WorldWideScience

Sample records for heated feed water

  1. Economic and safety aspects of using moderator heat for feed water heating in a nuclear power plant

    International Nuclear Information System (INIS)

    Patwegar, I.A.; Dutta, Anu; Chaki, S.K.; Venkat Raj, V.

    2002-01-01

    Full text: In the proposed advanced heavy water reactor (AHWR), coolant and moderator are separated by the coolant channel. The coolant absorbs most of the fission heat produced in the reactor core. However, the moderator absorbs about 5 to 6 % of the fission heat. In a reactor producing 750 MW(th) power, this moderator heat is about 40 MW. In the present Indian PHWR (pressurized heavy water reactor) systems, this moderator heat is lost to a sink through the moderator heat exchangers, which are cooled by process water. This paper presents the results of the steam cycle analysis carried out for AHWR using moderator heat exchangers as part of the feed heating system. The present study is an attempt to determine the gain in electrical output (MW) if moderator heat is utilized for feed water heating. The operational and safety aspects of using moderator heat are also discussed in the paper

  2. Condensation heat transfer of a feed-water heater and improvement of its performance

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Murase, Michio; Baba, Yoshikazu; Aihara, Tsuyoshi

    1995-01-01

    In this study, a condensation heat transfer model, coupled with a three-dimensional two-phase flow analysis, was developed. In the heat transfer model, the liquid film flow rate on the heat transfer tubes was calculated by a mass balance equation and the liquid film thickness was calculated from the liquid film flow rate using Nusselt's laminar flow model and Fujii's equation for the steam velocity effect. The model was verified by condensation heat transfer experiments. In the experiments, 112 horizontal, staggered tubes with an outer diameter of 16mm and length of 0.55m were used. The calculated over-all heat transfer coefficients agreed with the data within ±5% under the inlet quality conditions of 13-100%. Based on a three-dimensional two-phase flow analysis, an improved feed-water heater with support plates, which have flow holes between the upper and lower tube bundles, was designed. The total heat exchange capacity of the improved feed-water heater increased about 6%. (author)

  3. One dimensional analysis model for condensation heat transfer in feed water heater

    International Nuclear Information System (INIS)

    Murase, Michio; Takamori, Kazuhide; Aihara, Tsuyoshi

    1998-01-01

    In order to simplify condensation heat transfer calculations for feed water heaters, one dimensional (1D) analyses were compared with three dimensional (3D) analyses. The results showed that average condensation heat transfer coefficients by 1D analyses with 1/2 rows of heat transfer tubes agreed with those by 3D analyses within 7%. Using the 1D analysis model, effects of the pitch of heat transfer tubes were evaluated. The results showed that the pitch did not affect much on heat transfer rates and that the size of heat transfer tube bundle could be decreased by a small pitch. (author)

  4. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    Science.gov (United States)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  5. Evaluation method for two-phase flow and heat transfer in a feed-water heater

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Minato, Akihiko

    1993-01-01

    A multidimensional analysis code for two-phase flow using a two-fluid model was improved by taking into consideration the condensation heat transfer, film thickness, and film velocity, in order to develop an evaluation method for two-phase flow and heat transfer in a feed-water heater. The following results were obtained by a two-dimensional analysis of a feed-water heater for a power plant. (1) In the model, the film flowed downward in laminar flow due to gravity, with droplet entrainment and deposition. For evaluation of the film thickness, Fujii's equation was used in order to account for forced convection of steam flow. (2) Based on the former experimental data, the droplet deposition coefficient and droplet entrainment rate of liquid film were determined. When the ratio at which the liquid film directly flowed from an upper heat transfer tube to a lower heat transfer tube was 0.7, the calculated total heat transfer rate agreed with the measured value of 130 MW. (3) At the upper region of a heat transfer tube bundle where film thickness was thin, and at the outer region of a heat transfer tube bundle where steam velocity was high, the heat transfer rate was large. (author)

  6. Method and device for feeding purified water to a pressure vessel

    International Nuclear Information System (INIS)

    Hirato, Miharu.

    1982-01-01

    Purpose: To prevent thermal wear at the junction of feedwater pipes and purified water pipes, as well as maintain the function of the purified water feeding system by stopping the introduction of purified water to the heated water feeding system and introducing purified water to the recycling water system upon transient operation or start-up. Constitution: Since a feedwater heater does not function well during transient operation or upon start-up, the temperature of heated water flowing through the feedwater pipe is reduced to produce a temperature difference relative to the set temperature for the purified water feeding system. The temperature difference is detected by a temperature sensor and, when it arrives at a predetermined difference, an operation valve is switched to interrupt the feed of the purified water to the heated water feeding system and it is sent to a water recycling system. Then, the purified water is sent from the water recycling system by way of the discharge portion to the inside of a pressure vessel. Thus, since only the heated water flows to the junction between the cleaned water pipes and the heated water pipes, neither shocks are generated nor the performance of the purified water feeding system is impaired. (Moriyama, K.)

  7. Direct contact heat transfer characteristics between melting alloy and water

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro

    1995-01-01

    As a candidate for an innovative steam generator for fast breeder reactors, a heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The evaluation of heat transfer characteristics of this heat exchanger is one of the research subjects for the design and development of the steam generator. In this study, the effect of the pressure on heat transfer characteristics and the required degree of superheating of melting alloy above water saturation temperature are evaluated during the direct contact heat transfer experiment by injecting water into Wood's alloy. In the experiment, the pressure, the temperature of the Wood's alloy, the flow rate of feed water, and the depth of the feed water injection point are varied as parameters. As a result of the experiment, the product of the degree of Wood's alloy superheating above water saturation temperature and the depth of the feed water injection point is constant for each pressure. This constant increases as the pressure rises. (author)

  8. Determination of heat conductivity of waste glass feed and its applicability for modeling the batch-to-glass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Hujova, Miroslava [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Pokorny, Richard [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Klouzek, Jaroslav [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Dixon, Derek R. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Cutforth, Derek A. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Lee, Seungmin [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; McCarthy, Benjamin P. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington

    2017-07-10

    The heat conductivity of reacting melter feed affects the heat transfer and conversion process in the cold cap (the reacting feed floating on molten glass). To investigate it, we simulated the feed conditions and morphology in the cold-cap by preparing “fast-dried slurry blocks”, formed by rapidly evaporating water from feed slurry poured onto a 200°C surface. A heat conductivity meter was used to measure heat conductivity of samples cut from the fast-dried slurry blocks, samples of a cold cap retrieved from a laboratory-scale melter, and loose dry powder feed samples. Our study indicates that the heat conductivity of the feed in the cold cap is significantly higher than that of loose dry powder feed, resulting from the feed solidification during the water evaporation from the feed slurry. To assess the heat transfer at higher temperatures when feed turns into foam, we developed a theoretical model that predicts the foam heat conductivity based on morphology data from in-situ X-ray computed tomography. The implications for the mathematical modeling of the cold cap are discussed.

  9. Effects of water restriction following feeding on nutrient digestibilities, milk yield and composition and blood hormones in lactating Holstein cows under heat stress conditions

    Directory of Open Access Journals (Sweden)

    Jalil Ghassemi Nejad

    2015-08-01

    Full Text Available The effects of water restriction following feeding under heat stress conditions on nutrient digestibilities, milk yield and composition and some blood hormones in lactating Holstein cows were evaluated. The design was completely randomized with 30 high producing lactating Holstein cows (80.8±40.5 DIM which were assigned to two treatment groups (15 cows per treatment. Treatments were free access to water (FAW and 2 h water restriction (2hWR following feeding. Average temperature-humidity index (THI in the farm was over 80 throughout the experiment which defines heat stress conditions. Neutral detergent fibre, organic matter and ether extract digestibilities increased by water restriction (P0.05. Water intake was recorded daily during the digestibility period and was not different between FAW and 2hWR group (P>0.05. Fat corrected milk was higher in 2hWR group than FAW group (P0.05. Somatic cell counts were greater in 2hWR than FAW group (P0.05. Blood prolactin and growth hormone were higher in 2hWR group than the FAW group (P<0.05. It is concluded that water restriction for 2 hours following feeding improved nutrient digestibility of some dietary components and increased milk fat percentage in lactating Holstein cows under heat stress conditions.

  10. Feed water pre-heater with two steam spaces

    International Nuclear Information System (INIS)

    Tratz, H.; Kelp, F.; Netsch, E.

    1976-01-01

    A feed water pre-heater for the two stage heating of feed water by condensing steam, having a low installed height is described, which can be installed in the steam ducts of turbines of large output, as in LWRs in nuclear power stations. The inner steam space is closed on one side by the water vessel, while the tubes of the inner steam space go straight from the water vessel, and the tubes of the outer steam space are bent into a U shape and open out into the water vessel. The two-stage preheater is thus surrounded by feedwater in two ways. (UWI) [de

  11. Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water

    Science.gov (United States)

    Tsai, Chung-Yi; Alexander, Jerry

    2009-01-01

    A nanoporous membrane is used for the pervaporation process in which potable water is maintained, at atmospheric pressure, on the feed side of the membrane. The water enters the non-pervaporation (NPV) membrane device where it is separated into two streams -- retentate water and permeated water. The permeated pure water is removed by applying low vapor pressure on the permeate side to create water vapor before condensation. This permeated water vapor is subsequently condensed by coming in contact with the cool surface of a heat exchanger with heat being recovered through transfer to the feed water stream.

  12. Development of a static feed water electrolysis system

    Science.gov (United States)

    Schubert, F. H.; Lantz, J. B.; Hallick, T. M.

    1982-01-01

    A one person level oxygen generation subsystem was developed and production of the one person oxygen metabolic requirements, 0.82 kg, per day was demonstrated without the need for condenser/separators or electrolyte pumps. During 650 hours of shakedown, design verification, and endurance testing, cell voltages averaged 1.62 V at 206 mA/sq cm and at average operating temperature as low as 326 K, virtually corresponding to the state of the art performance previously established for single cells. This high efficiency and low waste heat generation prevented maintenance of the 339 K design temperature without supplemental heating. Improved water electrolysis cell frames were designed, new injection molds were fabricated, and a series of frames was molded. A modified three fluid pressure controller was developed and a static feed water electrolysis that requires no electrolyte in the static feed compartment was developed and successfully evaluated.

  13. Secondary-side feed-and-bleed effectiveness in pressurized water reactors

    International Nuclear Information System (INIS)

    Annunziato, A.

    1994-01-01

    An analysis is presented of physical phenomena occurring during secondary-side feed-and-bleed, which is being considered as an accident management procedure for pressurized water reactors. Problem areas related to the reliability of this procedure are identified and discussed. Secondary-side feed-and-bleed, as examined in the LOBI (which is the Light Water Reactor Off-Normal Behavior Investigation) integral system test facility, was not successful because of a delay in the secondary-side heat removal caused by the release of stored heat from the steam generator downcomer wall. Countercurrent flow limiting in the hot leg was another major phenomenon that can influence the effectiveness of this procedure. The discussion of the experimental results is complemented by relevant calculations by RELAP5/MOD3. In general, it was found that the effectiveness of the feed-and-bleed procedure is maximized if the number of steam generators used to implement it is reduced

  14. The effect of heated mash on performance and feeding behavior of newly weaned piglets.

    Science.gov (United States)

    Reiners, K; Hessel, E F; Van den Weghe, H F A

    2008-12-01

    The influence of heated mash on growth and feeding behavior of newly weaned piglets was investigated. An automatically ventilated nursery with 4 identical pens was used. Twenty piglets weaned at 21 d were housed in each pen. The experiment was repeated 3 times. In total, data were obtained from 240 piglets of 12 pens. The pens were provided with a sensor-controlled, automatic feeding device, which dosed a ready-mixed mash in a trough. In each of 2 of the pens, the feed was mixed with warm water at 36 degrees C, during the first week of weaning. This heated mash had a temperature of 34 degrees C at the outlet of the automatic feeding device (experimental group). In the 2 control groups, the water was not heated and the temperature of the mash was 14 degrees C at the outlet of the automatic feeding device. From the second week of weaning, the mash had a temperature of 14 degrees C at the outlet of the automatic feeding device in all 4 pens. Piglets were weighed at weaning, at weekly intervals through 49 d after weaning, and on d 139 after weaning. Behavior of the whole group, as well as behavior of selected focal animals, was evaluated for the first 48 h after weaning. In addition, skin condition of piglets was assessed on day of weaning and on d 7, 14, and 21 after weaning. The amount of feed consumed by the piglets was recorded on a daily basis throughout the whole period of nursery. Over the total period of the study, piglets in the experimental group gained 3.98 +/- 1.66 kg (P = 0.047) more than the control group. The difference was particularly clear during the nursery period (49 d) when the experimental group gained 0.89 +/- 0.23 kg more than the control group (P = 0.03). Although piglets in the control group consumed 37.15 +/- 0.15 kg of feed over the complete nursery period, the experimental group consumed 42.56 +/- 0.15 kg per piglet (P = 0.023). By heating the mash feed in the first week after weaning, both growth performance as well as feed consumption of

  15. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  16. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  17. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    Science.gov (United States)

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  18. Chemical and biological evaluation of the nutritive value of heat-sterilized and radappertized feed mixtures

    International Nuclear Information System (INIS)

    Kooij, J.G. van

    1979-01-01

    In an attempt to develop a procedure for wholesomeness testing of irradiated food, which considers the use of irradiation as a physical process, large-scale feeding tests in pigs were carried out. Basic criteria of this procedure are the testing of wholly irradiated diets and the comparison of irradiation with another physical process, viz. heat treatment. The results of the biological evaluation of the protein showed, that protein quality of sow feed was not noticeably affected by either treatment, while protein quality of creep and hog feed was more adversely affected by heat than by irradiation. Heat-sterilized feeds always demonstrated the lowest values for lysine availability. Feed-borne vitamin E appeared very sensitive to irradiation. Losses of vitamins A, B 1 , B 6 and folic acid were in the order of 20% due to irradiation with 5 Mrad. Losses in heat-sterilized feeds were about 40% for vitamins A, B 1 and B 6 . Prior to heating, sow and creep feeds were fortified with vitamins A, B 1 and B 6 , and hog feed with vitamin A. Hogs on heat-sterilized feed showed a 10% increased feed conversion, indicating a less favourable growth than the pigs on untreated or on irradiated feed. The mean body-weight of piglets at 49 days on heat-sterilized feed was approx. 10% lower (significant at p<0.05) than the body-weight of piglets on either untreated or radappertized creep feed. Body-weight gain values of piglets on heat-sterilized creep feed are markedly lower than those of piglets on either untreated or radappertized creep feeds during that part of the lactation period when the young pigs consume considerable quantities of solid feed. Piglets and hogs on heat-sterilized feeds demonstrated an increased sensitivity to stress conditions

  19. Behavioral, Performance, Carcass Traits and Hormonal Changes of Heat Stressed Broilers Feeding Black and Coriander Seeds

    Directory of Open Access Journals (Sweden)

    Ramadan D.M. EL-Shoukary

    2014-07-01

    Full Text Available The experiment was done to determine the effects of feeding heat stressed broilers (Ross308 diets contain Nigella Sativa seeds or coriander seeds on Ingestive, panting behaviors, feed consumption, weight gain, and feed conversion ratio, live body weight, slaughter weight, carcass weight and dressing percentage, corticosterone, triiodothyronine (T3 and tetraiodothyronine (T4. Three groups were used; the first one is the control group, which fed on basal diet only and the second fed diet contains 1% Nigella Sativa seeds (black seed while the third group fed diet contain 2% coriander seeds. The previous parameters were recorded daily or weekly during the experiment or after slaughtering to collecting blood parameters. The results explained that, there was a significant increase in feeding behavior, feed consumption, weight gain and dressing percentage while there was a significant decrease in panting behavior, water to feed ratio, T3 level and corticosterone level. Moreover, there was no significance difference in drinking behavior live body weight, slaughter weight, feed conversion rate and T4 level (P<0.05. It could be concluded that, black seeds and coriander seeds can be used to alleviate the negative effect of heat stress in broiler during summer seasons in Egypt.

  20. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Zhejiang 300027 (China)

    2008-06-15

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC.

  1. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC

  2. A feasibility study on feed and bleed for pressurized water reactors

    International Nuclear Information System (INIS)

    Yi-Shung Chen; Shimeck, D.J.; Sullivan, L.H.

    1983-01-01

    By injecting coolant with a high pressure emergency core cooling system, and removing the heated/ vaporized fluid by way of the pressurizer power operated relief valve, primary feed and bleed cooling denotes an operation whereby reactor core cooling is maintained. This paper presents the results from an experimental and analytical study that includes a simplified analysis of mass and energy balances associated with the feed and bleed, examination of test data from the Semiscale system, RELAP5 code analyses of both Semiscale and a four-loop Westinghouse plant, and the primary coolant system behavior for a transient that leads to the need for feed and bleed. Examination of the parameters that govern a stable feed and bleed operation identifies four key parameters such as: core decay heat, cooling water injection capacity, power operated relief valve (PORV) energy removal rate, and PORV mass removal rate. A simplified analytical approach to determining if stable feed and bleed is feasible, has been developed and corroborated by experimental data and computer code calculations. The Semiscale tests have not only provided test data for code assessment, but also have identified the factors influencing the PORV discharge, which is the most variable of the boundary conditions influencing feed and bleed. The RELAP5 computer code has demonstrated the capability of predicting the Semiscale experiments, and when applied to a four-loop Westinghouse plant has indicated that primary feed and bleed is a viable cooling mechanism. This has also been shown by using the simplified analytical method

  3. Tread-water feeding of Bryde's whales.

    Science.gov (United States)

    Iwata, Takashi; Akamatsu, Tomonari; Thongsukdee, Surasak; Cherdsukjai, Phaothep; Adulyanukosol, Kanjana; Sato, Katsufumi

    2017-11-06

    Many previous studies have shown that rorqual whales (Balaenopteridae), including the blue whale (Balaenoptera musculus), fin whale (B. physalus), sei whale (B. borealis), Bryde's whale (B. edeni), minke whale (B. acutorostrata), and humpback whale (Megaptera novaeangliae), employ a strategy called lunge feeding to capture a large amount of krill and/or fish for nourishment [1]. Lunge feeding entails a high energetic cost due to the drag created by an open mouth at high speeds [1,2]. In the upper Gulf of Thailand, Bryde's whales, which feed on small fish species [3], predominantly anchovies, demonstrated a range of feeding behaviors such as oblique, vertical, and lateral lunging. Moreover, they displayed a novel head-lifting feeding behavior characterized by holding the vertical posture for several seconds with an open mouth at the water surface. This study describes the head-lifting feeding by Bryde's whales, which is distinct from the typical lunge feeding of rorqual whales. Whales showing this behavior were observed on 58 occasions, involving 31 whales and including eight adult-calf pairs. Whales caught their prey using a series of coordinated movements: (i) lifting the head above the water with a closed mouth, (ii) opening the mouth until the lower jaw contacted the sea surface, which created a current of water flowing into the mouth, (iii) holding their position for several seconds, (iv) waiting for the prey to enter the mouth, and (v) closing the mouth and engulfing the prey underwater (Figure 1A-F, Movie S1 in Supplemental Information published with this article online). When a whale kept its upper jaw above the sea surface, many anchovies in the targeted shoal appeared to lose orientation and flowed passively into the mouth of the whale by the current created by the lower mandible breaking the surface of the water. We measured the duration of feeding events when the whales had a wide-open mouth mostly above the sea surface. The mean and maximum feeding

  4. Two-loop feed water control system in BWR plants

    International Nuclear Information System (INIS)

    Omori, Takashi; Watanabe, Takao; Hirose, Masao.

    1982-01-01

    In the process of the start-up and shutdown of BWR plants, the operation of changing over feed pumps corresponding to plant output is performed. Therefore, it is necessary to develop the automatic changeover system for feed pumps, which minimizes the variation of water level in reactors and is easy to operate. The three-element control system with the water level in reactors, the flow rate of main steam and the flow rate of feed water as the input is mainly applied, but long time is required for the changeover of feed pumps. The two-loop feed control system can control simultaneously two pumps being changed over, therefore it is suitable to the automatic changeover control system for feed pumps. Also it is excellent for the control of the recirculating valves of feed pumps. The control characteristics of the two-loop feed water control system against the external disturbance which causes the variation of water level in reactors were examined. The results of analysis by simulation are reported. The features of the two-loop feed water control system, the method of simulation and the evaluation of the two-loop feed water control system are described. Its connection with a digital feed water recirculation control system is expected. (Kako, I.)

  5. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  6. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Corletti, M.M.; Schulz, T.L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures

  7. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  8. Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs.

    Science.gov (United States)

    Lahondère, Chloé; Insausti, Teresita C; Paim, Rafaela Mm; Luan, Xiaojie; Belev, George; Pereira, Marcos H; Ianowski, Juan P; Lazzari, Claudio R

    2017-11-21

    Blood-sucking insects experience thermal stress at each feeding event on endothermic vertebrates. We used thermography to examine how kissing-bugs Rhodnius prolixus actively protect themselves from overheating. During feeding, these bugs sequester and dissipate the excess heat in their heads while maintaining an abdominal temperature close to ambient. We employed a functional-morphological approach, combining histology, µCT and X-ray-synchrotron imaging to shed light on the way these insects manage the flow of heat across their bodies. The close alignment of the circulatory and ingestion systems, as well as other morphological characteristics, support the existence of a countercurrent heat exchanger in the head of R. prolixus , which decreases the temperature of the ingested blood before it reaches the abdomen. This kind of system has never been described before in the head of an insect. For the first time, we show that countercurrent heat exchange is associated to thermoregulation during blood-feeding.

  9. Cleaning the feed-water pipeline internal surfaces

    International Nuclear Information System (INIS)

    Podkopaev, V.A.

    1984-01-01

    The procedure of cleaning the feed-water pipeline internal surfaces at the Chernobylsk-4 power unit is described. Cleaning was conducted in five stages. Pipelines were cleaned from mechanical impurities at the first stage. At the second stage the pipelines were washing by water heated up to 80 deg C. At the third stage nitric acid was added to 95-100 deg C water the acid concentration in the circuit = 60 mg/l, purification period = 14 h. At the fourth stage hydrogen peroxide was added to the circuit at 95-100 deg C (the solution concentration was equal to 5-6 mg/l, the solution stayed in the circuit for 1 h 20 min). At the fifth stage sodium nitrite concentrated to 20 mg/l was introduced to the circuit in 75 minutes; this promoted strengthening of the oxide layer in the circuit on the base of nitric acid and hydrogen peroxide. Data on the water acidity in the circuit, water electric conductivity and iron concentration after the fourth stage and on completion of the circuit cleaning are presented. The described method of cleaning enables to save scarce reagents and use cheaper ones

  10. Cleaning the feed-water pipeline internal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, V.A.

    1984-12-01

    The procedure of cleaning the feed-water pipeline internal surfaces at the Chernobylsk-4 power unit is described. Cleaning was conducted in five stages. Pipelines were cleaned from mechanical impurities at the first stage. At the second stage the pipelines were washed by water heated up to 80 deg C. At the third stage nitric acid was added to 95-100 deg C water with the acid concentration in the circuit = 60 mg/l, purification period = 14 h. At the fourth stage hydrogen peroxide was added to the circuit at 95-100 deg C (the solution concentration was equal to 5-6 mg/l, the solution stayed in the circuit for 1 h 20 min). At the fifth stage sodium nitrite concentrated to 20 mg/l was introduced to the circuit in 75 minutes; this promoted strengthening of the oxide layer in the circuit on the base of nitric acid and hydrogen peroxide. Data on the water acidity in the circuit, water electric conductivity and iron concentration after the fourth stage and on completion of the circuit cleaning are presented. The described method of cleaning enables to save scarce reagents and use cheaper ones.

  11. Effect of melter feed foaming on heat flux to the cold cap

    Science.gov (United States)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.

  12. Effect of melter feed foaming on heat flux to the cold cap

    Energy Technology Data Exchange (ETDEWEB)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.

  13. Static feed water electrolysis module

    Science.gov (United States)

    Powell, J. D.; Schubert, F. H.; Jensen, F. C.

    1974-01-01

    An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.

  14. Improved method of degassing of feed water at Heavy Water Plant, Kota

    International Nuclear Information System (INIS)

    Krishnan, G.K.; Agrawal, A.K.

    1994-01-01

    Heavy Water Plant (Kota) processes 450 MT/hr of feed water as the source of deuterium using water/hydrogen sulphide exchange process for the production of heavy water. Plant design has limited the ingress of dissolved oxygen in feed water to 0.2 ppm. However, even this low limit on dissolved oxygen has been found unacceptable during plant operation as over an operational period of 3-4 years accumulation of sulphur due to oxidation of hydrogen sulphide on exchange tower trays poses major operational problems. This paper discusses the results of nitrogen injection used for reducing the ingress of dissolved oxygen in the feed water system of the plant. (author)

  15. Simultaneous removal of water and BTEX from feed gas for a cryogenic plant

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.; Lee, S.; Evans, M.; Chen, R.

    1999-07-01

    The removal of water and benzene, toluene, ethyl benzene, xylene (BTEX) from the feed gas of a cryogenic plant is critical in order to avoid precipitation of these components in the cold section of the plant. The design of the Hannibal Gas Plant in Sfax, Tunisia, accomplishes the removal of water and BTEX simultaneously. The plant receives 7.1 million Nm{sub 3}/day of feed gas and produces high heating value pipeline quality sales gas by removing nitrogen in the cold box. A methyl diethanol amine (MDEA) treating system at the front end of the plant is designed to remove carbon dioxide. The glycol system takes the saturated gas from the MDEA contactor and reduces the water content to 7 lb/MMscf. The glycol system is also designed to remove more than half of the BTEX from the feed gas so that these aromatic components will not precipitate in the cold section of the plant. GPA experimental data were used to fit the interaction parameters for the computer simulator used to design the glycol system. The results of the plant performance test verify the validity of the design.

  16. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Schulz, T.L.; Corletti, M.M.

    1994-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit by pumping water from an in-containment refueling water storage tank during staged depressurization of the coolant circuit, the final stage including passive emergency cooling by gravity feed from the refueling water storage tank to the coolant circuit and to flood the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and avoids the final stage of depressurization with its flooding of the containment when such action is not necessary, but does not prevent the final stage when it is necessary. A high pressure makeup water storage tank coupled to the reactor coolant circuit holds makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal system can also be coupled in a loop with the refueling water supply tanks for cooling the tank. (Author)

  17. Innovated feed water distributing system of VVER steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Sousek, P.; Simo, T.; Lehota, M.; Lipka, J.; Slugen, V.

    2000-01-01

    Defects in feed water distributing system due to corrosion-erosion effects have been observed at many VVER 440 steam generators (SG). Therefore analysis of defects origin and consequently design development and testing of a new feed water distributing system were performed. System tests in-situ supported by calculations and comparison of measured and calculated data were focused on demonstration of long term reliable operation, definition of water flow and water chemical characteristics at the SG secondary side and their measurements and study of dynamic characteristics needed for the innovated feed water distributing system seismic features approval. The innovated feed water distributing system was installed in the SGs of two VVER units already. (author)

  18. Improved method of degassing of feed water at Heavy Water Plant, Kota

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, G K; Agrawal, A K [Heavy Water Plant, Kota (India)

    1994-06-01

    Heavy Water Plant (Kota) processes 450 MT/hr of feed water as the source of deuterium using water/hydrogen sulphide exchange process for the production of heavy water. Plant design has limited the ingress of dissolved oxygen in feed water to 0.2 ppm. However, even this low limit on dissolved oxygen has been found unacceptable during plant operation as over an operational period of 3-4 years accumulation of sulphur due to oxidation of hydrogen sulphide on exchange tower trays poses major operational problems. This paper discusses the results of nitrogen injection used for reducing the ingress of dissolved oxygen in the feed water system of the plant. (author). 1 fig.

  19. 49 CFR 230.115 - Feed water tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be maintained free from leaks, and in safe and suitable condition for service. Suitable screens must be provided...

  20. Open heat exchanger for improved heat efficiency in geothermal spas

    Energy Technology Data Exchange (ETDEWEB)

    Nasrabady, S.J.; Palsson, H.; Saevarsdottir, G.A.

    2008-09-15

    Hot spas and Jacuzzis are popular in Iceland due to the abundance of reasonably prized geothermal heat available. However the water from the district heating system is too warm to be admitted directly into the spa. For safety reasons the water is mixed with cold water, in order to reduce temperature from about 80 deg C down to 45 deg C, which leads to wasting a large quantity of heat. Therefore a design is suggested here that enables the feeding of geothermal water directly into the spa, omitting the step of mixing it with cold water. The idea is to employ an open heat exchanger that transfers heat from the geothermal water to the bulk water in the spa, before letting it mix with the spa water. A case study was done for one particular spa. Heat load was calculated and measured when the spa was in use, and when it was unused. A design is suggested employing a circular double-plate which is to be placed at the bottom of the spa. This unit will function as an open heat exchanger feeding district heating water into the spa. Free convection takes place at the upper side of the upper plate and forced convection below the upper plate. Heat transfer coefficient for both was calculated. Using results from calculations, temperature distribution at critical parts of spa and plate was modeled. Results are reasonable and promising for a good design that may considerably reduce the energy expenses for a continuously heated geothermal spa

  1. Flashed-feed VMD configuration as a novel method for eliminating temperature polarization effect and enhancing water vapor flux

    KAUST Repository

    Alsaadi, Ahmad Salem

    2018-05-28

    The coupling of heat and mass transfer in membrane distillation (MD) process makes enhancing water vapor flux and determining MD membrane mass transfer coefficient (MTC) fairly challenging due to the development of temperature gradient near the membrane surface, referred to as temperature polarization (TP). As a result, the change in feed temperature at the membrane surface will be difficult to measure accurately. In this paper, the effect of TP was decoupled from the membrane MTC by preventing the liquid feed stream from contacting the membrane surface through the use of a novel custom-made vacuum MD (VMD) module design. Results showed that a temperature difference of 10°C between the feed bulk and feed temperatures at the membrane surface/interface is estimated to take place in the typical VMD configuration, while the proposed flashed-feed VMD configuration eliminates TP effect and gives a flux 3.5-fold higher (200kg/m2.hr) under similar operating conditions. Therefore, it can be concluded that heat transfer coefficient is considered to be the main factor controlling resistance of water vapor flux in the typical VMD configuration. The measured MTC of the tested commercial membrane was found to be more accurate and the highest among all reported MTCs in the MD literature (2.44×10−6kg/m2.s.Pa). Additionally, a transmembrane temperature difference of 5°C and 10°C in the novel configuration can produce water vapor fluxes of about 9kg/m2.hr and 40kg/m2.hr, respectively, at a feed temperature of 70°C, which is very attractive for scaling-up the process.

