pedestal instabilities.

    Science.gov (United States)

    Wan, Weigang; Parker, Scott E; Chen, Yang; Yan, Zheng; Groebner, Richard J; Snyder, Philip B

    2012-11-02

    Global electromagnetic gyrokinetic simulations show the existence of near threshold conditions for both a high-n kinetic ballooning mode (KBM) and an intermediate-n kinetic version of peeling-ballooning mode (KPBM) in the edge pedestal of two DIII-D H-mode discharges. When the magnetic shear is reduced in a narrow region of steep pressure gradient, the KPBM is significantly stabilized, while the KBM is weakly destabilized and hence becomes the most-unstable mode. Collisions decrease the KBM's critical β and increase the growth rate.

  1. Physics of the Tokamak Pedestal, and Implications for Magnetic Fusion Energy

    Science.gov (United States)

    Snyder, Philip

    2017-10-01

    High performance in tokamaks is achieved via the spontaneous formation of a transport barrier in the outer few percent of the confined plasma. This narrow insulating layer, referred to as a ``pedestal,'' typically results in a >30x increase in pressure across a 0.4-5cm layer. Predicted fusion power scales with the square of the pedestal top pressure (or ``pedestal height''), hence a fusion reactor strongly benefits from a high pedestal, provided this can be attained without large Edge Localized Modes (ELMs), which may erode plasma facing materials. The overlap of drift orbit, turbulence, and equilibrium scales across this narrow layer leads to rich and complex physics, and challenges traditional analytic and computational approaches. We review studies employing gyrokinetic, neoclassical, MHD, and other methods, which have explored how a range of instabilities, influenced by complex geometry, and strong ExB flows and bootstrap current, drive transport across the pedestal and guide its structure and dynamics. Development of high resolution diagnostics, and coordinated experiments on several tokamaks, have validated understanding of important aspects of the physics, while highlighting open issues. A predictive model (EPED) has proven capable of predicting the pedestal height and width to 20-25% accuracy in large statistical studies. This model was used to predict a new, high pedestal ``Super H-Mode'' regime, which was subsequently discovered on DIII-D, and motivated experiments on Alcator C-Mod which achieved world record, reactor relevant pedestal pressure. We review open issues including improved formalism, particle and momentum transport, the role of neutrals and impurities, ELM control, and pedestal formation. Finally we discuss coupling pedestal and core predictive models to enable more comprehensive optimization of the tokamak fusion concept. Supported by the US DOE under DE-FG02-95ER54309, FC02-06ER54873, DE-FC02-04ER54698, DE-FC02-99ER54512.

  2. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. Q., E-mail: xxu@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Ma, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States); Li, G. Q. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2014-12-15

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  3. A pedestal temperature model with self-consistent calculation of safety factor and magnetic shear

    International Nuclear Information System (INIS)

    Onjun, T; Siriburanon, T; Onjun, O

    2008-01-01

    A pedestal model based on theory-motivated models for the pedestal width and the pedestal pressure gradient is developed for the temperature at the top of the H-mode pedestal. The pedestal width model based on magnetic shear and flow shear stabilization is used in this study, where the pedestal pressure gradient is assumed to be limited by first stability of infinite n ballooning mode instability. This pedestal model is implemented in the 1.5D BALDUR integrated predictive modeling code, where the safety factor and magnetic shear are solved self-consistently in both core and pedestal regions. With the self-consistently approach for calculating safety factor and magnetic shear, the effect of bootstrap current can be correctly included in the pedestal model. The pedestal model is used to provide the boundary conditions in the simulations and the Multi-mode core transport model is used to describe the core transport. This new integrated modeling procedure of the BALDUR code is used to predict the temperature and density profiles of 26 H-mode discharges. Simulations are carried out for 13 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. The average root-mean-square deviation between experimental data and the predicted profiles of the temperature and the density, normalized by their central values, is found to be about 14%

  4. Structure, stability and ELM dynamics of the H-mode pedestal in DIII-D

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Leonard, A.W.; Osborne, T.H.

    2005-01-01

    Experiments are described that have increased understanding of the transport and stability physics that set the H-mode edge pedestal width and height, determine the onset of Type-I edge localized modes (ELMs), and produce the nonlinear dynamics of the ELM perturbation in the pedestal and scrape-off layer (SOL). Predictive models now exist for the n e pedestal profile and the p e height at the onset of Type-I ELMs, and progress has been made toward predictive models of the T e pedestal width and nonlinear ELM evolution. Similarity experiments between DIII-D and JET suggested that neutral penetration physics dominates in the relationship between the width and height of the n e pedestal while plasma physics dominates in setting the T e pedestal width. Measured pedestal conditions including edge current at ELM onset agree with intermediate-n peeling-ballooning (P-B) stability predictions. Midplane ELM dynamics data show the predicted (P-B) structure at ELM onset, large rapid variations of the SOL parameters, and fast radial propagation in later phases, similar to features in nonlinear ELM simulations. (author)

  5. Cost reduction for large turbine generator Pedestal in high seismic zone

    International Nuclear Information System (INIS)

    Sawhney, P.S.; Irani, P.; Pusheck, B.N.

    1985-01-01

    Turbine Generator Pedestals have generally been designed using reinforced concrete. For present day large turbine generators (1100 MWe class and above) with tall (about 80 feet) pedestals, the amount of reinforcing steel becomes quite large, especially for plants in high seismic zones. With the prime objective of cost reduction, an approach using steel/concrete composite design has been studied for a large BWR Turbine Generator pedestal with 0.3g peak ground acceleration. Large prefabricated steel modules were adopted for composite design and simplified construction. Design was based on the ACI and AISC codes. Costs and schedules were developed and compared with those for a conventionally designed reinforced concrete pedestal. Composite design was found to give considerable cost and schedule advantage over the conventional reinforced concrete design

  6. ELMs and constraints on the H-mode pedestal: A model based on peeling-ballooning modes

    International Nuclear Information System (INIS)

    Snyder, P.B.; Ferron, J.R.; Wilson, H.R.

    2003-01-01

    We propose a model for Edge Localized Modes (ELMs) and pedestal constraint based upon theoretical analysis of instabilities which can limit the pedestal height and drive ELMs. The sharp pressure gradients, and resulting bootstrap current, in the pedestal region provide free energy to drive peeling and ballooning modes. The interaction of peeling-ballooning coupling, ballooning mode second stability, and finite-Larmor-radius effects results in coupled peeling-ballooning modes of intermediate wavelength generally being the limiting instability. A highly efficient new MHD code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including con straits on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependant on the density and temperature separately, rather than simply on the pressure. A model of various ELM types is developed, and quantitatively compared to data. A number of observations agree with predictions, including ELM onset times, ELM depth and variation in pedestal height with collisionality and discharge shape. Stability analysis of series of model equilibria are used both o predict and interpret pedestal trends in existing experiments and to project pedestal constraints for future burning plasma tokamak designs. (author)

  7. ELMs and constraints on the H-mode pedestal: A model based on peeling-ballooning modes

    International Nuclear Information System (INIS)

    Snyder, P.B.

    2002-01-01

    Maximizing the pedestal height while maintaining acceptable ELMs is a key issue for optimizing tokamak performance. We present a model for ELMs and pedestal constraints based upon theoretical analysis of edge instabilities which can limit the pedestal height and drive ELMs. Sharp pedestal pressure gradients drive large bootstrap currents which play a complex dual role in the stability physics. Consequently, the dominant modes are often intermediate-n coupled 'peeling-ballooning' modes, driven both by current and the pressure gradient. A highly efficient new MHD code, ELITE, is used to study these modes, and calculate quantitative stability constraints on the pedestal, including direct constraints on the pedestal height. A model of various ELM types is developed, and quantitatively compared to data from several tokamaks. A number of observations agree with predictions, including ELM onset times, ELM depth, and variation in pedestal height with discharge shape. Projections of pedestal stability constraints for Next Step designs, and nonlinear simulations of peeling-ballooning modes using the BOUT code are also presented. (author)

  8. Influence of the plasma pedestal parameters on ELM mitigation at low collisionality

    Energy Technology Data Exchange (ETDEWEB)

    Leuthold, Nils [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Universitaet Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth (Germany); Suttrop, Wolfgang [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-07-01

    The control of Edge Localized Modes (ELMs) is of great importance for future fusion devices in order to provide longevity of the plasma facing components and a better overall plasma performance. In recent magnetic perturbation ELM mitigation experiments in ASDEX Upgrade at low pedestal collisionality, the dependence of ELM losses on pedestal parameters is investigated. It is found that the reduction of the stored energy loss associated with ELMs occurs in correlation with a reduction of edge density and edge pedestal pressure induced by the applied magnetic perturbation (''pedestal pump-out''). Significant ELM mitigation occurs at lowest densities, in a region of pedestal n-T parameter space that has not been accessible in ASDEX Upgrade without magnetic perturbations, and which is occupied by type-IV ELMs in DIII-D. The role of magnetic perturbations for ELM mitigation will be discussed in this context and attempts to counteract the confinement loss by increasing neutral beam injection power or pellet injection increases the ELM energy losses.

  9. RMP-Flutter-Induced Pedestal Plasma Transport

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J. D.; Hegna, C., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison (United States); Cole, A. J. [Columbia University, New York (United States)

    2012-09-15

    Full text: Plasma toroidal rotation can prevent or limit reconnection of externally applied resonant magnetic perturbation (RMP) fields {delta}B on rational magnetic flux surfaces. Hence, it causes the induced radial perturbations to vanish or be small there, and thereby inhibits magnetic island formation and stochasticity in the edge of high (H-mode) confinement tokamak plasmas. However, the radial component of the spatial magnetic flutter induced by RMP fields off rational surfaces causes a radial electron thermal diffusivity of (1/2)({delta}B{sub p}/B){sup 2} times a magnetic-shear-influenced effective parallel electron thermal diffusivity. The resultant RMP-flutter-induced electron thermal diffusivity can be comparable to experimentally inferred values at the top of H-mode pedestals. This process also causes a factor of about 3 smaller RMP-induced electron density diffusivity there. Because this electron density transport is non-ambipolar, it produces a toroidal torque on the plasma, which is usually in the co-current direction. Kinetic-based cylindrical screw-pinch and toroidal models of these RMP-flutter-induced plasma transport effects have been developed. The RMP-induced increases in these diffusive plasma transport processes are typically spatially inhomogeneous in that they are strongly peaked near the rational surfaces in low collisionality pedestals, which may lead to resonant sensitivities to the local safety factor q. The effects can be large enough to reduce the radially averaged gradients of the electron temperature and density at the top of H-mode edge pedestals, and modify the plasma toroidal rotation and radial electric field there. At high collisionality the various effects are less strongly peaked at rational surfaces and thus less likely to exhibit RMP-induced resonant behavior. These RMP-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize

  10. Structural Modeling and Analysis on Dynamic Characteristics of Antenna Pedestal in Airborne SAR

    Directory of Open Access Journals (Sweden)

    He Li-ping

    2012-06-01

    Full Text Available Finite element modeling and structural dynamic characteristics of antenna pedestal in airborne SAR were studied in this paper. The Finite element model of antenna pedestal in airborne SAR was set up on the basis of structural dynamic theory, then, the key technologies of dynamic simulation were pointed out, and the modal analysis and transient analysis were carried out. Simulation results show that the dynamic characteristics of antenna pedestal in airborne SAR can meet the requirements of servo bandwidth and structural strength. The fast finite element modeling and simulation method proposed in this paper are of great significance to the weight reducing design of antenna pedestal in airborne SAR.

  11. H-Mode Turbulence, Power Threshold, ELM, and Pedestal Studies in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Menard, J.E.; Meyer, H.; Mueller, D.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.; Zweben, S.J.; Bell, M.G.; Bell, R.E.; Biewer, T.; Boedo, J.A.; Johnson, D.W.; Kaita, R.; Kugel, H.W.; Maqueda, R.J.; Munsat, T.; Raman, R.; Soukhanovskii, V.A.; Stevenson, T.; Stutman, D.

    2004-01-01

    High-confinement mode (H-mode) operation plays a crucial role in NSTX [National Spherical Torus Experiment] research, allowing higher beta limits due to reduced plasma pressure peaking, and long-pulse operation due to high bootstrap current fraction. Here, new results are presented in the areas of edge localized modes (ELMs), H-mode pedestal physics, L-H turbulence, and power threshold studies. ELMs of several other types (as observed in conventional aspect ratio tokamaks) are often observed: (1) large, Type I ELMs, (2) ''medium'' Type II/III ELMs, and (3) giant ELMs which can reduce stored energy by up to 30% in certain conditions. In addition, many high-performance discharges in NSTX have tiny ELMs (newly termed Type V), which have some differences as compared with ELM types in the published literature. The H-mode pedestal typically contains between 25-33% of the total stored energy, and the NSTX pedestal energy agrees reasonably well with a recent international multi-machine scaling. We find that the L-H transition occurs on a ∼100 (micro)sec timescale as viewed by a gas puff imaging diagnostic, and that intermittent quiescent periods precede the final transition. A power threshold identity experiment between NSTX and MAST shows comparable loss power at the L-H transition in balanced double-null discharges. Both machines require more power for the L-H transition as the balance is shifted toward lower single null. High field side gas fueling enables more reliable H-mode access, but does not always lead to a lower power threshold e.g., with a reduction of the duration of early heating. Finally the edge plasma parameters just before the L-H transition were compared with theories of the transition. It was found that while some theories can separate well-developed L- and H-mode data, they have little predictive value

  12. BURNING PLASMA PROJECTIONS USING DRIFT WAVE TRANSPORT MODELS AND SCALINGS FOR THE H-MODE PEDESTAL

    International Nuclear Information System (INIS)

    KINSEY, J.E.; ONJUN, T.; BATEMAN, G.; KRITZ, A.; PANKIN, A.; STAEBLER, G.M.; WALTZ, R.E.

    2002-01-01

    OAK-B135 The GLF23 and Multi-Mode (MM95) transport models are used along with a model for the H-mode pedestal to predict the fusion performance for the ITER, FIRE, and IGNITOR tokamak designs. The drift-wave predictive transport models reproduce the core profiles in a wide variety of tokamak discharges, yet they differ significantly in their response to temperature gradient (stiffness). Recent gyro-kinetic simulations of ITG/TEM and ETG modes motivate the renormalization of the GLF23 model. The normalizing coefficients for the ITG/TEM modes are reduced by a factor of 3.7 while the ETG mode coefficient is increased by a factor of 4.8 in comparison with the original model. A pedestal temperature model is developed for type I ELMy H-mode plasmas based on ballooning mode stability and a theory-motivated scaling for the pedestal width. In this pedestal model, the pedestal density is proportional to the line-averaged density and the pedestal temperature is inversely related to the pedestal density

  13. Pedestal structure and stability in H-mode and I-mode: a comparative study on Alcator C-Mod

    International Nuclear Information System (INIS)

    Hughes, J.W.; Walk, J.R.; Davis, E.M.; LaBombard, B.; Baek, S.G.; Churchill, R.M.; Greenwald, M.; Hubbard, A.E.; Lipschultz, B.; Marmar, E.S.; Reinke, M.L.; Rice, J.E.; Theiler, C.; Terry, J.; White, A.E.; Whyte, D.G.; Snyder, P.B.; Groebner, R.J.; Osborne, T.; Diallo, A.

    2013-01-01

    New experimental data from the Alcator C-Mod tokamak are used to benchmark predictive modelling of the edge pedestal in various high-confinement regimes, contributing to greater confidence in projection of pedestal height and width in ITER and reactors. ELMy H-modes operate near stability limits for ideal peeling–ballooning modes, as shown by calculations with the ELITE code. Experimental pedestal width in ELMy H-mode scales as the square root of β pol at the pedestal top, i.e. the dependence expected from theory if kinetic ballooning modes (KBMs) were responsible for limiting the pedestal width. A search for KBMs in experiment has revealed a short-wavelength electromagnetic fluctuation in the pedestal that is a candidate driver for inter-edge localized mode (ELM) pedestal regulation. A predictive pedestal model (EPED) has been tested on an extended set of ELMy H-modes from C-Mod, reproducing pedestal height and width reasonably well across the data set, and extending the tested range of EPED to the highest absolute pressures available on any existing tokamak and to within a factor of three of the pedestal pressure targeted for ITER. In addition, C-Mod offers access to two regimes, enhanced D-alpha (EDA) H-mode and I-mode, that have high pedestals, but in which large ELM activity is naturally suppressed and, instead, particle and impurity transport are regulated continuously. Pedestals of EDA H-mode and I-mode discharges are found to be ideal magnetohydrodynamic (MHD) stable with ELITE, consistent with the general absence of ELM activity. Invocation of alternative physics mechanisms may be required to make EPED-like predictions of pedestals in these kinds of intrinsically ELM-suppressed regimes, which would be very beneficial to operation in burning plasma devices. (paper)

  14. Flux tube gyrokinetic simulations of the edge pedestal

    Science.gov (United States)

    Parker, Scott; Wan, Weigang; Chen, Yang

    2011-10-01

    The linear instabilities of DIII-D H-mode pedestal are studied with gyrokinetic micro-turbulence simulations. The simulation code GEM is an electromagnetic δf code with global tokamak geometry in the form of Miller equilibrium. Local flux tube simulations are carried out for multiple positions of two DIII-D profiles: shot #98889 and shot #131997. Near the top of the pedestal, the instability is clearly ITG. The dominant instability of the pedestal appears at the steep gradient region, and it is identified as a low frequency mode mostly driven by electron temperature gradient. The mode propagates along the electron diamagnetic direction for low n and may propagate along the ion direction for high n. At some positions near the steep gradient region, an ion instability is found which shows some characteristics of kinetic ballooning mode (KBM). These results will be compared to the results of E. Wang et al. and D. Fulton et al. in the same session. We thank R. Groebner and P. Snyder for providing experimental profiles and helpful discussions.

  15. ELMs and constraints on the H-mode pedestal: peeling-ballooning stability calculation and comparison with experiment

    International Nuclear Information System (INIS)

    Snyder, P.B.; Ferron, J.R.; Wilson, H.R.

    2004-01-01

    We review and test the peeling-ballooning model for edge localized modes (ELMs) and pedestal constraints, a model based upon theoretical analysis of magnetohydrodynamic (MHD) instabilities that can limit the pedestal height and drive ELMs. A highly efficient MHD stability code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including constraints on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependent on the density and temperature separately, rather than simply on the pressure. ELITE stability calculations are directly compared with experimental data for a series of plasmas in which the density is varied and ELM characteristics change. In addition, a technique is developed whereby peeling-ballooning pedestal constraints are calculated as a function of key equilibrium parameters via ELITE calculations using series of model equilibria. This technique is used to successfully compare the expected pedestal height as a function of density, triangularity and plasma current with experimental data. Furthermore, the technique can be applied for parameter ranges beyond the purview of present experiments, and we present a brief projection of peeling-ballooning pedestal constraints for burning plasma tokamak designs. (author)

  16. Threshold for sweepout from pedestal region of Mark III containment

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.

    1984-01-01

    The assessment of the consequences of highly unlikely severe accident sequences in boiling water reactors includes those sequences in which molten corium is postulated to meltthrough the reactor pressure vessel (RPV) lower head and enter the pedestal region beneath the vessel. If localized melt-through of the reactor vessel occurs at elevated primary system pressure, the ejection of molten corium from the vessel will be followed by a blowdown of steam and hydrogen. The gases flowing from the breached vessel constitute a source of driving forces capable of dispersing corium from the pedestal into other parts of the containment. The extent of the gas blowdown-driven sweepout process depends upon a number of factors including the primary system pressure at melt through, breach flow area, overall blowdown timescale, and the specific pedestal/containment geometry. A model is presented to predict whether or not the conditions of gas flow from the failed RPV are sufficient to cause sweepout of corium and/or water from the pedestal. The model is shown to predict the onset of sweepout in scale model, simulant material experiments and is applied to the investigation of sweepout in the full-size reactor system

  17. Control of edge localized modes by pedestal deposited impurity in the HL-2A tokamak

    Science.gov (United States)

    Zhang, Y. P.; Mazon, D.; Zou, X. L.; Zhong, W. L.; Gao, J. M.; Zhang, K.; Sun, P.; Dong, C. F.; Cui, Z. Y.; Liu, Yi; Shi, Z. B.; Yu, D. L.; Cheng, J.; Jiang, M.; Xu, J. Q.; Isobe, M.; Xiao, G. L.; Chen, W.; Song, S. D.; Bai, X. Y.; Zhang, P. F.; Yuan, G. L.; Ji, X. Q.; Li, Y. G.; Zhou, Y.; Delpech, L.; Ekedahl, A.; Giruzzi, G.; Hoang, T.; Peysson, Y.; Song, X. M.; Song, X. Y.; Li, X.; Ding, X. T.; Dong, J. Q.; Yang, Q. W.; Xu, M.; Duan, X. R.; Liu, Y.; the HL-2A Team

    2018-04-01

    Effect of the pedestal deposited impurity on the edge-localized mode (ELM) behaviour has been observed and intensively investigated in the HL-2A tokamak. Impurities have been externally seeded by a newly developed laser blow-off (LBO) system. Both mitigation and suppression of ELMs have been realized by LBO-seeded impurity. Measurements have shown that the LBO-seeded impurity particles are mainly deposited in the pedestal region. During the ELM mitigation phase, the pedestal density fluctuation is significantly increased, indicating that the ELM mitigation may be achieved by the enhancement of the pedestal transport. The transition from ELM mitigation to ELM suppression was triggered when the number of the LBO-seeded impurity exceeds a threshold value. During the ELM suppression phase, a harmonic coherent mode (HCM) is excited by the LBO-seeded impurity, and the pedestal density fluctuation is significantly decreased, the electron density is continuously increased, implying that HCM may reduce the pedestal turbulence, suppress ELMs, increase the pedestal pressure, thus extending the Peeling-Ballooning instability limit. It has been found that the occurance of the ELM mitigation and ELM suppression closely depends on the LBO laser spot diameter.

  18. Scaling studies of the H-mode pedestal

    International Nuclear Information System (INIS)

    Groebner, R.J.; Osborne, T.H.

    1998-01-01

    The structure and scaling of the H-mode pedestal are examined for discharges in the DIII-D tokamak. For typical conditions, the pedestal values of the ion and electron temperatures T i and T e are comparable. Measurements of main ion and C 6+ profiles indicate that the ion pressure gradient in the barrier is 50%--100% of the electron pressure gradient for deuterium plasmas. The magnitude of the pressure gradient in the barrier often exceeds the predictions of infinite-n ballooning mode theory by a factor of two. Moreover, via the bootstrap current, the finite pressure gradient acts to entirely remove ballooning stability limits for typical discharges. For a large dataset, the width of the pressure barrier δ is best described by the dimensionless scaling δ/R ∝ (β pol ped ) 0.4 where (β pol ped ) is the pedestal value of poloidal beta and R is the major radius. Scalings based on the poloidal ion gyroradius or the edge density gradient do not adequately describe overall trends in the data set and the propagation of the pressure barrier observed between edge-localized modes. The width of the T i barrier is quite variable and is not a good measure of the width of the pressure barrier

  19. The stabilizing effect of core pressure on the edge pedestal in MAST plasmas

    International Nuclear Information System (INIS)

    Chapman, I.T.; Simpson, J.; Saarelma, S.; Kirk, A.; O'Gorman, T.; Scannell, R.

    2015-01-01

    The pedestal pressure measured in Mega Ampere Spherical Tokamak plasmas has been shown to increase as the global plasma pressure increases. By deliberately suppressing the transition into the high-confinement regime, the core plasma pressure was systematically altered at the time of the first edge localized mode. Stability analysis shows that the enhanced Shafranov shift at higher core pressure stabilizes the ballooning modes driven by the pedestal pressure gradient, consequently allowing the pedestal to reach higher pressures. (paper)

  20. Improved understanding of physics processes in pedestal structure, leading to improved predictive capability for ITER

    International Nuclear Information System (INIS)

    Groebner, R.J.; Snyder, P.B.; Leonard, A.W.; Chang, C.S.; Maingi, R.; Boyle, D.P.; Diallo, A.; Hughes, J.W.; Davis, E.M.; Ernst, D.R.; Landreman, M.; Xu, X.Q.; Boedo, J.A.; Cziegler, I.; Diamond, P.H.; Eldon, D.P.; Callen, J.D.; Canik, J.M.; Elder, J.D.; Fulton, D.P.

    2013-01-01

    Joint experiment/theory/modelling research has led to increased confidence in predictions of the pedestal height in ITER. This work was performed as part of a US Department of Energy Joint Research Target in FY11 to identify physics processes that control the H-mode pedestal structure. The study included experiments on C-Mod, DIII-D and NSTX as well as interpretation of experimental data with theory-based modelling codes. This work provides increased confidence in the ability of models for peeling–ballooning stability, bootstrap current, pedestal width and pedestal height scaling to make correct predictions, with some areas needing further work also being identified. A model for pedestal pressure height has made good predictions in existing machines for a range in pressure of a factor of 20. This provides a solid basis for predicting the maximum pedestal pressure height in ITER, which is found to be an extrapolation of a factor of 3 beyond the existing data set. Models were studied for a number of processes that are proposed to play a role in the pedestal n e and T e profiles. These processes include neoclassical transport, paleoclassical transport, electron temperature gradient turbulence and neutral fuelling. All of these processes may be important, with the importance being dependent on the plasma regime. Studies with several electromagnetic gyrokinetic codes show that the gradients in and on top of the pedestal can drive a number of instabilities. (paper)

  1. Growth of doped and pure monocrystalline fibers and gradient crystals of REMO_4 compounds (RE = rare earths and M = Nb and Ta)

    International Nuclear Information System (INIS)

    Octaviano, E.S.; Levada, C.L.; Missiato, O.; Semenzato, M.J.; Silva, R.A.; Andreeta, J.P.

    2009-01-01

    A desirable alternative for a faster development, characterization and application of material of technological interest has been the growth of single crystal fibers by LHPG - Laser Heated Pedestal Growth. In this work it was reported the growth of pure, doped and gradient single crystal fibers of the chemical formulation REMO_4 (M = Nb e Ta, e RE= Rare Earth), characterized through primary techniques such as X-Ray and optical spectroscopy. (author)

  2. Pedestal width and ELM size identity studies in JET and DIII-D; implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, M N A; Lomas, P; Saarelma, S; Balboa, I; Flanagan, J; Giroud, C; Kempenaars, M [EURATOM/UKAEA Fusion Association, Culham Sc. Centre, Abingdon, OX14 3DB (United Kingdom); Osborne, T H; Groebner, R; Leonard, A; Snyder, P B; Bray, B [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Horton, L D [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); Frassinetti, L [Association EURATOM-VR, Alfven Laboratory, School of Electrical Engineering, KTH, Stockholm (Sweden); Nunes, I [Centro de Fusao Nuclear, Associacao EURATOM-IST, Lisboa (Portugal); Crombe, K [Department of Applied Physics, Ghent University, Rozier 44, 9000 Gent (Belgium); Giovannozzi, E [Associazione EURATOM-ENEA Sulla Fusione, Consorzio RFX Padova (Italy); Kohen, N [Association EURATOM-CEA, CEA/DSM/DRFC-Cadarache 13108, St Paul Durance (France); Loarte, A [ITER Organization, CS 90 046, F-13067 Saint Paul lez Durance Cedex (France); Loennroth, J, E-mail: Marc.Beurskens@jet.u [Association EURATOM-Tekes, Helsinki University of Technology (Finland)

    2009-12-15

    The dependence of the H-mode edge transport barrier width on normalized ion gyroradius (rho* = rho/a) in discharges with type I ELMs was examined in experiments combining data for the JET and DIII-D tokamaks. The plasma configuration as well as the local normalized pressure (beta), collisionality (nu*), Mach number and the ratio of ion and electron temperature at the pedestal top were kept constant, while rho* was varied by a factor of four. The width of the steep gradient region of the electron temperature (T{sub e}) and density (n{sub e}) pedestals normalized to machine size showed no or only a weak trend with rho*. A rho{sup 1/2} or rho{sup 1} dependence of the pedestal width, given by some theoretical predictions, is not supported by the current experiments. This is encouraging for the pedestal scaling towards ITER as it operates at lower rho* than existing devices. Some differences in pedestal structure and ELM behaviour were, however, found between the devices; in the DIII-D discharges, the n{sub e} and T{sub e} pedestal were aligned at high rho* but the n{sub e} pedestal shifted outwards in radius relative to T{sub e} as rho* decreases, while on JET the profiles remained aligned while rho* was scanned by a factor of two. The energy loss at an ELM normalized to the pedestal energy increased from 10% to 40% as rho* increased by a factor of two in the DIII-D discharges but no such variation was observed in the case of JET. The measured pedestal pressures and widths were found to be consistent with the predictions from modelling based on peeling-ballooning stability theory, and are used to make projections towards ITER

  3. L-H Power Threshold, Pedestal Stability and Confinement in JET with a Metallic Wall

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, M.; Alper, B.; Challis, C.; Flanagan, J.; Giroud, C.; Kempenaars, M.; Lomas, P.; Maslov, M.; Matthews, G.; Mayoral, M. L.; Snyder, P. B.; Saarelma, S., E-mail: marc.beurskens@ccfe.ac.uk [EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Frassinetti, L. [Division of Fusion Plasma Physics, Association EURATOM-VR , Stockholm (Sweden); Maggi, C.; Angioni, C.; Hobirk, J.; Neu, R. [IPP Garching, Garching (Germany); Calabro, G.; Buratti, P.; Giovannozzi, E. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Bourdelle, C.; Joffrin, E. [Association Euratom-CEA, IRFM, St-Paul-Lez-Durance (France); Brezinsek, S. [Forschungszentrum Juelich, Juelich (Germany); Groth, M. [Association EURATOM/Helsinki University of Technology, Espoo (Finland); Leyland, M. [Department of Physics, University of York, Heslington, York (United Kingdom); De la Luna, E. [Ciemat, Madrid (Spain); Mantica, P. [Istituto di Fisica del Plasma ' P. Caldirola' , Milano (Italy); Nunes, I. [Centro de Fusao Nuclear, Associacao EURATOM-IST, Lisboa (Portugal); Osborne, T. [General Atomics, San Diego (United States); De Vries, P. [FOM DIFFER, Nieuwegein (Netherlands)

    2012-09-15

    Full text: After the change-over from the Carbon-Fibre Composite (CFC) wall to an ITER-like metallic wall (ILW) the baseline type I ELMy H-mode scenario has been re-established in JET with the new plasma-facing materials Be and W. A key finding for ITER is that the power required to enter H-mode has reduced with respect to that in JET with the CFC wall. In JET with the ILW the power threshold to enter H-mode (P{sub L-H}) is below the international L-H power threshold scaling P{sub Martin-08}. The minimum threshold is P{sub L-H} = 1.8 MW compared to P{sub Martin-08} = 4 MW with a pedestal density of n{sub ped} = 2 x 10{sup 19} m{sup -3} in plasmas with I{sub p} = 2.0 MA, B{sub t} = 2.4 T. However the threshold depends strongly on density; using slow ion cyclotron heating (ICRH) power ramps P{sub L-H} varies from 1.8 to 4.5 MW in a range of lower and upper plasma triangularity ({delta}{sub L} = 0.32 - 0.4, {delta}{sub U} = 0.19 - 0.38). Stationary Type I ELMy H-mode operation has been re-established at both low and high triangularity with I{sub p} {<=} 2.5 MA, q{sub 95} = 2.8 - 3.6 and H{sub 98} {<=} 1. The achieved plasma collisionality is relatively high, in the range of 1 < v{sub eff} < 4 due to the required strong gas dosing. Stability analysis with the linear MHD stability code ELITE show that the pedestal is marginally unstable with respect to the Peeling Ballooning boundary. Due to the stabilising effect of the global pressure on the pedestal stability, a strong coupling between core and edge confinement is expected. Indeed in an H-mode profile database comparison with 119 CFC- (0.1 < v{sub eff} < 1) and 40 ILW-H-modes a strong coupling of the core versus edge confinement is found, independent of wall material. In addition, the pedestal predictions using the EPED predictive pedestal code coincide with the measured pedestal height over a wide range of normalised pressure 1.5 < {beta}{sub N} < 3.5. Due to the strong core-edge coupling, beneficial effects of core

  4. A unified treatment of kinetic effects in a tokamak pedestal

    International Nuclear Information System (INIS)

    Catto, Peter J; Landreman, Matt; Kagan, Grigory; Pusztai, Istvan

    2011-01-01

    We consider the effects of a finite pedestal radial electric field on ion orbits using a unified approach. We then employ these modified orbit results to retain finite E x B drift departures from flux surfaces in an improved drift-kinetic equation. The procedure allows us to make a clear distinction between transit averages and flux surface averages when solving this kinetic equation. The technique outlined here is intended to clarify and unify recent evaluations of the banana regime decrease and plateau regime alterations in the ion heat diffusivity; the reduction and possible reversal of the poloidal flow in the banana regime, and its augmentation in the plateau regime; the increase in the bootstrap current; and the enhancement of the residual zonal flow regulation of turbulence.

  5. Theory-based model for the pedestal, edge stability and ELMs in tokamaks

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Bateman, G.; Brennan, D.P.; Schnack, D.D.; Snyder, P.B.; Voitsekhovitch, I.; Kritz, A.H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G.W.; Pacher, H.D.

    2006-01-01

    An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD

  6. Control of bootstrap current in the pedestal region of tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Shaing, K. C. [Institute for Space and Plasma Sciences, National Cheng Kung University, Tainan City 70101, Taiwan (China); Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796 (United States); Lai, A. L. [Institute for Space and Plasma Sciences, National Cheng Kung University, Tainan City 70101, Taiwan (China)

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by the electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.

  7. Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers

    International Nuclear Information System (INIS)

    Kagan, Grigory; Catto, Peter J

    2008-01-01

    A technique is developed and applied for analyzing pedestal and internal transport barrier (ITB) regions in a tokamak by formulating a special version of gyrokinetics. In contrast to typical gyrokinetic treatments, canonical angular momentum is taken as the gyrokinetic radial variable rather than the radial guiding center location. Such an approach allows strong radial plasma gradients to be treated, while retaining zonal flow and neoclassical (including orbit squeezing) behavior and the effects of turbulence. The new, nonlinear gyrokinetic variables are constructed to higher order than is typically the case. The nonlinear gyrokinetic equation obtained is capable of handling such problems as collisional zonal flow damping with radial wavelengths comparable to the ion poloidal gyroradius, as well as zonal flow and neoclassical transport in the pedestal or ITB. This choice of gyrokinetic variables allows the toroidally rotating Maxwellian solution of the isothermal tokamak limit to be recovered. More importantly, we prove that a physically acceptable solution for the lowest order ion distribution function in the banana regime anywhere in a tokamak and, in particular, in the pedestal must be nearly this same isothermal Maxwellian solution. That is, the ion temperature variation scale must be much greater than the poloidal ion gyroradius. Consequently, in the banana regime the background radial ion temperature profile cannot have a pedestal similar to that of plasma density

  8. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  9. Evolution of Edge Pedestal Profiles Between ELMs

    Science.gov (United States)

    Floyd, J. P.; Stacey, W. M.; Groebner, R. J.

    2012-10-01

    The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).

  10. Advances in measurement and modeling of the high-confinement-mode pedestal on the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Hughes, J.W.; LaBombard, B.; Mossessian, D.A.; Hubbard, A.E.; Terry, J.; Biewer, T.

    2006-01-01

    Edge transport barrier (ETB) studies on the Alcator C-Mod tokamak [Phys. Plasmas 1, 1511 (1994)] investigate pedestal scalings and the radial transport of plasma and neutrals. Pedestal profiles show trends with plasma operational parameters such as total current I P . A ballooning-like I P 2 dependence is seen in the pressure gradient, despite calculated stability to ideal ballooning modes. A similar scaling is seen in the near scrape-off layer for both low-confinement (L-mode) and H-mode discharges, possibly due to electromagnetic fluid drift turbulence setting transport near the separatrix. Neutral density diagnosis allows an examination of D 0 fueling in H-modes, yielding profiles of effective particle diffusivity in the ETB, which vary as I P is changed. Edge neutral transport is studied using a one-dimensional kinetic treatment. In both experiment and modeling, the C-Mod density pedestal exhibits a weakly increasing pedestal density and a nearly invariant density pedestal width as the D 0 source rate increases. Identical modeling performed on pedestal profiles typical of DIII-D [Nucl. Fusion 42, 614 (2002)] reveal differences in pedestal scalings qualitatively similar to experimental results

  11. Effect of PFC recycling conditions on JET pedestal density

    International Nuclear Information System (INIS)

    Wiesen, S.; Brezinsek, S.; Dittmar, T.; Matveev, D.; Harting, D.; De la Luna, E.; Schmid, K.

    2016-01-01

    There is experimental evidence that the pedestal dynamics in type-I ELMy H-mode discharges is significantly affected by a change in the recycling conditions at the tungsten plasma-facing components (W-PFCs) after an ELM event. The integrated code JINTRAC has been employed to assess the impact of recycling conditions during type-I ELMs in JET ITER-like wall H-mode discharges. By employing a heuristic approach, a model to mimic the physical processes leading to formation and release (i.e. outgassing) of finite near-surface fuel reservoirs in W-PFCs has been implemented into the EDGE2D-EIRENE plasma-wall interaction code being part of JINTRAC. As main result it is shown, that a delay in the density pedestal build-up after an ELM event can be provoked by reduced recycling induced by depleted W-PFC particle near-surface reservoirs. However the pedestal temperature evolution is barely affected by the change in recycling parameters suggesting that the presented model is incomplete. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  12. Global simulation of edge pedestal micro-instabilities

    Science.gov (United States)

    Wan, Weigang; Parker, Scott; Chen, Yang

    2011-10-01

    We study micro turbulence of the tokamak edge pedestal with global gyrokinetic particle simulations. The simulation code GEM is an electromagnetic δf code. Two sets of DIII-D experimental profiles, shot #131997 and shot #136051 are used. The dominant instabilities appear to be two kinds of modes both propagating in the electron diamagnetic direction, with comparable linear growth rates. The low n mode is at the Alfven frequency range and driven by density and ion temperature gradients. The high n mode is driven by electron temperature gradient and has a low real frequency. A β scan shows that the low n mode is electromagnetic. Frequency analysis shows that the high n mode is sometimes mixed with an ion instability. Experimental radial electric field is applied and its effects studied. We will also show some preliminary nonlinear results. We thank R. Groebner, P. Snyder and Y. Zheng for providing experimental profiles and helpful discussions.

  13. Initial results of H-mode edge pedestal turbulence evolution with quadrature reflectometer measurements on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. [University of California, Los Angeles, CA 90095 (United States)]. E-mail: wangg@fusion.gat.com; Peebles, W.A. [University of California, Los Angeles, CA 90095 (United States); Doyle, E.J. [University of California, Los Angeles, CA 90095 (United States); Rhodes, T.L. [University of California, Los Angeles, CA 90095 (United States); Zeng, L. [University of California, Los Angeles, CA 90095 (United States); Nguyen, X. [University of California, Los Angeles, CA 90095 (United States); Osborne, T.H. [General Atomics, San Diego, CA 92186-5608 (United States); Snyder, P.B. [General Atomics, San Diego, CA 92186-5608 (United States); Kramer, G.J. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Groebner, R.J. [General Atomics, San Diego, CA 92186-5608 (United States); Burrell, K.H. [General Atomics, San Diego, CA 92186-5608 (United States); Leonard, A.W. [General Atomics, San Diego, CA 92186-5608 (United States); Fenstermacher, M.E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Strait, E.J. [General Atomics, San Diego, CA 92186-5608 (United States)

    2007-06-15

    High-resolution quadrature reflectometer measurements of density fluctuation levels have been obtained on DIII-D for H-mode edge pedestal studies. Initial results are presented from the L-H transition to the first ELM for two cases: (i) a low pedestal beta discharge, in which density turbulence in the pedestal has little change during the ELM-free phase, and (ii) a high pedestal beta discharge in which both density and magnetic turbulence are observed to increase before the first ELM. These high beta data are consistent with the existence of electromagnetic turbulence suggested by some transport models. During Type-I ELM cycles, when little magnetic turbulence can be observed, pedestal turbulence increases just after an ELM crash and then decreases before next ELM strikes, in contrast to a drop after ELM crash and then it re-grows when strong magnetic turbulence shows similar behavior. Clear ELM precursors are observed on {<=}20% of Type-I ELMs observed to date.

  14. Advances in Single-Crystal Fibers and Thin Rods Grown by Laser Heated Pedestal Growth

    Directory of Open Access Journals (Sweden)

    Gisele Maxwell

    2017-01-01

    Full Text Available Single-crystal fibers are an intermediate between laser crystals and doped glass fibers. They have the advantages of both guiding laser light and matching the efficiencies found in bulk crystals, which is making them ideal candidates for high-power laser and fiber laser applications. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc. and a polycrystalline clad of yttrium aluminum garnet (YAG that will exhibit good wave guiding properties. Direct growth or a combination of growth and cladding experiments are described. Scattering loss measurements at visible wavelengths, along with dopant profile characterization with damage threshold results, are also presented. For single-pass amplification, a single-pass linear gain of 7.4 was obtained for 29 nJ pulses of 5 ns duration at 1 MHz repetition rate. We also obtained a laser efficiency of over 58% in a diode-pumped configuration. These results confirm the potential for single-crystal fibers to overcome the limitations of the glass fibers commonly used in fiber lasers, making them prime candidates for high-power compact fiber lasers and amplifiers.

  15. Development of new pedestal temperature models with self-consistent magnetic shear and safety factor in BALDUR and JETTO codes

    International Nuclear Information System (INIS)

    Suwanna, S.; Onjun, T.; Wongpan, P.; Parail, V.; Poolyarat, N.; Picha, R.

    2009-01-01

    Full text: A formation of a steep pressure gradient region near the plasma edge, called the pedestal, is a main reason for an improved performance in H-mode plasma. In this work, new pedestal temperature models are developed based on different theoretical-based width concepts: flow shear stabilization width concept, magnetic and flow shear stabilization width concept, and diamagnetic stabilization width concept. In the BALDUR code, each pedestal width model is combined with a ballooning mode pressure gradient model to predict the pedestal temperature, which is a boundary condition needed to predict plasma profiles. In the JETTO code, an anomalous transport is suppressed within the pedestal region, which results in a formation of a steep pressure gradient region. The pedestal width is predicted using these theoretically based width concepts. The plasma profiles in the pedestal region are limited by ELM crashes, which can be triggered either by ballooning modes or by peeling modes, depending on which instability is destabilized first. It is found in the BALDUR simulations that the simulated pedestal temperature profiles agree well with experimental data in the region close to the pedestal, but show larger deviation in the core region. In a preliminary investigation, these models agree reasonably well with experiments, yielding overall RMS less than 20%. Furthermore, the model based flow shear stabilization matches very well data from both DIII-D and JET, while the model based on magnetic and flow shear stabilization over-predicts results from JET and under-predicts those from DIII-D. Other statistical analyses such a calculation of offset values, ratios of predicted pedestal (resp. core) temperatures to those from experiments are performed. (author)

  16. H-mode pedestal characteristics, ELMs, and energy confinement in ITER shape discharges on DIII-D

    International Nuclear Information System (INIS)

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-12-01

    The H-mode confinement enhancement factor, H, is found to be strongly correlated with the height of the edge pressure pedestal in ITER shape discharges. In discharges with Type I ELMs the pedestal pressure is set by the maximum pressure gradient before the ELM and the width of the H-mode transport barrier. The pressure gradient before Type I ELMs is found to scale as would be expected for a stability limit set by ideal ballooning modes, but with values significantly in excess of that predicted by stability code calculations. The width of the H-mode transport barrier is found to scale equally well with pedestal P(POL)(2/3) or B(POL)(1/2). The improved H value in high B(POL) discharges may be due to a larger edge pressure gradient and wider H-mode transport barrier consistent with their higher edge ballooning mode limit. Deuterium puffing is found to reduce H consistent with the smaller pedestal pressure which results from the reduced barrier width and critical pressure gradient. Type I ELM energy loss is found to be proportional to the change in the pedestal energy

  17. The effect of plasma collisionality on pedestal current density formation in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D M; Leonard, A W; Osborne, T H; Groebner, R J; West, W P; Burrell, K H [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)

    2006-05-15

    The evolution and performance limits for the pedestal in H-mode are dependent on the two main drive terms for instability: namely the edge pressure gradient and the edge current density. These terms are naturally coupled though neoclassical (Pfirsch-Schluter and bootstrap) effects. On DIII-D, local measurements of the edge current density are made using an injected lithium beam in conjunction with Zeeman polarimetry and compared with pressure profile measurements made with other diagnostics. These measurements have confirmed the close spatial and temporal correlation that exists between the measured current density and the edge pressure in H- and QH-mode pedestals, where substantial pressure gradients exist. In the present work we examine the changes in the measured edge current for DIII-D pedestals which have a range of values for the ion and electron collisionalities {l_brace}{upsilon}{sub i}*,{upsilon}{sub e}*{r_brace} due to fuelling effects. Such changes in the collisionality in the edge are expected to significantly alter the level of the bootstrap current from the value predicted from the collisionless limit and therefore should correspondingly alter the pedestal stability limits. We find a clear decrease in measured current as {nu} increases, even for discharges having similar edge pressure gradients.

  18. Growth and characterization of Yb:Ho:YAG single crystal fiber

    Science.gov (United States)

    Yang, Yilun; Ye, Linhua; Bao, Renjie; Li, Shanming; Zhang, Peixiong; Xu, Min; Hang, Yin

    2018-06-01

    High quality Yb and Ho co-doped Y3Al5O12 single crystal fibers have been successfully grown by the laser heated pedestal growth method of up to 124 mm in length and 450 μm in diameter for the first time. The results of inductively coupled plasma-atomic emission spectrometry analysis, X-ray diffraction and Raman spectroscopy reveal that the lattice structure and doping concentrations of the SCF are the same as that of the bulk. Scanning electron microscopy microphotographs shows that the fibers only have minor diameter fluctuations within 0.5%.

  19. Pedestal characteristics and MHD stability of H-mode plasmas in TCV

    International Nuclear Information System (INIS)

    Pitzschke, A.

    2011-01-01

    The tokamak à configuration variable (TCV) is unique in its ability to create a variety of plasma shapes and to heat the electron population in high density regimes using microwave power at the third harmonic of the electron cyclotron frequency. In the frame of this thesis, the impact of plasma shaping and heating on the properties of the edge transport barrier (ETB) in the high confinement mode (H-mode) was studied. This mode of operation is foreseen as one of the reference scenarios for ITER, the International Tokamak Experimental Reactor, which is being built to demonstrate the feasibility of thermonuclear fusion using magnetic confinement. A feature of H-mode regime operation are edge localized modes (ELMs), instabilities driven by the steep pressure gradients that form in the plasma edge region due to a transport barrier. During an ELM event, energy and particles are expelled from the plasma in a short burst. This will cause serious problems with respect to the heat load on plasma facing components in a tokamak of the size of ITER. Understanding of the phenomena associated with ELMs is thus required and dedicated investigations of their theory and experimental observations are carried out in many laboratories worldwide. This thesis presents several experimental and numerical investigations of tokamak behavior for configurations where the plasma edge plays an important role. From the experimental viewpoint, studies of transport barriers are challenging, as plasma parameters change strongly within a narrow spatial region. As part of the work presented here, the TCV Thomson scattering system was upgraded to meet the requirements for diagnosing electron temperature and density with high spatial resolution in the region of internal and external transport barriers. Simultaneously, the data analysis was significantly improved to cope with statistical uncertainties and alleviate possible systematic errors. For measurements of the time evolution of density and

  20. Hyraulic pedestal for a mine support

    Energy Technology Data Exchange (ETDEWEB)

    Nikonov, V IK; Gusel' nikov, L M; Iudin, N I; Miller, V B

    1981-04-30

    The goal of this invention is to provide additional brace support to a hydraulic pedestal and to provide for its operation in a given condition with steady resistance. In order to achieve this goal, the hydraulic accumulator is equipped with an intake valve with a valve lifter; this valve is built with a choke mounted on its axis. The hydraulic accumulator is built with a removable sectional upper section with a variable volume.

  1. Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall

    Science.gov (United States)

    Bowman, C.; Dickinson, D.; Horvath, L.; Lunniss, A. E.; Wilson, H. R.; Cziegler, I.; Frassinetti, L.; Gibson, K.; Kirk, A.; Lipschultz, B.; Maggi, C. F.; Roach, C. M.; Saarelma, S.; Snyder, P. B.; Thornton, A.; Wynn, A.; Contributors, JET

    2018-01-01

    The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, δ  =  0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electron-scale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region

  2. ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES

    International Nuclear Information System (INIS)

    WOLF, NS; PETRIE, TW; PORTER, GD; ROGNLIEN, TD; GROEBNER, RJ; MAKOWSKI, MA

    2002-01-01

    OAK A271 ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES. The 2-D fluid code UEDGE was used to analyze DIII-D experiments to determine the role of neutrals in core fueling, core impurities, and also the H-mode pedestal structure. The authors compared the effects of divertor closure on the fueling rate and impurity density of high-triangularity, H-mode plasmas. UEDGE simulations indicate that the decrease in both deuterium core fueling (∼ 15%-20%) and core carbon density (∼ 15%-30%) with the closed divertor compared to the open divertor configuration is due to greater divertor screening of neutrals. They also compared UEDGE results with a simple analytic model of the H-mode pedestal structure. The model predicts both the width and gradient of the transport barrier in n e as a function of the pedestal density. The more sophisticated UEDGE simulations of H-mode discharges corroborate the simple analytic model, which is consistent with the hypothesis that fueling processes play a role in H-mode transport barrier formation

  3. Growth of single-crystal YAG fiber optics.

    Science.gov (United States)

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  4. Ion orbit loss and pedestal width of H-mode tokamak plasmas in limiter geometry

    International Nuclear Information System (INIS)

    Xiao Xiaotao; Liu Lei; Zhang Xiaodong; Wang Shaojie

    2011-01-01

    A simple analytical model is proposed to analyze the effects of ion orbit loss on the edge radial electric field in a tokamak with limiter configuration. The analytically predicted edge radial electric field is consistent with the H-mode experiments, including the width, the magnitude, and the well-like shape. This model provides an explanation to the H-mode pedestal structure. Scaling of the pedestal width based on this model is proposed.

