WorldWideScience

Sample records for heated microelectronics manufacturing

  1. Automatic differentiation for gradient-based optimization of radiatively heated microelectronics manufacturing equipment

    Energy Technology Data Exchange (ETDEWEB)

    Moen, C.D.; Spence, P.A.; Meza, J.C.; Plantenga, T.D.

    1996-12-31

    Automatic differentiation is applied to the optimal design of microelectronic manufacturing equipment. The performance of nonlinear, least-squares optimization methods is compared between numerical and analytical gradient approaches. The optimization calculations are performed by running large finite-element codes in an object-oriented optimization environment. The Adifor automatic differentiation tool is used to generate analytic derivatives for the finite-element codes. The performance results support previous observations that automatic differentiation becomes beneficial as the number of optimization parameters increases. The increase in speed, relative to numerical differences, has a limited value and results are reported for two different analysis codes.

  2. Microelectronics to nanoelectronics materials, devices & manufacturability

    CERN Document Server

    Kaul, Anupama B

    2012-01-01

    Composed of contributions from top experts, Microelectronics to Nanoelectronics: Materials, Devices and Manufacturability offers a detailed overview of important recent scientific and technological developments in the rapidly evolving nanoelectronics arena.Under the editorial guidance and technical expertise of noted materials scientist Anupama B. Kaul of California Institute of Technology's Jet Propulsion Lab, this book captures the ascent of microelectronics into the nanoscale realm. It addresses a wide variety of important scientific and technological issues in nanoelectronics research and

  3. PC floor systems for microelectronics manufacturing buildings

    Science.gov (United States)

    Hong, Kappyo; Lee, Seongsoo; Kwon, Yunhan; Chun, Homin; Cho, Kwangsu; Kim, Sijun

    2010-03-01

    Because a PC(Precast Concrete) system has to follow the transportation rules for transporting PC units and be designed to the specifications of the tools and equipment on site, designing long-span PC systems for microelectronics manufacturing facilities can be troublesome due to complications in transporting, lifting and handling the PC units. To resolve these problems that can occur in long span and heavy weight PC designs, this study proposes two types of long-span PC floor systems that practically use the traditional Gerber beam concept. In the proposed systems, long-span (17.4m) girders or beams are segmented into appropriate lengths using the Gerber system for easy delivery and lifting. Moreover, these systems provide the ability to optimally design massive units by controlling the location of hinge points. On the other hand, because continuous long-span girders or beams are segmented into the Gerber system's hinge points, these systems may generate structural stability problems during construction. Consequently, this study experimentally examines the structural performance of stress transfer mechanism in panel zones and the construction stability of PC units for columns and girders during assembly.

  4. Carbon nanotubes as heat dissipaters in microelectronics

    DEFF Research Database (Denmark)

    Pérez Paz, Alejandro; García-Lastra, Juan María; Markussen, Troels

    2013-01-01

    We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties...... of nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible....

  5. Kovar Micro Heat Pipe Substrates for Microelectronic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David A.; Burchett, Steven N.; Kravitz, Stanley H.; Robino, Charles V.; Schmidt, Carrie; Tigges, Chris P.

    1999-04-01

    We describe the development of a new technology for cooling microelectronics. This report documents the design, fabrication, and prototype testing of micro scale heat pipes embedded in a flat plate substrate or heat spreader. A thermal model tuned to the test results enables us to describe heat transfer in the prototype, as well as evaluate the use of this technology in other applications. The substrate walls are Kovar alloy, which has a coefficient of thermal expansion close to that of microelectronic die. The prototype designs integrating micro heat pipes with Kovar enhance thermal conductivity by more than a factor of two over that of Kovar alone, thus improving the cooling of micro-electronic die.

  6. Reparable, high-density microelectronic module provides effective heat sink

    Science.gov (United States)

    Carlson, K. J.; Maytone, F. F.

    1967-01-01

    Reparable modular system is used for packaging microelectronic flat packs and miniature discrete components. This three-dimensional compartmented structure incorporates etched phosphor bronze sheets and frames with etched wire conductors. It provides an effective heat sink for electric power dissipation in the absence of convective cooling means.

  7. Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.

    Energy Technology Data Exchange (ETDEWEB)

    Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr. (,; .); Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

    2007-07-01

    An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

  8. Rugged microelectronic module package supports circuitry on heat sink

    Science.gov (United States)

    Johnson, A. L.

    1966-01-01

    Rugged module package for thin film hybrid microcircuits incorporated a rigid, thermally conductive support structure, which serves as a heat sink, and a lead wire block in which T-shaped electrical connectors are potted. It protects the circuitry from shock and vibration loads, dissipates internal heat, and simplifies electrical connections between adjacent modules.

  9. Failure analysis concepts for microelectronics technologies and manufacturing of the future

    Science.gov (United States)

    Boit, Christian; Weiland, Rainer; Olbrich, A.; Muehle, U.; Simmnacher, B.

    2001-04-01

    The answer of Failure Analysis (F/A) to the technological innovations in microelectronics in the past was: with a slight evolution (i.e. optical microscope -- SEM -- TEM) we can do it. The innovations around the corner today enforce a paradigm shift in F/A to match the challenges by increasing wafer sizes, decreasing feature sizes and new package concepts. This presentation highlights various aspects of the small feature size time bomb (how TEM becomes mandatory and obsolete synchronously), the completely new inline F/A approach on productive wafers inevitable from 300 nm wafer size on, and the reinvention of electrical fail site localization techniques, now from the backside of the die due to new package concepts and innumerable metal layers. Even if F/A manages to overcome all these challenges from a technical point of view, the according revolution in terms of methods, skills and tools implies a cost explosion unless F/A becomes an active part in the business process and the projects of development and manufacturing. This holds even under the assumption that a rising number of today's F/A problems will be solved by modern testing techniques. Only this way F/A can deliver custom-tailored solutions that are optimized in productivity and time to result, and that fulfill the cost reduction requirements of semiconductor products.

  10. Cooling High Heat Flux Micro-Electronic Systems using Refrigerants in High Aspect Ratio Multi-Microchannel Evaporators

    OpenAIRE

    Costa-Patry, Etienne

    2011-01-01

    Improving the energy efficiency of cooling systems can contribute to reduce the emission of greenhouse gases. Currently, most microelectronic applications are air-cooled. Switching to two-phase cooling systems would decrease power consumption and allow for the reuse of the extracted heat. For this type of application, multi-microchannel evaporators are thought to be well adapted. However, such devices have not been tested for a wide range of operating...

  11. Microelectronic packaging

    CERN Document Server

    Datta, M; Schultze, J Walter

    2004-01-01

    Microelectronic Packaging analyzes the massive impact of electrochemical technologies on various levels of microelectronic packaging. Traditionally, interconnections within a chip were considered outside the realm of packaging technologies, but this book emphasizes the importance of chip wiring as a key aspect of microelectronic packaging, and focuses on electrochemical processing as an enabler of advanced chip metallization.Divided into five parts, the book begins by outlining the basics of electrochemical processing, defining the microelectronic packaging hierarchy, and emphasizing the impac

  12. Particulate Contaminant Formation and Transport in Microelectronic Manufacturing Processes. Phase 2

    National Research Council Canada - National Science Library

    Stout, P

    1997-01-01

    ...." The overall objective is to produce a charging, transport, and growth simulation (CTGS) tool that can be used effectively by equipment manufacturers and users to reduce particle generation in fabrication systems...

  13. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  14. Utilization of Additive Manufacturing for Aerospace Heat Exchangers

    Science.gov (United States)

    2016-02-29

    viability of additive manufacturing for producin9 aerospace heat exchangers for naval air platforms . This report considers various heat exc...demonstration , aerospace heat exchangers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE UNCLASSIFIED... Aerospace Heat Exchangers Research Conducted for the Office of Naval Research Under the Enabling Additive Manufacturing Technologies for Industry

  15. Manufacturing A Refrigerator with Heat Recovery Unit

    Directory of Open Access Journals (Sweden)

    Mustafa Mohammed Kadhim

    2018-02-01

    Full Text Available This study aims to exploite the rejected heating energy from condenser and benefit from it to reheat the foods and other materials. It can also be employed to improve the coefficient of performance of a refrigerator at the same time by using approximately the same consumption electrical energy used to operate the compressor and refrigerator in general. This idea has been implemented by manufacturing of a refrigerator with using additional part has the same metal and condenser pipe diameters but its surface area does not exceed 40% from total surface area of the condenser and its design as an insulated cabinet from all sides to prevent heat leakage through it and located between the compressor and the condenser. Small electrical fan has been added inside this cabinet to provide a suitable air circulation and a homogenous temperature distribution inside the cabinet space. It is expected that the super heating energy of refrigerant (R134a which comes out of the compressor would be removed  inside this cabinet and this insist to condensate the refrigerant (cooling fluid with a rate higher than that used in the normal refrigerator only. Three magnetic valves have been used in order to control the refrigerant flow in state of operation the refrigerator only or to gather with heating cabinet. To measure the temperatures at each process of the simple vapor compression refrigeration cycle, nine temperature sensors at input and output of each compressor, condenser and an evaporator in additional to input of cabinet and inside it and on evaporator surface have been provided. Five pressure gages have been used to measure the value of pressure and compare it for the two states of operation. The consumption of electrical energy  can be calculated by adding an ammeter and a voltmeter and compare between the consumption energy of both states. The obtained results show that there is an improvement in the coeffecient of performance in state of operation the

  16. Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

    1996-07-01

    This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

  17. Additive Manufacturing of Heat Pipe Wicks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wick properties are often the limiting factor in a heat pipe design. Current technology uses conventional sintering of metal powders, screen wick, or grooves to...

  18. Oil Heat Manufacturers Association (OMA) - update

    Energy Technology Data Exchange (ETDEWEB)

    Hedden, R. [Oil Heat Management Services, Pawlet, VT (United States)

    1996-07-01

    Our industry must undergo a major paradigm shift if we are to prosper. We must change our {open_quotes}Fix it when it breaks{close_quotes} mind set to {open_quotes}Fix it so it won`t break.{close_quotes} Our main focus must be to improve Oilheat reliability. We have entered the era of the 100,000 mile tune-up. Meeting this challenge will require the best efforts of everyone in the industry from researchers, scientists, and engineers to manufacturers, dealers, sales people, installers, and service technicians.

  19. COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS: UNA COMPARACIÓN DE DOS ALGORITMOS DE OPTIMIZACIÓN GLOBAL

    Directory of Open Access Journals (Sweden)

    Jorge Mario Cruz Duarte

    Full Text Available This article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO and Harmony Search (HS. These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systematically and thoroughly. The objective function was created using the entropy generation minimisation criterion. In this study, we fixed the geometry of the microchannel, the amount of heat to be removed, and the properties of the cooling fluid. Moreover, we calculated the entropy generation rate, the volume flow rate of air, the channel width, the channel height, and the Knudsen number. The results of several simulation optimizations indicate that both global optimisation strategies yielded similar results, about 0.032 W/K, and that HS required five times more iterations than UPSO, but only about a nineteenth of its computation time. In addition, HS revealed a greater chance (about three times of finding a better solution than UPSO, but with a higher dispersion rate (about five times. Nonetheless, both algorithms successfully optimised the design for different scenarios, even when varying the material of the heat sink, and for different heat transfer rates.

  20. Microelectronic systems 1 checkbook

    CERN Document Server

    Vears, R E

    2013-01-01

    Microelectronic Systems 1 Checkbook provides coverage of the Business and Technician Education Council level 1 unit in Microelectronic Systems. However, it can be regarded as a basic textbook in microelectronic systems for a much wider range of studies. Each topic considered in the text is presented in a way that assumes the reader has little prior knowledge of electronics. The aim of the book is to provide an introduction to the concept of systems, to differentiate analogue and digital systems, and to describe the nature of microprocessor-controlled systems. An introduction to programming is

  1. Microelectronic oscillator, 2

    Science.gov (United States)

    Kleinberg, L. L.

    1969-01-01

    Microelectronic oscillator uses a bipolar transistor to circumvent the problem of developing suitable inductors for lower frequencies. The oscillator is fabricated by hybrid thin film techniques or by monolithic construction. Discrete microminiature components may also be employed.

  2. Microelectronic systems 3 checkbook

    CERN Document Server

    Vears, R E

    1985-01-01

    Microelectronic Systems 3: Checkbook aims to extend the range of hardware, software, and interfacing techniques developed at level 2. This book concentrates on the highly popular 6502, Z80, and 6800 microprocessors and contains approximately 70 tested programs that may be used with little or no modification on most systems based on these microprocessors. This text also covers the main points concerned with computer hardware configuration, interfacing devices, subroutines and the stack, polling and interrupts, microelectronic stores, and address decoding and organization. Each chapter of the b

  3. Chemistry in microelectronics

    CERN Document Server

    Le Tiec, Yannick

    2013-01-01

    Microelectronics is a complex world where many sciences need to collaborate to create nano-objects: we need expertise in electronics, microelectronics, physics, optics and mechanics also crossing into chemistry, electrochemistry, as well as biology, biochemistry and medicine. Chemistry is involved in many fields from materials, chemicals, gases, liquids or salts, the basics of reactions and equilibrium, to the optimized cleaning of surfaces and selective etching of specific layers. In addition, over recent decades, the size of the transistors has been drastically reduced while the functionalit

  4. PROPERTIES OF LAMINATED VENEER LUMBER MANUFACTURED FROM HEAT TREATED VENEER

    Directory of Open Access Journals (Sweden)

    Hamiyet Sahin KOL

    2016-06-01

    Full Text Available The objective of this study was to determine and compare properties of laminated veneer lumber (LVL panels manufactured from heat treated (212o C, 2h and untreated pine veneer with melamine urea formaldehyde (MUF adhesive. The results showed that, heat treatment considerably decreased all investigated physical properties of LVL. The reductions in density (D, moisture content (MC, and thickness swelling (TS were 8.33%, 33.78% and 14.03%, respectively. The findings of this study demonstrated that heat treatment resulted in adverse effect on bending strength and hardness of LVL panels. Heat treatment caused a decrease in bending strength (MOR by 31.85% and in hardness (HT by 25.44%. However, modulus of elasticity (MOE and compressive strength (CS values of LVL panels were higher than those of untreated groups. Compressive strength and modulus of elasticity (MOE of LVL panels made of heat treated veneer respectively were 11.17% and 7.46% higher than untreated LVLs

  5. Sandia microelectronics development

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, H.T.

    1997-02-01

    An overview of the operations of Sandia`s Microelectronics Development Lab (MDL) is to develop radiation hardened IC, but techniques used for IC processing have been applied to a variety of related technologies such as micromechanics, smart sensors, and packaging.

  6. Manufactured Homes Acquisition Program : Heat Loss Assumptions and Calculations, Heat Loss Coefficient Tables.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Baylon, David

    1992-05-01

    This manual is intended to assist builders of manufactured homes in assessing the thermal performance of structural components used in the Manufactured Housing Acquisition Program (MAP) sponsored by the Bonneville Power Administration (BPA). U-factors for these components are calculated using the ASHRAE (1989) parallel heat loss method, with adaptations made for the construction practices found in the Pacific Northwest manufactured home industry. This report is divided into two parts. The first part describes the general assumptions and calculation procedures used to develop U-factors and R-values for specific materials used in the construction industry, overall U-factors for component sections, and the impact of complex framing and thermal configurations on various components' heat loss rates. The individual components of manufactured homes are reviewed in terms of overall thermal conductivity. The second part contains tables showing the results of heat loss calculations expressed as U-factors for various configurations of the major building components: floor systems, ceiling systems, wall systems, windows, doors and skylights. These values can be used to establish compliance with the MAP specifications and thermal performance criteria or to compare manufactured homes built to different standards.

  7. Manufactured Homes Acquisition Program : Heat Loss Assumptions and Calculations, Heat Loss Coefficient Tables.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Baylon, David.

    1992-05-01

    This manual is intended to assist builders of manufactured homes in assessing the thermal performance of structural components used in the Manufactured Housing Acquisition Program (MAP) sponsored by the Bonneville Power Administration (BPA). U-factors for these components are calculated using the ASHRAE (1989) parallel heat loss method, with adaptations made for the construction practices found in the Pacific Northwest manufactured home industry. This report is divided into two parts. The first part describes the general assumptions and calculation procedures used to develop U-factors and R-values for specific materials used in the construction industry, overall U-factors for component sections, and the impact of complex framing and thermal configurations on various components` heat loss rates. The individual components of manufactured homes are reviewed in terms of overall thermal conductivity. The second part contains tables showing the results of heat loss calculations expressed as U-factors for various configurations of the major building components: floor systems, ceiling systems, wall systems, windows, doors and skylights. These values can be used to establish compliance with the MAP specifications and thermal performance criteria or to compare manufactured homes built to different standards.

  8. Microelectronics plastic molded packaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R. [Ktech Corp., Albuquerque, NM (United States); Palmer, D.W.; Peterson, D.W. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  9. Manufacturing of tailored tubes with a process integrated heat treatment

    Science.gov (United States)

    Hordych, Illia; Boiarkin, Viacheslav; Rodman, Dmytro; Nürnberger, Florian

    2017-10-01

    The usage of work-pieces with tailored properties allows for reducing costs and materials. One example are tailored tubes that can be used as end parts e.g. in the automotive industry or in domestic applications as well as semi-finished products for subsequent controlled deformation processes. An innovative technology to manufacture tubes is roll forming with a subsequent inductive heating and adapted quenching to obtain tailored properties in the longitudinal direction. This processing offers a great potential for the production of tubes with a wide range of properties, although this novel approach still requires a suited process design. Based on experimental data, a process simulation is being developed. The simulation shall be suitable for a virtual design of the tubes and allows for gaining a deeper understanding of the required processing. The model proposed shall predict microstructural and mechanical tube properties by considering process parameters, different geometries, batch-related influences etc. A validation is carried out using experimental data of tubes manufactured from various steel grades.

  10. Microelectronic systems N2 checkbook

    CERN Document Server

    Vears, R E

    2013-01-01

    Microelectronic Systems N2 Checkbook provides coverage of the Business and Technician Education Council level NII unit in Microelectronic Systems. However, it can be regarded as a textbook in microelectronic systems for a much wider range of studies. The aim of this book is to provide a foundation in microelectronic systems hardware and software techniques. Each topic considered in the text is presented in a way that assumes in the reader only the knowledge attained in BTEC Information Technology Studies F, Engineering Fundamentals F, or equivalent. This book concentrates on the highly popular

  11. III-V microelectronics

    CERN Document Server

    Nougier, JP

    1991-01-01

    As is well known, Silicon widely dominates the market of semiconductor devices and circuits, and in particular is well suited for Ultra Large Scale Integration processes. However, a number of III-V compound semiconductor devices and circuits have recently been built, and the contributions in this volume are devoted to those types of materials, which offer a number of interesting properties. Taking into account the great variety of problems encountered and of their mutual correlations when fabricating a circuit or even a device, most of the aspects of III-V microelectronics, from fundamental p

  12. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  13. Wellbore manufacturing processes for in situ heat treatment processes

    Science.gov (United States)

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  14. Additive Manufacturing of Ceramic Heat Exchanger: Opportunities and Limits of the Lithography-Based Ceramic Manufacturing (LCM)

    Science.gov (United States)

    Scheithauer, Uwe; Schwarzer, Eric; Moritz, Tassilo; Michaelis, Alexander

    2018-01-01

    Additive manufacturing (AM) techniques allow the preparation of tailor-made structures for specific applications with a high flexibility in regard to shape and design. The lithography-based ceramic manufacturing (LCM) technology allows the AM of high-performance alumina and zirconia components. There are still some restrictions in regard to possible geometries. The opportunities and limits of the LCM technology are discussed in the following paper using the example of ceramic heat exchangers. Structures are presented which combine a large surface for heat exchange with a small component volume and low pressure drop. This paper concludes summarizing the essential remarks.

  15. Moore's law and the impact on trusted and radiation-hardened microelectronics.

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Kwok Kee

    2011-12-01

    In 1965 Gordon Moore wrote an article claiming that integrated circuit density would scale exponentially. His prediction has remained valid for more than four decades. Integrated circuits have changed all aspects of everyday life. They are also the 'heart and soul' of modern systems for defense, national infrastructure, and intelligence applications. The United States government needs an assured and trusted microelectronics supply for military systems. However, migration of microelectronics design and manufacturing from the United States to other countries in recent years has placed the supply of trusted microelectronics in jeopardy. Prevailing wisdom dictates that it is necessary to use microelectronics fabricated in a state-of-the-art technology for highest performance and military system superiority. Close examination of silicon microelectronics technology evolution and Moore's Law reveals that this prevailing wisdom is not necessarily true. This presents the US government the possibility of a totally new approach to acquire trusted microelectronics.

  16. Microelectronic test structures for CMOS technology

    CERN Document Server

    Ketchen, Mark B

    2011-01-01

    Microelectronic Test Structures for CMOS Technology and Products addresses the basic concepts of the design of test structures for incorporation within test-vehicles, scribe-lines, and CMOS products. The role of test structures in the development and monitoring of CMOS technologies and products has become ever more important with the increased cost and complexity of development and manufacturing. In this timely volume, IBM scientists Manjul Bhushan and Mark Ketchen emphasize high speed characterization techniques for digital CMOS circuit applications and bridging between circuit performance an

  17. Microelectronics to nanoelectronics: materials, devices & manufacturability

    National Research Council Canada - National Science Library

    Kaul, Anupama B

    2013-01-01

    .... They highlight new technologies that have successfully transitioned from the laboratory to the marketplace as well as technologies that have near-term market applications in electronics, materials, and optics...

  18. Microelectronics Status Analysis and Secondary Part Procureability Assessment of the THAAD Weapon System

    National Research Council Canada - National Science Library

    Maddux, Gary

    1999-01-01

    The Manufacturing Science and Technology Division (MS&TD), AMCOM has the mission and function of providing microelectronic technology assessments, and producibility and supportability analyses for the THAAD weapon system...

  19. IMPROVED MANUFACTURING CANNED "COMPOTE CHERRY" USING COMBINED HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    A. F. Demirova

    2013-01-01

    Full Text Available The results of studies on the development of new modes of heat sterilization compote cherry using stepwise heating in a stream of hot air and hot water dushevaniem air cooled rotating container. Revealed that the modes provide commercial sterility of finished products, reducing the length of the heat treatment and the quality of the finished product. Are some of the modes of heat sterilization step of cherry compote in a stream of heated air and water dushevaniem air-cooled rotating container.

  20. Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

    1994-07-26

    This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

  1. Additive manufacturing of a compact flat-panel cryogenic gas-gap heat switch

    NARCIS (Netherlands)

    Vanapalli, Srinivas; Vermeer, Cristian Hendrik; Tirolien, T.

    2016-01-01

    State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the "On" and "Off" state). Using selective laser melting additive manufacturing technology, also

  2. 3D microelectronic packaging from fundamentals to applications

    CERN Document Server

    Goyal, Deepak

    2017-01-01

    This volume provides a comprehensive reference for graduate students and professionals in both academia and industry on the fundamentals, processing details, and applications of 3D microelectronic packaging, an industry trend for future microelectronic packages. Chapters written by experts cover the most recent research results and industry progress in the following areas: TSV, die processing, micro bumps, direct bonding, thermal compression bonding, advanced materials, heat dissipation, thermal management, thermal mechanical modeling, quality, reliability, fault isolation, and failure analysis of 3D microelectronic packages. Numerous images, tables, and didactic schematics are included throughout. This essential volume equips readers with an in-depth understanding of all aspects of 3D packaging, including packaging architecture, processing, thermal mechanical and moisture related reliability concerns, common failures, developing areas, and future challenges, providing insights into key areas for future resea...

  3. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    Science.gov (United States)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  4. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    Science.gov (United States)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  5. Apparatus for assembly of microelectronic devices

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Lavin, Judith Maria; Resnick, Paul J.

    2017-09-12

    An apparatus including a carrier substrate configured to move a microelectronic device. The apparatus further includes a rotatable body configured to receive the microelectronic device. Additionally, the apparatus includes a second substrate configured to receive the microelectronic device from the rotatable body.

  6. Fundamentals of Microelectronics Processing (VLSI).

    Science.gov (United States)

    Takoudis, Christos G.

    1987-01-01

    Describes a 15-week course in the fundamentals of microelectronics processing in chemical engineering, which emphasizes the use of very large scale integration (VLSI). Provides a listing of the topics covered in the course outline, along with a sample of some of the final projects done by students. (TW)

  7. Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Carter, William G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Akers, Ronald R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morrison, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-07

    To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those created using a resistive heated nozzle.

  8. Inactivation of 12 viruses by heating steps applied during manufacture of a hepatitis B vaccine

    NARCIS (Netherlands)

    Lelie, P. N.; Reesink, H. W.; Lucas, C. J.

    1987-01-01

    The efficacy of two heating cycles (90 sec at 103 degrees C and 10 hr at 65 degrees C) used during manufacture of a plasma-derived hepatitis-B vaccine was validated for the inactivation of 12 virus families. A period of 15 min warming up to 65 degrees C had already completely inactivated

  9. A novel approach of manufacturing Nickel Wicks for loop heat pipes ...

    Indian Academy of Sciences (India)

    Sintered nickel powder is proposed to be used as porous wicks in loop heat pipes used for space applications such as satellites and space crafts. In this work, the manufacturing procedure for tubular wicks through novel Metal Injection Moulding (MIM) route is discussed. Nickel powder, Polypropylene powder and ...

  10. Inactivation of the BSE agent by the heat and pressure process for manufacturing gelatine

    NARCIS (Netherlands)

    Grobben, A.H.; Steele, P.J.; Somerville, R.A.; Taylor, D.; Schreuder, B.E.C.

    2005-01-01

    Dietary exposure to the bovine spongiform encephalopathy (BSE) agent is the probable cause of variant Creutzfeldt-Jakob disease in people. The industrial manufacturing process for the production of gelatine and colloidal protein by the heat and pressure process was downscaled accurately and its

  11. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    Science.gov (United States)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  12. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly [Ceralink Incorporated, Troy, NY (United States); Ross, Nicole [Ceralink Incorporated, Troy, NY (United States)

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  13. Microelectronic Packaging Trends and the Role of Nanotechnology

    Science.gov (United States)

    Datta, Madhav

    The microelectronic packaging industry is undergoing major changes to keep pace with the ever-increasing demands imposed by high performing chips and by end-use system applications. Solutions using advanced materials for microprocessor interconnect scaling and chip package interconnects, novel concepts in heat management systems, and improvements in package substrates continue to drive major packaging efforts. Advances in electrochemical technologies have played an important role in the evolution of such solutions for miniaturization of microelectronic devices and packages. Indeed, since the development of through-mask plating for thin film heads in the1960s and 1970s, an enormous amount of industrial and academic R&D effort has positioned electrochemical processing among the most sophisticated processing technologies employed in the microelectronics industry today [1-4]. Electrochemical processing is perhaps better understood than some of the dry processing technologies used in the microelectronics industry. Compared to other competing dry processing technologies, it has emerged as a more environmentally-friendly and cost-effective fabrication method. Electrochemical processing has, thus, become an integral part of advanced wafer processing fabs and an enabling technology for nanofabrication [5]. As the electronics industry faces the challenges of extending Moore's law, electrochemical processing is expected to continue to enable further miniaturization of high-performance chip interconnects, packages, and printed circuit boards. Evolving novel approaches to electrochemical processing using nano-materials and nano-fabrication techniques have started to make tremendous impact on further miniaturization of high performance devices and packages. A detailed discussion of different facets of technology advances in electronic packaging is difficult to present in the limited space of this chapter. The current chapter, therefore, makes an effort to capture some of the key

  14. Survey of manufacturers of high-performance heat engines adaptable to solar applications

    Science.gov (United States)

    Stine, W. B.

    1984-01-01

    The results of an industry survey made during the summer of 1983 are summarized. The survey was initiated in order to develop an information base on advanced engines that could be used in the solar thermal dish-electric program. Questionnaires inviting responses were sent to 39 companies known to manufacture or integrate externally heated engines. Follow-up telephone communication ensured uniformity of response. It appears from the survey that the technology exists to produce external-heat-addition engines of appropriate size with thermal efficiencies of over 40%. Problem areas are materials and sealing.

  15. Theory and practice for the manufacture of a composite thermal heat shield for a space ship

    Science.gov (United States)

    Tarasov, V. A.; Komkov, M. A.; Romanenkov, V. A.; Alyamovsky, A. I.; Kopyl, N. I.; Boyarskaya, R. V.

    2016-10-01

    The technological processes were explored for the manufacture in an autoclave of a space ship heat shield. A mathematical model was created for the determination of the duration of the impregnation of the binder for the composite material. The change in the Nitrogen content is dependent on the time in the autoclave. This dependence relates to the use of the minimum amount of electricity to reduce the expense of the process in practice.

  16. Laser welding head tailored to tube-sheet joint requirements for heat exchangers manufacturing

    OpenAIRE

    Vandewynckéle, Ambroise; Vaamonde, Eva; Fontán, Marcos; Herwig, Patrick; Mascioletti, Alessandro

    2013-01-01

    Tube to tube-sheet joints in heat exchangers are currently welded by the orbital TIG process characterized by very high quality of the weld beads and good repeatability. However, due to high number of welds, a reduction in the welding cycle time would have an interesting impact on manufacturing costs and delays and laser welding technology is aimed to improve this factor. The main disadvantage is the positioning accuracy required by the laser welding process since beam deviations from real jo...

  17. Manufacturing of a high-temperature resistojet heat exchanger by selective laser melting

    Science.gov (United States)

    Romei, F.; Grubišić, A. N.; Gibbon, D.

    2017-09-01

    The paper presents the design, manufacturing and postproduction analysis of a novel high-temperature spacecraft resistojet heat exchanger manufactured through selective laser melting to validate the manufacturing approach. The work includes the analysis of critical features of a heat exchanger with integrated converging-diverging nozzle as a single piece element. The metrology of the component is investigated using optical analysis and profilometry to verify the integrity of components. High-resolution micro-Computed Tomography (CT) is applied as a tool for volumetric non-destructive inspection and conformity since the complex geometry of the thruster does not allow internal examination. The CT volume data is utilised to determine a surface mesh on which a novel perform coordinate measurement technique is applied for nominal/actual comparison and wall thickness analysis. A thin-wall concentric tubular heat exchanger design is determined to meet dimensional accuracy requirements. The work indicates the production of fine structures with feature sizes below 200 μm in 316L stainless via selective laser melting is feasible and opens up new possibilities for the future developments in multiple industries.

  18. Relevance of microelectronic education to industrial needs

    Science.gov (United States)

    Prince, J. L.; Lathrop, J. W.

    1977-01-01

    The relevance of microelectronic education to industrial needs was evaluated, and four categories were surveyed: (1) facts and rules; (2) skills; (3) personality; and (4) deductive-inductive reasoning. Examples of specific items in each category are given to illustrate their meaning and it was indicated as to which items in each category are strongly impacted by microelectronics courses and laboratories.

  19. Educational Implications of Microelectronics and Microprocessors.

    Science.gov (United States)

    Harris, N. D. C., Ed.

    This conference report explores microelectronic technology, its effect on educational methods and objectives, and its implications for educator responsibilities. Two main areas were considered: the significance of the likely impact of the large scale introduction of microprocessors and microelectronics on commercial and industrial processes, the…

  20. Remote Microelectronics Fabrication Laboratory MEFLab

    Directory of Open Access Journals (Sweden)

    Jan Machotka

    2008-07-01

    Full Text Available Over the last decade, there has been a move towards using remote laboratories in engineering education. The majority of these laboratories are static, involving limited user-controlled mechanical movements. The University of South Australia has developed such a laboratory, called NetLab that has been successfully utilized for teaching both on-campus and transnational programs in electrical and electronics engineering. Following this success, we are now developing a remote laboratory for microelectronic fabrication, MEFLab. The first stage of the development is a remote laboratory for visual inspection and testing of electronic circuits directly on the silicon wafer under a microscope which is normally conducted in a cleanroom. The major challenge of this project is the accurate positioning of micro-probes remotely over the internet. This paper presents the details of the setup of this new remote laboratory, with a particular emphasis on the development of the hardware, software and graphical user interface.

  1. Tubular Ridge Surfaces with Intensified Heat Exchange and Technology of Their Manufacturing for Air Coolers of Fuel and Energy Complex

    Directory of Open Access Journals (Sweden)

    V. Кuntysh

    2013-01-01

    Full Text Available The paper presents designs of bimetallic ridge pipes (BRP with spirally-wound aluminium KLM-edges for heat exchange air coolers. Heat exchange BRP differ from the applied ones in heat-transfer coefficient which is higher by 10–15 %, extended temperature of applicability up to 320 °С for a cooled heat carrier at the pipe input, higher thermal reliability at alternating thermal burdens, current consumption for their manufacturing which is less by 1.8–2.5-fold, aluminium consumption which is less up to 1.8-fold, manufacturability in batch production,  availability high-production equipment.

  2. Using federal technology policy to strength the US microelectronics industry

    Energy Technology Data Exchange (ETDEWEB)

    Gover, J.E.; Gwyn, C.W.

    1994-07-01

    A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

  3. Modeling heat exchangers under consideration of manufacturing tolerances and uncertain flow distribution

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, O.; Radermacher, R. [Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, 4164 Martin Hall, College Park, MD 20742 (United States)

    2010-06-15

    Small dimensions found in modern and novel heat exchanger (HX) designs encounter very challenging manufacturing issues. With current manufacturing techniques HXs in small dimensions will exhibit large tolerances relative to design variables. Hence, the anticipated variation in performance is a concern. Furthermore, small flow channel dimensions are very susceptible to severe fouling and even blockage. Therefore, flow distribution would be uncertain. These uncertainties in dimensions and flow distribution should be accounted for during the design and performance evaluation of new HX geometries with focus on ultra-compact designs. This paper outlines an effort to theoretically evaluate the performance of an air-to-water HX, assembled from tubes with non-conventional heat transfer surfaces. Vertical spacing within this HX is subject to a predefined statistical distribution compounded with uncertainty in water flow rate through each flow path (i.e., tube). A new implementation technique for {epsilon}-NTU is proposed in order to accommodate different air conditions on both tube sides. A Monte Carlo simulation approach is used to estimate the HX performance distribution. This approach is applied to three HX designs showing the performance degradation subject to geometrical and flow uncertainties. The simulation results under uncertainty provided useful insights into the reasons for the performance degradation and showed great impact to the uncertainty distribution. Overall, the proposed HX design with the smallest dimensions showed the least performance degradation due to manufacturing and operating conditions uncertainty. (author)

  4. Effects of Heat Treatments on the On-Line Service Life of a Press Die Manufactured by W-Edm

    Science.gov (United States)

    Choi, Kye-Kwang; Lee, Yong-Shin

    Effects of heat treatments on the on-line service life of a press die manufactured by W-EDM are studied. In this work, four manufacturing processes for a press die are considered: (1) milling and then grinding, (2) wire-cut electric discharge machining (W-EDM), (3) low temperature heat treatment after W-EDM, and (4) high temperature heat treatment after W-EDM. On-line punching experiments for an automobile part of BL646-chain are performed. The amount of wear of the die and punch, roll-over and burnish depth in the punched chain are measured every 1,000 strokes. Overall productivities are carefully compared. Finally, it is concluded that heat treatment after W-EDM for a press die can enhance its on-line service life. Especially, high temperature heat treatment after W-EDM is very attractive as a fast and cheap manufacturing method for a press die.

  5. Fused silica GRISMs manufactured by hydrophilic direct bonding at moderate heating

    Science.gov (United States)

    Kalkowski, G.; Grabowski, K.; Harnisch, G.; Flügel-Paul, T.; Zeitner, U.; Risse, S.

    2017-12-01

    For high-resolution spectroscopy in space, GRISM elements—obtained by patterning gratings onto a prism surface—find increasing applications. We report on GRISM manufacturing by joining the individual functional elements—prisms and gratings—to suitable components by the technology of hydrophilic direct bonding. Fused silica was used as a substrate material and binary gratings were fabricated by standard e-beam lithography and dry etching. Alignment of the grating dispersion direction to the prism angle was realized by passive adjustment on dedicated bonding gear matched to the substrate geometry. Materials adapted bonds of high transmission, stiffness, and strength were obtained after heat treatment at temperatures of about 200 °C in vacuum. Examples for bonding uncoated as well as coated grating surfaces are given. The results illustrate the great potential of hydrophilic glass direct bonding for manufacturing transmission optics to be used in space or other heavy duty applications.

  6. Fused silica GRISMs manufactured by hydrophilic direct bonding at moderate heating

    Science.gov (United States)

    Kalkowski, G.; Grabowski, K.; Harnisch, G.; Flügel-Paul, T.; Zeitner, U.; Risse, S.

    2017-06-01

    For high-resolution spectroscopy in space, GRISM elements—obtained by patterning gratings onto a prism surface—find increasing applications. We report on GRISM manufacturing by joining the individual functional elements—prisms and gratings—to suitable components by the technology of hydrophilic direct bonding. Fused silica was used as a substrate material and binary gratings were fabricated by standard e-beam lithography and dry etching. Alignment of the grating dispersion direction to the prism angle was realized by passive adjustment on dedicated bonding gear matched to the substrate geometry. Materials adapted bonds of high transmission, stiffness, and strength were obtained after heat treatment at temperatures of about 200 °C in vacuum. Examples for bonding uncoated as well as coated grating surfaces are given. The results illustrate the great potential of hydrophilic glass direct bonding for manufacturing transmission optics to be used in space or other heavy duty applications.

  7. Integrated microelectronics for smart textiles.

    Science.gov (United States)

    Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner

    2005-01-01

    The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.