  2. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  3. Water restriction and heat effects on thyroid activity in ad libitium and force-fed cattle exposed to 180C and 320C

    International Nuclear Information System (INIS)

    Kamal, T.H.; Johnson, H.D.

    1976-01-01

    Seven non-lactating Holstein cows were maintained in a climatic laboratory for two weeks at 18 0 C and 50% relative humidity, followed by two weeks at 32 0 C and 50% relative humidity. Water was provided ad libitum in the first week and restricted 50% of the ad libitum level in the second week. Thyroid activity, determined by the 125 I-triiodothyronine uptake with coated charcoal, decreased 10.9% (P 0 C. Water restriction at 32 0 C did not depress thyroid activity because environmental heat had already decreased thyroid activity to a low level. High ambient temperature depressed thyroid activity 14.7% in ad libitum cows (P<0.01) and a further 1.8% in water-restricted cows. Similar effects of water restriction and heat were obtained when the same experiment was repeated on four non-lactating rumen-fistulated cows, in which the refused feed during the water restriction periods was put into the rumen to maintain the feed levels for each temperature exposure. This indicated that forced feeding did not prevent the adverse effect of water restriction or heat on thyroid activity. (author)

  4. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    International Nuclear Information System (INIS)

    Mothilal, T.; Pitchandi, K.

    2015-01-01

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%

  5. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Mothilal, T. [T. J. S. Engineering College, Gummidipoond (India); Pitchandi, K. [Sri Venkateswara College of Engineering, Sriperumbudur (India)

    2015-10-15

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%.

  6. Advanced feed water distributing system for WWER 440 steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Klinga, J.; Grazl, K.; Tischler, J.; Mihalik, M.

    1995-01-01

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.)

  7. Water-hammer in the feed-water pipes for PWR steam generators

    International Nuclear Information System (INIS)

    Gonnet, Bernard; Leroy, Claude; Oullion, Jean; Yazidjian, J.-C.

    1979-01-01

    PWR boiler water feed pipes have been known for several years to be affected by violent water-hammer during start-ups and operation of the plant. In view of the varying results of corrective design modifications in America and Europe, FRAMATOME undertook an experimental research programme which resulted in the adoption of cruciform tubes on the feed-water distributor as the most reliable solution. Subsequent tests at Fessenheim I confirmed the effectiveness of this device [fr

  8. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J. [Energovyzkum Ltd, Brno (Switzerland); Grazl, K. [Vitkovice s.c., Ostrava (Switzerland); Tischler, J.; Mihalik, M. [SEP Atomove Elektrarne Bohunice (Slovakia)

    1995-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  9. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J [Energovyzkum Ltd, Brno (Switzerland); Grazl, K [Vitkovice s.c., Ostrava (Switzerland); Tischler, J; Mihalik, M [SEP Atomove Elektrarne Bohunice (Slovakia)

    1996-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  10. Hydrogen generation through static-feed water electrolysis

    Science.gov (United States)

    Jensen, F. C.; Schubert, F. H.

    1975-01-01

    A static-feed water electrolysis system (SFWES), developed under NASA sponsorship, is presented for potential applicability to terrestrial hydrogen production. The SFWES concept uses (1) an alkaline electrolyte to minimize power requirements and materials-compatibility problems, (2) a method where the electrolyte is retained in a thin porous matrix eliminating bulk electrolyte, and (3) a static water-feed mechanism to prevent electrode and electrolyte contamination and to promote system simplicity.

  11. Technology advancement of the static feed water electrolysis process

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  12. Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures

    International Nuclear Information System (INIS)

    Rice, Jarrett A.; Pokorny, Richard; Schweiger, Michael J.; Hrma, Pavel R.

    2014-01-01

    The heat conductivity (λ) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating λ of melter feed at temperatures up to 680 deg C, we focus in this work on the λ(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the λ(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap

  13. Optimization of feed water control for auxiliary boiler

    International Nuclear Information System (INIS)

    Li Lingmao

    2004-01-01

    This paper described the feed water control system of the auxiliary boiler steam drum in Qinshan Phase III Nuclear Power Plant, analyzed the deficiency of the original configuration, and proposed the optimized configuration. The optimized feed water control system can ensure the stable and safe operation of the auxiliary boiler, and the normal operation of the users. (author)

  14. Economic optimization of heat pump-assisted distillation columns in methanol-water separation

    International Nuclear Information System (INIS)

    Shahandeh, Hossein; Jafari, Mina; Kasiri, Norollah; Ivakpour, Javad

    2015-01-01

    Finding efficient alternative to CDiC (Conventional Distillation Column) for methanol-water separation has been an attractive field of study in literature. In this work, five heat pump-assisted schemes are proposed and compared to each other to find the optimal one; (1) VRC (Vapor Recompression Column), (2) external HIDiC (Heat-Integrated Distillation Column), (3) intensified HIDiC with feed preheater, (4) double compressor intensified HIDiC-1, and (5) double compressor intensified HIDiC-2. GA (Genetic Algorithm) is then implemented for optimization of the schemes when TAC (Total Annual Cost) is its objective function. During optimization, two new variables are added for using only appropriate amount of the overhead stream in VRC and double compressor intensified HIDiCs, and another new binary variable is also used for considering feed preheating. Although TAC of the intensified HIDiC with feed preheater is found higher than CDiC by 25.0%, all optimal VRC, external HIDiC, double compressor intensified HIDiCs schemes are reached lower optimal TAC by 3.1%, 27.2%, 24.4%, and 34.2%. Introduced for the first time, the optimal scheme is the double compressor intensified HIDiC-2 with 34.2% TAC saving, 70.4% TEC (Total Energy Consumption) reduction with payback period of 3.30 years. - Highlights: • Study of an industrial distillation unit in methanol-water separation. • Optimization of different heat pump-assisted distillation columns. • Implementation of genetic algorithm during optimization. • Economic and thermodynamic comparisons of optimal results with the industrial case

  15. Effect of heat exposure on gene expression of feed intake regulatory peptides in laying hens.

    Science.gov (United States)

    Song, Zhigang; Liu, Lei; Sheikhahmadi, Ardashir; Jiao, Hongchao; Lin, Hai

    2012-01-01

    The aim of this paper was to investigate the effect of heat stress on the regulation of appetite-associated genes in laying hens. Forty eight laying hens were randomly divided into two circumstances: high (31 ± 1.5°C; relative humidity, 82.0 ± 2.2%) or normal (20 ± 2°C, control; relative humidity, 60.1 ± 4.5%) ambient environment. Heat stress decreased body weight gain (P feed intake (P feed efficiency (P feed intake in laying hens under high ambient temperature.

  16. Project proposal: integrated farming scheme incorporating management of water hyacinth - Water hyacinth as a pig feed

    International Nuclear Information System (INIS)

    Singh, D.N.

    1981-01-01

    One of the objectives of pig research undertaken by the Research Section of the Ministry of Agriculture and Fisheries (Fiji), is to evaluate local feed sources in an attempt to reduce importation of pig feeds. Protein is the major limiting nutrient in most local feed sources. Fish and meat meals are incorporated in pig feeds by many farmers but the cost of these are very high. Chemical analysis of water hyacinth taken from Rewa River showed that leaves contain 22% crude protein and stems 8%. This was determined on a dry weight basis. Therefore, water hyacinth could be a good source of protein for pigs. Utilization of water hyacinth was considered in the First Review; meeting on Management of Water Hyacinth conducted by Commonwealth Regional (Asia/Pacific) Rural Technology Programme. Water hyacinth as an animal feed was discussed in that review. It points out that the following has to be taken into account in considering the use of water hyacinth as an animal feed. The objective of the study is to investigate the use of water hyacinth as a feed for pigs in an integrated farming system involving a piggery, biogas digester and a pond and: compare pig preference for water hyacinth when fed fresh or dry compare the performance of pigs when fed water hyacinth only and in combination with a normal diet and cost/benefit analysis

  17. Changes in microbial water quality in RAS following altered feed loading

    DEFF Research Database (Denmark)

    Rojas-Tirado, Paula Andrea; Pedersen, Per Bovbjerg; Vadstein, Olav

    2018-01-01

    and inorganic nutrients available for microbial growth in RAS. How these nutrient inputs affect and regulate bacteria in RAS water is, however, unclear. To investigate this relationship and the associated water quality dynamics, the effects of altered feed loading on microbial water quality in RAS was studied....... The study included six independent, identical pilot-scale RAS, each with a total volume of 1.7 m3 (make-up water: 80 L/day) stocked with juvenile rainbow trout (Oncorhynchus mykiss). All systems had been operating with constant and identical feed loading of 3.13 kg feed/m3 make-up water for a period......Intensive recirculating aquaculture systems (RAS) with its hyper-eutrophic water offer ideal conditions for bacterial growth, abundance and activity, potentially affecting fish and system performance. Feed composition and feed loading in particular will have significant impact on organic...

  18. Cooling cows efficiently with water spray: Behavioral, physiological, and production responses to sprinklers at the feed bunk.

    Science.gov (United States)

    Chen, Jennifer M; Schütz, Karin E; Tucker, Cassandra B

    2016-06-01

    Dairies commonly mount nozzles above the feed bunk that intermittently spray cows to dissipate heat. These sprinklers use potable water-an increasingly scarce resource-but there is little experimental evidence for how much is needed to cool cows in loose housing. Sprinkler flow rate may affect the efficacy of heat abatement, cattle avoidance of spray (particularly on the head), and water waste. Our objectives were to determine how sprinkler flow rate affects cattle behavioral, physiological, and production responses when cows are given 24-h access to spray in freestall housing, and to evaluate heat abatement in relation to water use. We compared 3 treatments: sprinklers that delivered 1.3 or 4.9L/min (both 3min on and 9min off, 24h/d) and an unsprayed control. Nine pairs of high-producing lactating Holstein cows received each treatment at a shaded feed bunk for 2d in a replicated 3×3 Latin square design [air temperature (T): 24-h maximum=33±3°C, mean ± SD]. Cows spent 5.8±0.9h/24h (mean ± SD) at the feed bunk overall, regardless of treatment. With few exceptions, cows responded similarly to the 1.3 and 4.9L/min flow rates. Sprinklers resulted in visits to the feed bunk that were on average 23 to 27% longer and 13 to 16% less frequent compared with the control, perhaps because cows avoided walking through spray. Indeed, when the sprinklers were on, cows left the feed bunk half as often as expected by chance, and when cows chose to walk through spray, they lowered their heads on average 1.7- to 3-fold more often than in the control. Despite possible reluctance to expose their heads to spray, cows did not avoid sprinklers overall. In warmer weather, cows spent more time at the feed bunk when it had sprinklers (on average 19 to 21min/24h for each 1°C increase in T), likely for heat abatement benefits. Compared with the control, sprinklers resulted in 0.3 to 0.7°C lower body temperature from 1300 to 1500h and 1700 to 2000h overall and attenuated the rise in this

  19. METHODS FOR DETERMINATION REACTIVE LYSINE IN HEAT-TREATED FOODS AND FEEDS

    Directory of Open Access Journals (Sweden)

    Matej Brestenský

    2014-08-01

    Full Text Available Lysine is an essential amino acid, which is limited in foods of plant origin, especially in cereals. The heat-treatment of products containing proteins and reducing sugars results in formation of Maillard reactions during which the cross-linkages among epsilon amino groups (ε-NH2 and reducing sugars are created. Thus the protein-carbohydrate complex is formed. This complex contains an unreactive (unavailable lysine, which is bound to reducing sugars and is not available in body. Hereby, the nutritive value of feeds and foods decreases. When a standard analytical method for analyses of amino acids is used, in products containing protein-carbohydrate complexes, it is not possible to analyze the content of reactive (available and unreactive (unavailable lysine, but only the content of total lysine. Therefore, when the standard amino acid analysis is used, the content of lysine in heat-treated feeds and foods is overestimated. In order to avoid this, some methods for determination of reactive lysine were developed. Among the best known, the homoarginine and furosine methods are included. Using these methods, in evaluation of nutritive value of feeds and foods, is of great importance because they allow to determine the extent of proteins, which were damaged during the heat treatment and thus we obtain information on objective nutritional protein quality of the product.

  20. USING LIGA BASED MICROFABRICATION TO IMPROVE OVERALL HEAT TRANSFER EFFICIENCY OF PRESSURIZED WATER REACTOR: I. Effects of Different Micro Pattern on Overall Heat Transfer

    International Nuclear Information System (INIS)

    Zhang, M.; Ibekwe, S.; Li, G.; Pang, S.S.; Lian, K.

    2006-01-01

    The Pressurized Water Reactors (PWRs in Figure 1) were originally developed for naval propulsion purposes, and then adapted to land-based applications. It has three parts: the reactor coolant system, the steam generator and the condenser. The Steam generator (a yellow area in Figure 1) is a shell and tube heat exchanger with high-pressure primary water passing through the tube side and lower pressure secondary feed water as well as steam passing through the shell side. Therefore, a key issue in increasing the efficiency of heat exchanger is to improve the design of steam generator, which is directly translated into economic benefits. The past research works show that the presence of a pin-fin array in a channel enhances the heat transfer significantly. Hence, using microfabrication techniques, such as LIGA, micro-molding or electroplating, some special microstructures can be fabricated around the tubes in the heat exchanger to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. In this paper, micro-pin fins of different densities made of SU-8 photoresist are fabricated and studied to evaluate overall heat transfer efficiency. The results show that there is an optimized micro pin-fin configuration that has the best overall heat transfer effects

  1. Development of hot water supply system for a small district heating reactor

    International Nuclear Information System (INIS)

    Murase, Toshihiko; Narabayashi, Tadashi; Shimazu, Yoichiro

    2007-01-01

    On the earth, there are many environmental problems. For example, rapid increase of world population causes the enormous consumption of fossil fuel and emission of CO 2 into the global air. Now, mankaind faced to deal with these serious problems. One solution for these problems is utilization of nuclear reactors. Currently, about 65% of thermal output of a nuclear reactor is thrown away to the sea or the atmosphere through a turbine condenser. When a hot-water pipeline from a nuclear plant will be constructed, the exhaust heat from nuclear reactor will able to be utilized. Therefore, authors began to study nuclear power plant system for district heating. This reactor is based on a PWR plant. Its thermal output is 10 MWth and its electrical output is 3.4 MW. The nuclear plant supply electricity and heat for 2000 to 3000 houses. The plant aim to supply all the energy for the adjacent pepole's life, for example, heat, electricity and hydrogen for fuel battery car. This total-energy supply system assumed to be built in Northern area such as Hokkaido in Japan. In order to develop an optimum thermal design method for the system, heat transport experiments and thermal-hydraulic calculations were carried out. Using a metal pipe covered with foam-polyurethane thermal insulator, feed-water temperature and return-water temperature was measured to evaluate heat loss. As the result, the heat loss from the hot-water temperature was very little. The thermal-hydraulic calculation method was verified and applied to actual pipeline size calculation. The result of heat loss calculation will be 0.2degC/5 km. considering these results, the best pipe specification was obtained. (author)

  2. Genome-wide association of changes in swine feeding behaviour due to heat stress

    Science.gov (United States)

    Background: Heat stress has a negative impact on pork production, particularly during the grow-finish phase. As temperature increases, feeding behaviour changes in order for pigs to decrease heat production. The objective of this study was to identify genetic markers associated with changes in feedi...

  3. EBO feed water distribution system, experience gained from operation

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O. [Energovyzkum, Brno (Switzerland); Schmidt, S.; Mihalik, M. [Atomove Elektrarne Bohunice, Jaslovske Bohunice (Switzerland)

    1997-12-31

    Advanced feed water distribution systems of the EBO design have been installed into steam generators at Units 3 and 4 of the NPP Jaslovske Bohunice (VVER 440). Experiences gained from the operation of steam generators with the advanced feed water distribution systems are discussed in the paper. (orig.). 4 refs.

  4. EBO feed water distribution system, experience gained from operation

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O [Energovyzkum, Brno (Switzerland); Schmidt, S; Mihalik, M [Atomove Elektrarne Bohunice, Jaslovske Bohunice (Switzerland)

    1998-12-31

    Advanced feed water distribution systems of the EBO design have been installed into steam generators at Units 3 and 4 of the NPP Jaslovske Bohunice (VVER 440). Experiences gained from the operation of steam generators with the advanced feed water distribution systems are discussed in the paper. (orig.). 4 refs.

  5. Feed water control device in a reactor

    International Nuclear Information System (INIS)

    Okutani, Tetsuro.

    1984-01-01

    Purpose: To prevent substantial fluctuations of the water level in a nuclear reactor and always keep a constant standard level under any operation condition. Constitution: When the causes for fluctuating the reactor water level is resulted, a certain amount of correction signal is added to a level deviation signal for the difference between the reactor standard level and the actual reactor water level to control the flow rate of the feed water pump depending on the addition signal. If reactor scram should occur, for instance, a level correction signal changing stepwise depending on a scram signal is outputted and added to the level deviation signal. As the result, the flow rate of feed water sent into the reactor just after the scram is increased, whereby the lowering in the reactor water level upon scram can be decreased as compared with the case where no such level compensation signal is inputted. (Kamimura, M.)

  6. Water feeding method upon reactor isolation

    International Nuclear Information System (INIS)

    Sasaki, Koichi; Takahara, Kuniaki; Hamamura, Kenji; Arakawa, Masahiro.

    1990-01-01

    The present invention concerns a method of feeding water upon reactor isolation in a plural loop type reactor having a plurality of reactor cooling systems. Water can be injected to a plurality of pools even if the pressure between the pools is not balanced and the water level in the reactor cooling system is optimally controlled. That is, water can be injected in accordance with the amount required for each of the pools by setting the opening of a turbine inlet steam control valve to somewhat higher than the cooling system pressure of the highest pressure loop. Water feeding devices upon reactor isolation were required by the same number as that for the reactor cooling systems. Whereas since pumps and turbines are used in common without worsening the water injection controllability to each of the loops according to the method of this invention and, accordingly, the cost performance can be improved. Further, since the opening degree of the turbine inlet steam control valve is controlled while making the difference pressure constant between the turbine inlet pressure and the pump exhaust pressure, the amount of the turbine exhausted steams can be reduced and, further, water injection controllability of the flow rate control valve in the injection line is improved. (I.S.)

  7. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  8. Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger

    NARCIS (Netherlands)

    Cheng, L.; Geld, van der C.W.M.

    2005-01-01

    Experiments of heat transfer and pressure drop in a polymer compact heat exchanger made of PolyVinyliDene-Fluoride were conducted under various conditions for air/water heat exchange and air-steam/water heat exchange, respectively. The overall heat transfer coefficients of air-steam/water heat

  9. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  10. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  11. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumanjeet [Porifera Inc., Hayward, CA (United States); Wilson, Aaron [Porifera Inc., Hayward, CA (United States); Wendt, Daniel [Porifera Inc., Hayward, CA (United States); Mendelssohn, Jeffrey [Porifera Inc., Hayward, CA (United States); Bakajin, Olgica [Porifera Inc., Hayward, CA (United States); Desormeaux, Erik [Porifera Inc., Hayward, CA (United States); Klare, Jennifer [Porifera Inc., Hayward, CA (United States)

    2017-07-25

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but we also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.

  12. Development of electromagnetic filtration in the feed water circuits

    International Nuclear Information System (INIS)

    Dolle, L.

    1980-01-01

    Electromagnetic filtration in the feed water circuit of the steam generators in nuclear power plants is efficient towards insoluble corrosion products. The principle of electromagnetic filtration is shortly recalled and the results of corresponding development work are summarized. The magnitude of water volumes to be treated on the two priviledged parts of the circuit are estimated. These parts are on the feed water tank level and on the blow-down of the steam generator. The practical applications are discussed [fr

  13. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO_2 heat pump water heater for residential use

    International Nuclear Information System (INIS)

    Saikawa, Michiyuki; Koyama, Shigeru

    2016-01-01

    Highlights: • The ideal vapor compression cycle for tap water heating and its COP were defined. • It was verified theoretically that CO_2 achieves the highest COP for tap water heating. • The prototype of CO_2 heat pump water heater for residential use was developed. • Further COP improvement of CO_2 heat pump water heater was estimated. - Abstract: The ideal vapor compression cycle for tap water heating and its coefficient of performance (COP) have been studied theoretically at first. The ideal cycle is defined as the cycle whose high temperature heat source varies temperature with constant specific heat and other processes are same as the reverse Carnot cycle. The COP upper limit of single stage compression heat pump cycle for tap water heating with various refrigerants such as fluorocarbons and natural refrigerants was calculated. The refrigerant which achieves the highest COP for supplying hot water is CO_2. Next, the prototype of CO_2 heat pump water heater for residential use has been developed. Its outline and experimental results are described. Finally its further possibility of COP improvement has been studied. The COP considered a limit from a technical point of view was estimated about 6.0 at the Japanese shoulder season (spring and autumn) test condition of heating water from 17 °C to 65 °C at 16 °C heat source air temperature (dry bulb)/12 °C (wet bulb).

  14. Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump

    Science.gov (United States)

    Song, Yulong; Ye, Zuliang; Cao, Feng

    2017-08-01

    In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.

  15. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  16. Heat exchanger for solar water heaters

    Science.gov (United States)

    Cash, M.; Krupnick, A. C.

    1977-01-01

    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.

  17. 19 CFR 123.27 - Feeding and watering animals in Canada.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Feeding and watering animals in Canada. 123.27...; DEPARTMENT OF THE TREASURY CUSTOMS RELATIONS WITH CANADA AND MEXICO Shipments in Transit Through Canada or Mexico § 123.27 Feeding and watering animals in Canada. If animals in sealed conveyances or compartments...

  18. Improvements to feed water system of vapor generators of nuclear power stations

    International Nuclear Information System (INIS)

    Byerlex, W.M.

    1976-01-01

    The description is given of a feed water system related to the steam generators for nuclear power stations and which have a water feed ring around their upper part. This water intake system enables water hammer to be avoided even during operation under low load [fr

  19. An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate

    Science.gov (United States)

    Balke, Elizabeth C.; Healy, William M.; Ullah, Tania

    2016-01-01

    An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COPsys) of 2.87. The heat pump water heater alone results in a COPsys of 1.9, while the baseline resistance water heater has a COPsys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COPsys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COPsys, the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning. PMID:27990058

  20. An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate.

    Science.gov (United States)

    Balke, Elizabeth C; Healy, William M; Ullah, Tania

    2016-12-01

    An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COP sys ) of 2.87. The heat pump water heater alone results in a COP sys of 1.9, while the baseline resistance water heater has a COP sys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COP sys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COP sys , the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning.

  1. Energy performance of air-to-water and water-to-water heat pumps in hotel applications

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Chan, Wilco W.

    2003-01-01

    We present work on measurement of the energy performance of heat pumps for hotel operations in subtropical climates. Two city hotels in Hong Kong were investigated. The first case was an application of an air-to-water heat pump to provide heating for an outdoor swimming pool during the heating season. The second case was the installation of three water-to-water heat pumps to complement an existing boiler system for hot water supply. The heating energy output and corresponding electricity use were measured. The heat pump energy efficiency was evaluated in terms of the coefficient of performance (COP), defined as the heating energy output to the electrical energy use. The air-to-water heat pump provided 49.1 MW h heating while consuming 24.6 MW h electricity during the 6((1)/(2))-month heating season from mid-October to April. For the water-to-water heat pumps, the estimated annual heating output and the electricity use were 952 and 544 MW h, respectively. It was found that the heat pumps generally operated in a COP range of 1.5-2.4, and the payback period was about two years, which was considered financially attractive

  2. Differences in the composition of organic impurities in ground and surface waters. Consequences for the preparation of boiler feed water

    International Nuclear Information System (INIS)

    Huber, S.A.

    2002-01-01

    It is generally accepted that current limits for total organic carbon (TOC) in the pharmaceutical industry (500 ppb) and semiconductor industry (10-25 ppb) should be regarded as precautionary measures and do not necessarily reflect true scientific evidence. For the power industry the situation is different. Here, recommended TOC-limits for boiler feed waters (in 1999: VGB: 200 ppb; EPRI: 100 ppb) are based on scientific and empirical data. The oxidation of, say, 50 ppb TOC to carbon dioxide in the water/steam cycle will increase steam condensate conductivity by 0.48 μ S /cm (values may depend on literature source, here [1]), a value which is not acceptable as it desensitizes the detection of leaks in cooling water heat exchangers. Apart from this indirect effect of TOC there is also evidence for direct negative effects of TOC on steel materials. Even small amounts of organic acids, which are produced as intermediates in the TOC oxidation process, may locally lower the pH down to levels [2] where erosion corrosion of boiler tubes can take place. It was also found that carbon is enriched in stress corrosion cracks of turbine materials [3]. The present paper will discuss the ''TOC-issue'' in boiler feed water preparation. Most of the results can be applied also to other industries, e.g. semiconductor, chemical or pharmaceutical. (authors)

  3. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus).

    Science.gov (United States)

    Aguilar, Fredy A A; Cruz, Thaline M P DA; Mourão, Gerson B; Cyrino, José Eurico P

    2017-01-01

    Knowledge on fasting heat production (HEf) of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR) of pacu (17 - 1,050 g) at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10) for pacu (2.06) shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1) from body mass (W, kg) and water temperature (T, °C), and can be used in bioenergetical models for the species.

  4. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    FREDY A.A. AGUILAR

    Full Text Available ABSTRACT Knowledge on fasting heat production (HEf of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR of pacu (17 - 1,050 g at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10 for pacu (2.06 shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1 from body mass (W, kg and water temperature (T, °C, and can be used in bioenergetical models for the species.

  5. Effect of potassium chloride supplementation in drinking water on broiler performance under heat stress conditions.

    Science.gov (United States)

    Ahmad, T; Khalid, T; Mushtaq, T; Mirza, M A; Nadeem, A; Babar, M E; Ahmad, G

    2008-07-01

    The effect of water supplementation of KCl on performance of heat-stressed Hubbard broilers was evaluated in the present experiment. The 3 experimental treatments (i.e., control, 0.3 and 0.6% KCl) were allocated to 3 replicates of 15 birds each. The control group was kept on dugout tap water, whereas the other 2 groups were supplied water supplemented with 0.3 and 0.6% KCl (wt/vol) by supplementing 3 and 6 g of KCl, respectively, per liter of drinking water. Broilers were provided ad libitum access to feed and water for the experimental period of 7 to 42 d of age and kept in open-sided house. The birds were reared under continuous thermostress (minimum 28.2 +/- 1.02 and maximum 37.5 +/- 0.78 degrees C) environment. Supplementing drinking water with 0.6% KCl reduced panting-phase blood pH to 7.31 and significantly increased live BW gain by 14.5 (P = 0.036) and 7.9% (P = 0.029) at 28 and 42 d of age, respectively, relative to control. An improved (P = 0.04) feed:gain and lowered body temperature were noted in groups supplemented with 0.6% KCl as compared with control and 0.3% KCl. Enhanced physiological adaptation with 0.6% KCl was evidenced by a more favorable pH during the panting phase in the present study. These findings demonstrated a possibility of better broiler live performance through KCl supplementation under conditions of severe heat stress (35 to 38 degrees C).

  6. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  7. Evaluation of structural integrity and controllability of main feed water control valve for APWRS

    International Nuclear Information System (INIS)

    Koji Tachibana; Toshikazu Maeda; Hideyuki Morita; Takaharu Hiroe; Koichiro Oketani

    2005-01-01

    In Pressurized Water Reactors (PWR), the main feed water control valve always controls the mass flow rate of main feed water to maintain the water level of steam generator within the allowable range. For the main feed water control valve of PWR, we have used an air operated globe valve conventionally since it has large capacity and quick responsibility. On the Advanced Pressurized Water Reactors (APWR) system conditions, the mass flow rate of main feed water increases compared with the conventional PWR system conditions as an increase of the generating power. So, it is expected that the fluid force will increase, and it could cause critical damage on internal parts of the valve, such as plug, stem, etc. and uncontrollability of the valve. In this study, we measured the stem strain in the fluid tests using scale model and test loop under the APWR feed water flow rate conditions. The stem strain gave the stem stress and the fluid force acting on the plug surface. We evaluated the stem integrity from the stem stress and confirmed the influence which the fluid force had on the valve controllability by simulating the feed water system considering the fluid force. (authors)

  8. [Significance of extruded feeds for trout nutrition and water protection].

    Science.gov (United States)

    Steffens, W

    1993-01-01

    Extruded feeds exhibit an improved starch digestibility and are more firmly bound due to the almost complete gelatinization of the starch. This results in fewer fines and longer water stability than pelleted feeds. Extruded pellets also have the advantage that they can soak up more oil than a conventional pellet. It is therefore possible to increase the maximum oil content to more than 20%. On the other hand extruding feeds is more expensive than steam pelleting. Gelatinized starch is a useful energy source in trout diets helping to reduce feed conversion ratios. Proportions up to 35-40% in the diet are tolerable. Using high dietary levels of both gelatinized starch and oil the non-protein energy of feed may be increased and thus a protein-sparing effect results. High-energy diets enable to reduce excretion of faeces and of nitrogen via gills. In addition a decrease of phosphorus level in feeds and thus of phosphorus excretion by fish is possible. Extruded high-energy diets therefore make a contribution to improve water quality.