  5. Placed on a Pedestal: Famous Faces in Clay

    Science.gov (United States)

    Walkup, Nancy

    2010-01-01

    Artists have created portraits of people for thousands of years. In sculpture, a portrait of a person's face often includes the neck and part of the shoulders and chest. These artworks are called portrait busts. In this article, the author describes how her fifth-grade students created clay portrait busts on pedestal columns. The objectives are…

  6. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, A.; Battaglia, D. J.; Guttenfelder, W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Groebner, R. J.; Osborne, T. H.; Snyder, P. B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Rhodes, T. L. [Physics and Astronomy Department, P.O. Box 957099, Los Angeles, California 90095-7099 (United States); Smith, D. R. [Department of Engineering Physics, 1500 Engineering Dr., Madison, Wisconsin 53706 (United States); Canik, J. M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States)

    2015-05-15

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. Using fast Thomson scattering measurements, the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution including its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. The saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Thus, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.

  7. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    International Nuclear Information System (INIS)

    Diallo, A.; Battaglia, D. J.; Guttenfelder, W.; Groebner, R. J.; Osborne, T. H.; Snyder, P. B.; Rhodes, T. L.; Smith, D. R.; Canik, J. M.

    2015-01-01

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. Using fast Thomson scattering measurements, the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution including its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. The saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Thus, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant

  8. Impact of impurity seeding and divertor conditions on transitions, pedestal structure and ELMs

    Science.gov (United States)

    Dunne, M. G.

    2017-02-01

    Future devices will require a high scrape-off later (SOL) density and impurity seeding to avoid high-Z sputtering. However, these operational parameters are not included in present-day scaling laws, making extrapolations to larger devices difficult. As such, understanding the physics of such effects is vital in order to design the operational scenarios most favorable to high fusion gain. This review presents the favorable lowering of L-H transition power by changing to metal walled devices and sumarises the effects currently thought to be responsible for how SOL geometry can play a role in determining this threshold. Experimental observations on changes to the pedestal structure with main ion fuelling and low-, medium-, and high-Z impurity seeding are presented. These results, from several devices, show that main ion fuelling or high density operation can result in a lower pedestal top pressure, and hence reduced stored energy, while impurity seeding can recover this lost pressure. Particular focus is given to nitrogen seeded discharges and the recovery of pedestal parameters (notably high {{T}\\text{e,\\text{ped}}} ) in JET and AUG since the changeover to metal walls in these devices. Lithium seeding is also emerging as a strong actuator in pedestal dynamics, with results ranging from a prolonged inter-ELM period to completely ELM-free scenarios on different devices. ELM dynamics are also presented in each section, with nitrogen seeding offering a probe into the structure of the ELM and demonstrating the difference between the initial ELM crash, likely due to a sharp MHD event, and a prolonged second phase, the origin of which remains unkown. Finally, modelling of the pedestal in impurity seeded scenarios reveals a common effect in the position of the density profile. Either through mode excitation near to the separatrix or an altered fuelling profile, seeding of impurities results in an inward shift of the density profile. This inward shift improves MHD stability

  9. Growth of doped and pure monocrystalline fibers and gradient crystals of REMO{sub 4} compounds (RE = rare earths and M = Nb and Ta); Crescimento de fibras monocristalinas puras e dopadas, e cristais gradientes de compostos REMO{sub 4} (RE= terras raras e M = Nb e Ta)

    Energy Technology Data Exchange (ETDEWEB)

    Octaviano, E.S.; Levada, C.L.; Missiato, O., E-mail: esoctaviano@if.sc.usp.br [Academia da Forca Aerea, Campo Fontenelle, Pirassununga , SP (Brazil). Div. de Ensino; Semenzato, M.J.; Silva, R.A.; Andreeta, J.P. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica

    2009-07-01

    A desirable alternative for a faster development, characterization and application of material of technological interest has been the growth of single crystal fibers by LHPG - Laser Heated Pedestal Growth. In this work it was reported the growth of pure, doped and gradient single crystal fibers of the chemical formulation REMO{sub 4} (M = Nb e Ta, e RE= Rare Earth), characterized through primary techniques such as X-Ray and optical spectroscopy. (author)

  10. Experimental and computational evaluation of neutrals in the Alcator C-Mod edge pedestal

    Science.gov (United States)

    Hughes, J. W.; Mossessian, D.; Labombard, B.; Terry, J.

    2004-11-01

    Pedestal-forming edge transport barriers (ETBs) in tokamak plasmas and the physics governing them are linked to the enhancement of confinement obtained in H-mode plasmas. Studies on Alcator C-Mod employ experimental measurements and simple 1-D transport models in order to better understand ETB physics. We examine the influences of ionization and charge exchange on the pedestals in electron density and temperature. Routine measurements from edge Thomson scattering (ETS) give pedestal scalings with global plasma parameters, while individual ETS profiles are combined with scanning Langmuir probe data and optical D_α emissivity measurements to give atomic density profiles and the associated radial distribution of the ionization source rate. From H-mode profiles of these quantities a well in effective plasma diffusivity is calculated, and is shown to systematically vary as the confinement regime is varied from ELM-free to EDA. Experimental work is supplemented with modeling and computation of edge neutral transport via KN1D, a kinetic solver for atomic and molecular distribution functions in slab geometry. The level of agreement between experiment and model is encouraging.

  11. DSS 13 phase 2 pedestal room microwave layout

    Science.gov (United States)

    Cwik, T.; Chen, J. C.

    1991-01-01

    The design and predicted performance is described of the microwave layout for three band operation of the beam waveguide antenna Deep Space Station 13. Three pedestal room microwave candidate layout designs were produced for simultaneous X/S and X/Ka band operation. One of the three designs was chosen based on given constraints, and for this design the microwave performance was estimated.

  12. Kinetic neutral transport effects in the pedestal of H-mode discharges in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Owen, L.W. [Oak Ridge National Laboratory, Building 5700, MS-6169, Oak Ridge, TN 37831-8072 (United States)]. E-mail: owenlw@ornl.gov; Groebner, R.J. [General Atomics, P.O. Box 85608, San Diego, CA 92186-9784 (United States); Mahdavi, M.A. [General Atomics, P.O. Box 85608, San Diego, CA 92186-9784 (United States)

    2005-03-01

    A series of hydrogen and deuterium discharges are analyzed with fluid plasma and Monte Carlo neutrals codes. Comparison of poloidally averaged radial distributions of core neutral density and ionization with analytic solutions of 1-D plasma and neutrals continuity equations support the hypothesis that the width of the density pedestal is largely determined by the neutral source. The increased neutral penetration depth that arises from multiple charge exchange can be included in the analytic model with radially dependent scale lengths. The scale length in the analytic model depends on the neutral fluid velocity which increases across the divertor and pedestal as the neutral atoms charge exchange with the higher temperature background ions. The neutral penetration depth and corresponding density pedestal width depend sensitively on the neutral temperature and the degree of ion-neutral temperature equilibration.

  13. Characterisation of the ELM synchronized H-mode edge pedestal in ASDEX upgrade and DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Philip A.; Wolfrum, Elisabeth; Guenter, Sibylle; Kurzan, Bernd; Zohm, Hartmut [Max Planck Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Groebner, Rich; Osborne, Tom H.; Ferron, John; Snyder, Philip B. [General Atomics, San Diego, CA (United States); Dunne, Mike G. [Department of Physics, University College Cork, Association Euratom-DCU, Cork (Ireland); Collaboration: ASDEX Upgrade Team; DIII-D Team

    2011-07-01

    The results of a large database of edge pedestal data from type-I ELMy H-mode discharges from ASDEX Upgrade and DIII-D are presented. The data from high resolution edge diagnostics of both devices is analysed with the same analysis code in order to avoid systematic differences. Furthermore, sophisticated equilibrium reconstructions are used to asses uncertainties which arise during mapping from 2D real space coordinates to 1D flux coordinates. ELM synchronization allows the study of the pedestal structure at the ELM stability boundary. The pedestal is characterized by its top value, the gradient and the width. A large parameter range is covered by the two devices. Over this parameter range the profile shape of edge electron density differs from that of the temperature, irrespective of the device. However, the resulting electron pressure profile shape remains similar for all analysed H-Mode discharges.

  14. A two term model of the confinement in Elmy H-modes using the global confinement and pedestal databases

    International Nuclear Information System (INIS)

    2003-01-01

    Two different physical models of the H-mode pedestal are tested against the joint pedestal-core database. These models are then combined with models for the core and shown to give a good fit to the ELMy H-mode database. Predictions are made for the next step tokamaks ITER and FIRE. (author)

  15. Calorimeter measures high nuclear heating rates and their gradients across a reactor test hole

    Science.gov (United States)

    Burwell, D.; Coombe, J. R.; Mc Bride, J.

    1970-01-01

    Pedestal-type calorimeter measures gamma-ray heating rates from 0.5 to 7.0 watts per gram of aluminum. Nuclear heating rate is a function of cylinder temperature change, measured by four chromel-alumel thermocouples attached to the calorimeter, and known thermoconductivity of the tested material.

  16. Using LGI experiments to achieve better understanding of pedestal-edge coupling in NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    PowerPoint presentation. Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.

  17. Effect of heat-treatment on elevated temperature fatigue-crack growth behavior of two heats of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1978-05-01

    The room temperature and elevated temperature fatigue-crack growth behavior of two heats of Alloy 718 was characterized within a linear-elastic fracture mechanics framework. Two different heat-treatments were used: the ''conventional'' (ASTM A637) treatment, and a ''modified'' heat-treatment designed to improve the toughness of Alloy 718 base metal and weldments. Heat-to-heat variations in the fatigue-crack propagation behavior were observed in the conventionally-treated material. On the other hand, no heat-to-heat variations were observed in the modified condition. Furthermore, both heats of Alloy 718 exhibited superior fatigue-crack growth resistance when given the modified heat-treatment. Electron fractographic examination of Alloy 718 fatigue fracture surfaces revealed that the operative crack growth mechanisms were dependent on heat-treatment, temperature, and ΔK level

  18. A fluid model for the edge pressure pedestal height and width in tokamaks based on the transport constraint of particle, energy, and momentum balance

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M., E-mail: weston.stacey@nre.gatech.edu [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2016-06-15

    A fluid model for the tokamak edge pressure profile required by the conservation of particles, momentum and energy in the presence of specified heating and fueling sources and electromagnetic and geometric parameters has been developed. Kinetics effects of ion orbit loss are incorporated into the model. The use of this model as a “transport” constraint together with a “Peeling-Ballooning (P-B)” instability constraint to achieve a prediction of edge pressure pedestal heights and widths in future tokamaks is discussed.

  19. Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement

    Science.gov (United States)

    Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; Sugiyama, L. E.; Ferraro, N. M.; Lyons, B. C.; McKee, G. R.; Paz-Soldan, C.; Wingen, A.; Zeng, L.

    2018-05-01

    Small 3D perturbations to the magnetic field in DIII-D ( δB /B ˜2 ×10-4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.

  20. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-04-15

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

  1. Heat pipe development

    Science.gov (United States)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  2. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  3. Semi-analytical study of the tokamak pedestal density profile in a single-null diverted plasma with puffing-recycling gas sources

    Science.gov (United States)

    Shi, Bingren

    2010-10-01

    The tokamak pedestal density structure is generally studied using a diffusion-dominant model. Recent investigations (Stacey and Groebner 2009 Phys. Plasmas 16 102504) from first principle based physics have shown a plausible existence of large inward convection in the pedestal region. The diffusion-convection equation with rapidly varying convection and diffusion coefficients in the near edge region and model puffing-recycling neutral particles is studied in this paper. A peculiar property of its solution for the existence of the large convection case is that the pedestal width of the density profile, qualitatively different from the diffusion-dominant case, depends mainly on the width of the inward convection and only weakly on the neutral penetration length and its injection position.

  4. Semi-analytical study of the tokamak pedestal density profile in a single-null diverted plasma with puffing-recycling gas sources

    Energy Technology Data Exchange (ETDEWEB)

    Shi Bingren, E-mail: shibr@swip.ac.c [Southwestern Institute of Physics, PO Box 432, Chengdu, Sichuan 610041 (China)

    2010-10-15

    The tokamak pedestal density structure is generally studied using a diffusion-dominant model. Recent investigations (Stacey and Groebner 2009 Phys. Plasmas 16 102504) from first principle based physics have shown a plausible existence of large inward convection in the pedestal region. The diffusion-convection equation with rapidly varying convection and diffusion coefficients in the near edge region and model puffing-recycling neutral particles is studied in this paper. A peculiar property of its solution for the existence of the large convection case is that the pedestal width of the density profile, qualitatively different from the diffusion-dominant case, depends mainly on the width of the inward convection and only weakly on the neutral penetration length and its injection position.

  5. A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Sung, C.; Peebles, W. A. [Physics and Astronomy Department, University of California, Los Angeles, California 90095 (United States); Bobrek, M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6006 (United States)

    2016-11-15

    A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layer density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.

  6. The Influence of Slowly Varying Mass on Severity of Dynamics Nonlinearity of Bearing-Rotor Systems with Pedestal Looseness

    Directory of Open Access Journals (Sweden)

    Mian Jiang

    2018-01-01

    Full Text Available Nonlinearity measure is proposed to investigate the influence of slowly varying mass on severity of dynamics nonlinearity of bearing-rotor systems with pedestal looseness. A nonlinear mathematical model including the effect of slowly varying disk mass is developed for a bearing-rotor system with pedestal looseness. The varying of equivalent disk mass is described by a cosine function, and the amplitude coefficient is used as a control parameter. Then, nonlinearity measure is employed to quantify the severity of dynamics nonlinearity of bearing-rotor systems. With the increasing of looseness clearances, the curves that denote the trend of nonlinearity degree are plotted for each amplitude coefficient of mass varying. It can be concluded that larger amplitude coefficients of the disk mass varying will have more influence on the severity of dynamics nonlinearity and generation of chaotic behaviors in rotor systems with pedestal looseness.

  7. High-Precision Dispensing of Nanoliter Biofluids on Glass Pedestal Arrays for Ultrasensitive Biomolecule Detection.

    Science.gov (United States)

    Chen, Xiaoxiao; Liu, Yang; Xu, QianFeng; Zhu, Jing; Poget, Sébastien F; Lyons, Alan M

    2016-05-04

    Precise dispensing of nanoliter droplets is necessary for the development of sensitive and accurate assays, especially when the availability of the source solution is limited. Conventional approaches are limited by imprecise positioning, large shear forces, surface tension effects, and high costs. To address the need for precise and economical dispensing of nanoliter volumes, we developed a new approach where the dispensed volume is dependent on the size and shape of defined surface features, thus freeing the dispensing process from pumps and fine-gauge needles requiring accurate positioning. The surface we fabricated, called a nanoliter droplet virtual well microplate (nVWP), achieves high-precision dispensing (better than ±0.5 nL or ±1.6% at 32 nL) of 20-40 nL droplets using a small source drop (3-10 μL) on isolated hydrophilic glass pedestals (500 μm on a side) bonded to arrays of polydimethylsiloxane conical posts. The sharp 90° edge of the glass pedestal pins the solid-liquid-vapor triple contact line (TCL), averting the wetting of the glass sidewalls while the fluid is prevented from receding from the edge. This edge creates a sufficiently large energy barrier such that microliter water droplets can be poised on the glass pedestals, exhibiting contact angles greater >150°. This approach relieves the stringent mechanical alignment tolerances required for conventional dispensing techniques, shifting the control of dispensed volume to the area circumscribed by the glass edge. The effects of glass surface chemistry and dispense velocity on droplet volume were studied using optical microscopy and high-speed video. Functionalization of the glass pedestal surface enabled the selective adsorption of specific peptides and proteins from synthetic and natural biomolecule mixtures, such as venom. We further demonstrate how the nVWP dispensing platform can be used for a variety of assays, including sensitive detection of proteins and peptides by fluorescence

  8. Edge stability and pedestal profile sensitivity of snowflake diverted equilibria in the TCV Tokamak

    International Nuclear Information System (INIS)

    Medvedev, S.Yu.; Ivanov, A.A.; Martynov, A.A.; Poshekhonov, Yu.Yu.; Behn, R.; Martin, Y.R.; Moret, J.M.; Piras, F.; Pitzschke, A.; Pochelon, A.; Sauter, O.; Villard, L.

    2010-01-01

    A second order null divertor (snowflake) has been successfully created and controlled in the TCV tokamak[1] (F. Piras et al., Plasma Phys. Control. Fusion, 2009). The results of ideal MHD edge stability computations show an enhancement of the edge stability properties of the snowflake equilibria compared to standard x-point configurations[2] (S. Yu. Medvedev et al., 36th EPS Conference on Plasma Physics, 2009). However, a sensitivity study of the stability limits to variations of the pedestal profiles is essential for making conclusions about possibilities of ELM control in snowflake plasmas. Variations of the edge stability and beta limits for several types of snowflake equilibria, different values of triangularity and various pedestal profiles are investigated (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Bacterial growth in solar heating prepared and traditional tanks

    International Nuclear Information System (INIS)

    Bagh, L.K.

    2000-01-01

    In Denmark it has been put forward that the introduction of solar heating prepared tanks into the building regulation can cause increased nuisance with respect to bacterial growth in hot water for domestic use. The reason is that solar heating prepared tanks have a larger volume and another form of operation than traditional tanks. In this investigation the difference between bacterial growth in solar heating prepared and traditional tanks was measured by heterotrophic plate counts as a general parameter for microbiological growth. There was no significant difference between the bacterial number in the solar heating prepared tanks and in the traditional tanks, either for bacteria determined at 37 deg. C, 44 deg. C, 55 deg. C or at 65 deg. C. The hot water for domestic use from the solar heating prepared tanks and the traditional tanks had in most cases a bacterial number below 1.000 CFU/ml, and all tests had a bacterial number below 10.000 CFU/ml. The number of bacteria must be considered low seen in relation to the other measurements of bacteria in hot water for domestic use, particularly in larger block of flats. (au)

  10. Global and pedestal confinement in JET with a Be/W metallic wall

    Czech Academy of Sciences Publication Activity Database

    Beurskens, M.N.A.; Frassinetti, L.; Challis, C.; Giroud, C.; Saarelma, S.; Alper, B.; Angioni, C.; Bílková, Petra; Bourdelle, C.; Brezinsek, S.; Buratti, P.; Calabrò, G.; Eich, E.; Flanagan, J.; Giovannozzi, E.; Groth, M.; Hobirk, J.; Joffrin, E.; Leyland, M.J.; Lomas, P.; De La Luna, E.; Kempenaars, M.; Maddison, G.; Maggi, C.; Mantica, P.; Maslov, M.; Matthews, G.; Mayoral, M.-L.; Neu, R.; Nunes, I.; Osborne, T.; Rimini, F.; Scannell, R.; Solano, E.R.; Snyder, P.B.; Voitsekhovitch, I.; de Vries, P.

    2014-01-01

    Roč. 54, č. 4 (2014), 043001-043001 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : pedestal * confinement * nitrogen * radiation * tokamak * metal wall Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/4/043001/pdf/0029-5515_54_4_043001.pdf

  11. Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Directory of Open Access Journals (Sweden)

    M. Bernert

    2017-08-01

    Applying these seed impurities for highly radiative scenarios impacts local plasma parameters and alters the impurity transport in the pedestal region. Thus, plasma confinement and stability can be affected. A proper understanding of the effects by these impurities is required in order to predict the applicability of such scenarios for future devices.

  12. Genetic evaluations for growth heat tolerance in Angus cattle.

    Science.gov (United States)

    Bradford, H L; Fragomeni, B O; Bertrand, J K; Lourenco, D A L; Misztal, I

    2016-10-01

    The objectives were to assess the impact of heat stress and to develop a model for genetic evaluation of growth heat tolerance in Angus cattle. The American Angus Association provided weaning weight (WW) and yearling weight (YW) data, and records from the Upper South region were used because of the hot climatic conditions. Heat stress was characterized by a weaning (yearling) heat load function defined as the mean temperature-humidity index (THI) units greater than 75 (70) for 30 (150) d prior to the weigh date. Therefore, a weaning (yearling) heat load of 5 units corresponded to 80 (75) for the corresponding period prior to the weigh date. For all analyses, 82,669 WW and 69,040 YW were used with 3 ancestral generations in the pedigree. Univariate models were a proxy for the Angus growth evaluation, and reaction norms using 2 B-splines for heat load were fit separately for weaning and yearling heat loads. For both models, random effects included direct genetic, maternal genetic, maternal permanent environment (WW only), and residual. Fixed effects included a linear age covariate, age-of-dam class (WW only), and contemporary group for both models and fixed regressions on the B-splines in the reaction norm. Direct genetic correlations for WW were strong for modest heat load differences but decreased to less than 0.50 for large differences. Reranking of proven sires occurred for only WW direct effects for the reaction norms with extreme heat load differences. Conversely, YW results indicated little effect of heat stress on genetic merit. Therefore, weaning heat tolerance was a better candidate for developing selection tools. Maternal heritabilities were consistent across heat loads, and maternal genetic correlations were greater than 0.90 for nearly all heat load combinations. No evidence existed for a genotype × environment interaction for the maternal component of growth. Overall, some evidence exists for phenotypic plasticity for the direct genetic effects of WW

  13. Fatigue crack growth retardation in spot heated mild steel sheet

    Indian Academy of Sciences (India)

    A fatigue crack can be effectively retarded by heating a spot near the crack tip under nil remote stress condition. The subcritical spot heating at a proper position modifies the crack growth behaviour in a way, more or less, similar to specimen subjected to overload spike. It is observed that the extent of crack growth retardation ...

  14. Dynamics of the pedestal structure in the edge transport barrier in CHS

    International Nuclear Information System (INIS)

    Kado, S.; Oishi, T.; Tanaka, S.

    2006-10-01

    The dynamic behavior of the edge pedestal in the edge transport barrier (ETB) formation discharge (H-mode) in the compact helical system (CHS) is investigated. Edge Harmonic Oscillations (EHOs) having a fundamental frequency of 2-4.5 kHz, depending on the magnetic configuration, and their second harmonic are observed when the density gradient of the pedestal reaches a certain threshold. There are two groups of so-called EHOs in the CHS. One is located in the edge region where the ι=1 surface exists, and the other is in the core region (although we also call it EHO in this paper) around the half radius where the ι=0.5 surface exists. The magnetic probe signal is revealed to reflect the latter mode, showing the poloidal mode number of 2, while that for the edge BES channel is 1. The density build-up saturates simultaneously with the increase of EHOs in the edge BES channel, which suggests that to a considerable extend the mode increases the particle transport. (author)

  15. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    James, L.A.; Mills, W.J.

    1981-05-01

    Gas-tungsten-arc weldments in Alloy 718 were studied in fatigue-crack growth test conducted at five temperatures over the range 24--649 degree C. In general, crack growth rates increased with increasing temperature, and weldments given the ''conventional'' post-weld heat-treatment generally exhibited crack growth rates that were higher than for weldments given the ''modified'' (INEL) heat-treatment. Limited testing in the as-welded condition revealed crack growth rates significantly lower than observed for the heat-treated cases, and this was attributed to residual stresses. Three different heats of filler wire were utilized, and no heat-to-heat variations were noted. 23 refs., 9 figs., 6 tabs

  16. The H-mode pedestal, ELMs and TF ripple effects in JT-60U/JET dimensionless identity experiments

    International Nuclear Information System (INIS)

    Saibene, G.; Oyama, N.; Loennroth, J.; Andrew, Y.; Luna, E. de la; Giroud, C.; Huysmans, G.T.A.; Kamada, Y.; Kempenaars, M.A.H.; Loarte, A.; Donald, D. Mc; Nave, M.M.F.; Meiggs, A.; Parail, V.; Sartori, R.; Sharapov, S.; Stober, J.; Suzuki, T.; Takechi, M.; Toi, K.; Urano, H.

    2007-01-01

    This paper summarizes results of dimensionless identity experiments in JT-60U and JET, aimed at the comparison of the H-mode pedestal and ELM behaviour in the two devices. Given their similar size, dimensionless matched plasmas are also similar in their dimensional parameters (in particular, the plasma minor radius a is the same in JET and JT-60U). Power and density scans were carried out at two values of I p , providing a q scan (q 95 = 3.1 and 5.1) with fixed (and matched) toroidal field. Contrary to initial expectations, a dimensionless match between the two devices was quite difficult to achieve. In general, p ped in JT-60U is lower than in JET and, at low q, the pedestal pressure of JT-60U with a Type I ELMy edge is matched in JET only in the Type III ELM regime. At q 95 = 5.1, a dimensionless match in ρ*, ν* and β p,ped is obtained with Type I ELMs, but only with low power JET H-modes. These results motivated a closer investigation of experimental conditions in the two devices, to identify possible 'hidden' physics that prevents obtaining a good match of pedestal values over a large range of plasmas parameters. Ripple-induced ion losses of the medium bore plasma used in JT-60U for the similarity experiments are identified as the main difference with JET. The magnitude of the JT-60U ripple losses is sufficient to induce counter-toroidal rotation in co-injected plasma. The influence of ripple losses was demonstrated at q 95 = 5.1: reducing ripple losses by ∼2 (from 4.3 to 1.9 MW) by replacing positive with negative neutral beam injection at approximately constant P in resulted in an increased p ped in JT-60U, providing a good match to full power JET H-modes. At the same time, the counter-toroidal rotation decreased. Physics mechanisms relating ripple losses to pedestal performance are not yet identified, and the possible role of velocity shear in the pedestal stability, as well as the possible influence of ripple on thermal ion transport are briefly

  17. Characterization and parametric dependencies of low wavenumber pedestal turbulence in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.; Fonck, R. J.; McKee, G. R.; Thompson, D. S. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Bell, R. E.; Diallo, A.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B. P.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-05-15

    The spherical torus edge region is among the most challenging regimes for plasma turbulence simulations. Here, we measure the spatial and temporal properties of ion-scale turbulence in the steep gradient region of H-mode pedestals during edge localized mode-free, MHD quiescent periods in the National Spherical Torus Experiment. Poloidal correlation lengths are about 10 ρ{sub i}, and decorrelation times are about 5 a/c{sub s}. Next, we introduce a model aggregation technique to identify parametric dependencies among turbulence quantities and transport-relevant plasma parameters. The parametric dependencies show the most agreement with transport driven by trapped-electron mode, kinetic ballooning mode, and microtearing mode turbulence, and the least agreement with ion temperature gradient turbulence. In addition, the parametric dependencies are consistent with turbulence regulation by flow shear and the empirical relationship between wider pedestals and larger turbulent structures.

  18. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching

    Science.gov (United States)

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-01

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  19. Influence of gold nanoparticles on the 805 nm gain in Tm3+/Yb3+ codoped PbO-GeO2 pedestal waveguides

    Science.gov (United States)

    de Assumpção, T. A. A.; Camilo, M. E.; Alayo, M. I.; da Silva, D. M.; Kassab, L. R. P.

    2017-10-01

    The production and characterization of pedestal waveguides based on PbO-GeO2 amorphous thin films codoped with Tm3+/Yb3+, with and without gold nanoparticles (NPs), are reported. Pedestal structure was obtained by conventional photolithography and plasma etching. Tm3+/Yb3+ codoped PGO amorphous thin film was obtained by RF Magnetron Sputtering deposition and used as core layer in the pedestal optical waveguide. The minimum propagation losses in the waveguide were 3.6 dB/cm at 1068 nm. The internal gain at 805 nm was enhanced and increased to 8.67 dB due to the presence of gold NPs. These results demonstrate for the first time that Tm3+/Yb3+ codoped PbO-GeO2 waveguides are promising for first telecom window and integrated photonics, especially for applications on fiber network at short distances.

  20. International workshop of the Confinement Database and Modelling Expert Group in collaboration with the Edge and Pedestal Physics Expert Group

    International Nuclear Information System (INIS)

    Cordey, J.; Kardaun, O.

    2001-01-01

    A Workshop of the Confinement Database and Modelling Expert Group (EG) was held on 2-6 April at the Plasma Physics Research Center of Lausanne (CRPP), Switzerland. Presentations were held on the present status of the plasma pedestal (temperature and energy) scalings from an empirical and theoretical perspective. An integrated approach to modelling tokamaks incorporating core transport, edge pedestal and SOL, together with a model for ELMs was presented by JCT. New experimental data on on global H-mode confinement were discussed and presentations on L-H threshold power were made

  1. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    International Nuclear Information System (INIS)

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s −1 ) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening

  2. Observation of ion scale fluctuations in the pedestal region during the edge-localized-mode cycle on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, A.; Kramer, G. J.; Bell, R. E.; Guttenfelder, W.; LeBlanc, B. P.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Smith, D. R.; McKee, G. J. [Departments of Engineering Physics and Physics, University of Wisconsin, Madison, Wisconsin (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 (United States); Fonck, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Departments of Engineering Physics and Physics, University of Wisconsin, Madison, Wisconsin (United States)

    2013-01-15

    Characterization of the spatial structure of turbulence fluctuations during the edge localized mode cycle in the pedestal region is reported. Using the beam emission spectroscopy and the correlation reflectometry systems, measurements show spatial structure-k{sub Up-Tack }{rho}{sub i}{sup ped}-ranging from 0.2 to 0.7 propagating in the ion diamagnetic drift direction at the pedestal top. These propagating spatial scales are found to be anisotropic and consistent with ion-scale microturbulence of the type ion temperature gradient and/or kinetic ballooning modes.

  3. The L-H transition and the stability of the edge pedestal

    International Nuclear Information System (INIS)

    Rogers, B.N.; Drake, J.F.; Zeiler, A.

    2001-01-01

    Based on three-dimensional simulations of the Braginskii equations, we identify two main parameters which control transport in the edge of tokamaks: the MHD ballooning parameter and a diamagnetic parameter. The space defined by these parameters delineates regions where typical L-mode levels of transport arise, where the transport is catastrophically large (density limit) and where the plasma spontaneously forms a transport barrier (H-mode). Ion diamagnetic effects allow the edge pedestal to steepen well beyond the first ideal MHD stability boundary. (author)

  4. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    Energy Technology Data Exchange (ETDEWEB)

    Cuttitta, Christina M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314 (United States); Ericson, Daniel L. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); University at Buffalo, SUNY, 12 Capen Hall, Buffalo, NY 14260 (United States); Scalia, Alexander [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 11973-5000 (United States); Roessler, Christian G. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Teplitsky, Ella [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Stony Brook University, Stony Brook, NY 11794-5215 (United States); Joshi, Karan [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); PEC University of Technology, Chandigarh (India); Campos, Olven [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33414 (United States); Agarwal, Rakhi; Allaire, Marc [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Orville, Allen M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Sweet, Robert M.; Soares, Alexei S., E-mail: soares@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s{sup −1}) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  5. Impacts of urban growth and heat waves events on the urban heat island in Bucharest city

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Dida, Adrian I.

    2016-10-01

    This study investigated the influences of urban growth and heat waves events on Urban Heat Island in relationship with several biophysical variables in Bucharest metropolitan area of Romania through satellite and in-situ monitoring data. Remote sensing data from Landsat TM/ETM+ and time series MODIS Terra/Aqua sensors have been used to assess urban land cover- temperature interactions over period between 2000 and 2016 years. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters (surface albedo, precipitations, wind intensity and direction) have been analyzed. Results show that in the metropolitan area ratio of impervious surface in Bucharest increased significantly during investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  6. Estimation of Kubo number and correlation length of fluctuating magnetic fields and pressure in BOUT + + edge pedestal collapse simulation

    Science.gov (United States)

    Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.

    2017-10-01

    Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.

  7. Integrated simulation of ELM energy loss determined by pedestal MHD and SOL transport

    International Nuclear Information System (INIS)

    Hayashi, N.; Takizuka, T.; Ozeki, T.; Aiba, N.; Oyama, N.

    2007-01-01

    An integrated simulation code TOPICS-IB based on a transport code with a stability code for the peeling-ballooning modes and a scrape-off-layer (SOL) model has been developed to clarify self-consistent effects of edge localized modes (ELMs) and the SOL on the plasma performance. Experimentally observed collisionality dependence of the ELM energy loss is found to be caused by both the edge bootstrap current and the SOL transport. The bootstrap current decreases with an increase in collisionality and intensifies the magnetic shear at the pedestal region. The increase in the magnetic shear reduces the width of eigenfunctions of unstable modes, which results in the reduction of both the area of the ELM enhanced transport and the ELM enhanced transport near the separatrix. On the other hand, when an ELM crash occurs, the energy flows into the SOL and the SOL temperature rapidly increases. The increase in the SOL temperature lowers the ELM energy loss due to the flattening of the radial edge gradient. The parallel electron heat conduction determines how the SOL temperature increases. For higher collisionality, the conduction becomes lower and the SOL electron temperature increases more. By the above two mechanisms, the ELM energy loss decreases with increasing collisionality

  8. Experimental investigation of heat transport and divertor loads of fusion plasmas in all metal ASDEX upgrade and JET

    International Nuclear Information System (INIS)

    Sieglin, Bernhard A.

    2014-01-01

    This work presents divertor heat load studies conducted at two of the largest tokamaks currently in operation, ASDEX Upgrade and the Joint European Torus (JET). A commonly agreed empirical scaling for the power fall-off length in H-mode obtained in carbon devices is validated in JET with the ILW. Bohm and Gyro-Bohm like models are identified as possible candidates describing the divertor broadening. Quantities for the assessment of the thermal load induced by transient heat loads are defined. JET with the ILW exhibits an on average longer ELM duration as compared to the carbon wall. For identical pedestal conditions the ELM durations in both cases are found to be the same within error bars. The energy fluency is found to depend mainly on the pedestal pressure with a weak dependence on the relative loss in stored energy. This is noteworthy since the current extrapolation to ITER assumes a linear dependence on the relative ELM size.

  9. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    Science.gov (United States)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the

  10. Development of silicon growth techniques from melt with surface heating

    Science.gov (United States)

    Kravtsov, Anatoly

    2018-05-01

    The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.

  11. Effect of soil-structure interaction on the seismic behaviour of pedestal-structure system in large dish antennas

    Directory of Open Access Journals (Sweden)

    Bahador Pourhatami

    2017-12-01

    Full Text Available Regarding the progressive improvement in the territory of Space Technology in all developed countries and consequently developing countries including Islamic Republic of Iran, the optimization of design and utilization of the communication equipment has been paid more attention today. For instance, considering recent highly innovative methods, specifically in communication field, developed for design, manufacturing and exploiting dish antenna for specific cases, cooperation of other science and technology experts, like civil engineers, is also necessary. In this way, more delicate design procedure in order to satisfy communication requirement, is achieved. So far, no specific investigation about aforementioned subject, especially the effect of soil-structure interaction (SSI in analysing the seismic behaviour of communication large dish antennas has been conducted in Iran. In this paper, with the aim of investigating the effect of SSI on seismic behavior of pedestal, first an acceptable range for antenna displacement – as the most important parameter in pedestal structure for antenna – in both operational and survival states, has been calculated numerically based on generic formula. Secondly, the modelling of the whole pedestal-structure system has been modelled subjected to the associated loads and other primary conditions. This procedure has been performed once without considering the SSI and once more with it. Comparison of the obtained results shows that considering the SSI would impress the output results with a difference rate more than 50% and 600% respectively at survival and operational condition.

  12. Evolution of edge pedestal transport between edge-localized modes in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, J.-P.; Stacey, W. M.; Mellard, S. C. [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Groebner, R. J. [General Atomics, San Diego, California 92186 (United States)

    2015-02-15

    Evolution of measured profiles of densities, temperatures, and velocities in the edge pedestal region between successive ELM (edge-localized mode) events are analyzed and interpreted in terms of the constraints imposed by particle, momentum and energy balance in order to gain insights regarding the underlying evolution of transport processes in the edge pedestal between ELMs in a series of DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] discharges. The data from successive inter-ELM periods during an otherwise steady-state phase of the discharges were combined into a composite inter-ELM period for the purpose of increasing the number of data points in the analysis. Variation of diffusive and non-diffusive (pinch) particle, momentum, and energy transport over the inter-ELM period are interpreted using the GTEDGE code for discharges with plasma currents from 0.5 to 1.5 MA and inter-ELM periods from 50 to 220 ms. Diffusive transport is dominant for ρ < 0.925, while non-diffusive and diffusive transport are very large and nearly balancing in the sharp gradient region 0.925 < ρ < 1.0. During the inter-ELM period, diffusive transport increases slightly more than non-diffusive transport, increasing total outward transport. Both diffusive and non-diffusive transport have a strong inverse correlation with plasma current.

  13. Effect of pH on Thermoanaerobacterium thermosaccharolyticum DSM 571 growth, spore heat resistance and recovery.

    Science.gov (United States)

    Mtimet, Narjes; Guégan, Stéphanie; Durand, Lucile; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-05-01

    Thermophilic spore-forming bacteria are potential contaminants in several industrial sectors involving high temperatures (40-65 °C) in the manufacturing process. Among those thermophilic spore-forming bacteria, Thermoanaerobacterium thermosaccharolyticum, called "the swelling canned food spoiler", has generated interest over the last decade in the food sector. The aim of this study was to investigate and to model pH effect on growth, heat resistance and recovery abilities after a heat-treatment of T. thermosaccharolyticum DSM 571. Growth and sporulation were conducted on reinforced clostridium media and liver broth respectively. The highest spore heat resistances and the greatest recovery ability after a heat-treatment were obtained at pH condition allowing maximal growth rate. Growth and sporulation boundaries were estimated, then models using growth limits as main parameters were extended to describe and quantify the effect of pH on recovery of injured spores after a heat-treatment. So, cardinal values were used as a single set of parameters to describe growth, sporulation and recovery abilities. Besides, this work suggests that T. thermosaccharolyticum preserve its ability for germination and outgrowth after a heat-treatment at a low pH where other high resistant spore-forming bacteria like Geobacillus stearothermophilus are unable to grow. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The role of the density profile in the ASDEX-Upgrade pedestal structure

    Czech Academy of Sciences Publication Activity Database

    Dunne, M.G.; Potzel, S.; Reimold, F.; Wischmeier, M.; Wolfrum, E.; Frassinetti, L.; Beurskens, M.; Bílková, Petra; Cavedon, M.; Fischer, R.; Kurzan, B.; Laggner, F.M.; McDermott, R.M.; Tardini, G.; Trier, E.; Viezzer, E.; Willensdorfer, M.

    2017-01-01

    Roč. 59, č. 1 (2017), č. článku 014017. ISSN 0741-3335. [EPS 2016: Conference on Plasma Physics/43./. Leuven, 04.07.2016-08.07.2016] EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : pedestal * scrape-off layer * peeling-balooning * prediction Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016 http://iopscience.iop.org/0741-3335/59/1/014017

  15. Contribution to the multi-machine pedestal scaling from COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Bílková, Petra; Aftanas, Milan; Berta, Miklós; Böhm, Petr; Bogár, Ondrej; Frassinetti, L.; Grover, Ondřej; Háček, Pavel; Havlíček, Josef; Hron, Martin; Imríšek, Martin; Krbec, Jaroslav; Mitošinková, Klára; Naydenkova, Diana; Pánek, Radomír; Peterka, Matěj; Snyder, P.B.; Stefanikova, E.; Stöckel, Jan; Šos, Miroslav; Urban, Jakub; Varju, Jozef; Vondráček, Petr; Weinzettl, Vladimír

    2017-01-01

    Roč. 57, č. 5 (2017), č. článku 056041. ISSN 0029-5515. [IAEA Fusion Energy Conference (FEC 2016)/26./. Kyoto, 17.10.2016-22.10.2016] R&D Projects: GA ČR(CZ) GA14-35260S; GA ČR(CZ) GA16-14228S; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : COMPASS * H-mode * pedestal * scaling * tokamak * HRTS Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 https://doi.org/10.1088/1741-4326/aa6659

  16. Edge pedestal characteristics in JET and JT-60U tokamaks under variable toroidal field ripple

    NARCIS (Netherlands)

    Urano, H.; Saibene, G.; Oyama, N.; Parail, V.; P. de Vries,; Sartori, R.; Kamada, Y.; Kamiya, K.; Loarte, A.; Lonnroth, J.; Sakamoto, Y.; Salmi, A.; Shinohara, K.; Takenaga, H.; Yoshida, M.

    2011-01-01

    The effects of toroidal field (TF) ripple on the edge pedestal characteristics were examined in the TF ripple scan experiments at the plasma current I(p) of 1.1 MA in JET and JT-60U. The TF ripple amplitude delta(R) was defined as a value averaged over the existing ripple wells at the separatrix on

  17. Interpretation of changes in diffusive and non-diffusive transport in the edge plasma during pedestal buildup following a low-high transition in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M.; Sayer, M.-H.; Floyd, J.-P. [Georgia Tech, Atlanta, Georgia 30332 (United States); Groebner, R. J. [General Atomics, San Diego, California 92186 (United States)

    2013-01-15

    The evolution of diffusive and non-diffusive transport during pedestal buildup following a low-high (L-H) transition has been interpreted from a particle-momentum-energy balance analysis of the measured density, temperature, and rotation velocity profiles in the plasma edge (0.82<{rho}<1.0) of a DIII-D [Luxon, Nucl. Fusion 42, 614 (2002)] discharge. In the discharge examined, there was an edge-localized-mode-free period of more than 600 ms following the L-H transition, and the majority of edge pedestal development occurred within the first 100 ms following the L-H transition. There appears to be a spatio-temporal correlation among the measured toroidal and poloidal rotation, the formation of a negative well in the measured radial electric field, the creation of a large inward particle pinch, the calculated intrinsic rotation due to ion orbit loss, and the measured formation of steep gradients in density and temperature in the outer region ({rho}>0.95) of the edge pedestal.

  18. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    Science.gov (United States)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  19. The Effect of Plasma Shape on H-Mode Pedestal Characteristics on DIII-D

    International Nuclear Information System (INIS)

    T.H. Osborne; J.R. Ferron; R.J. Groebner; L.L. Lao; A.W. Leonard; R. Maingi; R.L. Miller; A.D. Turnbull; M.R. Wade; J.G. Watkins

    1999-01-01

    The characteristics of the H-mode are studied in discharges with varying triangularity and squareness. The pressure at the top of the H-mode pedestal increases strongly with triangularity primarily due to an increase in the margin by which the edge pressure gradient exceeds the ideal ballooning mode first stability limit. Two models are considered for how the edge may exceed the ballooning mode limit. In one model [1], access to the ballooning mode second stable regime allows the edge pressure gradient and associated bootstrap current to continue to increase until an edge localized, low toroidal mode number, ideal kink mode is destabilized. In the second model [2], the finite width of the H-mode transport barrier, and diamagnetic effects raise the pressure gradient limit above the ballooning mode limit. We observe a weak inverse dependence of the width of the H-mode transport barrier, Δ, on triangularity relative to the previously obtained [3] scaling Δ ∞ (β P PED ) 1/2 . The energy loss for Type I ELMs increases with triangularity in proportion to the pedestal energy increase. The temperature profile is found to respond stiffly to changes in T PED at low temperature, while at high temperature the response is additive. The response of the density profile is also found to play a role in the response of the total stored energy to changes in the W PED

  20. Effects of different CMV-heat-inactivation-methods on growth factors in human breast milk.

    Science.gov (United States)

    Goelz, Rangmar; Hihn, Eva; Hamprecht, Klaus; Dietz, Klaus; Jahn, Gerhard; Poets, Christian; Elmlinger, Martin

    2009-04-01

    Preterm infants can inoculate virulent cytomegalovirus (CMV) through their mothers' raw breast milk. Complete virus inactivation is achieved only by heat treatment, but the effect on growth factors has never been assessed systematically. Insulin-like-growth-factor-1-, IGF-2-, insulin-like-growth-factor-binding-protein-2-, and IGFBP-3-concentrations were measured, before and after heating, in 51 breast-milk-samples from 28 mothers, and epidermal-growth-factor-concentrations in a subgroup of 35 samples from 22 mothers. Two heating methods were applied: Short-term (5 s) pasteurisation at 62, 65, and 72 degrees C, and long-term Holder-Pasteurisation (30 min) at 63 degrees C. IGF-1, IGF-2, IGFBP-2, and IGFBP-3 were measured by RIA, and EGF by ELISA. Heating for 30 min decreased significantly IGF-1 by 39.4%, IGF-2 by 9.9%, IGFBP-2 by 19.1%, and IGFBP-3 by 7.0%. In contrast, IGF-1, IGF-2, IGFBP-2, and IGFBP-3 were not altered significantly when using a short heating duration of 5 s, irrespective of the level of temperature, except for IGF-2 at 62 degrees C for 5 s (p = 0.041) and IGFBP-2 at 72 degrees C for 5 s (p = 0.025). Neither long- nor short-time heating methods changed the concentration of EGF. Only short heating methods (5 s, 62-72 degrees C) can preserve, almost completely, the concentrations of IGFs in human milk, whereas Holder-Pasteurization does not.

  1. Radially global δf computation of neoclassical phenomena in a tokamak pedestal

    International Nuclear Information System (INIS)

    Landreman, Matt; Parra, Felix I; Catto, Peter J; Ernst, Darin R; Pusztai, Istvan

    2014-01-01

    Conventional radially-local neoclassical calculations become inadequate if the radial gradient scale lengths of the H-mode pedestal become as small as the poloidal ion gyroradius. Here, we describe a radially global δf continuum code that generalizes neoclassical calculations to allow for stronger gradients. As with conventional neoclassical calculations, the formulation is time-independent and requires only the solution of a single sparse linear system. We demonstrate precise agreement with an asymptotic analytic solution of the radially global kinetic equation in the appropriate limits of aspect ratio and collisionality. This agreement depends crucially on accurate treatment of finite orbit width effects. (paper)

  2. Kinetic equilibrium reconstruction for the NBI- and ICRH-heated H-mode plasma on EAST tokamak

    Science.gov (United States)

    Zhen, ZHENG; Nong, XIANG; Jiale, CHEN; Siye, DING; Hongfei, DU; Guoqiang, LI; Yifeng, WANG; Haiqing, LIU; Yingying, LI; Bo, LYU; Qing, ZANG

    2018-04-01

    The equilibrium reconstruction is important to study the tokamak plasma physical processes. To analyze the contribution of fast ions to the equilibrium, the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics, kinetic diagnostics and TRANSP code. It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region. The fast-ion current contributes mainly in the core region while contributes little to the pedestal current. A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current. It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.

  3. Bi-based superconducting fibers with high critical parameters

    International Nuclear Information System (INIS)

    Huo Yujing; He Yusheng; Liu Menglin; Mao Sining; Cai Liying; Wang Ying; Zhang Jincang; He Aisheng; Wang Jinsong

    1991-01-01

    Superconducting fibers of Bi(Pb)-Sr-Ca-Cu-O high Tc superconducting materials have been prepared by means of the laser-heated pedestal growth (LHPG) method. The highest zero resistance temperature T c0 reaches is 114K, and the highest critical current density J c (77K, O T) is greater than 5000 A/cm 2 . As-grown superconducting fibers were successfully fabricated without post growth heat treatment. Amorphous materials were used for the first time to make high quality fibers. The influence of growth conditions, thermal treatment and the composition of the fibers were discussed. (author). 5 refs., 7 figs., 3 tabs

  4. The response of leaves to heat stress in tomato plants with source-sink modulated by growth regulators

    Directory of Open Access Journals (Sweden)

    Zofia Starck

    2014-01-01

    Full Text Available The response to heat stress was investigated in heat-sensitive, Roma V. F. and heat-tolerant, Robin, cultivars whose fruit growth was stimulated by NOA + GA3 , or NOA + GA3 + zeatin. The treated plants were compared with untreated control plant. In each of these series half of the plants were subjected to one or three cycles of heat stress. A single cycle of 38°/25°C day and night did not significantly affect either the respiration rate or chlorophyll content. In PGR-untreated intact cv. Roma, heat stress inhibited starch formation during the day and strongly depressed night export from the blades. High temperature depressed the night transport less in plants having a higher sink demand of fruits in plant treated with PGR. In this case the amount of substances available for export was much higher and both sugars and starch were more intensively remobilized at night. In intact Robin plants, PGR and heat stress much less affected sugar and starch content. High temperature diminished noctural starch remobilization only in the NOA + GA3 series. Leaf disc growth was evaluated as a measure of response to heat stress after elimination of the direct effect of fruit demands. One cycle of high temperature did not negatively affect the growth of leaf discs; it even caused thermal low growth activation in both cultivars. Three cycles of heat stress depressed leaf disc growth after short-term stimulation, especially in Roma plants. Immediately after 3-day heat stress, there was no response of discs to GA3 or zeatin added to the solution on which the discs were floated. Leaf disc growth of Robin control and NOA + GA3 series was very similar in plants from optimal temperature conditions. High temperature inhibited only disc growth of the NOA + GA3 series owing to depression of starch break-down, diminishing the pool of sugars. In contrast, leaf discs of Roma cv. excided from NOA + GA3 treated plants from the optimal temperature series, grew more intensively

  5. X transport and its effect on H-mode and edge pedestal in tokamaks

    International Nuclear Information System (INIS)

    Chang, C.S.; Darrow, D.; White, R.; Lin, Z.; Lee, W.; Ku, S.H.; Weitzner, H.; Carlstrom, T.N.; Grassie, J.S. de

    2001-01-01

    A new classical non-ambipolar transport mechanism has been identified which can be a dominant source of strong Er and edge pedestal layer formation immediately inside the separatrix in a diverted tokamak. Due to vanishingly small poloidal B-field and grad-B drift toward x-point, plasma ions with small ν parallel in the X-region do not have confined single particle orbits. This leads to a non-ambipolar convective transport in the X-region (X-transport), either collisional or collisionless, inducing a strong negative Er-shear layer. The X-transport can provide basic understanding of many of the experimental observations. (author)

  6. H-mode pedestal and threshold studies over an expanded operating space on Alcator C-Moda)

    Science.gov (United States)

    Hubbard, A. E.; Hughes, J. W.; Bespamyatnov, I. O.; Biewer, T.; Cziegler, I.; LaBombard, B.; Lin, Y.; McDermott, R.; Rice, J. E.; Rowan, W. L.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S.

    2007-05-01

    This paper reports on studies of the edge transport barrier and transition threshold of the high confinement (H) mode of operation on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)], over a wide range of toroidal field (2.6-7.86T) and plasma current (0.4-1.7MA). The H-mode power threshold and edge temperature at the transition increase with field. Barrier widths, pressure limits, and confinement are nearly independent of field at constant current, but the operational space at high B shifts toward higher temperature and lower density and collisionality. Experiments with reversed field and current show that scrape-off-layer flows in the high-field side depend primarily on configuration. In configurations with the B ×∇B drift away from the active X-point, these flows lead to more countercurrent core rotation, which apparently contributes to higher H-mode thresholds. In the unfavorable case, edge temperature thresholds are higher, and slow evolution of profiles indicates a reduction in thermal transport prior to the transition in particle confinement. Pedestal temperatures in this case are also higher than in the favorable configuration. Both high-field and reversed-field results suggest that parameters at the L-H transition are influencing the evolution and parameters of the H-mode pedestal.

  7. Fish culture in heated effluents (eastern Europe). [Growth increase in carp and rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Backiel, T; Gay, B; La Croix, M J.B.; Ophel, I L [eds.