  8. Simulations of the heat exchange in thermoplastic injection molds manufactured by additive techniques

    Science.gov (United States)

    Daldoul, Wafa; Toulorge, Thomas; Vincent, Michel

    2017-10-01

    The cost and quality of complex parts manufactured by thermoplastic injection is traditionally limited by design constraints on the cooling system of the mold. A possible solution is to create the mold by additive manufacturing, which makes it possible to freely design the cooling channels. Such molds normally contain hollow parts (alveoli) in order to decrease their cost. However, the complex geometry of the cooling channels and the alveoli makes it difficult to predict the performance of the cooling system. This work aims to compute the heat exchanges between the polymer, the mold and the cooling channels with complex geometries. An Immersed Volume approach is taken, where the different parts of the domain (i.e. the polymer, the cooling channels, the alveoli and the mold) are represented by level-sets and the thermo-mechanical properties of the materials vary smoothly at the interface between the parts. The energy and momentum equations are solved by a stabilized Finite Element method. In order to accurately resolve the large variations of material properties and the steep temperature gradients at interfaces, state-of-the art anisotropic mesh refinement techniques are employed. The filling stage of the process is neglected. In a first step, only the heat equation is solved, so that the packing stage is also disregarded. In a second step, thermo-mechanical effects occurring in the polymer during the packing stage are taken into account, which results in the injection of an additional amount of polymer that significantly influences the temperature evolution. The method is validated on the simple geometry of a center-gated disk and compared with experimental measurements. The agreement is very good. Simulations are performed on an industrial case which illustrates the ability of the method to deal with complex geometries.

  9. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

    Science.gov (United States)

    Hou, Huilong; Simsek, Emrah; Stasak, Drew; Hasan, Naila Al; Qian, Suxin; Ott, Ryan; Cui, Jun; Takeuchi, Ichiro

    2017-10-01

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g-1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as  -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress-strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti2Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti2Ni precipitates is believed to be the origin of the unique superelasticity behavior.

  10. Nondestructive Moisture Measurement in Microelectronics.

    Science.gov (United States)

    1987-12-01

    moisture, bias voltage and defects in the glassivation layer. As a response to these problems most manufacturers started to improve the quality of their...package. The first experiment consisted of looking at the response of a sensor exposed to the room dew-point ( contrIled in flow conditions ’yaI

  11. Microelectronic circuit design for energy harvesting systems

    CERN Document Server

    Di Paolo Emilio, Maurizio

    2017-01-01

    This book describes the design of microelectronic circuits for energy harvesting, broadband energy conversion, new methods and technologies for energy conversion. The author also discusses the design of power management circuits and the implementation of voltage regulators. Coverage includes advanced methods in low and high power electronics, as well as principles of micro-scale design based on piezoelectric, electromagnetic and thermoelectric technologies with control and conditioning circuit design. Provides a single-source reference to energy harvesting and its applications; Serves as a practical guide to microelectronics design for energy harvesting, with application to mobile power supplies; Enables readers to develop energy harvesting systems for wearable/mobile electronics.

  12. Hermeticity testing of MEMS and microelectronic packages

    CERN Document Server

    Costello, Suzanne

    2013-01-01

    Packaging of microelectronics has been developing since the invention of the transistor in 1947. With the increasing complexity and decreasing size of the die, packaging requirements have continued to change. A step change in package requirements came with the introduction of the Micro-Electro-Mechanical System (MEMS) whereby interactions with the external environment are, in some cases, required.This resource is a rapid, definitive reference on hermetic packaging for the MEMS and microelectronics industry, giving practical guidance on traditional and newly developed test methods. This book in

  13. Fabrication of Thermoelectric Devices Using Additive-Subtractive Manufacturing Techniques: Application to Waste-Heat Energy Harvesting

    Science.gov (United States)

    Tewolde, Mahder

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by

  14. Interconnect mechanisms in microelectronic packaging

    Science.gov (United States)

    Roma, Maria Penafrancia C.

    Global economic, environmental and market developments caused major impact in the microelectronics industry. Astronomical rise of gold metal prices over the last decade shifted the use of copper and silver alloys as bonding wires. Environmental legislation on the restriction of the use of Pb launched worldwide search for lead-free solders and platings. Finally, electrical and digital uses demanded smaller, faster and cheaper devices. Ultra-fine pitch bonding, decreasing bond wire sizes and hard to bond substrates have put the once-robust stitch bond in the center of reliability issues due to stitch bond lift or open wires .Unlike the ball bond, stitch bonding does not lead to intermetallic compound formation but adhesion is dependent on mechanical deformation, interdiffusion, solid solution formation, void formation and mechanical interlocking depending on the wire material, bond configuration, substrate type , thickness and surface condition. Using Au standoff stitch bonds on NiPdAu plated substrates eliminated stitch bond lift even when the Au and Pd layers are reduced. Using the Matano-Boltzmann analysis on a STEM (Scanning Transmission Analysis) concentration profile the interdiffusion coefficient is measured to be 10-16 cm 2/s. Wire pull strength data showed that the wire pull strength is 0.062N and increases upon stress testing. Meanwhile, coating the Cu wire with Pd, not only increases oxidation resistance but also improved adhesion due to the formation of a unique interfacial adhesion layers. Adhesion strength as measured by pull showed the Cu wire bonded to Ag plated Cu substrate (0.132N) to be stronger than the Au wire bonded on the same substrate (0.124N). Ag stitch bonded to Au is predicted to be strong but surface modification made the adhesion stronger. However, on the Ag ball bonded to Al showed multiple IMC formation with unique morphology exposed by ion milling and backscattered scanning electron microscopy. Adding alloying elements in the Ag wire

  15. Experimental investigation of single-phase microjet cooling of microelectronics

    Directory of Open Access Journals (Sweden)

    Rusowicz Artur

    2015-09-01

    Full Text Available Development of electronics, which aims to improve the functionality of electronic devices, aims at increasing the packing of transistors in a chip and boosting clock speed (the number of elementary operations per second. While pursuing this objective, one encounters the growing problem of thermal nature. Each switching of the logic state at the elementary level of an integrated circuit is associated with the generation of heat. Due to a large number of transistors and high clock speeds, higher heat flux is emitted by the microprocessor to a level where the component needs to be intensively cooled, or otherwise it will become overheated. This paper presents the cooling of microelectronic components using microjets.

  16. Manufacture of dense CAU-10-H coatings for application in adsorption driven heat pumps : Optimization and characterization

    NARCIS (Netherlands)

    De Lange, M.F.; Zeng, T.; Vlugt, T.J.H.; Gascon, J.; Kapteijn, F.

    2015-01-01

    CAU-10-H displays a highly suitable step-wise water adsorption behaviour for application in adsorption driven heat pumps and chillers. For actual application, manufacturing of coatings of this material on thermally conductive surfaces is highly desired. Direct, single-step, crystallization of

  17. Preliminary definition and characterization of a solar industrial process heat technology and manufacturing plant for the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Prythero, T.; Meyer, R. T.

    1980-09-01

    A solar industrial process heat technology and an associated solar systems manufacturing plant for the year 2000 has been projected, defined, and qualitatively characterized. The technology has been defined for process heat applications requiring temperatures of 300/sup 0/C or lower, with emphasis on the 150/sup 0/ to 300/sup 0/C range. The selected solar collector technology is a parabolic trough collector of the line-focusing class. The design, structure, and material components are based upon existing and anticipated future technological developments in the solar industry. The solar system to be manufactured and assembled within a dedicated manufacturing plant is projected to consist of the collector and the major collector components, including reflector, absorber, parabolic trough structure, support stand, tracking drive mechanism, sun-sensing device and control system, couplings, etc. Major manufacturing processes to be introduced into the year 2000 plant operations are glassmaking, silvering, electroplating and plastic-forming. These operations will generate significant environmental residuals not encountered in present-day solar manufacturing plants. Important residuals include chemical vapors, acids, toxic elements (e.g. arsenic), metallic and chemical sludges, fumes from plastics, etc. The location, design, and operations of these sophisticated solar manufacturing plants will have to provide for the management of the environmental residuals.

  18. Failure and Delamination in Microelectronic Packages

    NARCIS (Netherlands)

    Sadeghinia, M.

    2013-01-01

    Thin layers of dissimilar materials are used in most microelectronic components in order to achieve special functional requirements. Generally, the interface between two adjacent materials forms a weak link, not only because of the relatively low delamination strength, but also because of the

  19. International Conference on Microelectronics, Electromagnetics and Telecommunications

    CERN Document Server

    Rao, N; Kumar, S; Raj, C; Rao, V; Sarma, G

    2016-01-01

    This volume contains 73 papers presented at ICMEET 2015: International Conference on Microelectronics, Electromagnetics and Telecommunications. The conference was held during 18 – 19 December, 2015 at Department of Electronics and Communication Engineering, GITAM Institute of Technology, GITAM University, Visakhapatnam, INDIA. This volume contains papers mainly focused on Antennas, Electromagnetics, Telecommunication Engineering and Low Power VLSI Design.

  20. Fast Qualification Methods for Microelectronic Packages

    NARCIS (Netherlands)

    Ma, X.

    2011-01-01

    This research aims at developing a knowledge based fast qualification method for moisture or thermally induced failure in microelectronic packages. Driven by the market competition and the need for shorter time to market, fast qualification tests are becoming more and more important for the

  1. About the Scottish Microelectronics Development Programme.

    Science.gov (United States)

    Scottish Microelectronics Development Programme, Glasgow.

    Activities of the Scottish Microelectronics Development Programme (SMDP) related to the introduction and coordination of educational microcomputing in Scotland from 1980 to February 1984 are described. The background of the program is outlined, and it is noted that SMDP has become a division of the Scottish Council for Educational Technology…

  2. Influence of heat treatment during manufacturing of Al-Al sub 4 C sub 3 materials on microstructure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jangg, G.; Schroeder, K. (Technische Univ., Vienna (Austria)); Slesar, M.; Besterci, M.; Durisin, J. (Slovenska Akademia Vied, Kosice (Czechoslovakia). Ustav Experimentalnej Metalurgie)

    1989-10-01

    During manufacturing of dispersion-strengthened Al by reaction-milling of Al with C, heat treatment of the milled granulates decisively influences microstructure and properties of the extruded products. Heat treatment is essential for formation of the desired dispersoids from carbon milled into Al, but also leads to recovery and subgrain coarsening, which both decrease strength. Different carbon types react with Al differently fast, which in turn differently inhibits recovery and subgrain coarsening. Mictrostructural parameters determined by TEM are well correlated to the actually measured mechanical properties. The correlation between tensile strength and elongation, termed 'quality factor', is not affected either by dispersoid content or by granulate heat treatment intensity. Quality factors <1 indicate improper manufacturing, resulting e.g. in the presence of non-reacted carbon particles, dispersoid agglomerates or coarse inclusions. (orig.).

  3. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  4. Laser Applications in Microelectronic and Optoelectronic Manufacturing IV

    Science.gov (United States)

    1999-07-15

    Unified Solver, CIP, Coronet, Milk -Crown 1 INTRODUCTION Recent high technology requires new tools for combined analysis of materials in different...sufficient to create keyhole will not be generated. 3.3 Coronet Formation Simulation of the coronet or " milk -crown" has long been a dream in... Uht . 7. REFERENCES 1. A. Peterlongo, A. Miotello, and R Kelly, Phys. Rev. E, 50,4716, (1994). 2. L. K. Ang, Y. Y. Lau, R. M. Gilgenbach, H. L

  5. Effect of manufacturing process parameters on virus inactivation by dry heat treatment at 80 degrees C in factor VIII.

    Science.gov (United States)

    Roberts, P L; Dunkerley, C; McAuley, A; Winkelman, L

    2007-01-01

    Dry heat treatment at 80 degrees C for 72 h is used as a virus inactivation step for some coagulation factor concentrates such as Bio Products Laboratory's (BPL) factor VIII 8Y. In the current study, the effect of this process has been tested on a range of viruses. In addition the effect of various manufacturing process parameters on virus inactivation has been investigated. Samples of product intermediate were obtained from manufacturing, spiked with virus and subjected to freeze drying and dry heat treatment. Virus inactivation was determined by infectivity assay. Freeze drying followed by dry heat treatment was effective for inactivating a wide range of enveloped and nonenveloped viruses. Sucrose or protein concentration had no effect on virus inactivation. Product presentation or the interruption of heat treatment also had no effect. The inactivation of some of the viruses was greater at higher residual water content but under such conditions the stability of the product was reduced. This virus inactivation step was effective for a wide range of viruses and over the range of process conditions encountered in manufacturing. This demonstrates the robustness of this process step.

  6. Effect of Heat Treatment on Some Mechanical Properties of Laminated Window Profiles Manufactured Using Two Types of Adhesives

    Directory of Open Access Journals (Sweden)

    Tuncer Dilik

    2008-04-01

    Full Text Available The mechanical properties of laminated window profiles manufactured using two types of adhesives were determined. The objective of this study is to evaluate the effects of heat treatment on some mechanical properties of laminated window profiles that manufactured from Kosipo (Entandrophragma candollei Harms. using differenet type adhesives. Commercially produced polyurethane based Macroplast UR 7221 and polyvinyl acetate (PVAc adhesive were used for experiments. The overall test results were found to be comparable to those obtained in the previous studies. Both types of adhesives resulted in significant differences in their strength characteristics at 95% confidence level. Adhesive UR 7221 improved the overall properties of the samples in contrast to PVAc.

  7. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  8. Microelectronics from fundamentals to applied design

    CERN Document Server

    Di Paolo Emilio, Maurizio

    2016-01-01

    This book serves as a practical guide for practicing engineers who need to design analog circuits for microelectronics.  Readers will develop a comprehensive understanding of the basic techniques of analog modern electronic circuit design, discrete and integrated, application as sensors and control and data acquisition systems,and techniques of PCB design.  ·         Describes fundamentals of microelectronics design in an accessible manner; ·         Takes a problem-solving approach to the topic, offering a hands-on guide for practicing engineers; ·         Provides realistic examples to inspire a thorough understanding of system-level issues, before going into the detail of components and devices; ·         Uses a new approach and provides several skills that help engineers and designers retain key and advanced concepts.

  9. Development of 3D modeling technology for manufacturing finned ribbons from heat-resistant steels

    Science.gov (United States)

    Lyashkov, A. A.; Vasil'ev, E. V.; Popov, A. Y.

    2017-06-01

    The process of shaping a workpiece by a tool using the rolling method is, from the geometric point of view, a process of interaction of two conjugate surfaces. The technology of rolling finned stainless steel ribbons is close to the technology of shaping details by cutting. However, the problems of its practical implementation in the well-known papers analyzing this issue are practically not considered. As a result of the analysis of conjugate surfaces profiling methods in relation to the problem, it was concluded that it seems urgent to develop a methodology for the formation of corrugated ribbon based on 3D modeling use. The implementation of this methodology includes the creation of solid models of the product and the tool, as well as computer simulation of their shaping processes using rolling method. So, at the first stage, a 3D model of finned ribbon was developed, which was then used to produce a profile of a rolling tool. The modeling of this profile was carried out on the basis of the proposed software package in the CAD environment. The created theoretical model of the tool profile was replaced from the technological point of view by a rectilinear profile. To carry out the analysis of the obtained results, the inverse shaping problem was solved - according to the corrected profile of the tool, real profile of the corrugated ribbon is obtained. Computer modeling of extruded volumes in the process of shaping was performed. The analysis of qualitative and quantitative parameters of the extruded volumes made it possible to give recommendations on setting the increment of the tool motion parameter. Based on the results of the studies, profile parameters of the roller are assigned for its practical implementation. The proposed methodology, based on 3D-modeling, allowed to develop a technology for manufacturing finned ribbons from heat-resistant steels by rolling with high productivity, accuracy and stability of the sizes obtained.

  10. Carbon Foam Self-Heated Tooling for Out-of-Autoclave Composites Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Touchstone Research Laboratory, Ltd. (Touchstone) has developed a novel and innovative Out-of-Autoclave (OOA) composites manufacturing process with an electrically...

  11. Out-of-autoclave manufacturing of GLARE panels using resistance heating

    NARCIS (Netherlands)

    Muller, B.; Palardy, G.; Teixeira De Freitas, S.; Sinke, J.

    2017-01-01

    Autoclave manufacturing of fibre metal laminates, such as GLARE, is an expensive process.Therefore, there is an increasing interest to find cost effective out-of-autoclave manufacturing processes without diminishing the laminate quality. The aim of this study is to

  12. Interlaced, Nanostructured Interface with Graphene Buffer Layer Reduces Thermal Boundary Resistance in Nano/Microelectronic Systems.

    Science.gov (United States)

    Tao, Lei; Theruvakkattil Sreenivasan, Sreeprasad; Shahsavari, Rouzbeh

    2017-01-11

    Improving heat transfer in hybrid nano/microelectronic systems is a challenge, mainly due to the high thermal boundary resistance (TBR) across the interface. Herein, we focus on gallium nitride (GaN)/diamond interface-as a model system with various high power, high temperature, and optoelectronic applications-and perform extensive reverse nonequilibrium molecular dynamics simulations, decoding the interplay between the pillar length, size, shape, hierarchy, density, arrangement, system size, and the interfacial heat transfer mechanisms to substantially reduce TBR in GaN-on-diamond devices. We found that changing the conventional planar interface to nanoengineered, interlaced architecture with optimal geometry results in >80% reduction in TBR. Moreover, introduction of conformal graphene buffer layer further reduces the TBR by ∼33%. Our findings demonstrate that the enhanced generation of intermediate frequency phonons activates the dominant group velocities, resulting in reduced TBR. This work has important implications on experimental studies, opening up a new space for engineering hybrid nano/microelectronics.

  13. Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment

    Science.gov (United States)

    Bai, J. Y.; Fan, C. L.; Lin, S. B.; Yang, C. L.; Dong, B. L.

    2017-04-01

    2219-Al parts were produced by gas tungsten arc-additive manufacturing and sequentially processed by an especial heat treatment. In order to investigate the effects of heat treatment on its mechanical properties, multiple tests were conducted. Hardness tests were carried out on part scale and layer scale along with tensile tests which were performed on welding and building directions. Results show that compared to conventional casting + T6 2219-Al, the current deposit + T6 2219-Al exhibits satisfying properties with regard to strength but unsatisfying results in plasticity. Additionally, anisotropy is significant. Fractures were observed and the cracks' propagating paths in both directional specimens are described. The effects of heat treatment on the cracks' initiation and propagation were also investigated. Ultimately, a revised formula was developed to calculate the strength of the deposit + T6 2219-Al. The aforementioned formula, which takes into consideration the belt-like porosities-distributing feature, can scientifically describe the anisotropic properties in the material.

  14. Assessing the heat stress of brick-manufacturing units’ workers based on WBGT index in Qom city

    Directory of Open Access Journals (Sweden)

    R. Hajizadeh

    2015-01-01

    Full Text Available Introduction: Heat stress is considered as a serious risk factor to the health and safety of workers in most working environments, especially in outdoor works and jobs that workers are exposed to heat due to the working process. This study aimed to evaluate heat stress among workers of brick-manufacturing units in Qom city based on WBGT index as well as the relationship between WBGT and physiological indicators. .Material and Method: The present study was conducted in 40 brick-manufacturing units in Qom city. WBGT measurements were performed according to ISO7243 standard. Physiological responses of 184 workers (up to 5 people per unit and also atmospheric parameters were measured. The physiological responses included oral temperature, skin temperature, and temperature for the carotid artery of the ear, heart rate, systolic and diastolic blood pressure. Statistical analysis was done using SPSS software version 16. .Result: Mean WBGT index for various brick-manufacturing jobs including firing, manual material handling, working with conveyors, molding, and tempering were 30.8 °C, 26.74 °C 26.58 °C and 24.25 °C, respectively and the average WBGT was estimated 27.98 °C. WBGT levels measured in all units exceeded the level provided in ISO7243 standard. The highest mean WBGT was belonged to kiln section (30.8 °C. The mean WBGT at three heights of head, abdomen and legs were not statistically different (using t-test. The correlation coefficients between mean WBGT and mean oral, skin and ears temperatures were 0.203, 0.319, and 0.490, respectively, with the highest correlation belonged to the carotid arteries of ears. Moreover, WBGT showed no significant association with the mean heart rate, systolic, and diastolic blood pressure (P-value>0.05. Indoor and outdoor WBGT index was significantly different (P-value<0.05. .Conclusion: The level of heat stress in all brick-manufacturing units was higher than the recommended limits, and the workers in kiln

  15. Carbon Foam Self-Heated Tooling for Out-of-Autoclave Composites Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses NASA's need for non-autoclave composites manufacture. The Constellation program, including the Ares V launch vehicle, will require very...

  16. National Center for Advanced Information Components Manufacturing. Program summary report, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, summaries of the technical projects, and key program accomplishments.

  17. Understanding microelectronics a top-down approach

    CERN Document Server

    Maloberti, Franco

    2011-01-01

    The microelectronics evolution has given rise to many modern benefits but has also changed design methods and attitudes to learning. Technology advancements shifted focus from simple circuits to complex systems with major attention to high-level descriptions. The design methods moved from a bottom-up to a top-down approach. For today's students, the most beneficial approach to learning is this top-down method that demonstrates a global view of electronics before going into specifics. Franco Maloberti uses this approach to explain the fundamentals of electronics, such as processing functions,

  18. Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy

    Science.gov (United States)

    Girelli, L.; Tocci, M.; Montesano, L.; Gelfi, M.; Pola, A.

    2017-11-01

    Additive manufacturing of metals is a production process developed in the last few years to realize net shape components with complex geometry and high performance. AlSi10Mg is one of the most widely used aluminium alloys, both in this field and in conventional foundry processes, for its significant mechanical properties combined with good corrosion resistance. In this paper the effect of heat treatment on AlSi10Mg alloy was investigated. Solution and ageing treatments were carried out with different temperatures and times on samples obtained by direct metal laser sintering and gravity casting in order to compare their performance. Microstructural analyses and hardness tests were performed to investigate the effectiveness of the heat treatment. The results were correlated to the sample microstructure and porosity, analysed by means of optical microscopy and density measurements. It was found that, in the additive manufactured samples, the heat treatment can reduce significantly the performance of the alloy also because of the increase of porosity due to entrapped gas during the deposition technique and that the higher the solution temperature the higher the increase of such defects. A so remarkable effect was not found in the conventional cast alloy.

  19. Effects of heat treatment on microstructure and mechanical behaviour of additive manufactured porous Ti6Al4V

    Science.gov (United States)

    Ahmadi, S. M.; Jain, R. K. Ashok Kumar; Zadpoor, A. A.; Ayas, C.; Popovich, V. A.

    2017-12-01

    Titanium and its alloys such as Ti6Al4V play a major role in the medical industry as bone implants. Nowadays, by the aid of additive manufacturing (AM), it is possible to manufacture porous complex structures which mimic human bone. However, AM parts are near net shape and post processing may be needed to improve their mechanical properties. For instance, AM Ti6Al4V samples may be brittle and incapable of withstanding dynamic mechanical loads due to their martensitic microstructure. The aim of this study was to apply two different heat treatment regimes (below and above β-transus) to investigate their effects on the microstructure and mechanical properties of porous Ti6Al4V specimens. After heat treatment, fine acicular α‧ martensitic microstructure was transformed to a mixture of α and β phases. The ductility of the heat-treated specimens, as well as some mechanical properties such as hardness, plateau stress, and first maximum stress changed while the density and elastic gradient of the porous structure remained unchanged.

  20. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    Energy Technology Data Exchange (ETDEWEB)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis

  1. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Chai, Y.C. [Prometheus, Division of Skeletal Tissue Engineering, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems — LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 — PB2450, B-3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Dept. Rheumatology, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20 V anodizing time: 30 min to 3 h) are used for anodizing porous titanium structures that were later heat treated at 500 °C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55 nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500 °C improve the cell culture response of porous titanium

  2. Electrowetting-based microfluidic operations on rapid-manufactured devices for heat pipe applications

    Science.gov (United States)

    Hale, Renee S.; Bahadur, Vaibhav

    2017-07-01

    The heat transport capacity of traditional heat pipes is limited by the capillary pressure generated in the internal wick that pumps condensate to the evaporator. Recently, the authors conceptualized a novel heat pipe architecture, wherein wick-based pumping is replaced by electrowetting (EW)-based pumping of microliter droplets in the adiabatic section. An electrowetting heat pipe (EHP) can overcome the capillary limit to heat transport capacity and enable compact, planar, gravity-insensitive, and ultralow power consumption heat pipes that transport kiloWatt heat loads over extended distances. This work develops a novel technique for rapid, scalable fabrication of EW-based devices and studies critical microfluidic operations underlying the EHP, with the objective of predicting the key performance parameters of the EHP. Devices are fabricated on a printed circuit board (PCB) substrate with mechanically-milled electrodes, and a removable polyimide dielectric film. The first set of experiments uncovers the maximum channel gap (1 mm) for reliable EW-based pumping; this parameter determines the heat transport capacity of the EHP, which scales linearly with the channel gap. The second set of experiments uncovers the maximum channel gap (375 microns) at which EW voltages can successfully split droplets. This is an important consideration which ensures EHP operability in the event of unintentional droplet merging. The third set of experiments demonstrate and study EW-induced droplet generation from an open-to-air reservoir, which mimics the interface between the condenser and adiabatic sections of the EHP. The experimental findings predict that planar, water-based EHPs with a (10 cm by 4 mm) cross section can transport 1.6 kW over extended distances (>1 m), with a thermal resistance of 0.01 K W-1.

  3. Heteromagnetic Microelectronics Microsystems of Active Type

    CERN Document Server

    Ignatiev, Alexander A

    2010-01-01

    Heteromagnetic Microelectronics: Microsystems of Active Type, by Alexander A. Ignatiev of Saratov State University and Alexander V. Lyashenko of JSC Research Institute Tantal in Russia, offers a very detailed and specialized account of the author's research and development of heteromagnetic materials and devices. The book is based on original material from the author's programs of designing heteromagnetic microsystems. Polyvalent, multiple parameter magneto-semiconductor microsystems are described and the book reports on extensive experimental and theoretical results of research in a range of frequencies up to 1000 GHz. For the first time the direction of satisfying criteria, and burst technologies, which can make a subject of discovery, are discussed in great detail. This book is intended for post-graduate students and researchers specializing in the design and application of heteromagnetic materials and devices. Alexander A. Ignatiev is author of Magnetoelectronics of Microwaves and Extremely High Frequenci...

  4. Circuit design of VLSI for microelectronic coordinate-sensitive detector for material element analysis

    Directory of Open Access Journals (Sweden)

    Sidorenko V. P.

    2012-08-01

    Full Text Available There has been designed, manufactured and tested a VLSI providing as a part of the microelectronic coordinate-sensitive detector the simultaneous elemental analysis of all the principles of the substance. VLSI ensures the amplifier-converter response on receiving of 1,6.10–13 С negative charge to its input. Response speed of the microcircuit is at least 3 MHz in the counting mode and more than 4 MHz in the counter information read-out mode. The power consumption of the microcircuit is no more than 7 mA.

  5. Additive manufacturing of Co-Cr-Mo alloy: Influence of heat treatment on microstructure, tribological and electrochemical properties

    Directory of Open Access Journals (Sweden)

    Kedar Mallik Mantrala

    2015-03-01

    Full Text Available Co-Cr-Mo alloy samples, fabricated using Laser Engineered Net Shaping – a laser based additive manufacturing technology, have been subjected heat treatment to study its influence on microstructure, wear and corrosion properties. Following L9 Orthogonal array of Taguchi method, the samples were solutionized at 1200oC for 30, 45 and 60 min followed by water quenching. Ageing treatment was done at 815oC and 830oC for 2, 4 and 6 h. Heat treated samples were evaluated for their microstructure, hardness, wear resistance and corrosion resistance. The results revealed that highest hardness of 512 ± 58 Hv and wear rate of 0.90 ± 0.14 × 10-4 mm3/N.m can be achieved with appropriate post-fabrication heat treatment. ANOVA and grey relational analysis on the experimental data revealed that the samples subjected to solution treatment for 60 min, without ageing, exhibit best combination of hardness, wear and corrosion resistance.

  6. Effect of Heat Treatment on Microstructure and Mechanical Properties of Stellite 12 Fabricated by Laser Additive Manufacturing

    Science.gov (United States)

    Ren, Bo; Zhang, Min; Chen, Changjun; Wang, Xiaonan; Zou, Tao; Hu, Zengrong

    2017-11-01

    Microstructure evolution and wear resistance of Stellite 12 produced by laser additive manufacturing were studied in untreated and heat-treated conditions. In untreated conditions, cobalt matrix dendrites and inter-dendritic eutectic carbides were the primary microstructure, blocky and lamellar eutectic carbides can be found, and M7C3 and M23C6 are the primary carbides. Heat treatment can modify the microstructure of this alloy. Primary carbides were dissolved into the cobalt matrix after solution treatment. Aging treatment resulted in the precipitation of carbides, the transformation of M7C3 into M23C6 carbides, and the increase in microhardness. Solution and aging treatment can also cause the precipitation of carbides, but the morphology and distribution of carbides were absolutely different. The wear resistance of untreated samples at room temperature (RT) and 600 °C is better than that at 200 and 400 °C due to the high hardness at RT and the formation of oxide film at 600 °C. The wear resistance of heat-treated samples was tested at 600 °C; it was dominated by the formation and flake-off of oxide film. The sample that underwent solution plus aging treatment has a superior wear resistance.

  7. Future trends in microelectronics journey into the unknown

    CERN Document Server

    Xu, Jimmy; Zaslavsky, Alexander

    2016-01-01

    Presents the developments in microelectronic-related fields, with comprehensive insight from a number of leading industry professionals. The book presents the future developments and innovations in the developing field of microelectronics. The book’s chapters contain contributions from various authors, all of whom are leading industry professionals affiliated either with top universities, major semiconductor companies, or government laboratories, discussing the evolution of their profession. A wide range of microelectronic-related fields are examined, including solid-state electronics, material science, optoelectronics, bioelectronics, and renewable energies. The topics covered range from fundamental physical principles, materials and device technologies, and major new market opportunities.

  8. Robust design of microelectronics assemblies against mechanical shock, temperature and moisture effects of temperature, moisture and mechanical driving forces

    CERN Document Server

    Wong, E-H

    2015-01-01

    Robust Design of Microelectronics Assemblies Against Mechanical Shock, Temperature and Moisture discusses how the reliability of packaging components is a prime concern to electronics manufacturers. The text presents a thorough review of this important field of research, providing users with a practical guide that discusses theoretical aspects, experimental results, and modeling techniques. The authors use their extensive experience to produce detailed chapters covering temperature, moisture, and mechanical shock induced failure, adhesive interconnects, and viscoelasticity. Useful progr

  9. Effect heating dwell time has on the retention of heavy metals in the structure of lightweight aggregates manufactured from wastes.

    Science.gov (United States)

    González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodríguez, Luis; Pérez Lorenzo, Agripino; Fernández Torío, María; Tejado Ramos, Juan José; Corvinos, María Dolores; Muro, Carlos

    2017-08-10

    The main objective of this paper was to study how effective thermal treatment is in the retention of different heavy metals (HMs) within the structure of artificial lightweight aggregates (LWAs). These LWAs were manufactured by washing aggregate sludge and sewage sludge. The consequence of increasing the heating dwell time whilst manufacturing these LWAs was also determined. Partitioning of the HMs (Cr, Ni, Cu, Zn, Cd and Pb) was studied by means of the optimized BCR sequential extraction procedure. Then, the leaching ratio (LRx,y) was calculated. Thermal treatment was totally effective for immobilizing most of the elements studied except for a part of the non-residual Zn and Cd fraction which could volatilize, and the fractions of Pb which were water- and acid-soluble, weakly adsorbed, exchangeable, and oxidable. These were more highly concentrated in the LWAs than in the initial waste mixture. The effect of increasing heating dwell time on the retention of heavy metals in the LWAs depended on both the chemical element studied and the heating dwell time. This study is very important since certain rises in the heating dwell time caused a decrease in retention of some specific heavy metals in the LWAs. BCR-SEP: optimized BCR sequential extraction procedure; b.d.l: below the detection limit; F1: weakly adsorbed, exchangeable and water- and acid- soluble fraction; F2: reducible fraction; F3: oxidable fraction; F4: residual fraction; HM: heavy metal; ICP-MS: inductively coupled plasma-mass spectroscopy; LOI: loss on ignition; LWA: lightweight aggregate; LWA-5: lightweight aggregate sintered for 5 min; LWA-10: lightweight aggregate sintered for 10 min; LWA-20: lightweight aggregate sintered for 20 min; LWA-30: lightweight aggregate sintered for 30 min; LRx,y: leaching ratio of the element x in the fraction y; n.e: not established; S: compressive strength; SS: sewage sludge; WA24h: water absorption after 24 hours; WAS: washing aggregate sludge; W75S25: mixture of

  10. Virtual thermo-mechanical prototyping of microelectronics devices

    NARCIS (Netherlands)

    Van Driel, W.D.

    2007-01-01

    Microelectronics have pervaded our lives for the past fifty years, with massive penetration into health, mobility, safety and security, communications, education, entertainment and virtually every aspect of human lives. The main technology drivers that enabled this expansion are miniaturization and

  11. Microelectronics and nanoelectronics trends, and applications to HEP instrumentation

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    Lecture 1 : Microelectronics and HEP instrumentation CMOS technology has been the leading technology in microelectronics for more that 30 years thanks to its outstanding capability to miniaturization and low power consumption. A brief history of the microelectronics semiconductor industry is presented with applications for LEP and LHC experiments. Lecture 2: Future trends in microelectronics and nanoelectronics Trends in miniaturization point to the fabrication of ULSI nanoscale CMOS circuits by the end of the decade. Device issues and quantum effects in nanoscale MOS transistor will be discussed. Beyond CMOS technology, several technology avenues based on nanotechnology are under investigation. We will present some promising nanoelectronic devices and circuits based on Single Electron Tunneling (SET) transistor, nanowire, quantum dot and carbon nanotubes. Lecture 3: Monolithic pixel detectors Microvertex detectors for particle physics experiments currently uses hybrid silicon pixel detector. Novel emerging m...

  12. Proposal to negotiate, without competitive tendering, an order for the supply of copper tubes for the manufacture of heat exchanger tubes for the LHC

    CERN Document Server

    European Organization for Nuclear Research

    2002-01-01

    This document concerns the supply of 1 500 copper tubes for the manufacture of heat exchanger tubes for the LHC. The Finance Committee is invited to agree to the negotiation, without competitive tendering, of an order with OUTOKUMPU (FI) for the supply of copper tubes for the manufacture of heat exchanger tubes for the LHC for an amount of 710 000 Swiss francs, subject to revision according to the copper index on the London Metal Exchange. The firm has indicated the following distribution by country of the order value covered by this adjudication proposal: FI - 100%.

  13. Building a Library for Microelectronics Verification with Topological Constraints

    Science.gov (United States)

    2017-03-01

    Building a Library for Microelectronics Verification with Topological Constraints Leleia A. Hsia 513 th Electronic Warfare Squadron Eglin...AFB, CA 90245 Derrick.Langley@us.af.mil Abstract: This paper proposes a methodology to build a library for gate-level microelectronics verification...public release; distribution unlimited. 73 Preliminary Library Of the five proposed circuits in Table 1, (a)-(d) are adapted from [18]. Table 1

  14. EMC problems in microelectronic sensor packaging

    Science.gov (United States)

    Gandelli, Alessandro; Grimaccia, Francesco; Mussetta, Marco; Zich, Riccardo E.

    2005-02-01

    Microelectronics for environmental monitoring (microsensors, etc.) present a variety of power supply voltages and operative frequencies from one side and are subject to interference and noise from the external environment on the other. All these aspects lead accuracy and reliability of those circuits devoted to physical measurements a difficult compromise for the designer. Sensors implemented in the newest generation of networks are realized by integrating advanced analog features with digital processing capabilities. The analog blocks, above all, where the processing related to the signal provided by the active element is performed, show in the most substantial way this problem related to EMC inadequacy. In order to restore the top-quality features it is necessary to arrange the best shielding design for the blocks more influenced by interference and noise. So the work of the designer leads to the analysis, simulation and realization of localized and global shields inside and on the packaging. The problem related to the definition of EMC role in designing such shields is very substantial for environmental applications, where performance leads to improve and optimize the traditional designing techniques. The proposal and consequent application of general criteria devoted to define specific needs for shielding is the first step of a logical development oriented to the mature industrial production of efficient and reliable devices able to maintain their performance independently by the influence of external and internal noise.

  15. Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Additively Manufactured AISI H13 Tool Steel

    Science.gov (United States)

    Chen, ChangJun; Yan, Kai; Qin, Lanlan; Zhang, Min; Wang, Xiaonan; Zou, Tao; Hu, Zengrong

    2017-11-01

    The effect of heat treatment on microstructure and mechanical properties (microhardness, wear resistance and impact toughness) of laser additively manufactured AISI H13 tool steel was systemically investigated. To understand the variation of microstructure and mechanical properties under different heat treatments, the as-deposited samples were treated at 350, 450, 550, 600 and 650 °C/2 h, respectively. Microstructure and phase transformation were investigated through optical microscopy, scanning electron microscope and transmission electron microscope. The mechanical properties were characterized by nanoindentation tests, Charpy tests and high-temperature wear tests. The microstructure of as-deposited samples consisted of martensite, ultrafine carbides and retained austenite. After the tempering treatment, the martensite was converted into tempered martensite and some fine alloy carbides which precipitated in the matrix. When treated at 550 °C, the greatest hardness and nanohardness were 600 HV0.3 and 6119.4 MPa due to many needle-like carbides precipitation. The value of hardness increased firstly and then decreased when increasing the temperature. When tempered temperatures exceeded 550 °C, the carbides became coarse, and martensitic matrix recrystallized at the temperature of 650 °C. The least impact energy was 6.0 J at a temperature of 550 °C. Samples tempered at 550 °C had larger wear volume loss than that of others. Wear resistances of all samples under atmospheric condition at 400 °C showed an oxidation mechanism.