  9. A concept of passive safety pressurized water reactor system with inherent matching nature of core heat generation and heat removal

    International Nuclear Information System (INIS)

    Murao, Yoshio; Araya, Fumimasa; Iwamura, Takamichi; Okumura, Keisuke

    1995-01-01

    The reduction of manpower in operation and maintenance by simplification of the system are essential to improve the safety and the economy of future light water reactors. At the Japan Atomic Energy Research Institute (JAERI), a concept of a simplified passive safety reactor system JPSR was developed for this purpose and in the concept minimization of developing work and conservation of scale-up capability in design were considered. The inherent matching nature of core heat generation and heat removal rate is introduced by the core with high reactivity coefficient for moderator density and low reactivity coefficient for fuel temperature (Doppler effect) and once-through steam generators (SGs). This nature makes the nuclear steam supply system physically-slave for the steam and energy conversion system by controlling feed water mass flow rate. The nature can be obtained by eliminating chemical shim and adopting in-vessel control rod drive mechanism (CRDM) units and a low power density core. In order to simplify the system, a large pressurizer, canned pumps, passive residual heat removal systems with air coolers as a final heat sink and passive coolant injection system are adopted and the functions of volume and boron concentration control and seal water supply are eliminated from the chemical and volume control system (CVCS). The emergency diesel generators and auxiliary component cooling system of 'safety class' for transferring heat to sea water as a final heat sink in emergency are also eliminated. All of systems are built in the containment except for the air coolers of the passive residual heat removal system. The analysis of the system revealed that the primary coolant expansion in 100% load reduction in 60 s can be mitigated in the pressurizer without actuating the pressure relief valves and the pressure in 50% load change in 30 s does not exceed the maximum allowable pressure in accidental conditions in regardless of pressure regulation. (author)

  10. Livestock and feed water productivity in the mixed crop-livestock system.

    Science.gov (United States)

    Bekele, M; Mengistu, A; Tamir, B

    2017-10-01

    Recently with limited information from intensified grain-based farming systems in developed countries, livestock production is challenged as being huge consumer of freshwater. The smallholder mixed crop-livestock (MCL) system which is predominant in developing countries like Ethiopia, is maintained with considerable contributions of crop residues (CR) to livestock feeding. Inclusion of CR is expected to reduce the water requirement for feed production resulting improvement in livestock water productivity (LWP). This study was conducted to determine feed water productivity (FWP) and LWP in the MCL system. A multistage sampling procedure was followed to select farmers from different wealth status. Wealth status dictated by ownership of key farm resources such as size of cropland and livestock influenced the magnitude of livestock outputs, FWP and LWP. Significant difference in feed collected, freshwater evapotranspired, livestock outputs and water productivity (WP) were observed between wealth groups, where wealthier are relatively more advantaged. Water productivity of CR and grazing land (GL) analyzed separately showed contrasting differences where better-off gained more on CR, whereas vice versa on GL. These counterbalancing of variations may justify the non-significant difference in total FWP between wealth groups. Despite observed differences, low WP on GL indicates the need of interventions at all levels. The variation in WP of CR is attributed to availability of production factors which restrained the capacity of poor farmers most. A linear relationship between the proportion of CR in livestock feed and FWP was evident, but the relationship with LWP was not likely linear. As CR are inherently low in digestibility and nutritive values which have an effect on feed conversion into valuable livestock products and services, increasing share of CR beyond an optimum level is not a viable option to bring improvements in livestock productivity as expressed in terms of

  11. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC

  12. Waste Feed Delivery Raw Water and Potable Water and Compressed Air Capacity Evaluation

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    This study evaluated the ability of the Raw Water, Potable Water, and Compressed Air systems to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the system

  13. Process Stability Identification Through Dynamic Study of Single-bed Ammonia Reactor with Feed-Effluent Heat Exchanger (FEHE

    Directory of Open Access Journals (Sweden)

    Adhi Tri Partono

    2018-01-01

    Full Text Available In ammonia reactor system, a feed-effluent heat exchanger (FEHE is typically installed to utilize reaction-generated heat to heat the reactor’s feed. Utilizing energy from exothermic reaction to the incoming feed stream is often called “autothermic operation”. Despite the advantage of FEHE, there is a risk of utilizing FEHE in a reactor system such as instability of process temperature or known as hysteresis. Hysteresis phenomena in chemical process could cause operational problems, for example it could damage the integrity of the equipment’s material. This paper aims to evaluate the dynamic behavior of a single-bed ammonia reactor with FEHE, particularly to propose a way to prevent instability within the system. The dynamic simulation of the single-bed ammonia reactor with FEHE was performed with Aspen HYSYS v8.8. The result of the simulation result shows that hysteresis phenomenon in the ammonia reactor system occurs when the feed’s temperature is below a certain value. If the feed temperature reaches that value, the temperature of the reactor’s outlet oscillates. One of the solution to keep the feed temperature above that critical value is by installing a trim heater within the system. Based on the simulation, trim heater installation within the system is able to prevent hysteresis in the system evaluated.

  14. The feasibilities to use circulation water as feed water of the paper chemicals; Kiertovesien kaeyttoemahdollisuudet kemikaalien syoettoevesinae - MPKT 07

    Energy Technology Data Exchange (ETDEWEB)

    Manner, H.; Ryoesoe, K.; Harju, E.; Viik, H.; Toeyry, M. [Lappeenranta Univ. of Technology (Finland). Dept. of Chemical Technology

    1998-12-31

    A lot of water is needed for dilution and feed of the paper chemicals. Usually only fresh water is used for this purpose. In this project the use of fresh water was investigated at seven paper machines. The amount of fresh water used for the dilution of chemicals was 0,45-2,6 m{sup 3}/t paper. Most of this part of the fresh water is needed for dilution and feed of the retention aid and the starch. Neutral size and fixing agents need a lot of water, as well. Different kinds of dissolved and colloidal substances in dilution water can interfere the function of paper chemicals. It could be clearly seen that anionic substances in feed water of the cationic polyelectrolytes are very detrimental. Also some salts can be detrimental for instance in dilution water of polyelectrolytes or AKD-size. These contaminants can also lead to depositions in supply equipments. For this reason it is very important to remove or at least minimize the amount of anionic polyelectrolytes and for instance Ca{sup 2+} and SO{sub 4}{sup 2-} ions from the feed water of the paper chemicals. This can be done by using membrane filtration. The fresh water can be replaced by membrane filtered circulation water but some loss of efficiency of polyelectrolytes or AKD-size can, however, be seen. As the feed water of the bentonite circulation water can instead be used without any harmful effect. The nanofiltered circulation water seem to be fairly as useful as fresh water for dilution of paper chemicals. (orig.)

  15. The feasibilities to use circulation water as feed water of the paper chemicals; Kiertovesien kaeyttoemahdollisuudet kemikaalien syoettoevesinae - MPKT 07

    Energy Technology Data Exchange (ETDEWEB)

    Manner, H; Ryoesoe, K; Harju, E; Viik, H; Toeyry, M [Lappeenranta Univ. of Technology (Finland). Dept. of Chemical Technology

    1999-12-31

    A lot of water is needed for dilution and feed of the paper chemicals. Usually only fresh water is used for this purpose. In this project the use of fresh water was investigated at seven paper machines. The amount of fresh water used for the dilution of chemicals was 0,45-2,6 m{sup 3}/t paper. Most of this part of the fresh water is needed for dilution and feed of the retention aid and the starch. Neutral size and fixing agents need a lot of water, as well. Different kinds of dissolved and colloidal substances in dilution water can interfere the function of paper chemicals. It could be clearly seen that anionic substances in feed water of the cationic polyelectrolytes are very detrimental. Also some salts can be detrimental for instance in dilution water of polyelectrolytes or AKD-size. These contaminants can also lead to depositions in supply equipments. For this reason it is very important to remove or at least minimize the amount of anionic polyelectrolytes and for instance Ca{sup 2+} and SO{sub 4}{sup 2-} ions from the feed water of the paper chemicals. This can be done by using membrane filtration. The fresh water can be replaced by membrane filtered circulation water but some loss of efficiency of polyelectrolytes or AKD-size can, however, be seen. As the feed water of the bentonite circulation water can instead be used without any harmful effect. The nanofiltered circulation water seem to be fairly as useful as fresh water for dilution of paper chemicals. (orig.)

  16. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  17. Experimental studies of water hammer in propellant feed system of reaction control system

    Directory of Open Access Journals (Sweden)

    Avanish Kumar

    2018-03-01

    Full Text Available Water hammer pressure transient produces large dynamic forces which can damage the pipes and other assemblies in the feed line of a reaction control system (RCS. It has led to the failure of pressure transducers monitoring the manifold pressure in the feed line of RCS. Therefore, water hammer studies have been carried out to understand its effect in feed line. Feedline system has been simplified to develop a mathematical model and experiments have been carried out at extensive levels. The mathematical model was developed considering pipe of uniform c/s and moving liquid-gas interface. The experimental studies have been done using water as working medium instead of actual propellant. The studies showed that rate of pressurization have a very critical role on the water hammer amplitude. Sensitivity studies have been also carried out to study the effect of density, friction and initial liquid column length on water hammer amplitude. Keywords: Water hammer, Reaction control system (RCS, Propellant feed system, Experimental study, Testing

  18. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  19. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods.

    Science.gov (United States)

    Benoit, Joshua B; Denlinger, David L

    2010-10-01

    In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood-feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the pre-feeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the non-feeding, off-host state. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Thermodynamic Heat Water by The Condenser of Refrigerator

    International Nuclear Information System (INIS)

    Ben Slama, Romdhane

    2009-01-01

    The present innovation relates to the coupling of a refrigerator to a cumulus to heat water and this, thanks to the heat yielded to the level of the condenser of the refrigerating system even. The heating of water is carried out thus without energy over consumption. The quantity of heat transferred by the water-cooled condenser is sufficient to raise the temperature of this latter with 60 degree at the end of five hours. This can satisfy completely or partially the requirements out of hot water of a family which can distribute its requirements out of hot water all along the day and the week. The quantity of heat recovered by water to heat rises with four multiples the power consumption by the compressor. The system thus makes it possible to save energy and to safeguard the environment

  1. Local heat transfer where heated rods touch in axially flowing water

    International Nuclear Information System (INIS)

    Kast, S.J.

    1983-05-01

    An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube

  2. The effect of passive immunization against ghrelin on feed and water intake in turkeys.

    Science.gov (United States)

    Vizcarra, J A; Wright, H; Vizcarra, A

    2012-09-01

    Five-week-old turkeys were used to evaluate the effect of passive immunization against ghrelin on feed and water intake and animal behavior. In experiment 1, females were reared using normal feeding and lighting management recommended by the industry. At 5 wk of age (d 0 of experiment 1), birds (n = 40) were individually caged (0.65 × 0.4 × 0.4 m) with free access to feed and water. Feed and water intake were measured 3 times a day (0800, 1200, and 1700 h) by recording the weight of feed or water offered minus any unconsumed feed or water remaining. After 3 d of adaptation to the cages (d 3), birds were stratified by BW and feed consumption and randomly assigned to a 2 × 5 factorial arrangement of treatment. Starting on d 3, turkeys were given intravenous (iv) injections (0.5, 1.0, 2.0, 4.0, or 8.0 mL) of pooled undiluted plasma obtained from pigs that were previously actively immunized against ghrelin or iv injections (0.5, 1.0, 2.0, 4.0, or 8.0 mL) of pooled undiluted plasma, obtained from nonimmunized pigs (control). In experiment 2, the 2 highest doses (i.e., 4.0 and 8.0 mL; n = 4/treatment) were repeated in a 2 × 2 factorial arrangement as described in experiment 1. A laptop computer with a built-in color camera and appropriate software was used to record birds for 9 consecutive hours, starting 4 h before treatments were applied. Video clips were saved and a human observer watched and annotated bird behavior associated with feeding, drinking, and standing. Passively immunized birds increased feed consumption (P = 0.04) compared with control animals. Water intake was not affected by treatments. There was a tendency for immunized birds to increase the number of pecks per hour and the amount of time devoted for feeding. Our data suggest that in turkeys, the effect of immunization against ghrelin on feed intake is the opposite of that observed in mammalian species.

  3. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  4. Effect of water flow rate and feed training on "pacamã" (Siluriforme: Pseudopimelodidae juvenile production

    Directory of Open Access Journals (Sweden)

    R.K. Luz

    2011-08-01

    Full Text Available The effects of different water flow rates and feed training on the production of "pacamã" Lophiosilurus alexandri juveniles were evaluated. In the first experiment, nine day post-hatch larvae (n= 2,400 were stocked at a density of 5 larvae/L. Different water flow (F rates were tested: F1 = 180; F2 = 600; F3 = 1,300; and F4 = 2,600mL/min. Artemia nauplii were offered as food during the first 15 days of active feeding. In the second experiment for feed training, 720 juveniles (total length of 22.2mm were stocked at a density of 1.5 juveniles/L. A water flow rate similar to F1 was used. The use of extruded dry diet was tested, and feed training was done with and without other enhanced flavors (Artemia nauplii or Scott emulsion. The water flow rates did not influence the survival or growth of L. alexandri. Cannibalism occurred during feed training. The worst survival, specific growth rate and high mortality were found with the use of extruded dry diet, while similar values were registered with the different feed training diets used. Reduced water flow rate can be used to lower water consumption during larviculture and feed training of L. alexandri.

  5. Influence of feed ingredients on water quality parameters in RAS

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; Pedersen, Lars-Flemming; Suhr, Karin Isabel

    2011-01-01

    Although feed by far is providing the major input to RAS, relatively little is published about the correlation between feed composition and the resulting water quality in such systems. In a set-up with 6 identical RAS, each consisting of a fish tank (0.5 m3), a swirl separator, a submerged...... had impact on water quality in the systems as well as on matter removed by the swirl separators. In the RAS water, phosphorous (Ptot and Pdiss) concentrations were reduced by guar gum. Organic matter content (CODdiss) in the water was also reduced. Corresponding to this, more dry matter, more COD...... to the systems for 49 consecutive days. Each week, 24h-water samples (1 sample/hour) were collected from each system. The sludge collected in the swirl separator that day was also collected. Water and sludge were subsequently analysed for nitrogen, phosphorous and organic matter content. Inclusion of guar gum...

  6. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.

    2009-01-01

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  7. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  8. Connection of superaccident feed pumps, especially for PWR or WWER power plants

    International Nuclear Information System (INIS)

    Sykora, D.

    1983-01-01

    The design is described of a superaccident feed pump for emergency water supply from storage tanks to the steam generator. Between the pump and the steam generator in the connecting pipe is installed an injector mixer, possibly complete with a heat exchanger. The output of the injector mixer is connected to the secondary side of the steam generator, the input of the forced or drawn medium is connected either to the steam space or to the water space of the secondary side of the steam generator. The said connection will considerably reduce the heat impact which threatens the integrity of the construction material of the steam generator during transition to superaccident feeding. (M.D.)

  9. Improvement of Candu-1000 MW(e) power cycle by moderator heat recovery

    International Nuclear Information System (INIS)

    Fath, H.E.S.

    1988-01-01

    Four different moderator heat recovery circuits are proposed for CANDU-1000 MW(e) reactors. The proposed circuits utilize all, or part, of the 155 MW(th) moderator heat load (at 70 0 C moderator outlet temperature from calandria) to the first stage of the feed water heating system. An economics study was carried out and indicated that the direct circulation of feed water through the moderator heat exchanger (with full heat recovery) is the most economical scheme. For this scheme the saved steam from the turbine extraction was found to produce additional electric power of 8 MW(e). This additional power represents a 0.7% increase in the plants nominal electric output. The outstanding features and advantages of the selected scheme are also presented. (author)

  10. Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump

    Directory of Open Access Journals (Sweden)

    Yuguo Wu

    2018-09-01

    Full Text Available Water reuse and desalination systems are energy intensive processes, and their increasing use is leading energy consumption within water systems to be an increasingly important issue. Shower wastewater contains large amounts of heat, so there is an opportunity to recover energy from shower water to offset energy consumption elsewhere in water systems. This paper found ways to increase the output of hot water and lower the energy consumption by establishing a thermodynamic model of an instantaneous wastewater source heat pump. The system proved to be very effective, the heating COP (coefficient of performance can reach 3.3 even in the winter. Under the conditions of limited heat transfer area, reducing the suction pressure of a compressor is a more feasible way to increase the hot water output to meet the needs of users rather than increasing the discharge pressure. Besides, increasing the heat transfer area of the evaporator is a more effective option. When the heat transfer area of evaporator varies from 0.5 to 1.0 square meters, a notable change is that the heating COP increases from 3.283 to 3.936. The heating COP in a system with a recuperator can reach 5.672, almost double that compared to the original systems.

  11. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  12. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef

    2017-01-01

    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  13. Gender and heat stress effects on hypothalamic gene expression and feed intake in broilers

    International Nuclear Information System (INIS)

    Khatlab, A.S.; Vesco, A.P. DEL; Goes, E.R.; Neto, A.R.O.; Soares, M.A.M.; Gasparino, E.

    2018-01-01

    Our study aims to evaluate gender and heat stress effects on animal performance and on the expression of five hypothalamic genes related to feed consumption: neuropeptide Y (NPY), ghrelin (GHRL), pro-opiomelanocortin (POMC), AMP-activated protein kinase (AMPKα-1), and liver kinase B1 (LKB1). To assay these effects, 42-day-old male and female broilers were maintained in thermal comfort or were subjected to heat stress (HS, 38°C for 24 hours). All animals were fed with diets formulated to meet their nutritional requirements. Broilers subjected to HS showed lower weight gain (p=0.0065) and tended to have lower feed intake (p=0.0687) than broilers kept in comfortable conditions. We observed gender and heat stress interaction effects on NPY (p=0.0225), AMPKα-1 (p=0.0398), and POMC expression (p=0.0072). The highest NPY gene expression was observed in male broilers from the thermal comfort group. Male broilers exposed to HS showed the highest AMPKα-1 gene expression levels. Comparing POMC expression between males and females at the comfortable temperature, we observed that females showed higher POMC expression levels than male broilers. A gender effect was also observed on LKB1 and AMPKα-1 gene expression (p=0.0256 and p=0.0001, respectively); increased expression was observed in male broilers. Our results indicate that the expression of some hypothalamic genes related to food consumption may contribute to the observed differences in voluntary feed intake between animals of different gender exposed to different environmental conditions.

  14. Saturated flow boiling heat transfer in water-heated vertical annulus

    International Nuclear Information System (INIS)

    Sun Licheng; Yan Changqi; Sun Zhonning

    2005-01-01

    This paper describes the saturated flow boiling heat transfer characteristics of water at 1 atm and low velocities in water-heated vertical annuli with equivalent diameters of 10 mm and 6 mm. Test section is consisted of two concentric circular tubes outer of which is made of quartz, so the whole test courses can be visualized. There are three main flow patterns of bubble flow, churn flow and churn-annular flow in the annuli, most important of which is churn flow. Flooding is the mechanism of churn flow and churn can enhance the heat transport between steam and water; Among the three factors of mass flux, inlet subcooling and annulus width, the last one has great effect on heat transport, moderately decreasing the annulus width can enhance the heat transfer; Combined annular flow model with theory of flooding and turbulent Prandtl Number, the numerical value of heat flux is given, the shape of test boiling curve and that of calculated by model is very alike, but there is large discrepancy between test data and calculated results, the most possible reason is that some parameters given by fluid flooding model are based on experimental data of common circular tubes, but not of annuli. Doing more research on flooding in annulus, particularly narrow annulus, is necessary for calculating the saturated boiling in annulus. (authors)

  15. A Physiological Stimulating Factor of Water Intake during and after Dry Forage Feeding in Large-type Goats.

    Science.gov (United States)

    Van Thang, Tran; Sunagawa, Katsunori; Nagamine, Itsuki; Kishi, Tetsuya; Ogura, Go

    2012-04-01

    When ruminants consume dry forage, they also drink large volumes of water. The objective of this study was to clarify which factor produced when feed boluses enter the rumen is mainly responsible for the marked increase in water intake in the second hour of the 2 h feeding period in large-type goats fed on dry forage for 2 h twice daily. Six large-type male esophageal- and ruminal-fistulated goats (crossbred Japanese Saanen/Nubian, aged 2 to 6 years, weighing 85.1±4.89 kg) were used in two experiments. In experiment 1, the water deprivation (WD) control and the water availability (WA) treatment were conducted to compare changes in water intake during and after dry forage feeding. In experiment 2, a normal feeding conditions (NFC) control and a feed bolus removal (FBR) treatment were carried out to investigate whether decrease in circulating plasma volume or increase in plasma osmolality is mainly responsible for the marked increase in water intake in the second hour of the 2 h feeding period. The results of experiment 1 showed that in the WA treatment, small amounts of water were consumed during the first hour of feeding while the majority of water intake was observed during the second hour of the 2 h feeding period. Therefore, the amounts of water consumed in the second hour of the 2 h feeding period accounted for 82.8% of the total water intake. The results of experiment 2 indicated that in comparison with the NFC control, decrease in plasma volume in the FBR treatment, which was indicated by increase in hematocrit and plasma total protein concentrations, was higher (pforage feeding in large-type goats.

  16. Demand side management in South Africa at industrial residence water heating systems using in line water heating methodology

    International Nuclear Information System (INIS)

    Rankin, R.; Rousseau, P.G.

    2008-01-01

    The South African electrical utility, ESKOM, currently focuses its demand side management (DSM) initiatives on controlling electrical load between 18:00 and 20:00 each day, which is the utility's peak demand period. Funding is provided to energy service companies (ESCo's) to implement projects that can achieve load shifting out of this period. This paper describes how an improved in line water heating concept developed in previous studies was implemented into several real life industrial sanitary water heating systems to obtain the DSM load shift required by ESKOM. Measurements from a selection of these plants are provided to illustrate the significant load reductions that are being achieved during 18:00-20:00. The measured results also show that the peak load reduction is achieved without adversely affecting the availability of sufficient hot water to the persons using the showering and washing facilities served by the water heating system. A very good correlation also exists between these measured results and simulations that were done beforehand to predict the DSM potential of the project. The in line water heater concept provides an improved solution for DSM at sanitary water heating systems due to the stratified manner in which hot water is supplied to the tanks. This provides an improved hot water supply to users when compared to conventional in tank heating systems, even with load shifting being done. It also improves the storage efficiency of a plant, thereby allowing the available storage capacity of a plant to be utilized to its full extent for load shifting purposes

  17. Substitution of wheat bran by corn gluten feed without steep water in cats feed

    Directory of Open Access Journals (Sweden)

    Lívia Geraldi Ferreira

    Full Text Available ABSTRACT: This study aimed to evaluate the effects of substituting wheat bran (WB by corn gluten feed without steep water (CGF in cats feeds regarding the nutritional value of the diet, stool characteristics, time of food passage through the gastrointestinal tract (GIT, intestinal gas production and concentrations of short chain fatty acids (SCFA in blood and faeces. Twenty eight cats were distributed in a randomized block design with four treatments (0, 2.6, 5.3 or 8.0% CGF, based on dry matter, substituting for WB and seven replicates. Substitution of WB by CGF decreased (P0.05 the digestibility of other nutrients and apparent metabolizable energy. There was also no effect (P>0.05 on faeces moisture, faecal pH and score, food transit time in the GIT, intestinal gas area and SCFA concentrations in faeces, while blood concentrations of propionate were influenced differently by the different feeds and sampling times (P<0.05. Thus replacement of up to 8% of WB by CGF may be done safely in cats feed.

  18. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  19. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  20. Heat-treatment, phytase and fermented liquid feeding affect the presence of inositol phosphates in ileal digesta and phosphorus digestibility in pigs fed a wheat and barley diet

    DEFF Research Database (Denmark)

    Blaabjerg, Karoline; Jørgensen, H.; Tauson, Anne-Helene

    2010-01-01

    The aim was to evaluate the effect of heat-treatment, microbial phytase addition and feeding strategy (dry feeding v. fermented liquid feeding) on degradation of phytate (myo-inositol hexakisphosphate, InsP6) and formation and further degradation of lower inositol phosphates (myo-inositol pentaki......The aim was to evaluate the effect of heat-treatment, microbial phytase addition and feeding strategy (dry feeding v. fermented liquid feeding) on degradation of phytate (myo-inositol hexakisphosphate, InsP6) and formation and further degradation of lower inositol phosphates (myo...... × 4 Latin square with four pigs fed four diets. A basal wheat/barley-based diet was fed either as non-heat-treated or heat-treated (steam-pelleted at 90°C). The heat-treatment resulted in an inactivation of plant phytase below detectable level. Diet 1 (non-heat-treated basal diet fed dry); diet 2...... (heat-treated basal diet fed dry); diet 3 (as diet 2 but with microbial phytase (750 FTU/kg as fed) fed dry); diet 4 (as diet 3 fed liquid (fermented for 17.5 h nighttime and 6.5 h daytime at 20°C with 50% residue in the tank)). Chromic oxide (Cr2O3) was included as marker and ATTD was determined both...

  1. Design of water feeding system for IASCC irradiation tests at JMTR

    International Nuclear Information System (INIS)

    Kanno, Masaru; Nabeya, Hideaki; Mori, Yuichiro

    2001-12-01

    In relation to the aging of light water reactors (LWRs), the irradiation assisted stress corrosion cracking (IASCC) has been regarded as a significant and urgent issue for the reliability of in-core components and materials of LWRs, and the irradiation research is now under schedule. It is essential for IASCC studies to irradiated materials under well-controlled conditions simulating LWR in-core environment. Therefore, a new water feeding system to supply high temperature water into irradiation capsules in the Japan Materials Testing Reactor (JMTR) has been designed and will be installed in near future. This report describes the specification and performance of the water feeding system that is designed to supply high temperature water to simulate BWR conditions in irradiation capsules. This design work was performed in the fiscal year 1999. (author)

  2. Experimental investigate of heat transfer for graphene/water nanofluid in micro heat exchanger

    Science.gov (United States)

    Abd Elhafez, S. E.; Abo-Zahhad, E. M.; El-Shazly, A. H.; El-Kady, M. F.

    2017-02-01

    In this investigation, the heat transfer characteristics of graphene nano platelets (GNPs)/water nanofluid were studied in a micro heat exchanger (MHE). The micro heat exchanger performance was also examined. The test setup was worked out in the laminar regime with Reynold numbers varying between 100 and 400GNPs/water nanofluid was prepared three different concentrations (0.025 wt. %, 0.05 wt. % and 0.1 wt. %) using ultrasonic wave. The influence of mass flow rate, inlet temperatures and weight fraction on the overall heat transfer coefficient (U) and logarithmic mean temperature (LMTD) were examined. The results showed considerable enhancement on the overall heat transfer coefficient of graphene/water nanofluid and the MHE effectiveness. A maximum enhancement on overall heat transfer coefficient was reached to 150% at Re=100 by 0.1wt% nanofluid. The effectiveness of micro heat exchanger was enhanced by increase weight fraction of graphene nanoparticle. Moreover, the experimental results showed that 0.1 wt. % GNPs/water nanofluid, flowing through MHE, has had high pressure drop, and pumping power, when it has been compared with 0.5 wt. % and 0.025 wt.%.

  3. Estimation of cobalt release from feed water heater tubes of BWRs

    International Nuclear Information System (INIS)

    Uchida, S.; Kitamura, M.; Ozawa, Y.

    1983-01-01

    To evaluate the release source of cobalt from heater tubes of the feed water line, release rate measurements were carried out by detecting 60 Co released from irradiated stainless steel in contact with neutral water at an oxygen concentration of 20 ppb. The dependences of cobalt release rate on temperature, flow velocity and exposure time were studied after 670 hours of release experiments, and an empirical equation (which is presented) was obtained in the temperature range from 150 to 240 deg C. A decrease in the cobalt release rate above 250 deg C was considered due to the formation of a protective oxide layer. From these data, the amount of cobalt released from individual feed water heaters was evaluated. It was demonstrated that low cobalt containing stainless steel was economically applied only in the higher temperature region of the heater (20% of the total surface) to reduce cobalt feed rate into the reactor (to approx. 1/2). (author)

  4. Experimental and CFD simulation of heat efficiency improvement in geothermal spas

    International Nuclear Information System (INIS)

    Jalilinasrabady, Saeid; Palsson, Halldor; Saevarsdottir, Gudrun; Itoi, Ryuichi; Valdimarsson, Pall

    2013-01-01

    Hot spas and jacuzzis are popular in Iceland due to the abundance of reasonably prized geothermal heat available. However the water from the DH (district heating) system is too warm to be admitted directly into the spa. For safety reasons the water is mixed with cold water, from 75 °C down to 50 °C, which leads to wasting a large quantity of heat. Therefore a design was suggested that enables the feeding of geothermal water directly into the pot, omitting the step of mixing it with cold water. The idea is to employ an open heat exchanger that transfers much heat from the geothermal water to the bulk water in the spa, before letting it mix with the spa water. A case study was done for one particular spa. Heat load was calculated and measured when the spa was in use, and when it was unused. A design is suggested employing a circular double-plate which is to be placed at bottom of pot. This unit will function as an open heat exchanger feeding DH water into the pot. Free convection takes place at the up side of the upper plate and forced convection below the upper plate. Heat-transfer coefficient for both was calculated. Temperature field in the pool before and after implementation of the open heat exchanger was measured at different points using thermocouples. The measured temperatures were compared to thermal and fluid-dynamic simulation of the temperature and flow fields obtaining good accordance. Results are reasonable and promising for a good design that may considerably reduce the energy expenses for a continuously heated geothermal spa. More detailed measurements were made on the upper plate of the heat exchanger and detailed simulation of the heat exchanger itself was then used to obtain a value for the heat-transfer coefficient for the upper plate to the surrounding water. This information was used to make an improved design for the open plate heat exchanger, stating that a diameter of 63 cm and a thickness of 1.5 cm were suggested as final design. Due to

  5. Feasibility study on development of plate-type heat exchanger for BWR plants

    International Nuclear Information System (INIS)

    Ohyama, Nobuhiro; Suda, Kenichi; Ogata, Hiroshi; Matsuda, Shinichi; Nagasaka, Kazuhiro; Fujii, Toshi; Nozawa, Toshiya; Ishihama, Kiyoshi; Higuchi, Tomokazu

    2004-01-01

    In order to apply plate-type heat exchanger to RCW, TCW and FPC system in BWR plants, heat test and seismic test of RCW system heat exchanger sample were carried out. The results of these tests showed new design plate-type heat exchanger satisfied the fixed pressure resistance and seismic resistance and keep the function. The evaluation method of seismic design was constructed and confirmed by the results of tests. As anti-adhesion measure of marine organism, an ozone-water circulation method, chemical-feed method and combination of circulation of hot water and air bubbling are useful in place of the chlorine feeding method. Application of the plate-type heat exchanger to BWR plant is confirmed by these investigations. The basic principles, structure, characteristics, application limit and reliability are stated. (S.Y.)