    1976-01-01

    Dependence of growth and reproduction of cultivated fishes on temperature are briefly reviewed. Experiments with and commercial-size operations of various methods of fish culture with the use of heated effluents are exemplified. Cage culture, earthen ponds, flowing water culture have demonstrated possibilities of growth increase in carp and rainbow trout and of controlled reproduction of the former. Problems involved in utilization of various systems and several points of view on the use of low-grade heat for fish culture are considered.

  8. The UK solar water heating industry: a period of development and growth

    International Nuclear Information System (INIS)

    Blower, John

    2001-01-01

    This 2001 edition of the guide to UK renewable energy companies examines the solar water heating sector in the UK and presents an illustration of the layout of a typical solar water heating system. The rising demand for solar water heating and growth in sales especially in the export market are noted. Developments within the UK solar water heating manufacturing industry are considered, and details are given of design and development in innovative policy infrastructure, and the SHINE 21 project supported by the EU's ADAPT programme and the UK Department of Trade and Industry involving collaboration between the solar water heating and plumbing industries. Developments in the new build sectors including in-roof solar collector products and the increasing number of solar water heating systems installed in UK houses are discussed along with the promising future for the market

  9. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees.

    Science.gov (United States)

    Adams, Henry D; Collins, Adam D; Briggs, Samuel P; Vennetier, Michel; Dickman, L Turin; Sevanto, Sanna A; Garcia-Forner, Núria; Powers, Heath H; McDowell, Nate G

    2015-11-01

    Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure ('drought'), a ~4.8 °C temperature increase with open-top chambers ('heat'), and a combination of both simultaneously ('drought + heat'). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19-57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change. © 2015 John Wiley & Sons Ltd.

  10. Effect of heating scheme on SOL width in DIII-D and EAST

    Directory of Open Access Journals (Sweden)

    L. Wang

    2017-08-01

    Full Text Available Joint DIII-D/EAST experiments in the radio-frequency (RF heated H-mode scheme with comparison to that of neutral beam (NB heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broader SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. The joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH H-mode plasmas.

  11. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1981-05-01

    The microstructural features that influenced the room and elevated temperature fatigue-crack growth behavior of as-welded, conventional heat-treated, and modified heat-treated Alloy 718 GTA weldments were studied. Electron fractographic examination of fatigue fracture surfaces revealed that operative fatigue mechanisms were dependent on microstructure, temperatures and stress intensity factor. All specimens exhibited three basic fracture surface appearances at temperatures up to 538 degrees C: crystallographic faceting at low stress intensity range (ΔK) levels, striation, formation at intermediate values, and dimples coupled with striations in the highest (ΔK) regime. At 649 degrees C, the heat-treated welds exhibited extensive intergranular cracking. Laves and δ particles in the conventional heat-treated material nucleated microvoids ahead of the advancing crack front and caused on overall acceleration in crack growth rates at intermediate and high ΔK levels. The modified heat treatment removed many of these particles from the weld zone, thereby improving its fatigue resistance. The dramatically improved fatigue properties exhibited by the as-welded material was attributed to compressive residual stresses introduced by the welding process. 19 refs., 16 figs

  12. heat-induced biological changes as heat tolerance indices related to growth performance in buffaloes

    International Nuclear Information System (INIS)

    Kaldes, M.Z.N.

    2004-01-01

    the main objective of this study was to predict new heat tolerance indices related to hot summer growth performance, depending on heat - induced changes in some physiological and biochemical parameters of young water buffalo calves. the present study was carried out on 8 egyptian male buffalo calves of 6 months old and 106.8 kg mean body weight (B W), and on the same animals of 12 months old and 179.5 kg mean B W. the animals were maintained in a climatic chamber of the egyptian atomic energy authority. the animals were maintained in metabolic cages inside a climatic chamber for 3 weeks under mild climate (20-24 c and 50-60% Rh, equivalent to 62-72 THI) for 6 hours daily as adjustment period,followed by 5 and 7 days in the 6- and 12-month old calves, respectively at the same climatic conditions as a control period.this was followed by 6 hours of acute heat exposure period (33-43 c and 40-60% Rh, equivalent to 85-93 Thi), then by chronic heat exposure period of the same climatic conditions for 5 and 7 days in the 6- and 12- month old calves, respectively.Rectal temperature (RT) and respiration rate (RR) were estimated daily, whereas BW was estimated at the beginning and the end of each exposure period

  13. Short communication. Effect of soybean meal heat procedures on growth performance of broiler chickens

    Energy Technology Data Exchange (ETDEWEB)

    Tousi-Mojarradi, M.; Seidavi, A.; Dadashbeiki, M.; Roca-Fernandez, A. I.

    2014-06-01

    The aim of this research was to study the effect of soybean meal (SBM) heat procedures on growth performance of broiler chickens. A trial was carried out using 200 male Ross 308 strain chickens during 3 feeding periods (starter, grower and finisher, 42 days). The experiment was based on a completely randomized design with 5 treatments giving 4 replications of 10 broilers per treatment. Treatments consisted on: T1 (control, un-processed SBM), T2 (autoclaved SBM: 121 degree centigrade, 20 min), T3 (autoclaved SBM: 121 degree centigrade, 30 min), T4 (roasted SBM: 120 degree centigrade, 20 min) and T5 (microwaved SBM: 46 degree centigrade, 540 watt, 7 min). Growth performance of animals was examined by determining body weight (BW), body weight grain (BWG), feed intake (FI) and feed conversion rate (FCR). Higher BW (p<0.05) and BWG (p<0.05) and lower FCR (p<0.05) were found in broiler chickens fed heat processed SBM diets compared to those fed a raw SBM diet, probably due to higher nutrient availability. However, no differences were found among heat SBM procedures (autoclaving, roasting and microwaving) on growth performance of animals for the starter, grower and finisher periods. From the results of this experiment, it is concluded that further research needs to be developed to establish the effect of temperature-time heat procedures on nutritive value of SBM in terms of levels of anti-nutritional factors (trypsin inhibitor activity and phytic acid) and amino acids profile and its influence on growth performance of broilers. (Author)

  14. EBSD characterization of the growth mechanism of SiC synthesized via direct microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jigang, E-mail: wangjigang@seu.edu.cn [Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Xizang Key Laboratory of Optical Information Processing and Visualization Technology, School of Information Engineering, Xizang Minzu University, Xianyang 712082 (China); Huang, Shan; Liu, Song; Qing, Zhou [Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2016-04-15

    Well-crystallized 3C-silicon carbide (SiC) grains/nanowires have been synthesized rapidly and conveniently via direct microwave heating, simply using silicon dioxide powders and artificial graphite as raw materials. The comprehensive characterizations have been employed to investigate the micro-structure of the obtained 3C-SiC products. Results indicated that, different from the classic screw dislocation growth mechanism, the 3C-SiC grains/nanowires synthesized via high-energy vacuum microwave irradiation were achieved through the two-dimension nucleation and laminar growth mechanism. Especially, the electron backscattered diffraction (EBSD) was employed to characterize the crystal planes of the as-grown SiC products. The calculated Euler angles suggested that the fastest-growing crystal planes (211) were overlapped gradually. Through the formation of the (421) transformation plane, (211) finally evolved to (220) which existed as the side face of SiC grains. The most stable crystal planes (111) became the regular hexagonal planes in the end, which could be explained by the Bravais rule. The characterization results of EBSD provided important experimental information for the evolution of crystal planes. - Graphical abstract: The formation of 3C-SiC prepared via direct microwave heating follows the mechanism of two-dimension nucleation and laminar growth. - Highlights: • 3C−SiC grains/nanowires were obtained via direct microwave heating. • 3C−SiC followed the mechanism of two-dimension nucleation and laminar growth. • In-situ EBSD analysis provided the experimental evidences of the growth.

  15. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    Science.gov (United States)

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  16. Transient heating effects on tungsten: Ablation of Be layers and enhanced fuzz growth

    International Nuclear Information System (INIS)

    Yu, J.H.; Baldwin, M.J.; Doerner, R.P.; Dittmar, T.; Hakola, A.; Höschen, T.; Likonen, J.; Nishijima, D.; Toudeshki, H.H.

    2015-01-01

    A pulsed laser in the PISCES-B facility is used to simulate transient heating events such as ELMs and disruptions on W. The first study of enhanced nano-scale W tendril growth (“fuzz”) due to cyclic fast transient heating of W exposed to low energy (E He+ ∼ 30 eV) He + ions is presented. Fuzz due to transient heating is up to ∼10× thicker than the steady state fuzz thickness with no laser heating. A general thermal activation model yields higher values for the activation energy and pre-exponential factor than previously reported in steady state experiments with E He+ ∼ 60 eV. Transient heating of W exposed to D plasma with Be seeding shows that the removal threshold of Be follows simple energy considerations based on the heat of formation of Be

  17. Abnormal Grain Growth in the Heat Affected Zone of Friction Stir Welded Joint of 32Mn-7Cr-1Mo-0.3N Steel during Post-Weld Heat Treatment

    Directory of Open Access Journals (Sweden)

    Yijun Li

    2018-04-01

    Full Text Available The abnormal grain growth in the heat affected zone of the friction stir welded joint of 32Mn-7Cr-1Mo-0.3N steel after post-weld heat treatment was confirmed by physical simulation experiments. The microstructural stability of the heat affected zone can be weakened by the welding thermal cycle. It was speculated to be due to the variation of the non-equilibrium segregation state of solute atoms at the grain boundaries. In addition, the pressure stress in the welding process can promote abnormal grain growth in the post-weld heat treatment.

  18. Rapid growth of ZnO hexagonal prism crystals by direct microwave heating

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhenqi; ZHOU Jian; LIU Guizhen; REN Zhiguo

    2008-01-01

    ZnO hexagonal prism crystals were synthesized from ZnO powders by microwave heating in a short time (within 20 min) without any metal catalyst or transport agent.Zinc oxide raw materials were made by evaporating from the high-temperature zone in an enclosure atmosphere and crystals were grown on the self-source substrate.The inherent asymmetry in microwave heating provides the temperature gradient for crystal growth.Substrate and temperature distribution in the oven show significant effects on the growth of the ZnO crystal.The morphologies demonstrate that these samples are pure hexagonal prism crystals with maximum 80 μm in diameter and 600 μm in length,which possess a well faceted end and side surface.X-ray diffraction (XRD) reveals that these samples are pure crystals.The photoluminescence (PL) exhibits strong ultraviolet emission at room temperature,indicating potential applications for short-wave light-emitting photonic devices.

  19. Global gyrokinetic simulations of the H-mode tokamak edge pedestal

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Weigang; Parker, Scott E.; Chen, Yang [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States); Yan, Zheng [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Pankin, Alexei Y.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80305 (United States)

    2013-05-15

    Global gyrokinetic simulations of DIII-D H-mode edge pedestal show two types of instabilities may exist approaching the onset of edge localized modes: an intermediate-n, high frequency mode which we identify as the “kinetic peeling ballooning mode (KPBM),” and a high-n, low frequency mode. Our previous study [W. Wan et al., Phys. Rev. Lett. 109, 185004 (2012)] has shown that when the safety factor profile is flattened around the steep pressure gradient region, the high-n mode is clearly kinetic ballooning mode and becomes the dominant instability. Otherwise, the KPBM dominates. Here, the properties of the two instabilities are studied by varying the density and temperature profiles. It is found that the KPBM is destabilized by density and ion temperature gradient, and the high-n mode is mostly destabilized by electron temperature gradient. Nonlinear simulations with the KPBM saturate at high levels. The equilibrium radial electric field (E{sub r}) reduces the transport. The effect of the parallel equilibrium current is found to be weak.

  20. Impact of wall materials and seeding gases on the pedestal and on core plasma performance

    Directory of Open Access Journals (Sweden)

    E. Wolfrum

    2017-08-01

    Full Text Available Plasmas in machines with all metal plasma facing components have a lower Zeff, less radiation cooling in the scrape-off layer and divertor regions and are prone to impurity accumulation in the core. Higher gas puff and the seeding of low-Z impurities are applied to prevent impurity accumulation, to increase the frequency of edge localised modes and to cool the divertor. A lower power threshold for the transition from low-confinement mode to high confinement mode has been found in all metal wall machines when compared to carbon wall machines. The application of lithium before or during discharges can lead to ELM free H-modes. The seeding of high-Z impurities increases core radiation, reduces the power flux across the separatrix and, if applied in the right amount, does not lead to deterioration of the confinement. All these effects have in common that they can often be explained by the shape or position of the density profile. Not only the peakedness of the density profile in the core but also the position of the edge pressure gradient influences global confinement. It is shown how (i ionisation in the pedestal region due to higher reflection of deuterium from high-Z walls, (ii reduced recycling in consequence of lithium wall conditioning, (iii the fostering of edge modes with lithium dropping, (iv increased gas puff and (v the cooling of the scrape-off layer by medium-Z impurities such as nitrogen affect the edge density profile. The consequence is a shift in the pressure profile relative to the separatrix, leading to improved pedestal stability of H-mode plasmas when the direction is inwards.

  1. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    Science.gov (United States)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  2. Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications

    International Nuclear Information System (INIS)

    Bensalah, A.; Ito, M.; Guyot, Y.; Goutaudier, C.; Jouini, A.; Brenier, A.; Sato, H.; Fukuda, T.; Boulon, G.

    2007-01-01

    Spectroscopic characterization is carried out to identify Stark's levels of Yb 3+ transitions in several fluoride crystals grown either by the Czochralski technique or by the laser-heated pedestal growth method. Yb 3+ concentration dependence of the decay time is analyzed in order to understand involved concentration quenching mechanisms. Laser tests under saphire:Ti pumping are presented for all our materials as well as under diode pumping for Yb:CaF 2

  3. Effects of heat-treatment on plasma rich in growth factors-derived autologous eye drop.

    Science.gov (United States)

    Anitua, E; Muruzabal, F; De la Fuente, M; Merayo-Lloves, J; Orive, G

    2014-02-01

    We have developed and characterized a new type of plasma rich in growth factors (PRGF) derived eye-drop therapy for patients suffering from autoimmune diseases. To determine the concentration of several growth factors, proteins, immunoglobulins and complement activity of the heat-inactivated eye-drop and to study its biological effects on cell proliferation and migration of different ocular surface cells, blood from healthy donors was collected, centrifuged and PRGF was prepared avoiding the buffy coat. The half volume of the obtained plasma supernatant from each donor was heat-inactivated at 56 °C for 1 h (heat-inactivated PRGF). The concentration of several proteins involved on corneal wound healing, immunoglubolins G, M and E and functional integrity of the complement system assayed by CH50 test were determined. The proliferative and migratory potential of inactivated and non-inactivated PRGF eye drops were assayed on corneal epithelial cells (HCE), keratocytes (HK) and conjunctival fibroblasts (HConF). Heat-inactivated PRGF preserves the content of most of the proteins and morphogens involved in its wound healing effects while reduces drastically the content of IgE and complement activity. Heat-inactivated PRGF eye drops increased proliferation and migration potential of ocular surface cells with regard to PRGF showing significant differences on proliferation and migration rate of HCE and HConF respectively. In summary, heat-inactivation of PRGF eye drops completely reduced complement activity and deceased significantly the presence of IgE, maintaining the biological activity of PRGF on ocular surface cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effects of fin pitch and array of the frost layer growth on extended surface of a heat exchanger

    International Nuclear Information System (INIS)

    Yang, Dong Keun; Lee, Kwan Soo

    2003-01-01

    This paper presents the effects of the fin array and pitch on the frost layer growth of a heat exchanger. The numerical results are compared with experimental data of a cold plate to validate the present model, and agree well with experimental data within a maximum error of 8%. The characteristics of the frost formation on staggered fin array are somewhat different from those of in-line array. For fin pitch below 10 mm, the frost layer growth of second fin in the staggered array is affected by that of first fin. The heat transfer of single fin deteriorate with decreasing fin pitch regardless of fin array, however, the thermal performance of a heat exchanger, considering increase of heat surface area, becomes better

  5. Analysis of different responses of ion and electron in six-field two-fluid ELM simulations

    Science.gov (United States)

    Ma, Chenhao; Xu, Xueqiao

    2013-10-01

    We report simulation results of a Landau-Fluid (GLF) extension of the BOUT++ six-field two-fluid Braginskii model which contributes to increasing the physics understanding of ELMs. Landau-Fluid closure can fill the gap for parallel dynamics between hot, collisionless pedestal region and cold, collisional SOL region in H-mode plasmas. Our goal is extending the classical parallel heat flux with Landau-Fluid closures and making comparisons with other closure models. Our simulations show that for weakly collisional pedestal plasmas, the calculated growth rate with Landau-Fluid closure introduces more effective damping on the peeling-ballooning modes than that with the classical thermal diffusivity. Further nonlinear simulation shows that ELM size with Landau-Fluid Closure is smaller than that with classical thermal diffusivity. We find an ELM crash has two phases: fast initial crash of ion temperature perturbation on the Alfven time scale and slow turbulence spreading. Turbulence transport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region which is due to a positive phase shift around π / 2 between electron temperature and potential on pedestal region while ion temperature is in-phase with potential. This work was performed under the auspices of the U.S. DoE by LLNL under Contract DE-AC52-07NA27344 and also supported by the China Scholarship Committee under contract N0.2011601099.

  6. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    Science.gov (United States)

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  7. Martian Low-Aspect-Ratio Layered Ejecta (LARLE) craters: Distribution, characteristics, and relationship to pedestal craters

    Science.gov (United States)

    Barlow, Nadine G.; Boyce, Joseph M.; Cornwall, Carin

    2014-09-01

    Low-Aspect-Ratio Layered Ejecta (LARLE) craters are a unique landform found on Mars. LARLE craters are characterized by a crater and normal layered ejecta pattern surrounded by an extensive but thin outer deposit which terminates in a sinuous, almost flame-like morphology. We have conducted a survey to identify all LARLE craters ⩾1-km-diameter within the ±75° latitude zone and to determine their morphologic and morphometric characteristics. The survey reveals 140 LARLE craters, with the majority (91%) located poleward of 40°S and 35°N and all occurring within thick mantles of fine-grained deposits which are likely ice-rich. LARLE craters range in diameter from the cut-off limit of 1 km up to 12.2 km, with 83% being smaller than 5 km. The radius of the outer LARLE deposit displays a linear trend with the crater radius and is greatest at higher polar latitudes. The LARLE deposit ranges in length between 2.56 and 14.81 crater radii in average extent, with maximum length extending up to 21.4 crater radii. The LARLE layer is very sinuous, with lobateness values ranging between 1.45 and 4.35. LARLE craters display a number of characteristics in common with pedestal craters and we propose that pedestal craters are eroded versions of LARLE craters. The distribution and characteristics of the LARLE craters lead us to propose that impact excavation into ice-rich fine-grained deposits produces a dusty base surge cloud (like those produced by explosion craters) that deposits dust and ice particles to create the LARLE layers. Salts emplaced by upward migration of water through the LARLE deposit produce a surficial duricrust layer which protects the deposit from immediate removal by eolian processes.

  8. Fast dynamics of Type I ELM and transport of ELM pulse in JT-60U

    International Nuclear Information System (INIS)

    Oyama, N.

    2002-01-01

    The mitigation of the large ELM heat load on the divertor target is one of the most important issues to be overcome on ITER. Since the ELM heat load strikes the divertor target not as a time-averaged load but as an instantaneous heat pulse, the evaluation of both ELM energy, and the time scale of the collapse and transport is very important. In JT-60U, the detailed dynamic behaviors of the collapse were measured using O-mode reflectometer. The duration of the collapse was within 0.35 ms and the lost pedestal density was recovered quickly within 0.5 ms. The collapse reached 10 cm inside the separatrix, which corresponds to twice the pedestal width of 5 cm. Dedicated edge density measurements on high- and low-field side revealed the poloidal asymmetry of the collapse of density pedestal for the first time. The measurement of SOL flow and heat load to the divertor target by using SOL Mach probe and IRTV showed that convective transport of the SOL plasma gave large contribution to the ELM heat deposition process. (author)

  9. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and the correlation with stationary growth phase

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1982-01-01

    Radiation resistance and thermal resistance vary as a function of culture temperature in logarithmically growing Saccharomyces cerevisiae and are related to the optimum temperature for growth. Radiation resistance and thermal resistance were also induced when cells grown at low temperatures were subjected to a heat shock at or above the optimum growth temperature. Exposure to ionizing radiation followed by a short incubation at low temperature also induced resistance to killing by heat. Heat-shocked cells are induced to a level of thermal and radioresistance much greater than the characteristic resistance level of cells grown continuously at the shock temperature. This high level of resistance, which resembles that of stationary-phase cells, decays to the characteristic log-phase level within one doubling of cell number after the heat shock. Both induction of resistance and decay of that induction require protein synthesis. It is postulated that induction of resistance by heat shock or ionizing radiation is a response of the cells to stress and represents a preparation to enter stationary phase

  10. Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

    Directory of Open Access Journals (Sweden)

    A. Bortolon

    2017-08-01

    Full Text Available Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux (Bortolon et al., Nucl. Fus., 56, 056008, 2016. However, in scenarios with high pedestal density (∼6 ×1019m−3, the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation. Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. Field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.

  11. Reaction layer growth and reaction heat of U-Mo/Al dispersion fuels using centrifugally atomized powders

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Han, Young Soo; Park, Jong Man; Park, Soon Dal; Kim, Chang Kyu

    2003-01-01

    The growth behavior of reaction layers and heat generation during the reaction between U-Mo powders and the Al matrix in U-Mo/Al dispersion fuels were investigated. Annealing of 10 vol.% U-10Mo/Al dispersion fuels at temperatures from 500 to 550 deg. C was carried out for 10 min to 36 h to measure the growth rate and the activation energy for the growth of reaction layers. The concentration profiles of reaction layers between the U-10Mo vs. Al diffusion couples were measured and the integrated interdiffusion coefficients were calculated for the U and Al in the reaction layers. Heat generation of U-Mo/Al dispersion fuels with 10-50 vol.% of U-Mo fuel during the thermal cycle from room temperature to 700 deg. C was measured employing the differential scanning calorimetry. Exothermic heat from the reaction between U-Mo and the Al matrix is the largest when the volume fraction of U-Mo fuel is about 30 vol.%. The unreacted fraction in the U-Mo powders increases as the volume fraction of U-Mo fuel increases from 30 to 50 vol.%

  12. Divertor heat flux mitigation in the National Spherical Torus Experimenta)

    Science.gov (United States)

    Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team

    2009-02-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  13. Spectroscopic properties and quenching processes of Yb{sup 3+} in Fluoride single crystals for laser applications

    Energy Technology Data Exchange (ETDEWEB)

    Bensalah, A. [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France) and Institute for Multidisciplinary Research of Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)]. E-mail: amina-bensalah@enscp.fr; Ito, M. [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Guyot, Y. [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Goutaudier, C. [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Jouini, A. [Physical Chemistry of Luminescent Materials, Claude Bernard /Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Institute for Multidisciplinary Research of Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Brenier, A. [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Sato, H. [Institute for Multidisciplinary Research of Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Fukuda, T. [Institute for Multidisciplinary Research of Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Boulon, G. [Physical Chemistry of Luminescent Materials, Claude Bernard /Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France)

    2007-01-15

    Spectroscopic characterization is carried out to identify Stark's levels of Yb{sup 3+} transitions in several fluoride crystals grown either by the Czochralski technique or by the laser-heated pedestal growth method. Yb{sup 3+} concentration dependence of the decay time is analyzed in order to understand involved concentration quenching mechanisms. Laser tests under saphire:Ti pumping are presented for all our materials as well as under diode pumping for Yb:CaF{sub 2}.

  14. Growth of Listeria spp. in shredded cabbage is enhanced by a mild heat treatment.

    Science.gov (United States)

    Ells, Timothy C; Truelstrup Hansen, Lisbeth

    2010-03-01

    Mild thermal processing can enhance the shelf life of cut fruits and vegetables by delaying the onset of spoilage and preserving the organoleptic properties of shredded cabbage. However, food safety issues related to this process have not been fully investigated. Therefore, the survival and growth of Listeria spp. on cabbage treated in this manner was examined. Experimentally, 24 strains of Listeria spp. (including L. monocytogenes) were inoculated onto cut and intact cabbage tissues and stored at 5 degrees C. All strains on intact tissues exhibited a moderate decline in numbers (up to 1.0 log CFU/cm(2)) over the 28-day storage period. Conversely, cut tissue supported growth of most strains during the first 7 to 14 days of incubation with maximum increases of 1.2 log CFU/cm(2). Subsequently, the survival or growth on heat-treated (50 degrees C for 3 min) and untreated shredded cabbage of four L. monocytogenes and four nonpathogenic Listeria spp. strains were compared during storage for 21 days at 5 degrees C. Growth on untreated shred for all strains was similar to the results observed on cut tissue with a maximum increase of approximately 1.0 log CFU/g. However, in the heat-treated cabbage shred all strains displayed a rapid increase in growth (up to 2.5 log CFU/g) during the first 7 days of incubation, which may be indicative of the destruction of an endogenous growth-inhibiting compound within the cabbage. In conclusion, this study shows that mild thermal treatments of cut cabbage may promote pathogen growth if other inimical barriers are not implemented downstream of the thermal treatment.

  15. The effects of the pedestal/floor interface on the dynamic characteristics of the storage ring girder support assemblies

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Chen, S.S.; Zhu, S.; Mangra, D.; Smith, R.K.

    1993-05-01

    To avoid unacceptable vibration of the storage ring quadrupoles, and to ensure that the established vibration criteria are satisfied, the philosophy from inception of the APS has been (1) to locate and design the machine to minimize motion of the storage ring basemat and, (2) following construction, to monitor machine operation and user experiments to ensure that vibration sources are not introduced. This report addresses the design of the storage ring girder support assemblies, and, specifically, the effect of the pedestal/floor interface on the dynamic characteristics (i.e., resonant frequencies, damping, and mode shape)

  16. Numerical modeling of Czochralski growth of Li2MoO4 crystals for heat-scintillation cryogenic bolometers

    Science.gov (United States)

    Stelian, Carmen; Velázquez, Matias; Veber, Philippe; Ahmine, Abdelmounaim; Sand, Jean-Baptiste; Buşe, Gabriel; Cabane, Hugues; Duffar, Thierry

    2018-06-01

    Lithium molybdate Li2MoO4 (LMO) crystals of mass ranging between 350 and 500 g are excellent candidates to build heat-scintillation cryogenic bolometers likely to be used for the detection of rare events in astroparticle physics. In this work, numerical modeling is applied in order to investigate the Czochralski growth of Li2MoO4 crystals in an inductive furnace. The numerical model was validated by comparing the numerical predictions of the crystal-melt interface shape to experimental visualization of the growth interface. Modeling was performed for two different Czochralski furnaces that use inductive heating. The simulation of the first furnace, which was used to grow Li2MoO4 crystals of 3-4 cm in diameter, reveals non-optimal heat transfer conditions for obtaining good quality crystals. The second furnace, which will be used to grow crystals of 5 cm in diameter, was numerically optimized in order to reduce the temperature gradients in the crystal and to avoid fast crystallization of the bath at the later stages of the growth process.

  17. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    International Nuclear Information System (INIS)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-01-01

    Topics covered are: anomalous transport and E f- B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies

  18. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  19. Report on the combined meeting of the core confinement and internal transport barrier expert group, confinement database and modeling expert group and edge pedestal expert group, 12-16 April 1999, Garching

    International Nuclear Information System (INIS)

    Janeschitz, G.; Connor, J.W.; Cordey, G.; Kardaun, O.; Mukhovatov, V.; Stambaugh, R.; Ryter, F.; Wakatani, M.

    1999-01-01

    This contribution to the ITER EDA Newsletter reports on the combined meeting of the core confinement and internal transport barrier expert group, confinement database and modeling expert group and edge pedestal expert group in Garching, Germany. This is the first workshop of its kind after the re-organisation of the expert groups. The new scheme of the meetings, namely to permit more interaction between groups by arranging them at the same time and location turned out to be very successful. The main issues discussed were for the Confinement Database: merging of edge pedestal and confinement data, improvement of the density- and magnetic shape parameters, addition of new dedicated threshold data, the effect of different divertors in JET; for the H-Mode Power Threshold Database: assembly of a new version of the database with about 650 time points from 10 tokamaks; for the 1-D Modelling Workshop: management of the database after the re-organisation of the Joint Central Team an ongoing efforts in plasma transport modelling; for the newly formed pedestal group: issues of the H-mode shear layer at the plasma edge. There was also an executive summary given of a recent USA workshop on internal transport barriers and regimes with weak or negative magnetic shear

  20. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.

    Science.gov (United States)

    Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P

    2009-07-31

    In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be

  1. Solid state lasers II; Proceedings of the Meeting, Los Angeles, CA, Jan. 24, 25, 1991

    International Nuclear Information System (INIS)

    Dube, G.

    1991-01-01

    Topics presented include an upgrade of the LLNL Nova laser for inertial confinement fusion, the design and energy characteristics of a multisegment glass-disk amplifier, a wavemeter for tuning solid state lasers, and the fabrication of laser materials by laser-heated pedestal growth. Also presented are the suppression of relaxation oscillations in flash-pumped 2-micron lasers, diode pumping of tunable Cr-doped lasers, 2D periodic structures in a solid state laser resonator, and single-frequency solid state lasers and amplifiers

  2. Timing Effects of Heat-Stress on Plant Ecophysiological Characteristics and Growth.

    Science.gov (United States)

    Wang, Dan; Heckathorn, Scott A; Mainali, Kumar; Tripathee, Rajan

    2016-01-01

    Heat-waves with higher intensity and frequency and longer durations are expected in the future due to global warming, which could have dramatic impacts in agriculture, economy and ecology. This field study examined how plant responded to heat-stress (HS) treatment at different timing in naturally occurring vegetation. HS treatment (5 days at 40.5°C) were applied to 12 1 m 2 plots in restored prairie vegetation dominated by a warm-season C 4 grass, Andropogon gerardii , and a warm-season C 3 forb, Solidago canadensis , at different growing stages. During and after each heat stress (HS) treatment, temperature were monitored for air, canopy, and soil; net CO 2 assimilation ( A net ), quantum yield of photosystem II (Φ PSII ), stomatal conductance ( g s ), and internal CO 2 level ( C i ), specific leaf area (SLA), and chlorophyll content of the dominant species were measured. One week after the last HS treatment, all plots were harvested and the biomass of above-ground tissue and flower weight of the two dominant species were determined. HS decreased physiological performance and growth for both species, with S. canadensis being affected more than A. gerardii , indicated by negative HS effect on both physiological and growth responses for S. canadensis . There were significant timing effect of HS on the two species, with greater reductions in the net photosynthetic rate and productivity occurred when HS was applied at later-growing season. The reduction in aboveground productivity in S. canadensis but not A. gerardii could have important implications for plant community structure by increasing the competitive advantage of A. gerardii in this grassland. The present experiment showed that HS, though ephemeral, may promote long-term effects on plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when more frequent and severe HS occur in the future.

  3. H-mode pedestal characteristics in ITER shape discharges on DIII-D

    International Nuclear Information System (INIS)

    Osborne, T.H.; Burrell, K.H.; Groebner, R.J.

    1998-09-01

    Characteristics of the H-mode pedestal are studied in Type 1 ELM discharges with ITER cross-sectional shape and aspect ratio. The scaling of the width of the edge step gradient region, δ, which is most consistent with the data is with the normalized edge pressure, (β POL PED ) 0.4 . Fits of δ to a function of temperature, such as ρ POL , are ruled out in divertor pumping experiments. The edge pressure gradient is found to scale as would be expected from infinite n ballooning mode theory; however, the value of the pressure gradient exceeds the calculated first stable limit by more than a factor of 2 in some discharges. This high edge pressure gradient is consistent with access to the second stable regime for ideal ballooning for surfaces near the edge. In lower q discharges, including discharges at the ITER value of q, edge second stability requires significant edge current density. Transport simulations give edge bootstrap current of sufficient magnitude to open second stable access in these discharges. Ideal kink analysis using current density profiles including edge bootstrap current indicate that before the ELM these discharges may be unstable to low n, edge localized modes

  4. Simulations of peeling-ballooning modes with electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Huang, J.; Tang, C. J.; Chen, S. Y.

    2016-01-01

    The effects of the deposited power and deposited position of Electron Cyclotron Resonance Heating (ECRH) on Peeling-Ballooning (P-B) modes are simulated using BOUT++ code in this paper. The simulation results show that as the deposited position moves from the top to the bottom of the pedestal, the edge localized mode (ELM) size decreases first and then increases, finally decreases again. For ECRH with different deposited power, the effects on P-B modes are similar if they have the same peak value of the power deposition profile. These results show that the effects of ECRH on P-B modes are primarily determined by the change in pressure profile caused by ECRH. As long as ECRH can lead to large enough change in pressure profile, ECRH can efficiently affect the dynamics of P-B modes.

  5. Simulations of peeling-ballooning modes with electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China)

    2016-05-15

    The effects of the deposited power and deposited position of Electron Cyclotron Resonance Heating (ECRH) on Peeling-Ballooning (P-B) modes are simulated using BOUT++ code in this paper. The simulation results show that as the deposited position moves from the top to the bottom of the pedestal, the edge localized mode (ELM) size decreases first and then increases, finally decreases again. For ECRH with different deposited power, the effects on P-B modes are similar if they have the same peak value of the power deposition profile. These results show that the effects of ECRH on P-B modes are primarily determined by the change in pressure profile caused by ECRH. As long as ECRH can lead to large enough change in pressure profile, ECRH can efficiently affect the dynamics of P-B modes.

  6. Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber

    Science.gov (United States)

    Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-01-01

    We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.

  7. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers

    Science.gov (United States)

    McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.

    2016-04-01

    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.

  8. Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham.

    Science.gov (United States)

    Amézquita, A; Weller, C L; Wang, L; Thippareddi, H; Burson, D E

    2005-05-25

    Numerous small meat processors in the United States have difficulties complying with the stabilization performance standards for preventing growth of Clostridium perfringens by 1 log10 cycle during cooling of ready-to-eat (RTE) products. These standards were established by the Food Safety and Inspection Service (FSIS) of the US Department of Agriculture in 1999. In recent years, several attempts have been made to develop predictive models for growth of C. perfringens within the range of cooling temperatures included in the FSIS standards. Those studies mainly focused on microbiological aspects, using hypothesized cooling rates. Conversely, studies dealing with heat transfer models to predict cooling rates in meat products do not address microbial growth. Integration of heat transfer relationships with C. perfringens growth relationships during cooling of meat products has been very limited. Therefore, a computer simulation scheme was developed to analyze heat transfer phenomena and temperature-dependent C. perfringens growth during cooling of cooked boneless cured ham. The temperature history of ham was predicted using a finite element heat diffusion model. Validation of heat transfer predictions used experimental data collected in commercial meat-processing facilities. For C. perfringens growth, a dynamic model was developed using Baranyi's nonautonomous differential equation. The bacterium's growth model was integrated into the computer program using predicted temperature histories as input values. For cooling cooked hams from 66.6 degrees C to 4.4 degrees C using forced air, the maximum deviation between predicted and experimental core temperature data was 2.54 degrees C. Predicted C. perfringens growth curves obtained from dynamic modeling showed good agreement with validated results for three different cooling scenarios. Mean absolute values of relative errors were below 6%, and deviations between predicted and experimental cell counts were within 0.37 log10

  9. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells.

    Science.gov (United States)

    Centomani, Isabella; Sgobba, Alessandra; D'Addabbo, Pietro; Dipierro, Nunzio; Paradiso, Annalisa; De Gara, Laura; Dipierro, Silvio; Viggiano, Luigi; de Pinto, Maria Concetta

    2015-11-01

    The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.

  10. The rapid growth of vertically aligned carbon nanotubes using laser heating.

    Science.gov (United States)

    Park, J B; Jeong, S H; Jeong, M S; Lim, S C; Lee, I H; Lee, Y H

    2009-05-06

    Growth of densely packed vertically aligned carbon nanotubes (VA-CNTs) using laser-induced chemical vapor deposition with visible laser (lambda = 532 nm) irradiation at room temperature is reported. Using a multiple-catalyst layer (Fe/Al/Cr) on quartz as the substrate and an acetylene-hydrogen mixture as the precursor gas, VA-CNT pillars with 60 microm height and 4 microm diameter were grown at a high rate of around 1 microm s(-1) with good reproducibility. It is demonstrated that the fabrication of uniform pillar arrays of VA-CNTs can be achieved with a single irradiation for each pillar using LCVD with no annealing or preprocessing of the substrate. Here, laser fast heating is considered the primary mechanism facilitating the growth of VA-CNT pillars. Field emission characteristics of an array of VA-CNT pillars were then examined to investigate their potential application in vacuum electronic devices.

  11. Characteristics of light and heat conditions of a chamber with prism light guides and electrodeless discharge lamps and its effect on growth of tomato and cucumber seedlings

    International Nuclear Information System (INIS)

    Higashide, T.; Shimaji, H.; Hamamoto, H.; Shimazu, T.; Takaichi, M.

    2004-01-01

    Summary Light and heat conditions were measured in a growth chamber with prism light guides and electrolodeless discharge lamps (LP chamber) , a growth chamber with metal halide lamps (MH chamber) and a glasshouse. In the LP chamber, photosynthetic photon flux (PPF) was larger and heat radiation was smaller than in the others. Growth of tomato seedlings increased in high PPF condition. However, the growth with high PPF in the MH chamber was restricted. Leaf temperature with high PPF in the MH chamber was higher than that in the LP chamber. We thought that excessive heat had restricted the growth with high PPF in the MH chamber. There were no differences in nutrient or water absorption, except with conditions of the largest heat radiation and the lowest PPF. Cucumber seedlings were grown with high PPF in the LP chamber. The growth at high temperatures was smaller than that at the optimum temperature. However the leaf number at high temperatures was higher than that at the optimum temperature

  12. Timing effects of heat-stress on plant physiological characteristics and growth: a field study with prairie vegetation

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-11-01

    Full Text Available More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic agricultural, economic and ecological impacts. This field study examined how plant responded to heat-stress (HS treatment at different timing in naturally-occurring vegetation. HS treatment (5 days at 40.5 ºC were applied to 12 1m2 plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass and Solidago canadensis (warm-season C3 forb at different growing stages. During and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (Pn, quantum yield of photosystem II (ФPSII, stomatal conductance (gs, and internal CO2 level (Ci of the dominant species were measured. One week after the last HS treatment, all plots were harvested and the biomass of above-ground tissue and flower weight of the two dominant species was determined. HS decreased physiological performance and growth for both species, with S. canadensis being affected more than A. gerardii, indicated by negative heat stress effect on both physiological and growth responses. There were significant timing effect of heat stress on the two species, with greater reductions in the photosynthesis and productivity occurred when heat stress was applied at later-growing season. The reduction in aboveground productivity in S. canadensis but not A. gerardii could have important implications for plant community structure by increasing the competitive advantage of A. gerardii in this grassland. The present experiment showed that heat stress, though ephemeral, may promote long-term effects on plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when more frequent and severe heat stress occur in the future.

  13. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery.

    Science.gov (United States)

    Lau, Shinying; Fei, Jie; Liu, Haoran; Chen, Weixing; Liu, Ran

    2017-11-10

    Dissolving microneedles have been employed as a safe and convenient transdermal delivery system for drugs and vaccines. To improve effective drug delivery, a multilayered pyramidal dissolving microneedle patch, composed of silk fibroin tips with the ability of robust mechanical strength, rapid dissolution and drug release supported on a flexible polyvinyl alcohol (PVA) pedestal is reported. To show the utility of this approach the ability of the fabricated microneedles to deliver insulin is demonstrated. The dissolving microneedles have sufficient mechanical strength to be inserted into abdomen skin of mice to a depth of approximately 150μm, and release their encapsulated insulin into the skin to cause a hypoglycemic effect. The fabrication of microneedles avoids high temperature which benefits storage stability at room temperature for 20d. This result indicates >99.4% of insulin remained in the microneedles. In comparison to traditional needle-based administration, the proposed multilayered pyramidal dissolving microneedle patches enable self-administration, miniaturization, pain-free administration, drug delivery and drug stability, all being important features in needle free drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. SERS Raman Sensor Based on Diameter-Modulated Sapphire Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Shimoji, Yutaka

    2010-08-09

    Surface enhanced Raman scattering (SERS) has been observed using a sapphire fiber coated with gold nano-islands for the first time. The effect was found to be much weaker than what was observed with a similar fiber coated with silver nanoparticles. Diameter-modulated sapphire fibers have been successfully fabricated on a laser heated pedestal growth system. Such fibers have been found to give a modest increase in the collection efficiency of induced emission. However, the slow response of the SERS effect makes it unsuitable for process control applications.

  15. Numerical Simulation of Yttrium Aluminum Garnet(YAG) Single Crystal Growth by Resistance Heating Czochralski(CZ) Method

    Energy Technology Data Exchange (ETDEWEB)

    You, Myeong Hyeon; Cha, Pil Ryung [Kookmin University, Seoul (Korea, Republic of)

    2017-01-15

    Yttrium Aluminum Garnet (YAG) single crystal has received much attention as the high power solid-state laser’s key component in industrial and medical applications. Various growth methods have been proposed, and currently the induction-heating Czochralski (IHCZ) growth method is mainly used to grow YAG single crystal. Due to the intrinsic properties of the IHCZ method, however, the solid/liquid interface has a downward convex shape and a sharp tip at the center, which causes a core defect and reduces productivity. To produce YAG single crystals with both excellent quality and higher yield, it is essential to control the core defects. In this study, using computer simulations we demonstrate that the resistance-heating CZ (RHCZ) method may avoid a downward convex interface and produce core defect free YAG single crystal. We studied the effects of various design parameters on the interface shape and found that there was an optimum combination of design parameter and operating conditions that produced a flat solid-liquid interface.

  16. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Vignjevic, Marija; Liu, Fulai

    2015-01-01

    Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage. Compared......Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage...... of abscisic acid in primed plants under drought stress could contribute to higher grain yield compared to the non-primed plants. Taken together, the results indicate that drought priming during vegetative stages improved tolerance to both drought and heat stress events occurring during grain filling in wheat....

  17. Fusion plasma theory: Task 3, Auxiliary heating in tokamaks

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1989-07-01

    The research that we have accomplished during the past year (1988--1989) includes the topics of ICRF fast wave waveguide coupling to H-mode profiles simulating CIT and full wave ICRF field solutions and a power conservation relation based on fundamental principles with JET and CIT heating applications. We have also published work on Fokker-Planck simulations of minority ion ICRF strong core electron sawteeth processes in JET, a publication on the effect of plasma edge density fluctuation and ponderomotive force effects on the coupling of ion Bernstein waves and a publication on the coupling of dielectric filled waveguides to plasmas in the ICRF. The analysis of ICRF H-mode coupling is crucial to the economic success of proposed ignition devices such as CIT and ITER. We have analyzed the coupling of ICRF waveguide launchers to H-mode density profiles modelled by a pedestal width and Gaussian edge variations with gradients comparable to current machines. We find that the launcher aperture spectrum, density gradients and width of the pedestal are important parameters in determining the coupling efficiency. The launcher-plasma admittance spectrum in k y -k z space is utilized to show that the H-mode launcher reflections increase when compared to the L-mode profile, but that they can be handled by launcher matching circuits and modest modifications of the H-mode profile. We plan to analyze the recent successful JET ICRF H-mode operation utilizing our formalism. We have also carried out a full wave ICRF field solution and the associated power conservation relation with expressions evaluated up to the third harmonic. We have implemented this in a computer code which utilizes invariant imbedding to solve the system of equations. 7 refs., 1 tab

  18. Local Physics Basis of Confinement Degradation in JET ELMy H-Mode Plasmas and Implications for Tokamak Reactors

    International Nuclear Information System (INIS)

    Budny, R.V.; Alper, B.; Borba, D.; Cordey, J.G.; Ernst, D.R.; Gowers, C.

    2001-01-01

    First results of gyrokinetic analysis of JET [Joint European Torus] ELMy [Edge Localized Modes] H-mode [high-confinement modes] plasmas are presented. ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak reactors of the size of ITER [International Thermonuclear Experimental Reactor]. Relatively high performance for long duration has been achieved and the scaling appears to be favorable. It will be necessary to sustain low Z(subscript eff) and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one with an intense gas puff and the other with a spontaneous transition between Type I to III ELMs at the heating power threshold. Linear gyrokinetic analysis gives the growth rate, gamma(subscript lin) of the fastest growing modes. The flow-shearing rate omega(subscript ExB) and gamma(subscript lin) are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high |gamma(subscript ExB)|/gamma(subscript lin) near the top of the pedestal for high confinement

  19. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms

    DEFF Research Database (Denmark)

    Rohde, Mikkel; Daugaard, Mads; Jensen, Mette Hartvig

    2005-01-01

    Whereas the stress-inducible heat-shock protein 70 (Hsp70) has gained plenty of attention as a putative target for tumor therapy, little is known about the role of other Hsp70 proteins in cancer. Here we present the first thorough analysis of the expression and function of the cytosolic Hsp70...... proteins in human cancer cells and identify Hsp70-2, a protein essential for spermatogenesis, as an important regulator of cancer cell growth. Targeted knock-down of the individual family members by RNA interference revealed that both Hsp70 and Hsp70-2 were required for cancer cell growth, whereas...

  20. Effects of heat treatment on conformation and cell growth activity of alpha- lactalbumin and beta-lactoglobulin from market milk.

    Science.gov (United States)

    Inagaki, Mizuho; Kawai, Shuji; Ijier, X; Fukuoka, Mayuko; Yabe, Tomio; Iwamoto, Satoshi; Kanamaru, Yoshihiro

    2017-01-01

    Heat processes, low temperature for long time (LTLT) pasteurization and ultra-heat treatment (UHT) sterilization, are essential for commercial market milk to improve the shelf life of raw milk and ensure microbial safety. We evaluated the effects of heat experience on the molecular properties of α-lactalbumin (α-LA) and β-lactoglobulin (β-LG) isolated from four types of market milk such as LTLT-A (66°C for 30 min), LTLT-B (65°C for 30 min), UHT-I (130°C for 2 s, indirect heating) and UHT-D (135°C for 2 s, direct heating) samples. We examined molecular conformations using circular dichroism spectrum measurement and cell growth activity using the WST-1 method for the proteins. α-LA isolated from each of these four types of market milk displayed no significant structural difference as compared to raw milk α-LA, while α-LA of UHT-I only inhibited cell growth of an intestinal epithelial cell line more potently than raw milk α-LA. In the case of β-LG, only the UHT-I sample demonstrated a drastic change in structure, while it did not exhibit any cytotoxicity. We found that cell viability effects of α-LA and β-LG are attributable to the type of UHT; indirect and direct. These findings indicate that the effect of heat treatment on whey proteins should carefully be investigated further.

  1. Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures

    DEFF Research Database (Denmark)

    Haque, Sabibul; Kjær, Katrine Heinsvig; Rosenqvist, Eva

    2014-01-01

    The effect of heat stress on photosystem II (PS II) efficiency and post-stress recovery was studied in four wheat cultivars using chlorophyll fluorescence. The main aim was to examine the cultivar differences in relation to inhibition and recovery of PSII functionality after heat stress...... and 25 °C) and subjected to heat stress (40 °C) for two days at early tillering and three days at anthesis and early grain development stages. The plants were returned to their original growth conditions after heat stress and recovery was observed for three days. The maximum photochemical efficiency (Fv...... heat tolerance characteristics as compared to the other three cultivars. The largest decrease in Fv/Fm and F′q/F′m after heat stress occurred in the cultivar PWS7, which did not recover completely after 72 h. All cultivars grown at 25 °C had a slightly increased heat tolerance and better recovery...

  2. Confinement properties of JET plasmas with different temperature and density profiles

    International Nuclear Information System (INIS)

    Watkins, M.L.; Balet, B.; Bhatnagar, V.P.

    1989-01-01

    The confinement properties of plasmas with substantially different temperature and density profiles have been analysed. The effects of fast particles and energy pedestals on the overall confinement of plasma energy in limiter (L-mode) and X-point (L- and H-modes) discharges heated by NBI or ICRF or both are determined. The importance of the bootstrap current when such energy pedestals are formed is noted. Using sets of consistent experimental data, including ion temperature profile measurements, the local transport properties are compared in the L- and H-phases of a single null X-point medium density NBI heated discharge, the ''enhanced'' confinement phase of a limiter high density pellet-fuelled and ICRF heated discharge, the hot-ion phase of a double null X-point low density NBI heated discharge and the hot-ion and H-phases of a double null X-point low density high temperature NBI heated discharge. (author)

  3. Energy confinement and transport of H-mode plasmas in tokamak

    International Nuclear Information System (INIS)

    Urano, Hajime

    2005-02-01

    A characteristic feature of the high-confinement (H-mode) regime is the formation of a transport barrier near the plasma edge, where steepening of the density and temperature gradients is observed. The H-mode is expected to be a standard operation mode in a next-step fusion experimental reactor, called ITER-the International Thermonuclear Experimental Reactor. However, energy confinement in the H-mode has been observed to degrade with increasing density. This is a critical constraint for the operation domain in the ITER. Investigation of the main cause of confinement degradation is an urgent issue in the ITER Physics Research and Development Activity. A key element for solving this problem is investigation of the energy confinement and transport properties of H-mode plasmas. However, the influence of the plasma boundary characterized by the transport barrier in H-modes on the energy transport of the plasma core has not been examined sufficiently in tokamak research. The aim of this study is therefore to investigate the energy confinement properties of H-modes in a variety of density, plasma shape, seed impurity concentration, and conductive heat flux in the plasma core using the experimental results obtained in the JT-60U tokamak of Japan Atomic Energy Research Institute. Comparison of the H-mode confinement properties with those of other tokamaks using an international multi-machine database for extrapolation to the next step device was also one of the main subjects in this study. Density dependence of the energy confinement properties has been examined systematically by separating the thermal stored energy into the H-mode pedestal component determined by MHD stability called the Edge Localized Modes (ELMs) and the core component governed by gyro-Bohm-like transport. It has been found that the pedestal pressure imposed by the destabilization of ELM activities led to a reduction in the pedestal temperature with increasing density. The core temperature for each

  4. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.