  16. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    Science.gov (United States)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  17. Effect of Heat Treatment on Microstructure and Impact Toughness of Ti-6Al-4V Manufactured by Selective Laser Melting Process

    Directory of Open Access Journals (Sweden)

    Lee K.-A.

    2017-06-01

    Full Text Available This study manufactured Ti-6Al-4V alloy using one of the powder bed fusion 3D-printing processes, selective laser melting, and investigated the effect of heat treatment (650°C/3hrs on microstructure and impact toughness of the material. Initial microstructural observation identified prior-β grain along the building direction before and after heat treatment. In addition, the material formed a fully martensite structure before heat treatment, and after heat treatment, α and β phase were formed simultaneously. Charpy impact tests were conducted. The average impact energy measured as 6.0 J before heat treatment, and after heat treatment, the average impact energy increased by approximately 20% to 7.3 J. Fracture surface observation after the impact test showed that both alloys had brittle characteristics on macro levels, but showed ductile fracture characteristics and dimples at micro levels.

  18. Experiences with integral microelectronics on smart structures for space

    Science.gov (United States)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically

  19. Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions in additive manufacturing

    Science.gov (United States)

    Zohdi, T. I.

    2015-10-01

    One key aspect of many additive manufacturing processes is the deposition of heated mixtures of particulate materials onto surfaces, which then bond and cool, leading to complex microstructures and possible residual stresses. The overall objective of this work is to construct a straightforward computational approach that researchers in the field can easily implement and use as a numerically-efficient simulation and design tool. Specifically because multifield coupling is present, a recursive, staggered, temporally-adaptive, finite difference time domain scheme is developed to resolve the internal microstructural thermal and mechanical fields, accounting for the simultaneous elasto-plasticity and damage. The time step adaptation allows the numerical scheme to iteratively resolve the changing physical fields by refining the time-steps during phases of the process when the system is undergoing large changes on a relatively small time-scale and can also enlarge the time-steps when the processes are relatively slow. The spatial discretization grids are uniform and dense. The deposited microstructure is embedded into spatial discretization. The regular grid allows one to generate a matrix-free iterative formulation which is amenable to rapid computation and minimal memory requirements, making it ideal for laptop computation. Numerical examples are provided to illustrate the approach. This formulation is useful for material scientists who seek ways to deposit such materials while simultaneously avoiding inadvertent excessive residual stresses.

  20. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  1. High Efficiency Microchannel Diamond Heat Sinks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While absolute power levels in microelectronic devices are relatively modest (a few tens to a few hundred watts), heat fluxes can be significant (~50 W/cm2 in...

  2. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment.

    Science.gov (United States)

    Lin, Jianjun; Lv, Yaohui; Liu, Yuxin; Sun, Zhe; Wang, Kaibo; Li, Zhuguo; Wu, Yixiong; Xu, Binshi

    2017-05-01

    Plasma arc additive manufacturing (PAM) is a novel additive manufacturing (AM) technology due to its big potential in improving efficiency, convenience and being cost-savings compared to other AM processes of high energy bea\\m. In this research, several Ti-6Al-4V thin walls were deposited by optimized weld wire-feed continuous PAM process (CPAM), in which the heat input was gradually decreased layer by layer. The deposited thin wall consisted of various morphologies, which includes epitaxial growth of prior β grains, horizontal layer bands, martensite and basket weave microstructure, that depends on the heat input, multiple thermal cycles and gradual cooling rate in the deposition process. By gradually reducing heat input of each bead and using continuous current in the PAM process, the average yield strength (YS), ultimate tensile strength (UTS) and elongation reach about 877MPa, 968MPa and 1.5%, respectively, which exceed the standard level of forging. The mechanical property was strengthened and toughened due to weakening the aspect ratio of prior β grains and separating nano-dispersoids among α lamellar. Furthermore, this research demonstrates that the CPAM process has a potential to manufacture or remanufacture in AM components of metallic biomaterials without post-processing heat treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Microelectronics Revolution And The Impact Of Automation In The New Industrialized Countries

    Science.gov (United States)

    Baranauskas, Vitor

    1984-08-01

    A brief review of some important historical points on the origin of the Factories and the Industrial Revolution is presented with emphasis in the social problems related to the automation of the human labor. Until the World War I, the social changes provoked by the Industrial Revolution caused one division of the World in developed and underdeveloped countries. After that period, the less developed nations began their industrialization mainly through the Multinationals Corporations (MC). These enterprises were very important to the production and exportation of utilities and manufactures in general, mainly in those products which required intensive and direct human labor. At present time, with the pervasiveness of microelectronics in the automation, this age seems to reaching an end because all continous processes in industry tend economicaly toward total automation. This fact will cause a retraction in long-term investments and, beyond massive unemployment, there is a tendency for these MC industries to return to their original countries. The most promising alternative to avoid these events, and perhaps the unique, is to incentive an autonomous development in areas of high technology, as for instance, the microelectronics itself.

  4. Rainbows and ferrofilms - smart materials for hybrid microelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Haertling, G.H. [Clemson Univ., SC (United States)

    1996-12-31

    This review paper describes the materials, processing, properties and applications of the newly developed ultra-high displacement Rainbows and thick/thin ferroelectric Ferrofilms. Their applicability to hybrid and fully integrated microelectronics is discussed in regard to each of these areas of concern.

  5. Organic transistors in optical displays and microelectronic applications

    NARCIS (Netherlands)

    Gelinck, G.H.; Heremans, P.; Nomoto, K.; Anthopoulos, T.D.

    2010-01-01

    Organic thin-film transistors (OTFTs) offer unprecedented opportunities for implementation in a broad range of technological applications spanning from large-volume microelectronics and optical displays to chemical and biological sensors. In this Progress Report, we review the application of organic

  6. Manufacturing of small-scale mock-ups and of a semi-prototype of the ITER Normal Heat Flux First Wall

    Energy Technology Data Exchange (ETDEWEB)

    Banetta, S., E-mail: Stefano.banetta@f4e.europa.eu [Fusion for Energy, 2 Carrer Josep Pla, 08019 Barcelona (Spain); Zacchia, F.; Lorenzetto, P. [Fusion for Energy, 2 Carrer Josep Pla, 08019 Barcelona (Spain); Bobin-Vastra, I.; Boireau, B.; Cottin, A. [AREVA NP, 30 bd de l’Industrie, 71205 Le Creusot (France); Mitteau, R.; Eaton, R.; Raffray, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-10-15

    This paper describes the manufacturing development and fabrication of reduced scale ITER First Wall (FW) mock-ups of the Normal Heat Flux (NHF) design, including a “semi-prototype” with a dimension of 305 mm × 660 mm, corresponding to about 1/6 of a full-scale panel. The activity was carried out in the framework of the pre-qualification of the European Domestic Agency (EU-DA or F4E) for the supply of the European share of the ITER First Wall. The hardware consists of three Upgraded (2 MW/m{sup 2}) Normal Heat Flux (U-NHF) small-scale mock-ups, bearing 3 beryllium tiles each, and of one Semi-Prototype, representing six full-scale fingers and bearing a total of 84 beryllium tiles. The manufacturing process makes extensive use of Hot Isostatic Pressing, which was developed over more than a decade during ITER Engineering Design Activity phase. The main manufacturing steps for the semi-prototype are described, with special reference to the lessons learned and the implications impacting the future fabrication of the full-scale prototype and the series which consists of 218 panels plus spares. In addition, a “tile-size” mock-up was manufactured in order to assess the performance of larger tiles. The use of larger tiles would be highly beneficial since it would allow a significant reduction of the panel assembly time.

  7. Assessment of the diffusion battery for determining low concentration submicron aerosol distributions in microelectronics clean rooms

    Energy Technology Data Exchange (ETDEWEB)

    Locke, B.R.; Donovan, R.P.; Ensor, D.S.; Caviness, A.L.

    Traditional particle size determinations for aerosols below 0.1 ..mu..m diameter have been made by both electrical mobility and diffusional methods. Difficulties in determining particle size spectra in the sub-0.1-..mu..m diameter range arise when air from microelectronics manufacturing cleanrooms is sampled because of the low concentration of particulates and the low sampling rates of currently available instruments. Previously reported data indicate that the differential electrical mobility method does not provide reliable aerosol distributions for concentrations below about 1 particle/cm/sup 3/. Laboratory and operating cleanroom measurements with the collimated hole diffusion battery gave particle distributions spanning the range from about 0.001 particles/cm/sup 3/ to 1 x 10/sup 5/ particles/cm/sup 3/. The low concentration particle spectra in cleanrooms at rest showed peak aerosol concentrations at about 0.1 ..mu..m with few particles at sizes below this peak.

  8. Growth and characterization of novel thin films for microelectronic applications

    Science.gov (United States)

    Vahidi, Mahmoud

    I studied the properties of novel Co2FeAl0.5Si 0.5 (CFAS), ZnGeAs2, and FeS2 (pyrite) thin films for microelectronic applications ranging from spintronic to photovoltaic. CFAS is a half metal with theoretical spin polarization of 100%. I investigated its potential as a spin injector, for spintronic applications, by studying the critical steps involved in the injection of spin polarized electron populations from tunnel junctions containing CFAS electrodes. Epitaxial CFAS thin films with L21 structure and saturation magnetizations of over 1200 emu/cm 3 were produced by optimization of the sputtering growth conditions. Point contact Andreev reflection measurements show that the spin polarization at the CFAS electrode surface exceeds 70%. Analyses of the electrical properties of tunnel junctions with a superconducting Pb counter-electrode indicate that transport through native Al oxide barriers is mostly from direct tunneling, while that through the native CFAS oxide barriers is not. ZnGeAs2 is a semiconductor comprised of only inexpensive and earth-abundant elements. The electronic structure and defect properties are similar in many ways to GaAs. Thus, in theory, efficient solar cells could be made with ZnGeAs2 if similar quality material to that of GaAs could be produced. To understand the thermochemistry and determine the rate limiting steps of ZnGeAs2 thin-film synthesis, the (a) thermal decomposition rate and (b) elemental composition and deposition rate of films were measured. It is concluded that the ZnGeAs2 thin film synthesis is a metastable process with an activation energy of 1.08+/-0.05 eV for the kinetically-limited decomposition rate and an evaporation coefficient of ~10-3. The thermochemical analysis presented here can be used to predict optimal conditions of ZnGeAs2 physical vapor deposition and thermal processing. Pyrite (FeS2) is another semiconductor that has tremendous potential for use in photovoltaic applications if high quality materials could be

  9. A four-channel microelectronic system for neural signal regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Xie Shushan; Wang Zhigong; Li Wenyuan [Institute of RF- and OE-ICs, Southeast University, Nanjing 210096 (China); Lue Xiaoying; Pan Haixian, E-mail: zgwang@seu.edu.c [State Key Laboratory of Bio-Electronics, Southeast University, Nanjing 210096 (China)

    2009-12-15

    This paper presents a microelectronic system which is capable of making a signal record and functional electric stimulation of an injured spinal cord. As a requirement of implantable engineering for the regeneration microelectronic system, the system is of low noise, low power, small size and high performance. A front-end circuit and two high performance OPAs (operational amplifiers) have been designed for the system with different functions, and the two OPAs are a low-noise low-power two-stage OPA and a constant-g{sub m} RTR input and output OPA. The system has been realized in CSMC 0.5-{mu}m CMOS technology. The test results show that the system satisfies the demands of neuron signal regeneration. (semiconductor integrated circuits)

  10. Life cycle assessment applied to the sector of microelectronic devices

    Science.gov (United States)

    Matarazzo, Agata; Ingrao, Carlo; Clasadonte, Maria Teresa

    2016-07-01

    This work is about the application of LCA to the ends of the environmental assessment of pure-silicon wafers production. The input-data quantification is realized studying two microelectronic devices and presenting schematically tables and graphs, to be easily interpreted. This will allow help the reader to individuate, clearly and immediately, the materials flows and the relationships among the different steps of the production process. The material flows, in terms of raw materials use and energy consumption, were studied using the data provided by a firm involved in the microelectronic device production field. The two devices environmental analysis was developed considering potential effects such as Acidification, Eutrophication, Ozone reduction, Global warming, Ozone photochemical formation, Human Toxicity.

  11. Insulation for sanitary and heating systems. Manufacturing of elastomer insulation materials; Daemmung von Anlagen im Sanitaer- und Heizungsbereich. Was ist bei der Verarbeitung von elastomeren Daemmstoffen zu beachten?

    Energy Technology Data Exchange (ETDEWEB)

    Helms, H.; Weber, M. [Armacell (Germany)

    2001-12-01

    The following article presents the insulation of sanitary and heating systems and what is mentionable. Elastomer materials like from manufacturer SH/Armaflex offer good physical properties and due to their extraordinary flexibility are installed properly and quickly. [German] Bei Daemmungen von Anlagen im Sanitaer- und Heizungsbereich sind einige grundsaetzliche Dinge zu beachten, die im folgenden Artikel dargestellt werden. Elastomere Daemmstoffe, wie das vom Hersteller angebotene Produkt SH/Armaflex, bieten gute physikalischtechnische Werte und sind aufgrund ihrer ausserordentlichen Flexibilitaet sauber und schnell zu verarbeiten. (orig.)

  12. Microelectronic Spare and Repair Part Status Analysis for the Multiple Launch Rocket System (MLRS)

    National Research Council Canada - National Science Library

    Maddux, Gary

    1999-01-01

    .... IOD required management and engineering support In performing microelectronic technology and availability assessments for the impact of nonavailability on the Multiple Launch Rocket System (MLRS...

  13. Microelectronic Status Analysis and Secondary Part Procureability Assessment of the THAAD Weapon System

    National Research Council Canada - National Science Library

    Maddux, Gary

    1999-01-01

    The Industrial Operations Division (IOD), SEPD, RDEC, AMCOM has the mission and function of providing microelectronic technology assessments, and producibility and supportability analyses for the THAAD weapon system...

  14. Microelectronic Status Analysis and Secondary Part Procureability Assessment of the THAAD Weapon System

    National Research Council Canada - National Science Library

    Maddux, Gary

    1999-01-01

    AMCOM required engineering support in performing microelectronic technology and availability assessments for several hundred items and in assessing the impact of nonavailability on the THAAD weapon system...

  15. Using SDI-12 with ST microelectronics MCU's

    Energy Technology Data Exchange (ETDEWEB)

    Saari, Alexandra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hinzey, Shawn Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Frigo, Janette Rose [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Proicou, Michael Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Borges, Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-03

    ST Microelectronics microcontrollers and processors are readily available, capable and economical processors. Unfortunately they lack a broad user base like similar offerings from Texas Instrument, Atmel, or Microchip. All of these devices could be useful in economical devices for remote sensing applications used with environmental sensing. With the increased need for environmental studies, and limited budgets, flexibility in hardware is very important. To that end, and in an effort to increase open support of ST devices, I am sharing my teams' experience in interfacing a common environmental sensor communication protocol (SDI-12) with ST devices.

  16. BAY 81-8973, a full-length recombinant factor VIII: Human heat shock protein 70 improves the manufacturing process without affecting clinical safety.

    Science.gov (United States)

    Maas Enriquez, Monika; Thrift, John; Garger, Stephen; Katterle, Yvonne

    2016-11-01

    BAY 81-8973 is a full-length, unmodified recombinant human factor VIII (FVIII) approved for the treatment of hemophilia A. BAY 81-8973 has the same amino acid sequence as the currently marketed sucrose-formulated recombinant FVIII (rFVIII-FS) product and is produced using additional advanced manufacturing technologies. One of the key manufacturing advances for BAY 81-8973 is introduction of the gene for human heat shock protein 70 (HSP70) into the rFVIII-FS cell line. HSP70 facilitates proper folding of proteins, enhances cell survival by inhibiting apoptosis, and potentially impacts rFVIII glycosylation. HSP70 expression in the BAY 81-8973 cell line along with other manufacturing advances resulted in a higher-producing cell line and improvements in the pharmacokinetics of the final product as determined in clinical studies. HSP70 protein is not detected in the harvest or in the final BAY 81-8973 product. However, because this is a new process, clinical trial safety assessments included monitoring for anti-HSP70 antibodies. Most patients, across all age groups, had low levels of anti-HSP70 antibodies before exposure to the investigational product. During BAY 81-8973 treatment, 5% of patients had sporadic increases in anti-HSP70 antibody levels above a predefined threshold (cutoff value, 239 ng/mL). No clinical symptoms related to anti-HSP70 antibody development occurred. In conclusion, addition of HSP70 to the BAY 81-8973 cell line is an innovative technology for manufacturing rFVIII aimed at improving protein folding and expression. Improved pharmacokinetics and no effect on safety of BAY 81-8973 were observed in clinical trials in patients with hemophilia A. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  18. National Center for Advanced Information Components Manufacturing. Program summary report, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, program history, summaries of the technical projects, and key program accomplishments.

  19. Effect of Heat Treatment on the Microstructure and Tensile Deformation Behavior of Oxide Dispersion Strengthened Alloys Manufactured by Complex Milling Process

    Directory of Open Access Journals (Sweden)

    Kim Y.-K.

    2017-06-01

    Full Text Available This study attempted to manufacture an ODS alloy by combining multiple milling processes in mechanical alloying stage to achieve high strength and fracture elongation. The complex milling process of this study conducted planetary ball milling, cryogenic ball milling and drum ball milling in sequential order, and then the microstructure and tensile deformation behavior were investigated after additional heat treatment. The oxide particles distributed within the microstructure were fine oxide particles of 5~20 nm and coarse oxide particles of 100~200 nm, and the oxide particles were confirmed to be composed of Cr, Ti, Y and O. Results of tensile tests at room temperature measured yield strength, tensile strength and elongation as 1320 MPa, 2245 MPa and 4.2%, respectively, before heat treatment, and 1161 MPa, 2020 MPa and 5.5% after heat treatment. This results indicate that the ODS alloy of this study gained very high strengths compared to other known ODS alloys, allowing greater plastic zones.

  20. Development of Technology and Equipment of the Automated Laser Welding for Manufacturing Heat Exchanger Details of Marine Engines

    Directory of Open Access Journals (Sweden)

    Shelyagin, V.D.

    2014-09-01

    Full Text Available Based on the developed automated laser welding technology for flat tubes of copper-nickel alloys laser welding complex technological equipment, which can be applied on the enterprises of machine building, aerospace, shipbuilding and automobile industries, was designed and created. To control the integrity of welded flat tubes a technique, which consists in testing sample pressure and finding defective sections by laser interferometry in the automated mode, was developed. Specialized welding head was designed and manufactured for the industrial use of the developed laser welding technology.

  1. Heat

    CERN Document Server

    Lawrence, Ellen

    2016-01-01

    Is it possible to make heat by rubbing your hands together? Why does an ice cube melt when you hold it? In this title, students will conduct experiments to help them understand what heat is. Kids will also investigate concepts such as which materials are good at conducting heat and which are the best insulators. Using everyday items that can easily be found around the house, students will transform into scientists as they carry out step-by-step experiments to answer interesting questions. Along the way, children will pick up important scientific skills. Heat includes seven experiments with detailed, age-appropriate instructions, surprising facts and background information, a "conclusions" section to pull all the concepts in the book together, and a glossary of science words. Colorful, dynamic designs and images truly put the FUN into FUN-damental Experiments.

  2. The point of view of a heat exchangers manufacturer; Le point de vue d`un fabricant d`echangeurs

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, A.; Jurkowski, R.; Meziani, M.

    1996-12-31

    This paper reports on a comparative study of the thermal performances of a RKM 200 refrigerating machinery tested with the R22, R134a, R404A and R407C refrigerants. The aim of this study was to compare the thermal performances of new fluids in identical functioning conditions and to analyze the behaviour of the two-phase exchange coefficient with respect to the mass velocity and to the heat flux. (J.S.)

  3. Particle LET spectra from microelectronics packaging materials subjected to neutron and proton irradiation

    Science.gov (United States)

    Browning, J. S.; Holtkamp, D. B.

    1988-12-01

    Cumulative fractions for LET spectra were measured for particles ejected from microelectronics packaging materials subjected to neutron and proton irradiation. The measurements for the neutron irradiation compare well with Monte Carlo theoretical calculations. The spectra can be used to access microelectronics vulnerabilities in strategic-nuclear- weapon, space-trapped, and neutral-beam directed-energy particle environments.

  4. Thermal impedance of multi-finger microelectronic structures: exact analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Vintrou, Sebastien; Laraqi, Najib; Bairi, Abderrahmane, E-mail: nlaraqi@u-paris10.f, E-mail: nlaraqi@gmail.co [Universite Paris Ouest, Laboratoire Thermique Interfaces Environnement (TIE), EA 4415 PST Ville d' Avray, Departement GTE, 50 Rue de Sevres, F92410 Ville d' Avray (France)

    2009-12-21

    An exact analytical expression for the complex thermal impedance Z of multi-finger microelectronic components is presented in this paper. The integral transform technique has been used to obtain this expression and solve the three dimensional heat conduction equation directly in the frequency domain. Calculations were first performed for a single-finger on a single-layer structure in order to compare the results with those available in the literature and hence validate the solution. Generally, the comparison shows good agreement between our results and those given in most publications. When the structures are composed of several layers, the thermal impedance changes with the thermal conductivities and the thicknesses of the different layers. It is also affected by the thermal contact resistance between the layers. Some results illustrate the influence of these parameters. The case of a multi-finger component is then treated and the influence of distances between fingers is investigated. For all cases, the Nyquist diagram (i.e. Im(Z) versus Re(Z) for different pulsation values {omega}) is plotted. Mainly two zones are observed: one for the high frequencies and the other for the lower ones. The substrate dimensions are found to largely influence the scale of the low frequency zone whereas the distance between the fingers influences the higher one. Finally, the solution is applied to a multi-finger device in contact with a heat sink.

  5. Fundamentals of semiconductor manufacturing and process control

    CERN Document Server

    May, Gary S

    2006-01-01

    A practical guide to semiconductor manufacturing from process control to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Control covers all issues involved in manufacturing microelectronic devices and circuits, including fabrication sequences, process control, experimental design, process modeling, yield modeling, and CIM/CAM systems. Readers are introduced to both the theory and practice of all basic manufacturing concepts. Following an overview of manufacturing and technology, the text explores process monitoring methods, including those that focus on product wafers and those that focus on the equipment used to produce wafers. Next, the text sets forth some fundamentals of statistics and yield modeling, which set the foundation for a detailed discussion of how statistical process control is used to analyze quality and improve yields. The discussion of statistical experimental design offers readers a powerful approach for systematically varying controllable p...

  6. A Dependable Microelectronic Peptide Synthesizer Using Electrode Data

    Directory of Open Access Journals (Sweden)

    H. G. Kerkhoff

    2008-01-01

    Full Text Available The research in the area of microelectronic fluidic devices for biomedical applications is rapidly growing. As faults in these devices can have serious personal implications, a system is presented which includes fault tolerance with respect to the synthesized biomaterials (peptides. It can employ presence and purity detection of peptide droplets via current (charge tests of control electrodes or impedance (phase measurements using direct sensing electrodes near the peptide collector area. The commercial multielectrode array performs better in pure and impure detection of peptides in impedance and phase. Our two-electrode X-MEF case shows slightly poorer results. In both cases the phase is the best choice for contents detection. If there are presence or purity problems, the location is marked, and repeated peptide synthesis at another collector site is initiated.

  7. Optical packaging activities at Institute of Microelectronics (IME), Singapore

    Science.gov (United States)

    Teo, Keng-Hwa; Sudharsanam, Krishnamachari; Pamidighantam, Ramana V.; Yeo, Yongkee; Iyer, Mahadevan K.

    2002-08-01

    The development of optoelectronic components for gigabit Ethernet communications is converging towards access networks where the cost of device makes a significant impact on the market acceptance. Device fabrication and packaging cost have to be brought down with novel assembly and packaging methods. Singapore has established a reputation in semiconductor device development and fabrication with excellent process and packaging facilities. Institute of Microelectronics (IME) was founded in 1991 to add value to the Singapore electronics industry. IME is involved in the development of active and passive photonics components using Silicon and polymer materials. We present a brief report on the development activities taking place in the field of optical component packaging at IME in recent years. We present a review of our competence and some of the optical device packaging activities that are being undertaken.

  8. Radiation-Induced Prompt Photocurrents in Microelectronics Physics

    CERN Document Server

    Dodd, P E; Buller, D L; Doyle, B L; Vizkelethy, G; Walsh, D S

    2003-01-01

    The effects of photocurrents in nuclear weapons induced by proximal nuclear detonations are well known and remain a serious hostile environment threat for the US stockpile. This report describes the final results of an LDRD study of the physical phenomena underlying prompt photocurrents in microelectronic devices and circuits. The goals of this project were to obtain an improved understanding of these phenomena, and to incorporate improved models of photocurrent effects into simulation codes to assist designers in meeting hostile radiation requirements with minimum build and test cycles. We have also developed a new capability on the ion microbeam accelerator in Sandia's Ion Beam Materials Research Laboratory (the Transient Radiation Microscope, or TRM) to supply ionizing radiation in selected micro-regions of a device. The dose rates achieved in this new facility approach those possible with conventional large-scale dose-rate sources at Sandia such as HERMES III and Saturn. It is now possible to test the phy...

  9. Quantum-correlated photon pairs generated in a commercial 45nm complementary metal-oxide semiconductor microelectronics chip

    CERN Document Server

    Gentry, Cale M; Wade, Mark W; Stevens, Martin J; Dyer, Shellee D; Zeng, Xiaoge; Pavanello, Fabio; Gerrits, Thomas; Nam, Sae Woo; Mirin, Richard P; Popović, Miloš A

    2015-01-01

    Correlated photon pairs are a fundamental building block of quantum photonic systems. While pair sources have previously been integrated on silicon chips built using customized photonics manufacturing processes, these often take advantage of only a small fraction of the established techniques for microelectronics fabrication and have yet to be integrated in a process which also supports electronics. Here we report the first demonstration of quantum-correlated photon pair generation in a device fabricated in an unmodified advanced (sub-100nm) complementary metal-oxide-semiconductor (CMOS) process, alongside millions of working transistors. The microring resonator photon pair source is formed in the transistor layer structure, with the resonator core formed by the silicon layer typically used for the transistor body. With ultra-low continuous-wave on-chip pump powers ranging from 5 $\\mu$W to 400 $\\mu$W, we demonstrate pair generation rates between 165 Hz and 332 kHz using >80% efficient WSi superconducting nano...

  10. Recovery of waste and side products of apatite-nepheline and eudialyte ores processing in manufacture of heat-insulating foam glassy-crystalline materials

    Directory of Open Access Journals (Sweden)

    Suvorova O. V.

    2017-03-01

    Full Text Available Overburden and dressing tailings accumulated in the Murmansk region in impressive volumes represent serious challenges of both economic and ecological character. Maintenance of overburden dumps and dressing tailings involves considerable capital and material expenses. Therefore reprocessing of mining waste and manufacture of building materials, including heat-insulating foam-glass materials, is a promising trend. The work discusses the feasibility of recovering silica-containing waste and ore processing byproducts on the Kola Peninsula. Compositions and techniques for producing blocks and pellets from foam-glass crystalline materials have been developed. The effect of modifying agents on the foam-silicate materials' mechanical properties has been investigated. The production conditions for high-quality foam-silicate blocks have been identified. The foam silicates obtained under optimal conditions have featured a relatively low viscosity (0.3–0.5 g/cm³, high strength (up to 5 MPa and heat conductivity (0.09–0.107 Wt/m·K. Methods of improving the operating characteristics of foam silicates based on structure perfecting have been proposed. It has been found that as a result of shorttime baking of grainy samples the product has a grain strength of 5–6 MPa, density of 0.25–0.35 g/cm3 and a resistance to crushing in cylinder of 2.2–3 MPa, which is 2–3 times higher than that of a material subjected to one-stage thermal treatment. The water absorption of the material is 5–6 %, which is by a half lower compared to a one-stage treated material. The thermal conduction coefficient is 0.091–0.096 Wt/m·K. The obtained materials are recommended for use as heat-insulating surfacing and filling material for garrets, floors and roofs in construction and renovation of industrial and civic buildings

  11. Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals.

    Science.gov (United States)

    Yoshioka, Miyako; Matsuura, Yuichi; Okada, Hiroyuki; Shimozaki, Noriko; Yamamura, Tomoaki; Murayama, Yuichi; Yokoyama, Takashi; Mohri, Shirou

    2013-07-09

    Prions, infectious agents associated with transmissible spongiform encephalopathy, are primarily composed of the misfolded and pathogenic form (PrPSc) of the host-encoded prion protein. Because PrPSc retains infectivity after undergoing routine sterilizing processes, the cause of bovine spongiform encephalopathy (BSE) outbreaks are suspected to be feeding cattle meat and bone meals (MBMs) contaminated with the prion. To assess the validity of prion inactivation by heat treatment in yellow grease, which is produced in the industrial manufacturing process of MBMs, we pooled, homogenized, and heat treated the spinal cords of BSE-infected cows under various experimental conditions. Prion inactivation was analyzed quantitatively in terms of the infectivity and PrPSc of the treated samples. Following treatment at 140°C for 1 h, infectivity was reduced to 1/35 of that of the untreated samples. Treatment at 180°C for 3 h was required to reduce infectivity. However, PrPSc was detected in all heat-treated samples by using the protein misfolding cyclic amplification (PMCA) technique, which amplifies PrPScin vitro. Quantitative analysis of the inactivation efficiency of BSE PrPSc was possible with the introduction of the PMCA50, which is the dilution ratio of 10% homogenate needed to yield 50% positivity for PrPSc in amplified samples. Log PMCA50 exhibited a strong linear correlation with the transmission rate in the bioassay; infectivity was no longer detected when the log PMCA50 of the inoculated sample was reduced to 1.75. The quantitative PMCA assay may be useful for safety evaluation for recycling and effective utilization of MBMs as an organic resource.

  12. Inactivation of viruses during a new manufacturing process of α2-macroglobulin from Cohn Fraction IV by dry-heat treatment.

    Science.gov (United States)

    Huangfu, Chaoji; Zhao, Xiong; Lv, Maomin; Jia, Junting; Zhu, Fengxuan; Wang, Rui; Ma, Yuyuan; Zhang, Jingang

    2016-09-01

    α2-Macroglobulin (α2-M) has a curative effect on radiation injury. Virus transmission through plasma derivatives is still not risk-free. Effect of dry heat on α2-M activity and virus inactivation by dry heat in a new manufacturing process of α2-M were studied. Effects of 100°C for 30 minutes, 80°C for 72 hours, and lyophilization on α2-M activity were detected, and stabilizing agents were optimized. Effect of a treatment at 100°C for 30 minutes has been tested on a range of viruses and characteristics change of α2-M was investigated. More than 90 and 80% α2-M activity recovery were reserved after treatment at 100°C for 30 minutes and 80°C for 72 hours, respectively. A concentration of 0.05 mol/L histidine presented a better protecting effect for α-M activity. No substantial changes were observed in the characteristics of α2-M compared with the untreated. By lyophilization and dry-heat treatment at 100°C for 30 minutes, murine encephalomyocarditis virus and pseudorabies virus (PRV) were inactivated below detectable level within 5 minutes (virus titers reduction ≥ 5.75 log) and 30 minutes (virus titers reduction ≥ 6.00 log), respectively. Bovine viral diarrhea virus and porcine parvovirus were inactivated by 4.29 and 2.46 log reduction, respectively. Treatment at 100°C for 30 minutes could improve the virus safety of α2-M with a slight activity loss. © 2016 AABB.

  13. Modeling and simulation for microelectronic packaging assembly manufacturing, reliability and testing

    CERN Document Server

    Liu, Sheng

    2011-01-01

    Although there is increasing need for modeling and simulation in the IC package design phase, most assembly processes and various reliability tests are still based on the time consuming ""test and try out"" method to obtain the best solution. Modeling and simulation can easily ensure virtual Design of Experiments (DoE) to achieve the optimal solution. This has greatly reduced the cost and production time, especially for new product development. Using modeling and simulation will become increasingly necessary for future advances in 3D package development.  In this book, Liu and Liu allow people

  14. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  15. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  16. Controlled fabrication of aligned carbon nanotube architectures for microelectronics packaging applications

    Science.gov (United States)

    Zhu, Lingbo

    As IC performance increases, many technical challenges appear such as thermal management, electrical interconnects, and thermal-mechanical reliability. To address these problems, carbon nanotubes (CNTs) were proposed in IC packaging for electrical interconnects and thermal management, due to their excellent electrical, thermal, and mechanical properties. CNTs promise to bring revolutionary improvement in reducing the interconnect pitch size, increasing thermal conductivity, and enhancing system reliability. This thesis is devoted to the fabrication of carbon nanotube structures for microelectronics packaging applications with an emphasis on fundamental studies of nanotube growth and assembly, wetting of nanotube structures, and nanotube-based composites. A CVD process is developed that allows controlled growth of a variety of CNT structures, such as CNT films, bundles, and stacks. Use of an Al2O3 support enhances the Fe catalyst activity by increasing the CNT growth rate by nearly two orders of magnitude under the same growth conditions. By introducing a trace amount of weak oxidants into the CVD chamber during CNT growth, aligned CNT ends can be opened and/or functionalized, depending on the selection of oxidants. By varying the growth temperature, CNT growth can be performed in a gas diffusion- or kinetics-controlled regime. To overcome the challenges that impede implementation of CNTs in circuitry, a CNT transfer process was proposed to assemble aligned CNT structures (films, stacks & bundles) at low temperature which ensures compatibility with current microelectronics fabrication sequences and technology. Field emission and electrical testing of the as-assembled CNT devices indicate good electrical contact between CNTs and solder and a very low contact resistance across CNT/solder interfaces. For attachment of CNTs and other applications (e.g. composites), wetting of nanotube structures was studied. Two model surfaces with two-tier scale roughness were

  17. The Electrical Engineering Curriculum at the Technical University of Denmark - Options in Microelectronics

    DEFF Research Database (Denmark)

    Bruun, Erik; Nielsen, Lars Drud

    1997-01-01

    This paper describes the modular structure of the engineering curriculum at the Technical University of Denmark. The basic requirements for an electrical engineering curriculum are presented and different possibilities for specialization in microelectronics and integrated circuit design...

  18. Selective atomic-level etching using two heating procedures, infrared irradiation and ion bombardment, for next-generation semiconductor device manufacturing

    Science.gov (United States)

    Shinoda, K.; Miyoshi, N.; Kobayashi, H.; Miura, M.; Kurihara, M.; Maeda, K.; Negishi, N.; Sonoda, Y.; Tanaka, M.; Yasui, N.; Izawa, M.; Ishii, Y.; Okuma, K.; Saldana, T.; Manos, J.; Ishikawa, K.; Hori, M.

    2017-05-01

    The demand for precisely controlled etching is increasing as semiconductor device geometries continue to shrink. To fulfill this demand, cyclic atomic level/layer etching will become one of the key technologies in semiconductor device manufacturing at nanometer dimensions. This review describes recent trends in semiconductor devices and some of the latest results on cyclic atomic-level etching. In particular, it focuses on two types of cyclic etching that use different heating procedures: infrared irradiation for isotropic etching and Ar+ ion bombardment for anisotropic etching. It describes how an inductively-coupled-plasma down-flow etching apparatus with infrared lamps can be used for isotropic cyclic etching. The isotropic cyclic etching of SiN involves the formation and thermal desorption of ammonium hexafluorosilicate-based surface modified layers. This method features high selectivity with respect to SiO2, atomic-level control of the amount of SiN etching, and isotropic etched features. On the other hand, the anisotropic cyclic etching with Ar+ ion bombardment uses a microwave electron-cyclotron-resonance plasma etching apparatus. The anisotropic process for poly Si is composed of cyclic repetitions of chlorine adsorption and Ar+ ion bombardment. The anisotropic process for SiN is composed of cyclic repetitions involving an adsorption step using hydrofluorocarbon chemistry and a desorption step using Ar+ ion bombardment. Potential applications of these isotropic/anisotropic cyclic etching processes are described.

  19. An improved adaptive genetic algorithm for image segmentation and vision alignment used in microelectronic bonding

    OpenAIRE

    Wang, Fujun; Li, Junlan; Liu, Shiwei; Zhao, Xingyu; Zhang, Dawei; Tian, Yanling

    2014-01-01

    In order to improve the precision and efficiency of microelectronic bonding, this paper presents an improved adaptive genetic algorithm (IAGA) for the image segmentation and vision alignment of the solder joints in the microelectronic chips. The maximum between-cluster variance (OTSU) threshold segmentation method was adopted for the image segmentation of microchips, and the IAGA was introduced to the threshold segmentation considering the features of the images. The performance of the image ...

  20. Improved method for detection of “hot spots” in microelectronic devices

    Directory of Open Access Journals (Sweden)

    Popov V. M.

    2008-06-01

    Full Text Available New method of liquid crystal thermography of “hot spots” in crystals of microelectronic products have been developed. The method is based on the use of local cholesteric phase image of “hot spot” in transparent smectic phase of cholesteric liquid crystal against a background of clearly visible topological elements on the surface of microelectronic device crystal. Examples of “hot spot” images in crystals of different types of integrated circuits are shown.

  1. Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics

    Science.gov (United States)

    2015-12-18

    AFRL-AFOSR-JP-TR-2016-0002 Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics Kwang-Sup Lee HANNAM...SUBTITLE Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics 5a. CONTRACT NUMBER FA2386-12-1-4010...superparamagnetic γ-Fe2O3 magnetic nanoparticles (MNP) to grapheme-based materials. The distance of the ligands to the graphene derivative surface can be

  2. Wireless link and microelectronics design for retinal prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wentai [Univ. of California, Santa Cruz, CA (United States)

    2012-02-29

    This project focuses on delivering power and data to the artificial retinal implant inside the eye and the implant microstimulator electronics which delivers the current pulses to stimulate the retinal layer to elicit visual perception. Since the use of invasive means such as tethering wires to transmit power and data results in discomfort to the patients which could eventually cause infection due to the abrasion caused by the wire and contact of the internals of the eye to the external environment, a completely wireless approach is used to transfer both power and data. Power is required inside the eye for the microelectronic implant which uses a dual voltage supply scheme (positive and negative) to deliver biphasic (anodic and cathodic) current pulses. Data in the form of digital bits from the data transmitter external to the eye, carries information about the amplitude, phase width, interphase delay, stimulation sequence for each implant electrode. The data receiver unit decodes the digital stream and the microstimulator unit generates the appropriate current stimuli. Since the external unit consisting of the power transmitter can experience coupling a variation with the power receiver due to the patient’s movements, a closed loop approach is used which varies the transmitted power dynamically to automatically compensate for such movements. This report presents the salient features of this research activities and results.