  6. Water for wood products versus nature, food or feed

    Science.gov (United States)

    Schyns, Joep; Booij, Martijn; Hoekstra, Arjen

    2017-04-01

    Forests play a central interlinked role in the 2030 Agenda on Sustainable Development. The Agenda aims at an increased share of renewable energy in the global energy mix (target 7.2) and restoration and sustainable management of forests (targets 6.6, 15.1 & 15.2). Forests also play a key role in the hydrological cycle accounting for the largest water flux from land to atmosphere. However, we do not know which part of this is used for the production of wood products such as lumber, pulp and paper, firewood or biofuel. SDG target 6.4 calls for increased water-use efficiency across all sectors and requires understanding the competing demands for water and the potential conflicts between wood production and other purposes like food (SDG 2). To reach the SDGs we need to understand the interlinkages between the SDGs and know how much water is used in the forestry sector. We provide the first estimate of global water use in the forestry sector, using the water footprint (WF) as indicator and distinguishing between consumption of green water (precipitation) and blue water (groundwater through capillary rise). We estimate forest evaporation at a high spatial resolution level and attribute total water consumption to the various forest products, including ecosystem services. Global water consumption for wood production increased by 34% over 50 years to 290x109 m3/y in 2001-2010. Wood has a higher economic water productivity (EWP, US/m3) than common food or feed crops like wheat, maize and sugar beet, and bio-ethanol from wood has a small WF per unit of energy compared to first-generation bio-ethanol from these three crops. Counterintuitively, extensive wood production has a smaller WF and hence a higher EWP than intensive wood production. The reason is that extensively exploited forests host relatively more value next to wood production in the form of other ecosystem services. Recycling of wood products could effectively reduce the WF of the forestry sector, thereby leaving

  7. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  8. Los Alamos PWR feed-and-bleed studies summary results and conclusions

    International Nuclear Information System (INIS)

    Boyack, B.E.; Henninger, R.J.; Lime, J.F.

    1985-01-01

    The adequacy of shutdown decay heat removal in pressurized water reactors (PWRs) is currently under investigation by the Nuclear Regulatory Commission. One part of this effort is review of feed-and-bleed procedures that could be used if the normal cooling mode through the steam generators was unavailable. Feed-and-bleed cooling is effected by manually activating the high-pressure injection (HPI) system and opening the power-operated relief valves (PORVs) to release the core decay energy. The feasibility of the feed-and-bleed concept as a diverse mode of heat removal has been evaluated at the Los Alamos National Laboratory. The TRAC-PF1 code has been used to predict the expected performances of the Oconee-1 and Calvert Cliffs-1 reactors of Babcock and Wilcox and Combustion Engineering, respectively, and the Zion-1 and H.B. Robinson-2 plants of Westinghouse. Feed and bleed was successfully applied in each of the four plants studied, provided it was initiated no later than the time of loss-of-secondary heat sink

  9. INFLUENCE OF FEEDING ELECTRIC ENERGY QUALITY ON HEATING OF THE AUXILIARY MA-CHINES OF AC ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    O. YU. Baliichuk

    2014-04-01

    Full Text Available Purpose. The article aims to study the problem of increase the reliability of auxiliary machines for AC electric trains during operation in real conditions. Methodology. The peculiarity of system construction of auxiliary machines for AC electric rolling stock is the use of asynchronous motors for general industrial purpose. An engineering method of influence determination on the feeding voltage asymmetry and its deviation from the nominal value on heating of auxiliary machines insulation was proposed. Findings. It is found out that in case when the auxiliary machines of AC electric trains work under asymmetry factor of the voltage 10% or more and feeding voltage deviation from the nominal order 0.6 relative unit then it is possible the overheat of their isolation, even if it has class H. Originality. For the first time the issue of the total insulation heating under such boundary parameters combinations of energy quality, when each of them contributes to the heating insulation increase as compared to the nominal regime of the "rotating phase splitter−auxiliary machinery" system was illuminated. Practical value. Conducted research allow us to establish the boundary parameter values of feeding energy quality (asymmetry factor, feeding voltage deviations from the nominal value, at which additional isolation overheating of this class under the effect of specified factors will not exceed the agreed value.

  10. The economics of supplying the supplementary heat in a closed loop water source heat pump system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Bartkus, V.E.; Singh, J.B.

    1993-01-01

    The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop

  11. The scientific base of heating water by microwave

    Energy Technology Data Exchange (ETDEWEB)

    Akdoğan, Ender, E-mail: ender.akdogan@tpe.gov.tr [Department of Physics Engineering, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey); Çiftçi, Muharrem, E-mail: muharrem-ciftci@windowslive.com [Author" 1 Department of Physics, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey)

    2016-03-25

    This article is based on the master thesis [4] related to our invention which was published in World Intellectual Property Organization (WO/2011/048506) as a microwave water heater. In the project, a prototype was produced to use microwave in industrial heating. In order to produce the prototype, the most appropriate material kind for microwave-water experiments was determined by a new energy loss rate calculation technique. This new energy loss calculation is a determinative factor for material permeability at microwave frequency band (1-100 GHz). This experimental series aim to investigate the rationality of using microwave in heating industry. Theoretically, heating water by microwave (with steady frequency 2.45 GHz) is analyzed from sub-molecular to Classical Mechanic results of heating. In the study, we examined Quantum Mechanical base of heating water by microwave experiments. As a result, we derived a Semi-Quantum Mechanical equation for microwave-water interactions and thus, Wien displacement law can be derived to verify experimental observations by this equation.

  12. Optimization of Boiler Heat Load in Water-Heating Boiler-House

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2009-01-01

    Full Text Available An analytical method for optimization of water-heating boiler loads has been developed on the basis of approximated semi-empirical dependences pertaining to changes of boiler gross efficiency due to its load. A complex (∂tух/∂ξΔξ is determined on the basis of a systematic analysis (monitoring of experimental data and the Y. P. Pecker’s formula for calculation of balance losses q2. This complex makes it possible to set a corresponding correction to a standard value of the boiler gross efficiency due to contamination of heating surfaces.Software means for optimization of water-heating boilers has been developed and it is recommended to be applied under operational conditions.

  13. Potential for solar water heating in Zimbabwe

    NARCIS (Netherlands)

    Batidzirai, B.; Lysen, E.H.; van Egmond, S.; van Sark, W.G.J.H.M.

    2009-01-01

    This paper discusses the economic, social and environmental benefits from using solar water heating (SWH) in Zimbabwe. By comparing different water heating technology usage in three sectors over a 25-year period, the potential of SWH is demonstrated in alleviating energy and economic problems that

  14. Consumer impacts on dividends from solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F.; Levermore, G. [University of Manchester, Manchester (United Kingdom); Lynch, H. [Centre for Alternative Technology, Machynlleth, University of East London, London (United Kingdom)

    2011-01-15

    Common domestic solar water heating system usage patterns were investigated by a survey of 55 installations. These usage patterns were modelled by simulation based on the actual occupants' use of boiler or other auxiliary heating control strategies. These strategies were not optimal, as often assumed. The effectiveness of the technology was found to be highly sensitive to the time settings used for auxiliary water heating, and the 65% of solar householders using their boilers in the mornings were found to be forgoing 75% of their potential savings. Additionally, 92% of consumers were found to be small households, whose potential savings were only 23% of those of larger households, which use more hot water. Overall the majority (at least 60%) of the systems surveyed were found to be achieving no more than 6% of their potential savings. Incorporating consideration of Legionella issues, results indicate that if solar thermal technology is to deliver its potential to CO2 reduction targets: solar householders must avoid any use of their auxiliary water heating systems before the end of the main warmth of the day, grants for solar technology should be focused on households with higher hot water demands, and particularly on those that are dependent on electricity for water heating, health and safety requirements for hot water storage must be reviewed and, if possible, required temperatures should be set at a lower level, so that carbon savings from solar water heating may be optimized.

  15. Shrimp aquaculture in low salinity water feeded with worm flavor

    Directory of Open Access Journals (Sweden)

    Wenceslao Valenzuela Quiñónez

    2012-09-01

    Full Text Available Shrimp aquaculture in Sinaloa is one of the top economic enterprises, generating many jobs and earns significant incomes every year. Shrimp feed is an essential part of maintaining healthy production. In this initial approach of shrimp growth in low salinity water, were tested two formulas of animal protein composed of 40% (APL1 and 20% (APL2 worm protein, a commercial diet, and no supplementary feed. Physicochemical parameters did not have a direct influence in shrimpbehavior. After six weeks of experimentation, shrimp fed with commercial diet had a weight gain 20% higher than those feed with worm protein. There were no significantly differences between sizes with respect to 40% animal protein and 20% animal protein with the commercial diet (P  0.05. However, shrimp fed worm protein had lower mortality. The use of worm protein could be an option to maintain a high quantity of shrimp reared in low salinity waters.

  16. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  17. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    International Nuclear Information System (INIS)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs

  18. Water feed and effluent treatment for hydrogen sulfide-water system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1981-01-01

    This invention provides a feed and effluent treatment system for improving the recovery of a gas (e.g. H 2 S) from solution in a liquid (e.g. water) when the liquid also contains dissolved nonvolatile components (e.g. the salts of sea water) at low temperatures. In a gas/liquid contact process in which the gas is at least partially soluble in the liquid, a portion of the liquid is extracted after it passes through a hot zone, the pressure of the liquid is reduced by flashing it through pressure reduction means to remove a portion of the dissolved gas, and the gas thus recovered is returned to the process

  19. Conductometric method for determining water stability and nutrient leaching of extruded fish feed

    Directory of Open Access Journals (Sweden)

    Banjac Vojislav V.

    2017-01-01

    Full Text Available Water stability of eight samples of extruded salmon feeds was first determined by applying two gravimetric methods developed by the authors: gravimetric static and wet sieving method. Then, the conductometric method, primarily developed for investigation of nutrient leaching of feed into the water by the authors, was used for each sample. The aim of this study was to evaluate the potential of the conductometric measurement as a technique for determining water stability of extruded fish feed. In order to find any correlation between the results of two gravimetric tests and conductometric method, correlation analysis was employed. The results of static and wet sieving method were expressed as water stability index, which was expressed as the percent of remained dry matter of sample after being disintegrated in the water. The results of conductometric method were shown as conductivity curves for each sample, giving the insight in rate of nutrient leaching during the time. The obtained values of water conductivity showed no significant (p < 0.05 correlation with the results of static water method, while there was a negative significant (p < 0.05 correlation with the results of wet sieving method during first four hours of pellets soaking in water. The highest correlation coefficients were obtained within the first hour of conductivity measurement, demonstrating that proposed conductometric method had a potential to be applied as a rapid and simple method for determination and relative comparison of salmon feed water stability.[ Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III46012 and Grant no. TR31011

  20. Water level affects availability of optimal feeding habitats for threatened migratory waterbirds

    DEFF Research Database (Denmark)

    Aharon-Rotman, Yaara; McEvoy, John; Zheng Zhaoju

    2017-01-01

    within the lake. Changing the natural hydrological system will affect waterbirds dependent on water level changes for food availability and accessibility. We tracked two goose species with different feeding behaviors (greater white-fronted geese Anser albifrons [grazing species] and swan geese Anser......Extensive ephemeral wetlands at Poyang Lake, created by dramatic seasonal changes in water level, constitute the main wintering site for migratory Anatidae in China. Reductions in wetland area during the last 15years have led to proposals to build a Poyang Dam to retain high winter water levels...... cygnoides [tuber-feeding species]) during two winters with contrasting water levels (continuous recession in 2015; sustained high water in 2016, similar to those predicted post-Poyang Dam), investigating the effects of water level change on their habitat selection based on vegetation and elevation. In 2015...

  1. An Integrated and Optimal Joint Scheduling of Energy Resources to Feed Electrical, Thermal and Potable Water Demands in Remote Area

    Directory of Open Access Journals (Sweden)

    R. Ghaffarpour

    2016-12-01

    Full Text Available The continuous spread of distributed energy resources (DERs such as combined heating and power (CHP, diesel generators, boilers and renewable energy sources provide an effective solution to energy related problems to serve the power and heat demands with minimum cost. Moreover, the DERs may play a significant role for supplying power and heat in rural areas, where grid electricity is not available. Also, some dry areas may face water scarcity and salinity problems. So, one important solution is the use of DERs to drive desalination units in order to solve water scarcity and salinity problems. In this study, the optimal scheduling of DERs and reverse osmosis (RO desalination unit that feed the required electric, thermal and potable water demands are determined. The present paper describes the operation constraints and cost function of components of the system in detail. Operation constraints of generation units as well as feasible region of operation CHP in dual dependency characteristic are taken into account. To confirm the performance of the proposed model the approach is tested on a realistic remote area over a 24-h period. The results show that the economical scheduling of DERs and desalination units can be obtained using proposed methodology by implementing the proposed formulation.

  2. Portable device for generation of ultra-pure water vapor feeds

    Science.gov (United States)

    Velin, P.; Stenman, U.; Skoglundh, M.; Carlsson, P.-A.

    2017-11-01

    A portable device for the generation of co-feeds of water vapor has been designed, constructed, and evaluated for flexible use as an add-on component to laboratory chemical reactors. The vapor is formed by catalytic oxidation of hydrogen, which benefits the formation of well-controlled minute concentrations of ultra-pure water. Analysis of the effluent stream by on-line mass spectrometry and Fourier transform infrared spectroscopy confirms that water vapor can be, with high precision, generated both rapidly and steadily over extended periods in the range of 100 ppm to 3 vol. % (limited by safety considerations) using a total flow of 100 to 1500 ml/min at normal temperature and pressure. Further, the device has been used complementary to a commercial water evaporator and mixing system to span water concentrations up to 12 vol. %. Finally, an operando diffuse reflective infrared Fourier transform spectroscopic measurement of palladium catalysed methane oxidation in the absence and presence of up to 1.0 vol. % water has been carried out to demonstrate the applicability of the device for co-feeding well-controlled low concentrations of water vapor to a common type of spectroscopic experiment. The possibilities of creating isotopically labeled water vapor as well as using tracer gases for dynamic experiments are discussed.

  3. Prediction of critical heat flux for water in uniformly heated vertical ...

    African Journals Online (AJOL)

    Keywords: CHF - Heat transfer - Water vapor - Porous coated tubes. Auteur correspondant ... electrical and mechanical characteristics were well validated. Figure. 1 shows ... resistance to vapor filtration from the heating wall to the liquid bulk.

  4. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  5. Development of an advanced static feed water electrolysis module. [for spacecraft

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.; Jensen, F. C.; Quattrone, P. D.

    1975-01-01

    A Static Feed Water Electrolysis Module (SFWEM) was developed to produce 0.92 kg/day (2.0 lb/day) of oxygen (O2). Specific objectives of the program's scope were to (1) eliminate the need for feed water cavity degassing, (2) eliminate the need for subsystem condenser/separators, (3) increase current density capability while decreasing electrolysis cell power (i.e., cell voltage) requirements, and (4) eliminate subsystem rotating parts and incorporate control and monitor instrumentation. A six-cell, one-man capacity module having an active area of 0.00929 sq m (0.10 sq ft) per cell was designed, fabricated, assembled, and subjected to 111 days (2664 hr) of parametric and endurance testing. The SFWEM was successfully operated over a current density range of 0 to 1076 mA/sq cm (0 to 1000 ASF), pressures of ambient to 2067 kN/sq m (300 psia), and temperatures of ambient to 366 K (200 F). During a 94-day endurance test, the SFWEM successfully demonstrated operation without the need for feed water compartment degassing.

  6. Effect of water addition to a total mixed ration on feed temperature, feed intake, sorting behavior, and milk production of dairy cows.

    Science.gov (United States)

    Felton, C A; DeVries, T J

    2010-06-01

    The objective of this study was to determine the effects of water addition to a high-moisture total mixed ration (TMR) on feed temperature, feed intake, feed sorting behavior, and milk production of dairy cows. Twelve lactating Holstein cows (155.8+/-60.1 DIM), individually fed once daily at 1000 h, were exposed to 3 diets in a Latin square design with 28-d treatment periods. Diets had the same ingredient composition [30.9% corn silage, 30.3% alfalfa haylage, 21.2% high-moisture corn, and 17.6% protein supplement; dry matter (DM) basis] and differed only in DM concentration, which was reduced by the addition of water. Treatment diets averaged 56.3, 50.8, and 44.1% DM. The study was conducted between May and August when environmental temperature was 18.2+/-3.6 degrees C and ambient temperature in the barn was 24.4+/-3.3 degrees C. Dry matter intake (DMI) was monitored for each animal for the last 14 d of each treatment period. For the final 7 d of each period, milk production was monitored, feed temperature and ambient temperature and humidity were recorded (daily at 1000, 1300, and 1600 h), and fresh feed and orts were sampled for determination of sorting. For the final 4 d of each period, milk samples were taken for composition analysis. Samples taken for determining sorting were separated using a Penn State Particle Separator that had 3 screens (19, 8, and 1.18 mm) and a bottom pan, resulting in 4 fractions (long, medium, short, and fine). Sorting was calculated as the actual intake of each particle size fraction expressed as a percentage of the predicted intake of that fraction. Greater amounts of water added to the TMR resulted in greater increases in feed temperature in the hours after feed delivery, greater sorting against long particles, and decreased DMI, reducing the overall intake of starch and neutral detergent fiber. Milk production and composition were not affected by the addition of water to the TMR. Efficiency of production of milk was, however

  7. Speed control of boiler feed water pump turbine based on gray correlation compensation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yun Long; Wang, Di; Zhou, Hai Chun [Northeast Dianli UniversityJilin (China)

    2017-01-15

    One of the most important controlled parameters of thermal power units is the boiler drum water level. Disturbances of feed water flow rate could cause instability of the drum water level. This study proposes the Gray correlation compensation (GCC) control technology for the Boiler feed water pump turbine (BFPT) to solve this problem. Simulation results indicate that the GCC controller outperforms the traditional proportional-integral-derivative controller when it encounters different disturbances. Furthermore, the GCC controller can rapidly switch to the high-pressure steam source to ensure that the drum water level is in the secure range during steam source switching of the BFPT.

  8. Failure analyses and weld repair of boiler feed water pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vulpen, R van [KemaPower Generation, Arnhem (Netherlands)

    1999-12-31

    During a regular inspection of the Boiler Auxiliaries at one of the Dutch Electricity Production Companies serious cracks were found in the cover and casings of the feed water circulation pumps in two units after 108.000 and 122.000 hours of boiler operation. Kema Laboratories carried out Failure analyses on boat samples at the cracked areas. Corrosion fatigue cracking was found on the inner side of the GS-24CrNiMo325 casing. Shop Weld repairs were carried out using a newly developed mechanized Plasma Welding Technique. The repaired feed water circulation pumps showed no problems alter several years of operation. The costs of repair were substantially lower than the costs of replacement. (orig.) 3 refs.

  9. Failure analyses and weld repair of boiler feed water pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vulpen, R. van [KemaPower Generation, Arnhem (Netherlands)

    1998-12-31

    During a regular inspection of the Boiler Auxiliaries at one of the Dutch Electricity Production Companies serious cracks were found in the cover and casings of the feed water circulation pumps in two units after 108.000 and 122.000 hours of boiler operation. Kema Laboratories carried out Failure analyses on boat samples at the cracked areas. Corrosion fatigue cracking was found on the inner side of the GS-24CrNiMo325 casing. Shop Weld repairs were carried out using a newly developed mechanized Plasma Welding Technique. The repaired feed water circulation pumps showed no problems alter several years of operation. The costs of repair were substantially lower than the costs of replacement. (orig.) 3 refs.

  10. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  11. Prototype implementation and experimental analysis of water heating using recovered waste heat of chimneys

    Directory of Open Access Journals (Sweden)

    Mahmoud Khaled

    2015-03-01

    Full Text Available This work discusses a waste heat recovery system (WHRS applied to chimneys for heating water in residential buildings. A prototype illustrating the suggested system is implemented and tested. Different waste heat scenarios by varying the quantity of burned firewood (heat input are experimented. The temperature at different parts of the WHRS and the gas flow rates of the exhaust pipes are measured. Measurements showed that the temperature of 95 L tank of water can be increased by 68 °C within one hour. Obtained results show that the convection and radiation exchanges at the bottom surface of the tank have a considerable impact on the total heat transfer rate of the water (as high as 70%.

  12. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  13. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  14. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    International Nuclear Information System (INIS)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-01-01

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mass velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel

  15. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  16. Water Replacement Schedules in Heat Stress

    Science.gov (United States)

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  17. Heat removing device for reactor container

    International Nuclear Information System (INIS)

    Hisamochi, Kohei; Matsumoto, Tomoyuki; Matsumoto, Masayoshi; Sato, Ken-ichi.

    1996-01-01

    A recycling loop for reactor water is disposed in a reactor pressure vessel of a BWR type reactor. Extracted reactor water from the recycling loop passes through a extracted reactor water pipeline and flows into a reactor coolant cleanup system. A pipeline for connecting the extracted reactor water pipeline and a suppression pool is disposed, and a discharged water pressurizing pump is disposed to the pipeline. Upon occurrence of emergency, discharged water from the suppression pool is pressurized by a discharged water pressurizing pump and sent to a reactor coolant cleanup system. The discharged water is cooled while passing through a sucking water cooling portion of a regenerative heat exchanger and a non-regenerative heat exchanger. Then, it is sent to a feed water pipeline passing a bypass line of a filtering desalter and a bypass line of the sucked water cooling portion of the regenerative heat exchanger, injected to the inside of the pressure vessel to cool the reactor core and remove after-heat. Then, it cools the inside of the reactor container together with coolants flown out of the pressure vessel and then returns to the suppression pool. (I.N.)

  18. Research of the heat exchanging processes running in the heating and hot water supply loops of the coil heat exchangers

    Directory of Open Access Journals (Sweden)

    Ірина Геннадіївна Шитікова

    2016-11-01

    Full Text Available The fuel-energy complex research has made it possible to disclose a huge power-saving potential in the municipal heat-and-power engineering. Power-and-resource-saving units and systems are becoming extremely urgent because of the power engineering crisis expansion. The self-adjusting heat supply system from the individual heating points with the heat-accumulating units and coil heat exchangers for independent heating and water supply systems has been examined. Coil heat exchangers are used in municipal heating for heat transfer (e.g. geothermal waters for the independent mains of the heating and hot water supply systems. The heat engineering calculation of the heating and accumulating unit with the coil heat exchanger for independent heat supply systems from individual heater was performed and experimental data were received at the experimental industrial unit under the laboratory conditions. The peculiarities of the flows in the intertubular space, their influence on the heat exchange and temperatures of the first and intermediate mains have been shown. It is important to know the processes running inside the apparatus to be able to improve the technical characteristics of the three-loop coil heat exchanger. The task solution will make it possible to save the materials consumption for the three-loop coil heat exchangers in the future

  19. The Leuze mineral water swimming pool - purposefully optimized energy utilization. Mineralbad Leuze: Sinnvoll optimierte Energienutzung

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-04-01

    The mineral-water swimming pool in Stuttgart-Bad Cannstatt is fed by mineral springs. The author reports on the design and energy technology used in this indoor swimming pool (photographs), pool hall (feed and exhaust air), treatment basin, showers, locker rooms (air throughput rate, feed and exhaust air management), cafeteria, kitchen, gymnastics and technical services rooms, toilets, chemicals storage room, cooling system and heat pump (heat recovery from drained pool water up to 50%). District heating steam (18 bar) is used for heat supply (reducing station). The author comments on the temperature levels required for different heating cycles (hot-pool hall, hot-water basin, skylight heating, space heating) and on thermal output requirements (kW). (HWJ).

  20. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit...... in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared....... The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  1. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  2. Nuclear boiling heat transfer and critical heat flux in titanium dioxide-water nanofluids

    International Nuclear Information System (INIS)

    Okawa, Tomio; Takamura, Masahiro; Kamiya, Takahito

    2011-01-01

    Nucleate boiling heat transfer was experimentally studied for saturated pool boiling of water-based nanofluids. Since significant nanoparticle deposition on the heated surface was observed after the nucleate boiling in nanofluids, measurement of CHF was also carried out using the nanoparticle deposited heated surface; pure water was used in the CHF measurement. In the present work, the heated surface was a 20 mm diameter cupper surface, and titanium-dioxide was selected as the material of nanoparticles. Experiments were performed for upward- and downward-facing surfaces. Although the CHFs for the downward-facing surface were generally lower than those for the upward-facing surface, the CHFs for the nanoparticle deposited surface were about 1.9 times greater than those for the bare surface in both the configurations. The CHF improvement corresponded well to the reduction of the surface contact angle. During the nucleate boiling in nanofluids, the boiling heat transfer showed peculiar behavior; it was first deteriorated, then improved, and finally approached to an equilibrium state. This observation indicated that the present nanofluid had competing effects to deteriorate and improve the nucleate boiling heat transfer. It was assumed that the wettability and the roughness of the heated surface were influenced by the deposited nanoparticles to cause complex variation of the number of active nucleation sites. During the nucleate boiling of pure water using the downward-facing surface, a sudden increase in the wall temperature was observed stochastically probably due to the accumulation of bubbles beneath the heated surface. Such behavior was not observed when the pure water was replaced by the nanofluid. (author)

  3. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    Science.gov (United States)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  4. Development of a nonazeotropic heat pump for crew hygiene water heating

    Science.gov (United States)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.

  5. Low-Cost Solar Water Heating Research and Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  6. Wasted Heat Engine Utilization in Central AC Condenser Type Water Chiller for Economical Energy Water Heaters

    Directory of Open Access Journals (Sweden)

    I Made Rasta

    2012-11-01

    Full Text Available Central AC type water chiller is a refrigeration machine that release heat to environment. Heat energy that released to environment comes from room heat load that absorbed by machine and heat from compressor. The best form in using this loss energy is heat recovery water heater technology, where this machine will take heat from condenser by a heat exchanger to heating water. Refrigerant will flow in the heat exchanger before entering condenser, after that refrigerant flow to other components such as, expansion valve, evaporator, compressor and than return again to condenser, this process will be cycling regularly (closed cycle. Based on experimental and analysis result especially for AC with capacity 2 Pk, and tank capacity 75 liter, with water heater recovery device obtained that: (1 Compressor power consumption decrease from 1.66 kW to 1.59kW. (2 Heat rejected from condenser and used by water heater has ratio 4.683 kJ/s and 1.59 kJ/s, with water heater efficiency is 32.2%. (3 Maximum water temperature can be reached are in range 34oC – 47.5oC in 10-150 minutes and flow rate is 0.5 – 2.5 liter /min

  7. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  8. Heat pump using dual heat sources of air and water. Performance in cooling mode; Mizu kuki ryonetsugen heat pump no kenkyu. Reibo unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y [Kubota Corp., Osaka (Japan)

    1997-11-25

    When a heat pump is used for cooling purpose, it is possible to utilize different kinds of waste water as high-heat sources. However, these heat sources would have their temperatures vary with seasons and time in a day. Therefore, a discussion was given on performance of a heat pump when water and air heat sources are used for condensers during cooling operation independently, in series and in parallel, respectively. The air condenser shows an equivalent COP as compared with the water condenser when air temperature is lower by about 8 degC than water temperature. At the same heat source temperature, the COP for the water condenser indicated a value higher by about 0.6 than the case of the air condenser. A method to use condensers in parallel experiences little contribution from the air heat source, and performance of the heat pump decreases below the case of using the water heat source independently when the air heat source temperature becomes higher than that of the water heat source. In the case of series use in which a water condenser is installed in front and an air condenser in rear, its effect is exhibited when temperature in the air heat source is lower than that in the water heat source. Better performance was shown than in operating the water heat source independently. 2 refs., 9 figs.

  9. Water chemistry control at FBTR

    International Nuclear Information System (INIS)

    Panigrahi, B.S.; Jambunathan, D.; Suresh Kumar, K.V.; Ramanathan, V.; Srinivasan, G.; Ramalingam, P.V.

    2008-01-01

    Condenser cooling and service water systems together serve as the cooling water system of Fast Breeder Test Reactor (FBTR). Palar river water serves as the make-up to the cooling water system. Initially, the service water system alone was commissioned in phases depending upon the arrival of auxiliary equipments at site. During this period, the water was not treated chemically and it also inadvertently remained stagnant for some time in some systems. Thereafter, a threshold chemical treatment was started. However, pin-hole leaks and reduced flow through the heat exchangers were observed and therefore chemical cleaning of headers was done and small diameter pipelines were replaced. Following this a full fledged chemistry control with proprietary formulations was initiated. Later the condenser cooling system was commissioned and the chemical treatment was reviewed. With adoption of improved monitoring methodology and treatment formulation satisfactory corrosion control (< 3 mpy) with minimum deposition problem in this system could be achieved. The primary coolant (primary sodium) of FBTR transfers the nuclear heat to the secondary coolant (secondary sodium) that in turn transfers heat to water in Once Through Steam Generator (OTSG) to generate superheated steam (480 deg C at 125 bar). Efficient water chemistry control plays the vital role in minimizing corrosion related failures of steam generator tubes and ensuring steam generator tube integrity. Therefore, the technical specifications of chemistry parameters of feed/steam water at FBTR are made very stringent to maintain the purity of water at the best attainable level. To meet this stringent feed water and steam quality specifications, online monitoring techniques have been employed in the steam/water circuit to get continuous information about the purity. These monitors have helped significantly in achieving the required feed water quality and running the steam generator for more than 25000 hours without any tube

  10. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  11. Decontamination of drinking water by direct heating in solar panels.

    Science.gov (United States)

    Fjendbo Jørgensen, A J; Nøhr, K; Sørensen, H; Boisen, F

    1998-09-01

    A device was developed for direct heating of water by solar radiation in a flow-through system of copper pipes. An adjustable thermostat valve prevents water below the chosen temperature from being withdrawn. The results show that it is possible to eliminate coliform and thermotolerant coliform bacteria from naturally contaminated river water by heating to temperatures of 65 degrees C or above. Artificial additions of Salmonella typhimurium, Streptococcus faecalis and Escherichia coli to contaminated river water were also inactivated after heating to 65 degrees C and above. The total viable count could be reduced by a factor of 1000. The heat-resistant bacteria isolated from the Mlalakuva River (Tanzania) were spore-forming bacteria which exhibited greater heat resistance than commonly used test bacteria originating from countries with colder climates. To provide a good safety margin it is recommended that an outlet water temperature of 75 degrees C be used. At that temperature the daily production was about 501 of decontaminated water per m2 of solar panel, an amount that could be doubled by using a heat exchanger to recycle the heat.