    Science.gov (United States)

    Dahal, Naween; García, Stephany; Zhou, Jiping; Humphrey, Simon M

    2012-11-27

    An extensive comparative study of the effects of microwave versus conventional heating on the nucleation and growth of near-monodisperse Rh, Pd, and Pt nanoparticles has revealed distinct and preferential effects of the microwave heating method. A one-pot synthetic method has been investigated, which combines nucleation and growth in a single reaction via precise control over the precursor addition rate. Using this method, microwave-assisted heating enables the convenient preparation of polymer-capped nanoparticles with improved monodispersity, morphological control, and higher crystallinity, compared with samples heated conventionally under otherwise identical conditions. Extensive studies of Rh nanoparticle formation reveal fundamental differences during the nucleation phase that is directly dependent on the heating method; microwave irradiation was found to provide more uniform seeds for the subsequent growth of larger nanostructures of desired size and surface structure. Nanoparticle growth kinetics are also markedly different under microwave heating. While conventional heating generally yields particles with mixed morphologies, microwave synthesis consistently provides a majority of tetrahedral particles at intermediate sizes (5-7 nm) or larger cubes (8+ nm) upon further growth. High-resolution transmission electron microscopy indicates that Rh seeds and larger nanoparticles obtained from microwave-assisted synthesis are more highly crystalline and faceted versus their conventionally prepared counterparts. Microwave-prepared Rh nanoparticles also show approximately twice the catalytic activity of similar-sized conventionally prepared particles, as demonstrated in the vapor-phase hydrogenation of cyclohexene. Ligand exchange reactions to replace polymer capping agents with molecular stabilizing agents are also easily facilitated under microwave heating, due to the excitation of polar organic moieties; the ligand exchange proceeds with excellent retention of

  5. Effect of cold water and inverse lighting on growth performance of broiler chickens under extreme heat stress.

    Science.gov (United States)

    Park, Sang-oh; Park, Byung-sung; Hwangbo, Jong

    2015-07-01

    The present study was carried out to investigate the effect of provision of extreme heat stress diet (EHD), inverse lighting, cold water on growth performance of broiler chickens exposed to extreme heat stress. The chickens were divided into four treatment groups, (T1, T2, T3, T4) as given below: Ti (EHD 1, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T2 (EHD 2, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T3 (EHD 1, 09:00-18:00 dark, 18:00-09:00 light, cool water 141C); T4 (EHD 2, 09:00-18:00 dark, 18:00-09:00 light, cool water 14 degrees C. EHD 1 contained soybean oil, molasses, methionine and lysine; EHD 2 contained the same ingredients as EHD 1 with addition of vitamin C. Groups T1 and T2 were given cooler water than the othertwo groups, and displayed higher body weight increase and diet intake as compared to T3 and T4 (pstress diet, inverse lighting (10:00-19:00 dark, 19:00-10:00 light) with cold water at 9 degrees C under extreme heat stress could enhance growth performance of broiler chickens.

  6. US SciDAC Program on Integrated Simulation of Edge Transport in Fusion Plasmas, and its Progress

    International Nuclear Information System (INIS)

    Chang, C.S.

    2007-01-01

    The multi-institutional collaborative center for plasma edge simulation (CPES) has been launched in the USA under the SciDAC (Scientific Discovery through Advanced Computing) Fusion Simulation Program. This is a multi-disciplinary effort among physicists, applied mathematicians, and computer scientists from 15 national laboratories and universities. Its goal is to perform first principles simulations on plasma transport in the edge region from the top of the pedestal to the scrape off/divertor regions bounded by a material wall, and to predict L-H transition, pedestal buildup, ELM crashes, scrape-off transport and divertor heat load. As a major part of the effort, a PIC gyrokinetic edge code XGC is constructed. The gyrokinetic edge code XGC is coupled to a nonlinear edge MHD/2fluid code (M3D and NIMROD) to predict the cycle of pedestal buildup and ELM crash. The magnetic geometry includes the realistic separatrix, X-point, open field lines and material wall. In the first phase of this effort, the electrostatic version of the PIC gyrokinetic code XGC-1 has been built, to be extended into an electromagnetic version soon in the next phase. XGC-1 includes the gyrokinetic ions, electrons, and Monte Carlo neutrals with wall recycling. Since the ions have non-Maxwellian distribution function in the edge, as demonstrated in XGC, a full-f ion technique is used. Electrons are, though, handled with a mixed-f technique: the full-f technique for neoclassical and adiabatic or delta-f split-weight techniques for turbulence physics. The mixed-f electron approach used in XGC is new, successfully integrating the neoclassical and turbulence physics. Recent progress and results on neoclassical and electrostatic turbulence transports will be reported, which includes the pedestal buildup by neutral ionization, density pedestal width scaling, electrostatic potential and plasma flow distributions in the pedestal and scrape-off, and other important physical effects in the pedestal

  7. Effects of low-Z and high-Z impurities on divertor detachment and plasma confinement

    Directory of Open Access Journals (Sweden)

    H.Q. Wang

    2017-08-01

    Full Text Available The impurity-seeded detached divertor is essential for heat exhaust in ITER and other reactor-relevant devices. Dedicated experiments with injection of N2, Ne and Ar have been performed in DIII-D to assess the impact of the different impurities on divertor detachment and confinement. Seeding with N2, Ne and Ar all promote divertor detachment, greatly reducing heat flux near the strike point. The upstream plasma density at the onset of detachment decreases with increasing impurity-puffing flow rates. For all injected impurity species, the confinement and pedestal pressure are correlated with the impurity content and the ratio of separatrix loss power to the l-H transition threshold power. As the divertor plasma approaches detachment, the high-Z impurity seeding tends to degrade the core confinement owing to the increased core radiation. In particular, Ar injection with up to 50% of the injected power radiating in the core cools the pedestal and core plasmas, thus significantly degrading the confinement. As for Ne seeding, medium confinement with H98∼0.8 can be maintained during the detachment phase with the pedestal temperature being reduced by about 50%. In contrast, in the N2 seeded plasmas, radiation is predominately confined in the boundary plasma, which leads to less effect on the confinement and pedestal. In the case of strong N2 gas puffing, the confinement recovers during the detachment, from ∼20% reduction at the onset of the detachment to greater than unity comparable to that before the seeding. The core and pedestal temperatures feature a reduction of 30% from the initial attached phase and remain nearly constant during the detachment phase. The improvement in confinement appears to arise from the increase in pedestal and core density despite the temperature reduction.

  8. Scaling of ELM and H-mode pedestal characteristics in ITER shape discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-07-01

    The authors have shown a correlation between the H-mode pressure pedestal height and the energy confinement enhancement in ITER shape discharges on DIII-D which is consistent with the behavior of H in different ELM classes. The width of the steep gradient region was found to equally well fit the scalings δ/R ∝ (ρ POL /R) 2/3 and δ/R ∝ (β POL PED /R) 1/2 . The normalized pressure gradient α MHD was found to be relatively constant just before a type I ELM. An estimate of T PED for ITER gave 1 to 5 keV. They also estimate ΔE ELM ≅ 26 MJ for ITER. They identified a distinct class of type III ELM at low density which may play a role in setting H at powers near the H-mode threshold power

  9. Numerical simulation of convection and heat transfer in Czochralski crystal growth by multiple-relaxation-time LBM

    Science.gov (United States)

    Liu, Ding; Huang, Weichao; Zhang, Ni

    2017-07-01

    A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ˜ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.

  10. The effects of design and operating factors on the frost growth and thermal performance of a flat plate fin-tube heat exchanger under the frosting condition

    International Nuclear Information System (INIS)

    Lee, Kwan Soo; Kim, Woo Seung

    1999-01-01

    An experimental study of the effects of various factors(fin pitch, fin arrangement, air temperature, air humidity, and air velocity) on the frost growth and thermal performance of a fin-tube heat exchanger has been conducted under the frosting condition. It is found that the thermal performance of a heat exchanger is closely related to the blockage ratio of the air flow passages due to the frost growth. The maximum allowable blockage ratio is used to determine the criteria for the optimal operating conditions of a fin-tube heat exchanger. It is also shown that heat transfer rate of heat exchanger with staggered fin arrangement increases about 17% and the time required for heat transfer rate to reach a maximum value becomes longer, compared with those of an inline fin-tube heat exchanger under the frosting condition. The energy transfer resistance between the air and coolant decreases with the increase of inlet air temperature and velocity and with decreasing inlet air humidity

  11. Growth of ruby crystals by the heat exchanger method, phase 1: NSF small business innovation research

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1980-03-01

    Conditions for the growth of large, uniformly doped laser crystals by the heat exchanger method are explored. Determination of the melt point, selection of crucible material and establishment of furnace operating parameters are discussed. The melt point of ruby was found to be 2040 plus or minus 10 C. Molybdenum crucibles can be used to contain ruby in vacuum as well as under argon atmospheres at desired superheat temperatures over extended periods required for crystal growth. Thermodynamic analysis was conducted and vapor pressures of volatile species calculated. Experimentally, volatilization of chromium oxides was suppressed by using welded covers on crucibles and operating under an argon pressure in the furnace.

  12. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film

    International Nuclear Information System (INIS)

    Yu-Jia, Tao; Xiu-Lan, Huai; Zhi-Gang, Li

    2009-01-01

    A mathematical model is developed to investigate the dynamics of vapor bubble growth in a thin liquid film, movement of the interface between two fluids and the surface heat transfer characteristics. The model takes into account the effects of phase change between the vapor and liquid, gravity, surface tension and viscosity. The details of the multiphase now and heat transfer are discussed for two cases: (1) when a water micro-droplet impacts a thin liquid film with a vapor bubble growing and (2) when the vapor bubble grows and merges with the vapor layer above the liquid film without the droplet impacting. The development trend of the interface between the vapor and liquid is coincident qualitatively with the available literature, mostly at the first stage. We also provide an important method to better understand the mechanism of nucleate spray cooling. (fundamental areas of phenomenology (including applications))

  13. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    Science.gov (United States)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  14. Summary of energy and particle confinement in pellet-fuelled auxiliary-heated discharges on JET

    International Nuclear Information System (INIS)

    Milora, S.L.; Baylor, L.R.; Bartlett, D.V.

    1989-01-01

    A transient improvement in plasma performance and central confinement has been observed in auxiliary heated JET limiter plasmas associated with a peaking of the plasma density profile and strong centralized heating. Suitable target plasmas for ICRF and NBI heating experiments are created by deuterium pellet injection with a multi pellet injector system developed jointly by ORNL and JETZ . Two types of discharge conditions have been observed. In the first (type A), the density profiles decay gradually during the first 1.3s of the heating pulse while maintaining an elevated density core plasma inside r/a < 0.6 superimposed on a flat density pedestal. During this phase the central electron and ion temperatures increase rapidly (up to 12 keV and 10 keV respectively in the best discharges). This results in an increase in the central plasma pressure by approximately a factor of three (β(0) 5%) above gas fuelled discharges and gives rise to sharply increased pressure gradients in the plasma. An abrupt collapse of the central electron and ion temperatures terminates the enhanced phase at 1.3 s and leads eventually to a 20% decrease in plasma stored energy. While these discharges are predicted to be stable to kink modes, they approach the first stability boundary for ballooning modes in the region of steepest pressure gradient. The pressure and q profiles inferred from transport analysis are also close to those for which intermediate-n mode instability is predicted. (author) 11 refs., 4 figs

  15. Direct evidence of stationary zonal flows and critical gradient behavior for Er during formation of the edge pedestal in JET

    Science.gov (United States)

    Hillesheim, Jon

    2015-11-01

    High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  16. Effects of Heat-oxidized Soy Protein Isolate on Growth Performance and Digestive Function of Broiler Chickens at Early Age

    Directory of Open Access Journals (Sweden)

    X. Chen

    2015-04-01

    Full Text Available This study was conducted to investigate effects of heat-oxidized soy protein isolate (HSPI on growth performance, serum biochemical indices, apparent nutrient digestibility and digestive function of broiler chickens. A total of 320 1-day-old Arbor Acres chicks were randomly divided into 4 groups with 8 replicates of 10 birds, receiving diets containing soy protein isolate (SPI, control group or the same amount of SPI heated in an oven at 100°C for 1, 4, or 8 h, for 21 days, respectively. The results indicated that compared with the control group, body weight gain and feed intake of birds fed diet containing SPI heated for 8 h were significantly lower (p<0.05. Serum urea nitrogen concentration was higher in the broilers fed diet containing SPI heated for 4 or 8 h at d 21 (p<0.05. In contrast, serum glucose content was decreased by HSPI substitution at d 21 (p<0.05. The relative pancreas weight in HSPI groups was higher than that in the control group at d 21 (p<0.05. Meanwhile, the opposite effect was observed for relative weight of anterior intestine and ileum in broilers fed a diet containing SPI heated for 8 h (p<0.05. Birds fed diets containing SPI heated for 4 or 8 h had a decreased lipase activity in anterior intestinal content at d 14 and 21 (p<0.05, respectively. In addition, the same effect was also noted in broilers given diets containing SPI heated for 1 h at d 21 (p<0.05. Similarly, amylase, protease and trypsin activity in anterior intestinal content were lower in broilers fed diets containing SPI heated for 8 h at d 21 (p<0.05. The apparent digestibility of dry matter (DM from d 8 to 10 and DM, crude protein (CP, and ether extract from d 15 to 17 were lower in broilers fed diets containing SPI heated for 8 h (p<0.05. Besides, birds given diets containing SPI heated for 4 h also exhibited lower CP apparent digestibility from d 15 to 17 (p<0.05. It was concluded that HSPI inclusion can exert a negative influence on the growth

  17. SCC growth behavior of stainless steel weld heat-affected zone in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2010-01-01

    It is known that the SCC growth rate of stainless steels in high-temperature water is accelerated by cold-work (CW). The weld heat-affected-zone (HAZ) of stainless steels is also deformed by weld shrinkage. However, only little have been reported on the SCC growth of weld HAZ of SUS316 and SUS304 in hydrogenated high-temperature water. Thus, in this present study, SCC growth experiments were performed using weld HAZ of stainless steels, especially to obtain data on the dependence of SCC growth on (1) temperature and (2) hardness in hydrogenated water at temperatures from 250degC to 340degC. And then, the SCC growth behaviors were compared between weld HAZ and CW stainless steels. The following results have been obtained. Significant SCC growth were observed in weld HAZ (SUS316 and SUS304) in hydrogenated water at 320degC. The SCC growth rates of the HAZ are similar to that of 10% CW non-sensitized SUS316, in accordance with that the hardness of weld HAZ is also similar to that of 10% CW SUS316. Temperature dependency of SCC growth of weld HAZ (SUS316 and SUS304) is also similar to that of 10% CW non-sensitized SUS316. That is, no significant SCC were observed in the weld HAZ (SUS316 and SUS304) in hydrogenated water at 340degC. This suggests that SCC growth behaviors of weld HAZ and CW stainless steels are similar and correlated with the hardness or yield strength of the materials, at least in non-sensitized regions. And the similar temperature dependence between the HAZ and CW stainless steels suggests that the SCC growth behaviors are also attributed to the common mechanism. (author)

  18. Nerve growth factor induces facial heat hyperalgesia and plays a role in trigeminal neuropathic pain in rats.

    Science.gov (United States)

    Dos Reis, Renata C; Kopruszinski, Caroline M; Nones, Carina F M; Chichorro, Juliana G

    2016-09-01

    There is preclinical evidence that nerve growth factor (NGF) contributes toward inflammatory hyperalgesia in the orofacial region, but the mechanisms underlying its hyperalgesic effect as well as its role in trigeminal neuropathic pain require further investigation. This study investigated the ability of NGF to induce facial heat hyperalgesia and the involvement of tyrosine kinase receptor A, transient receptor potential vanilloid 1, and mast cells in NGF pronociceptive effects. In addition, the role of NGF in heat hyperalgesia in a model of trigeminal neuropathic pain was evaluated. NGF injection into the upper lip of naive rats induced long-lasting heat hyperalgesia. Pretreatment with an antibody anti-NGF, antagonists of tyrosine kinase receptor A, and transient receptor potential vanilloid 1 receptors or compound 48/80, to induce mast-cell degranulation, all attenuated NGF-induced hyperalgesia. In a rat model of trigeminal neuropathic pain, local treatment with anti-NGF significantly reduced heat hyperalgesia. In addition, increased NGF levels were detected in the ipsilateral infraorbital nerve branch at the time point that represents the peak of heat hyperalgesia. The results suggest that NGF is a prominent hyperalgesic mediator in the trigeminal system and it may represent a potential therapeutic target for the management of painful orofacial conditions, including trigeminal neuropathic pain.

  19. Characterization and scaling of the tokamak edge transport barrier

    International Nuclear Information System (INIS)

    Schneider, Philip Adrian

    2012-01-01

    The high confinement regime (H-mode) in a tokamak plasma displays a remarkable edge region. On a small spatial scale of 1-2 cm the properties of the plasma change significantly. Certain parameters vary 1-2 orders of magnitude in this region, called the pedestal. Currently, there is no complete understanding of how the pedestal forms or how it is sustained. The goal of this thesis is to contribute to the theoretical understanding of the pedestal and provide scalings towards larger machines, like ITER and DEMO. A pedestal database was built with data from different tokamaks: ASDEX Upgrade, DIIID and JET. The pedestal was characterized with the same method for all three machines. This gives the maximum value, gradient and width of the pedestal in n e , T e and T i . These quantities were analysed along with quantities derived from them, such as the pressure or the confinement time. For this purpose two parameter sets were used: normalized parameters (pressure β, time ν * , length ρ * , shape f q ) and machine parameters (size a, magnetic field B t , plasma current I p , heating P). All results are dependent on the choice of the coordinate system: normalized poloidal flux Ψ N and real space r/a. The most significant result, which was obtained with both parameter sets, shows a different scaling of the pedestal width for the electron temperature and the electron density. The presented scalings predict that in ITER and DEMO the temperature pedestal will be appreciably wider than the density pedestal. The pedestal top scaling for the pressure reveals differences between the electron and the ion pressure. In extrapolations this results in values for T e,ped of 4 keV (ITER) and 10 keV (DEMO), but significantly lower values for the ion temperature. A two-term method was applied to use the pedestal pressure to determine the pedestal contribution to the global confinement time τ E . The dependencies in the scaling for τ E,ped are nearly identical to the IPB98 global

  20. Characterization and scaling of the tokamak edge transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Philip Adrian

    2012-04-24

    The high confinement regime (H-mode) in a tokamak plasma displays a remarkable edge region. On a small spatial scale of 1-2 cm the properties of the plasma change significantly. Certain parameters vary 1-2 orders of magnitude in this region, called the pedestal. Currently, there is no complete understanding of how the pedestal forms or how it is sustained. The goal of this thesis is to contribute to the theoretical understanding of the pedestal and provide scalings towards larger machines, like ITER and DEMO. A pedestal database was built with data from different tokamaks: ASDEX Upgrade, DIIID and JET. The pedestal was characterized with the same method for all three machines. This gives the maximum value, gradient and width of the pedestal in n{sub e}, T{sub e} and T{sub i}. These quantities were analysed along with quantities derived from them, such as the pressure or the confinement time. For this purpose two parameter sets were used: normalized parameters (pressure {beta}, time {nu}{sub *}, length {rho}{sub *}, shape f{sub q}) and machine parameters (size a, magnetic field B{sub t}, plasma current I{sub p}, heating P). All results are dependent on the choice of the coordinate system: normalized poloidal flux {Psi}{sub N} and real space r/a. The most significant result, which was obtained with both parameter sets, shows a different scaling of the pedestal width for the electron temperature and the electron density. The presented scalings predict that in ITER and DEMO the temperature pedestal will be appreciably wider than the density pedestal. The pedestal top scaling for the pressure reveals differences between the electron and the ion pressure. In extrapolations this results in values for T{sub e,ped} of 4 keV (ITER) and 10 keV (DEMO), but significantly lower values for the ion temperature. A two-term method was applied to use the pedestal pressure to determine the pedestal contribution to the global confinement time {tau}{sub E}. The dependencies in the

  1. The EPED pedestal model and edge localized mode-suppressed regimes: Studies of quiescent H-mode and development of a model for edge localized mode suppression via resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, P. B.; Osborne, T. H.; Burrell, K. H.; Groebner, R. J.; Leonard, A. W.; Wade, M. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Orlov, D. M. [University of California-San Diego, San Diego, California 92093 (United States); Schmitz, O. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Association FZJ-EURATOM, Juelich (Germany); Wilson, H. R. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2012-05-15

    The EPED model predicts the H-mode pedestal height and width based upon two fundamental and calculable constraints: (1) onset of non-local peeling-ballooning modes at low to intermediate mode number, (2) onset of nearly local kinetic ballooning modes at high mode number. We present detailed tests of the EPED model in discharges with edge localized modes (ELMs), employing new high resolution measurements, and finding good quantitative agreement across a range of parameters. The EPED model is then applied for the first time to quiescent H-mode (QH), finding a similar level of agreement between predicted and observed pedestal height and width, and suggesting that the model can be used to predict the critical density for QH-mode operation. Finally, the model is applied toward understanding the suppression of ELMs with 3D resonant magnetic perturbations (RMP). Combining EPED with plasma response physics, a new working model for RMP ELM suppression is developed. We propose that ELMs are suppressed when a 'wall' associated with the RMP blocks the inward penetration of the edge transport barrier. A calculation of the required location of this 'wall' with EPED is consistent with observed profile changes during RMP ELM suppression and offers an explanation for the observed dependence on safety factor (q{sub 95}).

  2. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    International Nuclear Information System (INIS)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H.Y.; Fu, B.Q.; Li, M.; Liu, W.

    2013-01-01

    Highlights: ► Recrystallization temperature of a rolled W was ∼2480 °C under applied HHF loads. ► Fine grains were obtained under HHF loads with appropriate short pulse length. ► With increasing pulse length, the recrystallized grains significantly grew larger. ► A linear relationship between ln d and 1/T max was found. ► Activation energy for grain growth in T evolution up to T max in 1.5 s was obtained. -- Abstract: Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m 2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/T max ) was found and accordingly the activation energy for grain growth in temperature evolution up to T max in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads

  3. Physics Analysis of the FIRE Experiment

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Meade, D.; Breslau, J.; Fu, G.; Gorelenkov, N.; Manickam, J.; Park, W.; Strauss, H.

    2002-01-01

    An integrated model of a complete discharge in the FIRE experiment has been developed based on the TSC simulation code. The complete simulation model includes a choice of several models for core transport, combined with an edge pedestal model and the Porcelli sawtooth model. Burn control is provided by feedback on the auxiliary heating power. We find that with the GLF23 and MMM95 transport models, Q >10 operation should be possible for H-mode pedestal temperatures in the range of 4-5 keV

  4. In-situ cyclic pulse annealing of InN on AlN/Si during IR-lamp-heated MBE growth

    Science.gov (United States)

    Suzuki, Akira; Bungi, Yu; Araki, Tsutomu; Nanishi, Yasushi; Mori, Yasuaki; Yamamoto, Hiroaki; Harima, Hiroshi

    2009-05-01

    To improve crystal quality of InN, an in-situ cyclic rapid pulse annealing during growth was carried out using infrared-lamp-heated molecular beam epitaxy. A cycle of 4 min growth of InN at 400 °C and 3 s pulse annealing at a higher temperature was repeated 15 times on AlN on Si substrate. Annealing temperatures were 550, 590, 620, and 660 °C. The back of Si was directly heated by lamp irradiation through a quartz rod. A total InN film thickness was about 200 nm. With increasing annealing temperature up to 620 °C, crystal grain size by scanning electron microscope showed a tendency to increase, while widths of X-ray diffraction rocking curve of (0 0 0 2) reflection and E 2 (high) mode peak of Raman scattering spectra decreased. A peak of In (1 0 1) appeared in X-ray diffraction by annealing higher than 590 °C, and In droplets were found on the surface by annealing at 660 °C.

  5. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.; Lomas, P.; Gowers, C.

    2000-01-01

    Models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in using a large database containing both Deuterium-only (DD) and Deuterium-Tritium (DT) plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing to study the dependence of the pedestal height on the edge shear. In addition the range of plasma currents was extended up to 6 MA. It is shown that the edge data is best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to eliminate conclusively the thermal ion model. (author)

  6. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Leparoux, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)], E-mail: susanne.leparoux@empa.ch; Diot, C. [Consultant, allee de Mozart 10, F-92300 Chatillon (France); Dubach, A. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Vaucher, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)

    2007-10-15

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  7. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    International Nuclear Information System (INIS)

    Leparoux, S.; Diot, C.; Dubach, A.; Vaucher, S.

    2007-01-01

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  8. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    Science.gov (United States)

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P stress. In contrast, serum malonaldehyde concentrations were decreased (P stress also reduced (P stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance and reduces oxidative stress in heat-stressed black-boned chickens by increasing serum growth hormone concentrations and modulating the expression of heat shock genes in organs of the immune system.

  9. Thermo-aerodynamic efficiency of non-circular ducts with vortex enhancement of heat exchange in different types of compact heat exchangers

    Science.gov (United States)

    Vasilev, V. Ya; Nikiforova, S. A.

    2018-03-01

    Experimental studies of thermo-aerodynamic characteristics of non-circular ducts with discrete turbulators on walls and interrupted channels have confirmed the rational enhancement of convective heat transfer, in which the growth of heat transfer outstrips or equals the growth of aerodynamic losses. Determining the regularities of rational (energy-saving) enhancement of heat transfer and the proposed method for comparing the characteristics of smooth-channel (without enhancement) heat exchangers with effective analogs provide new results, confirming the high efficiency of vortex enhancement of convective heat transfer in non-circular ducts of plate-finned heat exchange surfaces. This allows creating heat exchangers with much smaller mass and volume for operation in energy-saving modes.

  10. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    Directory of Open Access Journals (Sweden)

    Radomila KONEČNÁ

    2012-03-01

    Full Text Available Perferritic isothermal ductile iron (IDI® is an intermediate grade between the low-strength grades of austempered ductile iron (ADI and pearlitic ductile iron (DI recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness as a result of the isothermal heat treatment. In this contribution the fatigue crack growth resistance and Kath of IDI are investigated and correlated to mechanical properties and microstructural features. The threshold Ka was determined using the load shedding technique as per ASTM Standard E-647 using CT specimens extracted from a cast block. Tensile specimens were extracted from the broken CT halves and used to determine the static mechanical properties. A metallographic investigation was carried out to correlate structural features and mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1336

  11. Heating and current drive requirements towards steady state operation in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Poli, F. M.; Kessel, C. E.; Gorelenkova, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Bonoli, P. T. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Batchelor, D. B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Harvey, B.; Petrov, Y. [CompX, Box 2672, Del Mar, CA 92014 (United States)

    2014-02-12

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  12. Heating and current drive requirements towards steady state operation in ITER

    Science.gov (United States)

    Poli, F. M.; Bonoli, P. T.; Kessel, C. E.; Batchelor, D. B.; Gorelenkova, M.; Harvey, B.; Petrov, Y.

    2014-02-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  13. Observations of ELM stabilization during neutral beam injection in DIII-D

    Science.gov (United States)

    Bortolon, Alessandro; Kramer, Gerrit; Diallo, Ahmed; Knolker, Matthias; Maingi, Rajesh; Nazikian, Raffi; Degrassie, John; Osborne, Thomas

    2017-10-01

    Edge localized modes (ELMs) are generally interpreted as peeling-ballooning instabilities, driven by the pedestal current and pressure gradient, with other subdominant effects possibly relevant close to marginal stability. We report observations of transient stabilization of type-I ELMs during neutral beam injection (NBI), emerging from a combined dataset of DIII-D ELMy H-mode plasmas with moderate heating obtained through pulsed NBI waveforms. Statistical analysis of ELM onset times indicates that, in the selected dataset, the likelihood of onset of an ELM lowers significantly during NBI modulation pulses, with the stronger correlation found with counter-current NBI. The effect is also found in rf-heated H-modes, where ELMs appear inhibited when isolated diagnostic beam pulses are applied. Coherent average analysis is used to determine how plasma density, temperature, rotation as well as beam ion quantities evolve during a NB modulation cycle, finding relatively small changes ( 3%) of pedestal Te and ne and toroidal and poloidal rotation variations up to 5 km/s. The effect of these changes on pedestal stability will be discussed. Work supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466.

  14. Vapor bubble growth in highly superheated liquid

    International Nuclear Information System (INIS)

    Pavlov, P.A.

    1981-01-01

    Dynamics of the bubble growth in the volume of the uniformally superheated liquid is considered. It is supposed that its growth is hampered by heat transfer. An asymptotic expression for the bubble growth rate at high superheatings when heat hold by liquid is comparable with heat of steam formation, is found by the automodel solution of the heat transfer equation. Writing the radius square in the form of a functional applicable for the calculation of steam formation at the pressure change in superheated liquid is suggested for eveluation calculations [ru

  15. Extension of the ECRH operational space with O2 and X3 heating schemes to control tungsten accumulation in ASDEX Upgrade

    Science.gov (United States)

    Höhnle, H.; Stober, J.; Herrmann, A.; Kasparek, W.; Leuterer, F.; Monaco, F.; Neu, R.; Schmid-Lorch, D.; Schütz, H.; Schweinzer, J.; Stroth, U.; Wagner, D.; Vorbrugg, S.; Wolfrum, E.; ASDEX Upgrade Team

    2011-08-01

    ASDEX Upgrade has been operated with tungsten-coated plasma-facing components for several years. H-mode operation with good confinement has been demonstrated. Nevertheless, purely neutral beam injection-heated H-modes with reduced gas puff, moderate heating power or/and increased triangularity tend to accumulate tungsten, followed by a radiative collapse. Under these conditions, central electron heating with electron cyclotron resonance heating (ECRH), usually in X2 polarization, changes the impurity transport in the plasma centre, reducing the central tungsten concentration and, in many cases, stabilizing the plasma. In order to extend the applicability of central ECRH to a wider range of magnetic field and plasma current additional ECRH schemes with reduced single-pass absorption have been implemented: X3 heating allows us to reduce the magnetic field by 30%, such that the first H-modes with an ITER-like value of the safety factor of q95 = 3 could be run in the tungsten-coated device. O2 heating increases the cutoff density by a factor of 2 allowing higher currents and triangularities to be addressed. For both schemes, scenarios have been developed to cope with the associated reduced absorption. In the case of central X3 heating, the X2 resonance lies close to the pedestal top at the high-field side of the plasma, serving as a beam dump. For O2, holographic mirrors have been developed which guarantee a second pass through the plasma centre. The beam position on these reflectors is controlled by fast thermocouples. Stray-radiation protection has been implemented using sniffer probes.

  16. Extension of the ECRH operational space with O2 and X3 heating schemes to control tungsten accumulation in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Hoehnle, H.; Kasparek, W.; Stroth, U.; Stober, J.; Herrmann, A.; Leuterer, F.; Monaco, F.; Neu, R.; Schmid-Lorch, D.; Schuetz, H.; Schweinzer, J.; Wagner, D.; Vorbrugg, S.; Wolfrum, E.

    2011-01-01

    ASDEX Upgrade has been operated with tungsten-coated plasma-facing components for several years. H-mode operation with good confinement has been demonstrated. Nevertheless, purely neutral beam injection-heated H-modes with reduced gas puff, moderate heating power or/and increased triangularity tend to accumulate tungsten, followed by a radiative collapse. Under these conditions, central electron heating with electron cyclotron resonance heating (ECRH), usually in X2 polarization, changes the impurity transport in the plasma centre, reducing the central tungsten concentration and, in many cases, stabilizing the plasma. In order to extend the applicability of central ECRH to a wider range of magnetic field and plasma current additional ECRH schemes with reduced single-pass absorption have been implemented: X3 heating allows us to reduce the magnetic field by 30%, such that the first H-modes with an ITER-like value of the safety factor of q 95 = 3 could be run in the tungsten-coated device. O2 heating increases the cutoff density by a factor of 2 allowing higher currents and triangularities to be addressed. For both schemes, scenarios have been developed to cope with the associated reduced absorption. In the case of central X3 heating, the X2 resonance lies close to the pedestal top at the high-field side of the plasma, serving as a beam dump. For O2, holographic mirrors have been developed which guarantee a second pass through the plasma centre. The beam position on these reflectors is controlled by fast thermocouples. Stray-radiation protection has been implemented using sniffer probes.

  17. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    Science.gov (United States)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.

    2013-02-01

    Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  18. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei [Department of Machine Tools and Factory Management, Technical University of Berlin, Pascalstraße 8 – 9, 10587, Berlin (Germany); Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Kannengiesser, Thomas [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Institute of Materials and Joining Technology, Otto von Guericke University Magdeburg, Universitetsplatz 2, 39106, Magdeburg (Germany)

    2014-09-08

    The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results.

  19. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  20. Overview of Alcator C-Mod Research

    Science.gov (United States)

    White, A. E.

    2017-10-01

    Alcator C-Mod, a compact (R =0.68m, a =0.21m), high magnetic field, Bt Research spans the topics of core transport and turbulence, RF heating and current drive, pedestal physics, scrape-off layer, divertor and plasma wall interactions. In the last experimental campaign, Super H-mode was explored and featured the highest pedestal pressures ever recorded, pped 90 kPa (90% of ITER target), consistent with EPED predictions. Optimization of naturally ELM-suppressed EDA H-modes accessed the highest volume averaged pressures ever achieved (〈p〉>2 atm), with pped 60 kPa. The SOL heat flux width has been measured at Bpol = 1.25T, confirming the Eich scaling over a broader poloidal field range than before. Multi-channel transport studies focus on the relationship between momentum transport and heat transport with perturbative experiments and new multi-scale gyrokinetic simulation validation techniques were developed. U.S. Department of Energy Grant No. DE-FC02-99ER54512.

  1. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.F.F; Lomas, P.; Gowers, C.; Guo, H.; Hawkes, N.; Huysmans, G.T.A.; Jones, T.; Parail, V.V.; Rimini, F.; Schunke, B.

    2000-01-01

    Some models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the thermal or the fast-ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in (Guo H Y et al 2000 Edge transport barrier in JET hot-ion H-modes Nucl. Fusion 40 69) using a large database containing both deuterium-only and deuterium-tritium plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing one to study the dependence of the pedestal height on the edge shear. In addition, the range of plasma currents was extended up to 6 MA. It is shown that the edge data are best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to conclusively eliminate the thermal ion model. (author)

  2. Pedestal bifurcation and resonant field penetration at the threshold of edge-localized mode suppression in the DIII-D Tokamak.

    Science.gov (United States)

    Nazikian, R; Paz-Soldan, C; Callen, J D; deGrassie, J S; Eldon, D; Evans, T E; Ferraro, N M; Grierson, B A; Groebner, R J; Haskey, S R; Hegna, C C; King, J D; Logan, N C; McKee, G R; Moyer, R A; Okabayashi, M; Orlov, D M; Osborne, T H; Park, J-K; Rhodes, T L; Shafer, M W; Snyder, P B; Solomon, W M; Strait, E J; Wade, M R

    2015-03-13

    Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression.

  3. Numerical study on boiling heat transfer enhancement in a microchannel heat exchanger

    International Nuclear Information System (INIS)

    Jeon, Jin Ho; Suh, Young Ho; Son, Gi Hun

    2008-01-01

    Flow boiling in a microchannel heat exchanger has received attention as an effective heat removal mechanism for high power-density microelectronics. Despite extensive experimental studied, the bubble dynamics coupled with boiling heat transfer in a microchannel heat exchanger is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulations are performed to further clarify the dynamics of flow boiling in a microchannel heat exchanger. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle and to treat an immersed solid surface. Based on the numerical results, the effects of modified channel shape on the bubble growth and heat transfer are quantified

  4. Edge harmonic oscillations at the density pedestal in the H-mode discharges in CHS Heliotron measured using beam emission spectroscopy and magnetic probe

    Energy Technology Data Exchange (ETDEWEB)

    Kado, S. [High Temperature Plasma Center, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)]. E-mail: kado@q.t.u-tokyo.ac.jp; Oishi, T. [School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yoshinuma, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ida, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Takeuchi, M. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); Toi, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Akiyama, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Minami, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nagaoka, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Shimizu, A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Okamura, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Tanaka, S. [School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2007-06-15

    Edge harmonic oscillations (EHO) offer the potential to relax the H-mode pedestal in a tokamak, thus avoiding edge localised modes (ELM). The mode structure of the EHO in CHS was investigated using a poloidal array of beam emission spectroscopy (BES) and a magnetic probe array. The EHO exhibited a peculiar characteristic in which the first, second and third harmonics show the same wavenumber, suggesting that the propagation velocities are different. Change in the phase of higher harmonics at the time when that of the first harmonic is zero can be described as a variation along the (m, n) = (-2, 1) mode structure, though the EHO lies on the {iota} = 1 surface. This behavior leads to an oscillation that exhibits periodic dependence of shape on spatial position.

  5. Thermal insulation of high confinement mode with dominant electron heating in comparison to dominant ion heating and corresponding changes of torque input

    International Nuclear Information System (INIS)

    Sommer, Fabian H.D.

    2013-01-01

    The ratio of heating power going to electrons and ions will undergo a transition from mixed electron and ion heating as it is in current fusion experiments to dominant electron heating in future experiments and reactors. In order to make valid projections towards future devices the connected changes in plasma response and performance are important to be study and understand: Do electron heated plasmas behave systematically different or is the change of heated species fully compensated by heat exchange from electrons to ions? How does particle transport influence the density profile? Is the energy confinement and the H-mode pedestal reduced with reduced torque input? Does the turbulent transport regime change fundamentally? The unique capabilities of the ECRH system at ASDEX Upgrade enable this change of heated species by replacing NBI with ECRH power and thereby offer the possibility to discuss these and other questions. For low heating powers corresponding to high collisionalities the transition from mixed electron and ion heating to pure electron heating showed next to no degradation of the global plasma parameters and no change of the edge values of kinetic profiles. The electron density shows an increased central peaking with increased ECRH power. The central electron temperature stays constant while the ion temperature decreases slightly. The toroidal rotation decreases with reduced NBI fraction, but does not influence the profile stability. The power balance analysis shows a large energy transfer from electrons to ions, so that the electron heat flux approaches zero at the edge whereas the ion heat flux is independent of heating mix. The ion heat diffusivity exceeds the electron one. For high power, low collisionality discharges global plasma parameters show a slight degradation with increasing electron heating. The density profile shows a strong peaking which remains unchanged when modifying the heating mix. The electron temperature profile is unchanged

  6. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    2000-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge MHD instabilities and plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. The article examines these phenomena and their interaction. (author)

  7. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    1999-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge magneto-hydrodynamic (MHD) instabilities, plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge, to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. This paper examines these phenomena and their interaction. (author)

  8. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    2001-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge magneto-hydrodynamic (MHD) instabilities, plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge, to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. This paper examines these phenomena and their interaction. (author)

  9. Heat and mass transfer in semiconductor melts during single-crystal growth processes

    Science.gov (United States)

    Kakimoto, Koichi

    1995-03-01

    The quality of large semiconductor crystals grown from melts is significantly affected by the heat and mass transfer in the melts. The current understanding of the phenomena, especially melt convection, is reviewed starting from the results of visualization using model fluids or silicon melt, and continuing to the detailed numerical calculations needed for quantitative modeling of processing with solidification. The characteristics of silicon flows are also reviewed by focusing on the Coriolis force in the rotating melt. Descriptions of flow instabilities are included that show the level of understanding of melt convection with a low Prandtl number. Based on hydrodynamics, the origin of the silicon flow structure is reviewed, and it is discussed whether silicon flow is completely turbulent or has an ordered structure. The phase transition from axisymmetric to nonaxisymmetric flow is discussed using different geometries. Additionally, surface-tension-driven flow is reviewed for Czochralski crystal growth systems.

  10. Investigation of dynamics of ELM crashes and their mitigation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, Alexei Y. [Tech-X Corporation, Boulder, CO (United States)

    2015-08-14

    The accurate prediction of H-mode pedestal dynamics is critical for planning experiments in existing tokamaks and in the design of future tokamaks such as ITER and DEMO. The main objective of the proposed research is to advance the understanding of the physics of H-mode pedestal. Through advances in coupled kinetic-MHD simulations, a new model for H-mode pedestal and ELM crashes as well as an improved model for the bootstrap current will be developed. ELMmitigation techniques will also be investigated. The proposed research will help design efficient confinement scenarios and reduce transient heat loads on the divertor and plasma facing components. During the last two years, the principal investigator (PI) of this proposal actively participated in physics studies related to the DOE Joint Research Targets. These studies include the modeling of divertor heat load in the DIII-D, Alcator C-Mod, and NSTX tokamaks in 2010, and the modeling of H-mode pedestal structure in the DIII-D tokamak in 2011. It is proposed that this close collaboration with experimentalists from major US tokamaks continue during the next funding period. Verification and validation will be a strong component of the proposed research. During the course of the project, advances will be made in the following areas; Dynamics of the H-mode pedestal buildup and recovery after ELM crashes – The effects of neutral fueling, particle and thermal pinches will be explored; Dynamics of ELM crashes in realistic tokamak geometries – Heat loads associated with ELM crashes will be validated against experimental measurements. An improved model for ELM crashes will be developed; ELM mitigation – The effect of resonant magnetic perturbations on ELMs stability and their evolution will be investigated; Development of a new bootstrap current model – A reduced model for will be developed through careful verification of existing models for bootstrap current against first-principle kinetic neoclassical simulations

  11. The case for wood-fuelled heating

    International Nuclear Information System (INIS)

    Bent, Ewan

    2001-01-01

    This article looks at the wood heating industry in the UK and examines the heat market and the growth potential in the domestic, public, agricultural and commercial sectors. The current status of wood-fueled heating technology is considered, along with log and chip boilers, and the use of pellet fuel. The economics of wood-fuelled heating, the higher level of utilisation of wood-fuelled heating by utilities in northern European countries compared with the UK, and the barriers to the exploitation of wood fuelled heating are examined

  12. Survey of the effect of heat-to-heat variations upon the fatigue-crack propagation behavior of types 304 and 316 stainless steels

    International Nuclear Information System (INIS)

    James, L.A.

    1975-05-01

    The fatigue-crack growth behavior of four heats of annealed Type 304 stainless steel and three heats of annealed Type 316 stainless steel were studied at elevated temperature using the techniques of linear-elastic fracture mechanics. It is estimated that a factor of 1.5 applied above and below the mean line would provide upper and lower bounds that would account for heat-to-heat variations. In addition, the three heats of Type 316 represented three different melt practices: air-melt, vacuum-arc-remelt, and double-vacuum-melt processes. No effect on fatigue-crack growth behavior was noted due to melt practice. (U.S.)

  13. Heat tranfer decrease during water boiling in a tube for the heat flux step distribution by the tube length

    International Nuclear Information System (INIS)

    Remizov, O.V.; Sergeev, V.V.; Yurkov, Yu.I.

    1983-01-01

    The effect of the heat flux distribution along the circular tube length on supercritical convective heat transfer at parameters typical for steam generators heated by liquid metal is studied. The effect of conditions in a under- and a supercritical zones of a vertical tube with independently heated lower and upper sections on supercritical convective heat transfer is studied on a water circulation loop at 9.8-17.7 MPa pressure and 330-1000 kg/m 2 s mass velocities. The experimental heat fluxes varied within the following limits: at the upper section from 0 to 474 kW/m 2 , at the lower section from 190 to 590 kW/m 2 . Analysis of the obtained data shows that when heat flux changes in the supercritical zone rewetting of the heated surface and simultaneous existence of two critical zones are observed. The effect of heat flux in the supercritical zone on convective heat transfer is ambiguous: the heat flux growth up to 60-100 kW/m 2 leads to increasing minimum values of the heat transfer factor in the supercritical zone, and a further heat flux growth - to their reduction. The conclusion is made that the value of heat flux in the undercritical zone affects convective heat transfer in the supercritical zone mainly through changing the value of critical vapour content

  14. Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images.

    Science.gov (United States)

    Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K

    2015-05-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Study of heat transfer in the heating wall during nucleate pool boiling

    International Nuclear Information System (INIS)

    Bergez, W.

    1991-12-01

    The subject of this these is to show the role of heat transfer in the wall during saturated pool boiling. This effect, usually neglected in the modelizations of boiling, can explain some behaviours of the ebullition cycle and of the activities of nucleation sites. Il has been found that the ebullition cycle can be described by two steps: (1) during bubble growth, the wall temperature decreases due to the evaporation of the micro-layer at the base of the bubble; (2) initial superheat is re-established mainly by radial heat conduction in the wall. It is then possible to account for the variations of the wall temperature displayed by liquid crystals put a the bottom of the heating surface, and for the influence of the contact angle on the heat transfer. In the case of the infinitely thick wall the main results are that the thermal transfer during the growth of the bubble depends on the thermal properties of both wall and liquid and that the time separating the detachment of a bubble and its replacement by a new one is proportional to the cross-section of the bubble and to the thermal diffusivity of the wall

  16. Heat Production by the Denitrifying Bacterium Pseudomonas fluorescens and the Dissimilatory Ammonium-Producing Bacterium Pseudomonas putrefaciens during Anaerobic Growth with Nitrate as the Electron Acceptor

    OpenAIRE

    Samuelsson, M.-O.; Cadez, P.; Gustafsson, L.

    1988-01-01

    The heat production rate and the simultaneous nitrate consumption and production and consumption of nitrite and nitrous oxide were monitored during the anaerobic growth of two types of dissimilatory nitrate reducers. Pseudomonas fluorescens, a denitrifier, consumed nitrate and accumulated small amounts of nitrite or nitrous oxide. The heat production rate increased steadily during the course of nitrate consumption and decreased rapidly concomitant with the depletion of the electron acceptors....

  17. Using geothermal water for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir

    2006-01-01

    Full Text Available On construction with dimensions 15 x 5 x 2 m, conditions of temperature transmission and vegetables growth are examined. We have been cultivating pepper, cucumber, small cucumber, tomato, and lattice. Over ground heating has been used, consisting of one bent pipe with radius of 10 mm, in the shape of hairpin along the both sides of the construction. Underground heating consists of six pipes with radius of 20 mm on the depth of 350-400 mm. There have been measured the temperature inside construction, the temperature outside construction, the waterflow, and water temperature flowing into and out of the construction. The approximate heating flow factor K is determined by both the equation: heating balance equation and basic equation for temperature transmition. Vegetable growth has been watching during the period of time from March to November 2005.

  18. Influence of heat shock and osmotic stresses on the growth and viability of Saccharomyces cerevisiae SUBSC01.

    Science.gov (United States)

    Munna, Md Sakil; Humayun, Sanjida; Noor, Rashed

    2015-08-23

    With a preceding scrutiny of bacterial cellular responses against heat shock and oxidative stresses, current research further investigated such impact on yeast cell. Present study attempted to observe the influence of high temperature (44-46 °C) on the growth and budding pattern of Saccharomyces cerevisiae SUBSC01. Effect of elevated sugar concentrations as another stress stimulant was also observed. Cell growth was measured through the estimation of the optical density at 600 nm (OD600) and by the enumeration of colony forming units on the agar plates up to 450 min. Subsequent transformation in the yeast morphology and the cellular arrangement were noticed. A delayed and lengthy lag phase was observed when yeast strain was grown at 30, 37, and 40 °C, while at 32.5 °C, optimal growth pattern was noticed. Cells were found to lose culturability completely at 46 °C whereby cells without the cytoplasmic contents were also observed under the light microscope. Thus the critical growth temperature was recorded as 45 °C which was the highest temperature at which S. cerevisiae SUBSC01 could grow. However, a complete growth retardation was observed at 45 °C with the high concentrations of dextrose (0.36 g/l) and sucrose (0.18 g/l). Notably, yeast budding was found at 44 and 45 °C up to 270 min of incubation, which was further noticed to be suppressed at 46 °C. Present study revealed that the optimal and the critical growth temperatures of S. cerevisiae SUBSC01 were 32.5 and 45 °C, respectively; and also projected on the inhibitory concentrations of sugars on yeast growth at that temperature.

  19. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  20. Bubble growth in a narrow horizontal space

    International Nuclear Information System (INIS)

    Stutz, Benoit; Goulet, Remi; Passos, Julio Cesar

    2009-01-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  1. Bubble growth in a narrow horizontal space

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, Benoit; Goulet, Remi [CETHIL, UMR5008, CNRS, INSA-Lyon, Universite Lyon1 (France); Passos, Julio Cesar [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. LABSOLAR

    2009-07-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  2. Stability analysis of ELMs in long-pulse discharges with ELITE code on EAST tokamak

    Science.gov (United States)

    Wang, Y. F.; Xu, G. S.; Wan, B. N.; Li, G. Q.; Yan, N.; Li, Y. L.; Wang, H. Q.; Peng, Y.-K. Martin; Xia, T. Y.; Ding, S. Y.; Chen, R.; Yang, Q. Q.; Liu, H. Q.; Zang, Q.; Zhang, T.; Lyu, B.; Xu, J. C.; Feng, W.; Wang, L.; Chen, Y. J.; Luo, Z. P.; Hu, G. H.; Zhang, W.; Shao, L. M.; Ye, Y.; Lan, H.; Chen, L.; Li, J.; Zhao, N.; Wang, Q.; Snyder, P. B.; Liang, Y.; Qian, J. P.; Gong, X. Z.; EAST team

    2018-05-01

    One challenge in long-pulse and high performance tokamak operation is to control the edge localized modes (ELMs) to reduce the transient heat load on plasma facing components. Minute-scale discharges in H-mode have been achieved repeatedly on Experimental Advanced Superconducting Tokamak (EAST) since the 2016 campaign and understanding the characteristics of the ELMs in these discharges can be helpful for effective ELM control in long-pulse discharges. The kinetic profile diagnostics recently developed on EAST make it possible to perform the pedestal stability analysis quantitatively. Pedestal stability calculation of a typical long-pulse discharge with ELITE code is presented. The ideal linear stability results show that the ELM is dominated by toroidal mode number n around 10–15 and the most unstable mode structure is mainly localized in the steep pressure gradient region, which is consistent with experimental results. Compared with a typical type-I ELM discharge with larger total plasma current (I p = 600 kA), pedestal in the long-pulse H-mode discharge (I p = 450 kA) is more stable in peeling-ballooning instability and its critical peak pressure gradient is evaluated to be 65% of the former. Two important features of EAST tokamak in the long-pulse discharge are presented by comparison with other tokamaks, including a wider pedestal correlated with the poloidal pedestal beta and a smaller inverse aspect ratio and their effects on the pedestal stability are discussed. The effects of uncertainties in measurements on the linear stability results are also analyzed, including the edge electron density profile position, the separatrix position and the line-averaged effective ion charge {Z}{{e}{{f}}{{f}}} value.