  3. Electromigration of intergranular voids in metal films for microelectronic interconnects

    CERN Document Server

    Averbuch, A; Ravve, I

    2003-01-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the v...

  4. Variation in heat sink shape for thermal analysis

    Science.gov (United States)

    Wong, C. M.; Aziz, M. H. B. A.; Ong, N. R.; Alcain, J. B.; Sauli, Z.

    2017-09-01

    The concern about the thermal performance of microelectronics is on the increase due to recent over-heating induced failures which have led to product recalls. Removal of excess heat from microelectronic systems with the use of heat sinks could improve thermal efficiency of the system. The shape of the heat sink model with difference fin configuration has significant influence on cooling performances. This paper investigates the effect of change in heat sink geometry on an electronic package through COMSOL Multiphysics software as well as the thermal performance of difference heat sink geometry corresponding to various air inlet velocities. Based on this study, plate fin heat sink has better thermal performance than strip pin fin and circular pin fin heat sink due to less obstruction of the heat sink design.

  5. Carbon nanotubes for thermal interface materials in microelectronic packaging

    Science.gov (United States)

    Lin, Wei

    As the integration scale of transistors/devices in a chip/system keeps increasing, effective cooling has become more and more important in microelectronics. To address the thermal dissipation issue, one important solution is to develop thermal interface materials with higher performance. Carbon nanotubes, given their high intrinsic thermal and mechanical properties, and their high thermal and chemical stabilities, have received extensive attention from both academia and industry as a candidate for high-performance thermal interface materials. The thesis is devoted to addressing some challenges related to the potential application of carbon nanotubes as thermal interface materials in microelectronics. These challenges include: 1) controlled synthesis of vertically aligned carbon nanotubes on various bulk substrates via chemical vapor deposition and the fundamental understanding involved; 2) development of a scalable annealing process to improve the intrinsic properties of synthesized carbon nanotubes; 3) development of a state-of-art assembling process to effectively implement high-quality vertically aligned carbon nanotubes into a flip-chip assembly; 4) a reliable thermal measurement of intrinsic thermal transport property of vertically aligned carbon nanotube films; 5) improvement of interfacial thermal transport between carbon nanotubes and other materials. The major achievements are summarized. 1. Based on the fundamental understanding of catalytic chemical vapor deposition processes and the growth mechanism of carbon nanotube, fast synthesis of high-quality vertically aligned carbon nanotubes on various bulk substrates (e.g., copper, quartz, silicon, aluminum oxide, etc.) has been successfully achieved. The synthesis of vertically aligned carbon nanotubes on the bulk copper substrate by the thermal chemical vapor deposition process has set a world record. In order to functionalize the synthesized carbon nanotubes while maintaining their good vertical alignment

  6. Reproductive Hazards Still Persist in the Microelectronics Industry: Increased Risk of Spontaneous Abortion and Menstrual Aberration among Female Workers in the Microelectronics Industry in South Korea.

    Science.gov (United States)

    Kim, Inah; Kim, Myoung-Hee; Lim, Sinye

    2015-01-01

    Despite the global expansion of supply chains and changes to the production process, few studies since the mid-1990 s and 2000s have examined reproductive risks of the microelectronics industry; we examined the reproductive risks among female microelectronics workers in South Korea. Based on claim data from the National Health Insurance (2008-2012), we estimated age-specific rates of spontaneous abortion (SAB) and menstrual aberration (MA) among women aged 20 to 39 years. We compared data between microelectronics workers and three different control groups: economically inactive women, the working population as a whole, and workers employed in the bank industry. For an effect measure, age-stratified relative risks (RRs) were estimated. Female workers in the microelectronics industry showed significantly higher risk for SAB and MA compared to control groups. The RRs for SAB with reference to economically inactive women, working population, and bank workers in their twenties were 1.57, 1.40, and 1.37, respectively, and the RRs for MA among females in their twenties were 1.54, 1.38, and 1.48, respectively. For women in their thirties, RRs for SAB were 1.58, 1.67, and 1.13, and those for MA were 1.25, 1.35, and 1.23 compared to the three control populations, respectively. All RRs were statistically significant at a level of 0.05, except for the SAB case comparison with bank workers in their thirties. Despite technical innovations and health and safety measures, female workers in microelectronics industry in South Korea have high rates of SAB and MA, suggesting continued exposure to reproductive hazards. Further etiologic studies based on primary data collection and careful surveillance are required to confirm these results.

  7. Reproductive Hazards Still Persist in the Microelectronics Industry: Increased Risk of Spontaneous Abortion and Menstrual Aberration among Female Workers in the Microelectronics Industry in South Korea.

    Directory of Open Access Journals (Sweden)

    Inah Kim

    Full Text Available Despite the global expansion of supply chains and changes to the production process, few studies since the mid-1990 s and 2000s have examined reproductive risks of the microelectronics industry; we examined the reproductive risks among female microelectronics workers in South Korea.Based on claim data from the National Health Insurance (2008-2012, we estimated age-specific rates of spontaneous abortion (SAB and menstrual aberration (MA among women aged 20 to 39 years. We compared data between microelectronics workers and three different control groups: economically inactive women, the working population as a whole, and workers employed in the bank industry. For an effect measure, age-stratified relative risks (RRs were estimated.Female workers in the microelectronics industry showed significantly higher risk for SAB and MA compared to control groups. The RRs for SAB with reference to economically inactive women, working population, and bank workers in their twenties were 1.57, 1.40, and 1.37, respectively, and the RRs for MA among females in their twenties were 1.54, 1.38, and 1.48, respectively. For women in their thirties, RRs for SAB were 1.58, 1.67, and 1.13, and those for MA were 1.25, 1.35, and 1.23 compared to the three control populations, respectively. All RRs were statistically significant at a level of 0.05, except for the SAB case comparison with bank workers in their thirties.Despite technical innovations and health and safety measures, female workers in microelectronics industry in South Korea have high rates of SAB and MA, suggesting continued exposure to reproductive hazards. Further etiologic studies based on primary data collection and careful surveillance are required to confirm these results.

  8. Heat exchange and heat exchangers. Systematics of construction - Series production - Tube oscillations - Economical optimization corresponding to manufacturing requirements due to exergy losses. Waermeaustausch und Waermeaustauscher. Konstruktionssystematik - Serienproduktion - Rohrschwingungen - Fertigungsgerechte wirtschaftliche Optimierung aufgrund von Exergieverlusten

    Energy Technology Data Exchange (ETDEWEB)

    Gregorig, R. (Technische Univ. Berlin (F.R. Germany). Fachbereich Verfahrenstechnik; Minas Gerais Univ., Belo Horizonte (Brazil). Escola de Engenharia)

    1973-01-01

    The author first gives a detailed description of the fundamental theories of heat exchange with special regard to the conditions for heat exchangers, followed by a systematic treatment of the constructional details, materials, and operation of heat exchangers. (DE)

  9. Manufacturing tailored property ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Ewsuk, K.G. [Sandia National Labs., Albuquerque, NM (United States). Ceramic Processing Science Dept.; Harrison, L.W. [E.I. du Pont de Nemours and Co., Inc., Wilmington, DE (United States). Central Research and Development Dept.

    1994-11-14

    Composite materials are desirable for many advanced engineering applications where the properties of a single phase material cannot meet all of the service requirements; however, existing process technology has limited the development and commercialization of composites. Lack of reproducible sintering to high density is one of the major obstacles to commercializing ceramic composites. Final-stage, non-reactive liquid phase sintering (NLPS) theory provides metrics for sinterability that can be used as guidelines to design and manufacture dense ceramic-filled-glass (CFG) composites. Additionally, within the constraints defined by the NLPS theory, sum-property models can be used to predict CFG composite properties, and to design composites with properties tailored to specific applications. By integrating composite process models with composite property models, processable, application-tailored CFG composites for microelectronics packaging have been designed and fabricated.

  10. Microelectronics and nanotechnology, and the fractal-like structure of information, knowledge, and science

    Science.gov (United States)

    Nutu, Catalin Silviu; Axinte, Tiberiu

    2016-12-01

    The article is centralizing and is concentrating the information from a considerable amount of papers related to the field of microelectronics and nanotechnology and also provides an approach to science and to the future evolution of science, based on the theory of the fractals. The new science of microelectronics and nanotechnology is one of the best examples of how the science of future will look like, namely at the confluence of increasingly more other sciences, where increasingly more sciences are to be added in the structure of the new science and the role of the multidisciplinary and interdisciplinary is becoming more and more important. Although not giving explicit details (e.g. specific formulas) the theory of fractals is used in the paper to explain the way of generation of new science for the specific case of microelectronics and nanotechnology, but is also used in the paper to outline a different way to approach new science and eventually to approach new sciences to come. There are mainly two motivations for the present article, namely: on the one hand, the position of the microelectronics and nanotechnologies in the fractal-like structure of science, and, on the other hand, that much of the communication, information, knowledge and science transfer, dissemination and advancement in sciences are taking place using the new technologies related to microelectronics and nanotechnologies.

  11. Creep of Two-Phase Microstructures for Microelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)

    1998-12-01

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  12. Contribution of district heating to a sustainable power supply. Pipe manufacturer supports a decentral supply; Beitrag der Fernwaerme zur nachhaltigen Energieversorgung. Rohrhersteller unterstuetzt dezentrale Versorgung

    Energy Technology Data Exchange (ETDEWEB)

    Henss, Thorsten [Isoplus Fernwaermetechnik Vertriebsgesellschaft mbH, Rosenheim (Germany)

    2011-09-15

    The term sustainability is used in an almost inflationary way. What is sustainability? What contribution is made by the district heating? The author of the paper under consideration attempts to answer these questions. Two regional district heating projects have been evaluated on the basis of a multi-criteria analysis. Additionally, the author presents possibilities of how a producer of pipes may contribute to the success of sustainable local heating projects and district heating projects.

  13. Interfacial Compatibility in Microelectronics Moving Away from the Trial and Error Approach

    CERN Document Server

    Laurila, Tomi; Paulasto-Kröckel, Mervi; Turunen, Markus; Mattila, Toni T; Kivilahti, Jorma

    2012-01-01

    Interfaces between dissimilar materials are met everywhere in microelectronics and microsystems. In order to ensure faultless operation of these highly sophisticated structures, it is mandatory to have fundamental understanding of materials and their interactions in the system. In this difficult task, the “traditional” method of trial and error is not feasible anymore; it takes too much time and repeated efforts. In Interfacial Compatibility in Microelectronics, an alternative approach is introduced. In this revised method four fundamental disciplines are combined: i) thermodynamics of materials ii) reaction kinetics iii) theory of microstructures and iv) stress and strain analysis. The advantages of the method are illustrated in Interfacial Compatibility in Microelectronics which includes: •solutions to several common reliability issues in microsystem technology, •methods to understand and predict failure mechanisms at interfaces between dissimilar materials and •an approach to DFR based on deep un...

  14. Manufacturing Interfaces

    NARCIS (Netherlands)

    van Houten, Frederikus J.A.M.

    1992-01-01

    The paper identifies the changing needs and requirements with respect to the interfacing of manufacturing functions. It considers the manufacturing system, its components and their relationships from the technological and logistic point of view, against the background of concurrent engineering.

  15. Materials science in microelectronics I the relationships between thin film processing and structure

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.The first volume of Materials Science in Microelectronics focuses on the first relationship - that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer - determines the ultimate structure of the thin film, and thus its properties. This

  16. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  17. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  18. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    Science.gov (United States)

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  19. Characterization of ceramic substrates. Final report. [Hybrid microelectronic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Laudel, A.

    1979-02-01

    Characterization techniques were developed to improve receiving inspection and in-process testing of 99.5% alumina substrates used for manufacturing hybrid microcircuits. Many of these tests have been implemented into production; other tests have been recommended for further development. The tests developed were scanning electron microscope (SEM) measurement of grain size; low angle light inspection for surface defects; non-contact thickness and camber test; dye penetrant check for porosity and cracks; and SEM inspection of surface finish in holes. The effect of raindrop (variation of light transmission through substrates) and polished high spot defects was determined.

  20. Application of an energy efficient casting ladle heating system used in the manufacture of stainless steel; Einsatz einer energieeffizienten Pfannenaufheizstation bei der Herstellung von Edelstahl

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Markus [Edelstahlwerke Schmees GmbH, Langenfeld (Germany); Lodde, Marcus [Effizienz-Agentur NRW, Duisburg (Germany). prisma Consult GmbH

    2011-06-15

    In the melting area, the company has been using four conventional burners to heat the ladles. The existing flame burners heat the upside down ladles from below and consume massive amount of energy. Heat radiation and all of the waste gas are released into the facility. The material around the ladles is therefore heavily affected. The company has now installed a new energy efficient casting ladle heating system with a new kind of porous burner which heats the transport ladles without exposing them to an open flame. The combustion heat is channeled to specially adapted steel pipes via infrared radiation and convection flow. By doing this, the heat is directly transferred to the ladles and can be controlled in a more balanced manner. The company now saves around 61,400 m{sup 3}/a of natural gas, approx. 60 % of the energy required for the ladle heating and, as a result, 113.8 tonnes of CO{sub 2}-equivalent. The life span of the ladles can be increased by a factor of 2 due to the reduced exposure of the fire resistant materials. The resulting waste gas is collected and the waste heat will be reused in the facility in the future (facility heating 2011). Due to reduction in cleaning and carrying time of the ladles, Fr. Schmees expects an increase in productivity of the complete process. The heat radiation from the ladles has been reduced by 75 % which has led to a reduction of breakdowns. In addition, the noise level has sunk from 78.7 dB to 67.4 db. (orig.)

  1. Poly(3-hexylthiophene)/ZnO hybrid pn junctions for microelectronics applications

    DEFF Research Database (Denmark)

    Katsia, E.; Huby, N.; Tallarida, G.

    2009-01-01

    Hybrid poly(3-hexylthiophene)/ZnO devices are investigated as rectifying heterojunctions for microelectronics applications. A low-temperature atomic layer deposition of ZnO on top of poly(3-hexylthiophene) allows the fabrication of diodes featuring a rectification ratio of nearly 105 at ±4 V...

  2. Numerical Analysis and Experimental Verification of Stresses Building up in Microelectronics Packaging

    NARCIS (Netherlands)

    Rezaie Adli, A.R.

    2017-01-01

    This thesis comprises a thorough study of the microelectronics packaging process by means of various experimental and numerical methods to estimate the process induced residual stresses. The main objective of the packaging is to encapsulate the die, interconnections and the other exposed internal

  3. Modeling of a Micro-Electronic Mechanical Systems (MEMS) Deformable Mirror for Simulation and Characterization

    Science.gov (United States)

    2016-09-01

    DATE September 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MODELING OF A MICRO-ELECTRONIC- MECHANICAL SYSTEMS...MICRO-ELECTRONIC- MECHANICAL SYSTEMS (MEMS) DEFORMABLE MIRROR FOR SIMULATION AND CHARACTERIZATION by Mark C. Mueller September 2016 Thesis ...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. MODELING OF A

  4. Development of self-aligned gated porous silicon microtip field emission arrays for vacuum microelectronic applications

    Science.gov (United States)

    Jessing, Jeffrey Richard

    Solid state microelectronics is the dominate technology in the present day electronics industry. However, as the physical dimensions decrease, it is becoming apparent that solid state devices have inherent performance limitations, such as finite saturation drift velocity, high temperature degradation, and failure in extreme radiation environments. To address these problems a relatively new technology, called vacuum microelectronics, has emerged. Vacuum microelectronics encompasses the fabrication, characterization, and application of various devices whose operation is based on vacuum ballistic transport of field emitted electrons from microminiature electrodes. The field of vacuum microelectronics has advanced at a rapid rate over the past decade; however, there remain key issues to be addressed prior to any widespread commercialization of this technology. Field emission arrays (FEAs) must operate at low voltages and generate high current densities with uniform, long-lifetime operation. The use of porous silicon cathodes in vacuum microelectronic applications is a promising alternative to existing silicon and metal field emitters. Surface modification of bulk crystalline silicon by electrochemical anodization in a concentrated hydrofluoric acid (HF) solution has been shown to produce large submicroscopic field enhancement and large emission area. The primary focus of this research was the development of novel gated FEAs based on porous silicon microtip cathodes. Device design consisted of both experimental and theoretical efforts. Employing semiconductor process technology, the successful fabrication of an operational self-aligned gated porous silicon microtip FEA was demonstrated. Small arrays exhibited Fowler-Nordheim characteristics over several decades of anode current. A peak stable current of approximately 60 to 70 nA per tip was obtained at less than 125 V. A correlation of anodization conditions with emission properties has been found, and a simple emission

  5. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  6. 24 CFR 3280.506 - Heat loss/heat gain.

    Science.gov (United States)

    2010-04-01

    ... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat... assure uniform heat transmission in manufactured homes, cavities in exterior walls, floors, and ceilings shall be provided with thermal insulation. (c) Manufactured homes designed for Uo Value Zone 3 shall be...

  7. Decapsulation Method for Flip Chips with Ceramics in Microelectronic Packaging

    Science.gov (United States)

    Shih, T. I.; Duh, J. G.

    2008-06-01

    The decapsulation of flip chips bonded to ceramic substrates is a challenging task in the packaging industry owing to the vulnerability of the chip surface during the process. In conventional methods, such as manual grinding and polishing, the solder bumps are easily damaged during the removal of underfill, and the thin chip may even be crushed due to mechanical stress. An efficient and reliable decapsulation method consisting of thermal and chemical processes was developed in this study. The surface quality of chips after solder removal is satisfactory for the existing solder rework procedure as well as for die-level failure analysis. The innovative processes included heat-sink and ceramic substrate removal, solder bump separation, and solder residue cleaning from the chip surface. In the last stage, particular temperatures were selected for the removal of eutectic Pb-Sn, high-lead, and lead-free solders considering their respective melting points.

  8. Numerical investigation of heat transfer in Plastic Leaded Chip ...

    African Journals Online (AJOL)

    Plastic Leaded Chip Carrier (PLCC) package has been emerged a promising option to tackle the thermal management issue of micro-electronic devices. In the present study, three dimensional numerical analysis of heat and fluid flow through PLCC packages oriented in-line and mounted horizontally on a printed circuit ...

  9. Infrared heating

    Science.gov (United States)

    IR heating was first industrially used in the 1930s for automotive curing applications and rapidly became a widely applied technology in the manufacturing industry. Contrarily, a slower pace in the development of IR technologies for processing foods and agricultural products was observed, due to lim...

  10. SEMICONDUCTOR INTEGRATED CIRCUITS: A four-channel microelectronic system for neural signal regeneration

    Science.gov (United States)

    Shushan, Xie; Zhigong, Wang; Xiaoying, Lü; Wenyuan, Li; Haixian, Pan

    2009-12-01

    This paper presents a microelectronic system which is capable of making a signal record and functional electric stimulation of an injured spinal cord. As a requirement of implantable engineering for the regeneration microelectronic system, the system is of low noise, low power, small size and high performance. A front-end circuit and two high performance OPAs (operational amplifiers) have been designed for the system with different functions, and the two OPAs are a low-noise low-power two-stage OPA and a constant-gm RTR input and output OPA. The system has been realized in CSMC 0.5-μm CMOS technology. The test results show that the system satisfies the demands of neuron signal regeneration.

  11. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-05-19

    Large area environmental monitoring can play a crucial role in dealing with crisis situations. However, it is challenging as implementing a fixed sensor network infrastructure over large remote area is economically unfeasible. This work proposes disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept, the wireless sensing of temperature, humidity, and H2S levels are shown which are important for two critical environmental conditions namely forest fires and industrial leaks. These inkjet-printed sensors and an antenna are realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing are uniquely combined in order to realize a low-cost, fully integrated wireless sensor node.

  12. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  13. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  14. A Cost Benefit Analysis of Radio Frequency Identification (RFID) Implementation at the Defense Microelectronics Activity (DMEA)

    Science.gov (United States)

    2011-12-01

    are generally used in passive tag applications with high- water content, such as fruit. 7 Table 1. RFID Tag Attributes Active RFID Passive RFID ...Antennas As with all RFID technologies, antennas come in a large range of sizes, from under a square centimeter to larger than a square meter (Asif...ANALYSIS OF RADIO FREQUENCY IDENTIFICATION ( RFID ) IMPLEMENTATION AT THE DEFENSE MICROELECTRONICS ACTIVITY (DMEA) by James B. Gerber December

  15. Synthesis of the system modeling and signal detecting circuit of a novel vacuum microelectronic accelerometer.

    Science.gov (United States)

    Li, Dongling; Wen, Zhiyu; Wen, Zhongquan; He, Xuefeng; Yang, Yinchuan; Shang, Zhengguo

    2009-01-01

    A novel high-precision vacuum microelectronic accelerometer has been successfully fabricated and tested in our laboratory. This accelerometer has unique advantages of high sensitivity, fast response, and anti-radiation stability. It is a prototype intended for navigation applications and is required to feature micro-g resolution. This paper briefly describes the structure and working principle of our vacuum microelectronic accelerometer, and the mathematical model is also established. The performances of the accelerometer system are discussed after Matlab modeling. The results show that, the dynamic response of the accelerometer system is significantly improved by choosing appropriate parameters of signal detecting circuit, and the signal detecting circuit is designed. In order to attain good linearity and performance, the closed-loop control mode is adopted. Weak current detection technology is studied, and integral T-style feedback network is used in I/V conversion, which will eliminate high-frequency noise at the front of the circuit. According to the modeling parameters, the low-pass filter is designed. This circuit is simple, reliable, and has high precision. Experiments are done and the results show that the vacuum microelectronic accelerometer exhibits good linearity over -1 g to +1 g, an output sensitivity of 543 mV/g, and a nonlinearity of 0.94 %.

  16. Synthesis of the System Modeling and Signal Detecting Circuit of a Novel Vacuum Microelectronic Accelerometer

    Directory of Open Access Journals (Sweden)

    Zhengguo Shang

    2009-05-01

    Full Text Available A novel high-precision vacuum microelectronic accelerometer has been successfully fabricated and tested in our laboratory. This accelerometer has unique advantages of high sensitivity, fast response, and anti-radiation stability. It is a prototype intended for navigation applications and is required to feature micro-g resolution. This paper briefly describes the structure and working principle of our vacuum microelectronic accelerometer, and the mathematical model is also established. The performances of the accelerometer system are discussed after Matlab modeling. The results show that, the dynamic response of the accelerometer system is significantly improved by choosing appropriate parameters of signal detecting circuit, and the signal detecting circuit is designed. In order to attain good linearity and performance, the closed-loop control mode is adopted. Weak current detection technology is studied, and integral T-style feedback network is used in I/V conversion, which will eliminate high-frequency noise at the front of the circuit. According to the modeling parameters, the low-pass filter is designed. This circuit is simple, reliable, and has high precision. Experiments are done and the results show that the vacuum microelectronic accelerometer exhibits good linearity over -1 g to +1 g, an output sensitivity of 543 mV/g, and a nonlinearity of 0.94 %.

  17. Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals

    OpenAIRE

    YOSHIOKA, Miyako; Matsuura, Yuichi; Okada, Hiroyuki; Shimozaki, Noriko; Yamamura, Tomoaki; Murayama, Yuichi; Yokoyama, Takashi; Mohri, Shirou

    2013-01-01

    Background Prions, infectious agents associated with transmissible spongiform encephalopathy, are primarily composed of the misfolded and pathogenic form (PrPSc) of the host-encoded prion protein. Because PrPSc retains infectivity after undergoing routine sterilizing processes, the cause of bovine spongiform encephalopathy (BSE) outbreaks are suspected to be feeding cattle meat and bone meals (MBMs) contaminated with the prion. To assess the validity of prion inactivation by heat treatment in...

  18. Manufacture of thick VPS W coatings on relatively large CuZrCr substrate and its steady high heat load performance

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chunming, E-mail: denghans@126.com; Liu, Min; Yang, Zhenxiao; Deng, Changguang; Zhou, Kesong; Kuang, Ziqi; Zhang, Jifu

    2014-12-15

    W material is considered as one of potential Plasma Facing Materials (PFMs) for its high melting point, excellent stability at elevated temperature, good thermal conductivity, excellent anti-plasma sputtering and low Tritium retention. Functionally graded W/Cu coating was applied on CuCrZr substrate (250 mm × 120 mm × 30 mm) with compositionally gradient W/Cu as bond coat (0.4–0.6 mm) and 1.5 mm thick W coating as top coat via Vacuum Plasma Spraying (VPS) for continuous deposition of 5 h. Microstructure, chemical composition, porosity and adhesive strength for as sprayed thick W coating on the CuCrZr substrate were characterized by means of SEM, ICP-MS, Mercury Intrusion Porosimeter and tensile strength tester. The steady high heat load (HHL) performance for W/Cu functional gradient coating was evaluated by high energy electron beam. The results showed that thick VPS W coated CuCrZr substrate can withstand the steady high heat load at the electron beam power density of 9 MW/m{sup 2} for 1000 cycles.

  19. Manufacture of thick VPS W coatings on relatively large CuZrCr substrate and its steady high heat load performance

    Science.gov (United States)

    Deng, Chunming; Liu, Min; Yang, Zhenxiao; Deng, Changguang; Zhou, Kesong; Kuang, Ziqi; Zhang, Jifu

    2014-12-01

    W material is considered as one of potential Plasma Facing Materials (PFMs) for its high melting point, excellent stability at elevated temperature, good thermal conductivity, excellent anti-plasma sputtering and low Tritium retention. Functionally graded W/Cu coating was applied on CuCrZr substrate (250 mm × 120 mm × 30 mm) with compositionally gradient W/Cu as bond coat (0.4-0.6 mm) and 1.5 mm thick W coating as top coat via Vacuum Plasma Spraying (VPS) for continuous deposition of 5 h. Microstructure, chemical composition, porosity and adhesive strength for as sprayed thick W coating on the CuCrZr substrate were characterized by means of SEM, ICP-MS, Mercury Intrusion Porosimeter and tensile strength tester. The steady high heat load (HHL) performance for W/Cu functional gradient coating was evaluated by high energy electron beam. The results showed that thick VPS W coated CuCrZr substrate can withstand the steady high heat load at the electron beam power density of 9 MW/m2 for 1000 cycles.

  20. Manufacturing W fibre-reinforced Cu composite pipes for application as heat sink in divertor targets of future nuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Alexander v.; You, Jeong-Ha [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Ewert, Dagmar [Institut fuer Textil- und Verfahrenstechnik Denkendorf, 73770 Denkendorf (Germany); Siefken, Udo [Louis Renner GmbH, 85221 Dachau (Germany)

    2016-07-01

    An important plasma-facing component (PFC) in future nuclear fusion reactors is the so-called divertor which allows power exhaust and removal of impurities from the main plasma. The most highly loaded parts of a divertor are the target plates which have to withstand intense particle bombardment. This intense particle bombardment leads to high heat fluxes onto the target plates which in turn lead to severe thermomechanical loads. With regard to future nuclear fusion reactors, an improvement of the performance of divertor targets is desirable in order to ensure reliable long term operation of such PFCs. The performance of a divertor target is most closely linked to the properties of the materials that are used for its design. W fibre-reinforced Cu (Wf/Cu) composites are regarded as promising heat sink materials in this respect. These materials do not only feature adequate thermophysical and mechanical properties, they do also offer metallurgical flexibility as their microstructure and hence their macroscopic properties can be tailored. The contribution will point out how Wf/Cu composites can be used to realise an advanced design of a divertor target and how these materials can be fabricated by means of liquid Cu infiltration.

  1. External Review for Sandia National Laboratory Microelectronics and Photonics Program 1998 Review

    Energy Technology Data Exchange (ETDEWEB)

    MCWHORTER, PAUL J.; ROMIG JR., ALTON D.

    1999-02-01

    The committee regards Sandia's Microelectronics and Photonics Program as a vital and strategic resource for the nation. The Microsystems (MEMS) and Chem Lab programs were assessed as unique and best-in-class for the development of significant application areas. They contribute directly to the Sandia mission and impact the development of new commercial areas. The continued development and integration of Radiation hard silicon integrated circuits, micromechanical systems, sensors, and optical communications is essential to the national security mission. The quality of the programs is excellent to outstanding overall. MEMS and Chem Lab activities are examples of outstanding programs. The committee was pleased to see the relationship of the microelectronics development programs to applications in the mission. In a future review the committee would like to see Sandia's research programs and a vision for connectivity to potential national security needs. (This review may be based on analysis and assumptions about the strategic needs of the nation.) In summary, the Microelectronics and Photonics capability affords Sandia the opportunity to deliver exceptional service in the national interest across broad technology areas. The presentations were excellent and well integrated. We received ample pre-reading materials, expectations were well set and the documents were high quality. The committee was provided an agenda with sufficient time among us and some selected one-on-one time with the researchers. The composition of the committee held representation from industry, universities and government. Committee contributions were well balanced and worked as a team. However, the committee was disappointed that no member of Sandia executive management was able to be present for the readout and final debriefing. (A late, higher priority conflict developed.) The members of the EST Program and the committee put substantial effort into the review but a written report like

  2. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    Science.gov (United States)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  3. Apparel Manufacture

    Science.gov (United States)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  4. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  5. Microelectronic systems

    CERN Document Server

    Heuberger, Albert; Hanke, Randolf

    2011-01-01

    This book is dedicated to Prof. Dr. Heinz Gerhauser on the occasion of his retirement both from the position of Executive Director of the Fraunhofer Institute for Integrated Circuits IIS and from the Endowed Chair of Information Technologies with a Focus on Communication Electronics (LIKE) at the Friedrich-Alexander-Universitat Erlangen-Nurnberg. Heinz Gerhauser's vision and entrepreneurial spirit have made the Fraunhofer IIS one of the most successful and renowned German research institutions. He has been Director of the Fraunhofer IIS since 1993, and under his leadership it has grown to beco

  6. Microelectronics Reliability

    Science.gov (United States)

    2017-01-17

    instructions, searching existing data sources , gathering and maintaining the data needed, and completing and reviewing this collection of information. Send...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN... inverters  connected in a chain. ................................................. 5  Figure 3  Typical graph showing frequency versus square root of

  7. Implementation of Microelectronics Track in Electronics Engineering in a Philippines State University

    Directory of Open Access Journals (Sweden)

    Gil B. Barte

    2015-11-01

    Full Text Available The evolving trends in electronics continuous to attract students to take upElectronics Engineering.However, it also adds to discipline implementation complexities.Institutions of Higher Learning offering this program must adapt to this realities to avoid obsolescence. This paper looked at Batangas State University, in the Philippines,ongoingimplementation of the Microelectronics track under the Electronics Engineering (ECEProgram. It describes the restructuring done to the ECE curriculum to overcome the enormous complexity inherent in microelectronics design and the teaching pedagogy adopted to promote active learning. The ongoing program has produced encouraging outcomes:1students were able to design, and simulate complex gate CMOS circuits using EDA tools, in the four(4 course electives identified for the track; 2 the culture of independent learning among students improvement in students soft skills, communication skills, time-management and teamwork skill,; 3. useof free and web-based tools overcome the issue of high cost of license for EDA tools and seminar/training for continuous upgrading of faculty. Another encouraging outcome was the acceptance of the student-centered teaching approach used, Problem-Based Learning (PBL,in enhancing the students learning experience.

  8. Results of external review Sandia microelectronics and microsystems program (September 2004).

    Energy Technology Data Exchange (ETDEWEB)

    Peercy, Paul S. (University of Wisconsin-Madison, Madision, WI); Myers, David R.

    2005-08-01

    The US Department of Energy requires a periodic assessment of the Microsystems Program at Sandia National Laboratories. An external review of this program is held approximately every 18 months to 24 months. The report from the External Review Panel serves as the basis for Sandia's ''self assessment'' and is a specific deliverable of the governance contract between Lockheed Martin and the Department of Energy. The External Review of Microelectronics and Microsystems for Fiscal Year 2004 was held September 27-29, 2004 at Sandia National Laboratories, Albuquerque, NM. The external review panel consisted of experts in the fields of microelectronics, photonics and microsystems from universities, industry and other Government agencies. A complete list of the panel members is included as Appendix A of the attached report. The review assessed four areas: relevance to national needs and agency mission; quality of science, technology and engineering; performance in the operation of a major facility; and program performance management and planning. Relevance to national needs and agency mission was rated as ''outstanding''. The quality of science, technology, and engineering was rated as ''outstanding''. Operation of a major facility was rated as ''outstanding'', and the category of program performance, management, and planning was rated as ''outstanding''. Sandia's Microsystems Program thus received an overall rating of ''outstanding'' [the highest possible rating].

  9. CFD modeling of heat transfer in a rectangular channel with dimplepin finning

    Directory of Open Access Journals (Sweden)

    Spokoiny M. Yu.

    2013-05-01

    Full Text Available Using the CFD modeling method, the authors have investigated conjugate heat transfer in a rectangular channel with dimple-pin finning with hight of pins, depth of cavities and Reynolds number values varying in the range, characteristic for heat exchangers designed for liquid cooling of microelectronic devices, such as microprocessors. Criterion dependencies for calculation of heat transfer under these conditions have been obtained.

  10. LEAN Manufacturing

    DEFF Research Database (Denmark)

    Bilberg, Arne

      As part of an employment as Technology Architect at the company Linak in combination with research at the University of Southern Denmark, this paper will present results from a strategy process where Lean has been pointed out as being a very strategic element in the Linak Production System....... The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical...

  11. Microelectronics: The Nature of Work, Skills and Training. An Analysis of Case Studies from Developed and Developing Countries. Training Discussion Paper No. 51.

    Science.gov (United States)

    Acero, Liliana

    Microelectronic technologies have had an impact on the nature of work in industry for both white-collar and blue-collar workers. Evidence from sector- and enterprise-level studies shows changes in skills and job content for blue-collar workers involved with numerically controlled machine tools, robots, and other microelectronics applications.…

  12. An overview of scanning acoustic microscope, a reliable method for non-destructive failure analysis of microelectronic components

    NARCIS (Netherlands)

    Yazdan Mehr, M.; Bahrami, A.; Fischer, H.; Gielen, S.; Corbeij, R.; van Driel, W.D.; Zhang, G.Q.

    2015-01-01

    In a highly competitive and demanding microelectronics market, reliable non-destructive methods for quality control and failure analysis of electronic components are highly demanded. Any robust non-destructive method should be capable of dealing with the complexity of miniaturized assemblies such as

  13. Assessing Advanced High School and Undergraduate Students' Thinking Skills: The Chemistry--From the Nanoscale to Microelectronics Module

    Science.gov (United States)

    Dori, Yehudit Judy; Dangur, Vered; Avargil, Shirly; Peskin, Uri

    2014-01-01

    Chemistry students in Israel have two options for studying chemistry: basic or honors (advanced placement). For instruction in high school honors chemistry courses, we developed a module focusing on abstract topics in quantum mechanics: Chemistry--From the Nanoscale to Microelectronics. The module adopts a visual-conceptual approach, which…

  14. Phase transformation in SiOx/SiO₂ multilayers for optoelectronics and microelectronics applications.

    Science.gov (United States)

    Roussel, M; Talbot, E; Pratibha Nalini, R; Gourbilleau, F; Pareige, P

    2013-09-01

    Due to the quantum confinement, silicon nanoclusters (Si-ncs) embedded in a dielectric matrix are of prime interest for new optoelectronics and microelectronics applications. In this context, SiO(x)/SiO₂ multilayers have been prepared by magnetron sputtering and subsequently annealed to induce phase separation and Si clusters growth. The aim of this paper is to study phase separation processes and formation of nanoclusters in SiO(x)/SiO₂ multilayers by atom probe tomography. Influences of the silicon supersaturation, annealing temperature and SiO(x) and SiO₂ layer thicknesses on the final microstructure have been investigated. It is shown that supersaturation directly determines phase separation regime between nucleation/classical growth and spinodal decomposition. Annealing temperature controls size of the particles and interface with the surrounding matrix. Layer thicknesses directly control Si-nc shapes from spherical to spinodal-like structures. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Application of Aloe vera gel instead of silicon dioxide as organic dielectric material in microelectronics

    Directory of Open Access Journals (Sweden)

    Rana Sardar Masud

    2015-09-01

    Full Text Available Organic materials are now being used in a wide range of microelectronic applications in parallel with inorganic materials, because of their superior properties, environmental safety, and low cost. This paper describes the characterization of Aloe vera gel (AVG, a new organic dielectric material. The surface morphology, spatial distribution of elements, and structural characteristics of an AVG layer were examined using scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX, and X-ray diffraction (XRD, respectively. The resistance of the AVG layer, determined using a four-probe station, was 640 Ω EDX showed that the elements contained in the layer were carbon, oxygen, aluminum, silicon, calcium, potassium, and copper. The XRD results suggested that the sample primarily consisted of bornite (Cu5FeS4, geerite (Cu8S5, sal ammoniac (NH4Cl, and carobbite (KF.