  12. A deterministic evaluation of heat stress mitigation and feed cost under climate change within the smallholder dairy sector.

    Science.gov (United States)

    York, L; Heffernan, C; Rymer, C; Panda, N

    2017-05-01

    In the global South, dairying is often promoted as a means of poverty alleviation. Yet, under conditions of climate warming, little is known regarding the ability of small-scale dairy producers to maintain production and/or the robustness of possible adaptation options in meeting the challenges presented, particularly heat stress. The authors created a simple, deterministic model to explore the influence of breed and heat stress relief options on smallholder dairy farmers in Odisha, India. Breeds included indigenous Indian (non-descript), low-grade Jersey crossbreed and high-grade Jersey crossbreed. Relief strategies included providing shade, fanning and bathing. The impact of predicted critical global climate parameters, a 2°C and 4°C temperature rise were explored. A feed price scenario was modelled to illustrate the importance of feed in impact estimation. Feed costs were increased by 10% to 30%. Across the simulations, high-grade Jersey crossbreeds maintained higher milk yields, despite being the most sensitive to the negative effects of temperature. Low-capital relief strategies were the most effective at reducing heat stress impacts on household income. However, as feed costs increased the lower-grade Jersey crossbreed became the most profitable breed. The high-grade Jersey crossbreed was only marginally (4.64%) more profitable than the indigenous breed. The results demonstrate the importance of understanding the factors and practical trade-offs that underpin adaptation. The model also highlights the need for hot-climate dairying projects and programmes to consider animal genetic resources alongside environmentally sustainable adaptation measures for greatest poverty impact.

  13. An analysis of pavement heat flux to optimize the water efficiency of a pavement-watering method

    International Nuclear Information System (INIS)

    Hendel, Martin; Colombert, Morgane; Diab, Youssef; Royon, Laurent

    2015-01-01

    Pavement-watering as a technique of cooling dense urban areas and reducing the urban heat island effect has been studied since the 1990's. The method is currently considered as a potential tool for and climate change adaptation against increasing heat wave intensity and frequency. However, although water consumption necessary to implement this technique is an important aspect for decision makers, optimization of possible watering methods has only rarely been conducted. An analysis of pavement heat flux at a depth of 5 cm and solar irradiance measurements is proposed to attempt to optimize the watering period, cycle frequency and water consumption rate of a pavement-watering method applied in Paris over the summer of 2013. While fine-tuning of the frequency can be conducted on the basis of pavement heat flux observations, the watering rate requires a heat transfer analysis based on a relation established between pavement heat flux and solar irradiance during pavement insolation. From this, it was found that watering conducted during pavement insolation could be optimized to 30-min cycles and water consumption could be reduced by more than 80% while reducing the cooling effect by less than 13%. - Highlights: • The thermal effects of pavement-watering were investigated in Paris, France. • Pavement-watering was found to significantly affect pavement heat flux 5 cm deep. • When insolated, a linear relation was found between heat flux and solar radiation. • Pavement-watering did not alter its slope, but introduced a negative intercept. • Subsequent improvements of the watering period, frequency and rate are proposed

  14. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  15. Heat plumes in waters

    International Nuclear Information System (INIS)

    Haeuser, J.

    1977-01-01

    With the aid of a time-dependent, two-dimensional remote-field model - remote-field meaning that region of the water where the effect of the discharge of cooling water on the flow velocity is negligible - three parameters of importance for the water quality in waters are determined. Distributions are calculated for temperature, biochemical need of oxygen and oxygen content. The influence of water depth is accounted for by integration over the vertical axis. Allowance is made for turbulence by taking the time means of the respective variables. The influence of a time-dependent heat flow through the free surface is taken into account as well as a variation in time of the flow velocity, occuring, e.g., in tidal rivers (Elbe). (orig.) [de

  16. Feed-water heaters alternative design comparison; Comparacion de disenos alternativos de calentadores

    Energy Technology Data Exchange (ETDEWEB)

    Torres Toledano, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    A procedure is presented for the alternative design comparison of feed water heaters, based in the failure records of damaged tubes during operation. The procedure is used for cases in which non-continuous or random inspections are made to the feed-water heaters. [Espanol] Se presenta un procedimiento para comparar disenos alternativos de calentadores, basandose en los registros de fallas de los tubos rotos acumuladas durante su operacion. El procedimiento se emplea para casos en los que se realizan inspecciones a los calentadores no continuas, ya sea periodicas o al azar.

  17. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  18. 76 FR 7106 - Food Additives Permitted in Feed and Drinking Water of Animals; Formic Acid

    Science.gov (United States)

    2011-02-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 573 [Docket No. FDA-2009-F-0525] Food Additives Permitted in Feed and Drinking Water of Animals; Formic Acid AGENCY...) is amending the regulations for food additives permitted in feed and drinking water of animals to...

  19. Feeding different levels of a barley based concentrate to Jersey ...

    African Journals Online (AJOL)

    maryna

    there was no further increase when feeding the high level of concentrate. Live weight ... 33º 58′ 38″ S, 22º 25′ 16 ″E and at an altitude of 210 m. The milk ... detergent fibre was determined by heating a 0.5 g sample to boiling point in 100 mL of neutral detergent plus. 50 µL of heat ... of bags in cold water for 10 minutes.

  20. Attachment of iron corrosion products on steam generator tube and feed-water pump in PWRs secondary system

    International Nuclear Information System (INIS)

    Shoda, Y.; Ishihara, N.; Miyata, H.; Ohira, T.; Watanabe, Y.; Nonaka, Y.

    2010-01-01

    Operating experience of the secondary systems in PWRs indicates that scale attachment distinctly have an effect on the performance of water-steam cycle. Attached scale on outer surface of steam generator (SG) tube could induce many problems such as decrease heat efficiency of plant, corrosion of tube by intergranular attack (IGA), and choke of flow channel. Scale attached on rotor blade of feed water pump increases the driving steam consumption to keep the constant flow rate, and results in the thermal efficiency decrease of the plant. In this study, two types of test about scale deposition on equipment were executed in the conditions simulating the secondary system of PWR. One is SG model test, which simulated the circulating boiler composed of single SG tube and blow down line. The deposition rate under AVT condition was equivalent to plants revealed with extended period. High-AVT test provided useful reference, because the deposition rate of power plant is too small to measure in a short period after the beginning of High-AVT operation in Japan. The other is feed water pump model test. The mock-up pump is composed of a rotating stainless steel disk. As a result, it is confirmed that the deposition rate depends mostly on iron concentration in water and the exfoliation rate depends mainly on pH. Applying this information, the scale deposition-growth behavior on the equipment is quantitatively expressed by the model combined of scale deposition behavior and exfoliation behavior couples with the former. These results bring effective estimation for suppressing deposition-growth by the selection of water chemistry management and/or equipment improvement in the PWR secondary system. (author)

  1. Refrigerant charge management in a heat pump water heater

    Science.gov (United States)

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  2. Numerical study of evaporation in a vertical annulus heated at the inner wall

    International Nuclear Information System (INIS)

    Ben Radhia, R.; Ben Jabrallah, S.; Ben Jabrallah, S.; Corriou, J.P.; Harmand, S.

    2011-01-01

    Mixed convection during evaporation of a water falling film in a vertical concentric annulus was studied numerically. The water thin film falls on the inner tube and is subjected to a constant heat flux density, whereas the outer cylinder is assumed to be insulated and dry. An imposed air flow circulates within the gap between the two concentric tubes. The objective of this work is to understand the evaporation phenomenon in order to improve the average evaporated mass flux density and heat and mass transfer. Conservative equations governing the gas phase are solved numerically using the finite volume method. In the liquid phase, a method based on local heat and mass balances on each level is used. Thus, the following liquid film parameters, feed water mass flow, feed temperature and heat flux density, are taken into account. The obtained results are analyzed to emphasize and evaluate the influence of the previous operating parameters and the annulus curvature on the effective evaporation surface and on the mass flux density of evaporated water. (authors)

  3. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  4. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  5. Heat transfer with a split water channel

    International Nuclear Information System (INIS)

    Krinsky, S.

    1978-01-01

    The heat transfer problem associated with the incidence of synchrotron radiation upon a vacuum chamber wall cooled by a single water channel was previously studied, and a numerical solution to the potential problem was found using the two-dimensional magnet program POISSON. Calculations were extended to consider the case of a split water channel using POISSON to solve the potential problem for a given choice of parameters. By optimizing the dimensions, boiling of the water can be avoided. A copper chamber is a viable solution to the heat transfer problem at a beam port

  6. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    International Nuclear Information System (INIS)

    Norwood, Zack; Kammen, Daniel

    2012-01-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25 kWh −1 electricity and $0.03 kWh −1 thermal, for a system with a life cycle global warming potential of ∼80 gCO 2 eq kWh −1 of electricity and ∼10 gCO 2 eq kWh −1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40 m −3 , water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40–$1.90 m −3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions. (letter)

  7. Increase of COP for heat transformer in water purification systems. Part II - Without increasing heat source temperature

    International Nuclear Information System (INIS)

    Romero, R.J.; Siqueiros, J.; Huicochea, A.

    2007-01-01

    The integration of a water purification system allows a heat transformer to increase the actual coefficient of performance, by the reduction of the amount of heat supplied by unit of heat. A new defined COP called COP WP is proposed for the present system, which considers the fraction of heat recycled. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and water purification coefficient of performance (COP WP ) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that the proposed (AHTWP) system is capable of increasing the original value of COP ET up to 1.6 times its original value by recycling energy from a water purification system. The proposed COP WP allows increments for COP values from any experimental data for water purification or for any other distillation system integrated to a heat transformer, regardless of actual COP A value or working fluid-absorbent pair

  8. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    International Nuclear Information System (INIS)

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon; Bae, Sung-Won; Kwon, Tae-Soon

    2015-01-01

    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant

  9. Influence of ambient temperatures on performance of a CO2 heat pump water heating system

    International Nuclear Information System (INIS)

    Yokoyama, Ryohei; Shimizu, Takeshi; Ito, Koichi; Takemura, Kazuhisa

    2007-01-01

    In residential applications, an air-to-water CO 2 heat pump is used in combination with a domestic hot water storage tank, and the performance of this system is affected significantly not only by instantaneous ambient air and city water temperatures but also by hourly changes of domestic hot water consumption and temperature distribution in the storage tank. In this paper, the performance of a CO 2 heat pump water heating system is analyzed by numerical simulation. A simulation model is created based on thermodynamic equations, and the values of model parameters are estimated based on measured data for existing devices. The calculated performance is compared with the measured one, and the simulation model is validated. The system performance is clarified in consideration of seasonal changes of ambient air and city water temperatures

  10. Increase of COP for heat transformer in water purification systems. Part I - Increasing heat source temperature

    International Nuclear Information System (INIS)

    Siqueiros, J.; Romero, R.J.

    2007-01-01

    The integration of a water purification system in a heat transformer allows a fraction of heat obtained by the heat transformer to be recycled, increasing the heat source temperature. Consequently, the evaporator and generator temperatures are also increased. For any operating conditions, keeping the condenser and absorber temperatures and also the heat load to the evaporator and generator, a higher value of COP is obtained when only the evaporator and generator temperatures are increased. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as the working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and the increase in the coefficient of performance (COP) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that proposed (AHTWP) system is capable of increasing the original value of COP ET more than 120%, by recycling part of the energy from a water purification system. The proposed system allows to increase COP values from any experimental data for water purification or any other distillation system integrated to a heat transformer, regardless of the actual COP value and any working fluid-absorbent pair

  11. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  12. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-11-22

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  13. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation; Weitzel, E. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation

    2017-03-03

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  14. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-03-01

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  15. Integrated design and optimization of technologies for utilizing low grade heat in process industries

    International Nuclear Information System (INIS)

    Kwak, Dong-Hun; Binns, Michael; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Implementation of a modeling and design framework for the utilization of low grade heat. • Application of process simulator and optimization techniques for the design of technologies for heat recovery. • Systematic and holistic exploitation for the recovery of industrial low grade heat. • Demonstration of the applicability and benefit of integrated design and optimization framework through a case study. - Abstract: The utilization of low grade heat in process industries has significant potential for improving site-wide energy efficiency. This paper focuses on the techno-economic analysis of key technologies for energy recovery and re-use, namely: Organic Rankine Cycles (ORC), boiler feed water heating, heat pumping and absorption refrigeration in the context of process integration. Process modeling and optimization in a holistic manner identifies the optimal integrated configuration of these technologies, with rigorous assessment of costs and technical feasibility of these technologies. For the systematic screening and evaluation of design options, detailed process simulator models are evaluated and optimization proceeds subject to design constraints for the particular economic scenarios where technology using low grade heat is introduced into the process site. Case studies are presented to illustrate how the proposed modeling and optimization framework can be useful and effective in practice, in terms of providing design guidelines and conceptual insights for the application of technologies using low grade heat. From the case study, the best options during winter are the ORC giving a 6.4% cost reduction for the ideal case with low grade heat available at a fixed temperature and boiler feed water heating giving a 2.5% cost reduction for the realistic case with low grade heat available at a range of temperatures. Similarly during summer boiler feed water heating was found to be the best option giving a 3.1% reduction of costs considering a

  16. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2004-08-04

    benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers

  17. Measurement of water lost from heated geologic salt

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1979-07-01

    This report describes three methods used to measure the rate at which water is lost from heated geologic salt. The three methods were employed in each of a series of proof tests which were performed to evaluate instrumentation designed to measure the water-loss rate. It was found that the water lost from heated, 1-kg salt specimens which were measured according to these three methods was consistent to within an average 9 percent

  18. Evaporation heat transfer of hot water from horizontal free service

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ebihara, Y.; Hirota, T.; Murase, M.

    2011-01-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35 o C ~ 65 o C. Cold air was approximately 25 o C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  19. Evaporation heat transfer of hot water from horizontal free service

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Y.; Ebihara, Y.; Hirota, T. [Shinshu Univ., Ueda, Nagano (Japan); Murase, M. [INSS, Mihama-cho, Fukui (Japan)

    2011-07-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35{sup o}C ~ 65{sup o}C. Cold air was approximately 25{sup o}C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  20. Updated heat transfer correlations for supercritical water-cooled reactor applications

    International Nuclear Information System (INIS)

    Mokry, S.J.; Pioro, I.L.; Farah, A.; King, K.

    2011-01-01

    In support of the development of SuperCritical Water-cooled Reactors (SCWRs), research is currently being conducted for heat-transfer at supercritical conditions. Currently, there are no experimental datasets for heat transfer from power reactor fuel bundles to the fuel coolant (Water) available in open literature. Therefore, for preliminary calculations, heat-transfer correlations obtained with bare tube data can be used as a conservative approach. A large set of experimental data, for supercritical water was analyzed and an updated heat-transfer correlation for forced-convective heat-transfer, in the normal heat transfer regime, was developed. This experimental dataset was obtained within conditions similar to those for proposed SCWR concepts. Thus, this new correlation can be used for preliminary heat-transfer calculations in SCWR fuel channels. It has demonstrated a good fit for the analyzed dataset. Experiments with SuperCritical Water (SCW) are very expensive. Therefore, a number of experiments are performed in modeling fluids, such as carbon dioxide and refrigerants. However, there is no common opinion if SC modeling fluids' correlations can be applied to SCW and vice versa. Therefore, a correlation for supercritical carbon dioxide heat transfer was developed as a less expensive alternative to using supercritical water. The conducted analysis also meets the objective of improving our fundamental knowledge of the transport processes and handling of supercritical fluids. These correlations can be used for supercritical water heat exchangers linked to indirect-cycle concepts and the cogeneration of hydrogen, for future comparisons with other independent datasets, with bundle data, for the verification of computer codes for SCWR core thermalhydraulics and for the verification of scaling parameters between water and modeling fluids. (author)

  1. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  2. Solar water heating system for a lunar base

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  3. TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts

    Science.gov (United States)

    Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.

    2018-05-01

    Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.

  4. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  5. Water feeding/condensating device and operation method in nuclear power plant

    International Nuclear Information System (INIS)

    Shibayama, Takashi.

    1989-01-01

    The present invention overcomes a problem in reactor water level control occurring upon operation of a water feeding/condensating system in a nuclear power plant. That is, the water feed system to a nuclear reactor is constituted with parallel circuit comprising a reactor feedwater pump driven by a steam turbine and a serial circuit composed of a reactor feedwater pump driven by an electrical motor and a pump adjusting valve for controlling the amount of feedwater at the exit of the motor driven feedwater pump. Further, a reactor feedwater control valve having a function of controlling the feedwater to the reactor is disposed to the bypass pipeway for bypassing the parallel circuit of feedwater pumps. In this constitution, water can be fed to the nuclear reactor by way of the reactor feedwater pump bypass control valve upon starting and stopping of a nuclear feedwater pump driven by electric motor upon starting and shutdown of the nuclear reactor. Accordingly, stable water level control can be conducted for the reactor core with no effect of rapid pressure fluctuation due to the starting and the stopping of the reactor feedwater pump driven by electric motor. (I.S.)

  6. An alternative process to treat boiler feed water for reuse.

    Science.gov (United States)

    Guirgis, Adel; Ghosh, Jyoti P; Achari, Gopal; Langford, Cooper H; Banerjee, Daliya

    2012-09-01

    A bench-scale process to treat boiler feed water for reuse in steam generation was developed. Industrial water samples from a steam-assisted gravity drainage plant in northern Alberta, Canada, were obtained and samples characterized. The technology, which consists of coagulation-settling to remove oil/grease and particulates followed by an advanced oxidative treatment, led to clean water samples with negligible organic carbon. Coagulation followed by settling removed most particulates and some insoluble organics. The advanced oxidative treatment removed any remaining color in the samples, decreased the organic content to near-zero, and provided water ready for reuse.

  7. Heat pump using dual heat sources of air and water. Performance with heat sources arranged in parallel; Mizu kuki ryonetsugen heat pump no kenkyu. Netsugen heiretsu unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N; Sato, S [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y; Hamada, K [Kubota Corp., Osaka (Japan)

    1996-10-27

    A heat pump system using water and air as heat sources was built and evaluated for its performance. In this system, evaporators may be operated singly or as connected in parallel or series, and, for each case, the quantity of heat acquired may be measured and system performance may be quantitatively evaluated. The findings follow. When the two heat sources are equal in temperature in the single-evaporator operation, the evaporation temperature is about 7{degree}C higher on the water side than on the air side, and the performance coefficient is about 0.7 higher. When the air heat source temperature is 25{degree}C in the parallel operation, like quantities of heat are obtained from both heat sources, and collection of heat from the water increases with a decrease in the air heat source temperature but, with an increase, collection from the air increases. When the air heat source temperature decreases, the evaporation temperature decreases in the single-evaporator working on the air and in the parallel operation but it levels off in the single-evaporator working on the water alone. When the water heat source temperature decreases, evaporation temperature drop is sharper in the single-evaporator working on the water than in the parallel operation, which suggests the transfer from the parallel operation to the single-evaporator working on the air. In the single-evaporator operation on the water heat source, the evaporation temperature linearly decreases with an increase in superheating. 1 ref., 10 figs.

  8. Impact of heated waters on water quality and macroinvertebrate community in the Narew River (Poland

    Directory of Open Access Journals (Sweden)

    Krolak Elzbieta

    2017-07-01

    Full Text Available The effect of heated waters from coal-burning power stations on the water parameters and the occurrence of macroinvertebrates depends on the individual characteristics of the river to which the heated waters are discharged. The objective of the study was to assess the impact of heated water from the Ostrołęka Power Station on selected water properties and the macroinvertebrate community in the Narew River. Samples were collected in years: 2013-2016 along two river stretches: upstream and downstream of the canal. The water temperature was higher and the oxygen concentrations were lower at the downstream sites compared to the upstream sites of the canal. The values of conductivity, concentrations of nitrates, phosphates, chlorides and calcium were similar at the sampling sites. A total of 33 families of macrozoobenthos were found. The numbers of families were positively correlated with the temperature and conductivity and negatively correlated with oxygen. The heated waters were found to have no effect on the Shannon-Wiener diversity index. The inflow of heated waters increased the percentage of Gammaridae, represented by species Dikerogammarus haemobaphes (Eichwald, 1841 and decreased the percentage of Chironomidae. The presence of the thermophilous bivalve Sinanodonta woodiana (Lea, 1934 was noted downstream of the canal.

  9. Feeding frequency, but not dietary water content, affects voluntary physical activity in young lean adult female cats.

    Science.gov (United States)

    de Godoy, M R C; Ochi, K; de Oliveira Mateus, L F; de Justino, A C C; Swanson, K S

    2015-05-01

    The objective of this study was to investigate whether increased dietary water content and feeding frequency increased voluntary physical activity of young, lean adult female cats. A replicated 4 × 4 Latin square design with a 2 × 2 factorial treatment arrangement (feeding frequency and water content) was used. The 4 treatments consisted of 1 meal daily dry pet food without added water (1D; 12% moisture as is), 1 meal daily dry pet food with added water (1W; 70% total water content), 4 meals daily dry pet food without added water (4D; 12% moisture as is), and 4 meals daily dry pet food with added water (4W; 70% total water content). Eight healthy adult, lean, intact, young, female domestic shorthair cats were used in this experiment. Voluntary physical activity was evaluated using Actical activity monitors placed on collars and worn around the cats' necks for the last 7 d of each experimental period of 14 d. Food anticipatory activity (FAA) was calculated based on 2 h prior to feeding periods and expressed as a percentage of total daily voluntary physical activity. Increased feeding frequency (4 vs. 1 meal daily) resulted in greater average daily activity (P = 0.0147), activity during the light period (P = 0.0023), and light:dark activity ratio (P = 0.0002). In contrast, physical activity during the dark period was not altered by feeding frequency (P > 0.05). Cats fed 4 meals daily had increased afternoon FAA (P= 0.0029) compared with cats fed once daily. Dietary water content did not affect any measure of voluntary physical activity. Increased feeding frequency is an effective strategy to increase the voluntary physical activity of cats. Thus, it may assist in the prevention and management of obesity.

  10. ACCOUNTING FOR NONUNIFORMITY OF WATER CONSUMPTION IN THE EXHAUST AIR HEAT RECLAMATION SYSTEMS FOR HOT WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Samarin Oleg Dmitrievich

    2017-03-01

    Full Text Available This article is devoted to assessment of the influence of variation of daily hot water consumption on the predicted energy effect by using heat recovery of exhaust air in typical exhaust ventilation systems of the most commonly used flat buildings during their switch to the mechanical induction for the pre-heating of water for hot water supply. It outlines the general principle of the organization of this method of energy saving and presents the basic equations of heat transfer in the heat exchanger. The article proposes a simplified method of accounting for changes in the heat transfer coefficient of air-to-water heat exchanger with fluctuations of water demand using existing dependencies for this coefficient from the rate flow of heating and heated fluid through the device. It presents observations to identify the parameters of the real changes of water consumption during the day with the main quantitative characteristics of normally distributed random variables. Calculation of thermal efficiency of the heat exchange equipment using dimensionless parameters through the number of heat transfer under the optimal opposing scheme of fluid motion is completed under conditions of variable water flow rate for the type residential building of the П3-1/16 series using the Monte Carlo method for numerical modeling of stochastic processes. The estimation of the influence of fluctuation of the current water consumption on the instantaneous thermal efficiency factor of the heat exchanger and the total energy consumption of the building is given, and it is shown that the error of said calculation using average daily parameters is within the margin of usual engineering calculation.

  11. Heavy water plant

    International Nuclear Information System (INIS)

    Rogers, D.G.

    1978-01-01

    This invention provides an auxiliary contactor column or exchange tower to receive stripped gas and vapour from a stripper. An auxiliary supply of heated feed water is passed in isotope exchanging relation with the gas in the auxiliary contactor to raise the deuterium content of the gas, which then is returned to the main process, at the hot tower or at the feed absorption tower as already described in relation to previous practice. Flow balance between gas and water in the auxiliary contactor is achieved relatively simply by monitoring the deuterium content of the hot water leaving the contactor column, and regulating the supply of hot water, to the contactor column in response thereto. (author)

  12. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  13. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    Directory of Open Access Journals (Sweden)

    Piljae Im

    2018-01-01

    Full Text Available The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m2 new addition. This recycled water heat pump (RWHP system uses seven 105 kW (cooling capacity modular water-to-water heat pumps (WWHPs. Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW or 7 °C chilled water (CHW to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly, reduced CO2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.

  14. Experimental study on heat capacity of paraffin/water phase change emulsion

    International Nuclear Information System (INIS)

    Huang, L.; Noeres, P.; Petermann, M.; Doetsch, C.

    2010-01-01

    A paraffin/water phase change emulsion is a multifunctional fluid in which fine paraffin droplets are dispersed in water by a surfactant. This paper presents an experimental study on the heat capacity of an emulsion containing 30 wt.% paraffin in a test rig. The results show that the heat capacity of the emulsion consists of the sensible heat capacity of water and that of the paraffin as well as the latent heat capacity of the paraffin during the phase transition solid-liquid. The emulsion is an attractive alternative to chilled water for comfort cooling applications, because it has a heat capacity of 50 kJ/kg from 5 to 11 deg. C, which is two times as high as that of water in the same temperature range.

  15. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  16. Research and Development Roadmap for Water Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  17. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  18. Heat transfer coefficient: Medivance Arctic Sun Temperature Management System vs. water immersion.

    Science.gov (United States)

    English, M J; Hemmerling, T M

    2008-07-01

    To improve heat transfer, the Medivance Arctic Sun Temperature Management System (Medivance, Inc., Louisville, CO, USA) features an adhesive, water-conditioned, highly conductive hydrogel pad for intimate skin contact. This study measured and compared the heat transfer coefficient (h), i.e. heat transfer efficiency, of this pad (hPAD), in a heated model and in nine volunteers' thighs; and of 10 degrees C water (hWATER) in 33 head-out immersions by 11 volunteers. Volunteer studies had ethical approval and written informed consent. Calibrated heat flux transducers measured heat flux (W m-2). Temperature gradient (DeltaT) was measured between skin and pad or water temperatures. Temperature gradient was changed through the pad's water temperature controller or by skin cooling on immersion. The heat transfer coefficient is the slope of W m-2/DeltaT: its unit is W m-2 degrees C-1. Average with (95% CI) was: model, hPAD = 110.4 (107.8-113.1), R2 = 0.99, n = 45; volunteers, hPAD = 109.8 (95.5-124.1), R2 = 0.83, n = 51; and water immersion, hWATER = 107.1 (98.1-116), R2 = 0.86, n = 94. The heat transfer coefficient for the pad was the same in the model and volunteers, and equivalent to hWATER. Therefore, for the same DeltaT and heat transfer area, the Arctic Sun's heat transfer rate would equal water immersion. This has important implications for body cooling/rewarming rates.

  19. Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Elizondo-González, Regina; Quiroz-Guzmán, Eduardo; Escobedo-Fregoso, Cristina; Magallón-Servín, Paola; Peña-Rodríguez, Alberto

    2018-01-01

    Two experimental feeding trials were conducted during four weeks to evaluate the use of Ulva lactuca in shrimp culture: (1) for wastewater bioremediation, and (2) using different inclusion levels of U. lactuca meal in shrimp feed. In feeding trial 1, shrimp reared under seaweed U. lactuca water exchange in a re-circulation system (SWE) resulted in similar growth and feed utilization as shrimp reared with clean water exchange (CWE). Shrimp under no water exchange (NWE) resulted in significant lower growth and higher feed conversion rate (FCR) compared to the other treatments ( p   0.05). In feeding trial 2, U. lactuca biomass produced by wastewater bioremediation in SWE treatment were dried and ground to formulate diets containing 0, 1, 2, and 3% U. lactuca meal (0UL, 1UL, 2UL, and 3UL). Shrimp fed the 3 UL diet resulted in a significant ( p  shrimp lipid and carotenoid content by 30 and 60%, respectively, compared to control diet. Seaweed U. lactuca is suggested as a desirable species for wastewater bioremediation in integrated aquaculture systems, and its meal as a good feed additive for farmed shrimp.

  20. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  1. Discussion on application of water source heat pump technology to uranium mines

    International Nuclear Information System (INIS)

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  2. Economics of feeding drinking water containing organic acids to ...

    African Journals Online (AJOL)

    A feeding trial was conducted to determine the economic effect of acidifying drinking water of broiler chickens with organic acids. The organic acids were acetic, butyric, citric and formic acids, each offered at 0.25%. The control did not contain any of the acids. One hundred and fifty (150) day old AborAcre - plus chicks were ...