  3. Advanced divertor configurations with large flux expansion

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V.A., E-mail: vlad@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Bell, R.E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); McLean, A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Menard, J.E.; Paul, S.F.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Raman, R. [University of Washington, Seattle, WA (United States); Ryutov, D.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Scotti, F.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mueller, D.M.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Reimerdes, H.; Canal, G.P. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas, Association Euratom Confédération Suisse, Lausanne (Switzerland); and others

    2013-07-15

    Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effective connection length and divertor volumetric power loss to increase beyond those in the standard divertor, potentially reducing heat flux and plasma temperature at the target. It also enables higher magnetic shear inside the separatrix, potentially affecting pedestal MHD stability. Experimental results from NSTX and TCV confirm the predicted properties of the snowflake divertor. In the NSTX, a large spherical tokamak with a compact divertor and lithium-coated graphite plasma-facing components (PFCs), the snowflake divertor operation led to reduced core and pedestal impurity concentration, as well as re-appearance of Type I ELMs that were suppressed in standard divertor H-mode discharges. In the divertor, an otherwise inaccessible partial detachment of the outer strike point with an up to 50% increase in divertor radiation and a peak divertor heat flux reduction from 3–7 MW/m{sup 2} to 0.5–1 MW/m{sup 2} was achieved. Impulsive heat fluxes due to Type-I ELMs were significantly dissipated in the high magnetic flux expansion region. In the TCV, a medium-size tokamak with graphite PFCs, several advantageous snowflake divertor features (cf. the standard divertor) have been demonstrated: an unchanged L–H power threshold, enhanced stability of the peeling–ballooning modes in the pedestal region (and generally an extended second stability region), as well as an H-mode pedestal regime with reduced (×2–3) Type I ELM frequency and slightly increased (20–30%) normalized ELM energy, resulting in a favorable average energy loss comparison to the standard divertor. In the divertor, ELM power partitioning between snowflake divertor strike points was demonstrated. The NSTX

  4. Canadian East Coast offshore petroleum industry safe lifting practices respecting offshore pedestal cranes, offshore containers, loose gear, other lifting devices, and operational best practices : standard practices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    This document was developed by a working group with representatives from the petroleum industry, the Offshore Petroleum Boards and Certifying Authorities. It outlines industry best practices for operators responsible for the management, planning and execution of offshore lifting operations. Its purpose is to assist in the interpretation of applicable legislation and standards. Considered within the practice are safe design requirements, manufacture, certification, testing, maintenance and inspection requirements for pedestal cranes, offshore containers, loose gear and lifting devices. Operational best practices for lifting operations are also included along with a section that identifies additional requirements for personnel lifting operations, including personnel transfers by crane and man-riding operations. 82 refs., 2 tabs., 4 figs., 3 appendices.

  5. Reactor container

    International Nuclear Information System (INIS)

    Oyamada, Osamu; Furukawa, Hideyasu; Uozumi, Hiroto.

    1979-01-01

    Purpose: To lower the position of an intermediate slab within a reactor container and fitting a heat insulating material to the inner wall of said intermediate slab, whereby a space for a control rod exchanging device and thermal stresses of the inner peripheral wall are lowered. Constitution: In the pedestal at the lower part of a reactor pressure vessel there is formed an intermediate slab at a position lower than diaphragm floor slab of the outer periphery of the pedestal thereby to secure a space for providing automatic exchanging device of a control rod driving device. Futhermore, a heat insulating material is fitted to the inner peripheral wall at the upper side of the intermediate slab part, and the temperature gradient in the wall thickness direction at the time of a piping rupture trouble is made gentle, and thermal stresses at the inner peripheral wall are lowered. (Sekiya, K.)

  6. X-Divertor Geometries for Deeper Detachment Without Degrading the DIII-D H-Mode

    Science.gov (United States)

    Covele, Brent; Kotschenreuther, M. T.; Valanju, P. M.; Mahajan, S. M.; Leonard, A. W.; Hyatt, A. W.; McLean, A. G.; Thomas, D. M.; Guo, H. Y.; Watkins, J. G.; Makowski, M. A.; Hill, D. N.

    2015-11-01

    Recent DIII-D experiments comparing the standard divertor (SD) and X-Divertor (XD) geometries show heat and particle flux reduction at the divertor target plate. The XD features large poloidal flux expansion, increased connection length, and poloidal field line flaring, quantified by the Divertor Index. Both SD and XD were pushed deep into detachment with increased gas puffing, until core energy confinement and pedestal pressure were substantially reduced. As expected, outboard target heat fluxes are significantly reduced in the XD compared to the SD under similar upstream plasma conditions, even at low Greenwald fraction. The high-triangularity (floor) XD cases show larger reduction in temperature, heat, and particle flux relative to the SD in all cases, while low-triangularity (shelf) XD cases show more modest reductions over the SD. Consequently, heat flux reduction and divertor detachment may be achieved in the XD with less gas puffing and higher pedestal pressures. Further causative analysis, as well as detailed modeling with SOLPS, is underway. These initial experiments suggest the XD as a promising candidate to achieve divertor heat flux control compatible with robust H-mode operation. Work supported by US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-04ER54754, and DE-FG02-04ER54742.

  7. Numerical simulation of boundary heat flow effects on directional solidification microstructure of a binary alloy

    Directory of Open Access Journals (Sweden)

    Xue Xiang

    2010-08-01

    Full Text Available The boundary heat flow has important significance for the microstructures of directional solidified binary alloy. Interface evolution of the directional solidified microstructure with different boundary heat flow was discussed. In this study, only one interface was allowed to have heat flow, and Neumann boundary conditions were imposed at the other three interfaces. From the calculated results, it was found that different boundary heat flows will result in different microstructures. When the boundary heat flow equals to 20 W·cm-2, the growth of longitudinal side branches is accelerated and the growth of transverse side branches is restrained, and meanwhile, there is dendritic remelting in the calculation domain. When the boundary heat flow equals to 40 W·cm-2, the growths of the transverse and longitudinal side branches compete with each other, and when the boundary heat flow equals to 100-200 W·cm-2, the growth of transverse side branches dominates absolutely. The temperature field of dendritic growth was analyzed and the relation between boundary heat flow and temperature field was also investigated.

  8. Simulations of particle and heat fluxes in an ELMy H-mode discharge on EAST using BOUT++ code

    Science.gov (United States)

    Wu, Y. B.; Xia, T. Y.; Zhong, F. C.; Zheng, Z.; Liu, J. B.; team3, EAST

    2018-05-01

    In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts on the Experimental Advanced Superconducting Tokamak (EAST), the BOUT++ six-field two-fluid model is used to simulate the pedestal collapse. The profiles from the EAST H-mode discharge #56129 are used as the initial conditions. Linear analysis shows that the resistive ballooning mode and drift-Alfven wave are two dominant instabilities for the equilibrium, and play important roles in driving ELMs. The evolution of the density profile and the growing process of the heat flux at divertor targets during the burst of ELMs are reproduced. The time evolution of the poloidal structures of T e is well simulated, and the dominant mode in each stage of the ELM crash process is found. The studies show that during the nonlinear phase, the dominant mode is 5, and it changes to 0 when the nonlinear phase goes to saturation after the ELM crash. The time evolution of the radial electron heat flux, ion heat flux, and particle density flux at the outer midplane (OMP) are obtained, and the corresponding transport coefficients D r, χ ir, and χ er reach maximum around 0.3 ∼ 0.5 m2 s‑1 at ΨN = 0.9. The heat fluxes at outer target plates are several times larger than that at inner target plates, which is consistent with the experimental observations. The simulated profiles of ion saturation current density (j s) at the lower outboard (LO) divertor target are compared to those of experiments by Langmuir probes. The profiles near the strike point are similar, and the peak values of j s from simulation are very close to the measurements.

  9. Geothermal Direct Heat Application Potential

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J

    1989-01-01

    The geothermal direct-use industry growth trends, potential, needs, and how they can be met, are addressed. Recent investigations about the current status of the industry and the identification of institutional and technical needs provide the basis on which this paper is presented. Initial drilling risk is the major obstacle to direct-use development. The applications presented include space and district heating projects, heat pumps (heating and cooling), industrial processes, resorts and pools, aquaculture and agriculture.

  10. Purification and growth of LiF by induction heating furnace with electronic temperature control

    International Nuclear Information System (INIS)

    Faria Junior, R.N. de

    1985-01-01

    An eletronic power control system for a radio frequency generator and a quartz vacuum furnace heated by induction were developed. This furnace was employed for the growth of single crystals and purification of starting materials. A lithium fluoride single crystal was grown by the Czochralski technique in order to test the temperature control and the quartz furnace. An X-ray diffraction analysis of the crystal revealed the monocrystallinity high optical quality of the crystal obtained. Lithium fluoride of 95% purity prepared by Nuclemon starting material was purified by a vertical Bridgmann method. The emission spectrographic analysis of the purified crystal demonstrated the segregation of impurities. This study showed that the purification by this method of starting materials produced by local industry resulted in a crystal 99.9% pure in the first crystallization. (Author) [pt

  11. Student Augmentation for Crystal Growth Research

    National Research Council Canada - National Science Library

    Prasad, V

    1999-01-01

    ... intelligent modeling, design and control of crystal growth processes. One doctoral student worked on integrating the radiation heat transfer model into MASTRAPP, the crystal growth model developed by the Consortium for Crystal Growth Research...

  12. Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad

    2017-03-01

    Full Text Available Heat stress during reproductive and grain filling phases adversely affects the growth of cereals through reduction in grain’s number and size. However, exogenous application of antioxidants, plant growth regulators and osmoprotectants may be helpful to minimize these heat induced yield losses in cereals. This two year study was conducted to evaluate the role of exogenous application of ascorbic acid (AsA, salicylic acid (SA and hydrogen peroxide (H2O2 applied through seed priming or foliar spray on biochemical, physiological, morphological and yield related traits, grain yield and quality of late spring sown hybrid maize. The experiment was conducted in the spring season of 2007 and 2008. We observed that application of AsA, SA and H2O2 applied through seed priming or foliar spray improved the physiological, biochemical, morphological and yield related traits, grain yield and grain quality of late spring sown maize in both years. In both years, we observed higher superoxide dismutase (SOD, catalase (CAT and peroxidase (POD activity in the plants where AsA, SA and H2O2were applied through seed priming or foliar spray than control. Membrane stability index (MSI, relative water contents (RWC, chlorophyll contents, grain yield and grain oil contents were also improved by exogenous application of AsA, SA and H2O2 in both years. Seed priming of AsA, SA and H2O2was equally effective as the foliar application. In conclusion, seed priming with AsA, SA and H2O2 may be opted to lessen the heat induced yield losses in late sown spring hybrid maize. Heat tolerance induced by ASA, SA and H2O2 may be attributed to increase in antioxidant activities and MSI which maintained RWC and chlorophyll contents in maize resulting in better grain yield in heat stress conditions.

  13. Statistical aspects of fatigue crack growth life of base metal, weld metal and heat affected zone in FSWed 7075-T651aluminum alloy

    International Nuclear Information System (INIS)

    Sohn, Hye Jeong; Haryadi, Gunawan Dwi; Kim, Seon Jin

    2014-01-01

    The statistical aspects of fatigue crack growth life of base metal (BM), weld metal (WM) and heat affected zone (HAZ) in friction stir welded (FSWed) 7075-T651 aluminum alloy has been studied by Weibull statistical analysis. The fatigue crack growth tests were performed at room temperature on ASTM standard CT specimens under three different constant stress intensity factor range controls. The main objective of this paper is to investigate the effects of statistical aspects of fatigue crack growth life on stress intensity factor ranges and material properties, namely BM, WM and HAZ specimens. In this work, the Weibull distribution was employed to estimate the statistical aspects of fatigue crack growth life. The shape parameter of Weibull distribution for fatigue crack growth life was significantly affected by material properties and the stress intensity factor range. The scale parameter of WM specimen exhibited the lowest value at all stress intensity factor ranges.

  14. Domestic heating - the biomass challenge

    International Nuclear Information System (INIS)

    Rakos, C.

    1999-01-01

    This article highlights currently available efficient, low emission technical concepts for the combustion of wood, log-burning boilers, woodchip boilers, and the use of wood pellets. The economics of domestic heating with wood, the higher costs incurred with modern efficient wood burners as compared with fuelwood costs, and the proposed European Commission's campaign to implement more wood heated dwellings are discussed, and the transition from traditional to modern wood heating, and options for stimulating growth in renewable energy are considered

  15. Innovative heat exchangers

    CERN Document Server

    Scholl, Stephan

    2018-01-01

    This accessible book presents unconventional technologies in heat exchanger design that have the capacity to provide solutions to major concerns within the process and power-generating industries. Demonstrating the advantages and limits of these innovative heat exchangers, it also discusses micro- and nanostructure surfaces and micro-scale equipment, and introduces pillow-plate, helical and expanded metal baffle concepts. It offers step-by-step worked examples, which provide instructions for developing an initial configuration and are supported by clear, detailed drawings and pictures. Various types of heat exchangers are available, and they are widely used in all fields of industry for cooling or heating purposes, including in combustion engines. The market in 2012 was estimated to be U$ 42.7 billion and the global demand for heat exchangers is experiencing an annual growth of about 7.8 %. The market value is expected to reach U$ 57.9 billion in 2016, and approach U$ 78.16 billion in 2020. Providing a valua...

  16. Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of Malpura ewes subjected to heat stress.

    Science.gov (United States)

    Sejian, V; Singh, A K; Sahoo, A; Naqvi, S M K

    2014-02-01

    This study was conducted to evaluate the effect of mineral and antioxidant supplementation on growth, reproductive performance and physiological adaptability of heat-stressed Malpura ewes. The study was conducted for a period of 21 days in 21 adult Malpura ewes. The ewes were randomly divided into three groups with seven animals each viz. GI (control; n = 7), GII (heat stress; n = 7) and GIII (heat stress + mineral and antioxidant supplementation; n = 7). The animals were stall fed ad libitum with the diet consisting of 70% roughage and 30% concentrate. GI ewes were maintained under normal controlled condition in the shed, while GII and GIII ewes were subjected to heat stress by exposing them to 42 °C in the climatic chamber. The parameters studied were feed intake (FI), water intake (WI), body weight, body condition score (BCS), physiological, biochemical and endocrine responses. Heat stress significantly altered FI, water intake, BCS, respiration rate and rectal temperature in the afternoon, oestrus duration, estradiol, progesterone, Hb, PCV, plasma glucose, total protein, cortisol, T3 and T4 levels while mineral and antioxidant supplementation ameliorated this heat stress effect on the parameters studied. Further, the adverse effect of heat stress on the productive and reproductive efficiency of Malpura ewes was reduced considerably by mineral mixture and antioxidant supplementation. This is evident from the non-significant difference in BCS, oestrus duration and plasma estradiol between GI and GIII in this study. Hence, it is very pertinent to conclude from this study that mineral mixture and antioxidant supplementation were able to protect Malpura ewes against heat stress. © 2013 Blackwell Verlag GmbH.

  17. A susceptor heating structure in MOVPE reactor by induction heating

    International Nuclear Information System (INIS)

    Li, Zhiming; Li, Hailing; Zhang, Jincheng; Li, Jinping; Jiang, Haiying; Fu, Xiaoqian; Han, Yanbin; Xia, Yingjie; Huang, Yimei; Yin, Jianqin; Zhang, Lejuan; Hu, Shigang

    2014-01-01

    A novel susceptor with a revolutionary V-shaped slot of solid of revolution form is proposed in the metalorganic vapor phase epitaxy (MOVPE) reactor by induction heating. This slot changes the heat transfer rate as the generated heat is transferred from the high temperature region of the susceptor to the substrate, which improves the uniformity of the substrate temperature distribution. By using finite element method (FEM), the susceptor with this structure for heating the substrate of six inches in diameter is optimized. It is observed that this optimized susceptor with the V-shaped slot makes the uniformity of the substrate temperature distribution improve more than 80%, which can be beneficial to the film growth. - Highlights: •A novel susceptor with V-shaped slot in MOVPE reactor is proposed. •Temperature in the substrate is optimized. •Great temperature uniformity of the substrate is obtained

  18. Edge stability and performance of the ELM-free quiescent H-mode and the quiescent double barrier mode on DIII-D

    International Nuclear Information System (INIS)

    West, W.P.; Burrell, K.H.; Snyder, P.B.; Gohil, P.; Lao, L.L.; Leonard, A.W.; Osborne, T.H.; Thomas, D.M.; Casper, T.A.; Lasnier, C.J.; Doyle, E.J.; Wang, G.; Zeng, L.; Nave, M.F.F.

    2005-01-01

    The quiescent H (QH) mode, an edge localized mode (ELM)-free, high-confinement mode, combines well with an internal transport barrier to form quiescent double barrier (QDB) stationary state, high performance plasmas. The QH-mode edge pedestal pressure is similar to that seen in ELMing phases of the same discharge, with similar global energy confinement. The pedestal density in early ELMing phases of strongly pumped counter injection discharges drops and a transition to QH-mode occurs, leading to lower calculated edge bootstrap current. Plasmas current ramp experiment and ELITE code modeling of edge stability suggest that QHmodes lie near an edge current stabilty boundary. At high triangularity, QH-mode discharges operate at higher pedestal density and pressure, and have achieved ITER level values of β PED and ν*. The QDB achieves performance of β N H 89 ∼ 7 in quasi-stationary conditions for a duration of 10 τ E , limited by hardware. Recently we demonstrated stationary state QDB discharges with little change in kinetic and q profiles (q 0 > 1) for 2 s, comparable to ELMing 'hybrid scenarios', yet without the debilitating effects of ELMs. Plasma profile control tools, including electron cyclotron heating and current drive and neutral beam heating, have been demonstrated to control simultaneously the q profile development, the density peaking, impurity accumulation and plasma beta. (author)

  19. Tritiated-water heat-tolerance index to predict the growth rate in calves in hot deserts

    International Nuclear Information System (INIS)

    Kamal, T.H.

    1982-01-01

    It was the intention of this study to develop a heat-tolerance index that predicts at an early age the growth rate of calves in a hot desert area (Inshas). Twelve female Friesian calves aged 13-15 months were maintained in climatic chambers for 2 weeks at a mild climate (control), followed by 2 weeks at a hot climate (experimental). Determinations of body water content, body solids, body weight and final rectal temperature were undertaken during the second week of the control and experimental periods. Afterwards the animals were transferred to the farm and maintained outdoors; they were weighed at the end of the 4 summer months. Body water content and rectal temperature were 9.47 and 2.42%, respectively, higher in the hot climate than in the control at P 1 ) or body solids content (X 2 ) that had occurred previously during the 2-weeks heat stress in the climatic chamber by using the equation Y = 39.44 - 1.65X 1 or Y = 45.02 - 1.27X 2 . The standard errors of the regression coefficients for the two equations were 0.094 and 0.132, respectively. The standard errors of the predicted Y for the two equations were 0.207 and 0.218, respectively

  20. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season.

    Science.gov (United States)

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-10-27

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight ("before") in the indoor water pipes was 15-17 °C, and the water temperature decreased to 4-6 °C after flushing for 10 min ("flushed"). The highest bacterial cell number was observed in water stagnated overnight, and was 5-11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant "flushed" and "taps" values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p heating periods.

  1. Heat injury and recovery of Streptococcus faecium associated with the souring of chub-packed luncheon meat.

    Science.gov (United States)

    Bell, R G; De Lacy, K M

    1984-10-01

    The presence of NaCl in the heating medium provided some protection from lethal heat damage for cells of a Streptococcus faecium strain isolated from luncheon meat whereas the presence of NaNO2 either alone or in addition to NaCl, had no significant effect on cell survival. Subsequent recovery and growth of heat-damaged cells was retarded by the presence of NaCl. When NaNO2 was present in addition to NaCl the inhibitory effect of the latter was reduced. These principal components of the luncheon-meat-cure are apparently opposed in their activities on post-heating recovery and growth of Strep. faecium. Product stability, i.e. duration of the lag before growth occurs, is directly related to the severity of the heat treatment and to the concentration of NaCl in the product. Therefore the resistance of pasteurized chub-packed luncheon meat to streptococcal spoilage during storage at temperatures conducive to microbial growth results from a prolonged heat-induced salt-maintained pre-growth adjustment phase rather than to any inherent inhibitory property of the luncheon meat to the growth of non-heat-damaged Strep. faecium cells.

  2. Switching Vertical to Horizontal Graphene Growth Using Faraday Cage-Assisted PECVD Approach for High-Performance Transparent Heating Device.

    Science.gov (United States)

    Qi, Yue; Deng, Bing; Guo, Xiao; Chen, Shulin; Gao, Jing; Li, Tianran; Dou, Zhipeng; Ci, Haina; Sun, Jingyu; Chen, Zhaolong; Wang, Ruoyu; Cui, Lingzhi; Chen, Xudong; Chen, Ke; Wang, Huihui; Wang, Sheng; Gao, Peng; Rummeli, Mark H; Peng, Hailin; Zhang, Yanfeng; Liu, Zhongfan

    2018-02-01

    Plasma-enhanced chemical vapor deposition (PECVD) is an applicable route to achieve low-temperature growth of graphene, typically shaped like vertical nanowalls. However, for transparent electronic applications, the rich exposed edges and high specific surface area of vertical graphene (VG) nanowalls can enhance the carrier scattering and light absorption, resulting in high sheet resistance and low transmittance. Thus, the synthesis of laid-down graphene (LG) is imperative. Here, a Faraday cage is designed to switch graphene growth in PECVD from the vertical to the horizontal direction by weakening ion bombardment and shielding electric field. Consequently, laid-down graphene is synthesized on low-softening-point soda-lime glass (6 cm × 10 cm) at ≈580 °C. This is hardly realized through the conventional PECVD or the thermal chemical vapor deposition methods with the necessity of high growth temperature (1000 °C-1600 °C). Laid-down graphene glass has higher transparency, lower sheet resistance, and much improved macroscopic uniformity when compare to its vertical graphene counterpart and it performs better in transparent heating devices. This will inspire the next-generation applications in low-cost transparent electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Study on subcooled-forced flow boiling heat transfer and critical heat flux of solid particle-water two-phase mixture

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Mochizuki, Manabu; Ohtake, Hiroyasu

    1999-01-01

    The effect of solid particle introduction on forced flow boiling and the critical heat flux was examined for the mixture of subcooled-water and 0.6 mm glass beads. When the particles were introduced, the growth on of a superheated layer near a wall seemed to be suppressed and the onset of nucleate boiling was delayed. The particles tempted for bubbles to condense at nucleation sites, and then the initiation of net vapor generation was also delayed and sifted to a high wall-superheat region. The nucleate boiling heat transfer was augmented by the particles, which considered to be caused by the combination of the suppression of the superheated layer growth and the promotion of the condensation and dissipation of the bubbles. The wall superheat at the critical heat flux condition was sifted to a high wall superheat region and the critical heat flux itself was also elevated a little. (author)

  4. Screening of the two-component-system histidine kinases of Listeria monocytogenes EGD-e. LiaS is needed for growth under heat, acid, alkali, osmotic, ethanol and oxidative stresses.

    Science.gov (United States)

    Pöntinen, Anna; Lindström, Miia; Skurnik, Mikael; Korkeala, Hannu

    2017-08-01

    To study the role of each two-component system (TCS) histidine kinase (HK) in stress tolerance of Listeria monocytogenes EGD-e, we monitored the growth of individual HK deletion mutant strains under heat (42.5 °C), acid (pH 5.6), alkali (pH 9.4), osmotic (6% NaCl), ethanol (3.5 vol%), and oxidative (5 mM H 2 O 2 ) stresses. The growth of ΔliaS (Δlmo1021) strain was impaired under each stress, with the most notable decrease under heat and osmotic stresses. The ΔvirS (Δlmo1741) strain showed nearly completely restricted growth at high temperature and impaired growth in ethanol. The growth of ΔagrC (Δlmo0050) strain was impaired under osmotic stress and slightly under oxidative stress. We successfully complemented the HK mutations using a novel allelic exchange based approach. This approach avoided the copy-number problems associated with in trans complementation from a plasmid. The mutant phenotypes were restored to the wild-type level in the complemented strains. This study reveals novel knowledge on the HKs needed for growth of L. monocytogenes EGD-e under abovementioned stress conditions, with LiaS playing multiple roles in stress tolerance of L. monocytogenes EGD-e. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES

    International Nuclear Information System (INIS)

    LAO, LL; SNYDER, PB; LEONARD, AW; OSBORNE, TH; PETRIE, TW; FERRON, JR; GROEBNER, RJ; HORTON, LD; KAMADA, Y; MURAKAMI, M; OIKAWA, T; PEARLSTEIN, LD; SAARELMA, S; STJOHN, HE; THOMAS, DM; TURNBULL, AD; WILSON, HR

    2002-01-01

    OAK A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES. Two of the major issues crucial for the design of the next generation tokamak burning plasma devices are the predictability of the edge pedestal height and control of the divertor heat load in H-mode configurations. Both of these are strongly impacted by edge localized modes (ELMs) and their size. A working model for ELMs is that they are intermediate toroidal mode number, n ∼ 5-30, peeling-ballooning modes driven by the large edge pedestal pressure gradient P(prime) and the associated large edge bootstrap current density J BS . the interplay between P(prime) and J BS as a discharge evolves can excite peeling-ballooning modes over a wide spectrum of n. The pedestal current density plays a dual role by stabilizing the high n ballooning modes via opening access to second stability but providing free energy to drive the intermediate n peeling modes. This makes a systematic evaluation of this model particularly challenging. This paper describes recent quantitative tests of this model using experimental data from the DIII-D and the JT-60U tokamaks. These tests are made possible by recent improvements to the ELITE MHD stability code, which allow an efficient evaluation of the unstable peeling-ballooning modes, as well as by improvements to other diagnostic and analysis techniques. Some of the key testable features of this model are: (1) ELMs are triggered when the growth rates of intermediate n MHD modes become significantly large; (2) ELM sizes are related to the radial widths of the unstable modes; (3) the unstable modes have a strong ballooning character localized in the outboard bad curvature region; (4) at high collisionality, ELM size generally becomes smaller because J BS is reduced

  6. Heterologous Expression of the Carrot Hsp17.7 gene Increased Growth, Cell Viability, and Protein Solubility in Transformed Yeast (Saccharomyces cerevisiae) under Heat, Cold, Acid, and Osmotic Stress Conditions.

    Science.gov (United States)

    Ko, Eunhye; Kim, Minhye; Park, Yunho; Ahn, Yeh-Jin

    2017-08-01

    In industrial fermentation of yeast (Saccharomyces cerevisiae), culture conditions are often modified from the optimal growth conditions of the cells to maintain large-scale cultures and/or to increase recombinant protein production. However, altered growth conditions can be stressful to yeast cells resulting in reduced cell growth and viability. In this study, a small heat shock protein gene from carrot (Daucus carota L.), Hsp17.7, was inserted into the yeast genome via homologous recombination to increase tolerance to stress conditions that can occur during industrial culture. A DNA construct, Translational elongation factor gene promoter-carrot Hsp17.7 gene-Phosphoribosyl-anthranilate isomerase gene (an auxotrophic marker), was generated by a series of PCRs and introduced into the chromosome IV of the yeast genome. Immunoblot analysis showed that carrot Hsp17.7 accumulated in the transformed yeast cell lines. Growth rates and cell viability of these cell lines were higher than control cell lines under heat, cold, acid, and hyperosmotic stress conditions. Soluble protein levels were higher in the transgenic cell lines than control cell lines under heat and cold conditions, suggesting the molecular chaperone function of the recombinant Hsp17.7. This study showed that a recombinant DNA construct containing a HSP gene from carrot was successfully expressed in yeast by homologous recombination and increased tolerances to abiotic stress conditions.

  7. Corrosion Fatigue in District Heating Water Tanks

    DEFF Research Database (Denmark)

    Maahn, Ernst Emanuel

    1996-01-01

    Three candidate materials for construction of buffer tanks for district heating water have been tested for corrosion fatigue properties in a district heating water environment. The investigation included Slow Strain Rate Testing of plain tensile specimens, crack initiation testing by corrosion...... fatigue of plain tensile specimens and crack growth rate determination for Compact Tensile Specimens under corrosion fatigue conditions. The three materials are equal with respect to stress corrosion sensibility and crack initiation. Crack growth rate is increased with a factor of 4-6 relative to an inert...

  8. Effects of a sheared toroidal rotation on the stability boundary of the MHD modes in the tokamak edge pedestal

    International Nuclear Information System (INIS)

    Aiba, N.; Tokuda, S.; Oyama, N.; Ozeki, T.; Furukawa, M.

    2009-01-01

    Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.

  9. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace

    Science.gov (United States)

    Hosseini-Vashan, S. J.; Golian, A.; Yaghobfar, A.

    2016-08-01

    A study was conducted to investigate the effects of supplementation of dried tomato pomace (DTP) on growth performance, relative weights of viscera, serum biological parameters, antioxidant status, immune response, and bone composition of broilers exposed to a high ambient temperature. A total of 352 one-day-old male broiler chickens were randomly divided into four groups consisting of four replicates with 22 birds each. One group was reared under the thermoneutral zone and fed a corn-soybean meal basal diet. The other three groups were subjected to a cyclic heat stress from 29 to 42 days of age (34 ± 1 °C, 55 % RH, 5 h/day). These birds were fed corn-soybean meal basal diet or the same diet supplemented with 3 % DTP (420 mg lycopene/kg diet) or 5 % (708 mg lycopene/kg diet) of DTP. Blood samples were collected on days 28 and 42, and the birds were slaughtered at the same times. Supplementation of 5 % of DTP increased body weight and production index and decreased feed conversion ratio during 1-28 days of age. On day 28, the broilers supplemented with 5 % DTP had lower serum triglycerides and higher high-density lipoprotein (HDL) cholesterol concentration than those on the other dietary treatments. The activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) were higher and the concentration of malondialdehyde (MDA) was lower in the broilers fed 5 % TP than those of the broilers fed other diets at 28 days of age. The effects of heat stress (HS) were impaired body weight, enhanced serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lipase, and MDA concentration while reducing the activities of GPx and SOD. Dried tomato pomace supplementation did not influence growth performance under HS but ameliorated the negative effects of HS on the serum enzyme activities, GPx activity, and lipid peroxidation. Heat stress did not change the relative weights of the lymphoid organs but reduced the total and IgG titers

  10. Scan-rate and vacuum pressure dependence of the nucleation and growth dynamics in a spin-crossover single crystal: the role of latent heat.

    Science.gov (United States)

    Ridier, Karl; Rat, Sylvain; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine

    2018-04-04

    Using optical microscopy we studied the vacuum pressure dependence (0.1-1000 mbar) of the nucleation and growth dynamics of the thermally induced first-order spin transition in a single crystal of the spin-crossover compound [Fe(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). A crossover between a quasi-static hysteresis regime and a temperature-scan-rate-dependent kinetic regime is evidenced around 5 mbar due to the change of the heat exchange coupling between the crystal and its external environment. Remarkably, the absorption/dissipation rate of latent heat was identified as the key factor limiting the switching speed of the crystal.

  11. Effects of Irrigation Methods on the Growth of Petunia Grown in Heat Fusion Polyester Fiber Hardened Medium without Polythylene Pot

    OpenAIRE

    後藤, 丹十郎; 島, 浩二; 東, 千里; 森下, 照久; 藤井, 一徳; 元岡, 茂治

    2006-01-01

    Recenty, polyethylene pots(PP) present a significant environmental issue for waste disposal. To develop bedding plant production system without PP, properties of compacted medium hardened by heat fusion polyester fiber were investigated. Effects of irrigation methods on the growth of vegetative propagated petunia grown in medium without PP were investigated. The effect of medium type was not as significant as the difference in water loss per pot. Water loss per pot of medium without PP was ab...

  12. Control of food-borne molds by combination of heat and radiation

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Bongirwar, D.R.

    1979-01-01

    After enumerating the fungi responsible for food spoilage, work done on the factors influencing growth of fungi in stored foods is reviewed and the methods using heat, radiation or chemicals for control of food-borne molds are briefly surveyed. Work on combination process employing heat treatment and radiation treatment is reviewed in detail. The review covers the following aspects: (1) theory and engineering aspects of combination process of heat and radiation including modes of heat transfer, radiation physics, radiation sources, heat radiation effect and calculation of energy balance of the process, (2) biological effects of heat, radiation and heat-radiation combination treatments on mold growth with special reference to DNA and (3) application of the process for mold control in cereal products, nuts and raisins and fruits. Heat treatment and radiation treatment have been found to complement each other and when given in proper sequence show synergism. Design requirements of radiation sources and heat transfer equipment are also surveyed. (M.G.B.)

  13. Irradiation in combination of heat treatment of mango puree

    International Nuclear Information System (INIS)

    Noomhorm, A.; Apintanapong, M.

    1996-01-01

    The effect of irradiation with heat combination treatment on the shelf life and quality of mango puree was studied. Thermal inactivation of polyphenol oxidase enzyme at 80 degree C and 15 min. was used as a measure of adequacy of pre-heat treatment. Irradiation of mango puree after heat treatment at dosage of 0, 2, 4, 6 and 8 kGy showed no change in mc, pH, acidity, and TSS but during storage, growth of microorganisms brought changes in these values. Irradiation in combination with low temperature (5 degree C) reduced discoloration and darkening rate during storage. Irradiation dose from 0 to 8 kGy resulted in log linear reductions in microorganism levels but at 6 and 8 kGy, there was no growth of microorganisms. Products irradiated at 8 kGy showed no microorganism growth at both temperatures

  14. Heating temperature effect on ferritic grain size of rotor steel

    International Nuclear Information System (INIS)

    Cheremnykh, V.G.; Derevyankin, E.V.; Sakulin, A.A.

    1983-01-01

    The heating temperature effect on ferritic grain size of two steels 13Kh1M1FA and 25Kh1M1FA is evaluated. It is shown that exposure time increase at heating temperatures below 1000 deg C up to 10h changes but slightly the size of the Cr-Mo-V ferritic grain of rotor steel cooled with 25 deg C/h rate. Heating up to 1000 deg C and above leads to substantial ferritic grain growth. The kinetics of ferritic grain growth is determined by the behaviour of phases controlling the austenitic grain growth, such as carbonitrides VCsub(0.14)Nsub(0.78) in 13Kh1M1FA steel and VCsub(0.18)Nsub(0.72) in 25Kh1M1FA steel. Reduction of carbon and alloying elements content in steel composition observed at the liquation over rotor length leads to a certain decrease of ferritic grain resistance to super heating

  15. Effect of liquid inertia on bubble growth in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Wagner, L.Y.; Lykoudis, P.S.

    1977-01-01

    Liquid metal bubble growth in the presence of a magnetic field has previously been examined by Lykoudis under the assumption that the process is heat transfer controlled. In the present work, the growth of a bubble under the influence of a magnetic field is considered when the effect of the liquid inertia is included. This yields a better description of the phenomena for liquid metals, due to the greater portion of the growth cycle that is dominated by the liquid inertia forces. The results indicate that liquid inertia can significantly affect the growth of a liquid metal bubble when compared with the heat transfer-controlled case. The overall effect of the magnetic field forces the heat transfer-controlled growth to occur earlier in the life of the bubble. Hence, heat transfer effects dominate the growth stage more as the magnetic field is increased. The inertia effects are damped and, in the limit of high magnetic fields, growth is only heat transfer controlled. The heat transfer estimates made in the fashion of Forster and Zuber indicate that the magnetic field reduces the energy transport in nucleate boiling. 5 figures

  16. ELMs and the role of current-driven instabilities in the edge

    International Nuclear Information System (INIS)

    Snyder, P.B.; Wilson, H.R.

    2001-01-01

    Edge localized modes (ELMs) can limit tokamak performance both directly, via large transient heat loads, and indirectly, through constraints placed on the H-mode pedestal height which impact global confinement. Theoretical understanding of the physics of ELMs should allow optimisation of existing experiments, and lead to greater confidence in projections for Next Step devices. However, understanding ELMs has proved challenging, in part because the sharp edge pressure gradients and consequent large bootstrap currents in the pedestal region provide drive for a variety of modes over a wide range of toroidal mode numbers (n). Here we present a brief discussion of ELM phenomenology, focussing primarily on ELMs whose frequency increases with input power. Theories of ELMs will be reviewed, emphasizing those which incorporate current-driven instabilities such as kink or 'peeling' modes. Parallel current plays a dual role in the edge, enhancing second stability access for ballooning modes while providing drive for peeling modes. The strong collisionality dependence of the edge bootstrap current introduces separate density and temperature dependence into pedestal MHD stability. We give a detailed description of recent work on coupled peeling-ballooning modes, including a model for ELM characteristics and temperature pedestal limits. Peeling-ballooning stability analysis of experimental discharges will be discussed, emphasising comparisons of different ELM regimes, such as the comparison between 'giant' and 'grassy' ELM shots on JT-60U. (orig.)

  17. Potential Costs of Acclimatization to a Warmer Climate: Growth of a Reef Coral with Heat Tolerant vs. Sensitive Symbiont Types

    OpenAIRE

    Jones, Alison; Berkelmans, Ray

    2010-01-01

    One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae) genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Kepp...

  18. Radiation Characterization Summary: ACRR Central Cavity Free-Field Environment with the 32-Inch Pedestal at the Core Centerline (ACRR-FF-CC-32-cl).

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Richard Manuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naranjo, Gerald E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lippert, Lance L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vehar, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffin, Patrick J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    This document presents the facilit y - recommended characteri zation o f the neutron, prompt gamma - ray, and delayed gamma - ray radiation fields in the Annular Core Research Reactor ( ACRR ) for the cen tral cavity free - field environment with the 32 - inch pedestal at the core centerline. The designation for this environmen t is ACRR - FF - CC - 32 - cl. The neutron, prompt gamma - ray , and delayed gamma - ray energy spectra , uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma - ray fluence profiles within the experiment area of the cavity . Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples . Acknowledgements The authors wish to th ank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work . Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.

  19. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  20. Power requirements for superior H-mode confinement on Alcator C-Mod: experiments in support of ITER

    International Nuclear Information System (INIS)

    Hughes, J.W.; Reinke, M.L.; Terry, J.L.; Brunner, D.; Greenwald, M.; Hubbard, A.E.; LaBombard, B.; Lipschultz, B.; Ma, Y.; Wolfe, S.; Wukitch, S.J.; Loarte, A.

    2011-01-01

    Power requirements for maintaining sufficiently high confinement (i.e. normalized energy confinement time H 98 ≥ 1) in H-mode and its relation to H-mode threshold power scaling, P th , are of critical importance to ITER. In order to better characterize these power requirements, recent experiments on the Alcator C-Mod tokamak have investigated H-mode properties, including the edge pedestal and global confinement, over a range of input powers near and above P th . In addition, we have examined the compatibility of impurity seeding with high performance operation, and the influence of plasma radiation and its spatial distribution on performance. Experiments were performed at 5.4 T at ITER relevant densities, utilizing bulk metal plasma facing surfaces and an ion cyclotron range of frequency waves for auxiliary heating. Input power was scanned both in stationary enhanced D α (EDA) H-modes with no large edge localized modes (ELMs) and in ELMy H-modes in order to relate the resulting pedestal and confinement to the amount of power flowing into the scrape-off layer, P net , and also to the divertor targets. In both EDA and ELMy H-mode, energy confinement is generally good, with H 98 near unity. As P net is reduced to levels approaching that in L-mode, pedestal temperature diminishes significantly and normalized confinement time drops. By seeding with low-Z impurities, such as Ne and N 2 , high total radiated power fractions are possible, along with substantial reductions in divertor heat flux (>4x), all while maintaining H 98 ∼ 1. When the power radiated from the confined versus unconfined plasma is examined, pedestal and confinement properties are clearly seen to be an increasing function of P net , helping to unify the results with those from unseeded H-modes. This provides increased confidence that the power flow across the separatrix is the correct physics basis for ITER extrapolation. The experiments show that P net /P th of one or greater is likely to lead to H

  1. Evaluating Growth of Zeolites on Fly Ash in Hydro-Thermally Heated Low Alkaline Solution

    Science.gov (United States)

    Jha, Bhagwanjee; Singh, D. N.

    2017-12-01

    Fly ash has been well established materials for synthesis of zeolites, under hydrothermally heated aqueous NaOH solution. Efficacy of such technique is reported to be improved when high molarity of NaOH is used. Consequently, highly alkaline waste solution, as by-product, is generally disposed of in the surrounding, which may contaminate the environment. In this context, less alkaline NaOH solution may become a safer option, which has not been tried in the past as per the literature. With this in view, the present study demonstrates effectiveness of the 0.5 M NaOH solution and critically monitors transition on the fly ash after hydrothermal treatment. As an enhancement over previous researchers, such activation of the fly ash finally results in remarkable morphological and mineralogical growth on the bulk material (the residue), which comprises of new nano-sized crystals (the zeolites Na-P1 and natrolite), after 24 h of activation of the fly ash.

  2. Wood heat networks - Scope of relevancy

    International Nuclear Information System (INIS)

    Baiz, Adam; Monnoyer-Smith, Laurence

    2017-01-01

    As the French law of energy transition for a green growth foresees a strong development of heat networks based on renewable energies, this study aims at proposing elements of answer about wood-based heat networks: can they be competitive with respect to cheap gas? Would high power networks result in important economies of scale? Which will be the impact of a reduction of energy consumption in a renewed area on the profitability of a heat network? A model of actor-based and social-economic costs has been developed to compare the profitability of wood-supplied heat networks with that of conventional heating means (individual electric heating, individual or collective gas heating, heat pump, individual fuel heating, and individual wood heating). The model makes the distinction between investment fixed costs, varying energy consumption and exploitation costs, and also externalised environmental costs. Then, different scale effects are assessed. They may concern investment costs for boiler, for sub-stations and for the distribution network. The cost interval of heat networks is then studied among the very heterogeneous existing heat networks. Investment and production costs of different configurations of the different above-mentioned heat networks are discussed

  3. Effects of late-gestation heat stress on immunity and performance of calves.

    Science.gov (United States)

    Dahl, G E; Tao, S; Monteiro, A P A

    2016-04-01

    Lactating cows that experience heat stress will have reduced dry matter intake and milk yield and shift metabolism, which ultimately reduces the efficiency of milk production. Dry cows that are heat stressed similarly experience lower intake, reduced mammary growth, and compromised immune function that ultimately results in a poorer transition into lactation and lower milk yield in the next lactation. A recent focus in our laboratory is on the effects of late gestation, in utero heat stress on calf survival and performance. We have completed a series of studies to examine preweaning growth and health, and later reproductive and productive responses, in an attempt to quantify acute and persistent effects of in utero heat strain. Late gestation heat stress results in calves with lower body weight at birth, shorter stature at weaning, and failure to achieve the same weight or height at 12 mo of age observed in calves from dams that are cooled when dry. A portion of the reduced growth may result from the lower immune status observed in calves heat stressed in utero, which begins with poorer apparent efficiency of immunoglobulin absorption and extends to lower survival rates through puberty. Heat-stressed calves, however, have permanent shifts in metabolism that are consistent with greater peripheral accumulation of energy and less lean growth relative to those from cooled dams. Comparing reproductive performance in calves heat stressed versus those cooled in utero, we observe that the cooled heifers require fewer services to attain pregnancy and become pregnant at an earlier age. Tracking the milk production in calves that were heat stressed in utero versus those cooled in late gestation revealed a significant reduction of yield in the first lactation, approximately 5 kg/d through 35 wk of lactation, despite similar body weight and condition score at calving. These observations indicate that a relatively brief period of heat stress in late gestation dramatically alters

  4. Insight into the heat resistance of fish via blood: Effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus.

    Science.gov (United States)

    Lu, Yunliang; Wu, Zhihao; Song, Zongcheng; Xiao, Peng; Liu, Ying; Zhang, Peijun; You, Feng

    2016-11-01

    High temperature has direct confinement on fish survival and growth, especially under the background of global warming. Selection of fish line with heat resistance is an important means to address this problem. In the present study, we analyzed the difference in heat resistance between families of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus, two flatfish species occupying slightly different thermal niches. Then the chosen families were tested to determine their differential response to heat stress (ΔT = +8 °C and +12 °C) in blood, including anaerobic metabolism (lactate), oxidative stress (lipid peroxidation and protein carbonylation) and antioxidant enzymes. Results showed a difference in heat resistance between families of the two species. Among the chosen parameters, growth traits had a significant effect on contents of lactate and malondialdehyd (MDA), and activities of catalase (CAT) and glutathione S-transferase in flounder (P heat-sensitive family of each species, levels of all studied parameters were lower and more stable in heat-resistant families after heat stress. What's more, heat resistance of fish significantly influenced contents of lactate and MDA and activity of CAT in flounder (P heat-resistance, being potentially valuable in fish breeding. However, these markers should be applied with more caution when there is a growth discrepancy between fish families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Shelf-life extension of bread by heat and irradiation treatment [Bangladesh

    International Nuclear Information System (INIS)

    Begum, F.; Siddique, A.K.; Choudhury, N.; Mollah, R.A.

    1994-01-01

    Bread slices were given irradiation treatment 0.5, 1.0, 1.5, and 2.0 KGy and heat treatment at 60 deg. C for 20 min to control mould growth. Mould growth was reladed at ambient temperature by 3, 4, 6 and 8 days after 0.5, 1.0, 1.5 and 2.0 KGy treatments, respectively, compared to 2 days in case of control sample and 3 days for heat treatment alone. Combination of heat with irradiation at 0.5, 1.0, 1.5 and 2.0 KGy retarded mould growth up to 4, 6, 7 an 9 days, respectively. Organoleptically, the irradiated bread slices were acceptable up to 3 to 6 days depending on the treatment. The combination method treated slices were acceptable up to 8 days. The application of radiation dose exceeding 2.0 KGy caused off flavour. Mild heat treatment and radiation in combination resulted in a synergistic antifungal effect and enhanced shelf-life of bread

  6. They’re heating up: Internet search query trends reveal significant public interest in heat-not-burn tobacco products

    Science.gov (United States)

    Caputi, Theodore L.; Leas, Eric; Dredze, Mark; Cohen, Joanna E.; Ayers, John W.

    2017-01-01

    Heat-not-burn tobacco products, battery powered devices that heat leaf tobacco to approximately 500 degrees Fahrenheit to produce an inhalable aerosol, are being introduced in markets around the world. Japan, where manufacturers have marketed several heat-not-burn brands since 2014, has been the focal national test market, with the intention of developing global marketing strategies. We used Google search query data to estimate, for the first time, the scale and growth potential of heat-not-burn tobacco products. Average monthly searches for heat-not-burn products rose 1,426% (95%CI: 746,3574) between their first (2015) and second (2016) complete years on the market and an additional 100% (95%CI: 60, 173) between the products second (2016) and third years on the market (Jan-Sep 2017). There are now between 5.9 and 7.5 million heat-not-burn related Google searches in Japan each month based on September 2017 estimates. Moreover, forecasts relying on the historical trends suggest heat-not-burn searches will increase an additional 32% (95%CI: -4 to 79) during 2018, compared to current estimates for 2017 (Jan-Sep), with continued growth thereafter expected. Contrasting heat-not-burn’s rise in Japan to electronic cigarettes’ rise in the United States we find searches for heat-not-burn eclipsed electronic cigarette searches during April 2016. Moreover, the change in average monthly queries for heat-not-burn in Japan between 2015 and 2017 was 399 (95% CI: 184, 1490) times larger than the change in average monthly queries for electronic cigarettes in the Unites States over the same time period, increasing by 2,956% (95% CI: 1729, 7304) compared to only 7% (95% CI: 3,13). Our findings are a clarion call for tobacco control leaders to ready themselves as heat-not-burn tobacco products will likely garner substantial interest as they are introduced into new markets. Public health practitioners should expand heat-not-burn tobacco product surveillance, adjust existing tobacco

  7. They're heating up: Internet search query trends reveal significant public interest in heat-not-burn tobacco products.

    Directory of Open Access Journals (Sweden)

    Theodore L Caputi

    Full Text Available Heat-not-burn tobacco products, battery powered devices that heat leaf tobacco to approximately 500 degrees Fahrenheit to produce an inhalable aerosol, are being introduced in markets around the world. Japan, where manufacturers have marketed several heat-not-burn brands since 2014, has been the focal national test market, with the intention of developing global marketing strategies. We used Google search query data to estimate, for the first time, the scale and growth potential of heat-not-burn tobacco products. Average monthly searches for heat-not-burn products rose 1,426% (95%CI: 746,3574 between their first (2015 and second (2016 complete years on the market and an additional 100% (95%CI: 60, 173 between the products second (2016 and third years on the market (Jan-Sep 2017. There are now between 5.9 and 7.5 million heat-not-burn related Google searches in Japan each month based on September 2017 estimates. Moreover, forecasts relying on the historical trends suggest heat-not-burn searches will increase an additional 32% (95%CI: -4 to 79 during 2018, compared to current estimates for 2017 (Jan-Sep, with continued growth thereafter expected. Contrasting heat-not-burn's rise in Japan to electronic cigarettes' rise in the United States we find searches for heat-not-burn eclipsed electronic cigarette searches during April 2016. Moreover, the change in average monthly queries for heat-not-burn in Japan between 2015 and 2017 was 399 (95% CI: 184, 1490 times larger than the change in average monthly queries for electronic cigarettes in the Unites States over the same time period, increasing by 2,956% (95% CI: 1729, 7304 compared to only 7% (95% CI: 3,13. Our findings are a clarion call for tobacco control leaders to ready themselves as heat-not-burn tobacco products will likely garner substantial interest as they are introduced into new markets. Public health practitioners should expand heat-not-burn tobacco product surveillance, adjust existing

  8. They're heating up: Internet search query trends reveal significant public interest in heat-not-burn tobacco products.

    Science.gov (United States)

    Caputi, Theodore L; Leas, Eric; Dredze, Mark; Cohen, Joanna E; Ayers, John W

    2017-01-01

    Heat-not-burn tobacco products, battery powered devices that heat leaf tobacco to approximately 500 degrees Fahrenheit to produce an inhalable aerosol, are being introduced in markets around the world. Japan, where manufacturers have marketed several heat-not-burn brands since 2014, has been the focal national test market, with the intention of developing global marketing strategies. We used Google search query data to estimate, for the first time, the scale and growth potential of heat-not-burn tobacco products. Average monthly searches for heat-not-burn products rose 1,426% (95%CI: 746,3574) between their first (2015) and second (2016) complete years on the market and an additional 100% (95%CI: 60, 173) between the products second (2016) and third years on the market (Jan-Sep 2017). There are now between 5.9 and 7.5 million heat-not-burn related Google searches in Japan each month based on September 2017 estimates. Moreover, forecasts relying on the historical trends suggest heat-not-burn searches will increase an additional 32% (95%CI: -4 to 79) during 2018, compared to current estimates for 2017 (Jan-Sep), with continued growth thereafter expected. Contrasting heat-not-burn's rise in Japan to electronic cigarettes' rise in the United States we find searches for heat-not-burn eclipsed electronic cigarette searches during April 2016. Moreover, the change in average monthly queries for heat-not-burn in Japan between 2015 and 2017 was 399 (95% CI: 184, 1490) times larger than the change in average monthly queries for electronic cigarettes in the Unites States over the same time period, increasing by 2,956% (95% CI: 1729, 7304) compared to only 7% (95% CI: 3,13). Our findings are a clarion call for tobacco control leaders to ready themselves as heat-not-burn tobacco products will likely garner substantial interest as they are introduced into new markets. Public health practitioners should expand heat-not-burn tobacco product surveillance, adjust existing tobacco

  9. Modeling and simulation of Si crystal growth from melt

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun; Liu, Xin; Li, Zaoyang [National Engineering Research Center for Fluid Machinery and Compressors, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Miyazawa, Hiroaki; Nakano, Satoshi; Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2009-07-01

    A numerical simulator was developed with a global model of heat transfer for any crystal growth taking place at high temperature. Convective, conductive and radiative heat transfers in the furnace are solved together in a conjugated way by a finite volume method. A three-dimensional (3D) global model was especially developed for simulation of heat transfer in any crystal growth with 3D features. The model enables 3D global simulation be conducted with moderate requirement of computer resources. The application of this numerical simulator to a CZ growth and a directional solidification process for Si crystals, the two major production methods for crystalline Si for solar cells, was introduced. Some typical results were presented, showing the importance and effectiveness of numerical simulation in analyzing and improving these kinds of Si crystal growth processes from melt. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Measurements of Conversion Efficiency for a Flat Plate Thermophotovoltaic System Using a Photonic Cavity Test System

    International Nuclear Information System (INIS)

    Brown, E.J.; Ballinger, C.T.; Burger, S.R.; Charache, G.W.; Danielson, L.R.; DePoy, D.M.; Donovan, T.J.; LoCascio, M.