  16. Study of a two-stage photobase generator for photolithography in microelectronics.

    Science.gov (United States)

    Turro, Nicholas J; Li, Yongjun; Jockusch, Steffen; Hagiwara, Yuji; Okazaki, Masahiro; Mesch, Ryan A; Schuster, David I; Willson, C Grant

    2013-03-01

    The investigation of the photochemistry of a two-stage photobase generator (PBG) is described. Absorption of a photon by a latent PBG (1) (first step) produces a PBG (2). Irradiation of 2 in the presence of water produces a base (second step). This two-photon sequence (1 + hν → 2 + hν → base) is an important component in the design of photoresists for pitch division technology, a method that doubles the resolution of projection photolithography for the production of microelectronic chips. In the present system, the excitation of 1 results in a Norrish type II intramolecular hydrogen abstraction to generate a 1,4-biradiacal that undergoes cleavage to form 2 and acetophenone (Φ ∼ 0.04). In the second step, excitation of 2 causes cleavage of the oxime ester (Φ = 0.56) followed by base generation after reaction with water.

  17. Local tetrahedron modeling of microelectronics using the finite-volume hybrid-grid technique

    Energy Technology Data Exchange (ETDEWEB)

    Riley, D.J.; Turner, C.D.

    1995-12-01

    The finite-volume hybrid-grid (FVHG) technique uses both structured and unstructured grid regions in obtaining a solution to the time-domain Maxwell`s equations. The method is based on explicit time differencing and utilizes rectilinear finite-difference time-domain (FDTD) and nonorthogonal finite-volume time-domain (FVTD). The technique directly couples structured FDTD grids with unstructured FVTD grids without the need for spatial interpolation across grid interfaces. In this paper, the FVHG method is applied to simple planar microelectronic devices. Local tetrahedron grids are used to model portions of the device under study, with the remainder of the problem space being modeled with cubical hexahedral cells. The accuracy of propagating microstrip-guided waves from a low-density hexahedron region through a high-density tetrahedron grid is investigated.

  18. SAVANT analysis of the microelectronics and photonics testbed solar cell data

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Robert J.; Summers, G.P. [Naval Research Lab., Code 6818, Washington, DC (United States); Messenger, S.R. [SFA, Inc., Largo, MD (United States); Morton, T.L. [Ohio Aerospace Inst., Cleveland, OH (United States)

    2005-07-01

    An analysis of solar array data from the Microelectronic and Photonic Testbed (MPTB) space experiment is presented. The data are analyzed using the displacement damage dose (D{sub d}) methodology developed by the US Naval Research Laboratory (NRL) as implemented in the Solar Array Verification and Analysis Tool (SAVANT). SAVANT is a WindowsTM-based computer code that predicts the on-orbit performance of a solar cell in a specified Earth orbit. The predicted solar cell performance produced by the SAVANT code are compared with the measured on-orbit data. In addition, the calculated data are compared with onboard dosimeter measurements. The results allow both a validation of the SAVANT code and a comparison of the space environment models with measured on-orbit data. The results show the models to match the measured data within a factor of 2. (Author)

  19. Microelectronic DNA assay for the detection of BRCA1 gene mutations

    Science.gov (United States)

    Chen, Hua; Han, Jie; Li, Jun; Meyyappan, Meyya

    2004-01-01

    Mutations in BRCA1 are characterized by predisposition to breast cancer, ovarian cancer and prostate cancer as well as colon cancer. Prognosis for this cancer survival depends upon the stage at which cancer is diagnosed. Reliable and rapid mutation detection is crucial for the early diagnosis and treatment. We developed an electronic assay for the detection of a representative single nucleotide polymorphism (SNP), deletion and insertion in BRCA1 gene by the microelectronics microarray instrumentation. The assay is rapid, and it takes 30 minutes for the immobilization of target DNA samples, hybridization, washing and readout. The assay is multiplexing since it is carried out at the same temperature and buffer conditions for each step. The assay is also highly specific, as the signal-to-noise ratio is much larger than recommended value (72.86 to 321.05 vs. 5) for homozygotes genotyping, and signal ratio close to the perfect value 1 for heterozygotes genotyping (1.04).

  20. Electrodeposition of Alloys and Compounds in the Era of Microelectronics and Energy Conversion Technology

    Directory of Open Access Journals (Sweden)

    Giovanni Zangari

    2015-06-01

    Full Text Available Electrochemical deposition methods are increasingly being applied to advanced technology applications, such as microelectronics and, most recently, to energy conversion. Due to the ever growing need for device miniaturization and enhanced performance, vastly improved control of the growth process is required, which in turn necessitates a better understanding of the fundamental phenomena involved. This overview describes the current status of and latest advances in electrodeposition science and technology. Electrochemical growth phenomena are discussed at the macroscopic and atomistic scale, while particular attention is devoted to alloy and compound formation, as well as surface-limited processes. Throughout, the contribution of Professor Foresti and her group to the understanding of electrochemical interfaces and electrodeposition, is highlighted.

  1. Geckoprinting: assembly of microelectronic devices on unconventional surfaces by transfer printing with isolated gecko setal arrays.

    Science.gov (United States)

    Jeong, Jaeyoung; Kim, Juho; Song, Kwangsun; Autumn, Kellar; Lee, Jongho

    2014-10-06

    Developing electronics in unconventional forms provides opportunities to expand the use of electronics in diverse applications including bio-integrated or implanted electronics. One of the key challenges lies in integrating semiconductor microdevices onto unconventional substrates without glue, high pressure or temperature that may cause damage to microdevices, substrates or interfaces. This paper describes a solution based on natural gecko setal arrays that switch adhesion mechanically on and off, enabling pick and place manipulation of thin microscale semiconductor materials onto diverse surfaces including plants and insects whose surfaces are usually rough and irregular. A demonstration of functional 'geckoprinted' microelectronic devices provides a proof of concept of our results in practical applications. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Trieste conference on digital microelectronics and microprocessors in particle physics: Summary and concluding remarks

    Energy Technology Data Exchange (ETDEWEB)

    Nash, T.

    1988-08-01

    This paper is a written version of the Concluding Remarks presented at the International Conference on the Impact of Digital Microelectronics and Microprocessors on Particle Physics. The Conference emphasized on-line data acquisition and triggering problems in high energy physics. Among the participants there was a clearly growing consensus that as these real time systems become larger they require more attention from the beginning to overall system coherence and manageability issues. We consider what this means for SSC/LHC era detectors. Given the interesting results on pixel silicon, neural networks, and parallel microprocessor based computers presented at Trieste, we speculate on some surprisingly simple, though still very radical, ideas on systems solutions for those huge detectors.

  3. Future semiconductor detectors using advanced microelectronics with post-processing, hybridization and packaging technology

    CERN Document Server

    Heijne, Erik H M

    2005-01-01

    Several challenges for tracking with semiconductor detectors in the high rate environment of future elementary particle physics experiments are discussed, such as reduction of spurious hits and ambiguities and identification of short-lived 'messenger' particles inside jets. To meet these requirements the instrumentation increasingly calls on progress in microelectronics. Advanced silicon integration technology for 3D packaging now offers post-processing of CMOS such as wafer thinning to 50µm and through-wafer vias of <10µm. These technologies might be applied to create new tracking detectors which can handle vertexing under the difficult rate conditions. The sensor layers can be only ~50µm thick with low noise performance and better radiation hardness by using small volume pixels. Multi-layer sensors with integrated coincidence signal processing could discriminate real tracks from various sources of background. Even in a ~400µm thick 3D assembly the vectors of tracks can be determined in ~10 degree bin...

  4. Heat Pipe Technology

    Science.gov (United States)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  5. A REVIEW ON HEAT TRANSFER THROUGH HELICAL COIL HEAT EXCHANGERS

    OpenAIRE

    Surendra Vishvakarma*, Sanjay Kumbhare, K. K. Thakur

    2016-01-01

    This study presents a brief review of heat transfer through helical coil heat exchangers. Helical coils of circular cross section have been used in wide variety of applications due to simplicity in manufacturing. Enhancement in heat transfer due to helical coils has been reported by many researchers. While the heat transfer characteristics of double pipe helical heat exchangers are available in the literature, there exists no published experimental or theoretical analysis of a helically coile...

  6. Heat exchanger design handbook

    CERN Document Server

    Thulukkanam, Kuppan

    2013-01-01

    Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics--all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids.See What's New in the Second Edition: Updated information on pressure vessel codes, manufacturer's association standards A new c

  7. The impact of fit manufacturing on green manufacturing: A review

    Science.gov (United States)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  8. Laser Processed Heat Exchangers

    Science.gov (United States)

    Hansen, Scott

    2017-01-01

    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  9. 24 CFR 3280.707 - Heat producing appliances.

    Science.gov (United States)

    2010-04-01

    ... appliance, the heating appliance shall be installed by the manufacturer of the manufactured home in... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat producing appliances. 3280.707... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Heating, Cooling and Fuel Burning...

  10. Additive manufacturing – a sustainable manufacturing route

    Directory of Open Access Journals (Sweden)

    Frăţilă Domniţa

    2017-01-01

    Full Text Available Additive Manufacturing (AM technologies allow developing and manufacturing very complex shaped parts and functional products with a high level of customization, being a great alternative to Traditional Manufacturing (TM methods like injection molding, die-casting or machining. Due to the importance of cleaner production in the field of manufacturing processes, sustainability of AM processes needs to be assessed in order to make easier its acceptance and implementation in the industry. Furthermore, the manufacturers can improve their competitiveness and profitability by considering the ecological aspects during the manufacturing step of a product. This paper gives a survey on sustainability issues related to AM.

  11. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  12. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  13. Additive manufacturing – a sustainable manufacturing route

    OpenAIRE

    Frăţilă Domniţa; Rotaru Horaţiu

    2017-01-01

    Additive Manufacturing (AM) technologies allow developing and manufacturing very complex shaped parts and functional products with a high level of customization, being a great alternative to Traditional Manufacturing (TM) methods like injection molding, die-casting or machining. Due to the importance of cleaner production in the field of manufacturing processes, sustainability of AM processes needs to be assessed in order to make easier its acceptance and implementation in the industry. Furth...

  14. Tribology in Manufacturing Technology

    CERN Document Server

    2013-01-01

    The present book aims to provide research advances on tribology in manufacturing technology for modern industry. This book can be used as a research book for final undergraduate engineering course (for example, mechanical, manufacturing, materials, etc) or as a subject on manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, manufacturing and tribology researchers, mechanical, mechanical, manufacturing and materials engineers, professionals in related industries with manufacturing and tribology.

  15. The Influence of Temperature on Microelectronic Device Failure Mechanisms. Phase 2

    Science.gov (United States)

    1993-09-04

    technologies. Burn-in conditions are therefore specific to the manufacturing technology and hardware . The manufacturing sequence should be studied and...By Means of Noise Technique. Results and Open Problems for Indium and Gold. Vuoto (Scienza a Tecnologia ), 4 (1989), 219-222. Neudeck, Gerald W

  16. Results of external review Sandia National Laboratories microelectronics and photonics program (October 2002).

    Energy Technology Data Exchange (ETDEWEB)

    Peercy, Paul S. (University of Wisconsin, Madison, WI); Myers, David R.

    2003-10-01

    The US Department of Energy requires a periodic 'self assessment' of Sandia's Microsystems Program. An external panel review of this program is held approximately every 18 months, and the report from the external review panel serves as the basis for the DOE 'self assessment.' The review for this fiscal year was held on September 30-October 1, 2002 at Sandia National Laboratories, Albuquerque, NM. The panel was comprised of experts in the fields of microelectronics, photonics and microsystems from universities, industry and other Government agencies. A complete list of the panel members is shown as Appendix A to the attached report. The review assesses four areas: relevance to national needs and agency mission; quality of science technology and engineering; performance in the operation of a major facility; and program performance management and planning. Relevance to national needs and agency mission was rated as 'outstanding.' The quality of science, technology, and engineering was rated as 'outstanding.' Operation of a major facility was noted as 'outstanding,' while the category of program performance, management, and planning was rated as 'outstanding.' Sandia's Microsystems Program received an overall rating of 'outstanding' [the highest possible rating]. The attached report was prepared by the panel in a format requested by Sandia to conform with the performance criteria for the DOE self assessment.

  17. Feasibility of Observing and Characterizing Single Ion Strikes in Microelectronic Components.

    Energy Technology Data Exchange (ETDEWEB)

    Dingreville, Remi Philippe Michel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hattar, Khalid Mikhiel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bufford, Daniel Charles [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. A single high-energy charged particle can degrade or permanently destroy the microelectronic component, potentially altering the course or function of the systems. Disruption of the the crystalline structure through the introduction of quasi-stable defect structures can change properties from semiconductor to conductor. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. In this LDRD Express, in-situ ion irradiation transmission microscopy (TEM) in-situ TEM experiments combined with atomistic simulations have been conducted to determine the feasibility of imaging and characterizing the defect structure resulting from a single cascade in silicon. In-situ TEM experiments have been conducted to demonstrate that a single ion strike can be observed in Si thin films with nanometer resolution in real time using the in-situ ion irradiation transmission electron microscope (I3TEM). Parallel to this experimental effort, ion implantation has been numerically simulated using Molecular Dynamics (MD). This numerical framework provides detailed predictions of the damage and follow the evolution of the damage during the first nanoseconds. The experimental results demonstrate that single ion strike can be observed in prototypical semiconductors.

  18. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics.

    Science.gov (United States)

    Fu, Haoran; Nan, Kewang; Bai, Wubin; Huang, Wen; Bai, Ke; Lu, Luyao; Zhou, Chaoqun; Liu, Yunpeng; Liu, Fei; Wang, Juntong; Han, Mengdi; Yan, Zheng; Luan, Haiwen; Zhang, Yijie; Zhang, Yutong; Zhao, Jianing; Cheng, Xu; Li, Moyang; Lee, Jung Woo; Liu, Yuan; Fang, Daining; Li, Xiuling; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2018-01-29

    Three-dimensional (3D) structures capable of reversible transformations in their geometrical layouts have important applications across a broad range of areas. Most morphable 3D systems rely on concepts inspired by origami/kirigami or techniques of 3D printing with responsive materials. The development of schemes that can simultaneously apply across a wide range of size scales and with classes of advanced materials found in state-of-the-art microsystem technologies remains challenging. Here, we introduce a set of concepts for morphable 3D mesostructures in diverse materials and fully formed planar devices spanning length scales from micrometres to millimetres. The approaches rely on elastomer platforms deformed in different time sequences to elastically alter the 3D geometries of supported mesostructures via nonlinear mechanical buckling. Over 20 examples have been experimentally and theoretically investigated, including mesostructures that can be reshaped between different geometries as well as those that can morph into three or more distinct states. An adaptive radiofrequency circuit and a concealable electromagnetic device provide examples of functionally reconfigurable microelectronic devices.

  19. Innovative metal thermo-compression wafer bonding for microelectronics and MEMS devices

    Science.gov (United States)

    Rebhan, B.; Dragoi, V.

    2017-06-01

    With the continuously increasing level of integration for microelectronics and microelectromechanical systems (MEMS) devices, such as gyroscopes, accelerometers and bolometers, metal wafer bonding becomes progressively more importance. In the present work common metal wafer bonding techniques were categorized, described and compared. While devices produced with metal thermo-compression wafer bonding ensure high bonding quality and a high degree of reliability, the required bonding temperatures are very often close to the maximum complementary metal oxide semiconductor (CMOS) compatible process temperature (400-450°C). Based on a thermodynamic model of increasing the Gibbs free energy prior wafer bonding, in-situ ComBond(R) surface activation was applied to enable low-temperature Au-Au, Al-Al and Cu-Cu wafer bonding. Different aspects, such as bonding quality, dicing yield, bond strength, grain growth and elemental analysis across the initial bonding interface, were investigated. Based on these parameters successful wafer bonding was demonstrated at room temperature for Au-Au and Cu-Cu, and at 100°C for Al-Al wafer bonding.

  20. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed......, the complex phenomenon of a manufacturing network evolution is observed by combining the analysis of a manufacturing plant and network level. The historical trajectories of manufacturing networks that are presented in the case studies are examined in order to understand and determine the future shape...

  1. PREFACE: E-MRS 2012 Spring Meeting, Symposium M: More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics

    Science.gov (United States)

    Wenger, Christian; Fompeyrine, Jean; Vallée, Christophe; Locquet, Jean-Pierre

    2012-12-01

    More than Moore explores a new area of Silicon based microelectronics, which reaches beyond the boundaries of conventional semiconductor applications. Creating new functionality to semiconductor circuits, More than Moore focuses on motivating new technological possibilities. In the past decades, the main stream of microelectronics progresses was mainly powered by Moore's law, with two focused development arenas, namely, IC miniaturization down to nano scale, and SoC based system integration. While the microelectronics community continues to invent new solutions around the world to keep Moore's law alive, there is increasing momentum for the development of 'More than Moore' technologies which are based on silicon technologies but do not simply scale with Moore's law. Typical examples are RF, Power/HV, Passives, Sensor/Actuator/MEMS or Bio-chips. The More than Moore strategy is driven by the increasing social needs for high level heterogeneous system integration including non-digital functions, the necessity to speed up innovative product creation and to broaden the product portfolio of wafer fabs, and the limiting cost and time factors of advanced SoC development. It is believed that More than Moore will add value to society on top of and beyond advanced CMOS with fast increasing marketing potentials. Important key challenges for the realization of the 'More than Moore' strategy are: perspective materials for future THz devices materials systems for embedded sensors and actuators perspective materials for epitaxial approaches material systems for embedded innovative memory technologies development of new materials with customized characteristics The Hot topics covered by the symposium M (More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics) at E-MRS 2012 Spring Meeting, 14-18 May 2012 have been: development of functional ceramics thin films New dielectric materials for advanced microelectronics bio- and CMOS compatible

  2. The Economics of Big Area Addtiive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Laboratory (ORNL); Lloyd, Peter D [ORNL; Lindahl, John [Oak Ridge National Laboratory (ORNL); Lind, Randall F [ORNL; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL

    2016-01-01

    Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupled with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.

  3. Manufacture of methane

    Energy Technology Data Exchange (ETDEWEB)

    Broecker, F.J.; Zirker, G.; Triebskorn, B.; Marosi, L.; Schwarzmann, M.; Dethlefsen, W.; Kaempfer, K.

    1973-11-13

    A process is reported for the manufacture of methane by steam reforming of hydrocarbons of 2 to 30 C atoms or their mixtures on nickel catalysts at superatmospheric pressure, and after-treatment of the resulting cracked gases consisting essentially of carbon monoxide and carbon dioxide, hydrogen, methane, and steam, wherein, in a first process stage, in order to produce gases containing methane, the hydrocarbon vapors or their mixtures together with steam are passed under superatmospheric pressure and at temperatures above 250/sup 0/C through the bed of a practically alkali-free supported nickel catalyst produced from the catalyst precursor Ni/sub 6/Al/sub 2/(OH)/sub 16/.CO/sub 3/.4H/sub 2/O, wherein the catalyst precursor is manufactured by precipitating the compound Ni/sub 6/Al/sub 2/(OH)/sub 16/.CO/sub 3/.4H/sub 2/O from aqueous solution, drying it at a temperature of from 80/sup 0/ to 180/sup 0/C, calcining it at a temperature of from 300/sup 0/ to 550/sup 0/C and subsequently reducing it in a stream of hydrogen, with the proviso that between the drying stage and the calcination stage the temperature is raised at a rate in the range from 1.60/sup 0/ to 3.33/sup 0/C/minute, and the reaction products obtained after passing through the first process stage, in which the catalyst has been kept at temperatures from 300/sup 0/ to 500/sup 0/C by the heat of reaction which was liberated, are cooled, and the gases consisting essentially of methane, hydrogen and carbon monoxide and carbon dioxide are passed, in a further catalytic process stage, under superatmospheric pressure and at temperatures of the gas mixtures from 200/sup 0/ to 300/sup 0/C, through a bed of a low temperature naphtha cracking catalyst containing nickel.

  4. Strategic Roles of Manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng

    Addressing three development trends of manufacturing, this thesis aims to explore: (1) facing challenges on manufacturing (globalisation, knowledge-based manufacturing and servitisation of manufacturing), what kinds of roles does manufacturing play within industrial companies; (2) along...... with the trend of globalisation, how do industrial companies develop their global manufacturing networks? These two questions are actually interlinked. On the one hand, facing increasing offshoring and outsourcing of production activities, industrial companies have to understand how to develop their global...... manufacturing networks. On the other hand, ongoing globalisation also brings tremendous impacts to post-industrial economies (e.g. Denmark). A dilemma therefore arises, i.e. whether it is still necessary to keep manufacturing in these post-industrial economies; if yes, what kinds of roles manufacturing should...

  5. Development of low dielectric constant alumina-based ceramics for microelectronic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shun Jackson [Univ. of California, Berkeley, CA (United States)

    1993-05-01

    The performance of high speed computers depends not only on IC chips, but also on the signal propagation speed between these chips. The signal propagation delay in a computer is determined by the dielectric constant of the substrate material to which the IC chips are attached. In this study, a ceramic substrate with a low dielectric constant (k ≈ 5.0) has been developed. When compared with the traditional alumina substrate (k ≈ 10.0), the new material corresponds to a 37% decrease in the signal propagation delay. Glass hollow spheres are used to introduce porosity (k = 1.0) to the alumina matrix in a controlled manner. A surface coating technique via heterogeneous nucleation in aqueous solution has been used to improve the high temperature stability of these spheres. After sintering at 1,400 C, isolated spherical pores are uniformly distributed in the almost fully dense alumina matrix; negligible amounts of matrix defects can be seen. All pores are isolated from each other. Detailed analyses of the chemical composition find that the sintered sample consists of α-alumina, mullite and residual glass. Mullite is the chemical reaction product of alumina and the glass spheres. Residual glass exists because current firing conditions do not complete the mullitization reaction. The dielectric constant of the sintered sample is measured and then compared with the predicted value using Maxwell`s model. Mechanical strength is evaluated by a four-point bending test. Although the flexural strength decreases exponentially with porosity, samples with 34% porosity (k ≈ 5.0) still maintain adequate mechanical strength for the proper operation of a microelectronic substrate.

  6. Controlling microstructure and mechanical properties of the new microelectronic interconnect alloys

    Science.gov (United States)

    Mutuku, Francis M.

    An in-depth understanding of the physics of solidification could lead to the optimization of the properties of micro-electronic interconnects. Sn is the base material in the billions of interconnects in devices such as smart phones. These interconnects are formed by melting and solidifying a solder alloy (e.g. SnAgCu) in situ. But Sn has a low symmetry structure, Sn nucleation from the solder melt is complex and the morphology of the Sn and Sn alloys precipitates that form during solidification can vary tremendously (along with resultant mechanical properties). The effect of processing parameters on the solidification behavior, microstructure, and properties must be carefully addressed. Strong evidence adduced in this study shows that under many conditions, when cooling near eutectic SnAgCu from the melt, Ag3Sn nucleates before beta-Sn. The difficulty in the nucleation of beta-Sn provides a window of time between the nucleation of Ag3Sn precipitates and of beta-Sn solidification within which the Ag3Sn precipitate morphology can be manipulated. Thus distinct variations in precipitate number density, and inter-particle spacing were observed for different thermal histories, e.g. for different cooling rates. The average number density of Ag3Sn particles and the area of the pseudo-eutectic phase were observed to increase with increase in the Ag concentration, and with increase in the cooling rate. The shear strength and shear fatigue life increased with increase in the area fraction of the pseudo-eutectic phase. Upon aging of SnAgCu solder joints at an elevated temperature, the Ag3Sn particles coarsened, and became less effective in impeding dislocation motion. Consequently, the shear strength and shear fatigue performance degraded. On the other hand, alloys with constituents that formed solid solutions in Sn, such as small concentrations of Bi or Sb registered less degradation in both shear strength and shear fatigue life upon aging.

  7. Use of COTS [commercial-off-the-shelf] Microelectronics in Radiation Environments

    Energy Technology Data Exchange (ETDEWEB)

    Winokur, P.S.; Lum, G.K.; Shaneyfelt, M.R.; Sexton, F.W.; Hash, G.L.; Scott, L.

    1999-07-07

    This paper addresses key issues for the cost-effective use of COTS microelectronics in radiation environments that enable circuit or system designers to manage risks and ensure mission success. COTS parts with low radiation tolerance should not be used when they degrade mission critical functions or lead to premature system failure. We review several factors and tradeoffs affecting the successful application of COTS parts including (1) hardness assurance and qualification issues, (2) system hardening techniques, and (3) life-cycle costs. The paper also describes several experimental studies that address trends in total-dose, transient, and single-event radiation hardness as COTS technology scales to smaller feature sizes. As an example, the level at which dose-rate upset occurs in Samsung SRAMS increases from 1.4x10{sup 8} rads(Si)/s for a 256K SRAM to 7.7x10{sup 9} rads(Si)/s for a 4M SRAM, indicating unintentional hardening improvements in the design or process of a commercial technology. Additional experiments were performed to quantify variations in radiation hardness for COTS parts. In one study, only small (10-15%) variations were found in the dose-rate upset and latchup thresholds for Samsung 4M SRAMS from three different date codes. In another study, irradiations of 4M SRAMS from Samsung, Hitachi, and Toshiba indicate large differences in total-dose radiation hardness. The paper attempts to carefully define terms and clear up misunderstandings about the definitions of ''COTS'' and ''radiation-hardened'' technology.

  8. C-scan transmission ultrasound based on a hybrid microelectronic sensor array and its physical performance

    Science.gov (United States)

    Lo, Shih-Chung B.; Rich, David; Lasser, Marvin E.; Kula, John; Zhao, Hui; Lasser, Bob; Freedman, Matthew T.

    2001-05-01

    A C-scan through-transmission ultrasound system has been constructed based on a patented hybrid microelectronic array that is capable of generating ultrasound images with fluoroscopic presentation. To generate real-time images, ultrasound is introduced into the object under study with a large unfocused plane wave source. The resultant pressure wave strikes the object and is attenuated and scattered. The device detects scattered as well as attenuated ultrasound energy which allows the use of an acoustic lens to focus on detected energy from an object plane. The acoustic lens collects the transmitted energy and focuses it onto the ultrasound sensitive array. The array is made up to two components, a silicon detector/readout array and a piezoelectric material that is deposited onto the array through semiconductor processing. The array is 1 cm on a side consisting of 128x128 pixel elements with 85micrometers pixel spacing. The energy that strikes the piezoelectric material is converted to an analog voltage that is digitized and processed by low cost commercial video electronics. The images generated by the device appear with no speckle artifact with fluoroscopy-like presentation. The images show no obvious geometrical distortion. The experimental results indicated that the system has a spatial resolution of 0.32 mm. It can resolve 3mm objects with low differential contrast and an attenuation coefficient difference less than 0.07 dB/cm/MHz. Phase contrast of the objects are also clearly measurable. A presentation of a C- scan image guided breast biopsy was demonstrated. In addition, punctured needle tracks in a tumor was clearly observed. This implies the potential of observing the spiculation of masses in vivo.

  9. A system approach for reducing the environmental impact of manufacturing and sustainability improvement of nano-scale manufacturing

    Science.gov (United States)

    Yuan, Yingchun

    This dissertation develops an effective and economical system approach to reduce the environmental impact of manufacturing. The system approach is developed by using a process-based holistic method for upstream analysis and source reduction of the environmental impact of manufacturing. The system approach developed consists of three components of a manufacturing system: technology, energy and material, and is useful for sustainable manufacturing as it establishes a clear link between manufacturing system components and its overall sustainability performance, and provides a framework for environmental impact reductions. In this dissertation, the system approach developed is applied for environmental impact reduction of a semiconductor nano-scale manufacturing system, with three case scenarios analyzed in depth on manufacturing process improvement, clean energy supply, and toxic chemical material selection. The analysis on manufacturing process improvement is conducted on Atomic Layer Deposition of Al2O3 dielectric gate on semiconductor microelectronics devices. Sustainability performance and scale-up impact of the ALD technology in terms of environmental emissions, energy consumption, nano-waste generation and manufacturing productivity are systematically investigated and the ways to improve the sustainability of the ALD technology are successfully developed. The clean energy supply is studied using solar photovoltaic, wind, and fuel cells systems for electricity generation. Environmental savings from each clean energy supply over grid power are quantitatively analyzed, and costs for greenhouse gas reductions on each clean energy supply are comparatively studied. For toxic chemical material selection, an innovative schematic method is developed as a visual decision tool for characterizing and benchmarking the human health impact of toxic chemicals, with a case study conducted on six chemicals commonly used as solvents in semiconductor manufacturing. Reliability of

  10. Life Cicle Inventory for Lead Azide Manufacture

    OpenAIRE

    Galante, E.B.F.; Haddad, A.; Boer, D.; Bonifácio,D.

    2014-01-01

    ABSTRACT: Like any other manufactured chemical compounds, explosives are produced using chemical reactants and other utilities (steam, heat, compressed air, feed water and electricity) and generate a set of environmental impacts (waste water, solid and water residue and waste heat, for example). On top of that, one can count the intrinsic hazard characteristic of explosives and the possibility of accidents involving these compounds. Within this framework, explosives present themselves as chem...

  11. Prototype solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    A collection of quarterly reports from the AiResearch Manufacturing Company covering the period July 12, 1976, through December 31, 1977, is presented. AiResearch Manufacturing Company is developing eight prototype solar heating and cooling systems. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25 and 75-ton size units.

  12. Prototype solar heating and combined heating and cooling systems. Quarterly report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-06

    The General Electric Company is developing eight prototype solar heating and combined heating and cooling systems. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  13. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [Univ. of Arizona, Tucson, AZ (United States)

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  14. Application of manufactured products

    Science.gov (United States)

    Sastri, Sankar; Duke, Michael B.

    A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems.

  15. Additive Manufacturing of Fuel Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadek Tadros, Dr. Alber Alphonse [Edison Welding Institute, Inc., Columbus, OH (United States); Ritter, Dr. George W. [Edison Welding Institute, Inc., Columbus, OH (United States); Drews, Charles Donald [Edison Welding Institute, Inc., Columbus, OH (United States); Ryan, Daniel [Solar Turbines Inc., San Diego, CA (United States)

    2017-10-24

    Additive manufacturing (AM), also known as 3D-printing, has been shifting from a novelty prototyping paradigm to a legitimate manufacturing tool capable of creating components for highly complex engineered products. An emerging AM technology for producing metal parts is the laser powder bed fusion (L-PBF) process; however, industry manufacturing specifications and component design practices for L-PBF have not yet been established. Solar Turbines Incorporated (Solar), an industrial gas turbine manufacturer, has been evaluating AM technology for development and production applications with the desire to enable accelerated product development cycle times, overall turbine efficiency improvements, and supply chain flexibility relative to conventional manufacturing processes (casting, brazing, welding). Accordingly, Solar teamed with EWI on a joint two-and-a-half-year project with the goal of developing a production L-PBF AM process capable of consistently producing high-nickel alloy material suitable for high temperature gas turbine engine fuel injector components. The project plan tasks were designed to understand the interaction of the process variables and their combined impact on the resultant AM material quality. The composition of the high-nickel alloy powders selected for this program met the conventional cast Hastelloy X compositional limits and were commercially available in different particle size distributions (PSD) from two suppliers. Solar produced all the test articles and both EWI and Solar shared responsibility for analyzing them. The effects of powder metal input stock, laser parameters, heat treatments, and post-finishing methods were evaluated. This process knowledge was then used to generate tensile, fatigue, and creep material properties data curves suitable for component design activities. The key process controls for ensuring consistent material properties were documented in AM powder and process specifications. The basic components of the project

  16. Label-free, real-time monitoring of IgE-mediated mast cell activation on microelectronic cell sensor arrays.

    Science.gov (United States)

    Abassi, Yama A; Jackson, Jo Ann; Zhu, Jenny; O'Connell, James; Wang, Xiaobo; Xu, Xiao

    2004-09-01

    Immunoglobulin E (IgE)-mediated mast cell activation is involved in the immediate phase of allergic reactions and plays a central role in the onslaught and persistence of allergic diseases. IgE-mediated mast cell activation includes two important events: cell sensitization resulting from IgE binding to Fc (FcepsilonRI) receptor and cell activation triggered by allergen-mediated oligomerization of membrane-bound IgE. Real-time monitoring of these events is needed to dissect the molecular mechanisms underlying IgE-mediated mast cell activation. Existing technologies are limited to label-based end-point assay formats, which detect either early signaling or final phase of mast cell activation. We describe a microelectronic cell sensor-based technology allowing dynamic monitoring of IgE-mediated mast cell sensitization and activation in real-time without any labeling steps. RBL-2H3 mast cells were cultured onto the surface of microelectronic cell sensor arrays integrated into the bottom of microtiter plates, which record electric properties, such as impedance between cell membrane and sensor surface. In the presence of the allergen, dinitrophenyl (DNP)-bovine serum albumin (BSA), anti-DNP IgE-sensitized cells were activated within 5 min and the entire activation process was quantitatively and continuously recorded. Impedance measurements correlate with morphological dynamics and mediator release as measured by beta-hexosaminidase activity, and can be blocked by pharmacological agents, inhibiting IgE-mediated signaling. The assay on microelectronic cell sensor arrays can be scaled up for high-throughput screening of pharmacological inhibitors of IgE-mediated mast cell activation and other cell-based receptor-ligand assays.

  17. Manufacturing in Denmark

    DEFF Research Database (Denmark)

    Hansen, Johannes; Boer, Henrike Engele Elisabeth; Boer, Harry

    This report compares the manufacturing strategies, practices, performances and improvement activities of 39 companies that are representative for the Danish assembly industry with those of 804 companies from 19 other countries. The data supporting this report were collected in 2013 and concern......: • Manufacturing strategies pursued and implemented between 2010 and 2012. • Performance improvements achieved during that period. • Actual manufacturing practices and performances as well as competitive priorities in 2012. • Manufacturing strategies pursued for the years 2010-2012....

  18. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  19. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  20. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro...

  1. High-speed high-efficiency 500-W cw CO2 laser hermetization of metal frames of microelectronics devices

    Science.gov (United States)

    Levin, Andrey V.

    1996-04-01

    High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.

  2. Additive Manufacturing of Wind Turbine Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Richardson, Bradley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lloyd, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nolet, Stephen [TPI Composites, Scottsdale, AZ (United States); Hannan, James [TPI Composites, Scottsdale, AZ (United States)

    2017-07-01

    The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings and material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).

  3. Advanced Manufacturing Technologies (AMT): Manufacturing Initiative Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA supports the Advanced Manufacturing National Program Office (AMNPO). Hosted by the National Institute of Standards and Technology (NIST) the AMNPO is...

  4. Manufacturer Identification Code (MID) - ACE

    Data.gov (United States)

    Department of Homeland Security — The ACE Manufacturer Identification Code (MID) application is used to track and control identifications codes for manufacturers. A manufacturer is identified on an...

  5. Manufacturing Planning Guide

    Science.gov (United States)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  6. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  7. Dimensionless numbers in additive manufacturing

    Science.gov (United States)

    Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.

    2017-02-01

    The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.

  8. Materials Characterization and Microelectronic Implementation of Metal-insulator Transition Materials and Phase Change Materials

    Science.gov (United States)

    2015-03-26

    including but not limited to 3-D circuitry, spintronics, quantum actuation, hysteretic memory, nonlinear neural elements, solid-oxide fuel cells, MEMS...They are in fact already being used for DNA synthesizers, heating and cooling of car seats, heat engines for space applications, and cooling for...with rinsing of acetone, methanol , and water for 30 seconds each while spinning the wafer at 500 rpm; and drying is done with nitrogen. The masking

  9. Evolution of solidification texture during additive manufacturing

    Science.gov (United States)

    Wei, H. L.; Mazumder, J.; DebRoy, T.

    2015-01-01

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components. PMID:26553246

  10. Manufacturing fuel-switching capability, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  11. GeNeDA: An Open-Source Workflow for Design Automation of Gene Regulatory Networks Inspired from Microelectronics.

    Science.gov (United States)

    Madec, Morgan; Pecheux, François; Gendrault, Yves; Rosati, Elise; Lallement, Christophe; Haiech, Jacques

    2016-10-01

    The topic of this article is the development of an open-source automated design framework for synthetic biology, specifically for the design of artificial gene regulatory networks based on a digital approach. In opposition to other tools, GeNeDA is an open-source online software based on existing tools used in microelectronics that have proven their efficiency over the last 30 years. The complete framework is composed of a computation core directly adapted from an Electronic Design Automation tool, input and output interfaces, a library of elementary parts that can be achieved with gene regulatory networks, and an interface with an electrical circuit simulator. Each of these modules is an extension of microelectronics tools and concepts: ODIN II, ABC, the Verilog language, SPICE simulator, and SystemC-AMS. GeNeDA is first validated on a benchmark of several combinatorial circuits. The results highlight the importance of the part library. Then, this framework is used for the design of a sequential circuit including a biological state machine.

  12. Development of Drop/Shock Test in Microelectronics and Impact Dynamic Analysis for Uniform Board Response

    Science.gov (United States)

    Kallolimath, Sharan Chandrashekar

    -joints. No ring test conditions was proposed and verified for the current widely used JEDEC standard. The significance of impact loading parameters such as pulse magnitude, pulse duration, pulse shapes and board dynamic parameter such as linear hysteretic damping and dynamic stiffness were discussed. Third, Kirchhoff's plate theory by principle of minimum potential energy was adopted to develop the FEA formulation to consider the effect of material hysteretic damping for the currently used JEDEC board test and proposed no-ring response test condition. Fourth, a hexagonal symmetrical board model was proposed to address the uniform stress and strain distribution throughout the test board and identify the critical failure factors. Dynamic stress and strain of the hexagonal board model were then compared with standard JEDEC board for both standard and proposed no-ring test conditions. In general, this line of research demonstrates that advanced techniques of FEA analysis can provide useful insights concerning the optimal design of drop test in microelectronics.