  3. Water Hammer Mitigation on Postulated Pipe Break of Feed Water System

    International Nuclear Information System (INIS)

    Seong, Ho Je; Woo, Kab Koo; Cho, Keon Taek

    2008-01-01

    The Feed Water (FW) system supplies feedwater from the deaerator storage tank to the Steam Generators(S/G) at the required pressure, temperature, flow rate, and water chemistry. The part of FW system, from the S/G to Main Steam Valve House just outside the containment building wall, is designed as safety grade because of its safety function. According to design code the safety related system shall be designed to protect against dynamic effects that may results from a pipe break on high energy lines such as FW system. And the FW system should be designed to minimize blowdown volume of S/G secondary side during the postulated pipe break. Also the FW system should be designed to prevent the initiation or to minimize the effects of water hammer transients which may be induced by the pipe break. This paper shows the results of the hydrodynamic loads induced by the pipe break and the optimized design parameters to mitigate water hammer loads of FW system for Shin-Kori Nuclear Power Plant Unit 3 and 4 (SKN 3 and 4)

  4. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    Science.gov (United States)

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  5. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  6. Turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Noda, Nobuaki

    2008-01-01

    The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by an experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thickness (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influence of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer is investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for the wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15%, difference. (author)

  7. Turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Noda, Nobuaki

    2007-01-01

    The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by the experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thicknesses (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influences of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer are investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15% difference. (author)

  8. ENERGY SAVING RESERVES IN THE PRODUCTION OF FEED ADDITIVES WITH THE SPECIFIED GRANULOMETRIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    A. A. Shevtsov

    2015-01-01

    Full Text Available Due to the growing need to substitute expensive foreign-made feed products need for expanding food resources in the Russian market appears. The disadvantages of existing technological lines for the preparation of mineral feed additives are high specific energy consumption, low economic efficiency and inadequate conditions for environmental safety insuring. That is why energy-efficient production method for the feed additive based on zeolite and a technological line for its realization was developed at the Department of Technology of bread, pastry, pasta and grain processing industries in VSUET. Application of refrigeration unit operating in heat pump mode allows preparation of heat transfer agents with a maximum utilization of secondary heat sources. After drying the spent drying agent is fed to the preheating methioninate copper suspension through the regenerative heat exchange, then to the dehumidification into the evaporator of refrigeration unit and then it is returned to the first section of the two-part condenser in closed-loop mode. Feed fat is heated to 55 ... 60 ° C, by "hot water", heating of which takes place in the second section of the 11th condenser to the temperature of 70 ... 75 ° C and is fed into the jacket of fat melting device. Then it is returned to the second capacitor section to form a recirculation loop. We developed a feed additive with the following particle size distribution: a large fraction of 2.8%, the average fraction of 95.2%, the fine fraction of 2.0%, the residue on the sieve with a mesh № 1,2 of 2,0%, with a moisture content of 6.2%, the angle of repose of 42 deg., dispersibility of 6.9%, a bulk density of 385 kg / m3. The proposed method for the production of the feed additive based on zeolite ensures environmental safety of production due to closed recirculation circuits on material and energy flows, helps to reduce energy and resource consumption for the production of the feed additive, to obtain high

  9. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  10. Energy consumption modeling of air source electric heat pump water heaters

    International Nuclear Information System (INIS)

    Bourke, Grant; Bansal, Pradeep

    2010-01-01

    Electric heat pump air source water heaters may provide an opportunity for significant improvements in residential water heater energy efficiency in countries with temperate climates. As the performance of these appliances can vary widely, it is important for consumers to be able to accurately assess product performance in their application to maximise energy savings and ensure uptake of this technology. For a given ambient temperature and humidity, the performance of an air source heat pump water heater is strongly correlated to the water temperature in or surrounding the condenser. It is therefore important that energy consumption models for these products duplicate the real-world water temperatures applied to the heat pump condenser. This paper examines a recently published joint Australian and New Zealand Standard, AS/NZS 4234: 2008; Heated water systems - Calculation of energy consumption. Using this standard a series TRNSYS models were run for several split type air source electric heat pump water heaters. An equivalent set of models was then run utilizing an alternative water use pattern. Unfavorable errors of up to 12% were shown to occur in modeling of heat pump water heater performance using the current standard compared to the alternative regime. The difference in performance of a model using varying water use regimes can be greater than the performance difference between models of product.

  11. Critical heat flux experiments in a circular tube with heavy water and light water. (AWBA Development Program)

    International Nuclear Information System (INIS)

    Williams, C.L.; Beus, S.G.

    1980-05-01

    Experiments were performed to establish the critical heat flux (CHF) characteristics of heavy water and light water. Testing was performed with the up-flow of heavy and of light water within a 0.3744 inch inside diameter circular tube with 72.3 inches of heated length. Comparisons were made between heavy water and light water critical heat flux levels for the same local equilibrium quality at CHF, operating pressure, and nominal mass velocity. Results showed that heavy water CHF values were, on the average, 8 percent below the light water CHF values

  12. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  13. Heat disposal in water environment

    International Nuclear Information System (INIS)

    Harleman, D.R.F.

    1975-01-01

    The need for continuing development of techniques for predicting temperature distributions due to waste heat discharges into lakes, rivers, estuaries, and the oceans is presented. Diffusion of buoyant jets is examined, including heated surface jets and multiple jets issuing from a submerged multiport diffuser. In the near-field analysis of surface jets the important problems are related to the lateral spreading caused by buoyancy. Comparison of theoretical predictions with laboratory and field observations is given. The mechanics of multiport diffusers for heated discharges in shallow receiving waters are explained in contrast to sewage diffusers. The important problem is the degree to which stratification can be maintained in order to minimize local reintrainment and reduction of dilution capacity. Criteria for stable and unstable flow regimes are provided. A mathematical model for temperature distribution, with or without waste heat addition, in unsteady flows under time-varying meteorological conditions is given. (auth)

  14. Water and heat balances in Doñana wetlands

    Directory of Open Access Journals (Sweden)

    A. Ramos-Fuertes

    2016-10-01

    Full Text Available This paper presents the main results of the study of water balance and surface heat balance in the Doñana marshlands. The study was based on a broad base of hydrometeorological data taken at 10 minute intervals from 2006 to 2011 by a network of six measuring stations located in areas of vegetation-free marsh. This information is used to characterize, at different time scales, the thermal behavior of the marsh by analyzing its hydrometeorology centering on the surface heat fluxes. Thus, we have modeled and analyzed the heat flux between the water and flooded soil and the processes of heat transfer between the water surface and the atmosphere. Special attention has been paid to evaporation, on which the marsh draining process depends.

  15. Evaluation method for radiative heat transfer in polydisperse water droplets

    International Nuclear Information System (INIS)

    Maruyama, Shigenao; Nakai, Hirotaka; Sakurai, Atsushi; Komiya, Atsuki

    2008-01-01

    Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM 2 . The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media

  16. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    International Nuclear Information System (INIS)

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.

    2014-01-01

    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  17. Incidence of marine debris in seabirds feeding at different water depths.

    Science.gov (United States)

    Tavares, D C; de Moura, J F; Merico, A; Siciliano, S

    2017-06-30

    Marine debris such as plastic fragments and fishing gears are accumulating in the ocean at alarming rates. This study assesses the incidence of debris in the gastrointestinal tracts of seabirds feeding at different depths and found stranded along the Brazilian coast in the period 2010-2013. More than half (55%) of the species analysed, corresponding to 16% of the total number of individuals, presented plastic particles in their gastrointestinal tracts. The incidence of debris was higher in birds feeding predominantly at intermediate (3-6m) and deep (20-100m) waters than those feeding at surface (pollution has on marine life and highlight the ubiquitous and three-dimensional distribution of plastic in the oceans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Heat insulation device for reactor pressure vessel in water

    International Nuclear Information System (INIS)

    Nakamura, Heiichiro; Tanaka, Yoshimi.

    1993-01-01

    Outer walls of a reactor pressure vessel are covered with water-tight walls made of metals. A heat insulation metal material is disposed between them. The water tight walls are joined by welding and flanges. A supply pipeline for filling gases and a discharge pipeline are in communication with the inside of the water tight walls. Further, a water detector is disposed in the midway of the gas discharge pipeline. With such a constitution, the following advantages can be attained. (1) Heat transfer from the reactor pressure vessel to water of a reactor container can be suppressed by filled gases and heat insulation metal material. (2) Since the pressure at the inside of the water tight walls can be equalized with the pressure of the inside of the reactor container, the thickness of the water-tight walls can be reduced. (3) Since intrusion of water to the inside of the walls due to rupture of the water tight walls is detected by the water detector, reactor scram can be conducted rapidly. (4) The sealing property of the flange joint portion is sufficient and detaching operation thereof is easy. (I.S.)

  19. The UK solar water heating industry: a period of development and growth

    International Nuclear Information System (INIS)

    Blower, John

    2001-01-01

    This 2001 edition of the guide to UK renewable energy companies examines the solar water heating sector in the UK and presents an illustration of the layout of a typical solar water heating system. The rising demand for solar water heating and growth in sales especially in the export market are noted. Developments within the UK solar water heating manufacturing industry are considered, and details are given of design and development in innovative policy infrastructure, and the SHINE 21 project supported by the EU's ADAPT programme and the UK Department of Trade and Industry involving collaboration between the solar water heating and plumbing industries. Developments in the new build sectors including in-roof solar collector products and the increasing number of solar water heating systems installed in UK houses are discussed along with the promising future for the market

  20. Main boiler feed pump for fast breeder test reactor. Failure analysis and remedial measures

    International Nuclear Information System (INIS)

    Iyer, M.A.K.; Chande, S.K.; Raghuvir, A.D.; Baskar, S.; Kale, R.D.

    1994-01-01

    A small capacity ten stage 670 kw feed water pump is used for supplying feed water at a temperature of 190 deg C to a once through steam generator in the Fast Breeder Test Reactor at Kalpakkam. During preparatory heating up stage to commission the steam generator the pump suffered a severe loss of suction which resulted in failure of hydrostatic journal bearings and extensive damage to pump internals. This paper discusses the detailed mechanism of loss of suction, details of damage to the pump and various modifications carried out to prevent recurrence of the problem. (author). 4 refs., 3 figs., 2 tabs

  1. Corrosion Fatigue in District Heating Water Tanks

    DEFF Research Database (Denmark)

    Maahn, Ernst Emanuel

    1996-01-01

    Three candidate materials for construction of buffer tanks for district heating water have been tested for corrosion fatigue properties in a district heating water environment. The investigation included Slow Strain Rate Testing of plain tensile specimens, crack initiation testing by corrosion...... fatigue of plain tensile specimens and crack growth rate determination for Compact Tensile Specimens under corrosion fatigue conditions. The three materials are equal with respect to stress corrosion sensibility and crack initiation. Crack growth rate is increased with a factor of 4-6 relative to an inert...

  2. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  3. Analysis of Water Recovery Rate from the Heat Melt Compactor

    Science.gov (United States)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and

  4. Solar water heating and its prospect for timber drying application

    Energy Technology Data Exchange (ETDEWEB)

    Yin, B T

    1982-01-01

    The technical requirements for timber drying are discussed, and the possibility of using a solar water heating system to substitute for conventional fuel in a modern kiln is looked into from heat transfer considerations. At the moment, conventional fuel is used to generate steam for the heating of air in a kiln. If hot water is to be substitued for steam as the heating medium, the heating coil size required is larger. This size is determined relative to that of a steam coil for similar kiln operating temperatures. 5 references.

  5. Lactating performance, water and feed consumption of rabbit does reared under a Mediterranean summer circadian cycle of temperature v. comfort temperature conditions.

    Science.gov (United States)

    Bakr, M H; Tusell, L; Rafel, O; Terré, M; Sánchez, J P; Piles, M

    2015-07-01

    The general aim of this research was to study the effect of high ambient temperature on the performance of does during lactation, specifically the following factors: average daily feed (ADFI) and water (ADWI) intakes, daily milk yield (DMY); milk composition: dry matter (DM), CP and gross energy (GE); doe BW (DW); individual kit weaning weight (IWW) and litter survival rate during lactation (SR). The study was undertaken comparing the performance of two groups of contemporary does reared under the same management, feeding regime and environmental conditions, except the environmental temperature and humidity. A total of 80 females were randomly allocated, at 60 days of age, into two identical and continuous rooms. In one room, the temperature was maintained permanently within the thermo-neutral zone (between 18°C to 22°C); thus, environmental conditions in this room were considered as comfort conditions. In the second room, the environmental temperature pattern simulated the daily temperature cycles that were characteristic of the summer in Mediterranean countries (24°C at 0800 h, increasing up to 29°C until 1100 h; maintenance at 29°C to 31°C for 4 h and decreasing to about 24°C to 26°C around 1700 h until 0800 h of the following day), which were considered as thermal stress conditions. Females followed a semi-intensive reproductive rhythm, first artificial insemination at 4.5 months of age, with subsequent 42-day reproductive cycles. Traits were recorded from a total of 138 lactations. Does were controlled up to the 5th lactation. Data were analyzed using linear and linear mixed models. High ambient temperature led to a lower ADFI (-9.4%), DW (-6.2%) and IWW (-8%), but it did not affect ADWI. No significant difference was found either for DMY, milk composition (DM, CP and GE) and SR during the lactation period. Heat stress was moderate, and does were able to adapt to it behaviorally by decreasing feed intake (to reduce heat production), but also live

  6. Thermodynamic and experimental study on heat transfer mechanism of miniature loop heat pipe with water-copper nanofluid

    Science.gov (United States)

    Wang, Xiao-wu; Wan, Zhen-ping; Tang, Yong

    2018-02-01

    A miniature loop heat pipe (mLHP) is a promising device for heat dissipation of electronic products. Experimental study of heat transfer performance of an mLHP employing Cu-water nanofluid as working fluid was conducted. It is found that, when input power is above 25 W, the temperature differences between the evaporator wall and vapor of nanofluid, Te - Tv, and the total heat resistance of mLHP using nanofluid are always lower than those of mLHP using de-ionized water. The values of Te - Tv and total heat resistance of mLHP using nanofluid with concentration 1.5 wt. % are the lowest, while when the input power is 25 W, the values of Te - Tv and total heat resistance of mLHP using de-ionized water are even lower than those of mLHP using nanofluid with concentration 2.0 wt. %. At larger input power, the dominant interaction is collision between small bubbles and nanoparticles which can facilitate heat transfer. While at lower input power, nanoparticles adhere to the surface of large bubble. This does not benefit boiling heat transfer. For mLHP using nanofluid with larger concentration, for example 2.0%, the heat transfer may even be worse compared with using de-ionized water at lower input power. The special structure of the mLHP in this study, two separated chambers in the evaporator, produces an extra pressure difference and contributes to the heat transfer performance of the mLHP.

  7. Experimental investigation of water sprayed finned heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Sommer, A.

    1987-07-01

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m 2 . The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal

  8. Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Regina Elizondo-González

    2018-03-01

    Full Text Available Two experimental feeding trials were conducted during four weeks to evaluate the use of Ulva lactuca in shrimp culture: (1 for wastewater bioremediation, and (2 using different inclusion levels of U. lactuca meal in shrimp feed. In feeding trial 1, shrimp reared under seaweed U. lactuca water exchange in a re-circulation system (SWE resulted in similar growth and feed utilization as shrimp reared with clean water exchange (CWE. Shrimp under no water exchange (NWE resulted in significant lower growth and higher feed conversion rate (FCR compared to the other treatments (p  0.05. In feeding trial 2, U. lactuca biomass produced by wastewater bioremediation in SWE treatment were dried and ground to formulate diets containing 0, 1, 2, and 3% U. lactuca meal (0UL, 1UL, 2UL, and 3UL. Shrimp fed the 3 UL diet resulted in a significant (p < 0.05 improvement of growth and FCR, and enhanced whole shrimp lipid and carotenoid content by 30 and 60%, respectively, compared to control diet. Seaweed U. lactuca is suggested as a desirable species for wastewater bioremediation in integrated aquaculture systems, and its meal as a good feed additive for farmed shrimp.

  9. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2014-01-01

    pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic......District heating makes it possible to provide heat for many consumers in an efficient manner. In particular, district heating based on combined heat and power production is highly efficient. One disadvantage of district heating is that there is a significant heat loss from the pipes...... to the surrounding ground. In larger networks involving both transmission and distribution systems, the heat loss is most significant from the distribution network. An estimate is that about 80-90 % of the heat loss occurs in the distribution system. In addition, the heat loss is naturally highest from the forward...

  10. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  11. Fermentation products as feed additives mitigate some ill-effects of heat stress in pigs.

    Science.gov (United States)

    Kumar, S; Bass, B E; Bandrick, M; Loving, C L; Brockmeier, S L; Looft, T; Trachsel, J; Madson, D M; Thomas, M; Casey, T A; Frank, J W; Stanton, T B; Allen, H K

    2017-01-01

    Heat stress (HS) may result in economic losses to pig producers across the USA and worldwide. Despite significant advancements in management practices, HS continues to be a challenge. In this study, an in-feed antibiotic (carbadox, CBX) and antibiotic alternatives ( [XPC], and [SGX] fermentation products) were evaluated in a standard pig starter diet as mitigations against the negative effects of HS in pigs. A total of 100 gilts were obtained at weaning (6.87 ± 0.82 kg BW, 19.36 ± 0.72 d of age) and randomly assigned to dietary treatments (2 rooms/treatment, 2 pens/room, 6 to 7 pigs/pen). After 4 wk of dietary acclimation, half of the pigs in each dietary group (1 room/dietary treatment) were exposed to repeated heat stress conditions (RHS; daily cycles of 19 h at 25°C and 5 h at 40°C, repeated for 9 d), and the remaining pigs were housed at constant thermal neutral temperature (25°C, [NHS]). Pigs subjected to RHS had elevated skin surface temperature ( treatment. Independent of diet, RHS pigs had significantly shorter ( stress resulted in decreased villus height to crypt depth ratio (V:C) in pigs fed with control diet with no added feed additive (NON) and CBX diets at d 3, whereas the pigs fed diets containing XPC or SGX showed no decrease. Transcriptional expression of genes involved in cellular stress (, , , ), tight junction integrity (, , ), and immune response (, , and ) were measured in the ileum mucosa. Pigs in all dietary treatments subjected to RHS had significantly higher ( natural killer () cell numbers or NK cell lytic activity. In conclusion, pigs subjected to RHS had decreased performance, and supplementation with fermentation products in the feed (XPC and SGX) protected pigs from injury to the jejunum mucosa.

  12. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  13. Life cycle assessment of domestic heat pump hot water systems in Australia

    Directory of Open Access Journals (Sweden)

    Moore Andrew D.

    2017-01-01

    Full Text Available Water heating accounts for 23% of residential energy consumption in Australia, and, as over half is provided by electric water heaters, is a significant source of greenhouse gas emissions. Due to inclusion in rebate schemes heat pump water heating systems are becoming increasingly popular, but do they result in lower greenhouse gas emissions? This study follows on from a previous life cycle assessment study of domestic hot water systems to include heat pump systems. The streamlined life cycle assessment approach used focused on the use phase of the life cycle, which was found in the previous study to be where the majority of global warming potential (GWP impacts occurred. Data was collected from an Australian heat pump manufacturer and was modelled assuming installation within Australian climate zone 3 (AS/NZS 4234:2011. Several scenarios were investigated for the heat pumps including different sources of electricity (grid, photovoltaic solar modules, and batteries and the use of solar thermal panels. It was found that due to their higher efficiency heat pump hot water systems can result in significantly lower GWP than electric storage hot water systems. Further, solar thermal heat pump systems can have lower GWP than solar electric hot water systems that use conventional electric boosting. Additionally, the contributions of HFC refrigerants to GWP can be significant so the use of alternative refrigerants is recommended. Heat pumps combined with PV and battery technology can achieve the lowest GWP of all domestic hot water systems.

  14. Analysis of the origin of Aufeis feed-water on the arctic slope of Alaska

    Science.gov (United States)

    Hall, D. K.; Roswell, C. (Principal Investigator)

    1980-01-01

    The origin of water feeding large aufeis fields (overflow river ice) on the Arctic Slope of Alaska is analyzed. Field measurements of two large aufeis fields on the eastern Arctic Slope were taken during July of 1978 and 1979. Measurements of aufeis extent and distribution were made using LANDSAT Multispectral Scanner Subsystem (MSS) satellite data from 1973 through 1979. In addition, ice cores were analyzed in the laboratory. Results of the field and laboratory studies indicate that the water derived from aufeis melt water has a chemical composition different from the adjacent upstream river water. Large aufeis fields are found in association with springs and faults thus indicating a subterranean origin of the feed water. In addition, the maximum extent of large aufeis fields was not found to follow meteorological patterns which would only be expected if the origin of the feed water were local. It is concluded that extent of large aufeis in a given river channel on the Arctic Slope is controlled by discharge from reservoirs of groundwater. It seems probable that precipitation passes into limestone aquifers in the Brooks Range, through an interconnecting system of subterranean fractures in calcareous rocks and ultimately discharges into alluvial sediments on the coastal plain to form aufeis. It is speculated that only small aufeis patches are affected by local meteorological parameters in the months just prior to aufeis formation.

  15. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  16. Static Feed Water Electrolysis Subsystem Testing and Component Development

    Science.gov (United States)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  17. A study on the formation of fouling in a heat exchanging system for Han-river water as cooling water

    International Nuclear Information System (INIS)

    Sung, Sun Kyung; Suh, Sang Ho; Rho, Hyung Woon; Cho, Young Il

    2003-01-01

    Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanger surface, it is traditionally called fouling. The objective of the present study is to investigate the formation of fouling in a heat exchanging system. A lab-scale heat exchanging system is built-up to observe and measure the formation of fouling experimentally. Water analyses are conducted to obtain the properties of Han river water. In the present study a microscopic observation is conducted to visualize the process of scale formation. Hardness of Han-river water is higher than that of tap water in Seoul

  18. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  19. Water-Chemistry and Its Utility Systems in CCP Power Units (Review)

    Science.gov (United States)

    Larin, B. M.

    2018-01-01

    Damageability of heat transfer surfaces of waste heat recovery steam generators (HRSG) of combined- cycle plants (CCP) can be reduced due to an increase in the quality of make-up and feed water, the use of phosphate-alkaline or amino compound water chemistry (WC), and improved chemical quality control of the heat carrier and make-up water preparation techniques. Temporary quality standards for the heat medium developed by the All-Russia Thermal Engineering institute (VTI) for CCP power units are presented in comparison with the IAPWS standards; preferences for the choice of a WC type for some power units commissioned in Russia in the first decade of this century are shown; and operational data on the quality of feed, boiler water, and steam for two large CCP-450 and CCP-425 power units are given. The state and prospects for the development of chemical-technological monitoring systems and CCP water treatment plants are noted. Estimability of some CCP diagnostic parameters by measuring specific electric conductivity and pH is shown. An extensive bibliography on this topic is given.

  20. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  1. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  2. Heat as a tracer to determine streambed water exchanges

    Science.gov (United States)

    Constantz, J.

    2010-01-01

    This work reviews the use of heat as a tracer of shallow groundwater movement and describes current temperature-based approaches for estimating streambed water exchanges. Four common hydrologic conditions in stream channels are graphically depicted with the expected underlying streambed thermal responses, and techniques are discussed for installing and monitoring temperature and stage equipment for a range of hydrological environments. These techniques are divided into direct-measurement techniques in streams and streambeds, groundwater techniques relying on traditional observation wells, and remote sensing and other large-scale advanced temperatureacquisition techniques. A review of relevant literature suggests researchers often graphically visualize temperature data to enhance conceptual models of heat and water flow in the near-stream environment and to determine site-specific approaches of data analysis. Common visualizations of stream and streambed temperature patterns include thermographs, temperature envelopes, and one-, two-, and three-dimensional temperature contour plots. Heat and water transport governing equations are presented for the case of transport in streambeds, followed by methods of streambed data analysis, including simple heat-pulse arrival time and heat-loss procedures, analytical and time series solutions, and heat and water transport simulation models. A series of applications of these methods are presented for a variety of stream settings ranging from arid to continental climates. Progressive successes to quantify both streambed fluxes and the spatial extent of streambeds indicate heat-tracing tools help define the streambed as a spatially distinct field (analogous to soil science), rather than simply the lower boundary in stream research or an amorphous zone beneath the stream channel.

  3. Heating and Domestic Hot Water Systems in Buildings Supplied by Low-Temperature District Heating

    DEFF Research Database (Denmark)

    Brand, Marek

    solutions simply redirect the bypassed water back to the DH network without additional cooling, but bypassed water can instead be redirected to floor heating in the bathroom to be further cooled and thus reduce heat loss from the DH network while improving comfort for occupants and still ensure fast DHW...... increased risk of Legionella if the DH substation and DHW system are designed for the low-temperature supply conditions. To ensure the fast provision of DHW during non-heating periods, the supply service pipe should be kept warm, preferably with the bypass solution redirecting the bypass flow to bathroom...... temperature. To accord with the literature, the modelling of internal heat gains reflected the improved efficiency of equipment by reduction of value from 5W/m2 to 4.2W/m2, also modelled as intermittent heat gains based on a realistic week schedule. Furthermore, the indoor set-point temperature was increased...

  4. Long-distance heat transport by hot water

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.

    1990-01-01

    From the analysis of the centralized heat supply in the GDR energy-economical and ecological indispensable developments of long-distance heat systems in conurbation are derived. The heat extraction from a nuclear power plant combined with long- distance hot-water transport over about 110 kilometres is investigated and presented as a possibility to perspective base load heat demands for the district around Dresden. By help of industrial-economic, hydraulic and thermic evaluations of first design variants of the transit system the acceptance of this ecologic and energetic preferred solution is proved and requirements for its realization are shown

  5. A Study of Ballast Water Treatment Using Engine Waste Heat

    Science.gov (United States)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  6. Importance of Drinking Water Temperature for Heat Stressed Pregnant Ossimi Ewes During Summer of Egypt

    International Nuclear Information System (INIS)

    Habeeb, A.A.M.; EL-Tarabany, A.A.; Gad, A.E.

    2012-01-01

    The number of 45 pregnant does with the same age and average live body weight were used in the present study. The does reared under summer hot conditions where the averages of ambient temperature and relative humidity values were 35.0 degree C and 62.5% respectively during June, July and August, 2009. Pregnant does were divided randomly into three equal groups. The 1st group drinking tap water from the source of water in the farm (30±2 degree C) and served as control. The animals in the 2nd and 3rd groups drinking cool water (20±2 degree C) and cooled water (10±2 degree C), respectively, along the experimental period which started 12 weeks before expected parturition (8 hrs daily) from 10.00 to 18.00 hrs. The results showed that drinking cool water or cold water decreased the heat load of summer season on pregnant Ossimi ewes. The respiration rate and temperatures of rectal, skin and ear values decreased significantly while daily feed intake, dry matter intake and water intake values increased significantly due to treatments when compared to those drank warm water. Blood components concentrations and estradiol, progesterone and parathormone levels in ewes drank cool or cold water were significantly higher than its levels in ewes drank warm water. The opposite was found in cortisol levels

  7. Heat transfer in vertical pipe flow at supercritical pressures of water

    International Nuclear Information System (INIS)

    Loewenberg, M.F.

    2007-05-01

    A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations combined with high heat

  8. Impacts of waste from concentrated animal feeding operations on water quality

    Science.gov (United States)

    Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.

  9. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seitzler, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.

  10. Seismic Qualification of Auxiliary Feed Water Control Valve

    International Nuclear Information System (INIS)

    Hwang, K. M.; Jang, J. B.; Kim, J. K.; Suh, Y. P.

    2006-01-01

    Although domestic nuclear power industry has almost accomplished technical independence, Auxiliary Feed Water Control Valve (AFWCV) is still depending on import. In order to jump to advanced nation in nuclear power industry, it is very important to achieve technical independence in designing and manufacturing AFWCV. At last, AFWCV is self-manufactured using the domestic technology under the financial support of the government. Therefore, the seismic qualification is carried out to verify the safety and operability of AFWCV against the earthquake in this study

  11. Economic feasibility of solar water and space heating.

    Science.gov (United States)

    Bezdek, R H; Hirshberg, A S; Babcock, W H

    1979-03-23

    The economic feasibility in 1977 and 1978 of solar water and combined water and space heating is analyzed for single-family detached residences and multi-family apartment buildings in four representative U.S. cities: Boston, Massachusetts; Washington, D.C.; Grand Junction, Colorado; and Los Angeles, California. Three economic decision criteria are utilized: payback period, years to recovery of down payment, and years to net positive cash flow. The cost competitiveness of the solar systems compared to heating systems based on electricity, fuel oil, and natural gas is then discussed for each city, and the impact of the federal tax credit for solar energy systems is assessed. It is found that even without federal incentives some solar water and space heating systems are competitive. Enactment of the solar tax credit, however, greatly enhances their competitiveness. The implications of these findings for government tax and energy pricing policies are discussed.

  12. Study on Enhancement of Sub-Cooled Flow Boiling Heat Transfer and Critical Heat Flux of Solid-Water Two-Phase Mixture

    International Nuclear Information System (INIS)

    Yasuo Koizumi; Hiroyasu Ohtake; Tomoyuki Suzuki

    2002-01-01

    The influence of particle introduction into a subcooled water flow on boiling heat transfer and critical heat flux (CHF) was examined. When the water velocity was low, the particles crowded on the bottom wall of the flow channel and flowed just like sliding on the wall. When the water velocity was high, the particles were well dispersed in the water flow. In the non-boiling region, the heat transfer was augmented by the introduction of the particles into the water flow. As the introduction of the particles were increased, the augmentation was also increased in the high water flow rate region. However, it was independent upon the particle introduction rate in the low water flow rate region. The onset of boiling was delayed by the particle inclusion. The boiling heat transfer was enhanced by the particles. However, it was rather decreased in the high heat flux fully-developed-boiling region. The CHF was decreased by the particle inclusion in the low water flow region and was not affected in the high water flow region. (authors)

  13. Dietary L-arginine supplement alleviates hepatic heat stress and improves feed conversion ratio of Pekin ducks exposed to high environmental temperature.

    Science.gov (United States)

    Zhu, W; Jiang, W; Wu, L Y

    2014-12-01

    The current intensive indoor production system of commercial Pekin ducks never allows adequate water for swimming or wetting. Therefore, heat stress is a key factor affecting health and growth of ducks in the hot regions and season. Experiment 1 was conducted to study whether heat stress was deleterious to certain organs of ducks. Forty-one-day-old mixed-sex Pekin ducks were randomly allocated to four electrically heated battery brooders comprised of 10 ducks each. Ducks were suddenly exposed to 37 °C ambient temperature for 3 h and then slaughtered, in one brooder at 21 days and in another brooder at 49 days of age. The results showed that body weight and weight of immune organs, particularly liver markedly decreased in acute heat stress ducks compared with the control. Experiment 2 was carried out to investigate the influences of dietary L-arginine (Arg) supplement on weight and compositions of certain lymphoid organs, and growth performance in Pekin ducks, under daily cyclic hot temperature environment. A total of 151-day-old mixed-sex Pekin ducks were randomly divided into one negative control and two treatment groups, fed experimental diets supplemented with 0, 5, and 10 g L-Arginine (L-Arg)/kg to the basal diet respectively. Ducks were exposed to cyclic high temperature simulating natural summer season. The results showed that the addition of L-Arg improves feed conversion ratio (FCR) during a period of 7-week trial, as well as increases hepatic weight relative to body weight at 21 days, while decreases the hepatic water content at 49 days of age. This study indicated that the liver was more sensitive to acute heat stress, and the hepatic relative weight and chemical composition could be regulated by dietary L-Arg supplementation in Pekin ducks being reared at high ambient temperature. These beneficial effects of Arg on liver might be a cause of improved FCR. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  14. Transient turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru

    2011-01-01

    The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the

  15. Transient turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru

    2011-01-01

    The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the

  16. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  17. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  18. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  19. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  20. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T. [Gas Technology Inst., Des Plaines, IL (United States); Scott, S. [Gas Technology Inst., Des Plaines, IL (United States)

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  1. Simulation and analysis on thermodynamic performance of surface water source heat pump system

    Institute of Scientific and Technical Information of China (English)

    Nan Lv; Qing Zhang; Zhenqian Chen; Dongsheng Wu

    2017-01-01

    This work established a thermodynamic performance model of a heat pump system containing a heat pump unit model, an air conditioning cooling and heating load calculation model, a heat exchanger model and a water pump performance model based on mass and energy balances. The thermodynamic performance of a surface water source heat pump air conditioning system was simulated and verified by comparing the simulation results to an actual engineering project. In addition, the effects of the surface water temperature, heat exchanger structure and surface water pipeline transportation system on the thermodynamic performance of the heat pump air conditioning system were analyzed. Under the simulated conditions in this paper with a cooling load of 3400 kW, the results showed that a 1 ℃ decrease in the surface water temperature leads to a 2.3 percent increase in the coefficient of performance; furthermore, an additional 100 m of length for the closed-loop surface water heat exchanger tube leads to a 0.08 percent increase in the coefficient of performance. To decrease the system energy consumption, the optimal working point should be specified according to the surface water transportation length.