    2000-01-01

    The performance of a 1 cm 2 thermophotovoltaic (TPV) module was recently measured in a photonic cavity test system. A conversion efficiency of 11.7% was measured at a radiator temperature of 1076 C and a module temperature of 29.9 C. This experiment achieved the highest direct measurement of efficiency for an integrated TPV system. Efficiency was calculated from the ratio of the peak (load matched) electrical power output and the heat absorption rate. Measurements of these two parameters were made simultaneously to assure the validity of the measured efficiency value. This test was conducted in a photonic cavity which mimicked a typical flat-plate TPV system. The radiator was a large, flat graphite surface. The module was affixed to the top of a copper pedestal for heat absorption measurements. The heat absorption rate was proportional to the axial temperature gradient in the pedestal under steady-state conditions. The test was run in a vacuum to eliminate conductive and convective heat transfer mechanisms. The photonic cavity provides the optimal test environment for TPV efficiency measurements because it incorporates all important physical phenomena found in an integrated TPV system: high radiator emissivity and blackbody spectral shape, photon recycling, Lambertian distribution of incident radiation and complex geometric effects. Furthermore, the large aspect ratio between radiating surface area and radiator/module spacing produces a view factor approaching unity with minimal photon leakage

  11. Binocular contrast-gain control for natural scenes: Image structure and phase alignment.

    Science.gov (United States)

    Huang, Pi-Chun; Dai, Yu-Ming

    2018-05-01

    In the context of natural scenes, we applied the pattern-masking paradigm to investigate how image structure and phase alignment affect contrast-gain control in binocular vision. We measured the discrimination thresholds of bandpass-filtered natural-scene images (targets) under various types of pedestals. Our first experiment had four pedestal types: bandpass-filtered pedestals, unfiltered pedestals, notch-filtered pedestals (which enabled removal of the spatial frequency), and misaligned pedestals (which involved rotation of unfiltered pedestals). Our second experiment featured six types of pedestals: bandpass-filtered, unfiltered, and notch-filtered pedestals, and the corresponding phase-scrambled pedestals. The thresholds were compared for monocular, binocular, and dichoptic viewing configurations. The bandpass-filtered pedestal and unfiltered pedestals showed classic dipper shapes; the dipper shapes of the notch-filtered, misaligned, and phase-scrambled pedestals were weak. We adopted a two-stage binocular contrast-gain control model to describe our results. We deduced that the phase-alignment information influenced the contrast-gain control mechanism before the binocular summation stage and that the phase-alignment information and structural misalignment information caused relatively strong divisive inhibition in the monocular and interocular suppression stages. When the pedestals were phase-scrambled, the elimination of the interocular suppression processing was the most convincing explanation of the results. Thus, our results indicated that both phase-alignment information and similar image structures cause strong interocular suppression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effects of Coenzyme Q10 and Vitamin C on Growth Performance and Blood Components in Broiler Chickens under Heat Stress

    Directory of Open Access Journals (Sweden)

    Raeisi-Zeydabad S

    2017-10-01

    Full Text Available This experiment was carried out to study the effects of Coenzyme Q10 (CoQ10 and vitamin C (VC on growth performance and blood biochemistry in broiler chickens under heat stress conditions. One of three levels of CoQ10 (0, 20, and 40 mg/kg of diet and one of two levels of VC (0 and 250 mg/kg of diet were supplemented to diets of chicks (from 1-42 d of age in a 3 × 2 factorial arrangement. Each dietary treatment had four replicate pens (10 chicks/pen. In order to create chronic heat stress, the house temperature was set at an ambient temperature of 35±2°C for 8 hrs daily (09:00 to 17:00 between 25-42 d of age. Feed intake, body weight gain (BWG, and feed to gain ratio (F:G were recorded at d 10, 25 and 42. At the end of experiment, two chicks/pen were randomly selected to assess blood components. CoQ10 supplementation improved BWG and F:G during 11-25 days, 26-42 days, and the whole period of the experiment (P < 0.05, while VC supplementation improved BWG and F:G only during 11-25 d of age. Blood glucose, cholesterol and triglycerides concentrations were reduced (P < 0.05 by addition of CoQ10 to the diet. Both Supplementation of CoQ10 and VC together lowered heterophil (H count but increased lymphocyte (L count, thereby reducing H/L ratio (P < 0.05. Serum concentrations of corticosterone and T4 were positively affected by dietary supplementation of CoQ10 (P < 0.05, but no differences were obtained with addition of VC to the diet. In conclusion, our observations demonstrated that dietary supplementation of 40 mg/kg CoQ10 or 250 mg/kg VC improves the growth performance of broiler chickens under the heat stress.

  13. Optimization of heat saving in buildings using unsteady heat transfer model

    Directory of Open Access Journals (Sweden)

    Dedinec Aleksandra

    2015-01-01

    Full Text Available Reducing the energy consumption growth rate is increasingly becoming one of the main challenges for ensuring sustainable development, particularly in the buildings as the largest end-use sector in many countries. Along this line, the aim of this paper is to analyse the possibilities for energy savings in the construction of new buildings and reconstruction of the existing ones developing a tool that, in terms of the available heating technologies and insulation, provides answer to the problem of optimal cost effective energy consumption. The tool is composed of an unsteady heat transfer model which is incorporated into a cost-effective energy saving optimization. The unsteady heat transfer model uses annual hourly meteorological data, chosen as typical for the last ten-year period, as well as thermo physical features of the layers of the building walls. The model is tested for the typical conditions in the city of Skopje, Macedonia. The results show that the most cost effective heating technology for the given conditions is the wood fired stove, followed by the inverter air-conditioner. The centralized district heating and the pellet fired stoves are the next options. The least cost effective option is the panel that uses electricity. In this paper, the optimal insulation thickness is presented for each type of heating technology.

  14. Analysis of laser-induced heating in optical neuronal guidance

    DEFF Research Database (Denmark)

    Ebbesen, Christian L.; Bruus, Henrik

    2012-01-01

    Recently, it has been shown that it is possible to control the growth direction of neuronal growth cones by stimulation with weak laser light; an effect dubbed optical neuronal guidance. The effect exists for a broad range of laser wavelengths, spot sizes, spot intensities, optical intensity...... profiles and beam modulations, but it is unknown which biophysical mechanisms govern it. Based on thermodynamic modeling and simulation using published experimental parameters as input, we argue that the guidance is linked to heating. Until now, temperature effects due to laser-induced heating...

  15. Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths

    Science.gov (United States)

    Chen, Bin

    2017-10-01

    QCMs (quasi-coherent modes) are well characterized in the edge of Alcator C-Mod, when operating in the Enhanced Dα (EDA) H-mode, a promising alternative regime for ELM (edge localized modes) suppressed operation. To improve the understanding of the physics behind the QCMs, three typical C-Mod EDA H-Mode discharges are simulated by BOUT + + using a six-field two-fluid model (based on the Braginskii equations). The simulated characteristics of the frequency versus wave number spectra of the modes is in reasonable agreement with phase contrast imaging data. The key simulation results are: 1) Linear spectrum analysis and the nonlinear phase relationship indicate the dominance of resistive-ballooning modes and drift-Alfven wave instabilities; 2) QCMs originate inside the separatrix; (3) magnetic flutter causes the mode spreading into the SOL; 4) the boundary electric field Er changes the turbulent characteristics of the QCMs and controls edge transport and the divertor heat flux width; 5) the magnitude of the divertor heat flux depends on the physics models, such as sources and sinks, sheath boundary conditions, and parallel heat flux limiting coefficient. The BOUT + + simulations have also been performed for inter-ELM periods of DIII-D and EAST discharges, and similar quasi-coherent modes have been found. The parallel electron heat fluxes projected onto the target from these BOUT + + simulations follow the experimental heat flux width scaling, in particular the inverse dependence of the width on the poloidal magnetic field with an outlier. Further turbulence statistics analysis shows that the blobs are generated near the pedestal peak gradient region inside the separatrix and contribute to the transport of the particle and heat in the SOL region. To understand the Goldston heuristic drift-based model, results will also be presented from self-consistent transport simulations with the electric and magnetic drifts in BOUT + + and with the sheath potential included in the

  16. Abnormal Grain Growth Suppression in Aluminum Alloys

    Science.gov (United States)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  17. Research progresses and future directions on pool boiling heat transfer

    OpenAIRE

    M. Kumar; V. Bhutani; P. Khatak

    2015-01-01

    This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated s...

  18. Exhaust, ELM and halo physics using the MAST tokamak

    International Nuclear Information System (INIS)

    Counsell, G. F.

    2002-01-01

    Scalings for the SOL width on MAST extend the parameter range of conventional devices but confirm a negative dependence on power flow across the separatrix. In L-mode and at ELM peaks, >95% of power to the targets arrives to the outboard side. Peak heat flux densities rise by a factor 2∼6 during ELMs and are accompanied by a shift in the strike-point location but by little change in the target heat flux width. Energy loss per ELM as a percentage of pedestal energy and pedestal collisionality appear uncorrelated, possibly because ELMs on MAST are dominated by convective transport. Modelling shows that parallel gradients in the magnitude of the magnetic field in MAST may drive strong upstream flows. Broadening of the target heat flux width by divertor biasing is being explored as a means of reducing target power loading in next-step devices and has facilitated halo current measurements using series resistors. Halo currents are always less than 30% of plasma current and the product of toroidal peaking factor and halo current fraction is ∼50% of the ITER design limit. Varying the series resistance demonstrates that the VDE behaves more as a voltage source than a current source. (author)

  19. Radiation Characterization Summary: ACRR Cadmium-Polyethylene (CdPoly) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline

    Energy Technology Data Exchange (ETDEWEB)

    Parma, Edward J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naranjo, Gerald E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kaiser, Krista Irene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, James F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lippert, Lance L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clovis, Ralph D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Lonnie E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Quirk, Thomas J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vehar, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the cadmium-polyethylene (CdPoly) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-CdPoly-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to Drew Tonigan for helping field the activation experiments in ACRR, David Samuel for helping to finalize the drawings and get the parts fabricated, and Elliot Pelfrey for preparing the active dosimetry plots.

  20. Invited review: heat stress effects during late gestation on dry cows and their calves.

    Science.gov (United States)

    Tao, S; Dahl, G E

    2013-07-01

    In dairy cattle, late gestation is a critical period for fetal growth and physiological transition into the next lactation. Environmental factors, such as temperature and light, exert dramatic effects on the production, health, and well-being of animals during this period and after parturition. The aim of this review was to introduce effects of heat stress during late gestation on dairy cattle, and discuss the biological mechanisms that underlie the observed production and health responses in the dam and her fetus. Relative to cooled cows, cows that are heat stressed during late gestation have impaired mammary growth before parturition and decreased milk production in the subsequent lactation. In response to higher milk yield, cows cooled prepartum undergo a series of homeorhetic adaptations in early lactation to meet higher demand for milk synthesis compared with heat-stressed cows, but no direct effect of environmental heat stress on metabolism exists during the dry period. Prepartum cooling improves immune status of transition cows and evidence suggests that altered prolactin signaling in immune cells mediates the effects of heat stress on immune function. Late-gestation heat stress compromises placental development, which results in fetal hypoxia, malnutrition, and eventually fetal growth retardation. Maternal heat stress may also have carryover effects on the postnatal growth of offspring, but direct evidence is still lacking. Emerging evidence suggests that offspring from prepartum heat-stressed cows have compromised passive immunity and impaired cell-mediated immune function compared with those from cooled cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Radio frequency induced and neoclassical asymmetries and their effects on turbulent impurity transport in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pusztai, I. [Applied Physics, Chalmers University of Technology and Euratom-VR Association, SE-41296 Goeteborg (Sweden); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Landreman, M. [University of Maryland, College Park, MD 20742 (United States); Mollen, A.; Fueloep, T. [Applied Physics, Chalmers University of Technology and Euratom-VR Association, SE-41296 Goeteborg (Sweden); Kazakov, Ye.O. [Laboratory for Plasma Physics, ERM/KMS, Association ' EURATOM-Belgian State' , TEC Partner, BE-1000 Brussels (Belgium)

    2014-06-15

    Poloidal asymmetries in the impurity density can be generated by radio frequency heating in the core and by neoclassical effects in the edge of tokamak plasmas. In a pedestal case study, using global neoclassical simulations we find that finite orbit width effects can generate significant poloidal variation in the electrostatic potential, which varies on a small radial scale. Gyrokinetic modeling shows that these poloidal asymmetries can be strong enough to significantly modify turbulent impurity peaking. In the pedestal the E x B drift in the radial electric field can give a larger contribution to the poloidal motion of impurities than that of their parallel streaming. Under such circumstances we find that up-down asymmetries can also affect impurity peaking. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Modeling the recovery of heat-treated Bacillus licheniformis Ad978 and Bacillus weihenstephanensis KBAB4 spores at suboptimal temperature and pH using growth limits.

    Science.gov (United States)

    Trunet, C; Mtimet, N; Mathot, A-G; Postollec, F; Leguerinel, I; Sohier, D; Couvert, O; Carlin, F; Coroller, L

    2015-01-01

    The apparent heat resistance of spores of Bacillus weihenstephanensis and Bacillus licheniformis was measured and expressed as the time to first decimal reduction (δ value) at a given recovery temperature and pH. Spores of B. weihenstephanensis were produced at 30°C and 12°C, and spores of B. licheniformis were produced at 45°C and 20°C. B. weihenstephanensis spores were then heat treated at 85°C, 90°C, and 95°C, and B. licheniformis spores were heat treated at 95°C, 100°C, and 105°C. Heat-treated spores were grown on nutrient agar at a range of temperatures (4°C to 40°C for B. weihenstephanensis and 15°C to 60°C for B. licheniformis) or a range of pHs (between pH 4.5 and pH 9.5 for both strains). The recovery temperature had a slight effect on the apparent heat resistance, except very near recovery boundaries. In contrast, a decrease in the recovery pH had a progressive impact on apparent heat resistance. A model describing the heat resistance and the ability to recover according to the sporulation temperature, temperature of treatment, and recovery temperature and pH was proposed. This model derived from secondary mathematical models for growth prediction. Previously published cardinal temperature and pH values were used as input parameters. The fitting of the model with apparent heat resistance data obtained for a wide range of spore treatment and recovery conditions was highly satisfactory. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Heat of mixing and morphological stability

    Science.gov (United States)

    Nandapurkar, P.; Poirier, D. R.

    1988-01-01

    A mathematical model, which incorporates heat of mixing in the energy balance, has been developed to analyze the morphological stability of a planar solid-liquid interface during the directional solidification of a binary alloy. It is observed that the stability behavior is almost that predicted by the analysis of Mullins and Sekerka (1963) at low growth velocities, while deviations in the critical concentration of about 20-25 percent are observed under rapid solidification conditions for certain systems. The calculations indicate that a positive heat of mixing makes the planar interface more unstable, whereas a negative heat of mixing makes it more stable, in terms of the critical concentration.

  4. Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant

    International Nuclear Information System (INIS)

    Tissue, B.M.; Jia, W.; Lu, L.; Yen, W.M.

    1991-01-01

    We have grown single-crystal fibers of Cr:YAG and Cr,Ca:YAG under oxidizing and reducing conditions by the laser-heated-pedestal-growth method. The Cr:YAG crystals were light green due to Cr 3+ in octahedral sites, while the Cr,Ca:YAG crystals were brown. The presence of the divalent codopant was the dominant factor determining the coloration in these single-crystal fibers, while the oxidizing power of the growth atmosphere had little effect on the coloration. The Cr,Ca:YAG had a broad absorption band centered at 1.03 μm and fluoresced from 1.1 to 1.7 μm, with a room-temperature lifetime of 3.5 μs. The presence of both chromium and a divalent codopant were necessary to create the optically-active center which produces the near-infrared emission. Doping with only Ca 2+ created a different coloration with absorption in the blue and ultraviolet. The coloration in the Cr,Ca:YAG is attributed to Cr 4+ and is produced in as-grown crystals without irradiation or annealing, as has been necessary in previous work

  5. Short-time beta grain growth kinetics for a conventional titanium alloy

    International Nuclear Information System (INIS)

    Semiatin, S.L.; Sukonnik, I.M.

    1996-01-01

    The kinetics of beta grain growth during short-time, supertransus heat treatment of Ti-5Al-4V were determined using a salt-pot technique. The finite-time, subtransus temperature transient during salt-pot heating was quantified through measurements of the heat transfer coefficient characterizing conduction across the salt-titanium interface and a simple heat conduction analysis which incorporated this heat transfer coefficient. Grain size versus time data adjusted to account for the subtransus temperature transient were successfully fit to the parabolic grain growth law d n - d 0 n = kt exp(-Q/RT) using an exponent n equal to 2.0. Comparison of the present results to rapid, continuous heat treatment data in the literature for a similar titanium alloy revealed a number of semi-quantitative similarities

  6. Impact of Chlorine and Heat on the Survival of Hartmannella vermiformis and Subsequent Growth of Legionella pneumophila.

    Science.gov (United States)

    Kuchta, J M; Navratil, J S; Shepherd, M E; Wadowsky, R M; Dowling, J N; States, S J; Yee, R B

    1993-12-01

    Hartmannella vermiformis, a common amoebal inhabitant of potable-water systems, supports intracellular multiplication of Legionella pneumophila and is probably important in the transportation and amplification of legionellae within these systems. To provide a practical guide for decontamination of potable-water systems, we assessed the chlorine and heat resistance of H. vermiformis. H. vermiformis cysts and trophozoites were treated independently with chlorine at concentrations of 2.0 to 10.0 ppm for 30 min and then cocultured with L. pneumophila. Both cysts and trophozoites were sensitive to concentrations between 2.0 and 4.0 ppm and above (trophozoites somewhat more so than cysts), and 10.0 ppm was lethal to both forms. Hartmannellae treated with chlorine up to a concentration of 4.0 ppm supported the growth of legionellae. To determine whether heat would be an effective addendum to chlorine treatment of amoebae, hartmannellae were subjected to temperatures of 55 and 60 degrees C for 30 min and alternatively to 50 degrees C followed by treatment with chlorine at a concentration of 2 ppm. Fewer than 0.05% of the amoebae survived treatment at 55 degrees C, and there were no survivors at 60 degrees C. Pretreatment at 50 degrees C appeared to make hartmannella cysts more susceptible to chlorine but did not further reduce the concentration of trophozoites.

  7. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  8. Five-field simulations of peeling-ballooning modes using BOUT++ code

    Energy Technology Data Exchange (ETDEWEB)

    Xia, T. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-05-15

    The simulations of edge localized modes (ELMs) with a 5-field peeling-ballooning (P-B) model using BOUT++ code are reported in this paper. In order to study the particle and energy transport in the pedestal region, the pressure equation is separated into ion density and ion and electron temperature equations. Through the simulations, the length scale L{sub n} of the gradient of equilibrium density n{sub i0} is found to destabilize the P-B modes in ideal MHD model. With ion diamagnetic effects, the growth rate is inversely proportional to n{sub i0} at medium toroidal mode number n. For the nonlinear simulations, the gradient of n{sub i0} in the pedestal region can more than double the ELM size. This increasing effect can be suppressed by thermal diffusivities χ{sub ∥}, employing the flux limited expression. Thermal diffusivities are sufficient to suppress the perturbations at the top of pedestal region. These suppressing effects lead to smaller ELM size of P-B modes.

  9. Heat conduction within linear thermoelasticity

    CERN Document Server

    Day, William Alan

    1985-01-01

    J-B. J. FOURIER'S immensely influential treatise Theorie Analytique de la Chaleur [21J, and the subsequent developments and refinements of FOURIER's ideas and methods at the hands of many authors, provide a highly successful theory of heat conduction. According to that theory, the growth or decay of the temperature e in a conducting body is governed by the heat equation, that is, by the parabolic partial differential equation Such has been the influence of FOURIER'S theory, which must forever remain the classical theory in that it sets the standard against which all other theories are to be measured, that the mathematical investigation of heat conduction has come to be regarded as being almost identicalt with the study of the heat equation, and the reader will not need to be reminded that intensive analytical study has t But not entirely; witness, for example, those theories which would replace the heat equation by an equation which implies a finite speed of propagation for the temperature. The reader is refe...

  10. Effects of Diet and Genetics on Growth Performance of Pigs in Response to Repeated Exposure to Heat Stress

    Directory of Open Access Journals (Sweden)

    Wendy M. Rauw

    2017-10-01

    Full Text Available Heat stress (HS is one of the costliest issues in the U.S. pork industry. Aims of the present study were to determine the consequences of repeated exposure to HS on growth performance, and the effects of a high fiber diet, the genetic potential for high lean tissue accretion, and the genetic potential for residual feed intake (RFI on resilience to HS. Barrows (n = 97 from three genetic lines (commercial, high RFI, low RFI where subjected three times to a 4-day HS treatment (HS1, HS2, and HS3 which was preceded by a 9-day neutral (TN adaptation period (TN1 and alternated by 7-day periods of neutral temperatures (TN2, TN3, and TN4. Body weight gain (BWG, feed intake (FI, feed conversion efficiency (FCE, RFI, and the drop in BWG and FI between TN and HS were estimated for each period, and slaughter traits were measured at the end of TN4. Commercial pigs had lower FI when fed a high fiber diet compared to a regular diet (2.70 ± 0.08 vs. 2.96 ± 0.08 kg/d; P < 0.05, while no differences were found for BWG, RFI or FCE. HS reduced FI, BWG, and FCE, increased RFI, and resulted in leaner pigs that generate smaller carcasses at slaughter. In TN, commercial pigs grew faster than the low and high RFI pigs (1.22 ± 0.06 vs. 0.720 ± 0.05 and 0.657 ± 0.07; P < 0.001 but growth rates were not significantly different between the lines during HS. Growth rates for the low RFI and high RFI pigs were similar both during TN and during HS. Pigs of interest for genetic improvement are those that are able to maintain growth rates during HS. Our results show that response in growth to HS was repeatable over subsequent 4-d HS cycles, which suggests the potential for including this response in the breeding index. The best performing animals during HS are likely those that are not highly superior for growth in TN.

  11. Orientations of dendritic growth during solidification

    Science.gov (United States)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  12. Experimental study of heat transfer to the N2O4 dissociating coolant in the circular tube with variable heat load on the wall

    International Nuclear Information System (INIS)

    Golovnya, V.N.; Kolykhan, L.I.

    1983-01-01

    The results of the experimental study of heat transfer to N 2 O 4 dissociating coolant with a sinusoidal law of heat flux density variation by length are presented. The heat transfer process has been studied at subcritical and supercritical parameters and different substance aggregation states. Maximum error of heat transfer coefficient determination don't exceed 15%. The esimation of the effect of variable heat load on heat transfer has been condUcted by comparison of experimental data on the Nusselt number change along the tube length with that calculated using conventional relations for the conditions of uniform heat release. It is shown that heat transfer is enhanced in the region of heat load qsub(c) growth while its intensity is decreased in the region of heat flux reduction. The quantitative effect of qsub(c) variation on heat transfer can be regarded for by the method of superpositions

  13. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    Science.gov (United States)

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  14. Temperature and heat flux scaling laws for isoviscous, infinite Prandtl number mixed heating convection.

    Science.gov (United States)

    Vilella, Kenny; Deschamps, Frederic

    2018-04-01

    Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, e.g., generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2D and 3D-Cartesian geometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean

  15. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    Science.gov (United States)

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  16. Influence of Ear Surface Area on Heat Tolerance of Composite ...

    African Journals Online (AJOL)

    Relative importance of ear surface area on heat tolerance of composite rabbit population was evaluated. The study was conducted during the dry and rainy seasons, climatic data were recorded to obtain categorical heat stress index. Physiological parameters, growth performance, ear length and ear width of the rabbits ...

  17. Towards understanding edge localised mode mitigation by resonant magnetic perturbations in MAST

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, I. T.; Kirk, A.; Ham, C. J.; Harrison, J. R.; Liu, Y. Q.; Saarelma, S.; Scannell, R.; Thornton, A. J.; Team, MAST [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Becoulet, M.; Orain, F. [Association Euratom/CEA, CEA Cadarache, IRFM, F-13108, St. Paul-lez-Durance (France); Cooper, W. A. [CRPP, Association EURATOM/Confédération Suisse, EPFL, 1015 Lausanne (Switzerland); Pamela, S. [IIFS-PIIM. Aix Marseille Université—CNRS, 13397 Marseille Cedex 20 (France)

    2013-05-15

    Type-I Edge Localised Modes (ELMs) have been mitigated in MAST through the application of n=3,4, and 6 resonant magnetic perturbations. For each toroidal mode number of the non-axisymmetric applied fields, the frequency of the ELMs has been increased significantly, and the peak heat flux on the divertor plates reduced commensurately. This increase in ELM frequency occurs despite a significant drop in the edge pressure gradient, which would be expected to stabilise the peeling-ballooning modes thought to be responsible for type-I ELMs. Various mechanisms which could cause a destabilisation of the peeling-ballooning modes are presented, including pedestal widening, plasma rotation braking, three dimensional corrugation of the plasma boundary, and the existence of radially extended lobe structures near to the X-point. This leads to a model aimed at resolving the apparent dichotomy of ELM control, which is to say ELM suppression occurring due to the pedestal pressure reduction below the peeling-ballooning stability boundary, whilst the reduction in pressure can also lead to ELM mitigation, which is ostensibly a destabilisation of peeling-ballooning modes. In the case of ELM mitigation, the pedestal broadening, 3d corrugation, or lobes near the X-point degrade ballooning stability so much that the pedestal recovers rapidly to cross the new stability boundary at lower pressure more frequently, whilst in the case of suppression, the plasma parameters are such that the particle transport reduces the edge pressure below the stability boundary, which is only mildly affected by negligible rotation braking, small edge corrugation or short, broad lobe structures.

  18. Condensation and frost formation in heat exchangers

    International Nuclear Information System (INIS)

    Rostami, A.A.

    1982-01-01

    The occurence of condensation and of frost formation are considered for air to heat exchangers with emphasis on how such occurrences would affect the performance of such heat exchangers when they are used in ventilating applications. The formulations which predict performance are developed for parallel, counter flow and cross flow with either formation or condensation, and for condensation the consequences for evaporation of condensate and of the effect of longitudinal conduction in the walls of the exchanger are also considered. For the prediction of the exchanger performance with frost formation there must be specified the growth of the frost layer with time and existing theories for this growth are examined, a new method of calculation of the growth is presented and this is shown to give results for the growth that are in accord with available experimental evidence. This new theory for the growth of a frost layer is used to predict the performance of a parallel flow exchanger under conditions in which frost formation occurs, by successively applying the steady state performance calculation for time increments over which the frost layer build-up is calculated for these time increments. The calculation of counter flow exchanger performance by this method, while feasible, is so time consuming that only the general aspects of the calculation are considered

  19. Numerical Model on Frost Height of Round Plate Fin Used for Outdoor Heat Exchanger of Mobile Electric Heat Pumps

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-01-01

    Full Text Available The objective of this study is to provide the numerical model for prediction of the frost growth of the round plate fin for the purpose of using it as a round plate fin-tube heat exchanger (evaporator under frosting conditions. In this study, numerical model was considering the frost density change with time, and it showed better agreement with experimental data of Sahin (1994 than that of the Kim model (2004 and the Jonse and Parker model (1975. This is because the prediction on the frost height with time was improved by using the frost thermal conductivity reflecting the void fraction and density of ice crystal with frost growth. Therefore, the developed numerical model could be used for frosting performance prediction of the round plate fin-tube heat exchanger.

  20. Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag2S-catalyzed ZnS nanowires

    Science.gov (United States)

    Kim, Jung Han; Kim, Jong Gu; Song, Junghyun; Bae, Tae-Sung; Kim, Kyou-Hyun; Lee, Young-Seak; Pang, Yoonsoo; Oh, Kyu Hwan; Chung, Hee-Suk

    2018-04-01

    We investigated the semiconductor-catalyzed formation of semiconductor nanowires (NWs) - silver sulfide (Ag2S)-catalyzed zinc sulfide (ZnS) NWs - based on a vapor-liquid-solid (VLS) growth mechanism through metal-organic chemical vapor deposition (MOCVD) with a Ag thin film. The Ag2S-catalyzed ZnS NWs were confirmed to have a wurtzite structure with a width and length in the range of ∼30 nm to ∼80 nm and ∼1 μm, respectively. Using extensive transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) analyses from plane and cross-sectional viewpoints, the ZnS NWs were determined to have a c-axis, [0001] growth direction. In addition, the catalyst at the top of the ZnS NWs was determined to consist of a Ag2S phase. To support the Ag2S-catalyzed growth of the ZnS NWs by a VLS reaction, an in situ heating TEM experiment was conducted from room temperature to 840 °C. During the experiment, the melting of the Ag2S catalyst in the direction of the ZnS NWs was first observed at approximately 480 °C along with the formation of a carbon (C) shell. Subsequently, the Ag2S catalyst melted completely into the ZnS NWs at approximately 825 °C. As the temperature further increased, the Ag2S and ZnS NWs continuously melted and vaporized up to 840 °C, leaving only the C shell behind. Finally, a possible growth mechanism was proposed based on the structural and chemical investigations.

  1. Steady-state nucleate pool boiling mechanism at low heat fluxes

    International Nuclear Information System (INIS)

    Bastos, L.E.G.

    1979-01-01

    Heat is transfered in the steady state to a horizontal cooper disc inmersed in water at saturation temperature. Levels of heat flux are controlled so that convection and the nucleate boiling can be observed. The value of heat flux is determined experimentally and high speed film is used to record bubble growth. In order to explain the phenomenon the oretical model is proposed in which part of the heat is transfered by free convection during nucleate boiling regime. Agreement between the experiments and the theoretical model is good. (Author) [pt

  2. Whole-genome transcriptional analysis of Escherichia coli during heat inactivation processes related to industrial cooking.

    Science.gov (United States)

    Guernec, A; Robichaud-Rincon, P; Saucier, L

    2013-08-01

    Escherichia coli K-12 was grown to the stationary phase, for maximum physiological resistance, in brain heart infusion (BHI) broth at 37°C. Cells were then heated at 58°C or 60°C to reach a process lethality value \\[\\mathbf{\\left(}{{\\mathit{F}}^{\\mathit{o}}}_{\\mathbf{70}}^{\\mathbf{10}}\\mathbf{\\right)} \\] of 2 or 3 or to a core temperature of 71°C (control industrial cooking temperature). Growth recovery and cell membrane integrity were evaluated immediately after heating, and a global transcription analysis was performed using gene expression microarrays. Only cells heated at 58°C with F(o) = 2 were still able to grow on liquid or solid BHI broth after heat treatment. However, their transcriptome did not differ from that of bacteria heated at 58°C with F(o) = 3 (P value for the false discovery rate [P-FDR] > 0.01), where no growth recovery was observed posttreatment. Genome-wide transcriptomic data obtained at 71°C were distinct from those of the other treatments without growth recovery. Quantification of heat shock gene expression by real-time PCR revealed that dnaK and groEL mRNA levels decreased significantly above 60°C to reach levels similar to those of control cells at 37°C (P citE, glyS, oppB, and asd, whose expression was upregulated at 71°C, may be worth investigating as good biomarkers for accurately determining the efficiency of heat treatments, especially when cells are too injured to be enumerated using growth media.

  3. Heat-induced electron emission in paraelectric phase of triglycine sulfate heated with great rate

    CERN Document Server

    Sidorkin, A A; Rogazinskaya, O V; Milovidova, S D

    2002-01-01

    One recorded experimentally heat-induced electron emission in ferroelectric triglycine sulfate (TGS) crystal within temperature range exceeding the Curie point by 10-15 K. One studied cases of q = dT/dt various rates of linear heating of specimens of TGS nominally pure crystal and TGS crystal with chromium impurity. Increase of heating rate is shown to result in increase of emission current density within the whole investigated range of temperatures. Temperature of emission occurrence depends on q rate negligibly. At the same time, temperature of emission disappearance monotonically increases with q growth. At q below 1 K/min it is localized below the Curie point. At q = 4-5 K/min the mentioned temperature reaches 60-65 deg C. In TGS crystal with chromium impurity the temperature of emission occurrence is close to the case of pure TGS. In this case, the range of emission drawing in paraphase here is by about 2 times narrower in contrast to the case of pure TGS heated with the same rate

  4. Business models of heat entrepreneurship in Finland

    International Nuclear Information System (INIS)

    Okkonen, Lasse; Suhonen, Niko

    2010-01-01

    This paper presents the business models of small-scale heat energy production in Finland. Firstly, the development of heat entrepreneurship in the country is presented, including the remarkable growth of small and medium size enterprises (SMEs) in the last 15 years. Secondly, the concept of business model (business architecture of product/service flows and earning logics) is modified to the framework of wood heat production. The business model concept, and its sub-concepts, is applied in a brief review of current heat energy businesses in Finland. We arrive at a business model of heat entrepreneurships that are public companies/utilities, public-private partnerships, private companies and cooperatives, Energy Saving Company (ESCO), network model of large enterprise and franchising. Descriptive cases of these models are presented. Finally, the paper concludes with a discussion on the applicability of the business models in different operational environments and geographical contexts.

  5. Business models of heat entrepreneurship in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, Lasse [North Karelia University of Applied Sciences, Yliopistokatu 6, FI-80100 Joensuu (Finland); Suhonen, Niko [University of Eastern Finland, Department of Law, P.O. Box 111, FI-80101 Joensuu (Finland)

    2010-07-15

    This paper presents the business models of small-scale heat energy production in Finland. Firstly, the development of heat entrepreneurship in the country is presented, including the remarkable growth of small and medium size enterprises (SMEs) in the last 15 years. Secondly, the concept of business model (business architecture of product/service flows and earning logics) is modified to the framework of wood heat production. The business model concept, and its sub-concepts, is applied in a brief review of current heat energy businesses in Finland. We arrive at a business model of heat entrepreneurships that are public companies/utilities, public-private partnerships, private companies and cooperatives, Energy Saving Company (ESCO), network model of large enterprise and franchising. Descriptive cases of these models are presented. Finally, the paper concludes with a discussion on the applicability of the business models in different operational environments and geographical contexts. (author)

  6. Effect of variation in equilibrium shape on ELMing H-mode performance in DIII-D diverted plasmas

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Osborne, T.H.; Petrie, T.W.

    2001-01-01

    The changes in the performance of the core, pedestal, scrape-off-layer (SOL), and divertor plasmas as a result of changes in triangularity, δ, up/down magnetic balance, and secondary divertor volume were examined in shape variation experiments using ELMing H mode plasmas on DIII-D. In moderate density, unpumped plasmas, high δ∼0.7 increased the energy in the H mode pedestal and the global energy confinement of the core, primarily due to an increase in the margin by which the edge pressure gradient exceeded the value which would have been expected had it been limited by infinite-n ideal ballooning modes. In addition, a nearly balanced double-null (DN) shape was effective for sharing the peak heat flux in the divertor in these attached plasmas. For detached plasmas good heat flux sharing was obtained for a substantial range of unbalanced DN shapes. Finally, the presence of a second X-point in unbalanced DN shapes did not degrade the plasma performance if it was sufficiently far inside the vacuum vessel. These results indicate that a high δ unbalanced DN shape has some advantages over a single null shape for future high power tokamak operation. (author)

  7. Heat-Induced Changes in Heat Shock Protein Genes Expression in Crossbred and Baladi Pregnant Cows and Their Offspring

    International Nuclear Information System (INIS)

    Khalil, W.K.B.; Nessim, M.Z.; El- Masry, K.A.

    2010-01-01

    The experiment was carried out during August (hot climate) on twelve pregnant cows of six crossbred (50% native Baladi and 50% Brown Swiss) and six native Baladi pregnant cows in the same age and the second parity during their mid-pregnancy as detected by rectal palpation. The experiment was repeated during December (mild climate) on similar twelve pregnant cows. Blood sample was obtained from each cow at the end of August (first group) and at the end of December (second group) to obtain heat shock protein genes expression (HSP72, HSP70.01, HSP70, HSP47, k Dalton and Actin) in pregnant cows under mild and hot climate to find out, which breed is more tolerant to heat stress and to estimate offspring birth weight and their growth performances during suckling period. Comparison was made between hot climate cows group and mild climate cows group to estimate heat- induced changes in both breeds in expression level of the Hsp genes and to compare with their neonate birth weight and growth performances during suckling period. The results revealed that expression level of the Hsp genes (Hsp72, Hsp70.1, Hsp70 and Hsp 47) was higher (p<0.01) in hot season compared to that of mild season. Expression level of the Hsp genes (Hsp70.1, Hsp70 and Hsp 47) was higher (p<0.05) in crossbred cows than in Baldi cows under summer hot season. This indicates that crossbred cows are less heat tolerant than Baladi cows under heat stress climate. Heat induced decrease (p<0.01) in offspring birth weight in Baladi and crossbred by 18.1% and 25%, respectively, in weaning weight by 14.61% and 23.14%, respectively and in body weight gain by 14.61% and 21.18%, respectively

  8. Fungistatic activity of heat-treated flaxseed determined by response surface methodology.

    Science.gov (United States)

    Xu, Y; Hall, C; Wolf-Hall, C

    2008-08-01

    The objective of this study was to evaluate the effect of heat treatment on the fungistatic activity of flaxseed (Linum usitatissimum) in potato dextrose agar (PDA) medium and a fresh noodle system. The radial growth of Penicilliumn chrysogenum, Aspergillus flavus, and a Penicillium sp. isolated from moldy noodles, as well as the mold count of fresh noodle enriched with heat treated flaxseed, were used to assess antifungal activity. A central composite design in the response surface methodology was used to predict the effect of heating temperature and time on antifungal activity of flaxseed flour (FF). Statistical analysis determined that the linear terms of both variables (that is, heating temperature and time) and the quadratic terms of the heating temperature had significant (P<0.05) effects on the radial growth of all 3 test fungi and the mold count log-cycle reduction of fresh noodle. The interactions between the temperature and time were significant for all dependent variables (P<0.05). Significant reductions in antifungal activities were found when FF was subjected to high temperatures, regardless of heating time. In contrast, prolonging the heating time did not substantially affect the antifungal activities of FF at low temperature. However, 60% of the antifungal activity was retained after FF was heated at 100 degrees C for 15 min, which suggests a potential use of FF as an antifungal additive in food products subjected to low to mild heat treatments.

  9. Edge Pedestal Control in Quiescent H-Mode Discharges in DIII-D Using Co Plus Counter Neutral Beam Injection

    International Nuclear Information System (INIS)

    Burrell, K.H.; Osborne, T.H.; Snyder, P.B.; West, W.P.; Chu, M.S.; Fenstermacher, M.E.; Gohil, P.; Solomon, W.M.

    2008-01-01

    We have made two significant discoveries in our recent studies of quiescent H-mode (QH-mode) plasmas in DIII-D. First, we have found that we can control the edge pedestal density and pressure by altering the edge particle transport through changes in the edge toroidal rotation. This allows us to adjust the edge operating point to be close to, but below the ELM stability boundary, maintaining the ELM-free state while allowing up to a factor of two increase in edge pressure. The ELM boundary is significantly higher in more strongly shaped plasmas, which broadens the operating space available for QH-mode and leads to improved core performance. Second, for the first time on any tokamak, we have created QH-mode plasmas with strong edge co-rotation; previous QH-modes in all tokamaks had edge counter rotation. This result demonstrates that counter NBI and edge counter rotation are not essential conditions for QH-mode. Both these investigations benefited from the edge stability predictions based on peeling-ballooning mode theory. The broadening of the ELM-stable region with plasma shaping is predicted by that theory. The theory has also been extended to provide a model for the edge harmonic oscillation (EHO) that regulates edge transport in the QH-mode. Many of the features of that theory agree with the experimental results reported either previously or in the present paper. One notable example is the prediction that co-rotating QH-mode is possible provided sufficient shear in the edge rotation can be created

  10. Heat activation and stability of amylases from Bacillus species | Ajayi ...

    African Journals Online (AJOL)

    Leitch and Collier sporulating Bacillus medium was used to isolate some strains of Bacillus species from soil, wastewater and food sources in Ibadan, Oyo State, Nigeria, by heat activation method. Heat treatment at 80oC allowed the growth of sporulating Bacillus species, in the culture sample source without other bacteria ...

  11. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS

    International Nuclear Information System (INIS)

    SNYDER, P.B.; WILSON, H.R.; XU, X.Q.; WEBSTER, A.J.

    2004-01-01

    Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradient and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n ∼ 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces

  12. History of heat pumps - Swiss contributions and international milestones

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, M

    2008-05-15

    Compared to conventional boilers, heating by heat pumps cuts down fuel consumption and CO{sub 2} emissions to about 50%. Compared to electric resistance heating, the energy consumption is even reduced up to 80%. Therefore, the impressive market penetration growth of heat pumps will continue. Swiss pioneers were the first to realize functioning vapour recompression plants. The first European heat pumps were realized in Switzerland. To date it remains one of the heat pump champions. Swiss pioneering work in the development of borehole heat exchangers, sewage heat recovery, oil free piston compressors and turbo compressors is well known. The biggest heat pump ever built comes from Switzerland. Although there is a fairly comprehensive natural gas distribution grid, 75% of the new single-family homes built in Switzerland are currently heated by heat pumps. This paper presents some of the highlights of this success story focusing on Swiss developments and relating them to the international milestones. In order to indicate the direction in which the future development might go to, some recent Swiss research projects are presented as well. (author)

  13. Market: local heating; Markedsanalyse: lokale energisentraler

    Energy Technology Data Exchange (ETDEWEB)

    Naper, Linn R.; Bjoerndalen, Joergen

    2010-07-01

    The aim of this study was to examine how the market for local heating in Norway actually works, whether it is (sufficiently) competition, and what influences the growth opportunities in this market. Local heating can play an important role in ensuring a high proportion of renewable energy for heating and industrial processes. However, this requires a functioning market. The theoretical basis for market analysis is Michael Porter's Five Forces model, which incorporates information about different aspects of a market with a view to evaluate the competitive pressure. The model focuses on customers, competitors and their suppliers, substitutes and potential intruders in the market. This model is complemented by simple economic theory of perfect competition and the concept of perfect competition. (eb)

  14. Predictive Simulations of ITER Including Neutral Beam Driven Toroidal Rotation

    International Nuclear Information System (INIS)

    Halpern, Federico D.; Kritz, Arnold H.; Bateman, G.; Pankin, Alexei Y.; Budny, Robert V.; McCune, Douglas C.

    2008-01-01

    Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 2002] discharges are carried out for the 15 MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H-mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R.Waltz et al., Phys. Plasmas 4, 2482 (1997)], the fusion power increases with increasing injected beam power and central rotation frequency. It is found that the ITER target fusion power of 500 MW is produced with 20 MW of NBI power when the pedesta temperature is 3.5 keV. 2008 American Institute of Physics. [DOI: 10.1063/1.2931037

  15. TEMPEST simulations of the plasma transport in a single-null tokamak geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Rognlien, T.D.; Bodi, K.; Krasheninnikov, S.

    2010-01-01

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. To study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. A series of TEMPEST simulations were conducted to investigate the transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. We also show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.

  16. Analysis of the microbial growth in 60Co γ-irradiated foods by calorimetry

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Hayashi, Toshio; Hamasaki, Koji; Wirkner, Sandra; Constantinoiu, Elena; Takahashi, Katsutada

    2002-01-01

    Using a heat conduction calorimeter equipped with 24 sample units the heat evolutions from growing 60 Co γ-irradiated bioburden of black pepper seeds and frozen beef were detected in the form of growth thermograms. 60 Co γ-irradiation affected the growth pattern in which a dose-dependent reduction of the growth rate constant was observed together with the retardation in growth, indicating a combination of bactericidal and bacteriostatic effects. We successfully determined the minimal inactivation doses for the two food samples using the relationship between the irradiation dose and the retardation in growth t α , or the growth rate constant μ obtained from the growth thermograms. These results strongly suggested the possibility of calorimetry as measure of predictive microbiology in food irradiation. (author)

  17. Analysis of the microbial growth in 60Co gamma-irradiated foods by calorimetry

    International Nuclear Information System (INIS)

    Furuta, M.; Hamasaki, K.; Wirkner, S.; Constantinoiu, E.; Takahashi, K.; Hayashi, T.

    2002-01-01

    Using a heat conduction calorimeter equipped with 24 sample units the heat evolutions from growing 60Co gamma-irradiated bioburden of black pepper seeds and frozen beef were detected in the form of growth thermograms. 60Co gamma-irradiation affected the growth pattern in which a dose-dependent reduction of the growth rate constant was observed together with the retardation in growth, indicating a combination of bactericidal and bacteriostatic effects. We successfully determined the minimal inactivation doses for the two food samples using the relationship between the irradiation dose and the retardation in growth talpha, or the growth rate constant mu obtained from the growth thermograms. These results strongly suggested the possibility of calorimetry as a measure of predictive microbiology in food irradiation

  18. Wheat multiple synthetic derivatives: a new source for heat stress tolerance adaptive traits

    Science.gov (United States)

    Elbashir, Awad Ahmed Elawad; Gorafi, Yasir Serag Alnor; Tahir, Izzat Sidahmed Ali; Kim, June-Sik; Tsujimoto, Hisashi

    2017-01-01

    Heat stress is detrimental to wheat (Triticum aestivum L.) productivity. In this study, we aimed to select heat-tolerant plants from a multiple synthetic derivatives (MSD) population and evaluate their agronomic and physiological traits. We selected six tolerant plants from the population with the background of the cultivar ‘Norin 61’ (N61) and established six MNH (MSD population of N61 selected as heat stress-tolerant) lines. We grew these lines with N61 in the field and growth chamber. In the field, we used optimum and late sowings to ensure plant exposure to heat. In the growth chamber, in addition to N61, we used the heat-tolerant cultivars ‘Gelenson’ and ‘Bacanora’. We confirmed that MNH2 and MNH5 lines acquired heat tolerance. These lines had higher photosynthesis and stomata conductance and exhibited no reduction in grain yield and biomass under heat stress compared to N61. We noticed that N61 had relatively good adaptability to heat stress. Our results indicate that the MSD population includes the diversity of Aegilops tauschii and is a promising resource to uncover useful quantitative traits derived from this wild species. Selected lines could be useful for heat stress tolerance breeding. PMID:28744178

  19. Heat shock proteins of higher plants

    International Nuclear Information System (INIS)

    Key, J.L.; Lin, C.Y.; Chen, Y.M.

    1981-01-01

    The pattern of protein synthesis changes rapidly and dramatically when the growth temperture of soybean seedling tissue is increased from 28 0 C (normal) to about 40 0 C (heat shock). The synthesis of normal proteins is greatly decreased and a new set of proteins, heat shock proteins, is induced. The heat shock proteins of soybean consist of 10 new bands on one-dimensional NaDodSO 4 gels; a more complex pattern is observed on two-dimensional gels. when the tissue is returned to 28 0 C after 4 hr at 40 0 C, there is progressive decline in the synthesis of heat shock proteins and reappearance of a normal pattern of synthesis by 3 or 4 hr. In vitro translation of poly(A) + RNAs isolated from tissued grown at 28 and 40 0 C shows that the heat shock proteins are translated from a ndw set of mRNAs induced at 40 0 C; furthermore, the abundant class mRNAs for many of the normal proteins persist even though they are translated weakly (or not at all) in vivo at 40 or 42.5 0 C. The heat shock response in soybean appears similar to the much-studied heat shock phenomenon in Drosophila

  20. Screening of cotton (gossypium hirsutum l.) genotypes for heat tolerance

    International Nuclear Information System (INIS)

    Abro, S.; Khan, M.A.; Sial, M.A.

    2015-01-01

    Cotton yield is highly affected due to biotic (diseases and pests) and abiotic (heat, dought and salinity) Stresses. Among them, high temperature is the main environmental constraint which adversely reduces cotton yield and quality. High temperature above 36 degree C affects plant growth and development especially during reproductive phase. Present studies were carried out to assess the tolerance of fifty-eight newly evolved cotton genotypes to heat stresses, based on agronomic and physiological characteristics. The genotypes were screened in field conditions under two temperature regimes. The studies were conducted at experimental farm of Nuclear Institute of Agriculture, Tando Jam, Pakistan. The results showed that March sown crop experienced high temperature (i.e. > 44 degree C in May and June), which significantly affected crop growth and productivity. The genotypes were identified as heat-tolerant on the basis of relative cell injury percentage (RCI %), heat susceptibility index (HSI) values, boll retention and seed cotton yield (kg/ha). RCI level in cotton genotypes ranged from 39.0 to 86.0%. Out of 58, seventeen genotypes (viz.NIA-80, NIA-81, NIA-83, NIA-84, NIA-M-30, NIA-M31, NIA-HM-48, NIA-HM-327, NIA-H-32, NIA-HM-2-1, NIA-Bt1, NIA-Bt2, NIA-Perkh, CRIS-342, CRIS-134, NIAB-111 and check variety Sadori indicated high level of heat tolerance at both (heat-stressed and non-stressed) temperature regimes; as shown the lowest relative injury level and relatively heat resistant index (HSI<1) values. Such genotypes could be used as heattolerant genotypes under heat-stressed environments. (author)

  1. Heat-resistant fungi of importance to the food and beverage industry.

    Science.gov (United States)

    Tournas, V

    1994-01-01

    Spoilage of pasteurized and canned fruit and fruit products caused by heat-resistant molds have been reported repeatedly in recent years. Species most commonly implicated in fruit and fruit product disintegration are Byssochlamys fulva, Byssochlamys nivea, Neosartorya fischeri, Talaromyces flavus, and Eupenicillium brefeldianum. These organisms are saprophytic rather than parasitic and usually contaminate fruits on or near the ground. They can survive heat treatments used for fruit processing and can grow and spoil the products during storage at room temperature, which results in great economic losses. Mold heat resistance is attributed to the formation of sexual spores, ascospores. Ascospores have a wide range of heat resistance, depending on species, strain, age of organism, heating medium, pH, presence of sugars, fats, and acids in heating medium, growth conditions, etc. The mechanism(s) of thermoresistance are not clear; probably some very stable compound(s) critical to germination and outgrowth are present in the heat-resistant ascospores. Besides spoilage, the heat-resistant molds produce a number of toxic secondary metabolites, such as byssotoxin A; byssochlamic acid; the carcinogen, patulin, the tremorgenic substances, fumitremorgin A and C, and verruculogen; fischerin, which caused fatal peritonitis in mice; and eupenifeldin, a compound possessing cytotoxicity as well as in vivo antitumor activity. Growth of heat-resistant fungi can be controlled by lowering the water activity, adding sulfur dioxide, sorbate, or benzoate; washing of fruits in hypochlorite solution before heat treatment reduces the number of ascospores and makes the heat destruction more successful. More research is needed to elucidate the mechanism(s) of thermoresistance and develop new methods for the complete inactivation of resistant ascospores.