  13. Investigations on MGy ionizing dose effects in thin oxides of micro-electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Gaillardin, M.; Paillet, P.; Raine, M.; Martinez, M.; Marcandella, C.; Duhamel, O.; Richard, N.; Leray, J.L. [CEA, DAM, DIF, F-91297 Arpajon (France); Goiffon, V.; Corbiere, F.; Rolando, S.; Molina, R.; Magnan, P. [ISAE, Universite de Toulouse, 10 avenue Edouard Belin, BP 54032, 31055 Toulouse Cedex 4 (France); Girard, S.; Ouerdane, Y.; Boukenter, A. [Universite de Saint-Etienne, Laboratoire H. Curien, UMR-5516, 42000, Saint-Etienne (France)

    2015-07-01

    Total ionizing dose (TID) effects have been studied for a long time in micro-electronic components designed to operate in natural and artificial environments. In most cases, TID induces both charge trapping in the bulk of irradiated oxides and the buildup of interface traps located at semiconductor/dielectric interfaces. Such effects result from basic mechanisms driven by both the shape of the electric field which stands into the oxide and by fabrication process parameters inducing pre-existing traps in the oxide's bulk. From the pioneering studies based on 'thick' oxide technologies to the most recent ones dedicated to innovative technologies, most studies concluded that the impact of total ionizing dose effects reduces with the oxide thinning. This is specifically the case for the gate-oxide of Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET) for which it is generally considered that TID is not a major issue anymore at kGy dose ranges. TID effects are now mainly due to charge trapping in the field oxides such as Shallow Trench Isolation. This creates either parasitic conduction paths or Radiation-Induced Narrow Channel Effects (RINCE). Static current-voltage (I-V) electrical characteristics are then modified through a significant increase of the off-current of NMOS transistors or by shifting the whole I-V curves (of both NMOS and PMOS transistors). Based on these assumptions, no significant shift of I-V curves should be observed in modern bulk CMOS technologies. However, such phenomenon may not be directly extrapolated to higher TID ranges, typically of several MGy for which only few data are available in the literature. This paper presents evidences of large threshold voltage shifts measured at MGy dose levels despite the fact that transistors are designed in a submicron bulk technology which features a 7-nm thin gate-oxide on GO2 transistors dedicated to mixed analog/digital integrated circuits. Such electrical shifts are encountered

  14. Measuring Manufacturing Innovativeness

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    2017-01-01

    technology and organizational concepts. Based on Danish survey data from the European Manufacturing Survey (EMS-2015) this paper finds that there is a relation between innovative companies, and their level of technology and use of organizational concepts. Technology and organizational concepts act...... as manufacturing levers to support the manufacturing and production system to provide innovativeness. The managerial implication lies in building manufacturing capabilities to support the innovative process, by standardization, optimization and creating stability in combination with automation and advanced......Globalization and customization increases the pressure on manufacturing companies, and the ability to provide innovativeness is a potential source of competitive advantage. This paper positions the manufacturing entity in the innovation process, and investigates the relation between innovation vers...

  15. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization....... The distribution of the material in the unit cell is optimized according to a given objective (e.g. maximum bulk modulus or minimum Poisson’s ratio) and some given constraints (e.g. isotropy) using topology optimization. The manufacturability is achieved using various filtering techniques together...

  16. Rapid manufacturing facilitated customisation

    OpenAIRE

    Tuck, Christopher John; Hague, Richard; Ruffo, Massimiliano; Ransley, Michelle; Adams, Paul Russell

    2008-01-01

    Abstract This paper describes the production of body-fitting customised seat profiles utilising the following digital methods: three dimensional laser scanning, reverse engineering and Rapid Manufacturing (RM). The seat profiles have been manufactured in order to influence the comfort characteristics of an existing ejector seat manufactured by Martin Baker Aircraft Ltd. The seat, known as Navy Aircrew Common Ejection Seat (NACES), was originally designed with a generic profile. ...

  17. The Manufacturing Industry

    Science.gov (United States)

    2005-06-01

    their currencies to the dollar at an artificially weak exchange rate in order to ensure continued access to the US market on favorable terms. China is...creates US jobs in the manufacturing sector, spurring investments in people and equipment, which contributes to the strength of the economy.73 US...movements are: (1) Kaizen , (2) Synchronous Manufacturing, and (3) Just-In-Time (JIT) Manufacturing. Kaizen : Kaizen is a Japanese word that means

  18. Manufacturing tolerant topology optimization

    OpenAIRE

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining an...

  19. 29 CFR 1919.80 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out in...

  20. Manufacturing with the Sun

    Science.gov (United States)

    Murphy, L. M.; Hauser, S. G.; Clyne, R. J.

    1992-05-01

    Concentrated solar radiation is now a viable alternative energy source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar-induced surface transformation of materials (SISTM), solar-based manufacturing, and solar-pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offers even greater potential for tomorrow, especially as applied to the radiation-abundant environment available in space and on the lunar surface.

  1. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  2. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  3. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  4. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  5. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...

  6. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  7. Fabrication of Microcomponents by Electrochemical Manufacturing: Advanced Feed-Through Metallisation on Silicon and Nickel Micromechanical Resonators

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Heschel, Matthias; Ravnkilde, Jan Tue

    2000-01-01

    -lithography, silicon substrates and other processes traditionally associated with microelectronics. By replacing ceramic materials, in some parts of a MEMS structure, with metal - and introducing electrochemical manufacturing - the production costs can be significantly reduced. This will be illustrated by two very...... different MEMS component examples: An example uses electrochemical manufacturing to form multiple feed-though wires of copper (similar to printed circuit boards, but much smaller and on tree-dimensional surfaces) from one side of a silicon wafer to the other. In this example tin bumps for flip-chip bonding......, as well as nickel/gold pads for conductive adhesive bonding, are also deposited by electroplating. The second example is a simple, inexpensive, low-temperature electroplating process for fabrication of released, stress-free nickel comb resonators. Since the manufacturing sequence only involves low...

  8. Multi-orifice deposition nozzle for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Randall F.; Post, Brian K.; Cini, Colin L.

    2017-11-21

    An additive manufacturing extrusion head includes a nozzle for accepting and depositing a heated material onto a work surface and/or part. The nozzle includes a valve body and an internal poppet body moveable between positions to permit deposition of at least two bead sizes of heated material onto a work surface and/or part.

  9. Modern manufacturing engineering

    CERN Document Server

    2015-01-01

    This book covers recent research and trends in Manufacturing Engineering. The chapters emphasize different aspects of the transformation from materials to products. It provides the reader with fundamental materials treatments and the integration of processes. Concepts such as green and lean manufacturing are also covered in this book.

  10. Manufacturing tolerant topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick...... (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...... that the method provides manufacturing tolerant designs with little decrease in performance. As a positive side effect the robust design formulation also eliminates the longstanding problem of one-node connected hinges in compliant mechanism design using topology optimization....

  11. Enhanced heat transfer characteristics of conjugated air jet impingement on a finned heat sink

    Directory of Open Access Journals (Sweden)

    Qiu Shuxia

    2017-01-01

    Full Text Available Air jet impingement is one of the effective cooling techniques employed in micro-electronic industry. To enhance the heat transfer performance, a cooling system with air jet impingement on a finned heat sink is evaluated via the computational fluid dynamics method. A two-dimensional confined slot air impinging on a finned flat plate is modeled. The numerical model is validated by comparison of the computed Nusselt number distribution on the impingement target with published experimental results. The flow characteristics and heat transfer performance of jet impingement on both of smooth and finned heat sinks are compared. It is observed that jet impingement over finned target plate improves the cooling performance significantly. A dimensionless heat transfer enhancement factor is introduced to quantify the effect of jet flow Reynolds number on the finned surface. The effect of rectangular fin dimensions on impingement heat transfer rate is discussed in order to optimize the cooling system. Also, the computed flow and thermal fields of the air impingement system are examined to explore the physical mechanisms for heat transfer enhancement.

  12. Manufactured Home Energy Audit user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the US Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA displays a colorful, graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes.

  13. Heat transfer in open-cell metal foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, T.J.; Ashby, M.F. [Univ. of Cambridge (United Kingdom). Dept. of Engineering; Stone, H.A. [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences

    1998-06-12

    The paper explores the use of open-celled metal foams as compact heat exchangers, exploiting convective cooling. An analytical model is developed for model foams with simple cubic unit cells consisting of heated slender cylinders, based on existing heat transfer data on convective crossflow through cylinder banks. A foam-filled channel having constant wall temperatures is analyzed to obtain the temperature distribution inside the channel as a function of foam density, cell size and other pertinent heat transfer parameters. Two characteristic length scales of importance to the problem are discussed: the minimum channel length required for heating the fluid to its goal temperature and the thermal entry length beyond which the transfer of heat between fluid and channel wall assumes a constant coefficient. The overall heat transfer coefficient of the heat exchanging system is calculated, and the pressure drop experienced by the fluid flow obtained. The present model perhaps oversimplifies the calculation of transport in a metal foam consisting of non-circular, possibly sharp-edged ligaments, and so likely leads to overestimates. Nevertheless the trends of heat transfer predicted by the model (for dependence on foam relative density, duct geometries, fluid velocity, etc.) are expected to be valid for a wide range of open-cell foams and are in reasonable agreement with available experimental data on aluminum foams (Bastawros and Evans, Proceedings Symposium Application of Heat Transfer in Microelectronics Packaging, IMECE, Dallas, TX, 1997).

  14. Quality management of manufacturing process based on manufacturing execution system

    Science.gov (United States)

    Zhang, Jian; Jiang, Yang; Jiang, Weizhuo

    2017-04-01

    Quality control elements in manufacturing process are elaborated. And the approach of quality management of manufacturing process based on manufacturing execution system (MES) is discussed. The functions of MES for a microcircuit production line are introduced conclusively.

  15. Additive manufacturing with polypropylene microfibers.

    Science.gov (United States)

    Haigh, Jodie N; Dargaville, Tim R; Dalton, Paul D

    2017-08-01

    The additive manufacturing of small diameter polypropylene microfibers is described, achieved using a technique termed melt electrospinning writing. Sequential fiber layering, which is important for accurate three-dimensional fabrication, was achieved with the smallest fiber diameter of 16.4±0.2μm obtained. The collector speed, temperature and melt flow rate to the nozzle were optimized for quality and minimal fiber pulsing. Of particular importance to the success of this method is appropriate heating of the collector plate, so that the electrostatically drawn filament adheres during the direct-writing process. By demonstrating the direct-writing of polypropylene, new applications exploiting the favorable mechanical, stability and biocompatible properties of this polymer are envisaged. Copyright © 2017. Published by Elsevier B.V.

  16. Competitive Manufacturing Dynamics

    DEFF Research Database (Denmark)

    Rymaszewska, Anna; Christensen, Irene; Karlsson, Christer

    The increasing complexity of business environments and the pressure for organizations on delivering new products faster while maintaining the superior quality of their products, has forced manufacturing organizations to rethink their operations. Managers responsible for manufacturing ramp-up need...... to constantly improve this process in terms of time to volume, according to predefined cost and quality measures. The importance of the success of this process can lead to a significant creation of competitive advantage. This paper addresses the challenges of the manufacturing ramp-up process in the context...... of lean improvements as well as organizational learning....

  17. Rapid small lot manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Harrigan, R.W.

    1998-05-09

    The direct connection of information, captured in forms such as CAD databases, to the factory floor is enabling a revolution in manufacturing. Rapid response to very dynamic market conditions is becoming the norm rather than the exception. In order to provide economical rapid fabrication of small numbers of variable products, one must design with manufacturing constraints in mind. In addition, flexible manufacturing systems must be programmed automatically to reduce the time for product change over in the factory and eliminate human errors. Sensor based machine control is needed to adapt idealized, model based machine programs to uncontrolled variables such as the condition of raw materials and fabrication tolerances.

  18. Experimental and numerical investigation of pressure drop and heat transfer coefficient in converging-diverging microchannel heat sink

    Science.gov (United States)

    Chakravarthii, M. K. Dheepan; Mutharasu, D.; Shanmugan, S.

    2017-07-01

    The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of the devices. Microchannel heat sinks are efficient method to dissipate high heat flux. The pressure drop and heat transfer coefficient are the important parameters which determine the thermal-hydraulic performance of the microchannel heat sink. In this study, a converging-diverging (CD) microchannel heat sink was experimentally investigated for the variation of pressure drop and heat transfer coefficient. De-ionized water was considered as the working fluid. Experiments were conducted for single phase fluid flow with mass flow rate and heat flux ranging from 0.001232 to 0.01848 kg/s and 10-50 W/cm2 respectively. The fluid and solid temperature were measured to calculate the heat transfer coefficients. Numerical results were computed using the CFD software and validated against the experimental results. The CD microchannel possesses high heat transfer coefficient than the straight microchannels. Theoretical correlations were proposed for comparing the experimental Nusselt number of CD microchannel. Evaluation of thermal-hydraulic performance of CD microchannel is important to quantify its applications in electronics cooling.

  19. 75 FR 30781 - Manufacturing Council

    Science.gov (United States)

    2010-06-02

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On March 16, 2010, the Department of Commerce's International Trade... the Manufacturing Council (Council). The March 16, 2010 notice provided that all applications must be...

  20. 75 FR 80040 - Manufacturing Council

    Science.gov (United States)

    2010-12-21

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On November 23, 2010, the Department of Commerce's International Trade... vacant position on the Manufacturing Council (Council). The November 23, 2010 notice provided that all...

  1. Many Manufactured Nanosats Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To achieve the capability to affordably produce scores of nano-spacecraft for envisioned constellation missions, a new manufacturing process is needed to reduce the...

  2. Review of Manufacturing Intelligence

    OpenAIRE

    Stokey, Richard

    1990-01-01

    "Manufacturing Intelligence (Addison Wesley, Reading, Massachusetts, 1988, 352 pages, $43.25, ISBN 0-201-13576-0) by Paul Kenneth Wright and David Alan Bourne develops principles for the design of intelligent machine tools.

  3. MEDICAL MANUFACTURING INNOVATIONS

    Directory of Open Access Journals (Sweden)

    Cosma Sorin Cosmin

    2015-02-01

    Full Text Available The purpose of these studies was to improve the design and manufacturing process by selective laser melting, of new medical implants. After manufacturing process, the implants were measured, microscopically and mechanical analyzed. Implants manufactured by AM can be an attractive option for surface coatings to improve the osseointegration process. The main advantages of customized implants made by AM process are: the precise adaptation to the region of implantation, better cosmesis, reduced surgical times and better performance over their generic counterparts. These medical manufacturing changes the way that the surgeons are planning surgeries and engineers are designing custom implant. AM process has eliminated the constraints of shape, size, internal structure and mechanical properties making it possible for fabrication of implants that conform to the physical and mechanical requirements of implantation according to CT images. This article will review some custom implants fabricated in DME using biocompatible titanium.

  4. Manufacturing parabolic mirrors

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  5. 40 CFR 63.104 - Heat exchange system requirements.

    Science.gov (United States)

    2010-07-01

    ... heat exchange system or at locations where the cooling water enters and exits each heat exchanger or any combination of heat exchangers. (i) For samples taken at the entrance and exit of recirculating... manufacturing process units. (iii) For samples taken at the entrance and exit of each heat exchanger or any...

  6. Holonic Manufacturing Paint Shop

    Science.gov (United States)

    Lind, Morten; Roulet-Dubonnet, Olivier; Nyen, Per Åge; Gellein, Lars Tore; Lien, Terje; Skavhaug, Amund

    In pursuit of flexibility and agility within discrete manufacturing, the surrounding logistics and handling processes of a paint shop is under construction as a laboratory prototype application. Holonic Manufacturing seems to be a promising strategic paradigm and architecture to use for a system characterised by production logistics and control. This paper describes the physical devices to be used; the desired functionality; and the basic logic control designed. Additionally, the ideas for holonification based on the already designed logic control is presented.

  7. Additive manufactured serialization

    Science.gov (United States)

    Bobbitt, III, John T.

    2017-04-18

    Methods for forming an identifying mark in a structure are described. The method is used in conjunction with an additive manufacturing method and includes the alteration of a process parameter during the manufacturing process. The method can form in a unique identifying mark within or on the surface of a structure that is virtually impossible to be replicated. Methods can provide a high level of confidence that the identifying mark will remain unaltered on the formed structure.

  8. Advances in Additive Manufacturing

    Science.gov (United States)

    2016-07-14

    Manufacturing session and provide a summary of work being performed in additive manufacturing by the Army, Air Force, and academia (Penn State University...Army Research Laboratory [ARL] and Air Force Research Laboratory [AFRL]) as well as academia (Penn State University’s Applied Research Laboratory...organic to the Warfighter, unmanned systems, networks , and robotics. Many of the materials and technologies needed to accomplish these goals are still

  9. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir NEW OSHA- ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  10. Graphene Aerogel Templated Fabrication of Phase Change Microspheres as Thermal Buffers in Microelectronic Devices.

    Science.gov (United States)

    Wang, Xuchun; Li, Guangyong; Hong, Guo; Guo, Qiang; Zhang, Xuetong

    2017-11-16

    Phase change materials, changing from solid to liquid and vice versa, are capable of storing and releasing a large amount of thermal energy during the phase change, and thus hold promise for numerous applications including thermal protection of electronic devices. Shaping these materials into microspheres for additional fascinating properties is efficient but challenging. In this regard, a novel phase change microsphere with the design for electrical-regulation and thermal storage/release properties was fabricated via the combination of monodispersed graphene aerogel microsphere (GAM) and phase change paraffin. A programmable method, i.e., coupling ink jetting-liquid marbling-supercritical drying (ILS) techniques, was demonstrated to produce monodispersed graphene aerogel microspheres (GAMs) with precise size-control. The resulting GAMs showed ultralow density, low electrical resistance, and high specific surface area with only ca. 5% diameter variation coefficient, and exhibited promising performance in smart switches. The phase change microspheres were obtained by capillary filling of phase change paraffin inside the GAMs and exhibited excellent properties, such as low electrical resistance, high latent heat, well sphericity, and thermal buffering. Assembling the phase change microsphere into the microcircuit, we found that this tiny device was quite sensitive and could respond to heat as low as 0.027 J.

  11. Manufacturing information system

    Science.gov (United States)

    Allen, D. K.; Smith, P. R.; Smart, M. J.

    1983-12-01

    The size and cost of manufacturing equipment has made it extremely difficult to perform realistic modeling and simulation of the manufacturing process in university research laboratories. Likewise the size and cost factors, coupled with many uncontrolled variables of the production situation has even made it difficult to perform adequate manufacturing research in the industrial setting. Only the largest companies can afford manufacturing research laboratories; research results are often held proprietary and seldom find their way into the university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development of miniature prototype equipment suitable for use in an integrated CAD/CAM Laboratory. The equipment being developed is capable of actually performing production operations (e.g. drilling, milling, turning, punching, etc.) on metallic and non-metallic workpieces. The integrated CAD/CAM Mini-Lab is integrating high resolution, computer graphics, parametric design, parametric N/C parts programmings, CNC machine control, automated storage and retrieval, with robotics materials handling. The availability of miniature CAD/CAM laboratory equipment will provide the basis for intensive laboratory research on manufacturing information systems.

  12. New strategic roles of manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng; Johansen, John; Boer, Harry

    2008-01-01

    This paper aims to view manufacturing from a new angle, and tries to look beyond fit, focus and trade-offs, approaches which may no longer be sufficient for long-term competitive success. Four cases from different industries are described and used to illustrate and discuss the possibility...... of manufacturing playing new strategic roles. Backward, forward and lateral interactive support are suggested to explicate how manufacturing can realize its new strategic roles. Finally, four new strategic roles of manufacturing are suggested. They are: innovation manufacturing, ramp-up manufacturing, primary...... manufacturing, and service manufacturing....

  13. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  14. Investigation of an investment casting method combined with additive manufacturing methods for manufacturing lattice structures

    Science.gov (United States)

    Kodira, Ganapathy D.

    Cellular metals exhibit combinations of mechanical, thermal and acoustic properties that provide opportunities for various implementations and applications; light weight aerospace and automobile structures, impact and noise absorption, heat dissipation, and heat exchange. Engineered cell topologies enable one to control mechanical, thermal, and acoustic properties of the gross cell structures. A possible way to manufacture complex 3D metallic cellular solids for mass production with a relatively low cost, the investment casting (IC) method may be used by combining the rapid prototyping (RP) of wax or injection molding. In spite of its potential to produce mass products of various 3D cellular metals, the method is known to have significant casting porosity as a consequence of the complex cellular topology which makes continuous fluid's access to the solidification interface difficult. The effects of temperature on the viscosity of the fluids were studied. A comparative cost analysis between AM-IC and additive manufacturing methods is carried out. In order to manufacture 3D cellular metals with various topologies for multi-functional applications, the casting porosity should be resolved. In this study, the relations between casting porosity and processing conditions of molten metals while interconnecting with complex cellular geometries are investigated. Temperature and pressure conditions on the rapid prototyping -- investment casting (RP-IC) method are reported, thermal stresses induced are also studied. The manufactured samples are compared with those made by additive manufacturing methods.

  15. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  16. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  17. Indigenous Manufacturing realization of TWIN Source

    Science.gov (United States)

    Pandey, R.; Bandyopadhyay, M.; Parmar, D.; Yadav, R.; Tyagi, H.; Soni, J.; Shishangiya, H.; Sudhir Kumar, D.; Shah, S.; Bansal, G.; Pandya, K.; Parmar, K.; Vuppugalla, M.; Gahlaut, A.; Chakraborty, A.

    2017-04-01

    TWIN source is two RF driver based negative ion source that has been planned to bridge the gap between single driver based ROBIN source (currently operational) and eight river based DNB source (to be operated under IN-TF test facility). TWIN source experiments have been planned at IPR keeping the objective of long term domestic fusion programme to gain operational experiences on vacuum immersed multi driver RF based negative ion source. High vacuum compatible components of twin source are designed at IPR keeping an aim on indigenous built in attempt. These components of TWIN source are mainly stainless steel and OFC-Cu. Being high heat flux receiving components, one of the major functional requirements is continuous heat removal via water as cooling medium. Hence for the purpose stainless steel parts are provided with externally milled cooling lines and that shall be covered with a layer of OFC-cu which would be on the receiving side of high heat flux. Manufacturability of twin source components requires joining of these dissimilar materials via process like electrode position, electron beam welding and vacuum brazing. Any of these manufacturing processes shall give a vacuum tight joint having proper joint strength at operating temperature and pressure. Taking the indigenous development effort vacuum brazing (in non-nuclear environment) has been opted for joining of dissimilar materials of twin source being one of the most reliable joining techniques and commercially feasible across the suppliers of country. Manufacturing design improvisation for the components has been done to suit the vacuum brazing process requirement and to ease some of the machining without comprising over the functional and operational requirements. This paper illustrates the details on the indigenous development effort, design improvisation to suits manufacturability, vacuum brazing basics and its procedures for twin source components.

  18. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote

  19. Robust Manufacturing Control

    CERN Document Server

    2013-01-01

    This contributed volume collects research papers, presented at the CIRP Sponsored Conference Robust Manufacturing Control: Innovative and Interdisciplinary Approaches for Global Networks (RoMaC 2012, Jacobs University, Bremen, Germany, June 18th-20th 2012). These research papers present the latest developments and new ideas focusing on robust manufacturing control for global networks. Today, Global Production Networks (i.e. the nexus of interconnected material and information flows through which products and services are manufactured, assembled and distributed) are confronted with and expected to adapt to: sudden and unpredictable large-scale changes of important parameters which are occurring more and more frequently, event propagation in networks with high degree of interconnectivity which leads to unforeseen fluctuations, and non-equilibrium states which increasingly characterize daily business. These multi-scale changes deeply influence logistic target achievement and call for robust planning and control ...

  20. Control analysis of selected mining processes to be used as a basis for the effective use of microelectronics in control equipment. Steuerungstechnische Analyse ausgewaehlter Prozesse des Bergbaus als Grundlage fuer den effektiven Einsatz der Mikroelektronik in Steuereinrichtungen

    Energy Technology Data Exchange (ETDEWEB)

    Franz, H.; Grober, K.P.; Meixner, H.; Wenzlaff, W.

    1981-01-01

    The fast development in the field of electronic elements requires consideration of their application in mining, making use of the advantages of microelectronics. By the example of an extensive analysis of the mining processes it is shown for control-relevant procedures that as a rule there are driving controls for which a concept of problem-oriented driving elements is to be developed. The engineering realization by means of microelectronics is discussed.

  1. Diccionario Lean Manufacturing

    OpenAIRE

    Muñoz Ellner, Sarah María

    2016-01-01

    El Diccionario Bilingüe de Lean Manufacturing pretende ser un instrumento de apoyo a todo aquel que tenga la responsabilidad de planear, ejecutar o simplemente algún interés con las actividades de Lean Manufacturing, aportando así también conceptos claros tanto en castellano como en inglés, con el fin de entender de forma integral el alcance mismo que puede llegar a tener dicha filosofía, al igual que se proporcionara una serie de siglas y herramientas para la implementación del Lean Manufact...

  2. Manufacturing and automation

    Directory of Open Access Journals (Sweden)

    Ernesto Córdoba Nieto

    2006-09-01

    Full Text Available The article presents concepts and definitions from different sources concerning automation. The work approaches automation by virtue of the author’s experience in manufacturing production; why and how automation prolects are embarked upon is considered. Technological reflection regarding the progressive advances or stages of automation in the production area is stressed. Coriat and Freyssenet’s thoughts about and approaches to the problem of automation and its current state are taken and examined, especially that referring to the problem’s relationship with reconciling the level of automation with the flexibility and productivity demanded by competitive, worldwide manufacturing.

  3. Laser in manufacturing

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Generally a laser (light amplification by stimulated emission of radiation) is defined as "a device which uses a quantum mechanical effect, stimulated emission, to generate a coherent beam of light from a lasing medium of controlled purity, size, and shape". Laser material processing represents a great number of methods, which are rapidly growing in current and different industrial applications as new alternatives to traditional manufacturing processes. Nowadays, the use of lasers in manufacturing is an emerging area with a wide variety of applications, for example, in electronics, molds an

  4. Preparation to manufacturing of ITER plasma facing components in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Mazul, I.V., E-mail: mazuliv@niiefa.spb.su [Efremov Institute, St. Petersburg, 196641 (Russian Federation); Belyakov, V.A.; Giniatulin, R.N.; Gervash, A.A.; Kuznetsov, V.E.; Makhankov, A.N. [Efremov Institute, St. Petersburg, 196641 (Russian Federation); Sizenev, V.S. [Corporation ' Kompozit' , Korolev, 141070 (Russian Federation)

    2011-10-15

    The preparation of the procurement activities for the ITER plasma-facing-components (PFC) is currently well underway. Three ITER procurement packages associated with PFCs are currently allocated to the Russian Federation (RF): delivery of the central assembly of the divertor (dome and reflector plates assemblies), delivery of 40% of the first-wall (FW) panels and high heat flux testing of divertor components during the qualification and subsequent manufacturing phases. The results of the qualification process for these tasks undertaken by RF industry are presented. Qualification mockups of the dome divertor structure were successfully manufactured in accordance with the ITER specifications and tested at heat fluxes exceeding operational ones. The maturity and reliability of the proposed design and manufacturing technologies, proposed by RF industry, was therefore demonstrated. To confirm the manufacturing readiness of technologies proposed for the fabrication of the ITER first wall, three qualification mockups were fabricated. Two were heat flux tested in two facilities abroad. In addition to launching the qualification process, the PFC team at Efremov Institute is preparing the industrial facilities for serial production of above mentioned components. A brief description of such facilities is presented in this paper, together with the manufacturing technologies to be used. Two electron beam facilities (Tsefey and IDTF) for various high heat flux testing of PFC components are also described.

  5. Certification of district heating substations

    Energy Technology Data Exchange (ETDEWEB)

    2007-01-15

    These Technical Regulations, F:103-6, have been produced and published by the Swedish District Heating Association in conjunction with manufacturers. Approved testing is part of the process of obtaining certification for a district heating substation. In addition, the process includes a review of documentation and of the manufacturer's production inspection procedures. A certified unit fulfils the requirements set out in the Association's document F:101, General Technical Requirements. Until further notice, the Association has selected SP Technical Research Institute of Sweden for certification of district heating substations. Certification means that the quality and function/performance of a prefabricated district heating substation have been examined and approved. Certification test method F:103-6 includes both static and dynamic tests and inspections. Detailed information on the district heating substation and its properties is given in the certification test reports. The unique feature of this certification is that the test reports are in the public domain. This is possible because the Association has full right of insight into the certification process, and because testing is performed in accordance with test programmes and procedures decided by the Association. In this document (F: 103-6), the Association specifies what is to be reported when SP carries out inspections at the manufacturer's premises. This can include details of claims lodged with the manufacturer and/or non-compliances with the required specification of the district heating substation. Such cases will be considered by a Certification Panel. Test reports and certificates provide information on the district heating substation's properties and performance, which can be used when assessing the substations. The technical tests do not address the long-term properties of substations, but SP's inspection specifically includes visual examination and application of its

  6. A Taxonomy of Manufacturing Strategies

    OpenAIRE

    Jeffrey G. Miller; Aleda V. Roth

    1994-01-01

    This paper describes the development and analysis of a numerical taxonomy of manufacturing strategies. The taxonomy was developed with standard methods of cluster analysis, and is based on the relative importance attached to eleven competitive capabilities defining the manufacturing task of 164 large American manufacturing business units. Three distinct clusters of manufacturing strategy groups were observed. Though there is an industry effect, all three manufacturing strategy types are obser...

  7. Laser assisted hybrid additive manufacturing of thermoelectric modules

    Science.gov (United States)

    Zhang, Tao; Tewolde, Mahder; Longtin, Jon P.; Hwang, David J.

    2017-02-01

    Thermoelectric generators (TEGs) are an attractive means to produce electricity, particular from waste heat applications. However, TEGs are almost exclusively manufactured as flat, rigid modules of limited size and shape, and therefore an appropriate mounting for intimate contact of TEGs modules onto arbitrary surfaces represents a significant challenge. In this study, we introduce laser assisted additive manufacturing method to produce multi-layered thermoelectric generator device directly on flat and non-flat surfaces for waste heat recovery. The laser assisted processing spans from laser scribing of thermal sprayed thin films, curing of dispensed thermoelectric inks and selective laser sintering to functionalize thermoelectric materials.

  8. Nonlinear Aspects of Heat Pump Utilization

    Directory of Open Access Journals (Sweden)

    R. Najman

    2010-01-01

    Full Text Available This work attempts to answer the question: How much can we believe that the coefficient of performance provided by the manufacturer is correct, when a heat pump is required to face the real load coming from changes of temperature? The paper summarizes some basics of heat pump theory and describes the results of numerical models.

  9. Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  10. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    Energy Technology Data Exchange (ETDEWEB)

    Hewes, Tom [Building America Partnership for Improved Residential Construction (BA-PIRC), Corvallis, OR (United States); Peeks, Brady [Building America Partnership for Improved Residential Construction (BA-PIRC), Corvallis, OR (United States)

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.

  11. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    Energy Technology Data Exchange (ETDEWEB)

    Hewes, Tom [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peeks, Brady [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  12. Manufacturer's Suggested Retail Prices

    NARCIS (Netherlands)

    Rosenkranz, S.|info:eu-repo/dai/nl/157222241

    2003-01-01

    Based on arguments of the `reference- dependent' theory of consumer choice we assume that a retailer's discount of a manufacturer's suggested retail price changes consumers' demand. We can show that the producer benefits from suggesting a retail price. If consumers are additionally sufficiently

  13. Tolerances in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Zhang, Yang; Islam, Aminul

    2017-01-01

    This paper describes a method for analysis of tolerances in micro manufacturing. It proposes a mapping oftolerances to dimensions and compares this with current available international standards. The analysisdocuments that tolerances are not scaled down as the absolute dimension. In practice...

  14. Tolerances in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Zhang, Yang; Islam, Aminul

    This paper describes a method for analysis of tolerances in micro manufacturing. It proposes a mapping oftolerances to dimensions and compares this with current available international standards. The analysisdocuments that tolerances are not scaled down as the absolute dimension. In practice...

  15. Drug development and manufacturing

    Science.gov (United States)

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  16. Reusing Old Manufacturing Buildings

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    This article presents an interesting design challenge for students, one that will certainly let them integrate subject matter and get a sense of pride for doing something useful in their own community. The author would be willing to bet that the average town or city has some old red brick manufacturing building(s) that have seen much better days.…

  17. Transfer of manufacturing units

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Riis, Jens Ove; Sørensen, Brian Vejrum

    2008-01-01

    The ongoing and unfolding relocation of activities is one of the major trends, that calls for attention in the domain of operations management. In particular, prescriptive models outlining: stages of the process, where to locate, and how to establish the new facilities have been studied, while th...... and dilemmas to be addressed when transferring manufacturing units....

  18. Illinois Manufacturing Technology Curriculum.

    Science.gov (United States)

    Cliffe, Roger; And Others

    This manufacturing technology curriculum involves students in learning problem-solving, communication, team building, quality control, safety, math, science, and technical skills. The document begins with a section on implementation, which gives background information on the purposes and development of the curriculum, explains its rationale,…

  19. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  20. Rapid response manufacturing (RRM)

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1997-02-18

    US industry is fighting to maintain its competitive edge in the global market place. Today markets fluctuate rapidly. Companies, to survive, have to be able to respond with quick-to-market, improved, high quality, cost efficient products. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies. The RRM project was established to leverage the expertise and resources of US private industries and federal agencies to develop, integrate, and deploy new technologies that meet critical needs for effective product realization. The RRM program addressed a needed change in the US Manufacturing infrastructure that will ensure US competitiveness in world market typified by mass customization. This project provided the effort needed to define, develop and establish a customizable infrastructure for rapid response product development design and manufacturing. A major project achievement was the development of a broad-based framework for automating and integrating the product and process design and manufacturing activities involved with machined parts. This was accomplished by coordinating and extending the application of feature-based product modeling, knowledge-based systems, integrated data management, and direct manufacturing technologies in a cooperative integrated computing environment. Key technological advancements include a product model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering environment, knowledge-based software aids for design and process planning, and new production technologies to make products directly from design application software.

  1. Virtual manufacturing in reality

    Science.gov (United States)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  2. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  3. Fundamentals of Digital Manufacturing Science

    CERN Document Server

    Zhou, Zude; Chen, Dejun

    2012-01-01

    The manufacturing industry will reap significant benefits from encouraging the development of digital manufacturing science and technology. Digital Manufacturing Science uses theorems, illustrations and tables to introduce the definition, theory architecture, main content, and key technologies of digital manufacturing science. Readers will be able to develop an in-depth understanding of the emergence and the development, the theoretical background, and the techniques and methods of digital manufacturing science. Furthermore, they will also be able to use the basic theories and key technologies described in Digital Manufacturing Science to solve practical engineering problems in modern manufacturing processes. Digital Manufacturing Science is aimed at advanced undergraduate and postgraduate students, academic researchers and researchers in the manufacturing industry. It allows readers to integrate the theories and technologies described with their own research works, and to propose new ideas and new methods to...

  4. Determination of acrylamide in Chinese traditional carbohydrate-rich foods using gas chromatography with micro-electron capture detector and isotope dilution liquid chromatography combined with electrospray ionization tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu [Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang Province (China); Ren Yiping [Zhejiang Provincial Center for Disease Prevention and Control, Hangzhou 310009, Zhejiang Province (China); Zhao Hangmei [Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang Province (China); Zhang Ying [Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang Province (China)]. E-mail: y_zhang@zju.edu.cn

    2007-02-19

    The present study developed two analytical methods for quantification of acrylamide in complex food matrixes, such as Chinese traditional carbohydrate-rich foods. One is based on derivatization with potassium bromate and potassium bromide without clean-up prior to gas chromatography with micro-electron capture detector (GC-MECD). Alternatively, the underivatized acrylamide was detected by high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization mode. For both methods, the Chinese carbohydrate-rich samples were homogenized, defatted with petroleum ether and extracted with aqueous solution of sodium chloride. Recovery rates for acrylamide from spiked Chinese style foods with the spiking level of 50, 500 and 1000 {mu}g kg{sup -1} were in the range of 79-93% for the GC-MECD including derivatization and 84-97% for the HPLC-MS/MS method. Typical quantification limits of the HPLC-MSMS method were 4 {mu}g kg{sup -1} for acrylamide. The GC-MECD method achieved quantification limits of 10 {mu}g kg{sup -1} in Chinese style foods. Thirty-eight Chinese traditional foods purchased from different manufacturers were analyzed and compared with four Western style foods. Acrylamide contaminant was found in all of samples at the concentration up to 771.1 and 734.5 {mu}g kg{sup -1} detected by the GC and HPLC method, respectively. The concentrations determined with the two different quantitative methods corresponded well with each other. A convenient and fast pretreatment procedure will be optimized in order to satisfy further investigation of hundreds of samples.

  5. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  6. Design and application of reconfigurable manufacturing systems in agile mass customization manufacturing environment.

    CSIR Research Space (South Africa)

    Xing, B

    2007-05-01

    Full Text Available processes. Many manufacturing techniques are based on the principles of Flexible Manufacturing and Dedicated Manufacturing for mass production. Reconfigurable Manufacturing System, (RMS), is a manufacturing system that can provide for Agile Manufacturing...

  7. Reconfigurable manufacturing system for agile mass customization manufacturing

    CSIR Research Space (South Africa)

    Xing, B

    2006-07-01

    Full Text Available Manufacturing companies are facing three challenges: low cost production of product, high quality standard and rapid responsiveness to customer requirements. These three goals are equally important for the manufacturing companies who want...

  8. Seal Apparatus and Methods to Manufacture Thereof

    Science.gov (United States)

    Richard, James A. (Inventor)

    2013-01-01

    In some implementations, apparatus and methods are provided through which a dynamic cryogenic seal is manufactured. In some implementations, the seal includes a retainer and a spring-seal assembly, the assembly being comprised of a main spring housing and fluorine-containing polymer seals. In some implementations, either a radial seal, or an axial (or "piston seal") is provided. In some implementations, methods of manufacturing the dynamic cryogenic seal are also provided. In some implementations, the methods include assembling the components while either heated or cooled, taking advantage of thermal expansion and contraction, such that there is a strong interference fit between the components at room temperature. In some implementations, this process ensures that the weaker fluorine-containing polymer seal is forced to expand and contract with the stronger retainer and spring and is under constant preload. In some implementations, the fluorine-containing polymer is therefore fluidized and retained, and can not lift off.