  2. Process for adapting a heat source and a thermal machine by temporary heat storage

    International Nuclear Information System (INIS)

    Cahn, R.P.; Nicholson, E.W.

    1975-01-01

    The process described is intended to ensure the efficient use of the heat from a nuclear reactor or from a furnace burning fossil fuel at constant power, and of a boiler in a power station comprising a multi-stage steam turbine, the steam extracted from the turbine being used for pre-heating the boiler feed water. This process is most flexible with a varying load. It includes the high temperature storage of the excess heat energy in a low vapor pressure storage liquid (hydrocarbon oils, molten salts or liquid metals) at atmospheric pressure when the demand is low; then, when the energy demand is at its height, the reduction of steam extraction from the turbine with simultaneous utilisation of the hot heat storage liquid for the various maintenance heating functions of the power station by heat exchange, so that the heat can expand totally in the turbine with generation of energy [fr

  3. 78 FR 42692 - Food Additives Permitted in Feed and Drinking Water of Animals; Ammonium Formate

    Science.gov (United States)

    2013-07-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 573 [Docket No. FDA-2008-F-0151] Food Additives Permitted in Feed and Drinking Water of Animals; Ammonium Formate... and Drug Administration (FDA) is amending the regulations for food additives permitted in feed and...

  4. Reduction of Energy Consumption and CO2 Emissions in Domestic Water Heating by Means of Direct Expansion Solar Assisted Heat Pump

    International Nuclear Information System (INIS)

    Baleta, J.; Curko, T.; Cutic, T.; Pasanec, J.; Soldo, V.

    2012-01-01

    Domestic water heating in households sector is usually performed by either fossil fuel fired or electric boilers. Both the combustion process of the former and large electricity consumption of the latter strongly influence overall greenhouse gas emissions. Moreover, very high specific heat of water requires large quantity of energy for water heating making a significant impact on the overall energy consumption in the households sector whose total consumption of 80,81 PJ equals to 19,6% of total primary energy supply in Croatia in 2010. Considering the mentioned impact on energy consumption and CO 2 emissions as well as goals set by European Commission (so called 20-20-20), new technologies based on renewable energy sources are more than welcome in the field of domestic water heating. Direct expansion solar assisted heat pump is presented in this paper. Its working principle is based on single-stage vapour-compression cycle. Representing a gradual step to commercial application with a water tank of 300 l, the developed mobile unit is designed as a test rig enabling all necessary measurements to evaluate potential of solar irradiation for domestic water heating on various locations. Besides the unit description, trial testing results are presented and analyzed as well as a basic comparison of CO 2 emissions between solar assisted heat pump and conventionally used water heating systems. Taking into account both the decentralized water heating and favourable climatic conditions (especially along the Croatian Adriatic coast) as well as rising fossil fuel prices, it is expected that solar assisted heat pumps will be commercialized in the near future.(author)

  5. Radiation hygienic assessment of centralized heat and hot water supply of Bilibino village from Bilibin central nuclear heating- and power plant

    International Nuclear Information System (INIS)

    Eremin, V.A.; Marej, A.N.; Nechiporenko, N.I.; Rasskazov, A.P.; Sayapin, N.P.; Soldatov, G.E.; Shcherbinin, A.S.

    1983-01-01

    The experience in using an atomic power plant for heat and hot water supply of the village of Bilibino is outlined. Particular attention is given to the population radiation safety. It has been demonstrated that radiation safety of the system is ensured by maintaining fixed pressure levels in the heating media and by the hermetic state of heat exchanges. Water in the heat and hot water supply network meets the requirements for drinking water. Radioactive corrosion products were not detected in the test water. Gamma-radiation dose rate from the surface of heating devices and pipe-lines in the test premises did not exceed the natural background, that is, U.U1-0.025 mrad

  6. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China

    International Nuclear Information System (INIS)

    Zhao Xudong; Wang Zhangyuan; Tang Qi

    2010-01-01

    A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. With the specified system structure, the efficiency of the solar system was found to be a function of its operational characteristics - working temperature of the loop heat pipe, water flow rate across the heat exchanger, and external parameters, including ambient temperature, temperature of water across the exchanger and solar radiation. The relationship between the efficiency of the system and these parameters was established, analysed and discussed in detail. The study suggested that the loop heat pipe should be operated at around 72 deg. C and the water across the heat exchanger should be maintained at 5.1 l/min. Any variation in system structure, i.e., glazing cover and height difference between the absorber and heat exchanger, would lead to different system performance. The glazing covers could be made using either borosilicate or polycarbonate, but borosilicate is to be preferred as it performs better and achieves higher efficiency at higher temperature operation. The height difference between the absorber and heat exchanger in the design was 1.9 m which is an adequate distance causing no constraint to heat pipe heat transfer. These simulation results were validated with the primary testing results.

  7. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  8. The use of chitosan as bioadhesive and its property improvement by radiation treatment for water-stable shrimp feed production

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Nguyen Duy; Hung, Nguyen Manh; Quynh, Tran Minh; Diep, Tran Bang; Binh, Nguen Van [Vietnam Atomic Energy Commission, Institute for Nuclear Science and Techniques, Caugiay, Hanoi (Viet Nam); Dung, Vu [Ministry of Fisheries, Research Institute of Marine Product, Haiphong (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    Among marine polysaccharides, only chitosan with small content in feed (0.48-0.75%) could be selected to prepare shrimp feed-pellet having so high water-stability that meet the Standard of Vietnam Ministry of Fisheries 28-TCN 102/1997. Solid-state radiation treatment of chitosan with dose ranging from 10 to 200 kGy not only increased its solubility in solvents of dilute acid, but also improved the water-stability of feed-pellet product. Radiation treatment at sterilization doses (20-40 kGy) was evaluated as the most practical technology because irradiated chitosan with reduced content of 0.34% has capacity to be prepared feed-pellets stable as comparable to imported products. Results from feeding trials shown that chitosan containing feed did not affect the growth response and feed utilization efficiency such as weight gain (WG), feed conversion ratio (FCR) and productivity at harvest. (author)

  9. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  10. Surface emissions of heat, water and GHGs from a NYC greenroof

    Science.gov (United States)

    McGillis, W. R.; Jacobson, G.; Culligan, P.; Gaffin, S.; Carson, T.; Marasco, D.; Hsueh, D.; Rella, C.

    2012-04-01

    The budgets of heat, water, and GHGs from greenroofs in New York City, needed for adaptation and sustainable policy and infrastructure strategies, requires an accurate measure of their surface emissions. A high speed, Cavity Ring-Down Spectroscopy (CRDS) based analyzer for measuring carbon dioxide (CO2), methane (CH4) and water (H2O) and an ultrasonic wind and temperature anemometer for measuring heat and momentum is used to assess greenroof performance during seasonal, diurnal, and episodic weather conditions. The flux instrument has proven capable of raw 10 Hz precision (one standard deviation) better than 110 parts-per-billion (ppbv) for carbon dioxide, better than 3 ppbv for methane and better than 6 ppmv +0.3% of reading for water vapor. In the water and heat budget, comparison and reconciliation of greenroof evapotranspiration (ET) using micrometeorological techniques, water balance, and heat balance was conducted. The water balance (month timescales), the heat balance (week timescale) show agreement to the micrometeorological surface ET (hour timescale). By using boundary layer flux measurements of ET, the fundamental performance of greenroofs on climate and weather conditions can be explored. These boundary layer measured surface fluxes provide critical information on the physiology of the built environment in New York City. Faced with sewage failures due to water management and exacerbated heating, the accurate assessment of greenroof performance on high spatial and temporal scales in required for the urban environment. Results will be presented and discussed.

  11. Using geothermal water for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir

    2006-01-01

    Full Text Available On construction with dimensions 15 x 5 x 2 m, conditions of temperature transmission and vegetables growth are examined. We have been cultivating pepper, cucumber, small cucumber, tomato, and lattice. Over ground heating has been used, consisting of one bent pipe with radius of 10 mm, in the shape of hairpin along the both sides of the construction. Underground heating consists of six pipes with radius of 20 mm on the depth of 350-400 mm. There have been measured the temperature inside construction, the temperature outside construction, the waterflow, and water temperature flowing into and out of the construction. The approximate heating flow factor K is determined by both the equation: heating balance equation and basic equation for temperature transmition. Vegetable growth has been watching during the period of time from March to November 2005.

  12. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  13. Regional analysis of residential water heating options: energy use and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.; Carney, J.; Hirst, E.

    1978-10-01

    This report evaluates the energy and direct economic effects of introducing improved electric-water-heating systems to the residential market. These systems are: electric heat pumps offered in 1981, solar systems offered in 1977, and solar systems offered in 1977 with a Federal tax credit in effect from 1977 through 1984. The ORNL residential energy model is used to calculate energy savings by type of fuel for each system in each of the ten Federal regions and for the nation as a whole for each year between 1977 and 2000. Changes in annual fuel bills and capital costs for water heaters are also computed at the same level of detail. Model results suggest that heat-pump water heaters are likely to offer much larger energy and economic benefits than will solar systems, even with tax credits. This is because heat pumps provide about the same savings in electricity for water heating (about half) at a much lower capital cost ($700 to $2000) than do solar systems. However, these results are based on highly uncertain estimates of future performance and cost characteristics for both heat pump and solar systems. The cumulative national energy saving by the year 2000 due to commercialization of heat-pump water heaters in 1981 is estimated to be 1.5 QBtu. Solar-energy benefits are about half this much without tax credits and two-thirds as much with tax credits. The net economic benefit to households of heat-pump water heaters (present worth of fuel bill reductions less the present worth of extra costs for more-efficient systems) is estimated to be $640 million. Again, the solar benefits are much less.

  14. Waste heat and water recovery opportunities in California tomato paste processing

    International Nuclear Information System (INIS)

    Amón, Ricardo; Maulhardt, Mike; Wong, Tony; Kazama, Don; Simmons, Christopher W.

    2015-01-01

    Water and energy efficiency are important for the vitality of the food processing industry as demand for these limited resources continues to increase. Tomato processing, which is dominated by paste production, is a major industry in California – where the majority of tomatoes are processed in the United States. Paste processing generates large amounts of condensate as moisture is removed from the fruit. Recovery of the waste heat in this condensate and reuse of the water may provide avenues to decrease net energy and water use at processing facilities. However, new processing methods are needed to create demand for the condensate waste heat. In this study, the potential to recover condensate waste heat and apply it to the tomato enzyme thermal inactivation processing step (the hot break) is assessed as a novel application. A modeling framework is established to predict heat transfer to tomatoes during the hot break. Heat recovery and reuse of the condensate water are related to energy and monetary savings gained through decreased use of steam, groundwater pumping, cooling towers, and wastewater processing. This analysis is informed by water and energy usage data from relevant unit operations at a commercial paste production facility. The case study indicates potential facility seasonal energy and monetary savings of 7.3 GWh and $166,000, respectively, with most savings gained through reduced natural gas use. The sensitivity of heat recovery to various process variables associated with heat exchanger design and processing conditions is presented to identify factors that affect waste heat recovery. - Highlights: • The potential to recovery waste heat in tomato paste processing is examined. • Heat transfer from evaporator condensate to tomatoes in the hot break is modeled. • Processing facility data is used in model to predict heat recovery energy savings. • The primary benefit of heat recovery is reduced use of natural gas in boilers. • Reusing

  15. Non-parametric method for separating domestic hot water heating spikes and space heating

    DEFF Research Database (Denmark)

    Bacher, Peder; de Saint-Aubain, Philip Anton; Christiansen, Lasse Engbo

    2016-01-01

    In this paper a method for separating spikes from a noisy data series, where the data change and evolve over time, is presented. The method is applied on measurements of the total heat load for a single family house. It relies on the fact that the domestic hot water heating is a process generating...

  16. Critical heat flux analysis on change of plate temperature and cooling water flow rate for rectangular narrow gap with bilateral-heated cases

    International Nuclear Information System (INIS)

    M Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan

    2013-01-01

    Boiling heat transfer phenomena on rectangular narrow gap was related to the safety of nuclear reactors. Research done in order to study the safety of nuclear reactors in particular relating to boiling heat transfer and useful on the improvement of next-generation reactor designs. The research focused on calculation of the heat flux during the cooling process in rectangular narrow gap size 1.0 mm. with initial temperatures 200°C. 400°C, and 600°C, also the flow rates of cooling water 0,1 liters/second. 0,2 liters/second. and 0,3 liters/second. Experiments carried out by injecting water at a certain flow rate with the water temperature 85°C. Transient temperature measurement data recorded by the data acquisition system. Transient temperature measurement data is used to calculate the flux of heat gain is then used to obtain the heat transfer coefficient. This research aimed to obtain the correlation between critical heat flux and heat transfer coefficient to changes in temperatures and water flow rates for bilaterally-heated cases on rectangular narrow gap. The results obtained for a constant cooling water flow rate, critical heat flux will increase when hot plate temperature also increased. While on a constant hot plate temperature, coefficient heat transfer will increase when cooling water flow rate also increased. Thus it can be said that the cooling water flow rate and temperature of the hot plate has a significant effect on the critical heat flux and heat transfer coefficient resulted in quenching process of vertical rectangular narrow gap with double-heated cases. (author)

  17. Weather influences feed intake and feed efficiency in a temperate climate.

    Science.gov (United States)

    Hill, Davina L; Wall, Eileen

    2017-03-01

    A key goal for livestock science is to ensure that food production meets the needs of an increasing global population. Climate change may heighten this challenge through increases in mean temperatures and in the intensity, duration, and spatial distribution of extreme weather events, such as heat waves. Under high ambient temperatures, livestock are expected to decrease dry matter intake (DMI) to reduce their metabolic heat production. High yielding dairy cows require high DMI to support their levels of milk production, but this may increase susceptibility to heat stress. Here, we tested how feed intake and the rate of converting dry matter to milk (feed efficiency, FE) vary in response to natural fluctuations in weather conditions in a housed experimental herd of lactating Holstein Friesians in the United Kingdom. Cows belonged to 2 lines: those selected for high genetic merit for milk traits (select) and those at the UK average (control). We predicted that (1) feed intake and FE would vary with an index of temperature and humidity (THI), wind speed, and the number of hours of sunshine, and that (2) the effects of (1) would depend on the cows' genetic merit. Animals received a mixed ration, available ad libitum, from automatic feed measurement gates. Using >73,000 daily feed intake and FE records from 328 cows over 8 yr, we found that select cows produced more fat- and protein-corrected milk, and had higher DMI and FE than controls. Cows of both lines decreased DMI and fat- and protein-corrected milk but, importantly, increased FE as THI increased. This suggests that improvements in the efficiency of converting feed to milk may partially offset the costs of reduced milk yield owing to a warmer climate, at least under conditions of mild heat stress. The rate of increase in FE with THI was steeper in select cows than in controls, which raises the possibility that select cows use more effective coping tactics. This is, to our knowledge, the first longitudinal study

  18. Theory of energy level and its application in water-loop heat pump system

    International Nuclear Information System (INIS)

    Yu, Qi Dong

    2017-01-01

    Highlights: • Novel theory of saving energy and its application in water loop heat pump. • Reverse energy caused by units to water loop and its solution. • New method for determining the energy-saving range of water loop heat pump. • Capacity model of auxiliary heat source and its size for all building types. • Advice for reducing total energy consumption of water loop heat pump. - Abstract: It is a difficult problem to how to determine the reverse energy caused by units to water loop when a water-loop heat pump (WLHP) is in cooling and heating simultaneous mode, which not only has a great impact on energy-saving rate but also decides the use of auxiliary heat source in winter. This paper presents a theory of energy level to improve the research on WLHP system by using the relationship among building, circulating water and units. In this theory, the circulating water replaces building load as a new method to convert the reverse energy into energy change of circulating water and the equation of energy level also is built to determine the energy-saving range of WLHP system and report the capacity model of auxiliary heat source for all building types. An office building with different auxiliary powers is tested to analyze system operation characteristic and the effect of auxiliary heat source on unit and system and the results validate previous conclusions and suggest that an energy balance should be considered between units and auxiliary power to improve overall operation.

  19. Basic principles of solar water heating

    CSIR Research Space (South Africa)

    Page-Shipp, RJ

    1980-09-10

    Full Text Available This article correctly reflects the principles of Solar Water Heating as they pertain to South African conditions. However, it was written in 1980 and the global energy situation has changed considerably. Furthermore, modern commercial units...

  20. Performance of commercially available solar and heat pump water heaters

    International Nuclear Information System (INIS)

    Lloyd, C.R.; Kerr, A.S.D.

    2008-01-01

    Many countries are using policy incentives to encourage the adoption of energy-efficient hot water heating as a means of reducing greenhouse gas emissions. Such policies rely heavily on assumed performance factors for such systems. In-situ performance data for solar and heat pump hot water systems, however, are not copious in the literature. Otago University has been testing some systems available in New Zealand for a number of years. The results obtained are compared to international studies of in-situ performance of solar hot water systems and heat pump hot water systems, by converting the results from the international studies into a single index suitable for both solar and heat pump systems (COP). Variability in the international data is investigated as well as comparisons to model results. The conclusions suggest that there is not too much difference in performance between solar systems that have a permanently connected electric boost backup and heat pump systems over a wide range of environmental temperatures. The energy payback time was also calculated for electric boost solar flat plate systems as a function of both COP and hot water usage for a given value of embodied energy. The calculations generally bode well for solar systems but ensuring adequate system performance is paramount. In addition, such systems generally favour high usage rates to obtain good energy payback times

  1. Animal Feeding Operations

    Science.gov (United States)

    ... type=”submit” value=”Submit” /> Healthy Water Home Animal Feeding Operations Recommend on Facebook Tweet Share Compartir ... of Concentrated Animal Feeding Operations (CAFOs) What are Animal Feeding Operations (AFOs)? According to the United States ...

  2. Design of water and heat recovery networks for the simultaneous minimisation of water and energy consumption

    International Nuclear Information System (INIS)

    Polley, Graham Thomas; Picon-Nunez, Martin; Lopez-Maciel, Jose de Jesus

    2010-01-01

    This paper describes procedures for the design of processes in which water and energy consumption form a large part of the operating cost. Good process design can be characterised by a number of properties, amongst the most important are: efficient use of raw materials, low capital cost and good operability. In terms of thermodynamic analysis these processes can be characterised as being either a 'pinch' problem or a 'threshold' problem. This paper concentrates on developing designs for problems of the threshold type. Most of the problems discussed by previous workers have been of this type. With these properties in mind this work looks at the design of integrated water and energy systems that exhibit the following features: 1. minimum water consumption, 2. minimum energy consumption, and 3. simple network structure. The approach applies for single contaminant. It is shown that the water conservation problem and the heat recovery problems can be de-coupled and the water conservation options should be established first. It is then shown that the number of heaters and heat recovery units required for the system, the quantity and type of hot utility needed for the plant and the complexity of the heat recovery network can all be determined without having to design any heat recovery network. This allows the engineer to select the better water conservation option before embarking on the design of the heat recovery network. For this type of problem the design of the heat recovery network itself is usually simple and straightforward.

  3. The annual number of days that solar heated water satisfies a specified demand temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y.G. [Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, BT37 0QB Northern Ireland (United Kingdom); Popel, O.; Frid, S.E. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 127412 (Russian Federation); Norton, B. [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2006-08-15

    An analysis of solar water heating systems determines the number of days in each month when solar heated water wholly meets demand above a set temperature. The approach has been used to investigate the potential contribution to water heating loads of solar water heating in two UK locations. Correlations between the approach developed and the use of solar fractions are discussed. (author)

  4. Demand side management for commercial buildings using an in line heat pump water heating methodology

    International Nuclear Information System (INIS)

    Rankin, Riaan; Rousseau, Pieter G.; Eldik, Martin van

    2004-01-01

    Most of the sanitary hot water used in South African buildings is heated by means of direct electrical resistance heaters. This is one of the major contributors to the undesirably high morning and afternoon peaks imposed on the national electricity supply grid. For this reason, water heating continues to be of concern to the electricity supplier, ESCOM. Previous studies, conducted by the Potchefstroom University for Christian Higher Education in South Africa, indicated that extensive application of the so called inline heat pump water heating methodology in commercial buildings could result in significant demand side management savings to ESKOM. Furthermore, impressive paybacks can be obtained by building owners who choose to implement the design methodology on existing or new systems. Currently, a few examples exist where the design methodology has been successfully implemented. These installations are monitored with a fully web centric monitoring system that allows 24 h access to data from each installation. Based on these preliminary results, a total peak demand reduction of 108 MW can be achieved, which represents 18% of the peak load reduction target set by ESKOM until the year 2015. This represents an avoided cost of approximately MR324 (ZAR) [Int J Energy Res 25(4) (1999) 2000]. Results based on actual data from the monitored installations shows a significant peak demand reduction for each installation. In one installation, a hotel with an occupancy of 220 people, the peak demand contribution of the hot water installation was reduced by 86%, realizing a 36% reduction in peak demand for the whole building. The savings incurred by the building owner also included significant energy consumption savings due to the superior energy efficiency of the heat pump water heater. The combined savings result in a conservatively calculated straight payback period of 12.5 months, with an internal rate of return of 98%. The actual cost of water heating is studied by

  5. Effect of produced water on feeding and metabolism of Atlantic cod (Gadus morhua)

    Energy Technology Data Exchange (ETDEWEB)

    Volkoff, H.; Parrish, C. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada); Hamoutene, D.; Mabrouk, G.; Samuelson, S.; Mansour, A.; Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Region, Ocean Sciences Division

    2007-07-01

    This paper addressed concerns regarding potentially detrimental cumulative effects of waste products from oil industry activities on marine organisms around production sites. The metabolic capacities, feeding and digestive physiology of fish have been shown to change with environmental parameters, which could impact the growth and health status of fish populations. In this study, the effects of produced water (PW) on feeding and metabolism of Atlantic cod was investigated by exposing fish to 0.100 ppm (x 10,000 PW dilution) or 200 ppm (x 500 dilution) of PW for 76 days. Throughout the experiment, food intake and mean weight were monitored. In addition, serum lipids, metabolites and gene expression of a brain appetite regulating factor were measured at the end of the experiment. No significant differences were observed in weight gain or food intake between the 3 groups of fish. Serum metabolites and neuropeptide Y expression remained unchanged between groups. The study is ongoing to complete comparative measurements of whole blood fatty acid profiles in plasma. The preliminary results indicate that feeding and metabolism in cod is not affected by produced water.

  6. The effect of keel fractures on egg production, feed and water consumption in individual laying hens.

    Science.gov (United States)

    Nasr, M A F; Murrell, J; Nicol, C J

    2013-01-01

    The impact of keel bone fractures on egg production, egg weight and feed and water consumption in individual laying hens. A total of 165 Lohmann brown laying hens were obtained from a commercial farm that consisted of 105 with keel fractures and 60 without keel fractures. 2. After a 4-d period of acclimatisation, hens were individually housed and provided with ad libitum food and water for a 24-h period. The number of eggs laid, egg weight, feed and water consumption during this period were recorded. Keel bone strength was also assessed. 3. Hens free from keel fractures laid more eggs (91.7% vs. 84.9%) of significantly heavier weight (61.9 g vs. 60.2 g), ate less feed (139 g vs. 151 g) and drank less water (212 ml vs. 237 ml) than hens with fractures. 4. There was a significant positive association between keel fracture severity and water consumption, and a significant negative association between keel fracture severity and egg weight and keel bone strength. 5. This small-scale study on individual birds shows that keel bone fractures may have an impact on the economics of egg production.

  7. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  8. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  9. Water Recovery with the Heat Melt Compactor in a Microgravity Environment

    Science.gov (United States)

    Golliher, Eric L.; Goo, Jonathan; Fisher, John

    2015-01-01

    The Heat Melt Compactor is a proposed utility that will compact astronaut trash, extract the water for eventual re-use, and form dry square tiles that can be used as additional ionizing radiation shields for future human deep space missions. The Heat Melt Compactor has been under development by a consortium of NASA centers. The downstream portion of the device is planned to recover a small amount of water while in a microgravity environment. Drop tower low gravity testing was performed to assess the effect of small particles on a capillary-based water/air separation device proposed for the water recovery portion of the Heat Melt Compactor.

  10. Tropic of Langdale. [River water as a heat source for leisure centre

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, K.

    1986-03-01

    A brief report is given of a unique example of energy management in a Lake District leisure centre. At the site of a former gunpowder mill, river water was directed over a mill race in which a heat exchanger was installed. Heat taken from the river is upgraded by heat pumps, thus providing the base heating and hot water for the leisure centre.

  11. Heat exchangers in heavy water reactor systems

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1988-01-01

    Important features of some major heat exchange components of pressurized heavy water reactors and DHRUVA research reactor are presented. Design considerations and nuclear service classifications are discussed

  12. Experimental study of supercritical water flow and heat transfer in vertical tube

    International Nuclear Information System (INIS)

    Li Hongbo; Yang Jue; Lu Donghua; Gu Hanyang; Zhao Meng

    2012-01-01

    The experiment of flow and heat transfer of supercritical water has been performed on the supercritical water multipurpose test loop co-constructed by China Guangdong Nuclear Power Group and Shanghai Jiao Tong University with a 7.6 mm vertical tube. Heat transfer experimental data is obtained. The results of experimental research of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: (1) Heat transfer enhancement occurs when the bulk temperature reaches pseudo-critical point with low mass flow velocity; (2) The heat transfer co- efficient and Nusselt number are decreased with the increasing of heat flux; (3) The wall temperature is decreased, but the heat transfer coefficient and Nusselt number are increased with the increasing of mass flow velocity; (4) The wall temperature is increased, but the heat transfer coefficient and Nusselt number are decreased with the increasing of sys- tem pressure. (authors)

  13. Performance of water source heat pump system using high-density polyethylene tube heat exchanger wound with square copper wire

    Directory of Open Access Journals (Sweden)

    Xin Wen Zhang

    2015-07-01

    Full Text Available Surface water source heat pump system is an energy-efficient heat pump system. Surface water heat exchanger is an important part of heat pump system that can affect the performance of the system. In order to enhance the performance of the system, the overall heat transfer coefficient (U value of the water exchanger using a 32A square copper coiled high-density polyethylene tube was researched. Comparative experiments were conducted between the performance of the coiled high-density polyethylene tube and the 32A smooth high-density polyethylene tube. At the same time, the coefficient of performance of the heat pump was investigated. According to the result, the U value of the coiled tube was 18% higher than that of the smooth tube in natural convection and 19% higher in forced convection. The coefficient of performance of the heat pump with the coiled tube is higher than that with the smooth tube. The economic evaluation of the coiled tube was also investigated.

  14. Water, heat, and airborne pollutants effects on transpiration of urban trees

    International Nuclear Information System (INIS)

    Wang Hua; Ouyang Zhiyun; Chen Weiping; Wang Xiaoke; Zheng Hua; Ren Yufen

    2011-01-01

    Transpiration rates of six urban tree species in Beijing evaluated by thermal dissipation method for one year were correlated to environmental variables in heat, water, and pollutant groups. To sort out colinearity of the explanatory variables, their individual and joint contributions to variance of tree transpiration were determined by the variation and hierarchical partitioning methods. Majority of the variance in transpiration rates was associated with joint effects of variables in heat and water groups and variance due to individual effects of explanatory group were in comparison small. Atmospheric pollutants exerted only minor effects on tree transpiration. Daily transpiration rate was most affected by air temperature, soil temperature, total radiation, vapor pressure deficit, and ozone. Relative humidity would replace soil temperature when factors influencing hourly transpiration rate was considered. - Highlights: → Heat, water, pollutants effect on transpiration was evaluated by partitioning method. → Urban tree transpiration was mainly affected by combined effects of these variables. → The heat and water variables affected transpiration of urban trees. → The urban air pollution merely acts as an antagonistic factor. - Heat and water related environmental variables affected transpiration of urban trees and ozone was an added yet minor stress factor.

  15. Four decades of working experience of Cirus primary cooling water heat exchangers

    International Nuclear Information System (INIS)

    Dubey, P.K.; Ullas, O.P.; Rao, D.V.H.; Zope, A.K.; Kharpate, A.V.

    2006-01-01

    CIRUS is a 40 MW (Th.) research reactor, commissioned in the year 1960. The reactor has natural uranium fuel rods, heavy water as moderator, demineralised water (DM water) as primary coolant, and seawater as secondary coolant. There are six Heat Exchangers in the primary cooling water (PCW) system. Five of them are required for the normal operation of the reactor and one is kept stand by. DM water flows on the shell side of the heat exchanger in two passes. Seawater is used as coolant on the tube side of the heat exchangers in four passes. Cirus has been in operation for around 41 years excluding refurbishment period. During these four decades of reactor operation, PCW heat exchangers have experienced many failures and undergone many modifications in the circuit for ensuring better performance. This paper tries to capture the essence of working experiences with PCW heat exchangers, various problems faced, remedial measures taken during those four decades of reactor operation. (author)

  16. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    Science.gov (United States)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  17. Life extension of MAPS-2 by replacement of boiler hairpin type heat exchangers

    International Nuclear Information System (INIS)

    Tripathi, J.C.; Rastogi, S.K.; Rastogi, A.K.