  2. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    Science.gov (United States)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in

  3. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    Science.gov (United States)

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  4. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    Science.gov (United States)

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  5. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Festuca arundinacea

    Directory of Open Access Journals (Sweden)

    Longxing eHu

    2016-02-01

    Full Text Available Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool‐season turfgrass species, tall fescue (Lolium arundinaceum, and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2 and 20 mM and two temperature levels (25/20 and 35/30 ± 0.5 ̊C, day/night treatments in growth chambers. Heat stress increased an electrolyte leakage (EL and malonaldehyde (MDA content, while reduced plant growth, chlorophyll (Chl content, photochemical efficiency (Fv/Fm, root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD. External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  6. Nuclear power plant waste heat utilization

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2/sup 0/F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60/sup 0/F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability.

  7. Nuclear power plant waste heat utilization

    International Nuclear Information System (INIS)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2 0 F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60 0 F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability

  8. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  9. Contrast gain control in first- and second-order motion perception.

    Science.gov (United States)

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  10. HEAT PUMP STATION WITH CARBON DIOXIDE AS A WORKING FLUID ENERGY EFFICIENCY GROWTH IN COMBINED DISTRICT HEATING SYSTEM DUE TO ITS CONTROL SYSTEM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2008-04-01

    Full Text Available A diagram of the heat pump station (HPS for the central heat supply station of the district heating system, which gets the power from the CHP plant is examined. A block diagram of the control of the system and compressor pressure control system are examined. The description of the control laws of evaporator at the variable heat load of the HPS and control laws of the gas cooler taking into account the goal of achieving the maximum of COP of HPS is shown as well.

  11. District heating and co-generation in Slovenia

    International Nuclear Information System (INIS)

    Hrovatin, Franc; Pecaric, Marko; Perovic, Olgica

    2000-01-01

    Recent development of district heating systems, gasification and co-generation processes in local communities in Slovenia as well as current status, potentials, possibilities and plans for further development in this sphere are presented. The current status presents energy production, distribution and use in district heating systems and in local gas distribution networks. An analysis of the energy and power generated and distributed in district power systems, made with regard to the size of the system, fuel used, type of consumers and the way of production, is given. Growth in different areas of local power systems in the period of last years is included. Potentials in the sphere of electrical energy and heat co-generation were assessed. Some possibilities and experience in heat energy storage are given and trends and plans for further development are introduced. (Authors)

  12. Effect of gibberrelic acid on α-amylase activity in heat stressed mung ...

    African Journals Online (AJOL)

    reading 7

    2012-06-28

    Jun 28, 2012 ... Gibberellic acid (GA3) is a plant growth hormone, responsible for growth, stress tolerance and ... inhibition of germination has been overcome (Jacobsen et al., 2002). ..... Effect of fluridone on free sugar level in heat stressed ...

  13. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Helm, M.; Keil, C.; Hiebler, S.; Mehling, H.; Schweigler, C. [Bavarian Center for Applied Energy Research (ZAE Bayern) (Germany)

    2009-06-15

    Absorption cooling systems based on water/lithium bromide (LiBr) solution typically require an open wet cooling tower to transfer the reject heat to the ambient. Yet, water consumption, the need for water make-up and cleaning, formation of fog, and the risk of Legionella bacteria growth are hindering factors for the implementation of small solar cooling systems. The application of a latent heat storage supporting the heat rejection of the absorption chiller in conjunction with a dry cooling system allows eliminating the wet cooling tower. By that means heat rejection of the chiller is shifted to periods with lower ambient temperatures, i.e. night time or off-peak hours. The system concept and the hydraulic scheme together with an analysis of the energetic performance of the system are presented, followed by a report on the operation of a first pilot installation. (author)

  14. Enhanced Thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress.

    Science.gov (United States)

    Kurek, Itzhak; Chang, Thom Kai; Bertain, Sean M; Madrigal, Alfredo; Liu, Lu; Lassner, Michael W; Zhu, Genhai

    2007-10-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Deltarca) line. In a long-term growth test at either constant 26 degrees C or daily 4-h 30 degrees C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions.

  15. Radiation Characterization Summary: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline (ACRR-PLG-CC-32-cl).

    Energy Technology Data Exchange (ETDEWEB)

    Parma, Edward J.,; Vehar, David W.; Lippert, Lance L.; Griffin, Patrick J.; Naranjo, Gerald E.; Luker, Spencer M.

    2015-06-01

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the polyethylene-lead-graphite (PLG) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-PLG-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.

  16. ELMs and the H-mode pedestal in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Sabbagh, S.A.; Bush, C.E.; Fredrickson, E.D.; Menard, J.E.; Stutman, D.; Tritz, K.; Bell, M.G.; Bell, R.E.; Boedo, J.A.; Gates, D.A.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Mueller, D.; Raman, R.; Roquemore, A.L.; Soukhanovskii, V.A.; Stevenson, T.

    2005-01-01

    We report on the behavior of ELMs in NBI-heated H-mode plasmas in NSTX. It is observed that the size of Type I ELMs, characterized by the change in plasma energy, decreases with increasing line-average density, as observed at conventional aspect ratio. It is also observed that the Type I ELM size decreases as the plasma equilibrium is shifted from a symmetric double-null toward a lower single-null configuration. Type II/III ELMs have also been observed in NSTX, as well as a high-performance regime with small ELMs which we designate Type V. The Type V ELMs are characterized by an intermittent n 1 magnetic pre-cursor oscillation rotating counter to the plasma current; the mode vanishes between Type V ELMs crashes. Without active pumping, the density rises continuously through the Type V phase, albeit at a slower rate than ELM-free discharges

  17. Heat generated by knee prostheses.

    Science.gov (United States)

    Pritchett, James W

    2006-01-01

    Temperature sensors were placed in 50 knees in 25 patients who had one or both joints replaced. Temperature recordings were made before walking, after walking, and after cycling. The heat generated in healthy, arthritic, and replaced knees was measured. The knee replacements were done using eight different prostheses. A rotating hinge knee prosthesis generated a temperature increase of 7 degrees C in 20 minutes and 9 degrees C in 40 minutes. An unconstrained ceramic femoral prosthesis articulating with a polyethylene tibial prosthesis generated a temperature increase of 4 degrees C compared with a healthy resting knee. The other designs using a cobalt-chrome alloy and high-density polyethylene had temperature increases of 5 degrees-7 degrees C with exercise. Frictional heat generated in a prosthetic knee is not immediately dissipated and may result in wear, creep, and other degenerative processes in the high-density polyethylene. Extended periods of elevated temperature in joints may inhibit cell growth and perhaps contribute to adverse performance via bone resorption or component loosening. Prosthetic knees generate more heat with activity than healthy or arthritic knees. More-constrained knee prostheses generate more heat than less-constrained prostheses. A knee with a ceramic femoral component generates less heat than a knee with the same design using a cobalt-chromium alloy.

  18. Advanced Supermarket Refrigeration/Heat Recovery Systems. Country Report, Denmark

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard; Christensen, K. G.

    Annex 26 is the first international project under the IEA Heat Pump Programme that links refrigeration and heat pump technology. Recovering heat from advanced supermarket refrigeration systems for space and water heating seems obvious and is beneficial for owners and operators. Because the great...... number of supermarkets that offer frozen and chilled food and further growth of this sector may be expected, the amount of energy used for refrigeration is enormous and will likely increase in the near future. Annex 26 analysed several advanced supermarket refrigeration systems and came to remarkable...... conclusions as far energy conservation and TEWI reduction is concerned. The conclusion justify that advanced supermarket systems with heat recovery should receive great attention and support. And there is still further research needed in several areas. The Annex also included a thorough system analyses...

  19. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits

    NARCIS (Netherlands)

    Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; Putten, P.E.L. van der

    2006-01-01

    Heat stress effects on grain dry mass and quality were studied in spring wheat genotypes (Triticum aestivum L.). Three cultivars were chosen with respect to heat tolerance: Lavett (genotype 1), selected for temperate growing conditions and two CIMMYT cultivars, Ciano-79 (genotype 2) and Attila

  20. Effect Of Dried Whey Milk Supplement On Some Blood Biochemical And Immunological Indices In Relation To Growth Performance Of Heat Stressed Bovine baladi Calves

    International Nuclear Information System (INIS)

    ABDALLA, E.B.; EL-MASRY, K.A.; TEAMA, F.E.; EMARA, S.S.

    2009-01-01

    This experiment was carried out under hot environmental conditions, where temperature-humidity index was equivalent to 86 - 90 and 78 - 80 during day and night, respectively. Twelve bovine Baladi calves of 8 - 10 months old and 112 kg average initial live body weight were used in this study. The calves were divided into two groups of 6 animals each to study the effect of supplementation of dried whey milk on some blood biochemical and immunological indices and growth performance of calves under hot weather conditions of Egypt. The results showed that supplementation of dried whey milk to the diet of heat-stressed calves at the level of 150 g / calf / day reduced significantly each of respiration rate and rectal temperature as well as serum lipid concentrations and their fractions e.g. total cholesterol and phospholipids. Also, dried whey milk supplement caused a significant decline in both AST and ALT activities and reduced significantly alpha globulin concentration, while non-significant changes were observed in each of beta globulin, gamma globulin and immunoglobulin G. However, supplementing dried whey milk to growing calves increased significantly serum concentrations of total protein, albumin, calcium, phosphorous, T 3 and T 4 . Moreover, dried whey milk improved significantly both feed efficiency and daily gain of growing calves. It could be concluded that addition of dried whey milk to the diet reduced rectal temperature and respiration rate and induced an improvement in most blood biochemical parameters and growth performance of heat-stressed bovine Baladi calves.

  1. The expression and proangiogenic effect of nucleolin during the recovery of heat-denatured HUVECs.

    Science.gov (United States)

    Liang, Pengfei; Jiang, Bimei; Lv, Chunliu; Huang, Xu; Sun, Li; Zhang, Pihong; Huang, Xiaoyuan

    2013-10-01

    The present study aims to examine the expression patterns and roles of nucleolin during the recovery of heat-denatured human umbilical vein endothelial cells (HUVECs). Deep partial thickness burn model in Sprague-Dawley rats and the heat denatured cell model (52°C, 35s) were used. The expression of nucleolin was measured using Western blot analysis and real-time PCR. Angiogenesis was assessed using in vitro parameters including endothelial cell proliferation, transwell migration assay, and scratched wound healing. Gene transfection and RNA interference approaches were employed to investigate the roles of nucleolin. Nucleolin mRNA and protein expression showed a time-dependent increase during the recovery of heat-denatured dermis and HUVECs. Heat-denaturation time-dependently promoted cell growth, adhesion, migration, scratched wound healing and formation of tube-like structures in HUVECs. These effects of heat denaturation on endothelial wound healing and formation of tube-like structures were prevented by knockdown of nucleolin, whereas over-expression of nucleolin increased cell growth, migration, and formation of tube-like structures in cultured HUVEC endothelial cells. In addition, we found that the expression of vascular endothelial growth factor (VEGF) increased during the recovery of heat-denatured dermis and HUVECs, and nucleolin up-regulated VEGF in HUVECs. The present study reveals that the expression of nucleolin is up-regulated, and plays a pro-angiogenic role during the recovery of heat-denatured dermis and its mechanism is probably dependent on production of VEGF. We find a novel and important pro-angiogenic role of nucleolin during the recovery of heat-denatured dermis. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. 5. heat pump forum. Politics, market, finances, marketing and sales. Proceedings

    International Nuclear Information System (INIS)

    2007-01-01

    The increased use of renewable energy resources constitutes one of the greatest challenges of the 21st century. Soaring oil and gas prices have caused renewable energy resource to move into the focus of public interest. Today the majority of the population is in favour of renewable energy resources, demanding that decision makers from politics and industry make a greater commitment to their promotion and growth. Heat pumps count among the best heating technologies available today, and not only on account of their primary energy balance. However, there is a need for favourable political framework conditions and a clear positioning of this product on the market in order to provide an environment conducive to sound market growth. For this reason the Heat Pump Forum has this time focussed on the topics of political recognition, development of market and technology and marketing and sales. It also addresses the political framework conditions governing the rapidly growing heat pump market and offers hard practical information ranging from solutions for old building to the exchange of practical experiences

  3. Using Heat Pump Energy Storages in the Power Grid

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.

    2011-01-01

    The extensive growth of installed wind energy plants lead to increasing balancing problems in the power grid due to the nature of wind fields and diurnal variations in consumption. One way to overcome these problems is to move consumption to times where wind power otherwise cause overproduction...... and large fluctuations in prices. The paper presents a method which takes advantage of heat capacity in single-family houses using heat pumps which are anticipated to be installed in large numbers in Denmark in next decade. This type of heating gives a large time constant and it is shown possible to move...

  4. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  5. Reactor container

    International Nuclear Information System (INIS)

    Kato, Masami; Nishio, Masahide.

    1987-01-01

    Purpose: To prevent the rupture of the dry well even when the melted reactor core drops into a reactor pedestal cavity. Constitution: In a reactor container in which a dry well disposed above the reactor pedestal cavity for containing the reactor pressure vessel and a torus type suppression chamber for containing pressure suppression water are connected with each other, the pedestal cavity and the suppression chamber are disposed such that the flow level of the pedestal cavity is lower than the level of the pressure suppression water. Further, a pressure suppression water introduction pipeway for introducing the pressure suppression water into the reactor pedestal cavity is disposed by way of an ON-OFF valve. In case if the melted reactor core should fall into the pedestal cavity, the ON-OFF valve for the pressure suppression water introduction pipeway is opened to introduce the pressure suppression water in the suppression chamber into the pedestal cavity to cool the melted reactor core. (Ikeda, J.)

  6. Metabolic Pathways Involved in Carbon Dioxide Enhanced Heat Tolerance in Bermudagrass

    Directory of Open Access Journals (Sweden)

    Jingjin Yu

    2017-09-01

    Full Text Available Global climate changes involve elevated temperature and CO2 concentration, imposing significant impact on plant growth of various plant species. Elevated temperature exacerbates heat damages, but elevated CO2 has positive effects on promoting plant growth and heat tolerance. The objective of this study was to identify metabolic pathways affected by elevated CO2 conferring the improvement of heat tolerance in a C4 perennial grass species, bermudagrass (Cynodon dactylon Pers.. Plants were planted under either ambient CO2 concentration (400 μmol⋅mol-1 or elevated CO2 concentration (800 μmol⋅mol-1 and subjected to ambient temperature (30/25°C, day/night or heat stress (45/40°C, day/night. Elevated CO2 concentration suppressed heat-induced damages and improved heat tolerance in bermudagrass. The enhanced heat tolerance under elevated CO2 was attributed to some important metabolic pathways during which proteins and metabolites were up-regulated, including light reaction (ATP synthase subunit and photosystem I reaction center subunit and carbon fixation [(glyceraldehyde-3-phosphate dehydrogenase, GAPDH, fructose-bisphosphate aldolase, phosphoglycerate kinase, sedoheptulose-1,7-bisphosphatase and sugars of photosynthesis, glycolysis (GAPDH, glucose, fructose, and galactose and TCA cycle (pyruvic acid, malic acid and malate dehydrogenase of respiration, amino acid metabolism (aspartic acid, methionine, threonine, isoleucine, lysine, valine, alanine, and isoleucine as well as the GABA shunt (GABA, glutamic acid, alanine, proline and 5-oxoproline. The up-regulation of those metabolic processes by elevated CO2 could at least partially contribute to the improvement of heat tolerance in perennial grass species.

  7. Temperature influences on growth of aquatic organisms

    International Nuclear Information System (INIS)

    Coutant, C.C.; Suffern, J.S.

    1977-01-01

    Temperature profoundly affects the growth rates of aquatic organisms, and its control is essential for effective aquaculture. Characteristically, both low and high temperatures produce slow growth rates and inefficient food conversion, while intermediate temperature ranges provide rapid growth and efficient food conversion. Distinct, species-specific optimum temperatures and upper and lower temperatures of zero growth can often be defined. Thermal effects can be greatly modified by amounts and quality of food. These data not only provide the basis for criteria which maintain growth of wild organisms but also for effectively using waste heat to create optimal conditions of temperature and food ration for growing aquatic organisms commercially

  8. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  9. Effect of Internal and Edge Transport Barriers in ITER Simulations

    International Nuclear Information System (INIS)

    Pianroj, Y.; Onjun, T.; Suwanna, S.; Picha, R.; Poolyarat, N.

    2009-07-01

    Full text: Predictive simulations of ITER with the presence of both an edge transport barrier (ETB) and an internal transport barrier (ITB) are carried out using the BALDUR integrated predictive modeling code. In these simulations, the boundary is taken at the top of the pedestal, where the pedestal values are described using the theory-based pedestal models. These pedestal temperature models are based on three different pedestal width scalings: magnetic and flow shear stabilization (δ α ρ ζ 2 ), flow shear stabilization (δ α Root ρ Rq), and normalized poloidal pressure (δ α R Root βθ, ped). The pedestal width scalings are combined with a pedestal pressure gradient scaling based on ballooning mode limit to predict the pedestal temperature. A version of the semi-empirical Mixed Bohm/gyro Bohm (Mixed B/gB) core transport model that includes ITB effects is used to compute the evolution of plasma profiles and plasma performance, which defined by Fusion Q factor. The results from the cases excluding and including ITB are compared. The preliminary results show the Q value resulted from ITB-excluded simulation is less than the one with ITB included

  10. Subcooled boiling heat transfer and dryout on a constant temperature microheater

    International Nuclear Information System (INIS)

    Chen Tailian; Klausner, James F.; Chung, Jacob N.

    2004-01-01

    An experimental study of single-bubble subcooled boiling heat transfer (ΔT sub =31.5 K) on a small heater with constant wall temperature has been performed to better understand the boiling heat transfer associated with this unique configuration. The heater of 0.27 mm x 0.27 mm is set at different superheats to generate vapor bubbles on the microheater surface. For each superheat, the heater temperature is maintained constant by an electronic feedback control circuit while its power dissipation is measured at a frequency of 4.5 kHz. The single-bubble boiling is characterized by a transient bubble nucleation-departure period and a slow growth period. For the superheat range of 34-114 K in this study, at wall superheats below 84 K, the heater remains partially wetted following bubble departure and subsequent nucleation, and this period is characterized by a heat flux spike. At wall superheats above 90 K, the heater is blanketed with vapor following bubble departure and the heat flux experiences a dip during this period. At all superheats, the slow growth period is characterized by an almost uniform heat flux, and it has been observed that the heater surface is mostly covered by vapor. The unique heat transfer processes associated with boiling on this microheater are considerably different than those typically observed during boiling on a large heater

  11. Obtenção de cerâmicas ferroelétricas de Gd2Mo3O12 e o puxamento de fibras monocristalinas

    Directory of Open Access Journals (Sweden)

    Ferrari C. R.

    2001-01-01

    Full Text Available Nesse trabalho abordamos a obtenção do material cerâmico Gd2Mo3O12 na sua fase beta, denominado beta-GMO, utilizando-se do método convencional de mistura de óxidos e reação do estado sólido. MoO3 e o Gd2O3 nas razões molares 3:1 e 3,25:1 foram usados como pós de partida. Cerâmicas sinterizadas foram usadas como pedestais e sementes na produção de fibras monocristalinas pela técnica Laser Heated Pedestal Growth- LHPG. A cerâmica com fase única Gd2Mo3O12 foi melhor obtida usando a razão molar 3:1 entre os pós de partida. Por outro lado, fibras cristalinas obtidas a partir de pedestais cerâmicos com excesso de MoO3 apresentaram melhor qualidade óptica e a estequiometria desejada.

  12. Grain Growth in Nanocrystalline Mg-Al Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Venkata Rama Ses; Kovarik, Libor; Moser, Trevor H.; Evans, James E.; Browning, Nigel D.

    2017-10-05

    An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg - Al thin films containing ~10 wt.% Al and with 14.5 nm average grain size were produced by magnetron-sputtering and subjected to heat-treatments. The grain growth evolution in the early stages of heat treatment at 423 K (150 °C), 473 K (200 °C) and 573K (300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7±2 and the activation energy for grain growth was 31.1±13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.

  13. Effects of growth conditions on thermal profiles during Czochralski silicon crystal growth

    Science.gov (United States)

    Choe, Kwang Su; Stefani, Jerry A.; Dettling, Theodore B.; Tien, John K.; Wallace, John P.

    1991-01-01

    An eddy current testing method was used to continuously monitor crystal growth process and investigate the effects of growth conditions on thermal profiles during Czochralski silicon crystal growth. The experimental concept was to monitor the intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. In terms of the experiments, the effects of changes in growth parameters, which include the crystal and crucible rotation rates, crucible position, and pull rate, and hot-zone geometries were investigated. The results show that the crystal thermal profile could shift significantly as a function of crystal length if the closed-loop control fails to maintain a constant thermal condition. As a direct evidence to the effects of the melt flow on heat transfer processes, a thermal gradient minimum was observed when the crystal/crucible rotation combination was 20/-10 rpm cw. The thermal gradients in the crystal near the growth interface were reduced most by decreasing the pull rate or by reducing the radiant heat loss to the environment; a nearly constant axial thermal gradient was achieved when either the pull rate was decreased by half, the height of the exposed crucible wall was doubled, or a radiation shield was placed around the crystal. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5°C/mm. When compared to theoretical results found in literature, the axial profiles correlated well with the results of the models which included radiant interactions. However, the radial gradients estimated from three-frequency data were much higher than what were predicted by known theoretical models. This discrepancy seems to indicate that optical phenomenon within the crystal is significant and should be included in theoretical modeling.

  14. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth

    Science.gov (United States)

    Telesman, Jack; Gabb, Tim; Ghosn, Louis J.

    2016-01-01

    Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  15. Growth rate of YBCO-Ag superconducting single grains

    Science.gov (United States)

    Congreve, J. V. J.; Shi, Y. H.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A.

    2017-12-01

    The large scale use of (RE)Ba2Cu3O7 bulk superconductors, where RE=Y, Gd, Sm, is, in part, limited by the relatively poor mechanical properties of these inherently brittle ceramic materials. It is reported that alloying of (RE)Ba2Cu3O7 with silver enables a significant improvement in the mechanical strength of bulk, single grain samples without any detrimental effect on their superconducting properties. However, due to the complexity and number of inter-related variables involved in the top seeded melt growth (TSMG) process, the growth of large single grains is difficult and the addition of silver makes it even more difficult to achieve successful growth reliably. The key processing variables in the TSMG process include the times and temperatures of the stages within the heating profile, which can be derived from the growth rate during the growth process. To date, the growth rate of the YBa2Cu3O7-Ag system has not been reported in detail and it is this lacuna that we have sought to address. In this work we measure the growth rate of the YBCO-Ag system using a method based on continuous cooling and isothermal holding (CCIH). We have determined the growth rate by measuring the side length of the crystallised region for a number of samples for specified isothermal hold temperatures and periods. This has enabled the growth rate to be modelled and from this an optimized heating profile for the successful growth of YBCO-Ag single grains to be derived.

  16. Modeling of ELM Dynamics in ITER

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Bateman, G.; Kritz, A.H.; Brennan, D.P.; Snyder, P.B.; Kruger, S.

    2007-01-01

    Edge localized modes (ELMs) are large scale instabilities that alter the H-mode pedestal, reduce the total plasma stored energy, and can result in heat pulses to the divertor plates. These modes can be triggered by pressure driven ballooning modes or by current driven peeling instabilities. In this study, stability analyses are carried out for a series of ITER equilibria that are generated with the TEQ and TOQ equilibrium codes. The H-mode pedestal pressure and parallel component of plasma current density are varied in a systematic way in order to include the relevant parameter space for a specific ITER discharge. Ideal MHD stability codes, DCON, ELITE, and BALOO code, are employed to determine whether or not each ITER equilibrium profile is unstable to peeling or ballooning modes in the pedestal region. Several equilibria that are close to the marginal stability boundary for peeling and ballooning modes are tested with the NIMROD non-ideal MHD code. The effects of finite resistivity are studied in a series of linear NIMROD computations. It is found that the peeling-ballooning stability threshold is very sensitive to the resistivity and viscosity profiles, which vary dramatically over a wide range near the separatrix. Due to the effects of finite resistivity and viscosity, the peeling-ballooning stability threshold is shifted compared to the ideal threshold. A fundamental question in the integrated modeling of ELMy H-mode discharges concerning how much plasma and current density is removed during each ELM crash can be addressed with nonlinear non-ideal MHD simulations. In this study, the NIMROD computer simulations are continued into the nonlinear stage for several ITER equilibria that are marginally unstable to peeling or ballooning modes. The role of two-fluid and finite Larmor radius effects on the ELM dynamics in ITER geometry is examined. The formation of ELM filament structures, which are observed in many existing tokamak experiments, is demonstrated for ITER

  17. Can heat waves change the trophic role of the world's most invasive crayfish? Diet shifts in Procambarus clarkii.

    Science.gov (United States)

    Carreira, Bruno M; Segurado, Pedro; Laurila, Anssi; Rebelo, Rui

    2017-01-01

    In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton's condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N). The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i) heat waves may change the predominant impacts of this keystone species and ii) that by altering species' trophic niches, climate change may alter the main impacts of invasive alien species.

  18. Can heat waves change the trophic role of the world's most invasive crayfish? Diet shifts in Procambarus clarkii.

    Directory of Open Access Journals (Sweden)

    Bruno M Carreira

    Full Text Available In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton's condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N. The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i heat waves may change the predominant impacts of this keystone species and ii that by altering species' trophic niches, climate change may alter the main impacts of invasive alien species.

  19. Epitaxial growth of Si1−xGex alloys and Ge on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition without substrate heating

    International Nuclear Information System (INIS)

    Ueno, Naofumi; Sakuraba, Masao; Murota, Junichi; Sato, Shigeo

    2014-01-01

    By using electron-cyclotron-resonance (ECR) Ar-plasma chemical vapor deposition (CVD) without substrate heating, the epitaxial growth process of Si 1−x Ge x alloy and Ge films deposited directly on dilute-HF-treated Si(100) was investigated. From the reflection high energy electron diffraction patterns of the deposited Si 1−x Ge x alloy (x = 0.50, 0.75) and Ge films on Si(100), it is confirmed that epitaxial growth can be realized without substrate heating, and that crystallinity degradation at larger film thickness is observed. The X-ray diffraction peak of the epitaxial films reveals the existence of large compressive strain, which is induced by lattice matching with the Si(100) substrate at smaller film thicknesses, as well as strain relaxation behavior at larger film thicknesses. The Ge fraction of Si 1−x Ge x thin film is in good agreement with the normalized GeH 4 partial pressure. The Si 1−x Ge x deposition rate increases with an increase of GeH 4 partial pressure. The GeH 4 partial pressure dependence of partial deposition rates [(Si or Ge fraction) × (Si 1−x Ge x thickness) / (deposition time)] shows that the Si partial deposition rate is slightly enhanced by the existence of Ge. From these results, it is proposed that the ECR-plasma CVD process can be utilized for Ge fraction control in highly-strained heterostructure formation of group IV semiconductors. - Highlights: • Si 1−x Ge x alloy and Ge were epitaxially grown on Si(100) without substrate heating. • Large strain and its relaxation behavior can be observed by X-ray diffraction. • Ge fraction of Si 1−x Ge x is equal to normalized GeH 4 partial pressure. • Si partial deposition rate is slightly enhanced by existence of Ge

  20. MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jeng-Shane Lin

    2018-02-01

    Full Text Available Global warming is causing a negative impact on plant growth and adversely impacts on crop yield. MicroRNAs (miRNAs are critical in regulating the expression of genes involved in plant development as well as defense responses. The effects of miRNAs on heat-stressed Arabidopsis warrants further investigation. Heat stress increased the expression of miR160 and its precursors but considerably reduced that of its targets, ARF10, ARF16, and ARF17. To study the roles of miR160 during heat stress, transgenic Arabidopsis plants overexpressing miR160 precursor a (160OE and artificial miR160 (MIM160, which mimics an inhibitor of miR160, were created. T-DNA insertion mutants of miR160 targets were also used to examine their tolerances to heat stress. Results presented that overexpressing miR160 improved seed germination and seedling survival under heat stress. The lengths of hypocotyl elongation and rachis were also longer in 160OE than the wild-type (WT plants under heat stress. Interestingly, MIM160 plants showed worse adaption to heat. In addition, arf10, arf16, and arf17 mutants presented similar phenotypes to 160OE under heat stress to advance abilities of thermotolerance. Moreover, transcriptome and qRT-PCR analyses revealed that HSP17.6A, HSP17.6II, HSP21, and HSP70B expression levels were regulated by heat in 160OE, MIM160, arf10, arf16, and arf17 plants. Hence, miR160 altered the expression of the heat shock proteins and plant development to allow plants to survive heat stress.

  1. Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major.

    Science.gov (United States)

    Dawood, Mahmoud A O; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro

    2015-07-01

    Both heat-killed Lactobacillus plantarum (HK-LP) and β-glucan (BG) play important roles in growth performance, feed utilization and health status of fish. Therefore, a feeding trial was conducted to determine the interactive effects of dietary HK-LP and BG on growth performance, digestibility, oxidative status and immune response of red sea bream for 56 days. A significant interaction was found between HK-LP and BG on final body weight, total plasma protein, glucose, serum bactericidal activity (BA), total serum protein, serum alternative complement pathway (ACP) activity, protein and dry matter digestibility coefficients (P 0.05). Interestingly, fish fed with both HK-LP at (0.025 and 0.1%) in combination with BG at (0 and 0.1%) showed higher oxidative stress resistance. Under the experimental conditions, dietary HK-LP and BG had a significant interaction on enhancing the growth, digestibility and immune responses of red sea bream. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves.

    Science.gov (United States)

    Laporta, J; Fabris, T F; Skibiel, A L; Powell, J L; Hayen, M J; Horvath, K; Miller-Cushon, E K; Dahl, G E

    2017-04-01

    Exposure to heat stress during late gestation exerts negative carryover effects on the postnatal performance of the calf. In this study, we evaluated the health, growth, and activity patterns of calves born to cows exposed to heat stress (HT, provided only shade, n = 31) or cooling (CL, fans, soakers, and shade, n = 29) during late gestation (∼46 d, maternal dry period). Calves' body weight, rectal temperature, suckling reflex, and movement scores were recorded at birth, and calves were fed 6.6 L of maternal colostrum in 2 meals. Blood samples were collected at birth (before feeding), 24 h after birth, and at d 10 and 28 of age. Calves were housed in individual pens, fed pasteurized milk (6 L/d), and had ad libitum access to grain and water until weaning (49 d). Activity was assessed during the first week of life (wk 1), at weaning (wk 7), and in the first week postweaning (wk 8) using electronic data loggers. Health and body weight were monitored weekly. At birth, calves born to CL cows were heavier (41.9 vs. 39.1 ± 0.8 kg), their temperature was lower (38.9 vs. 39.3 ± 0.08°C), and they were more efficient at absorbing IgG than HT calves. Suckling reflex and movement score at birth were not different between groups, but calves born to CL cows spent more time (50 min/d) standing in the first week of life as a result of longer standing bouts. In wk 7 and 8, calves born to CL cows had less frequent standing bouts than HT heifers, but CL heifers maintained greater total daily standing time (36 min/d) due to longer (7 min/bout) standing bouts. All calves were healthy, but HT heifers tended to have higher (looser) fecal scores on d 10. Heifers born from CL cows gained 0.2 kg/d more from birth to weaning, weighed 4 kg more at weaning, and had greater concentrations of IGF-1 than HT calves, particularly on d 28. In utero heat stress during late gestation had immediate and prolonged effects on passive immunity, growth, and activity patterns in dairy calves. Copyright

  3. Development of a model for on-line control of crystal growth by the AHP method

    Science.gov (United States)

    Gonik, M. A.; Lomokhova, A. V.; Gonik, M. M.; Kuliev, A. T.; Smirnov, A. D.

    2007-05-01

    The possibility to apply a simplified 2D model for heat transfer calculations in crystal growth by the axial heat close to phase interface (AHP) method is discussed in this paper. A comparison with global heat transfer calculations with the CGSim software was performed to confirm the accuracy of this model. The simplified model was shown to provide adequate results for the shape of the melt-crystal interface and temperature field in an opaque (Ge) and a transparent crystal (CsI:Tl). The model proposed is used for identification of the growth setup as a control object, for synthesis of a digital controller (PID controller at the present stage) and, finally, in on-line simulations of crystal growth control.

  4. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    Science.gov (United States)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  5. Heating and cooling performance of air-to-air heat pumps installed in the greenhouses with vegetables growth. Kuki netsugen hito ponpuno saibai jokenkani okeru onshitsuno danreibo seino

    Energy Technology Data Exchange (ETDEWEB)

    Kozakai, Kazuyoshi; Uehara, Tsuyoshi; Okano, Toshiaki

    1987-05-01

    Two units of integral-type air-air heat pumps (rated capacity: 7.5 KW each) and a heat storage type air-air heat pump (rated capacity: 7.5 KW) equipped with a heat storage water tank were installed in the experimental greenhouses (315 m/sup 2/ and 126 m/sup 2/) to introduced the heat pump as part of the development of power demand for the greenhouse culture. The experiment of hydroponic culture of tomatos in both summer and winter and merons in summer was made controlling the temperature and humidity in the greenhouse. The coefficient of performance (COP) of the integral-type air-air heat pump was 2.2 to 2.3 in the cooling season and 2.3 to 2.6 in the heating season. The crop of tomato per 10 areas was 11.6 tons in summer and 14.2 tons in winter and both crops were more than the mean valve in the greenhouse culture. The COP of the heat storage type air-air heat pump was 2.2 in the cooling season and 2.6 in the heating season. The average weight of a melon was 1.7 kg and the sugar content was approximately 13%. The crop and quality of melon exceeded the levels in the greenhouse culture. (14 figs, 8 tabs, 7 refs)

  6. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types.

    Directory of Open Access Journals (Sweden)

    Alison Jones

    Full Text Available One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Keppel Islands in the southern Great Barrier Reef this species naturally harbors nrDNA ITS1 thermally sensitive type C2 or thermally tolerant type D zooxanthellae of the genus Symbiodinium and can change dominant type following bleaching. We show that under controlled conditions, corals with type D symbionts grow 29% slower than those with type C2 symbionts. In the field, type D colonies grew 38% slower than C2 colonies. These results demonstrate the magnitude of trade-offs likely to be experienced by this species as they acclimatize to warmer conditions by changing to more thermally tolerant type D zooxanthellae. Irrespective of symbiont genotype, corals were affected to an even greater degree by the stress of a bleaching event which reduced growth by more than 50% for up to 18 months compared to pre-bleaching rates. The processes of symbiont change and acute thermal stress are likely to act in concert on coral growth as reefs acclimatize to more stressful warmer conditions, further compromising their regeneration capacity following climate change.

  7. Potential Costs of Acclimatization to a Warmer Climate: Growth of a Reef Coral with Heat Tolerant vs. Sensitive Symbiont Types

    Science.gov (United States)

    Jones, Alison; Berkelmans, Ray

    2010-01-01

    One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae) genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Keppel Islands in the southern Great Barrier Reef this species naturally harbors nrDNA ITS1 thermally sensitive type C2 or thermally tolerant type D zooxanthellae of the genus Symbiodinium and can change dominant type following bleaching. We show that under controlled conditions, corals with type D symbionts grow 29% slower than those with type C2 symbionts. In the field, type D colonies grew 38% slower than C2 colonies. These results demonstrate the magnitude of trade-offs likely to be experienced by this species as they acclimatize to warmer conditions by changing to more thermally tolerant type D zooxanthellae. Irrespective of symbiont genotype, corals were affected to an even greater degree by the stress of a bleaching event which reduced growth by more than 50% for up to 18 months compared to pre-bleaching rates. The processes of symbiont change and acute thermal stress are likely to act in concert on coral growth as reefs acclimatize to more stressful warmer conditions, further compromising their regeneration capacity following climate change. PMID:20454653

  8. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types.

    Science.gov (United States)

    Jones, Alison; Berkelmans, Ray

    2010-05-03

    One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae) genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Keppel Islands in the southern Great Barrier Reef this species naturally harbors nrDNA ITS1 thermally sensitive type C2 or thermally tolerant type D zooxanthellae of the genus Symbiodinium and can change dominant type following bleaching. We show that under controlled conditions, corals with type D symbionts grow 29% slower than those with type C2 symbionts. In the field, type D colonies grew 38% slower than C2 colonies. These results demonstrate the magnitude of trade-offs likely to be experienced by this species as they acclimatize to warmer conditions by changing to more thermally tolerant type D zooxanthellae. Irrespective of symbiont genotype, corals were affected to an even greater degree by the stress of a bleaching event which reduced growth by more than 50% for up to 18 months compared to pre-bleaching rates. The processes of symbiont change and acute thermal stress are likely to act in concert on coral growth as reefs acclimatize to more stressful warmer conditions, further compromising their regeneration capacity following climate change.

  9. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    International Nuclear Information System (INIS)

    Savi, Tadeja; Dal Borgo, Anna; Love, Veronica L.; Andri, Sergio; Tretiach, Mauro; Nardini, Andrea

    2016-01-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13 cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. - Highlights: • The use of hardy shrub species for roof greening should be increased. • We monitored water status of 11 shrub species growing on shallow green roofs. • Species heat and drought tolerance, growth, and survival were studied. • High substrate temperature significantly affected plant survival. • Root resistance to heat could be used as trait for species selection for green roofs.

  10. Crack coke in layer heat transfer analysis; Kiretsu no shinten wo tomonau kokusu sonai dennetsu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Hideyuki [Tohoku University, Miyagi (Japan)

    1999-03-05

    The research method heat transfer process by physical change of the coke by heat transfer from furnace wall in the retorting of coal seam filled in coke oven and flow of the gas is very complicated chamber oven style, and it does not become clear. For the purpose of the elucidation of in layer crack generation and progress mechanism, he is (1) The expansion of the softening cohesive layer. (2) Programming rate dependence of the heat. Mechanical property value on coal seam and semi- coke layer in the retorting. (3) The creep property of softening cohesive layer and semi- coke layer. (4) The setting of crack growth condition of stress intensity factor in crack tip and fracture property value of the coke by the comparison. (5) By considering the radiative heat transfer in the crack, coke in layer thermal stress analysis was carried out. The validity of these analytical result it was confirmed by the comparison with the experimental result of crack growth. Deformation behavior in the small dry distillation furnace, and crack growth mechanism in the coke layer became clear, and the prediction of the stress as micro-crack cause of generation of heating surface side coke surface and inside became possible. The numerical analysis method of the above crack growth mechanism greatly contributes to the prediction of dry distillation heating requirement and grain size of coke lump which is an index to the coke quality. Heat on material process which is accompanied by the solidification. Contraction from the softening and material migration phenomenon have been clarified by the creative research method, while this research is directly useful for energy saving of pig ironmaking process of becoming one of the ringleaders of the CO{sub 2} generation. (translated by NEDO)

  11. Warm vegetarians? Heat waves and diet shifts in tadpoles.

    Science.gov (United States)

    Carreira, B M; Segurado, P; Orizaola, G; Gonçalves, N; Pinto, V; Laurila, A; Rebelo, R

    2016-11-01

    Temperature can play an important role in determining the feeding preferences of ectotherms. In light of the warmer temperatures arising with the current climatic changes, omnivorous ectotherms may perform diet shifts toward higher herbivory to optimize energetic intake. Such diet shifts may also occur during heat waves, which are projected to become more frequent, intense, and longer lasting in the future. Here, we investigated how heat waves of different duration affect feeding preferences in omnivorous anuran tadpoles and how these choices affect larval life history. In laboratory experiments, we fed tadpoles of three species on animal, plant, or mixed diet and exposed them to short heat waves (similar to the heat waves these species experience currently) or long heat waves (predicted to increase under climate change). We estimated the dietary choices of tadpoles fed on the mixed diet using stable isotopes and recorded tadpole survival and growth, larval period, and mass at metamorphosis. Tadpole feeding preferences were associated with their thermal background, with herbivory increasing with breeding temperature in nature. Patterns in survival, growth, and development generally support decreased efficiency of carnivorous diets and increased efficiency or higher relative quality of herbivorous diets at higher temperatures. All three species increased herbivory in at least one of the heat wave treatments, but the responses varied among species. Diet shifts toward higher herbivory were maladaptive in one species, but beneficial in the other two. Higher herbivory in omnivorous ectotherms under warmer temperatures may impact species differently and further contribute to changes in the structure and function of freshwater environments. © 2016 by the Ecological Society of America.

  12. Solar energy system with wind vane

    Science.gov (United States)

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  13. COREDIV modelling of JET ILW discharges with different impurity seeding: nitrogen, neon, argon and krypton

    Directory of Open Access Journals (Sweden)

    Ivanova-Stanik Irena

    2017-03-01

    Full Text Available Numerical simulations with the COREDIV code of JET H-mode discharges with 25 MW of auxiliary heating in the ITER-like wall (ILW configuration with different impurity seedings – nitrogen (N, neon (Ne, argon (Ar and krypton (Kr – are presented. All simulations have been performed with the same transport model and input discharge parameters like auxiliary heating, volume average plasma density, confinement factor. Only the seeded impurity puff rate was changed in the calculations. It appears that for the considered heating power of 25 MW and relatively low volume electron average density = 6.2 × 1019 m−3, impurity seeding is necessary. It has been found that for every gas at the maximum level of the seeding rate, allowed by the code convergence, the power to the plate is reduced up to 2–4 MW, with electron temperature at the plate of about 2 eV, indicating semi-detached conditions in the divertor region. It should be noted, however, that in cases with low and medium Z impurity (N, Ne and Ar, tungsten radiation is a significant part of radiation losses and stays above 22–32% of the total energy losses, but for high Z impurity (Kr it is reduced up to 10% of the total losses. The maximum of the Kr radiation is between the pedestal region and separatrix, showing that radiative mantle can be created, which might have a strong influence on the plasma parameters in the pedestal region.

  14. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance

    Directory of Open Access Journals (Sweden)

    Neeru Kaushal

    2016-12-01

    Full Text Available The rising temperatures are resulting in heat stress for various agricultural crops to limit their growth, metabolism, and leading to significant loss of yield potential worldwide. Heat stress adversely affects normal plant growth and development depending on the sensitivity of each crop species. Each crop species has its own range of temperature maxima and minima at different developmental stages beyond which all these processes get inhibited. The reproductive stage is on the whole more sensitive to heat stress, resulting in impaired fertilization to cause abortion of flowers. During seed filling, heat stress retards seed growth by affecting all the biochemical events to reduce seed size. Unfavorable temperature may significantly affect photosynthesis, respiration, water balance, and membrane stability of leaves. To combat heat stress, plants acquire various defense mechanisms for their survival such as maintaining membrane stability, and scavenging reactive oxygen species by generating antioxidants and stress proteins. Thermo-tolerance can be improved by the accumulation of various compounds of low molecular mass known as thermo-protectants as well as phyto-hormones. Exogenous application of these molecules has benefited plants growing under heat stress. Alternatively, transgenic plants over-expressing the enzymes catalyzing the synthesis of these molecules may be raised to increase their endogenous levels to improve heat tolerance. In recent times, various transgenics have been developed with improved thermo-tolerance having potential benefits for inducing heat tolerance in food crops. Updated information about of the effects of heat stress on various food crops and their responses as well as adaptive mechanisms is reviewed here.

  15. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined

    DEFF Research Database (Denmark)

    Zhou, Rong; Yu, Xiaqing; Ottosen, Carl-Otto

    2017-01-01

    and relative water content of all cultivars significantly decreased under drought and combined stress as compared to control. The net photosynthesis and starch content were significantly lower under drought and combined stress than control in the three cultivars. Stomata and pore length of the three cultivars......BACKGROUND: Abiotic stresses due to environmental factors could adversely affect the growth and development of crops. Among the abiotic stresses, drought and heat stress are two critical threats to crop growth and sustainable agriculture worldwide. Considering global climate change, incidence...... of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. RESULTS: Shoot fresh and dry weight, leaf area...

  16. Enhanced Thermostability of Arabidopsis Rubisco Activase Improves Photosynthesis and Growth Rates under Moderate Heat Stress[OA

    Science.gov (United States)

    Kurek, Itzhak; Chang, Thom Kai; Bertain, Sean M.; Madrigal, Alfredo; Liu, Lu; Lassner, Michael W.; Zhu, Genhai

    2007-01-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Δrca) line. In a long-term growth test at either constant 26°C or daily 4-h 30°C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions. PMID:17933901

  17. The heat shock protein 90 inhibitor 17-AAG suppresses growth and induces apoptosis in human cholangiocarcinoma cells.

    Science.gov (United States)

    Zhang, Jianjun; Zheng, Zhichao; Zhao, Yan; Zhang, Tao; Gu, Xiaohu; Yang, Wei

    2013-11-01

    The aim of this study was to investigate the effects of 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a heat shock protein 90 (HSP90) inhibitor, on the proliferation, cell cycle, and apoptosis of human cholangiocarcinoma (CCA) cells. Cell proliferation and cell cycle distribution were measured by the MTT assay and flow cytometry analysis, respectively. Induction of apoptosis was determined by flow cytometry and Hoechst staining. The expressions of cleaved poly ADP-ribose polymerase (PARP), Bcl-2, Survivin, and Cyclin B1 were detected by Western blot analysis. The activity of caspase-3 was also examined. We found that 17-AAG inhibited cell growth and induced G2/M cell cycle arrest and apoptosis in CCA cells together with the down-regulation of Bcl-2, Survivin and Cyclin B1, and the up-regulation of cleaved PARP. Moreover, increased caspase-3 activity was also observed in CCA cells treated with 17-AAG. In conclusion, our data suggest that the inhibition of HSP90 function by 17-AAG may provide a promising therapeutic strategy for the treatment of human CCA.

  18. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  19. Research progresses and future directions on pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2015-12-01

    Full Text Available This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated surface. It occurs during boiling of liquids for excess temperature ranging from 5 to 30 °C in various processes related to high vaporization of liquid for specific purposes like sugarcane juice heating for jaggery making, milk heating for khoa making, steam generation, cooling of electronic equipments, refrigeration and etcetera. In this review paper, pool boiling method during heating of liquids for specific purpose is depicted. It is inferred that enhancement in pool boiling heat transfer is a challenging and complex task. Also, recent research and use of various correlations for natural convection pool boiling is reviewed.

  20. Overview of the JET results with the ITER-like wall

    DEFF Research Database (Denmark)

    Romanelli, F.; Madsen, Jens; Naulin, Volker

    2013-01-01

    Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials...... that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H......-mode regimes with H98,y2 close to 1 and βN ∼ 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal...

  1. Thermal models pertaining to continental growth

    International Nuclear Information System (INIS)

    Morgan, P.; Ashwal, L.

    1988-01-01

    Thermal models are important to understanding continental growth as the genesis, stabilization, and possible recycling of continental crust are closely related to the tectonic processes of the earth which are driven primarily by heat. The thermal energy budget of the earth was slowly decreasing since core formation, and thus the energy driving the terrestrial tectonic engine was decreasing. This fundamental observation was used to develop a logic tree defining the options for continental growth throughout earth history

  2. Susceptibility of ectomycorrhizal fungi to soil heating.

    Science.gov (United States)

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Iron sulfide crystal growth: a literature review

    International Nuclear Information System (INIS)

    Dewar, E.J.

    1977-04-01

    Iron pyrite (FeS 2 ) is often found on trays and in heat exchangers in Girdler-Sulfide (G.S.) plants used to extract D 2 O from fresh water. A critical review of the literature was made to find: (i) what is known about FeS 2 crystal growth; (ii) which techniques could be used to study FeS 2 crystal growth experimentally; (iii) potential chemical additives that could be used in trace amounts to poison FeS 2 crystals and reduce their growth rate in G.S. plants. (author)

  4. Extended fluid transport theory in the tokamak plasma edge

    Science.gov (United States)

    Stacey, W. M.

    2017-06-01

    Fluid theory expressions for the radial particle and energy fluxes and the radial distributions of pressure and temperature in the edge plasma are derived from fundamental conservation (particle, energy, momentum) relations, taking into account kinetic corrections arising from ion orbit loss, and integrated to illustrate the dependence of the observed edge pedestal profile structure on fueling, heating, and electromagnetic and thermodynamic forces. Solution procedures for the fluid plasma and associated neutral transport equations are discussed.

  5. Occurrence of critical heat flux during blowdown with flow reversal

    International Nuclear Information System (INIS)

    Leung, J.C.M.

    1976-04-01

    A small-scale experiment using Freon-11 at 130 0 F and 65 psia in a well-instrumented transparent annular test section was used to study the occurrence of critical heat flux (CHF) during blowdown with flow reversal. The inner stainless steel tube of the annulus was uniformly heated over its 2 ft length. Inlet and exit void fractions were measured by a capacitance technique. Flow regime transition was observed with high speed photography. A 1-hr contact time between Freon-11 and nitrogen at 130 0 F and 60 psig was found to greatly affect the steady-state subcooled boiling initial conditions. Delay in bubble growth was observed in adiabatic blowdown runs. This was caused by the thermodynamic nonequilibrium conditions required for the unstable bubble growth. For the diabatic runs, equilibrium was more closely approached in the test section during the early phase of blowdown. Critical heat flux did not occur immediately during the flow decay in an approximately 60 msec reversal period. The first or early CHF which occurred at about 400 msec was independent of the blowdown volume and did not propagate upward. An annular flow pattern appeared at the onset of this CHF which occurred only at the lower 8 in. of the heated zone

  6. Controlling solar light and heat in a forest by managing shadow sources

    Science.gov (United States)

    Howard G. Halverson; James L. Smith

    1974-01-01

    Control of solar light and heat to develop the proper growth environment is a desirable goal in forest management. The amount of sunlight and heat reaching the surface is affected by shadows cast by nearby objects, including trees. In timbered areas, the type of forest management practiced can help develop desired microclimates. The results depend on the size and...