  9. Additive manufacturing for steels: a review

    Science.gov (United States)

    Zadi-Maad, A.; Rohib, R.; Irawan, A.

    2018-01-01

    Additive manufacturing (AM) of steels involves the layer by layer consolidation of powder or wire feedstock using a heating beam to form near net shape products. For the past decades, the AM technique reaches the maturation of both research grade and commercial production due to significant research work from academic, government and industrial research organization worldwide. AM process has been implemented to replace the conventional process of steel fabrication due to its potentially lower cost and flexibility manufacturing. This paper provides a review of previous research related to the AM methods followed by current challenges issues. The relationship between microstructure, mechanical properties, and process parameters will be discussed. Future trends and recommendation for further works are also provided.

  10. Femtosecond fiber laser additive manufacturing of tungsten

    Science.gov (United States)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  11. Identifying the Small Apparel Manufacturer: A Typology of Manufacturing Strategies

    OpenAIRE

    Jones, Michelle R.

    1999-01-01

    IDENTIFYING THE SMALL APPAREL MANUFACTURER: A TYPOLOGY OF MANUFACTURING STRATEGIES Michelle R. Jones (ABSTRACT) The purpose of this study was to develop a typology of small apparel manufacturers (SAMs), firms classified between SIC 2310 to 2389 and less than 50 employees. The objectives were to (a) determine if distinct manufacturing strategies existed among SAMs, (b) develop a profile of these groups using environmental factors known to affect the apparel industry ...

  12. Manufacturing Optimization Based on Agile Manufacturing and Big Data

    OpenAIRE

    Khan, Md Ashikul Alam; Mebrahtu, Habtom; Shirvani, Hassan; Butt, Javaid

    2017-01-01

    This paper investigates Agile Manufacturing (AM) supported by Big Data for manufacturing optimization. The paper aims to identify the limitations of current manufacturing approaches such as just in time (JIT) and lean manufacturing and to map a process based on these limitations.The process works through a process re-engineering (PR) by eliminating and redesigning the steps that affect productions. The process will identify the key enablers that will assist in the design of an effective AM fr...

  13. HEAT RECUPERATION

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2011-01-01

    Full Text Available Heat recovery is an effective method of shortening specific energy consumption. new constructions of recuperators for heating and cupola furnaces have been designed and successfully introduced. two-stage recuperator with computer control providing blast heating up to 600 °C and reducing fuel consumption by 30% is of special interest.

  14. Robot skills for manufacturing

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath; Nalpantidis, Lazaros; Andersen, Rasmus Skovgaard

    2016-01-01

    Due to a general shift in manufacturing paradigm from mass production towards mass customization, reconfigurable automation technologies, such as robots, are required. However, current industrial robot solutions are notoriously difficult to program, leading to high changeover times when new......-asserting robot skills for manufacturing. We show how a relatively small set of skills are derived from current factory worker instructions, and how these can be transferred to industrial mobile manipulators. General robot skills can not only be implemented on these robots, but also be intuitively concatenated...... to program the robots to perform a variety of tasks, through the use of simple task-level programming methods. We demonstrate various approaches to this, extensively tested with several people inexperienced in robotics. We validate our findings through several deployments of the complete robot system...

  15. Electrohydrodynamic Printing and Manufacturing

    Science.gov (United States)

    Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor); Poon, Hak Fei (Inventor); Korkut, Sibel (Inventor); Chen, Chuan-hua (Inventor)

    2014-01-01

    An stable electrohydrodynamic filament is obtained by causing a straight electrohydrodynamic filament formed from a liquid to emerge from a Taylor cone, the filament having a diameter of from 10 nm to 100.mu.m. Such filaments are useful in electrohydrodynamic printing and manufacturing techniques and their application in liquid drop/particle and fiber production, colloidal deployment and assembly, and composite materials processing.

  16. Technology for Manufacturing Efficiency

    Science.gov (United States)

    1995-01-01

    The Ground Processing Scheduling System (GPSS) was developed by Ames Research Center, Kennedy Space Center and divisions of the Lockheed Company to maintain the scheduling for preparing a Space Shuttle Orbiter for a mission. Red Pepper Software Company, now part of PeopleSoft, Inc., commercialized the software as their ResponseAgent product line. The software enables users to monitor manufacturing variables, report issues and develop solutions to existing problems.

  17. Northwest Manufacturing Initiative

    Science.gov (United States)

    2013-04-23

    America in 2007 that were contaminated by sub-quality gluten produced by a Chinese manufacturer). With the occurrence of many highly conspicuous...by simply typing in the product ingredients into its online database to ascertain the danger associated with the chemicals in question. Vendors are...the floor to clear before they could continue moving. This stop and start nature is not only timely inefficient, but also dangerous . To correct

  18. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  19. THERMAL ANALYSIS OF THE RESOURCE-SAVING TECHNOLOGY OF FRUIT CHIPS MANUFACTURE

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2014-01-01

    Full Text Available Summary. The thermal analysis heat- and mass-exchange of processes has been carried out at heat-moisture of handling of fruits for manufacture of fruit chips. Is suggested resource-saving the technological scheme of a line of processing of fruit and manufactures of fruit chips on the basis of convection and the microwave-drying. The technique is made and results of calculation of thermal expenses for various schemes of manufacture of apple chips are resulted. Thermal expenses for base and offered variants on the basis of balance parities of technological processes and the developed hardware-technological scheme of a line of manufacture of fruit chips with the closed cycle of use of the heat-carrier and the combined convection-microwave-drying of fruit-and-vegetable raw material are certain. Are used recirculation a contour, the heating of the initial raw material fulfilled after drying of pairs and a condensate in the closed contour for creation energy-saving of the "know-how" of a ready product. Comparative thermal efficiency of control surfaces of a line of manufacture of apple chips for the offered technological scheme is shown. Directions of perfection of technological schemes of manufacture of apple chips are certain. Improve the thermal efficiency of the proposed technology facilitates the use of coolant recycling, and the use of heat vapor at various stages of the process, as well as heat exchangers with a capacitor for on-stage heating drained coolant. Useful expenses include heat expended on heating and conversion product. By total losses attributed unused waste heat of coolant, as well as costs due to leaks and mode of working chambers. In order to reduce energy consumption are analyzed and studied heat loss ways to reduce them. It was found that the losses can be reduced through the use of waste after drying coolant heating the dried drying agent and syrup.

  20. Manufacturing a Superconductor in School.

    Science.gov (United States)

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  1. Manufacturing mobility in global operations

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2002-01-01

    The globalization trend inevitably affects the organization of manufacturing by enterprises. It offers opportunities to examine manufacturing from a global perspective and consequently to produce where it is most appropriate. However, globalization has also led to an increase in competitive

  2. Green Manufacturing Fundamentals and Applications

    CERN Document Server

    2013-01-01

    Green Manufacturing: Fundamentals and Applications introduces the basic definitions and issues surrounding green manufacturing at the process, machine and system (including supply chain) levels. It also shows, by way of several examples from different industry sectors, the potential for substantial improvement and the paths to achieve the improvement. Additionally, this book discusses regulatory and government motivations for green manufacturing and outlines the path for making manufacturing more green as well as making production more sustainable. This book also: • Discusses new engineering approaches for manufacturing and provides a path from traditional manufacturing to green manufacturing • Addresses regulatory and economic issues surrounding green manufacturing • Details new supply chains that need to be in place before going green • Includes state-of-the-art case studies in the areas of automotive, semiconductor and medical areas as well as in the supply chain and packaging areas Green Manufactu...

  3. MANUFACTURE OF UF$sub 4$

    Science.gov (United States)

    Calcott, W.S.

    1959-10-13

    The manufacture of uranium tetrafluoride from urarium dioxide is described. Uranium dioxide is heated to about 500 deg C in a reactor. Anhydrous hydrogen fluoride is passed through the reactor in contact with uranium dioxide for several hours, the flow of hydrogen fluoride is discontinued, and hydrogen passed through the reactor for less than an hour. The flow of hydrogen fluoride is resumed for several hours, and then nitrogen is passed for a few minutes to expel unreacted hydrogen fluoride as water vapor. The reactor is cooled to room temperature and the uranium tetrafluoride removed.

  4. Enhanced additive manufacturing with a reciprocating platen

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Randall F.; Blue, Craig A.; Love, Lonnie J.; Post, Brian K.; Lloyd, Peter D.

    2018-02-06

    An additive manufacturing extrusion head that includes a heated nozzle for accepting a feedstock and extruding the feedstock onto a substrate at a deposition plane, the nozzle having a longitudinal extrusion axis. A reciprocating platen surrounds the nozzle, the platen operable to reciprocate along the extrusion axis at or above the deposition plane as the nozzle extrudes feedstock onto the substrate; and wherein the platen flattens the extruded feedstock such that it does not protrude above the deposition plane as the extrusion head traverses over the substrate.

  5. Safe food manufacturing.

    Science.gov (United States)

    Shapiro, A; Mercier, C

    1994-03-31

    Food safety is a growing preoccupation of the health authorities and the major food companies in any European country. All the aspects of food manufacturing, from the raw materials until the product is consumed have to insure they are innoxious to human health, eliminate any harmful effects related either to food handling or consumption in domestic or common eating places, as well as protect, as much as possible, our environment. Thus, the food manufacturer has to examine step-by-step the security of the agro-cultures, their composition, but also the possible residues of pollutants and contaminants, or chemicals used to protect them against various pests and determine the possible loss or retention of these substances during technological processes. Animal raw materials should not contain veterinary drug residues or an abnormal amount of some components that result from inadequate feeding. Care should be taken to ensure the security of foods manufactured by biotechnology processes. The organisms and the whole processes used in food biotechnologies should eliminate any impurities. Any minor food ingredients, such as food additives, are under a permanent revision from the point of view of their safety. The industry reacts immediately if any justification requires that a particular food additive should not be used. In other words all the raw materials must conform to their specifications. Technological processes must create a food with an adequate microbiological quality, e.g. free of pathogens and their toxic metabolites. Any danger of microbiological contamination or accidental pollution, such as mechanical particles, chemical substances, etc. should be eliminated. The particular role of food packaging is crucial, since this is a barrier to protect the food against further parasites or microbial contamination and preserve the food from alterations due to enzymatic reactions that require particular oxygen and water activity conditions. The packaging should also

  6. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  7. A Project to Design and Build Compact Heat Exchangers

    Science.gov (United States)

    Davis, Richard A.

    2005-01-01

    Students designed and manufactured compact, shell-and-tube heat exchangers in a project-based learning exercise integrated with our heat transfer course. The heat exchangers were constructed from common building materials available at home improvement centers. The cost of materials for a device was less than $20. The project gave students…

  8. Cryogenic flat-panel gas-gap heat switch

    NARCIS (Netherlands)

    Vanapalli, Srinivas; Keijzer, R.; Buitelaar, P.; ter Brake, Hermanus J.M.

    2016-01-01

    A compact additive manufactured flat-panel gas-gap heat switch operating at cryogenic temperature is reported in this paper. A guarded-hot-plate apparatus has been developed to measure the thermal conductance of the heat switch with the heat sink temperature in the range of 100–180 K. The apparatus

  9. High Thermal Conductivity Polymer Composites for Low Cost Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-01

    This factsheet describes a project that identified and evaluated commercially available and state-of-the-art polymer-based material options for manufacturing industrial and commercial non-metallic heat exchangers. A heat exchanger concept was also developed and its performance evaluated with heat transfer modeling tools.

  10. 78 FR 67117 - Manufacturing Council

    Science.gov (United States)

    2013-11-08

    ... small- and medium-sized enterprises. The Secretary of Commerce appoints all Council members. All Council.... manufacturing industry to fill five vacant positions on the Manufacturing Council (Council). The purpose of the... from representatives of the U.S. manufacturing industry for five vacant positions on the Council for...

  11. 77 FR 56811 - Manufacturing Council

    Science.gov (United States)

    2012-09-14

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity to Apply for Membership on the Manufacturing Council... ] Manufacturing Council (Council) for a two-year term to begin in fall 2012. The purpose of the Council is to...

  12. 77 FR 66179 - Manufacturing Council

    Science.gov (United States)

    2012-11-02

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... manufacturing council. SUMMARY: On September 14, 2012, the Department of Commerce's International Trade... of 25 members of the Manufacturing Council (Council) for a two-year term to begin in fall 2012. The...

  13. 76 FR 33244 - Manufacturing Council

    Science.gov (United States)

    2011-06-08

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity To Apply for Membership on the Manufacturing Council... Manufacturing Council (Council). The purpose of the Council is to advise the Secretary of Commerce on matters...

  14. 75 FR 12507 - Manufacturing Council

    Science.gov (United States)

    2010-03-16

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an opportunity to apply for membership on the Manufacturing Council. SUMMARY: The Department of Commerce is currently seeking applications for membership on the Manufacturing...

  15. 77 FR 69794 - Manufacturing Council

    Science.gov (United States)

    2012-11-21

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On September 14, 2012, the Department of Commerce's International Trade... appointment of 25 members of the Manufacturing Council (Council) for a two-year term to begin in fall 2012...

  16. Decision Guidance for Sustainable Manufacturing

    Science.gov (United States)

    Shao, Guodong

    2013-01-01

    Sustainable manufacturing has significant impacts on a company's business performance and competitiveness in today's world. A growing number of manufacturing industries are initiating efforts to address sustainability issues; however, to achieve a higher level of sustainability, manufacturers need methodologies for formally describing, analyzing,…

  17. Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications.

    Science.gov (United States)

    Farahani, Rouhollah D; Dubé, Martine; Therriault, Daniel

    2016-07-01

    The integration of nanotechnology into three-dimensional printing (3DP) offers huge potential and opportunities for the manufacturing of 3D engineered materials exhibiting optimized properties and multifunctionality. The literature relating to different 3DP techniques used to fabricate 3D structures at the macro- and microscale made of nanocomposite materials is reviewed here. The current state-of-the-art fabrication methods, their main characteristics (e.g., resolutions, advantages, limitations), the process parameters, and materials requirements are discussed. A comprehensive review is carried out on the use of metal- and carbon-based nanomaterials incorporated into polymers or hydrogels for the manufacturing of 3D structures, mostly at the microscale, using different 3D-printing techniques. Several methods, including but not limited to micro-stereolithography, extrusion-based direct-write technologies, inkjet-printing techniques, and popular powder-bed technology, are discussed. Various examples of 3D nanocomposite macro- and microstructures manufactured using different 3D-printing technologies for a wide range of domains such as microelectromechanical systems (MEMS), lab-on-a-chip, microfluidics, engineered materials and composites, microelectronics, tissue engineering, and biosystems are reviewed. Parallel advances on materials and techniques are still required in order to employ the full potential of 3D printing of multifunctional nanocomposites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Prototype solar heated hot water systems and double-walled heat exchangers. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    A collection of quarterly and monthly reports from Elcam, Inc., covering progress made from January 1, 1978, through September 30, 1978, is presented. Elcam, is developing two solar-heated hot water prototype systems and two heat exchangers. This effort consists of development, manufacture, installation, maintenance, problem resolution, and system evaluation.

  19. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Science.gov (United States)

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  20. Metal Additive Manufacturing: A Review

    Science.gov (United States)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  1. Heated Goggles

    Science.gov (United States)

    1978-01-01

    The electrically heated ski goggles shown incorporate technology similar to that once used in Apollo astronauts' helmet visors, and for the same reason-providing fogfree sight in an activity that demands total vision. Defogging is accomplished by applying heat to prevent moisture condensation. Electric heat is supplied by a small battery built into the h goggles' headband. Heat is spread across the lenses by means of an invisible coating of electrically conductive metallic film. The goggles were introduced to the market last fall. They were designed by Sierracin Corporation, Sylmar, California, specialists in the field of heated transparent materials. The company produces heated windshields for military planes and for such civil aircraft as the Boeing 747, McDonnell Douglas DC-10 and Lockheed L-1011 TriStar.

  2. Manufacture of two primary first wall panel prototypes with Beryllium armor for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Boudot, C. E-mail: cecile.boudot@framatome-anp.com; Bobin-Vastra, I.; Lorenzetto, P. E-mail: patrick.lorenzetto@tech.efda.org; Conchon, D.; Cottin, A.; Jacquinot, J.; Cauvin, D. E-mail: dominique.cauvin@aubertduval.fr; Febvre, M. E-mail: max.febvre@framatome-anp.com

    2003-09-01

    The aim of this paper is to present the results of a manufacturing program that was implemented to demonstrate the feasibility for manufacturing the primary first wall panels, including a part of R and D work concerning the joining of Beryllium plates onto a Glidcop heat sink by HIPing or brazing.

  3. Cost-effectiveness of conservation upgrades in manufactured homes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.D.; Conner, C.C.; Englin, J.E.; Hadley, D.L.; Lucas, R.G.; Miller, N.E.; Monroe, W.H.

    1988-09-01

    This study addresses the costs of upgrading the efficiency of electrically heated manufactured homes in the Bonneville Power Administration's (Bonneville's) service territory. It was prepared by the Battelle Pacific Northwest Laboratory (PNL) for Bonneville under a Related Services Agreement with the US Department of Energy, Contract AC06-76RLO1830. Manufactured homes (commonly called mobile homes) represent a significant lost conservation resource in the region. Manufactured homes are required to meet national energy standards that do not reflect the recent increases in energy prices, and the preemptive nature of the national standards prevents local jurisdictions from establishing stricter requirements. Bonneville has undertaken several programs to analyze the efficiency of manufactured homes and encourage the industry to produce more efficient homes and consumers to increase their demand for efficient units. This study constitutes one portion of Bonneville's overall strategy. 45 refs.

  4. INTEGRATED AUTOMOTIVE MANUFACTURING SUPPLY

    Directory of Open Access Journals (Sweden)

    P.J.S. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Supply planning and traffic flow planning are major activities in the automotive manufacturing environment worldwide. Traditionally, the impact of supply planning strategies on plant traffic is rarely considered. This paper describes the development of a Decision Support System (DSS that will assist automotive manufacturers to analyse the effect of supply planning decisions on plant traffic during the supply planning phase of their logistics planning process. In essence, this DSS consists of a Supply Medium Decision Support Tool (SMDST (an interactive MS-Excel model with Visual Basic interfacing and a traffic flow simulation model tool (using eMPlant simulation software.

    AFRIKAANSE OPSOMMING: Verskaffingsbeplanning en verkeersvloeibeplanning is belangrike aktiwiteite in die motorvervaardigingsbedryf wêreldwyd. Tradisioneel word die uitwerking van verskaffings-beplanningsstrategië op aanlegverkeer selde in ag geneem. Hierdie artikel beskryf die ontwikkeling van ’n Besluitnemings Ondersteuningstelsel (DSS wat motorvervaardigers sal ondersteun in die analise van die effek van verskaffingsbeplanningbesluite op aanlegverkeer tydens die verskaffingsbeplanningsfase van hulle logistieke beplanningsproses. Hierdie DSS bestaan hoofsaaklik uit ’n Verskaffings-vervoermiddel Besluitnemingshulpmiddel (SMDST (’n interaktiewe MS-Excel model met “Visual Basic” koppelling asook ’n simulasiemodel van verkeersvloei (met eM-Plant simulasiesagteware.

  5. The role of nanotechnology and nano and micro-electronics in monitoring and control of cardiovascular diseases and neurological disorders

    Science.gov (United States)

    Varadan, Vijay K.

    2007-04-01

    controlled manipulation of individual molecules and atoms that can interact with the human body at sub-cellular level. The recent progress in microelectronics and nanosensors crates very powerful tools for the early detection and diagnosis. The nanowire integrated potassium and dopamine sensors are ideal for the monitoring and control of many cardiovascular diseases and neurological disorders. Selected movies illustrating the applications of nanodevices to patients will be shown at the talk.

  6. Method of manufacturing a niobium-aluminum-germanium superconductive material

    Science.gov (United States)

    Wang, J.L.F.; Pickus, M.R.; Douglas, K.E.

    A method for manufacturing flexible Nb/sub 3/ (Al,Ge) multifilamentary superconductive material in which a sintered porous Nb compact is infiltrated with an Al-Ge alloy. It is deformed and heat treated in a series of steps at successively higher temperatures preferably below 1000/sup 0/C during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to serve as a temperature stabilizer for the superconductive material produced. These lower heat treatment temperatures favor formation of filaments with reduced grain size and with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  7. MERTIS: reflective baffle design and manufacturing

    Science.gov (United States)

    Zeh, T.; Gal, C.; Kaiser, S.; Peter, G.; Walter, I.; Helbert, J.; Jachlewski, J.; Multhaup, K.; Hiesinger, H.

    2010-09-01

    Optical instruments for remote sensing applications frequently require measures for reducing the amount of external, unwanted stray light in the optical instrument path. The reflective planet baffle design and manufacturing process for the thermal infrared imaging spectrometer MERTIS onboard of ESA's cornerstone mission BepiColombo to Mercury is presented. The baffle has to reflect the unwanted solar flux and scattered IR radiation, and minimize the heat load on the instrument. Based on optical stray light simulations and analyses of different baffle concepts the Stavroudis principle showed the best performance and the smallest number of internal reflections. The setup makes use of the optical properties of specific conic sections of revolution. These are the oblate spheroid, generated by rotating an ellipse about its minor axis, and the hyperboloid of one sheet, obtained by the rotation of a hyperbola around its conjugate axis. Due to the demanding requirements regarding surface quality, low mass and high mechanical stability, electroforming fabrication was selected for the baffle. During manufacturing, a layer of high strength nickel alloy is electrodeposited onto a diamond turned aluminum mandrel. The mandrel is subsequently chemically dissolved. Not only the baffle, but also the baffle support structure and other mating components are electroformed. Finally, the baffle and support structure are assembled and joined by an inert gas soldering process. After the optimum baffle geometry and surface roughness has been realized, the remaining total heat flux on the baffle is only dependent on the selection of the appropriate, high reflective coating.

  8. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  9. Northwest Manufacturing Initiative

    Science.gov (United States)

    2013-03-26

    locations in predominately individual coarse and fine heat affected zones and in the weld center line. Dual wire GMAW required a double bevel joint...wire in order to ensure full root pass penetration for the single wire K-type joint configuration and the beveled K type dual wire weld. The joint...c. Four faculty were supported (summer salary) A-4 i. John Anderson, 2 months ii. Wangping Sun, 1.75 months iii. James Long, 1 month iv

  10. Dry etching for microelectronics

    CERN Document Server

    Powell, RA

    1984-01-01

    This volume collects together for the first time a series of in-depth, critical reviews of important topics in dry etching, such as dry processing of III-V compound semiconductors, dry etching of refractory metal silicides and dry etching aluminium and aluminium alloys. This topical format provides the reader with more specialised information and references than found in a general review article. In addition, it presents a broad perspective which would otherwise have to be gained by reading a large number of individual research papers. An additional important and unique feature of this book

  11. Fundamentals of microelectronics

    CERN Document Server

    Razavi, Behzad

    2008-01-01

    Designed to build a strong foundation in both design and analysis of electronic circuits, Razavi teaches conceptual understanding and mastery of the material by using modern examples to motivate and prepare students for advanced courses and their careers. Razavi's unique problem-solving framework enables students to deconstruct complex problems into components that they are familiar with which builds the confidence and intuitive skills needed for success.

  12. Nanoscale Microelectronic Circuit Development

    Science.gov (United States)

    2011-06-17

    Project 3: Low-Power All-Digital Chip-to-Chip Interface Circuits by Pavan Kumar Hanumolu (OSU) CDADIC Project 4: Nanoscale Clock and Data Recovery...CDADIC Project 3: Low-Power All-Digital Chip-to-Chip Interface Circuits by Pavan Kumar Hanumolu (OSU) CDADIC Project 6: Stochastic and Passive A/D...Area 3: Reconfigurable Mixed-Signal Circuits CDADIC Project 3: Low-Power All-Digital Chip-to-Chip Interface Circuits by Pavan Kumar Hanumolu (OSU

  13. Electronic and Microelectronic Capabilities.

    Science.gov (United States)

    1982-07-01

    32 4.6 Excellon Micronetics MC-20 Chip Assembly System ................................... 33 4.7 Browne Rotary Reflow Soldering...Excellon Micronetics MC-20 Chip Assembly System.......................................... 33 23. Browne Rotary Reflow Soldering System...Figure f Bousch and Lomb Mtallurgical Microscope. 32 - - .. . . . l 4.6 Excellon Micronetics MC-20 Chip Assembly System During the thick film hybrid

  14. Modular mechatronic control of reconfigurable manufacturing system for mass customization manufacturing

    CSIR Research Space (South Africa)

    Xing, B

    2007-01-01

    Full Text Available processes. Many manufacturing techniques are based on the principles of Flexible Manufacturing and Dedicated Manufacturing for mass production. Reconfigurable Manufacturing Systems (RMS) is a manufacturing system that can provide for Mass Customization, (MCM...

  15. Basic measurements on a multiple heat pipe

    Science.gov (United States)

    Rohner, P.; Schippl, K.

    1982-04-01

    A multiple heat pipe which is a specially formed long heat pipe that fulfills the function of several single heat pipes was studied. The suitability of this arrangement for a heat exchanger was investigated. Several laboratory models were manufactured from corrugated tubes and their behavior was measured. Results show that the serpentine model exhibits the expected heat exchange properties. When subjected to severe operating conditions, the pipes remain operational, although somewhat limited in performance. The results are in function of the nature of the exchange media (air-air, air-water, water-water). This corrugated heat pipe design shows good promise for successful further development into an air-air heat exchanger.

  16. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...... not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat...

  17. Manufacturing process optimization of nuclear fuel guide tube using HANA alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hwan; Park, S. Y.; Choi, B. K.; Park, J. Y.; Kim, H. G.; Jeong, Y. I.; Park, D. J.; Lim, J. K. [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    From this project, the advanced manufacturing parameters which were contained of heat-treatment, reduction rate, and new process (2 step) were considered to increase the guide tube performance of HANA material. It was obtained that the strength and corrosion resistance of HANA material were improved by applying the improve manufacturing parameters when compared to the commercial guide tube material. {center_dot} Manufacturing parameter study to increase mechanical property -Tensile strength increase of 30% by manufacturing parameter setup when compared to the guide tube specification {center_dot} Manufacturing parameter study to decrease irradiation growth -Theoretical study of the texture effect on sample specimens related to the irradiation growth {center_dot} Manufacturing parameter study to increase corrosion resistance -Corrosion resistance increase of 30% by manufacturing parameter setup when compared to the commercial guide tube

  18. Turbine airfoil manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

    1995-10-01

    The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.

  19. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  20. Maintenance in sustainable manufacturing

    Directory of Open Access Journals (Sweden)

    Vladimir Stuchly

    2014-09-01

    Full Text Available Background: Sustainable development is about reaching a balance between economic, social, and environmental goals, as well as people's participation in the planning process in order to gain their input and support. For a company, sustainable development means adoption of such business strategy and actions that contribute to satisfying present needs of company and stakeholders, as well as simultaneous protection, maintenance and strengthening of human and environmental potential which will be needed in the future. This new approach forces manufacturing companies to change their previous management paradigms. New management paradigm should include new issues and develop innovative methods, practices and technologies striving for solving problem of shortages of resources, softening environment overload and enabling development of environment-friendly lifecycle of products. Hence, its realization requires updating existing production models as they are based on previously accepted paradigm of unlimited resources and unlimited regeneration capabilities. Maintenance plays a crucial role because of its impact on availability, reliability, quality and life cycle cost, thus it should be one of the main pillars of new business running model.  Material and methods: The following paper is a result of research on the literature and observation of practices undertaken by a company within maintenance area. Results and conclusions: The main message is that considering sustainable manufacturing requires considerable expanding range of analysis and focusing on supporting processes. Maintenance offers numerous opportunities of decreasing influence of business processes on natural environment and more efficient resources utilization. The goal of maintenance processes realizing sustainable development strategy is increased profitability of exploitation and optimization of total lifecycle cost without disturbing safety and environmental issues. 

  1. Manufacturing consumption of energy 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  2. Wide and High Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roschli, Alex C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The goal of this project is to develop and demonstrate the enabling technologies for Wide and High Additive Manufacturing (WHAM). WHAM will open up new areas of U.S. manufacturing for very large tooling in support of the transportation and energy industries, significantly reducing cost and lead time. As with Big Area Additive Manufacturing (BAAM), the initial focus is on the deposition of composite materials.

  3. Manufacturing consumption of energy 1991

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  4. Smart meters in smart manufacturing

    OpenAIRE

    Martín Rubio, Irene; Florence Sandoval, Antonio; Gonzalez Sanchez, Elena; Andina de la Fuente, Diego

    2016-01-01

    The extent of change in business process and smart manufacturing usage should be taken into account in every energy efficiency project in industries. A significant part of smart metering success depends upon making the business processes more systematic. Smart manufacturing in the dramatically intensified and pervasive application of networked information-based technologies through the manufacturing and supply chain enterprise. There is no doubt that the deployment os smart meters involves ...

  5. Green manufacturing processes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering, Campus Universitario de Santiago

    2013-02-01

    This book provides the recent advances on green manufacturing processes and systems for modern industry. Chapter 1 provides information on sustainable manufacturing through environmentally-friendly machining. Chapter 2 is dedicated to environmentally-friendly machining: vegetable based cutting fluids. Chapter 3 describes environmental-friendly joining of tubes. Chapter 4 contains information on concepts, methods and strategies for zero-waste in manufacturing. Finally, chapter 5 is dedicated to the application of hybrid MCDM approach for selecting the best tyre recycling process.

  6. A Review of Additive Manufacturing

    OpenAIRE

    Kaufui V. Wong; Aldo Hernandez

    2012-01-01

    Additive manufacturing processes take the information from a computer-aided design (CAD) file that is later converted to a stereolithography (STL) file. In this process, the drawing made in the CAD software is approximated by triangles and sliced containing the information of each layer that is going to be printed. There is a discussion of the relevant additive manufacturing processes and their applications. The aerospace industry employs them because of the possibility of manufacturing light...

  7. High Effectiveness Heat Exchanger for Cryogenic Refrigerators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative high performance cryogenic heat exchanger manufactured of titanium by photo-etching and diffusion bonding. This is a parallel plate design...

  8. Connecting American Manufacturers (CAM) Virtual Manufacturing Marketplace (VMM)

    Science.gov (United States)

    2013-11-01

    directory of manufacturers. The program provides social media forums for manufacturers to connect with one another and discuss industry issues... CRM program trainings as a model) An example: Module 1: Key terms and definitions; Module 2: Getting your SAM Code; Module 3: Getting authorization... consumer understanding, strategic positioning, and idea generation and takes a customer-centric approach to projects Education: BA, Business Psychology

  9. Advanced manufacturing technologies modern machining, advanced joining, sustainable manufacturing

    CERN Document Server

    2017-01-01

    This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.

  10. 75 FR 104 - Manufacturing & Services' Sustainable Manufacturing Initiative; Update

    Science.gov (United States)

    2010-01-04

    .... Sustainable Manufacturing 101 Summit participants stated that many small-to-medium sized U.S. companies are.... More than 120 representatives from private industry, industry associations, non-governmental... manufacturing-related challenges facing U.S. industry; and (3) identify possible areas of future SMI work...

  11. Knowledge Transfer and Manufacturing Relocation in International Manufacturing Networks

    DEFF Research Database (Denmark)

    Madsen, Erik Skov

    2014-01-01

    This paper is built on six longitudinal case studies of knowledge transfer in manufacturing relocation. By focusing on tacit and explicit knowledge the paper introduces a model for identification of knowledge in relation to four task situations on the shop floor in a manufacturing environment...

  12. Fabrication techniques and technologies for missile seeker microelectronic components (focusing on multi-chip module substrate reliability)

    Science.gov (United States)

    Livesay, B. R.; Bohlander, R. A.; Turbini, L. J.; Schodorf, J. B.

    1992-11-01

    This report reviews recent multi-chip module (MCM) manufacturing technology developments. MCM's represent an emerging technology which will provide the Army with high-speed processors for missile seekers in a more compact form than offered by previous generations of electronic packaging. Both ceramic (MCM-C) and deposited dielectric (MCM-D) forms are covered, including those incorporating polyimide and new polymer films. Recent literature is reviewed concerning recent manufacturing processes, necessary generic equipment under development and in current practice. Promising developments include low-temperature cofired ceramics, polymer dielectrics with low water absorptivity, new photo-definable polymers, new adhesion promoters, gold thin-film metallization methods, laser ablation of vias, and controlled polymer precursors extrusion. Reliability issues are emphasized in the review, particularly in respect of the severe environmental conditions experienced by missiles, and a detailed review of mechanisms of degradation is included. Recommendations are made on the need for micromechanical and electrical property measurements of candidate MCM materials.

  13. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  14. Laser-assisted manufacturing of thermal energy devices

    Science.gov (United States)

    Zhang, Tao; Tewolde, Mahder; Kim, Ki-Hoon; Seo, Dong-Min; Longtin, Jon P.; Hwang, David J.

    2016-03-01

    In this study, we will present recent progress in the laser-assisted manufacturing of thermal energy devices that require suppressed thermal transport characteristics yet maintaining other functionalities such as electronic transport or mechanical strength. Examples of such devices to be demonstrated include thermoelectric generator or insulating materials. To this end, it will be shown that an additive manufacturing approaches can be facilitated and improved by unique processing capabilities of lasers in composite level. In order to tailor thermal characteristics in thermal devices, we will mainly investigate the potential of laser heating, curing, selective removal and sintering processes of material systems in the composite level.

  15. Northwest Energy Efficient Manufactured Housing Program Specification Development

    Energy Technology Data Exchange (ETDEWEB)

    Hewes, Tom [Northwest Energy Works of the Building America Partnership for Improved Residential Construction (BA-PIRC), Corvallis, OR (United States); Peeks, Brady [Northwest Energy Works of the Building America Partnership for Improved Residential Construction (BA-PIRC), Corvallis, OR (United States)

    2013-02-01

    The DOE research team Building America Partnership for Improved Residential Construction (BA-PIRC), Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Home Program (NEEM) program administrator, collaborated to research a new specification that would reduce the energy requirements of a NEEM home.This research identified and developed combinations of cost-effective high performance building assemblies and mechanical systems that can readily can be deployed in the manufacturing setting that reduce energy used for space conditioning, water heating and lighting by 50% over the present NEEM specifications.

  16. Manufacturing strategy issues in selected Indian manufacturing industry

    Directory of Open Access Journals (Sweden)

    Mahender Singh

    2013-03-01

    Full Text Available This paper presents some findings of Indian manufacturing sectors viz. automobile (especially two-wheeler, tractor and general manufacturing industry. Various manufacturing strategy issues such as competitive priorities, improvement activities, and performance measures, have been identified and assessed in Indian context. Sector wise comparison of competitive priorities, improvement activities i.e. advanced manufacturing technology (AMT, integrated information systems (IIS, and advanced management systems (AMS, and performance measure, is provided. Our results showed that most of the Indian companies are still emphasizing on quality. However, automobile sector has set to compete globally with high innovation rate, faster new product development, and continuous improvement. It is also observed that Indian companies are investing more in AMS as compared to IIS and AMT. Manufacturing competence index is also computed for each sector.

  17. Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing

    Science.gov (United States)

    Jägle, Eric A.; Sheng, Zhendong; Wu, Liang; Lu, Lin; Risse, Jeroen; Weisheit, Andreas; Raabe, Dierk

    2016-03-01

    We describe and study the thermal profiles experienced by various age-hardenable alloys during laser additive manufacturing (LAM), employing two different manufacturing techniques: selective laser melting and laser metal deposition. Using scanning electron microscopy and atom probe tomography, we reveal at which stages during the manufacturing process desired and undesired precipitation reactions can occur in age-hardenable alloys. Using examples from a maraging steel, a nickel-base superalloy and a scandium-containing aluminium alloy, we demonstrate that precipitation can already occur during the production of the powders used as starting material, during the deposition of material (i.e. during solidification and subsequent cooling), during the intrinsic heat treatment effected by LAM (i.e. in the heat affected zones) and, naturally, during an ageing post-heat treatment. These examples demonstrate the importance of understanding and controlling the thermal profile during the entire additive manufacturing cycle of age-hardenable materials including powder synthesis.

  18. Experimental Study of Single Phase Flow in a Closed-Loop Cooling System with Integrated Mini-Channel Heat Sink

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-06-01

    Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.

  19. Prototype solar heating and cooling systems. Monthly progress reports

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    This report is a collection of monthly status reports from the AiResearch Manufacturing Company, who is developing eight prototype solar heating and cooling systems under NASA Contract NAS8-32091. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

  20. 77 FR 2275 - Manufacturing Council

    Science.gov (United States)

    2012-01-17

    ... balanced cross-section of the U.S. manufacturing industry in terms of industry sectors, geographic locations, demographics, and company size, particularly seeking the representation of small- and medium-sized enterprises. Based on the diversity of the manufacturing industry currently represented on the...

  1. High power lasers in manufacturing

    OpenAIRE

    Chatwin, Chris R

    2017-01-01

    Lecture covers a brief history of lasers and the important beam parameters for manufacturing applications. It introduces the main laser types that are appropriate for manufacturing: carbon dioxide lasers, Nd YAG, Diode and fibre lasers, excimer lasers. It then looks at applications to different products and also micro-engineering

  2. Method of manufacturing powder particles

    NARCIS (Netherlands)

    Borra, J.P.D.

    2002-01-01

    The invention relates to a method of manufacturing a dry powder particle, preferably using electro-hydrodynamic spraying, wherein two oppositely charged aerosol streams are contacted. The invention allows for the manufacture of powders having various, controllable compositions and shapes. In

  3. Solar array manufacturing industry simulation

    Science.gov (United States)

    Chamberlain, R. G.; Firnett, P. J.; Kleine, B.

    1980-01-01

    Solar Array Manufacturing Industry Simulation (SAMIS) program is a standardized model of industry to manufacture silicon solar modules for use in electricity generation. Model is used to develop financial reports that detail requirements, including amounts and prices for materials, labor, facilities, and equipment required by companies.

  4. Accuracy of freeform manufacturing processes

    NARCIS (Netherlands)

    Gubbels, G.P.H.; Venrooy, B.W.H.; Henselmans, R.

    2009-01-01

    The breakthrough of freeform optics is limited by manufacturing and metrology technology. However, today's manufacturing machines like polishing robots and diamond turning machines are accurate enough to produce good surface quality, so the question is how accurate can a freeform be produced. To

  5. Manufacturing best practices and performance

    DEFF Research Database (Denmark)

    Szász, Levente; Demeter, Krisztina; Boer, Harry

    2014-01-01

    There is an impressive body of literature about best manufacturing practices. The question is whether these practices are always best, in every situation. Aimed at investigating the effects of home and host country characteristics on the “goodness” of manufacturing practices, the paper tests whet...

  6. Training for New Manufacturing Technologies.

    Science.gov (United States)

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  7. Balances instruments, manufacturers, history

    CERN Document Server

    Robens, Erich; Kiefer, Susanne

    2014-01-01

    The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included.  As additional guidance, today’s manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian’s ceremony of ‘Weighing of the Heart’, the Greek fate balance, the Roman  Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the...

  8. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  9. Improving Process Heating System Performance v3

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  10. The National Shipbuilding Research Program. Line Heating

    Science.gov (United States)

    1982-11-01

    their manufacture. This approach led to the development of remarkable line-heating aids and work instructions by Ishikawajima - Harima Heavy Industries ...Ltd. REFERENCES 1 ) 2 ) 3 ) 4 ) 5 ) 6 ) Shipbuilding Department of Ishikawajima - Harima Heavy Industries : “Bending Process of Line-Heated Plates...Division. The material on which this book is based was compiled by a project team led by S. Nakanishi, International Division, Ishikawajima - Harima Heavy

  11. Manufacturing plastic injection optical molds

    Science.gov (United States)

    Bourque, David

    2008-08-01

    ABCO Tool & Die, Inc. is a mold manufacturer specializing in the manufacturing of plastic injection molds for molded optical parts. The purpose of this presentation is to explain the concepts and procedures required to build a mold that produces precision optical parts. Optical molds can produce a variety of molded parts ranging from safety eyewear to sophisticated military lens parts, which must meet precise optical specifications. The manufacturing of these molds begins with the design engineering of precision optical components. The mold design and the related optical inserts are determined based upon the specific optical criteria and optical surface geometry. The mold manufacturing techniques will be based upon the optical surface geometry requirements and specific details. Manufacturing processes used will be specific to prescribed geometrical surface requirements of the molded part. The combined efforts result in a robust optical mold which can produce molded parts that meet the most precise optical specifications.

  12. Business models for additive manufacturing

    DEFF Research Database (Denmark)

    Hadar, Ronen; Bilberg, Arne; Bogers, Marcel

    2015-01-01

    Digital fabrication — including additive manufacturing (AM), rapid prototyping and 3D printing — has the potential to revolutionize the way in which products are produced and delivered to the customer. Therefore, it challenges companies to reinvent their business model — describing the logic...... of creating and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from...... a manufacturer-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer...

  13. Demonstration of a heat pump water heater. Volume 3. Design report

    Energy Technology Data Exchange (ETDEWEB)

    Sloane, B.D.; Krise, R.C.; Kent, D.D.

    1979-12-01

    Work performed during the pilot run manufacturing and laboratory testing stages of a heat pump water heater for residential installations is described. A general description of the heat pump water heater is provided, as are detailed discussions of individual components. Also included is a description of the pilot run manufacturing facility and experience, laboratory operations, and laboratory test data.

  14. Modular Heat Exchanger With Integral Heat Pipe

    Science.gov (United States)

    Schreiber, Jeffrey G.

    1992-01-01

    Modular heat exchanger with integral heat pipe transports heat from source to Stirling engine. Alternative to heat exchangers depending on integrities of thousands of brazed joints, contains only 40 brazed tubes.

  15. Manufacture and first wall joining for an ITER primary wall module prototype: results of a medium scale mock-up manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Febvre, M. E-mail: mfebvre@framatome.fr; Bobin-Vastra, I.; Lorenzetto, P.; Bouveret, Y.; Cauvin, D.; Raisson, G.; Conchon, D

    2001-10-01

    In the frame of the Blanket development programme for ITER, the design envisaged a blanket-shield constructed from modules. Primary Wall Modules consisted of a water-cooled austenitic stainless steel (S.S.) Shield Block and a First Wall, as an integral part of it. The Primary First Wall uses a DS-copper alloy as the heat sink material bonded to the shield block and a protection material such as Beryllium, to cope with the plasma/wall interaction. The module was designed to sustain a peak heat flux of 0.5 MW/m{sup 2}. A manufacturing program was implemented to demonstrate the feasibility for joining the Primary First Wall onto the Shield, which included the manufacture of small scale and medium scale mock-ups, before the manufacture of a prototype. The aim of the paper is to present the different steps and results of a Medium Scale Module manufacturing.

  16. Beryllium Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  17. Manufacturability considerations for DSA

    Science.gov (United States)

    Farrell, Richard A.; Hosler, Erik R.; Schmid, Gerard M.; Xu, Ji; Preil, Moshe E.; Rastogi, Vinayak; Mohanty, Nihar; Kumar, Kaushik; Cicoria, Michael J.; Hetzer, David R.; DeVilliers, Anton

    2014-03-01

    Implementation of Directed Self-Assembly (DSA) as a viable lithographic technology for high volume manufacturing will require significant efforts to co-optimize the DSA process options and constraints with existing work flows. These work flows include established etch stacks, integration schemes, and design layout principles. The two foremost patterning schemes for DSA, chemoepitaxy and graphoepitaxy, each have their own advantages and disadvantages. Chemoepitaxy is well suited for regular repeating patterns, but has challenges when non-periodic design elements are required. As the line-space polystyrene-block-polymethylmethacrylate chemoepitaxy DSA processes mature, considerable progress has been made on reducing the density of topological (dislocation and disclination) defects but little is known about the existence of 3D buried defects and their subsequent pattern transfer to underlayers. In this paper, we highlight the emergence of a specific type of buried bridging defect within our two 28 nm pitch DSA flows and summarize our efforts to characterize and eliminate the buried defects using process, materials, and plasma-etch optimization. We also discuss how the optimization and removal of the buried defects impacts both the process window and pitch multiplication, facilitates measurement of the pattern roughness rectification, and demonstrate hard-mask open within a back-end-of-line integration flow. Finally, since graphoepitaxy has intrinsic benefits in terms of design flexibility when compared to chemoepitaxy, we highlight our initial investigations on implementing high-chi block copolymer patterning using multiple graphoepitaxy flows to realize sub-20 nm pitch line-space patterns and discuss the benefits of using high-chi block copolymers for roughness reduction.

  18. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments; MPTB: banc d'essai microelectronique et photonique, essais en vol, au sol et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A. [Naval Research Laboratory, Electronics Science and Technology Div., Washington, DC (United States)

    1999-07-01

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  19. Effects of chemical bonding on heat transport across interfaces

    Science.gov (United States)

    Losego, Mark D.; Grady, Martha E.; Sottos, Nancy R.; Cahill, David G.; Braun, Paul V.

    2012-06-01

    Interfaces often dictate heat flow in micro- and nanostructured systems. However, despite the growing importance of thermal management in micro- and nanoscale devices, a unified understanding of the atomic-scale structural features contributing to interfacial heat transport does not exist. Herein, we experimentally demonstrate a link between interfacial bonding character and thermal conductance at the atomic level. Our experimental system consists of a gold film transfer-printed to a self-assembled monolayer (SAM) with systematically varied termination chemistries. Using a combination of ultrafast pump-probe techniques (time-domain thermoreflectance, TDTR, and picosecond acoustics) and laser spallation experiments, we independently measure and correlate changes in bonding strength and heat flow at the gold-SAM interface. For example, we experimentally demonstrate that varying the density of covalent bonds within this single bonding layer modulates both interfacial stiffness and interfacial thermal conductance. We believe that this experimental system will enable future quantification of other interfacial phenomena and will be a critical tool to stimulate and validate new theories describing the mechanisms of interfacial heat transport. Ultimately, these findings will impact applications, including thermoelectric energy harvesting, microelectronics cooling, and spatial targeting for hyperthermal therapeutics.

  20. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    J. Stephen Herring

    2010-10-01

    Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  1. Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing

    Science.gov (United States)

    Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco

    2017-10-01

    Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.

  2. A Review on the Mechanical Modeling of Composite Manufacturing Processes

    DEFF Research Database (Denmark)

    Baran, Ismet; Cinar, Kenan; Ersoy, Nuri

    2016-01-01

    between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based......The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since...... the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions...

  3. Detecting Attacks in CyberManufacturing Systems: Additive Manufacturing Example

    Directory of Open Access Journals (Sweden)

    Wu Mingtao

    2017-01-01

    Full Text Available CyberManufacturing System is a vision for future manufacturing where physical components are fully integrated with computational processes in a connected environment. However, realizing the vision requires that its security be adequately ensured. This paper presents a vision-based system to detect intentional attacks on additive manufacturing processes, utilizing machine learning techniques. Particularly, additive manufacturing systems have unique vulnerabilities to malicious attacks, which can result in defective infills but without affecting the exterior. In order to detect such infill defects, the research uses simulated 3D printing process images as well as actual 3D printing process images to compare accuracies of machine learning algorithms in classifying, clustering and detecting anomalies on different types of infills. Three algorithms - (i random forest, (ii k nearest neighbor, and (iii anomaly detection - have been adopted in the research and shown to be effective in detecting such defects.

  4. Energy harvesting for microelectronics. Energy efficient and energy autarkic solutions for wireless sensor systems; Energy Harvesting fuer Mikroelektronik. Energieeffiziente und -autarke Loesungen fuer drahtlose Sensorsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Dembowski, Klaus

    2011-07-01

    Energy efficiency and renewable energy fields promise to be sustainable fields of growth in the coming years. In the case of micro energy harvesting relatively small amounts of energy is 'harvested' from the ambient energy in order to enable energy-efficient and self-sufficient solutions in the field of microelectronics. The book under consideration provides: (a) The necessary fundamentals concerning energy production (e.g., thermal generators, piezoelectric transducers, energy from RF radiation); (b) Energy storage as with batteries, capacitors, voltage converters and converter circuits; (c) Information to sensor/actuator system (types, signal conditioning, signal conversion); (d) Suitable microcontrollers and power saving mechanisms; (e) Wireless communication (transponder systems, wireless standards). In addition, application examples for system monitoring, building automation or in the medical technology are presented in detail.

  5. A progress report on the LDRD project entitled {open_quotes}Microelectronic silicon-based chemical sensors: Ultradetection of high value molecules{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.C.

    1996-09-01

    This work addresses a new kind of silicon based chemical sensor that combines the reliability and stability of silicon microelectronic field effect devices with the highly selective and sensitive immunoassay. The sensor works on the principle that thin SiN layers on lightly doped Si can detect pH changes rapidly and reversibly. The pH changes affect the surface potential, and that can be quickly determined by pulsed photovoltage measurements. To detect other species, chemically sensitive films were deposited on the SiN where the presence of the chosen analyte results in pH changes through chemical reactions. A invention of a cell sorting device based on these principles is also described. A new method of immobilizing enzymes using Sandia`s sol-gel glasses is documented and biosensors based on the silicon wafer and an amperometric technique are detailed.

  6. Status of the beryllium tile bonding qualification activities for the manufacturing of the ITER first wall

    Energy Technology Data Exchange (ETDEWEB)

    Mitteau, Raphaël, E-mail: Raphael.mitteau@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Eaton, R.; Perez, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Zacchia, F.; Banetta, S.; Bellin, B. [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Gervash, A.; Glazunov, D. [Efremov Research Institute, 189631 St. Petersburg (Russian Federation); Chen, J. [Southwestern Institute of Physics, Huangjing Road, Chengdu 610225 (China)

    2015-10-15

    The preparation of the manufacturing of the ITER first wall involves a qualification stage. The qualification aims at demonstrating that manufacturers can deliver the needed reliability and quality for the beryllium to copper bond, before the manufacturing can commence. The qualification is done on semi-prototype, containing relevant features relative to the beryllium armour (about 1/6 of the panel size). The qualification is done by the participating parties, firstly by a manufacturing semi-prototype and then by testing it under heat flux. One semi-prototype is manufactured and is being tested, and further from other manufacturers are still to come. The qualification programme is accompanied by bond defect investigations, which aim at defining defect acceptance criteria. Qualification and defect acceptance programme are supported by thermal and stress analyses, with good agreement regarding the thermal results, and some insights about the governing factors to bond damage.

  7. Integrated Glass Coating Manufacturing Line

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor [Enki Technology Inc., San Jose, CA (United States)

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs and a detailed deployment plan for the equipment.

  8. Molded optics design and manufacture

    CERN Document Server

    Schaub, Michael

    2007-01-01

    While several available texts discuss molded plastic optics, none provide information on all classes of molded optics. Filling this gap, Molded Optics: Design and Manufacture presents detailed descriptions of molded plastic, glass, and infrared optics. Since an understanding of the manufacturing process is necessary to develop cost-effective, producible designs, the book extensively covers various manufacturing methods, design guidelines, trade-offs, best practices, and testing of critical parameters. It also discusses topics that often arise when designing systems with molded optics, such as

  9. Micro manufacturing techniques and applications

    CERN Document Server

    Du, Ruxu; Li, Zifu

    2013-01-01

    Micro/meso-scale manufacturing has been developed in research fields of machining, forming, materials and others, but its potential to industries are yet to be fully realized. The theme of the current volume was to build a bridge joining academic research and industrial needs in micro manufacturing. Among the 12 papers selected for publication are three keynote addresses onmicro and desktop factories for micro/meso-scale manufacturing applicationsand future visions, tissue cutting mechanics and applications for needlecore biopsy and guidance, and micro-texturing onto amorphous carbonmaterials

  10. Integrated flexible manufacturing program for manufacturing automation and rapid prototyping

    Science.gov (United States)

    Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.

    1993-01-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  11. An Assessment of Advanced Manufacturing Technologies Implementation in Manufacturing Enterprises

    Directory of Open Access Journals (Sweden)

    Ghulam Yasin Shaikh

    2011-04-01

    Full Text Available The implementation of AMTs (Advanced Manufacturing Technologies has always been the high interest and core issue for the manufacturing enterprises to get rapid production for global market place. The developed countries have achieved its competitive advantage by implementing this unique model of technologies with full range of systems. In developing countries, the implementation of such technologies is not much common due to so many reasons, (political, social, economical and technical but entrepreneurs of growing economies are contemplating to reshape long term strategy to adopt Computer systems oriented technologies in their manufacturing companies to meet the growing needs of their indigenous market on one hand and to make a place in the international market on the other. Although, very few manufacturing organization do meet the global market requirements. But there is still lot of efforts to be taken for world class competition. An attempt has been made in this paper to develop a conceptual model taking in to account the three parameters such as, Direct, Indirect and Administrative AMTs. This research work further attempts to present an empirical data analysis conducted in the manufacturing enterprises in province of Sindh, Pakistan. The overall indigenous progress of manufacturing enterprises as according to the data collected from 60 companies reveals that the AMTs systems are partially understood and practiced that is also one of the cause towards slow progress of national exchequer.

  12. Heat convection

    Energy Technology Data Exchange (ETDEWEB)

    Jiji, L.M. [City Univ. of New York, NY (United States). Dept. of Mechanical Engineering

    2006-07-01

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the following ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters. (orig.)

  13. Manufactured Home Energy Audit (MHEA)Users Manual (Version 7)

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.B.

    2003-01-27

    The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the U.S. Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA uses a relatively standard Windows graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment appliances, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. Weatherization retrofit measures are evaluated based on the predicted energy savings after installation of the measure, the measure cost, and the measure life. Finally, MHEA recommends retrofit measures that are energy and cost effective for the particular home being evaluated. MHEA evaluates each manufactured home individually and takes into account local weather conditions, retrofit measure costs, and fuel costs. The recommended package of weatherization retrofit measures is tailored to the home being evaluated. More traditional techniques apply the same package of retrofit measures to all manufactured homes, often the same set of measures that are installed into site-built homes. Effective manufactured home weatherization can be achieved only by installing measures developed specifically for manufactured homes. The unique manufactured home construction characteristics require that

  14. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snowberg, David R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Derek S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beach, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rooney, Samantha A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Swan, Dana [Arkema Inc.

    2017-12-06

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-life blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.

  15. Solar Heating in an Elementary School

    Science.gov (United States)

    1982-01-01

    Solar-heating and hot-water system installed in elementary school in Virginia is described in 154 page report. Report contains discussion of design philosophy and acceptance-test report. Provides instructions for installation, maintenance, and operation. Also furnishes mechanical drawings and manufacturers' data on pumps, valves, controllers, and other components.

  16. Solar-heating and cooling demonstration project

    Science.gov (United States)

    1980-01-01

    Florida Solar Energy Center has retrofitted office building, approximately 5,000 square feet of area, with solar heating and air-conditioning. Information on operation, installation, controls, and hardware for system is contained in 164 page report. Document includes manufacturer's product literature and detailed drawings.

  17. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... for signs of heat stroke or exhaustion. Heat Stroke and Exhaustion Symptoms of early heat exhaustion symptoms ... heavy sweating; nausea; and giddiness. Symptoms of heat stroke (late stage of heat illness) include flushed, hot, ...

  18. Renewable Heating and Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  19. Grain Structure Control of Additively Manufactured Metallic Materials

    Directory of Open Access Journals (Sweden)

    Fuyao Yan

    2017-11-01

    Full Text Available Grain structure control is challenging for metal additive manufacturing (AM. Grain structure optimization requires the control of grain morphology with grain size refinement, which can improve the mechanical properties of additive manufactured components. This work summarizes methods to promote fine equiaxed grains in both the additive manufacturing process and subsequent heat treatment. Influences of temperature gradient, solidification velocity and alloy composition on grain morphology are discussed. Equiaxed solidification is greatly promoted by introducing a high density of heterogeneous nucleation sites via powder rate control in the direct energy deposition (DED technique or powder surface treatment for powder-bed techniques. Grain growth/coarsening during post-processing heat treatment can be restricted by presence of nano-scale oxide particles formed in-situ during AM. Grain refinement of martensitic steels can also be achieved by cyclic austenitizing in post-processing heat treatment. Evidently, new alloy powder design is another sustainable method enhancing the capability of AM for high-performance components with desirable microstructures.

  20. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  1. Performance Simulation and Verification of Vat Photopolymerization Based, Additively Manufactured Injection Molding Inserts with Micro-Features

    DEFF Research Database (Denmark)

    Mischkot, Michael; Hofstätter, Thomas; Michailidou, Ifigeneia

    2017-01-01

    Injection molding soft tooling inserts manufactured additively with vat photopolymerization represent a valid technology for prototyping and pilot production of polymer parts. However, a significant drawback is the low heat conductivity of photopolymers influencing cycletime and part quality...

  2. Nested Material Manufacturing Technology Improvement

    National Research Council Canada - National Science Library

    2008-01-01

    The objective of this project was to develop an automated planning and control system in the GD NASSCO Pipe Shop that enabled the efficient handling of pipe spool fabrication in a flexible manufacturing environment...

  3. Textile Manufacturing Sector (NAICS 313)

    Science.gov (United States)

    Find environmental regulatory and compliance information for the textile and leather manufacturing sector, including NESHAPs for leather tanning and fabric printing, and small business guidance for RCRA hazardous waste requirements.

  4. Wood and Paper Manufacturing Sectors

    Science.gov (United States)

    Find EPA regulatory information for the wood product and paper manufacturing sectors, including paper, pulp and lumber. Information includes NESHAPs and effluent guidelines for pulp and paper rulemaking, and compliance guidelines

  5. Order release in synchronous manufacturing

    NARCIS (Netherlands)

    Riezebos, J.

    2010-01-01

    Synchronous manufacturing aims at achieving the benefits of intermittent production lines in production situations that operate without lines. Benefits such as short and constant throughput times and predictable capacity loading can be acquired through an appropriate design of the synchronous

  6. Nano Manufacturing - Products and Technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product...... driven approach can be used in this process. A framework for the product driven approach in nano manufacturing is presented and discussed. The general discussion will be supported by case studies covering polymers and metals....

  7. On Manufacturing/Marketing Incentives

    OpenAIRE

    Evan L. Porteus; Seungjin Whang

    1991-01-01

    Stereotypically, marketing is mainly concerned about satisfying customers and manufacturing is mainly interested in factory efficiency. Using the principal-agent (agency) paradigm, which assumes that the marketing and manufacturing managers of the firm will act in their self-interest, we seek incentive plans that will induce those managers to act so that the owner of the firm can attain as much as possible of the residual returns. One optimal incentive plan can be interpreted as follows: The ...

  8. Whither North Carolina furniture manufacturing?

    OpenAIRE

    Robert L. Lacy

    2004-01-01

    North Carolina's furniture manufacturing industry has contracted in recent years as imports have gained a greater share of the domestic furniture market. Rapid growth of the furniture industry in China and a surge in exports from that country to the United States in particular have contributed to plant closings and consolidation of operations in the state. North Carolina's furniture manufacturers are adapting to the emergence of global competition and are developing new corporate strategies t...

  9. Liquid metal micro heat pipes for space radiator applications

    Science.gov (United States)

    Gerner, F. M.; Henderson, H. T.

    1995-07-01

    Micromachining is a chemical means of etching three-dimensional structures, typically in single-crystalline silicon. These techniques are leading toward what is coming to be referred to as MEMS (micro electro mechanical systems), where in addition to the ordinary two dimensional (planar) microelectronics, it is possible to build three-dimensional micromotors, electrically-actuated microvalves, hydraulic systems, and much more on the same microchip. These techniques become possible because of differential etching rates of various crystallographic planes and materials used for semiconductor microfabrication. The University of Cincinnati group in collaboration with NASA Lewis formed micro heat pipes in silicon by the above techniques. Work is ongoing at a modest level, but several essential bonding and packaging techniques have been recently developed. Currently, we have constructed and filled water/silicon micro heat pipes. Preliminary thermal tests of arrays of 125 micro heat pipes etched in a 1 inch x 1 inch x 250 micron silicon wafer have been completed. These pipes are instrumented with extremely small P-N junctions to measure their effective conductivity and their maximum operating power. A relatively simple one-dimensional model has been developed in order to predict micro heat pipes' operating characteristics. This information can be used to optimize micro heat pipe design with respect to length, hydraulic diameter, and number of pipes. Work is progressing on the fabrication of liquid-metal micro heat pipes. In order to be compatible with liquid metal (sodium or potassium), the inside of the micro heat pipes will be coated with a refractory metal (such as tungsten, molybdenum, or titanium).

  10. CT-assisted agile manufacturing

    Science.gov (United States)

    Stanley, James H.; Yancey, Robert N.

    1996-11-01

    The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.

  11. HEAT RESISTANCE OF GRAPHITIZED STEEL

    Directory of Open Access Journals (Sweden)

    V. O. Savchenko

    2014-06-01

    Full Text Available Purpose. The investigation of temperature dependences of steels' mechanical properties and heat resistance under conditions of thermal cyclic loads. It's necessary to determine the mechanical properties and heat resistance indices of graphitized steels and cast iron VCh400 within the temperature range of 20…800°С. Methodology. Graphitized steels of the following chemical composition (mass %: 0.61…1.04C; 1.19…1.59%Si; 0.32…0.37%Mn; 0.12…0.17%Al; 0.008…0.014%S and 0.016…0.025%Р have been heat-treated according to the mode: heating up to 810°С – holding for 2 hours; cooling down to 680°С – holding for 2 hours with further cooling using the furnace in order to provide the ferrite-pearlite metallic base with graphite inclusions. In order to determine heat resistance indices (heat stresses index K and the material's resistance criterion at thermal cyclic load C the indices of graphitized steels' and cast irons' mechanical properties in the temperature range of 20…800°С have been investigated. Findings. It has been established that as a result of lower carbon content and smaller quantity of graphite inclusions, graphitized steel exceeds such indices of nodular cast iron VCh400 as: tensile strength and plasticity at room and high temperatures, and also heat resistance criteria K and C. This steel can be used to manufacture articles operating under conditions of thermal cyclic loads. Originality. Tensile strength and percent elongation of graphitized steels within the temperature range of 20…800°С have been determined. Calculations of heat resistance criteria to the heat stresses index K and the material's resistance criterion at thermal cyclic loads C within the temperature range 20…800°С in comparison with nodular cast iron of VCh400 grade have been carried out. Practical value. The expediency of using graphitized steel for manufacturing of articles operating under conditions of thermal cyclic loads has been shown.

  12. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  13. Process Modeling and Validation for Metal Big Area Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, Srdjan [ORNL; Nycz, Andrzej [ORNL; Noakes, Mark W. [ORNL; Chin, Charlie [Dassault Systemes; Oancea, Victor [Dassault Systemes

    2017-05-01

    Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology based on the metal arc welding. A continuously fed metal wire is melted by an electric arc that forms between the wire and the substrate, and deposited in the form of a bead of molten metal along the predetermined path. Objects are manufactured one layer at a time starting from the base plate. The final properties of the manufactured object are dependent on its geometry and the metal deposition path, in addition to depending on the basic welding process parameters. Computational modeling can be used to accelerate the development of the mBAAM technology as well as a design and optimization tool for the actual manufacturing process. We have developed a finite element method simulation framework for mBAAM using the new features of software ABAQUS. The computational simulation of material deposition with heat transfer is performed first, followed by the structural analysis based on the temperature history for predicting the final deformation and stress state. In this formulation, we assume that two physics phenomena are coupled in only one direction, i.e. the temperatures are driving the deformation and internal stresses, but their feedback on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.

  14. Additive Design and Manufacturing of Jet Engine Parts

    Directory of Open Access Journals (Sweden)

    Pinlian Han

    2017-10-01

    Full Text Available The additive design (AD and additive manufacturing (AM of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s, continues to line(s and layer(s, and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of “subtracting material” to the new method of “adding material” in order to manufacture a part. AD is not the same as designing for AM. A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.

  15. Exploring manufacturing competencies of a two wheeler manufacturing unit

    Science.gov (United States)

    Deep Singh, Chandan; Singh Khamba, Jaimal; Singh, Rajdeep; Singh, Navdeep

    2014-07-01

    The two wheeler industry of India is one of the most dependable industries as every person has at least a two wheeler with him, if not any four wheeler. Earlier there were scooters like Bajaj Chetak, Priya but with evolution of motorcycles like splendor, splendor+, etc. the scooter market started declining but with arrival of gearless scooters like Honda Activa, Scooty Pep, etc. the market place has become increasingly competitive in recent time and industries are facing tough test of improving products and thus market share. The competitiveness among industries is an important issue. Competency development is a vital tool to enhance the competitiveness of industries. Based, on aggregate performance of a firm, it comprehensively explores the varying importance of manufacturing competencies and drives of industrial competitiveness. Hence by, exploring the manufacturing competencies of a two wheeler industry, one can reflect the competitiveness of two wheeler manufacturing industry as a whole. This study presents various factors of manufacturing competencies affecting industrial competitiveness as the significance of these competencies is increasing day by day in two wheeler manufacturing industry.

  16. Heat loss from an open cavity

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

    1995-12-01

    Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

  17. Heat Transfer Characteristics of Tubular Thermal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hei Cheon; Park, Sang Kyoo [Chonnam National Univ., Yeosu (Korea, Republic of); Ra, Beong Yeol [Sinsung Plant company, Ansan (Korea, Republic of)

    2007-07-01

    Heat transfer augmentation based on the process intensification concept in heat exchangers and thermal reactors has received much attention in recent years, mainly due to energy efficiency and environmental considerations. The concept consists of the development of novel apparatuses and techniques that, compared to those commonly used today, are expected to bring dramatic improvements in manufacturing and processing, substantially decreasing equipment size, energy consumption, and ultimately resulting in cheaper, sustainable technologies. The objective of this paper was to investigate the heat transfer characteristics of tubular thermal reactor using static mixing technology. Glycerin and water were used as the test fluids and water was used as the heating source. The results for heat transfer rate were strongly influenced by tube geometry and flow conditions.

  18. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  19. Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming

    Science.gov (United States)

    Kramer, Michelle; McKelvie, Millie; Watson, Matthew

    2018-01-01

    Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).

  20. Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming

    Science.gov (United States)

    Kramer, Michelle; McKelvie, Millie; Watson, Matthew

    2017-08-01

    Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).

  1. Heat pump

    OpenAIRE

    Klíma, Martin

    2010-01-01

    Bakalářská práce popisuje a charakterizuje tepelné čerpadlo. Obsahuje souhrn jednotlivých druhů tepelných čerpadel z hlediska získávání energie, princip jejich funkce a popis odlišností mezi jednotlivými druhy kompresorů, použití pracovní látky a její vývin do budoucna. Závěrem je zde uveden můj vlastní názor na tepelné čerpadlo, které bych preferoval. Bachelor thesis describes and characterizes the heat pump. Summarizes the various types of heat pumps in terms of energy production, princi...

  2. Heat Exchange

    OpenAIRE

    Bottomley, Stephen

    2012-01-01

    Heat Exchange’ is an international touring exhibition of enamel metalwork curated by Turrell.E (UK), Gegenwart (Germany/UK) and Cameron (Australia). Bottomley was one of twenty-three international artists invited to join a transcontinental on-line blog and forum that recorded individual contemporary approaches to working with vitreous enamel the year prior to the 2012 exhibition that coincided with the SNAG (Society of North American Goldsmiths) National Conference in Phoenix Arizona USA.Vitr...

  3. Additive manufacturing in maxillofacial reconstruction

    Directory of Open Access Journals (Sweden)

    Dincă Luciana Laura

    2017-01-01

    Full Text Available In this paper the benefits of using additive manufacturing technologies in maxillofacial reconstruction are highlighted. Based on a real clinical case, the paper describes the manufacture of an implant prototype replacing the right zygomatic bone and a part of maxilla using additive manufacturing technologies. The face is the most expressive part of the human body that makes us unique. It was shown that the maxillofacial prostheses help to improve the psychological state of patients affected by, because low self esteem feeling appears commonly to this patients with the facial defects. The aim of this paper is to show how using additive manufacturing technologies methods within this research, the producing a surgical model will help surgeon to improve the pre-operative planning. For this we used additive manufacturing technologies such as Stereolitography to achieve the biomodel and FDM-fused deposition modelling to obtain a prototype model because these technologies make it possible to obtain prosthesis according to the physical and mechanical requirements of the region of implantation.

  4. Heat pump system

    Science.gov (United States)

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  5. Standardization of rate of sugar addition for the manufacture of Thabdi

    OpenAIRE

    Hirpara, Krupa B.; Patel, H.G.; Prajapati, J. P.

    2013-01-01

    Traditional Indian Dairy Products are manufactured in India using an age old practice which varies from place to place. For manufacture of these products industrially, a standard formulation is required. Thabdi, a region specific, very popular heat desiccated milk product is one of such products which has not been studied scientifically. Sugar plays an important role in physico-chemical, sensory, textural characteristics and also the shelf life of any milk sweet. Hence for process standardiza...

  6. Heat-Exchanger/Heat-Pipe Interface

    Science.gov (United States)

    Snyder, H. J.; Van Hagan, T. H.

    1987-01-01

    Monolithic assembly reliable and light in weight. Heat exchanger and evaporator ends of heat pipes integrated in monolithic halves welded together. Interface assembly connects heat exchanger of furnace, reactor, or other power source with heat pipes carrying heat to radiator or power-consuming system. One of several concepts proposed for nuclear power supplies aboard spacecraft, interface useful on Earth in solar thermal power systems, heat engines, and lightweight cooling systems.

  7. Manufacturing standards of performance for success

    OpenAIRE

    Sweeney, Mike T.; Szwejczewski, Marek

    1995-01-01

    This paper details the findings of a study of the manufacturing performances and practices of 140 engineering companies in the UK. From this study, significant differences in the manufacturing competitiveness of these firms have been identified. Causes for the performance differences are discussed and recommendations are made for the design of a manufacturing strategy to improve manufacturing competitiveness.

  8. Methods for the additive manufacturing of semiconductor and crystal materials

    Science.gov (United States)

    Stowe, Ashley C.; Speight, Douglas

    2016-11-22

    A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.

  9. Energy Efficiency in Manufacturing Systems

    CERN Document Server

    Thiede, Sebastian

    2012-01-01

    Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require  balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology – with a generic energy flow-oriented manufacturing simulation environment as a core element – is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.

  10. Metrology for Fuel Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Michael [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Stanfield, Eric [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  11. Heating systems for heating subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  12. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  13. Benchmarks of Global Clean Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  14. Essential Specification Elements for Heat Exchanger Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Bower, L.

    2015-07-01

    Performance upgrade and equipment degradation are the primary impetuses for a nuclear power plant to engage in the large capital cost project of heat exchanger replacement. Along with attention to these issues, consideration of heat exchanger Codes and Standards, material improvements, thermal redesign, and configuration are essential for developing User’s Design Specifications for successful replacement projects. The User’s Design Specification is the central document in procuring ASME heat exchangers. Properly stated objectives for the heat exchanger replacement are essential for obtaining the materials, configurations and thermal designs best suited for the nuclear power plant. Additionally, the code of construction required and the applied manufacturing standard (TEMA or HEI) affects how the heat exchanger may be designed or configured to meet the replacement goals. Knowledge of how Codes and Standards affect design and configuration details will aid in writing the User’s Design Specification. Joseph Oat Corporation has designed and fabricated many replacement heat exchangers for the nuclear power industry. These heat exchangers have been constructed per ASME Section III to various Code-Years or ASME Section VIII-1 to the current Code-Year also in accordance with TEMA and HEI. These heat exchangers have been a range of like-for-like replacement to complete thermal, material and configuration redesigns. Several examples of these heat exchangers with their Code, Standard and specification implications are presented. (Author.

  15. Exploring manufacturing solutions for SMEs

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Blichfeldt, Henrik; Bilberg, Arne

    This exploratory study provides an overview over current state of manufacturing solutions in small and medium sized enterprises (SMEs) in region of Southern Denmark. Building on manufacturing paradigms, this paper reveals relevant aspects for the development and implementation of improving SMEs......’ automation processes. The paper presents an embedded case study based on 10 low- and medium-tech Danish companies. Based on the development of production paradigms and the presented study, this research helps to understand key determinants and processes for SMEs’ exploration of future directions...

  16. Strategi Bersaing dengan Agile Manufacturing

    Directory of Open Access Journals (Sweden)

    Hamidah Tussifah

    2017-06-01

    Full Text Available Competitive advantage now increasingly rests upon a dynamic capability to compete successfully in an environment of frequent, challenging and unpredictable change. The agile manufacturing a recently popularized concept has been advocated as the 21st century manufacturing paradigm. In adopting and developing the key elements of agile manufactruring, there is requirement for enterprises to overcome the philosophical challenges of a shift from mass/lean production to the customization of agility. Beside that, enterprises should explore the key success factors to support succesfull agile implementation.

  17. Carbon-On-Carbon Manufacturing

    Science.gov (United States)

    Mungas, Gregory S. (Inventor); Buchanan, Larry (Inventor); Banzon, Jr., Jose T. (Inventor)

    2017-01-01

    The presently disclosed technology relates to carbon-on-carbon (C/C) manufacturing techniques and the resulting C/C products. One aspect of the manufacturing techniques disclosed herein utilizes two distinct curing operations that occur at different times and/or using different temperatures. The resulting C/C products are substantially non-porous, even though the curing operation(s) substantially gasify a liquid carbon-entrained filler material that saturates a carbon fabric that makes up the C/C products.

  18. Introduction to semiconductor manufacturing technology

    CERN Document Server

    2012-01-01

    IC chip manufacturing processes, such as photolithography, etch, CVD, PVD, CMP, ion implantation, RTP, inspection, and metrology, are complex methods that draw upon many disciplines. [i]Introduction to Semiconductor Manufacturing Technologies, Second Edition[/i] thoroughly describes the complicated processes with minimal mathematics, chemistry, and physics; it covers advanced concepts while keeping the contents accessible to readers without advanced degrees. Designed as a textbook for college students, this book provides a realistic picture of the semiconductor industry and an in-depth discuss

  19. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    Science.gov (United States)

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  20. Heat pumping technologies in Sri Lanka: applications and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Tharumaratnam, V.; Mendis, D.L.O. [Mini Well Systems (pvt) Ltd. (Sri Lanka)

    1998-09-01

    New applications of heat pumping technologies have been introduced in Sri Lanka. These include manufacture of made tea, drying fruits and vegetables, and drying coconut for manufacture of export quality copra. Tea has been the backbone of the export economy for many years, and only recently has it been overtaken by garment exports. It also accounts for a large amount of energy, in terms of electricity supplied from the national grid, biomass in the form of firewood, and petroleum products , chiefly diesel oil. It has been demonstrated in pilot scale commercial trials by the company that application of heat pumping technology reduces the cost of energy in manufacture of tea from about Rs 5 per kilogram of made tea to about Rs 3. Mobile drying units have been manufactured to demonstrate the application of heat pumping technology for drying fruits, vegetables and other agricultural produce on a commercial scale. This has resulted in considerable interest in the CISIR, the Industrial Development Board, and various private sector organizations. Application of heat pumping to drying coconut for manufacture of copra has been very successful. The quality of copra has been consistently supra-grade, since there is no contamination as in the traditional method of manufacture using biomass fuels in the form of coconut shells, which causes discolouration. (author)