  7. Growth effects of EU and EZ memberships

    DEFF Research Database (Denmark)

    Dreyer, Johannes Kabderian; Schmid, Peter A.

    2017-01-01

    of economic integration in Europe. The aim of this article is to investigate whether EU and EZ memberships enhance growth for their members. In order to perform our empirical analysis, we estimate different growth models restricting the time frame to the first 15 years of the Euro - from 1999 to 2013. We find...... a positive impact of EU membership on economic growth, but no impact of being part of the EZ, except during the financial crisis, when the EZ has a negative impact on growth amongst its members. Considering the heated political debate related to the Brexit referendum, our results favour a “yes” to the EU...

  8. Semitransparent ceramic heat-insulation of eco-friendly Low- Heat-Rejection diesel

    Science.gov (United States)

    Merzlikin, V. G.; Gutierrez, M. O.; Makarov, A. R.; Kostukov, A. V.; Dementev, A. A.; Khudyakov, S. V.; Zagumennov, F. A.

    2018-03-01

    Efficiency of diesel has been studied using well-known types of the ceramic heat-insulating HICs- or thermal barrier TBCs-coatings. This problem is relevant for a high-speed diesel combustion chamber in which an intensive radiant component (near IR) reaches ~50% within total thermal flux. Therefore, in their works the authors had been offering new concept of study these materials as semitransparent SHICs-, STBCs-coatings. On the Mie scattering theory, the effect of selection of the specific structural composition and porosity of coatings on the variation of their optical parameters is considered. Conducted spectrophotometric modeling of the volume-absorbed radiant energy by the coating had determined their acceptable temperature field. For rig testings, a coated piston using selected SHIC (PSZ-ceramic ZrO2+8%Y2O3) with a calculated optimum temperature gradient was chosen. A single cylinder experimental tractor diesel was used. At rotation frequency n > 2800 rpm, the heat losses were no more than 0.2 MW/m2. Executed testings showed ~2-3% lower specific fuel consumption in contrast to the diesel with an uncoated piston. Effective power and drive torque were ∼2-5% greater. The authors have substantiated the growth the efficiency of this Low-Heat-Rejection(LHR) diesel due to the known effect of soot deposition gasification at high speed. Then unpolluted semitransparent ceramic thermal insulation forms the required thermoradiation fields and temperature profiles and can affect regulation of heat losses and a reduction of primarily nitrogen dioxide generation.

  9. Fatigue crack growth retardation in spot heated mild steel sheet

    Indian Academy of Sciences (India)

    Unknown

    Department of Metallurgical Engineering, *Department of Applied Mechanics and Hydraulics, ... growth retardation increases with increasing level of overload as well as with ..... Suresh S 1996 Fatigue of materials (Cambridge: Cambridge.

  10. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    Science.gov (United States)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2017-12-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  11. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    Science.gov (United States)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2018-06-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  12. Fragmentation of suddenly heated liquids

    International Nuclear Information System (INIS)

    Blink, J.A.

    1985-03-01

    Fragmentation of free liquids in Inertial Confinement Fusion reactors could determine the upper bound on reactor pulse rate. The x-ray ablated materials must cool and recondense to allow driver beam propagation. The increased surface area caused by fragmentation will enhance the cooling and condensation rates. Relaxation from the suddenly heated state will move a liquid into the negative pressure region under the liquid-vapor P-V dome. The lithium equation of state was used to demonstrate that neutron-induced vaporization uses only a minor fraction of the added heat, much less than would be required to drive the expansion. A 77% expansion of the lithium is required before the rapid vaporization process of spinodal decomposition could begin, and nucleation and growth are too slow to contribute to the expansion

  13. Heating oil, distillates and residuals outlook

    International Nuclear Information System (INIS)

    Ervin, M.J.

    2004-01-01

    M.J. Ervin and Associates offers strategic planning support to the downstream petroleum industry in terms of price market monitoring, market analysis, media commentary and benchmarking of marketing operations. This presentation included graphs depicting supply and demand for heating oil distillates and residuals from the mid 1990s to 2004. It was noted that the long-term decline in residuals demand in the United States and Canada are due to environmental issues, the use of natural gas as an alternative, and the increasing complexity of refineries. Graphs depicting market impacts of refinery utilization and inventory trends showed that middle distillate production will increase at the expense of gasoline production. Middle distillates and gasoline markets will be more sensitive to supply disruptions, resulting in more frequent price spikes. Inventory trends indicate a greater reliance on product imports. The demand for heating fuel has stabilized due to the continued penetration of natural gas in eastern states and provinces. The demand for diesel fuel has growth 1.5 to 2 per cent while the demand for jet fuel has remained relatively flat and depends greatly on the growth of the gross national product (GNP). tabs., figs

  14. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  15. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance

    OpenAIRE

    Neeru Kaushal; Kalpna Bhandari; Kadambot H.M. Siddique; Harsh Nayyar

    2016-01-01

    The rising temperatures are resulting in heat stress for various agricultural crops to limit their growth, metabolism, and leading to significant loss of yield potential worldwide. Heat stress adversely affects normal plant growth and development depending on the sensitivity of each crop species. Each crop species has its own range of temperature maxima and minima at different developmental stages beyond which all these processes get inhibited. The reproductive stage is on the whole more sens...

  16. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  17. Enhanced inhibition of Aspergillus niger on sedge (Lepironia articulata) treated with heat-cured lime oil.

    Science.gov (United States)

    Matan, N; Matan, N; Ketsa, S

    2013-08-01

    This study aimed to examine heat curing effect (30-100°C) on antifungal activities of lime oil and its components (limonene, p-cymene, β-pinene and α-pinene) at concentrations ranging from 100 to 300 μl ml(-1) against Aspergillus niger in microbiological medium and to optimize heat curing of lime oil for efficient mould control on sedge (Lepironia articulata). Broth dilution method was employed to determine lime oil minimum inhibitory concentration, which was at 90 μl ml(-1) with heat curing at 70°C. Limonene, a main component of lime oil, was an agent responsible for temperature dependencies of lime oil activities observed. Response surface methodology was used to construct the mathematical model describing a time period of zero mould growth on sedge as functions of heat curing temperature and lime oil concentration. Heat curing of 90 μl ml(-1) lime oil at 70°C extended a period of zero mould growth on sedge to 18 weeks under moist conditions. Heat curing at 70°C best enhanced antifungal activity of lime oil against A. niger both in medium and on sedge. Heat curing of lime oil has potential to be used to enhance the antifungal safety of sedge products. © 2013 The Society for Applied Microbiology.

  18. Proteomics analysis of alfalfa response to heat stress.

    Directory of Open Access Journals (Sweden)

    Weimin Li

    Full Text Available The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin seedlings were exposed to 25 °C (control and 40 °C (heat stress in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE, and differentially expressed protein spots were identified by mass spectrometry (MS. Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.

  19. Growth performance, duodenal morphology and the caecal microbial population in female broiler chickens fed glycine-fortified low protein diets under heat stress conditions.

    Science.gov (United States)

    Awad, E A; Idrus, Z; Soleimani Farjam, A; Bello, A U; Jahromi, M F

    2018-03-09

    1. This study was undertaken to examine the effect of feeding glycine (Gly)-fortified low protein (LP) diets on the growth performance, duodenal morphology and caecal microbial populations of broiler chickens raised under unheated, cyclic or constant heat stress environmental conditions. 2. From d 1 to 21 (starter phase), an equivalent number of birds were fed either a normal protein (NP) diet or a LP diet fortified with Gly. From d 22 to 42 (grower phase), an equivalent number of birds from each starter diet were distributed to one of the following dietary groups: (i) an NP diet during the starter and grower phases (NPNP), (ii) an NP diet during the starter phase and a LP diet during the grower phase (NPLP), (iii) an LP diet during the starter phase and an NP diet during the grower phase (LPNP) or (iv) LP diets during both phases (LPLP). 3. Commencing from d 22, an equivalent number of birds from each dietary group were exposed to (i) 23 ± 1°C throughout (unheated), (ii) 34 ± 1°C for 7 h each day from 10:00 to 17:00 (cyclic heat) or (iii) 34 ± 1°C throughout (constant heat). 4. Feeding the LP diet during the starter phase resulted in feed intake (FI), weight gain (WG), feed conversion ratios (FCR) and energy efficiency ratios (EER) similar to those for the NP diet. The birds fed the LP diet had a significantly higher protein efficiency ratio (PER) compared with the birds fed the NP diet. 5. During the grower phase, there were significant diet × temperature interactions for F, WG, FCR, PER, EER, villus height, crypt depth and caecal Clostridia. The birds fed the NPLP and LPLP diets had lower FI, WG and EER, higher FCR, shorter villus height and crypt depth and higher caecal Clostridia compared with the birds fed LPNP and NPNP diets under constant heat stress. However, feeding birds the NPLP and LPLP diets resulted in FI, WG, EER, FCR, morphology parameters and caecal Clostridia equivalent to the birds fed LPNP and NPNP diets, as well as improved PER

  20. Heat transport in McMurdo Sound first-year fast ice

    Science.gov (United States)

    Trodahl, H. J.; McGuinness, M. J.; Langhorne, P. J.; Collins, K.; Pantoja, A. E.; Smith, I. J.; Haskell, T. G.

    2000-05-01

    We have monitored the temperature field within first-year sea ice in McMurdo Sound over two winter seasons, with sufficient resolution to determine the thermal conductivity from the thermal waves propagating down through the ice. Data reduction has been accomplished by direct reference to energy conservation, relating the rate of change of the internal energy density to the divergence of the heat current density. Use of this procedure, rather than the wave attenuation predicted by the thermal diffusion equation, avoids difficulties arising from a strongly temperature dependent thermal diffusivity. The thermal conductivity is an input parameter for ice growth and climate models, and the values commonly used in the models are predicted to depend on temperature, salinity, and the volume fraction of air. The present measurements were performed at depths in the ice where the air volume is small and the salinity is nearly constant, and they permit the determination of the absolute magnitude of the thermal conductivity and its temperature dependence. The weak temperature dependence is similar to that predicted by the models in the literature, but the magnitude is smaller by ˜10% than the predicted value most commonly used in climate and sea ice models. In the first season we find an additional scatter in the results at driving temperature gradients larger than ˜10-15 °C/m. We suggest that the scatter arises from a nonlinear contribution to the heat current, possibly associated with the onset of convective motion in brine inclusions. Episodic convective events are also observed. We have further determined the growth rate of the ice and compared it with the rate explained by the heat flux from the ice-water interface. The data show a sudden rise of growth rate, without a rise in heat flux through the ice, which coincides in time and depth with the appearance of platelet ice. Finally, we discuss the observation of radiative solar heating at depth in the ice and

  1. A review of dryout heat fluxes and coolability of particle beds. APRI 4, Stage 2 Report

    International Nuclear Information System (INIS)

    Lindholm, Ilona

    2002-04-01

    were studied. Significant amount of data with prototypic material tests exists. All of the tests show significant fragmentation in case of deep subcooled pool. An additional observation is that no energetic melt coolant interaction (steam explosion) has been reported for prototypic materials. A set of most relevant data for reactor applications have been chosen. Based on this, a general particle size distribution has been constructed. The average particle size obtained by this way was about 3.5 mm. Information from fragmentation and dryout tests and the Lipinski 0-D correlation have been utilised to assess the debris bed coolability for the Olkiluoto severe accident scenario. The calculation shows that for well-mixed beds with 3.5 mm particles the dryout heat flux would be close to 1 MW/m 2 , well above the estimated heat flux due to decay heat. Stratification of finer particles on top of the bed due to e.g. a steam explosion would reduce the dryout heat flux to 50-200 kW/m 2 . This would be below heat fluxes produced by decay heat in Nordic BWRs. The key uncertainty considering particle bed coolability is due to the particle size distribution and stratification. If the possibility of a thick fine particle layer on top of the bed can be ruled out, the particulate debris bed in Nordic BWRs will be coolable. A rough estimate of melt pool coolability in Nordic BWRs has also been conducted. The MACE and COTELS experimental data have been summarised. Based on the data, the melt pools in the pedestal are slowly coolable. The concrete erosion does not threaten the containment failure margins, except maybe at Forsmark 1 and 2 units. Release of non-condensable gases during MCCI may cause an earlier start of filtered venting in Olkiluoto, Forsmark and Oskarshamn 3 plants

  2. Effects of hyperthermia on growth kinetics of Chinese hamster ovarian carcinoma cells

    International Nuclear Information System (INIS)

    Leeper, D.B.; Bobyock, S.B.

    1987-01-01

    The effects of hyperthermia on growth rate, cell volume, and density at plateau phase were studied in OvCa cells in monolayer culture in McCoy's 5a + 10% FCS. At 37 0 C, T/sub G/=9.3 hr, cell density at plateau was 32 x 10/sup 4//cm/sup 2/, and mean cell volume decreased from 1200 μ/sup 3/ at the onset of exponential growth to 850 μ/sup 3/ in plateau phase. Cells were acutely heated for 60' at 43 0 ,30' at 44 0 , or 15' at 45 0 (S.F.=20%) and incubated at 37 0 ; or were chronically heated for up to 80 hr at 39-42 0 . Acute heating at 43-45 0 delayed cell division for appx 13 hr after which growth resumed with a T/sub G/=18 hr. Incubation at 39-40 0 had no effect on T/sub G/, but temperatures of 40.5-42 0 increased T/sub G/ at ΔH=176 kcal/mole. Increasing incubation temperature decreased cell density at plateau phase and altered cell volume kinetics. Cell density in plateau phase was 20 x 10/sup 4//cm/sup 2/ at 39 0 , 13 x 10/sup 4//cm/sup 2/ at 40 0 , 5x10/sup 4//cm/sup 2/ at 41 0 . Growth was greatly reduced at 42 0 (T/sub G/=55 hr) and doubling did not occur before onset of cell lysis. The decrease in cell volume with growth of the culture was unaffected at 39 0 . However, at temperatures ≥40 0 cell volume transiently increase, and the rate of decrease in volume that normally occurred with growth at 37-39 0 was less such that at 41 0 there was no decrease in volume at all before cells entered plateau phase. The authors' hypothesis is that the effects of heat on growth kinetics are related to alterations in rates of protein synthesis. This is currently being tested

  3. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  4. Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W. M., E-mail: solomon@fusion.gat.com; Bortolon, A.; Grierson, B. A.; Nazikian, R.; Poli, F. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Snyder, P. B.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Leonard, A. W.; Meneghini, O.; Osborne, T. H.; Petty, C. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Loarte, A. [ITER Organization, Route de Vinon-sur-Verdon - CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2016-05-15

    A new high pedestal regime (“Super H-mode”) has been predicted and accessed on DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. While elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER can benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. Similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.

  5. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....... that transferrin is the only obligatory factor whereas growth hormone, epidermal growth factor, fibroblast growth factor, and TRH had modulating effects. A heat-labile heparin binding serum factor which stimulated thymidine incorporation but not cell proliferation was demonstrated in human serum. Measurements...

  6. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    Science.gov (United States)

    Jespersen, David; Belanger, Faith C; Huang, Bingru

    2017-01-01

    Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L.) x creeping bentgrass (Agrostis stolonifera L.) hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease), antioxidant defense (catalase and glutathione-S-transferase), energy metabolism (glyceraldehyde-3-phosphate dehydrogenase), cell expansion (expansin), and stress protection (heat shock proteins HSP26, HSP70, and HSP101). Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  7. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    Directory of Open Access Journals (Sweden)

    David Jespersen

    Full Text Available Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L. x creeping bentgrass (Agrostis stolonifera L. hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease, antioxidant defense (catalase and glutathione-S-transferase, energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, cell expansion (expansin, and stress protection (heat shock proteins HSP26, HSP70, and HSP101. Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  8. Comparison of two solution ways of district heating control: Using analysis methods, using artificial intelligence methods

    Energy Technology Data Exchange (ETDEWEB)

    Balate, J.; Sysala, T. [Technical Univ., Zlin (Czech Republic). Dept. of Automation and Control Technology

    1997-12-31

    The District Heating Systems - DHS (Centralized Heat Supply Systems - CHSS) are being developed in large cities in accordance with their growth. The systems are formed by enlarging networks of heat distribution to consumers and at the same time they interconnect the heat sources gradually built. The heat is distributed to the consumers through the circular networks, that are supplied by several cooperating heat sources, that means by power and heating plants and heating plants. The complicated process of heat production technology and supply requires the system approach when solving the concept of automatized control. The paper deals with comparison of the solution way using the analysis methods and using the artificial intelligence methods. (orig.)

  9. Natural gas based infrared heating i greenhouses. Phase II. System optimization; Naturgasbaserad infravaerme i vaexthus. Fas II. Systemoptimering

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, Mikael [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering; Schuessler, Hartmut K. [Swedish Univ. of Agricultural Sciences, Alnarp (Sweden); Ljungberg, Sven-Aake [Hoegskolan i Gaevle (Sweden). Avdelningen byggnadskvalitet

    2004-01-01

    The energy use is high in greenhouses and the cost of energy is a substantial part of the plant production cost. Infrared heating (IR) has been shown to decrease the heating demand in industrial facilities and similar buildings. IR was studied with the same purpose for greenhouses. Special emphasis has also been put on the plant growth and quality. Temperature measurements showed a slightly more than 10% decrease in net heating demand compared to the reference houses in the same facility. A saving of 10-15% should be possible with some improvements. Temperature measurements at a few selected points in the infrared heated greenhouse and thermography showed differences. Repeated thermography during similar radiation conditions showed that the production tables in the infrared heated house had differences in radiation temperature and distribution caused by inhomogenous radiation from the radiating tubes. These radiation variations cause differences in in conditions and growth for cuttings and plants in later stage of growth. The thermography study also indicate that the humidity is an important factor for redistributing the radiation and ensure an optimal micro climate when infrared heaters are used in greenhouses. These differences can be reduced if the greenhouse floor layout allows radiating tubes to be located in order to make adjacent radiation fields partly overlapping. Also, burner input, excess air ratio and radiation tube and reflector design are influential for the performance. Good design criteria are discussed. Careful studies of the root development also showed differences caused by the plant location with regard to the heating tubes. The differences were reduced after reporting and further growth. One cultivation even turned out to be more compact and thus of higher quality when infrared heating was used.

  10. Welding metallurgy of SA508 Cl II heat affected zones

    International Nuclear Information System (INIS)

    Alberry, P.J.; Lambert, J.A.

    1982-01-01

    A weld thermal simulation technique has been used to investigate the metallurgical response of SA508 class II material during welding. Dynamic Ac 1 and Ac 3 data, grain growth kinetics and continuous cooling transformation diagrams have been measured. The heat affected zone structure, grain size and precipitate distribution are described in terms of the weld thermal cycle experienced and compared with a weld heat affected zone. The as-welded hardness and tempering response of a range of possible heat affected zone structures has been established. The tempering effects of various weld thermal cycles are calculated from isothermal tempering data. The likely tempering effects during welding are estimated and compared with the tempering of actual welds during welding and in subsequent conventional post weld heat treatment. 16 figures, 6 tables

  11. An overview on the small heat shock proteins

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... whose expression is increase when cells are exposed to elevated ... shock due to much slower degradation of the protein, .... Plant sHSPs are all encoded by nuclear genes and are .... genesis, germination, pollen growth and fruit maturation). ... Production of high levels of heat shock proteins can also.

  12. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  13. effects of naked-neck and frizzle genes on growth performance and ...

    African Journals Online (AJOL)

    User

    cockerels (birds) do not reach their full genetic potential in terms of growth, body weight or carcass yields because their feathers hinder the dissipation of their excessively produced inter- nal heat. It is against this background that the use of major heat-tolerant genes like naked- neck and frizzle is advocated (Horst and.

  14. Determination of regional heat fluxes from the growth of the mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E. [Risoe National Lab., Roskilde (Denmark); Batchvarova, E. [National Inst. of Meteorology and Hydrology, Sofia (Bulgaria)

    1997-10-01

    The distribution of surface sensible heat flux is a critical factor in producing and modifying the mesoscale atmospheric flows, turbulence and evaporation. Parameterizations that assume homogeneous land characteristics are inappropriate to represent the spatial variability often found in nature. One possibility to overcome this problem is to increase the resolution of the model grid which demands unrealistic computing resources and data for model initialization. Area averaged fluxes can be obtained from aircraft measurements. It is essential that the flights are performed at a height where the individual surface features are not felt. A large number of flights and appropriate pattern to meet the task are needed in order to achieve a fair statistics. The mixed layer grows in response to the regional turbulent fluxes including the aggregation and small scale processes. The region of influence in upwind direction is typically 20 times the height of the mixed layer for convective and 100 times the height of the mixed layer for atmospheric near neutral conditions. In this study we determine the regional integrated sensible heat flux from information on the evolution of the mixed layer over the area. The required information to use the method can be derived from wind speed and temperature profiles obtained by radio-soundings when performed frequently enough to provide a reasonably detailed structure of the development of the mixed-layer. The method is applied to estimate the regional heat flux over the NOPEX experimental area for three days during the campaign in 1994. (au)

  15. Riboflavin protects mice against liposaccharide-induced shock through expression of heat shock protein 25

    Science.gov (United States)

    Riboflavin (vitamin B2) is a water-soluble vitamin essential for normal cellular functions, growth and development. The study was aimed at investigating the effects of vitamin B2 on the survival rate, and expressions of tissue heat shock protein 25 (HSP25) and heat shock factor 1 (HSF1) in mice und...

  16. Microscopic examination of crack growth in a pressure vessel steel

    International Nuclear Information System (INIS)

    Isacsson, M.; Narstroem, T.

    1997-01-01

    A fairly systematic microscopic study concerning ductile and ductile-brittle crack growth in the A508B pressure vessel steel has been performed. The main method of investigation was to subject fracture mechanics specimens (sub-sized three point bend specimens) to predetermined load levels corresponding to different amounts of ductile crack extension. The specimens were then cut perpendicularly to the plane of the crack and the area in front of the crack was examined in a SEM. The object of these examinations was to determine if newly encountered computational results could be correlated to crack extension characteristics and to study whether the mechanism of ductile growth was of the void growth type or of the fast shear mechanism. This is important for further numerical modelling of the process. Both the original material and a specially heat treated piece were investigated. The heat treatment was performed in order to raise the transition temperature to about 60 deg C with the object to provide a more convenient testing situation. Charpy V tests were performed for the specially heat treated material to obtain the temperature dependence of the toughness. This was also studied by performing fracture toughness determination on the same type of specimens as were used for the microscopic study. The heat treatment used fulfilled the above purpose and the microscopic studies provide a good understanding of the micro mechanisms operating in the ductile fracture process for this material

  17. Microscopic examination of crack growth in a pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Isacsson, M.; Narstroem, T. [Royal Inst. of Tech., Stockholm (Sweden)

    1997-01-01

    A fairly systematic microscopic study concerning ductile and ductile-brittle crack growth in the A508B pressure vessel steel has been performed. The main method of investigation was to subject fracture mechanics specimens (sub-sized three point bend specimens) to predetermined load levels corresponding to different amounts of ductile crack extension. The specimens were then cut perpendicularly to the plane of the crack and the area in front of the crack was examined in a SEM. The object of these examinations was to determine if newly encountered computational results could be correlated to crack extension characteristics and to study whether the mechanism of ductile growth was of the void growth type or of the fast shear mechanism. This is important for further numerical modelling of the process. Both the original material and a specially heat treated piece were investigated. The heat treatment was performed in order to raise the transition temperature to about 60 deg C with the object to provide a more convenient testing situation. Charpy V tests were performed for the specially heat treated material to obtain the temperature dependence of the toughness. This was also studied by performing fracture toughness determination on the same type of specimens as were used for the microscopic study. The heat treatment used fulfilled the above purpose and the microscopic studies provide a good understanding of the micro mechanisms operating in the ductile fracture process for this material. 19 refs, 8 figs, 3 tabs.

  18. Proceedings of the 33rd national heat transfer conference NHTC'99

    International Nuclear Information System (INIS)

    Jensen, M.K.; Di Marzo, M.

    1999-01-01

    The papers in this conference were divided into the following sections: Radiation Heat Transfer in Fires; Computational Fluid Dynamics Methods in Two-Phase Flow; Heat Transfer in Microchannels; Thin Film Heat Transfer; Thermal Design of Electronics; Enhanced Heat Transfer I; Porous Media Convection; Contact Resistance Heat Transfer; Materials Processing in Solidification and Crystal Growth; Fundamentals of Combustion; Challenging Modeling Aspects of Radiative Transfer; Fundamentals of Microscale Transport; Laser Processing and Diagnostics for Manufacturing and Materials Processing; Experimental Studies of Multiphase Flow; Enhanced Heat Transfer II; Heat and Mass Transfer in Porous Media; Heat Transfer in Turbomachinery and Gas Turbine Systems; Conduction Heat Transfer; General Papers; Open Forum on Combustion; Combustion and Instrumentation and Diagnostics I; Radiative Heat Transfer and Interactions in Participating and Nonparticipating Media; Applications of Computational Heat Transfer; Heat Transfer and Fluid Aspects of Heat Exchangers; Two-Phase Flow and Heat Transfer Phenomena; Fundamentals of Natural and Mixed Convection Heat Transfer I; Fundamental of Natural and Mixed Convection Heat Transfer II; Combustion and Instrumentation and Diagnostics II; Computational Methods for Multidimensional Radiative Transfer; Process Heat Transfer; Advances in Computational Heat and Mass Transfer; Numerical Methods for Porous Media; Transport Phenomena in Manufacturing and Materials Processing; Practical Combustion; Melting and Solidification Heat Transfer; Transients in Dynamics of Two-Phase Flow; Basic Aspects of Two-Phase Flow; Turbulent Heat Transfer; Convective Heat Transfer in Electronics; Thermal Problems in Radioactive and Mixed Waste Management; and Transport Phenomena in Oscillatory Flows. Separate abstracts were prepared for most papers in this conference

  19. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    Energy Technology Data Exchange (ETDEWEB)

    Savi, Tadeja, E-mail: tsavi@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Dal Borgo, Anna, E-mail: dalborgo.anna@gmail.com [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Love, Veronica L., E-mail: vllove1@sheffield.ac.uk [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Department of Landscape, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN (United Kingdom); Andri, Sergio, E-mail: s.andri@seic.it [Harpo seic verdepensile, Via Torino 34, 34123 Trieste (Italy); Tretiach, Mauro, E-mail: tretiach@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Nardini, Andrea, E-mail: nardini@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy)

    2016-10-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13 cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. - Highlights: • The use of hardy shrub species for roof greening should be increased. • We monitored water status of 11 shrub species growing on shallow green roofs. • Species heat and drought tolerance, growth, and survival were studied. • High substrate temperature significantly affected plant survival. • Root resistance to heat could be used as trait for species selection for green roofs.

  20. Extended stability of intravenous 0.9% sodium chloride solution after prolonged heating or cooling.

    Science.gov (United States)

    Puertos, Enrique

    2014-03-01

    The primary objective of this study was to evaluate the stability and sterility of an intravenous 0.9% sodium chloride solution that had been cooled or heated for an extended period of time. Fifteen sterile 1 L bags of 0.9% sodium chloride solution were randomly selected for this experiment. Five bags were refrigerated at an average temperature of 5.2°C, 5 bags were heated at an average temperature of 39.2°C, and 5 bags were stored at an average room temperature of 21.8°C to serve as controls. All samples were protected from light and stored for a period of 199 days prior to being assayed and analyzed for microbial and fungal growth. There was no clinically significant difference in the mean sodium values between the refrigerated samples, the heated samples, and the control group. There were no signs of microbial or fungal growth for the duration of the study. A sterile intravenous solution of 0.9% sodium chloride that was heated or cooled remained stable and showed no signs of microbial or fungal growth for a period of 199 days. This finding will allow hospitals and emergency medical technicians to significantly extend the expiration date assigned to these fluids and therefore obviate the need to change out these fluids every 28 days as recommended by the manufacturer.

  1. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  2. Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage.

    Science.gov (United States)

    Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tej Kumar; Satheesh, Viswanathan; Kohli, Deshika; Basavarajappa, Santosh Halasabala; Chellapilla, Bharadwaj; Kumar, Jitendra; Jain, Pradeep Kumar; Srinivasan, R

    2018-05-01

    The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.

  3. Observer based Model Identification of Heat Pumps in a Smart Grid

    DEFF Research Database (Denmark)

    Andersen, Palle; Pedersen, Tom S.; Nielsen, Kirsten M.

    2012-01-01

    The extensive growth of installed wind energy plants in Denmark leads to increasing balancing problems in the power grid due to the nature of wind fields and variations in consumption. One way to overcome these problems is to move consumption to times where wind power otherwise cause overproduction....... A part of a solution can be to take advantage of floor heat capacity in single-family houses using heat pumps.This large heat capacity makes it possible to move consumption without compromising the comfort of house residents. In a Danish research project a virtual power plant using centralized control...... of a large number of houses with heat pumps is established. In order to make the control algorithm a vital part is a dynamic model of each house. The model predicts the house indoor temperature when heat pump power and outdoor temperature is known. The model must be able to describe a large variety of heat...

  4. Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-04-01

    The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

  5. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  6. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  7. Performance of Radiant Heating Systems of Low-Energy Buildings

    Science.gov (United States)

    Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel

    2017-10-01

    After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.

  8. Crack growth analysis in a weld-heat-affected zone using S-version FEM

    International Nuclear Information System (INIS)

    Kikuchi, Masanori; Wada, Yoshitaka; Shimizu, Yuto; Li, Yulong

    2012-01-01

    The objective of this study is the prediction of crack propagation under thermal, residual stress fields using S-Version FEM (S-FEM). By using the S-FEM technique, only the local mesh should be re-meshed and it becomes easy to simulate crack growth. By combining with an auto-meshing technique, the local mesh is re-meshed automatically, and a curved crack path is modeled easily. Virtual crack closure integral method (VCCM) is used to evaluate energy release rate at the crack tip. For crack growth analyses, crack growth rate and growth direction are determined using criteria for mixed mode loading condition. In order to confirm the validity of this analysis, some comparisons with previously reported analyses were done, and good agreement obtained. In this study, residual stress data were provided by JAEA, Japan Atomic Energy Agency, based on their numerical simulation. Stress corrosion crack (SCC) growth analyses in a pipe are conducted in two-dimensional and three-dimensional fields. Two cases, for an axi-symmetric distribution of residual stress in the pipe wall and a non-axisymmetric one are assumed. Effects of residual stress distribution patterns on SCC cracking are evaluated and discussed.

  9. Amplification of heat extremes by plant CO2 physiological forcing.

    Science.gov (United States)

    Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S

    2018-03-15

    Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.

  10. Helium solubility and bubble growth in metals under high pressure

    International Nuclear Information System (INIS)

    Laakmann, J.

    1985-07-01

    Helium solubility and bubble growth in metals under high pressure polycrystals and single crystals of gold were heated in helium at temperatures between 475 K and 1250 K in a pressure regime of 200 to 2700 bar to measure the solubility of helium in gold. After quenching to room temperature the helium content, measured by mass spectrometry, showed the following properties: 1) A linear dependence of the He solubility on pressure. 2) Thinning of the specimen reduces the helium content by a factor 10 to 100 but does not change the linear pressure dependence. 3) The thermal release of He from thinned polycrystals and single crystals occurs mainly in a single peak at 500 K. 4) The He concentration of the thinned single crystals was lower by a factor of 10 to 50 than that of the thinned polycrystals. 5) The He solubility in single crystals can be described by an enthalpy of solution Hsub(s)sup(f) = 0.85 +- 0.7 eV and a non-configurational entropy of Ssub(s)sup(f) between 0 k and 1 k (k: Boltzmann-constant). In order to measure the pressure dependence of helium bubble growth in nickel polycrystal Ni-foils were α-implanted to a helium content of 130 appm. The evaluation of the size distribution of the helium bubbles after heat treatments shows 1) The helium content of the observable bubbles - assumed to be in equilibrium - equals the amount of helium implanted into the specimen. 2) The activation energy for the growth of helium bubbles is 1.25 +- 0.3 eV. The comparison of specimen which had been heated at low pressures up to 10 bar with others heated at 2500-2700 bar does not show an unequivocal pressure dependence for helium bubble growth. (orig./IHOE) [de

  11. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  12. Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris.

    Science.gov (United States)

    Jiaojiao, Zhang; Fen, Wang; Kuanbo, Liu; Qing, Liu; Ying, Yang; Caihong, Dong

    2018-05-01

    Cordyceps militaris is a highly valued edible and medicinal fungus due to its production of various metabolites, including adenosine, cordycepin, N 6 -(2-hydroxyethyl)-adenosine, and carotenoids. The contents of these metabolites are indicative of the quality of commercially available fruit body of this fungus. In this work, the effects of environmental abiotic factors, including heat and light stresses, on the fruit body growth and metabolite production in C. militaris were evaluated during the late growth stage. The optimal growth temperature of C. militaris was 20 °C. It was found that a heat stress of 25 °C for 5-20 days during the late growth stage significantly promoted cordycepin and carotenoid production without affecting the biological efficiency. Light stress at 6000 lx for 5-20 days during the late growth stage significantly promoted cordycepin production but decreased the carotenoid content. Both heat and light stresses promoted N 6 -(2-hydroxyethyl)-adenosine production. In addition, gene expression analysis showed that there were simultaneous increases in the expression of genes encoding a metal-dependent phosphohydrolase (CCM_04437) and ATP phosphoribosyltransferase (CCM_04438) that are involved in the cordycepin biosynthesis pathway, which was consistent with the accumulation of cordycepin during heat stress for 5-20 days. A positive weak correlation between the cordycepin and adenosine contents was observed with a Pearson correlation coefficient of 0.338 (P fruit body of C. militaris and contribute to further elucidation of the effects of abiotic stress on metabolite accumulation in fungi.

  13. Growth and phase transformations of Ir on Ge(111)

    Science.gov (United States)

    Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.

    2017-12-01

    The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.

  14. Experimental and Numerical Investigation of Forced Convection Heat Transfer in Heat Sink with Rectangular Plates at Varying Inclinations on Vertical Base

    Science.gov (United States)

    Patil, Harshal Bhauso; Dingare, Sunil Vishnu

    2018-03-01

    Heat exchange upgrade is a vital territory of research area. Utilization of reasonable systems can bring about noteworthy specialized points of interest coming about reserve funds of cost. Rectangular plates are viewed as best balance arrangement utilized for heat exchange improvement. This gives an enlargement strategy to heat exchange with beginning of limit layer and vortex development. To assess and look at the rate of heat exchange enhancement by rectangular plate fins with differing inclinations (0°-30°-60°), shifting Re and heat supply under forced convection are the principle destinations of this study. The study is done by fluctuating introductions of fins with various inclinations, input heat supply and Re under forced convection. The coefficient of heat transfer increments observed with the expansion in air speed for all the examined designs. The coefficient of the heat transfer is discovered higher at the edge of introduction of fins at 30° for inline arrangement and 0° for staggered arrangement. Looking at both the arrangements, it is discovered that the heat transfer coefficient in 0° fin staggered arrangement is about 17% higher than 30° inline arrangement and 76% higher than the vertical plate fin. For plate fin heat sink, boundary layer formation and growth results in decrease of the coefficient of heat transfer in forced convection. This issue is overcome by accommodating some rectangular fins on the plate fin. It brings about increment of heat transfer coefficient of the RPFHS under the states of trial factors. As indicated by past research, it is discovered that examination of the plate fin heat sink with various sorts of fins for horizontal orientation is done yet but this investigation expects to discover the upgrade of transfer coefficient of plate fin heat sink for its vertical position with rectangular plates at different inclinations under the shifting scopes of heat input supply, fin arrangements and Reynolds number (Re).

  15. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    Science.gov (United States)

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  16. Future heat supply of our cities. Heating by waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  17. Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation.

    Science.gov (United States)

    Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R

    2016-01-01

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.

  18. Study of pore growth in glassy carbon using small angle x-ray scattering

    International Nuclear Information System (INIS)

    Hoyt, J.

    1982-07-01

    Small-angle x-ray scattering was used to study the average pore size in glass-like carbon as a function of both heat-treatment time and heat-treatment temperature. A pore-growth model based on graphitization processes is presented. The simple mechanism shows that the change in the average radius of gyration with time is related to the total number of pores as a function of time, which in turn depends on the irreversible thermal-expansion phenomenon. The results of this study are inconsistent with a vacancy-migration pore-growth mechanism proposed earlier

  19. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  20. Water injection device for reactor container

    International Nuclear Information System (INIS)

    Sakaki, Isao.

    1996-01-01

    A pressure vessel incorporating a reactor core is placed and secured on a pedestal in a dry well of a reactor container. A pedestal water injection line is disposed opened at one end in a pedestal cavity passing through the side wall of the pedestal and led at the other end to the outside of the reactor container. A substitution dry well spray line is connected to a spray header disposed at the upper portion of the dry well. When the pressure vessel should be damaged by a molten reactor core and the molten reactor core should drop to the dry well upon occurrence of an accident, the molten reactor core on the floor of the pedestal is cooled by water injection from the pedestal water injection line. At the same time, the elevation of the pressure and the temperature in the reactor container is suppressed by the water injection of the substitution dry well spray line. This can avoid large scaled release of radioactive materials to the environmental circumference. (I.N.)

  1. Evaluation of Interfacial Heat Transfer Models for Flashing Flow with Two-Fluid CFD

    Directory of Open Access Journals (Sweden)

    Yixiang Liao

    2018-06-01

    Full Text Available The complexity of flashing flows is increased vastly by the interphase heat transfer as well as its coupling with mass and momentum transfers. A reliable heat transfer coefficient is the key in the modelling of such kinds of flows with the two-fluid model. An extensive literature survey on computational modelling of flashing flows has been given in previous work. The present work is aimed at giving a brief review on available theories and correlations for the estimation of interphase heat transfer coefficient, and evaluating them quantitatively based on computational fluid dynamics simulations of bubble growth in superheated liquid. The comparison of predictions for bubble growth rate obtained by using different correlations with the experimental as well as direct numerical simulation data reveals that the performance of the correlations is dependent on the Jakob number and Reynolds number. No generally applicable correlations are available. Both conduction and convection are important in cases of bubble rising and translating in stagnant liquid at high Jakob numbers. The correlations combining the analytical solution for heat diffusion and the theoretical relation for potential flow give the best agreement.

  2. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  3. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  4. Multipurpose nuclear process heat for energy supply in Brazil

    International Nuclear Information System (INIS)

    Hansen, U.; Inden, P.; Oesterwind, D.; Hukai, R.Y.; Pessine, R.T.; Pieroni, R.R.; Visoni, E.

    1978-11-01

    The industrialized nations require 75% of the energy as heat and it is likely that developing countries in the course of industrialization will show a comparable energy consumption structure. The High Temperature Reactor (HTR) allows the utilization of nuclear energy at high temperatures as process heat. In the Federal Republic of Germany (FRG) the development in the relevant technical areas is well advanced and warrants investigation as a matter for transfer to Brazil. In Brazil nuclear process heat finds possible applications in steel making, shale oil extraction, petroleum refining, and in the more distant future coal gasification with distribution networks. Based on growth forecasts for these industries a theoretical potential market of 38-53 GW (th) can be identified. At present nuclear process heat is marginally more expensive than conventional fossil technologies but the anticipated development is expected to add an economic incentive to the emerging necessity of providing a sound energy base in the developing countries. (author)

  5. Ballooning mode stability for self-consistent pressure and current profiles at the H-mode edge

    International Nuclear Information System (INIS)

    Miller, R.L.; Lin-Liu, Y.R.; Osborne, T.H.; Taylor, T.S.

    1997-11-01

    The edge pressure gradient (H-mode pedestal) for computed equilibria in which the current density profile is consistent with the bootstrap current may not be limited by the first regime ballooning limit. The transition to second stability is easier for: higher elongation, intermediate triangularity, larger ratio, pedestal at larger radius, narrower pedestal width, higher q 95 , and lower collisionality

  6. Ultra-large single crystals by abnormal grain growth.

    Science.gov (United States)

    Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke

    2017-08-25

    Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.

  7. Boiling phenomenon and heat transfer in bead-packed porous structure

    International Nuclear Information System (INIS)

    Zhang Xiaojie; ZHu Yanlei; Bai Bofeng; Yan Xiao; Xiao Zejun

    2009-01-01

    A visual study on pool boiling behavior and phase distribution was conducted on the porous structures made of staggered glass beads at atmospheric pressure. The bead-packed structure was heated on the bottom. The investigations were carried out respectively at different glass bead diameters which were 4 mm, 6 mm and 8 mm. The results show that during subcooled boiling, small isolated bubbles are formed on the heated surface and combine into main-bubbles, the dispersion frequency of the main-bubbles is low and the small bubbles scatter in the bead-packed porous structures. At the initial stage of saturated boiling, the bubble growth rate, the volume of main-bubbles and the range of continuous vapor phase increase. The dispersion frequency of main-bubbles increases with the increasing of heat flux. During film boiling, the heated surface is absolutely covered with vapor film and the porous structure is full of liquid. The larger the diameter of beads is, the higher heat flux is needed for the same phenomenon, and the higher maximum value of heat transfer coefficient will be. During the whole saturated boiling, and the heat transfer enhanced firstly and then weakened. Being opposite to that of the diameters of 4 mm and 8 mm, the heat transfer coefficient in the 6 mm-bead-packed porous structure decreases with the increasing of the heat flux. (authors)

  8. Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    OpenAIRE

    Meyer, H.; Eich, T.; Beurskens, M.N.A.; Coda, S.; Hakola, A.; Martin, P.; Adamek, J.; Agostini, M.; Aguiam, D.; Ahn, J.; Aho-Mantila, L.; Akers, R.; Albanese, R.; Aledda, R.; Alessi, E.

    2017-01-01

    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day de...

  9. Bubble growth and detachment between two close surfaces

    International Nuclear Information System (INIS)

    Fath, H.E.S.

    1985-01-01

    Nucleate boiling is an efficient heat transfer process both as a mean of achieving high heat flux at moderate surface temperature and as a mean of generating steam. The ability to predict nucleate boiling heat flux depends on many interconnected factors such as the number of active sites, the frequency of bubble emission at these sites, and the heat transfer associated with a single bubble. Therefore, the determination of the bubble shape, growth, detachment diameter, and detachment time plays an important role in understanding the boiling mechanisms and in predicting the heat transfer rates. Although much research have been carried-out for the study of free bubble dynamics, the analysis of such problem in a narrow gap-between two close and parallel surfaces (as the gaps between steam generator tubes and tube sheet) has not been attempted, so far as the author is aware. This paper represents an attempt to shed some light on this complex problem. (author)

  10. Particle simulation study of electron heating by counter-streaming ion beams ahead of supernova remnant shocks

    International Nuclear Information System (INIS)

    Dieckmann, M E; Sarri, G; Kourakis, I; Borghesi, M; Bret, A; Perez Alvaro, E

    2012-01-01

    The growth and saturation of Buneman-type instabilities is examined with a particle-in-cell (PIC) simulation for parameters that are representative for the foreshock region of fast supernova remnant shocks. A dense ion beam and the electrons correspond to the upstream plasma and a fast ion beam to the shock-reflected ions. The purpose of the 2D simulation is to identify the nonlinear saturation mechanisms, the electron heating and potential secondary instabilities that arise from anisotropic electron heating and result in the growth of magnetic fields. We confirm that the instabilities between both ion beams and the electrons saturate by the formation of phase space holes by the beam-aligned modes. The slower oblique modes accelerate some electrons, but they cannot heat up the electrons significantly before they are trapped by the faster beam-aligned modes. Two circular electron velocity distributions develop, which are centred around the velocity of each ion beam. They develop due to the scattering of the electrons by the electrostatic wave potentials. The growth of magnetic fields is observed, but their amplitude remains low. (paper)

  11. Influencing factors of GaN growth uniformity through orthogonal test analysis

    International Nuclear Information System (INIS)

    Zhang, Zhi; Fang, Haisheng; Yan, Han; Jiang, Zhimin; Zheng, Jiang; Gan, Zhiyin

    2015-01-01

    Gallium nitride (GaN) is widely used in light-emitting diode (LED) devices due to its wide bandgap and excellently optoelectronic performance. The efficiency and lifetime of LEDs are critically determined by quality of GaN, for example, growth uniformity. Metal-organic chemical vapor deposition (MOCVD) is the most popular technique to grow high-quality GaN epitaxial layers. Growth uniformity is influenced by fluid flow, heat transfer and chemical reactions in the reactor. In this paper, the growth process in a close-coupled showerhead (CCS) MOCVD reactor is investigated based on 3D numerical simulation. Influences of the operating parameters on the growth uniformity are presented. To evaluate the role of the parameters systematically and efficiently on the growth uniformity, orthogonal test method is introduced. The results reveal that the growth rate and uniformity are strongly related to the total gas flow rate, the showerhead height and the inlet gas temperature, but are weakly affected by the isothermal wall temperature, the rotating speed and the susceptor temperature under the ranges of the current study. The optimized combination of the parameters is further proposed as a useful reference for obtaining the LED layers with a balance between the growth rate and the growth uniformity in industry. - Highlights: • Fluid flow, heat transfer, chemical reactions are calculated for a 3D CCS reactor. • The effects of process parameters on growth rate and uniformity are investigated. • Orthogonal test method is introduced to analyze the effect of multi-factors. • Optimal combinations can be obtained for the best growth rate and uniformity.

  12. Renewable energy in the heating sector in Austria with particular reference to the region of Upper Austria

    International Nuclear Information System (INIS)

    Kranzl, Lukas; Kalt, Gerald; Müller, Andreas; Hummel, Marcus; Egger, Christiane; Öhlinger, Christine; Dell, Gerhard

    2013-01-01

    The heating sector has been neglected in energy policies for quite some time, especially on the European level. Only recently, with the implementation of the European directive 2009/28/EC the sector has gained higher attention. The objective of this paper is to provide an overview of the heat market in Austria and of the current status and future prospects of renewable energy in the heat sector (RES-H) up to 2030. Despite the growing energy demand, the share of renewable energy in the total energy demand for space heating and hot water increased from about 20% in 1970 to about 34% in 2008. This is mainly due to ambitious RES-H support instruments and regional policy targets. For example, the government of the region of Upper Austria has implemented a target of 100% RES-H share in the space heating and hot water sector until the year 2030. However, the National Renewable Energy Action Plan for 2020 foresees only moderate growth rates for RES-H compared to recent market growth and scenarios in literature. Due to the ambitious targets and support schemes of regional governments it seems likely that RES-H deployment could growstronger than stated in the action plan. - Highlights: ► Overview on Austrian heat sector and RES-H development. ► Growing RES-H market mainly due to regional promotion schemes. ► Austrian NREAP foresees only moderate growth of RES-H up to 2020. ► Targets and policies on the regional level might lead to stronger RES-H deployment

  13. Monitoring of a heat pump to energy recovery and process temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Kaneps, M

    1986-03-01

    This reports on the development and implementation of a heat pump monitoring program detailing the application and adaptation of standard commercial heat pump equipment for the extraction and use of themal energy from ocean source seawater along Canada's Atlantic Coast. The specific application was a lobster holding facility owned by Clearwater Lobsters Limited of Halifax, Nova Scotia. Examination of the daata indicated the heat pump system could extract and use thermal energy at or near initial design conditions. The lobsters were able to be held at consistently lower temperatures which improved product quality and reduced shrinkage. Influx of seawater debris, marine growth, and dryland pound heat gain were indentified as the only major problems. The information gathered from the monitoring study indicated that heat pump systems can be adapted to extract and utilize thermal energy from ocean source seawater. 50 figs., 123 tabs.

  14. Behaviors of impurity in ITER and DEMOs using BALDUR integrated predictive modeling code

    International Nuclear Information System (INIS)

    Onjun, Thawatchai; Buangam, Wannapa; Wisitsorasak, Apiwat

    2015-01-01

    The behaviors of impurity are investigated using self-consistent modeling of 1.5D BALDUR integrated predictive modeling code, in which theory-based models are used for both core and edge region. In these simulations, a combination of NCLASS neoclassical transport and Multi-mode (MMM95) anomalous transport model is used to compute a core transport. The boundary is taken to be at the top of the pedestal, where the pedestal values are described using a theory-based pedestal model. This pedestal temperature model is based on a combination of magnetic and flow shear stabilization pedestal width scaling and an infinite-n ballooning pressure gradient model. The time evolution of plasma current, temperature and density profiles is carried out for ITER and DEMOs plasmas. As a result, the impurity behaviors such as impurity accumulation and impurity transport can be investigated. (author)

  15. Aerodynamic heating in transitional hypersonic boundary layers: Role of second-mode instability

    Science.gov (United States)

    Zhu, Yiding; Chen, Xi; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2018-01-01

    The evolution of second-mode instabilities in hypersonic boundary layers and its effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using fast-response pressure sensors, fluorescent temperature-sensitive paint, and particle image velocimetry. Calculations based on parabolic stability equations and direct numerical simulations are also performed. It is found that second-mode waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As the second-mode waves decay downstream, the dilatation-induced aerodynamic heating decreases while its shear-induced counterpart keeps growing. The latter brings about a second growth of the surface temperature when transition is completed.

  16. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  17. Targeting the maximum heat recovery for systems with heat losses and heat gains

    International Nuclear Information System (INIS)

    Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

    2014-01-01

    Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

  18. Heating networks and domestic central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  19. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow

    International Nuclear Information System (INIS)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs

  20. Renewable heating: Perspectives and the impact of policy instruments

    International Nuclear Information System (INIS)

    Kranzl, Lukas; Hummel, Marcus; Müller, Andreas; Steinbach, Jan

    2013-01-01

    In the light of the EU directive for renewable energy (2009/28/EC) this paper deals with the question how various policy instruments could impact the development of renewable heating technologies. The paper applies the simulation model Invert/EE-Lab for the building related heat demand in selected European countries (Austria, Lithuania and United Kingdom). The resulting scenarios up to 2030 are compared to RES-Heat targets from literature, stakeholder consultation processes and the targets in the national renewable energy action plans submitted by EU Member States in 2010. The results demonstrate that use obligations for renewable heating can be effective in achieving RES-Heat market growth. However, in order to attain a balanced technology mix and more ambitious targets, policy packages are required combining use obligations with economic incentives and accompanying measures. Technology specific conclusions are derived. Moreover, conclusions indicate that the action plans are not always consistent with policy measures in place or under discussion. - Highlights: • Modeling of RES-Heat policies in the building sector. • Application of the model Invert/EE-Lab for the cases of AT, LT, UK. • RES-Heat use obligations are effective but should be integrated in policy packages. • The design of use obligations has substantial impact on the RES-H technology mix. • National renewable energy action plans are not always consistent with policies