    2006-01-01

    The steam generating equipment in MAPS-1 and 2 are Hairpin type comprises of eight boiler assemblies arranged in two banks of four boilers each. Each hairpin type heat exchangers consist of 195 Monel-400 tubes of 12.7 mm OD x 1.24 mm WT. One boiler assembly consists of eleven inverted U type heat exchangers (called hairpin type heat exchangers) mounted in parallel on inlet and outlet heavy water manifolds and connected to steam drum through individual short riser. Heavy water flows through these tubes where as feed water enters the shell at the bottom of one leg called pre-heat leg. After commissioning of MAPS-2 in 1985, five hairpins of MAPS-2 developed leak during the course of operation by the year 1999. Absence of physical access for health assessment of steam generator tube and lack of provision for tube sheet cleaning to remove the deposits on feed water side had caused pile and resulted in tube failures by under deposit pitting corrosion. All the 88 hairpins of MAPS-2 were replaced to extend the plant life when MAPS-2 was taken out of grid for En-masse Coolant Channel Replacement job (EMCCR) in the year 2001 - 03. The long shutdown of MAPS units for EMCCR was considered to be cost effective since unscheduled plant shut downs on account of tube leaks could be avoided. (author)

  18. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  19. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  20. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott; Poynot, Joe

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research and experimentation to the full scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Design and construction of these HX's led to successful testing of both PCM HX's.

  1. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  2. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  3. Space water electrolysis: Space Station through advance missions

    Science.gov (United States)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  4. Water conservation benefits of urban heat mitigation: can cooling strategies reduce water consumption in California?

    Science.gov (United States)

    Vahmani, P.; Jones, A. D.

    2017-12-01

    Urban areas are at the forefront of climate mitigation and adaptation efforts given their high concentration of people, industry, and infrastructure. Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we show that broad implementation of cool roofs, an urban heat mitigation strategy, not only results in significant cooling of air temperature, but also meaningfully decreases outdoor water consumption by reducing evaporative and irrigation water demands. Based on a suite of satellite-supported, multiyear regional climate simulations, we find that cool roof adoption has the potential to reduce outdoor water consumption across the major metropolitan areas in California by up to 9%. Irrigation water savings per capita, induced by cool roofs, range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings in Los Angeles county alone is about 83 million gallons per day. While this effect is robust across the 15 years examined (2001-2015), including both drought and non-drought years, we find that cool roofs are most effective during the hottest days of the year, indicating that they could play an even greater role in reducing outdoor water use in a hotter future climate. We further show that this synergistic relationship between heat mitigation and water conservation is asymmetrical - policies that encourage direct reductions in irrigation water use can lead to substantial regional warming, potentially conflicting with heat mitigation efforts designed to counter the effects of the projected warming climate.

  5. Seasonal Variability of Mesozooplankton Feeding Rates on Phytoplankton in Subtropical Coastal and Estuarine Waters

    Directory of Open Access Journals (Sweden)

    Mianrun Chen

    2017-06-01

    Full Text Available In order to understand how mesozooplankton assemblages influenced phytoplankton in coastal and estuarine waters, we carried out a monthly investigation on mesozooplankton composition at two contrasting stations of Hong Kong coastal and estuarine waters and simultaneously conducted bottle incubation feeding experiments. The assemblage of mesozooplankton was omnivorous at both stations with varying carnivory degree (the degree of feeding preference of protozoa and animal food to phytoplankton and the variations of carnivory degree were significantly associated with microzooplankton biomass (ciliates for the coastal station, both ciliates and dinoflagellates for the estuarine stations and physical environmental parameters (primarily salinity. High carnivory was primarily due to high composition of noctilucales, Corycaeus spp., Oithona spp. and Acartia spp. Results of feeding experiments showed that grazing impacts on phytoplankton ranged from −5.9 to 17.7%, while the mean impacts were just <4% at both stations. The impacts were size-dependent, by which mesozooplankton consumed around 9% of large-sized phytoplankton while indirectly caused an increase of 4% of small-sized phytoplankton. Mesozooplankton clearance rate on phytoplankton, calculated from the log response of chlorophyll a concentrations by the introduction of bulk grazers after 1-day incubation, was significantly reduced by increasing carnivory degree of the mesozooplankton assemblage. The mechanism for the reduction of mesozooplankton clearance rate with increasing carnivory degree was primarily due to less efficient of filtering feeding and stronger trophic cascades due to suppression of microzooplankton. The feeding rates of mesozooplankton on microzooplankton were not obtained in this study, but the trophic cascades indirectly induced by mesozooplankton carnivorous feeding can be observed by the negative clearance rate on small-sized phytoplankton. Overall, the main significance of

  6. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye

    2015-01-01

    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  7. Devise of an exhaust gas heat exchanger for a thermal oil heater in a palm oil refinery plant

    Science.gov (United States)

    Chucherd, Panom; Kittisupakorn, Paisan

    2017-08-01

    This paper presents the devise of an exhaust gas heat exchanger for waste heat recovery of the exhausted flue gas of palm oil refinery plant. This waste heat can be recovered by installing an economizer to heat the feed water which can save the fuel consumption of the coal fired steam boiler and the outlet temperature of flue gas will be controlled in order to avoid the acid dew point temperature and protect the filter bag. The decrease of energy used leads to the reduction of CO2 emission. Two designed economizer studied in this paper are gas in tube and water in tube. The gas in tube exchanger refers to the shell and tube heat exchanger which the flue gas flows in tube; this designed exchanger is used in the existing unit. The new designed water in tube refers to the shell and tube heat exchanger which the water flows in the tube; this designed exchanger is proposed for new implementation. New economizer has the overall coefficient of heat transfer of 19.03 W/m2.K and the surface heat transfer area of 122 m2 in the optimized case. Experimental results show that it is feasible to install economizer in the exhaust flue gas system between the air preheater and the bag filter, which has slightly disadvantage effect in the system. The system can raise the feed water temperature from 40 to 104°C and flow rate 3.31 m3/h, the outlet temperature of flue gas is maintained about 130 °C.

  8. Efficiency analysis of solar facilities for building heating and household water heating under conditions in the Czech Republic

    OpenAIRE

    Pivko, Michal; Jursová, Simona; Turjak, Juraj

    2012-01-01

    The paper studies the efficiency of solar facilities applied for the heating of buildings and household water heating in the Czech Republic. The Czech Republic is situated in the temperate zone characterized by changeable weather. It is respected in the assessment of a solar facility installation. The efficiency of solar facilities is evaluated according to energy and economic balances. It is analyzed for solar facilities heating both household water and buildings. The main problems relating ...

  9. Environment-friendly heat supply with natural refrigerants. Large heat pumps use industrial waste heat and waste water; Umweltschonende Waermeversorgung mit natuerlichen Kaeltemitteln. Grosswaermepumpen nutzen industrielle Abwaerme und Abwaesser

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-01-15

    Everywhere, where industrial processes occur or coldness is produced, simultaneously heat is produced. While many private houses use geothermal energy or ambient air for the production of heat, waste water and waste heat prove to be optimal energy sources for the industrial need due to higher output temperatures. By means of large heat pumps the residual heat is used for heating or the supply of hot water for example in local heat supply grids and makes an important contribution to climate protection.

  10. PSB-VVER simulation of Kozloduy NPP 'loss of feed water transient'

    Energy Technology Data Exchange (ETDEWEB)

    Groudev, P.P. [Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)]. E-mail: pavlinpg@inrne.bas.bg; Stefanova, A.E. [Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)]. E-mail: antoanet@inrne.bas.bg; Gencheva, R.V. [Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)]. E-mail: roseh@inrne.bas.bg; Pavlova, M.P. [Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)]. E-mail: pavlova@inrne.bas.bg

    2005-04-01

    This paper provides a comparison between the PSB test facility experimental results obtained during the simulation of loss of feed water transient (LOFW) and the calculation results received by INRNE computer model of the same test facility. Integral thermal-hydraulic PSB-VVER test facility located at Electrogorsk Research and Engineering Center on NPPs Safety (EREC) was put in operation in 1998. The structure of the test facility allows experimental studies under steady state, transient and accident conditions. RELAP5/MOD3.2 computer code has been used to simulate the loss of feed water transient in a PSB-VVER model. This model was developed at the Institute for Nuclear Research and Nuclear Energy for simulation of loss of feed water transient. The objective of the experiment 'loss of feed water', which has been performed at PSB-VVER test facility is simulation of Kozloduy NPP LOFW transient. One of the main requirements to the experiment scenario has been to reproduce all main events and phenomena that occurred in Kozloduy NPP during the LOFW transient. Analyzing the PSB-VVER test with a RELAP5/MOD3.2 computer code as a standard problem allows investigating the phenomena included in the VVER code validation matrix as 'integral system effects' and 'natural circulation'. For assessment of the RELAP5 capability to predict the 'Integral system effect' phenomenon the following RELAP5 quantities are compared with external trends: the primary pressure and the hot and cold leg temperatures. In order to assess the RELAP5 capability to predict the 'Natural circulation' phenomenon the hot and cold leg temperatures behavior have been investigated. This report was possible through the participation of leading specialists from Kozloduy NPP and with the support of Argonne National Laboratory (ANL), under the International Nuclear Safety Program (INSP) of the United States Department of Energy.

  11. Electrolysed reduced water decreases reactive oxygen species-induced oxidative damage to skeletal muscle and improves performance in broiler chickens exposed to medium-term chronic heat stress.

    Science.gov (United States)

    Azad, M A K; Kikusato, M; Zulkifli, I; Toyomizu, M

    2013-01-01

    1. The present study was designed to achieve a reduction of reactive oxygen species (ROS)-induced oxidative damage to skeletal muscle and to improve the performance of broiler chickens exposed to chronic heat stress. 2. Chickens were given a control diet with normal drinking water, or diets supplemented with cashew nut shell liquid (CNSL) or grape seed extract (GSE), or a control diet with electrolysed reduced water (ERW) for 19 d after hatch. Thereafter, chickens were exposed to a temperature of either 34°C continuously for a period of 5 d, or maintained at 24°C, on the same diets. 3. The control broilers exposed to 34°C showed decreased weight gain and feed consumption and slightly increased ROS production and malondialdehyde (MDA) concentrations in skeletal muscle. The chickens exposed to 34°C and supplemented with ERW showed significantly improved growth performance and lower ROS production and MDA contents in tissues than control broilers exposed to 34°C. Following heat exposure, CNSL chickens performed better with respect to weight gain and feed consumption, but still showed elevated ROS production and skeletal muscle oxidative damage. GSE chickens did not exhibit improved performance or reduced skeletal muscle oxidative damage. 4. In conclusion, this study suggests that ERW could partially inhibit ROS-induced oxidative damage to skeletal muscle and improve growth performance in broiler chickens under medium-term chronic heat treatment.

  12. Design of serially connected ammonia-water hybrid absorption-compression heat pumps for district heating with the utilisation of a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2016-01-01

    District heating (DH) can reduce the primary energy consumption in urban areas with significant heat demands. The design of a serially connected ammonia-water hybrid absorption-compression heat pump system was investigated for operation in the Greater Copenhagen DH network in Denmark, in order...... to supply 7.2 MW heat at 85 °C utilizing a geothermal heat source at 73 °C. Both the heat source and heat sink experience a large temperature change over the heat transfer process, of which a significant part may be achieved by direct heat exchange. First a generic study with a simple representation...

  13. Heat exchanger with dirt separator for the use of the heat energy of waste water

    Energy Technology Data Exchange (ETDEWEB)

    1975-11-13

    Well-known heat exchanger systems consist of separate heat exchangers and dirt separators. In the case here in question both devices form a unit. A finned tube heat exchanger is positioned in the center of the dirt separator and is given extra protection through deflection sheets. A safety overflow is supplied so that no residue can appear in the waste water line when decanting.

  14. The consumptive water footprint of electricity and heat: a global assessment

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2015-01-01

    Water is essential for electricity and heat production. This study assesses the consumptive water footprint (WF) of electricity and heat generation per world region in the three main stages of the production chain, i.e. fuel supply, construction and operation. We consider electricity from power

  15. Heat Acclimation and Water-Immersion Deconditioning: Responses to Exercise

    Science.gov (United States)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1977-01-01

    Simulated subgravity conditions, such as bed rest and water immersion, cause a decrease in a acceleration tolerance (3, 4), tilt tolerance (3, 9, 10), work capacity (5, 7), and plasma volume (1, 8-10). Moderate exercise training performed during bed rest (4) and prior to water immersion (5) provides some protection against the adverse effects of deconditioning, but the relationship between exercise and changes due to deconditioning remains unclear. Heat acclimation increases plasma and interstitial volumes, total body water, stroke volume (11), and tilt tolerance (6) and may, therefore, be a more efficient method of ameliorating deconditioning than physical training alone. The present study was undertaken to determine the effects of heat acclimation and moderate physical training, performed in cool conditions, on water-immersion deconditioning.

  16. Prediction of Heat Removal Capacity of Horizontal Condensation Heat Exchanger submerged in Pool

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech., Yongin (Korea, Republic of); Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Park, Goon-Cherl [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    As representative passive safety systems, there are the passive containment cooling system (PCCS) of ESBWR, the emergency condenser system (ECS) of the SWR-1000, the passive auxiliary feed-water system (PAFS) of the APR+ and etc. During the nuclear power plant accidents, these passive safety systems can cool the nuclear system effectively via the heat transfer through the steam condensation, and then mitigate the accidents. For the optimum design and the safety analysis of the passive safety system, it is essential to predict the heat removal capacity of the heat exchanger well. The heat removal capacity of the horizontal condensation heat exchanger submerged in a pool is determined by a combination of a horizontal in-tube condensation heat transfer and a boiling heat transfer on the horizontal tube. Since most correlations proposed in the previous nuclear engineering field were developed for the vertical tube, there is a certain limit to apply these correlations to the horizontal tube. Therefore, this study developed the heat transfer model for the horizontal Ushaped condensation heat exchanger submerged in a pool to predict well the horizontal in-tube condensation heat transfer, the boiling heat transfer on the horizontal tube and the overall heat removal capacity of the heat exchanger using the best-estimate system analysis code, MARS.

  17. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.

    2006-01-01

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  18. Optimum systems design with random input and output applied to solar water heating

    Science.gov (United States)

    Abdel-Malek, L. L.

    1980-03-01

    Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.

  19. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  20. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  1. Comparison of three systems of solar water heating by thermosiphon

    Science.gov (United States)

    Hernández, E.; Guzmán, R. E.

    2016-02-01

    The main purpose of this project was to elaborate a comparison between three water heating systems; using two plane water heating solar collector and another using a vacuum tube heater, all of them are on top of the cafeteria's roof on building of the “Universidad Pontificia Bolivariana” in Bucaramanga, Colombia. Through testing was determined each type of water heating systems' performance, where the Stainless Steel tube collector reached a maximum efficiency of 71.58%, the Copper Tubing Collector a maximum value of 76.31% and for the Vacuum Tube Heater Collector a maximum efficiency of 72.33%. The collector with copper coil was the system more efficient. So, taking into account the Performance and Temperature Curves, along with the weather conditions at the time of the testing we determined that the most efficient Solar Heating System is the one using a Vacuum Tube Heater Collector. Reaching a maximum efficiency of 72.33% and a maximum temperature of 62.6°C.

  2. Effect Of Potassium Chloride, Vitamin E And Some Amino Acids Supplementation In Feed On Some Physiological Parameters Of Broiler Under Heat Stress Conditions

    International Nuclear Information System (INIS)

    ELSAYED, M.A.; WAKWAK, M.M.; ABU-TALEB, A.M.

    2010-01-01

    Hubbard broilers (240 of two weeks old) from the breeding flock in the Poultry Research Farm of Nuclear Research Centre, Atomic Energy Authority, Egypt, were used in this study. The effect of potassium chloride (KCl), vitamin E (VE) and some amino acids (proline + glycine) supplementations in feed on broiler performance under thermo neutral (TN) or heat stress conditions during May 2007 was investigated. All broilers chicks were exposed to 24 hrs light per day. The birds were fed starter diet for two weeks and followed by grower diet for two weeks ad libitum. Birds were divided into equal four groups (60 birds each). The first group (control) was fed the basal diet, while the second group was fed the same diet with adding 1 % proline + 1 % glycine. The third group was fed the diet with adding 250 mg VE/kg and the fourth group was fed the diet with adding 0.6 g KCl/kg. All groups were fed the previous diets for two weeks then subdivided to equal four sub-groups (30 birds each). The primary four groups were exposed to normal ambient temperature (TN conditions 22±1 0 C) while the other fourth groups were exposed to high environmental temperature (38±1 0 C) for 4 hours daily for 4 days (HS conditions) and then returned to normal temperature for one week then exposed to high environmental temperature (38±1 0 C) for 4 hours daily for 4 days. The individual body weight, feed intake at morning and before diet supplementation, body temperature and mortality percentage were recorded. Serum total protein, albumin, globulin, calcium, phosphorus, uric acid, creatinine and triiodothyronine (T3) concentrations were determined. It was found that after two weeks of additive supplementation and during thermo neutral condition period (TN), the control group showed the lowest value of feed consumption while under heat stress condition, the KCl group showed the highest value of feed consumption. At 1 st and 2 nd heat stress exposure periods, KCl group had the highest level of the

  3. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Science.gov (United States)

    2010-07-01

    ... contact cooling and heating water subcategory. 463.10 Section 463.10 Protection of Environment... SOURCE CATEGORY Contact Cooling and Heating Water Subcategory § 463.10 Applicability; description of the contact cooling and heating water subcategory. This subpart applies to discharges of pollutants from...

  4. Experimental and theoretic investigations of thermal behavior of a seasonal water pit heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Chatzidiakos, Angelos

    Seasonal heat storages are considered essential for district heating systems because they offer flexibility for the system to integrate different fluctuating renewable energy sources. Water pit thermal storages (PTES) have been successfully implemented in solar district heating plants in Denmark....... Thermal behavior of a 75,000 m3 water pit heat storage in Marstal solar heating plant was investigated experimentally and numerically. Temperatures at different levels of the water pit storage and temperatures at different depths of the ground around the storage were monitored and analyzed. A simulation...... model of the water pit storage is built to investigate development of temperatures in and around the storage. The calculated temperatures are compared to the monitored temperatures with an aim to validate the simulation model. Thermal stratification in the water pit heat storage and its interaction...

  5. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  6. Comparing the effects of feeding a grain- or a fish meal-based diet on water quality, waste production, and rainbow trout Oncorhynchus mykiss performance within low exchange water recirculating aquaculture systems

    Science.gov (United States)

    Feeding a fish meal-free grain-based diet (GB) was compared to feeding a fish meal-based diet (FM) relative to water quality criteria, waste production, water treatment process performance, and rainbow trout Oncorhynchus mykiss performance within six replicated water recirculating aquaculture system...

  7. FILM-30: A Heat Transfer Properties Code for Water Coolant

    International Nuclear Information System (INIS)

    MARSHALL, THERON D.

    2001-01-01

    A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating

  8. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  9. Deuterium concentration deterioration in feed synthesis gas from ammonia plant to heavy water plant (Preprint No. ED-5)

    International Nuclear Information System (INIS)

    Sah, A.K.

    1989-04-01

    Heavy Water Plant (Thal) is designed for 110 T/ Year capacity (55 T/Year each stream), with inlet deuterium concentration of feed synthesis gas at 115 ppm and depleted to 15 ppm. During first start up of plant the inlet concentration to feed synthesis gas was about 97 ppm. At that time the rich condensate recirculation was not there. To make the effective recirculation of deuterium rich condensate and minimum posssible losses some modifications were carried out in ammonia plant. Major ones are: (i)Demineralised (DM) water export for heavy water plant and urea plant which was having deuterium rich DM water connection was connected with DM water of urea plant which is not rich in deuterium, (ii)Sample cooler pump suction was connected with raw water, (iii)Ammonia plant line No.II condensate stripper was rectified during annual shut down to avoid excessive steam venting from its top and other draining, and (iv)Stripper condensate directly connected to make up water bypassing open settler to avoid evaporation and diffusion losses. With these modifications the deuterium concentration in feed synthesis gas improved to about 105 ppm. To improve it to 115 ppm, further modifications are suggested. (author). 5 figs

  10. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); Seitzler, Matt [Alliance for Residential Building Innovation, Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation, Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  11. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase...... change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best available...... vapour compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 150 °C and temperature lifts...

  12. Technical and Economic Working Domains of Industrial Heat Pumps: Part 2 - Ammonia-Water Hybrid Absorption-Compression Heat Pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2014-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change...... of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best possible vapour...... compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 140 XC and temperature lifts up to 60 K...

  13. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  14. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger

    International Nuclear Information System (INIS)

    Peyghambarzadeh, S.M.; Sarafraz, M.M.; Vaeli, N.; Ameri, E.; Vatani, A.; Jamialahmadi, M.

    2013-01-01

    Highlights: ► The cooling performance of water and n-heptane is compared during subcooled flow boiling. ► Although n-heptane leaves the heat exchanger warmer it has a lower heat transfer coefficient. ► Flow rate, heat flux and degree of subcooling have direct effect on heat transfer coefficient. ► The predictions of some correlations are evaluated against experimental data. - Abstract: In this research, subcooled flow boiling heat transfer coefficients of pure n-heptane and distilled water at different operating conditions have been experimentally measured and compared. The heat exchanger consisted of vertical annulus which is heated from the inner cylindrical heater with variable heat flux (less than 140 kW/m 2 ). Heat flux is varied so that two different flow regimes from single phase forced convection to nucleate boiling condition are created. Meanwhile, liquid flow rate is changed in the range of 2.5 × 10 −5 –5.8 × 10 −5 m 3 /s to create laminar up to transition flow regimes. Three subcooling levels including 10, 20 and 30 °C are also considered. Experimental results demonstrated that subcooled flow boiling heat transfer coefficient increases when higher heat flux, higher liquid flow rate and greater subcooling level are applied. Furthermore, influence of the operating conditions on the bubbles generation on the heat transfer surface is also discussed. It is also shown that water is better cooling fluid in comparison with n-heptane

  15. Solar water heating for aquaculture : optimizing design for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Thwaites, J. [Taylor Munro Energy Systems Inc., Delta, BC (Canada)

    2003-08-01

    This paper presents the results of a solar water heating project at Redfish Ranch, the first Tilapia tropical fish farm in British Columbia. The fish are raised in land-based tanks, eliminating the risk of contamination of local ecosystems. As a tropical species, they requires warm water. Natural gas or propane boilers are typically used to maintain tank temperatures at 26 to 28 degrees C. Redfish Ranch uses solar energy to add heat to the fish tanks, thereby reducing fossil-fuel combustion and greenhouse gas emissions. This unique building-integrated solar system is improving the environmental status of of this progressive industrial operation by offsetting fossil-fuel consumption. The system was relatively low cost, although substantial changes had to be made to the roof of the main building. The building-integrated design of the solar water heating system has reduced operating costs, generated local employment, and shows promise of future activity. As such, it satisfies the main criteria for sustainability. 7 refs.

  16. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  17. Heats of immersion in the thorium oxide-water system at elevated temperatures

    International Nuclear Information System (INIS)

    Holmes, H.F.

    1976-01-01

    The surface properties of ThO 2 were studied by heat of immersion calorimetry at 25 to 200 0 C. Results show that the integral heat of immersion of thorium oxide contains contributions which reflect considerable interaction with several layers of water adjacent to the oxide surface. It would be desirable to know the heat capacity changes which occur in the multilayer adsorption of water on an oxide surface. However, such data are not available and their acquisition would be an extremely difficult task. Structuring (a negative ΔCp) of several layers of water (by increased hydrogen bonding) adjacent to an oxide surface could explain an increase in the heat of immersion as the immersion temperature is increased. The more energetic, heterogeneous, high-surface-area samples are expected to induce more order in the adjacent water layers than the less energetic samples. This interpretation is similar to that offered for the temperature dependence of the heat of solution of the alkali halides

  18. The impact of heat waves on electricity spot markets

    International Nuclear Information System (INIS)

    Pechan, Anna; Eisenack, Klaus

    2014-01-01

    Thermoelectric power plants depend on cooling water drawn from water bodies. Low river run-off and/or high water temperatures limit a plant's production capacity. This problem may intensify with climate change. Our study quantifies the impact of forced capacity reductions on market prices, production costs, consumer and producer surplus, as well as emissions by means of a bottom-up power generation system model. First, we simulate the German electricity spot market during the heat wave of 2006. Then we conduct a sensitivity study that accounts for future climatic and technological conditions. We find an average price increase of 11% during the heat wave 2006, which is even more pronounced during times of peak demand. Production costs accumulate to an additional but moderate 16 m. Due to the price increase, producers gain from the heat wave, whereas consumers disproportionately bear the costs. Carbon emissions in the German electricity sector increase during the heat wave. The price and cost effects are more pronounced and increase significantly if assumptions on heat-sensitive demand, hydropower capacity, net exports, and capacity reductions are tightened. These are potential additional effects of climate change. Hence, if mitigation fails or is postponed globally, the impacts on the current energy system are very likely to rise. Increases in feed-in from renewable resources and demand-side management can counter the effects to a considerable degree. Countries with a shift toward a renewable energy supply can be expected to be much less susceptible to cooling water scarcity than those with a high share of nuclear and coal-fired power plants. - Highlights: • We quantify the impact of thermal capacity reductions on the electricity market. • German heat wave 2006 caused moderate rise in production costs. • Capacity reductions have substantial impact on prices and raise producer surplus. • Impacts on prices, production cost and surplus amplify under climate

  19. 9 CFR 89.3 - Feeding, watering, and resting livestock in the car.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feeding, watering, and resting livestock in the car. 89.3 Section 89.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL...

  20. 10 CFR 434.518 - Service water heating.

    Science.gov (United States)

    2010-01-01

    ... buildings. The same service water heating load assumptions shall be made in calculating Design Energy... 1110 Restaurant 390 Health 135 Multi-family High Rise Residential 2 1700 1 This value is the number to...

  1. Effect of dietary vitamin E on broiler meat qualities, color, water-holding capacity and shear force value, under heat stress conditions.

    Science.gov (United States)

    Hashizawa, Yoshinori; Kubota, Masatoshi; Kadowaki, Motoni; Fujimura, Shinobu

    2013-11-01

    This study was conducted to evaluate the effect of dietary vitamin E (VE) on broiler meat quality, especially focused on PSE (pale color, soft and exudative), under chronic heat stress (HS) conditions. Twenty-eight-day-old female Ross broilers were kept in independent cages with a controlled temperature of 24°C (normal temperature: NT) or 30°C (high temperature: HT). The NT chickens were fed basal feed. The HT chickens were fed basal feed (HT) or VE (200 mg/kg) added feed (HT + E). Broilers were weighed and slaughtered at 38 days old. The breast muscle was removed immediately and then the samples were used for determination of meat color, pH, water holding capacity (WHC) and shear force value (SFV). Body weight gain and feed intake were significantly decreased in the HT and HT + E groups compared to the NT group. VE supplementation did not affect the growth performance. Chronic HS at 30°C for 10 days may cause deterioration of meat quality such as PSE. The effects of chronic HS on meat quality were most significant in the toughness of broiler breast meat. Supplementation of VE in broiler feed would be effective to prevent the extent of PSE on broiler meat by chronic HS. © 2013 Japanese Society of Animal Science.

  2. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  3. Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons

    Science.gov (United States)

    Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.

    2009-01-01

    Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.

  4. Simultaneous optimization of water and heat exchange networks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiyou; Hou, Yanlong; Li, Xiaoduan; Wang, Jingtao [Tianjin University, Tianjin (China)

    2014-04-15

    This paper focuses on the simultaneous optimization of the heat-integrated water allocation networks. A mathematic model is established to illustrate the modified state-space representation of this problem. An easy logical method is employed to help identify the streams of hot or cold ones. In this model, the water exchange networks (WEN), heat exchange networks (HEN), and the interactions between the WEN and HEN combine together as one unity. Thus, the whole network can be solved at one time, which enhances the possibility to get a global optimal result. Examples from the literature and a PVC plant are analyzed to illustrate the accuracy and applicability of this method.

  5. Techno-Economic Analysis of Solar Water Heating Systems inTurkey.

    Science.gov (United States)

    Ertekin, Can; Kulcu, Recep; Evrendilek, Fatih

    2008-02-25

    In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber). Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type's heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs) of the galvanized absorber were lower, net present values (NPVs) of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators.

  6. Investigation of a low flow solar heating system for space heating and domestic hot water supply for Aidt Miljø A/S

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1997-01-01

    A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility.......A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility....

  7. Behavioral and physiological changes during heat stress in Corriedale ewes exposed to water deprivation.

    Science.gov (United States)

    Ghassemi Nejad, Jalil; Sung, Kyung-Il

    2017-01-01

    This study was conducted to investigate the behavioral and physiological changes of heat stressed Corriedale ewes exposed to water deprivation. Nine Corriedale ewes (average BW = 45 ± 3.7 kg) were individually fed diets based on maintenance requirements in metabolic crates. Ewes were assigned into three groups (9 sheep per treatment) according to a 3 × 3 Latin square design for 3 periods with 21-d duration for each period. The control (CON) group was given free access to water, 2 h water deprivation (2hWD), and 3 h water deprivation (3hWD) following feeding. No differences were found in fecal excretion frequency, standing frequency (number/d), and sitting frequency among the groups ( p  > 0.05). Measurements of standing duration (min/d) and urine excretion frequency (number/d) showed a significant decrease whereas sitting duration (min/d) showed a significant increase in the 2hWD and 3hWD groups when compared with the CON group ( p   0.05). However, respiratory rate (number/min) and panting score were found to be significantly higher in the 2hWD and 3hWD groups than in the CON group ( p  ewes. Daily adaptation to the extreme environmental conditions may occur actively in ewes.

  8. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  9. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-04-08

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  10. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    International Nuclear Information System (INIS)

    Fukuda, K.; Shiotsu, M.; Sakurai, A.

    1995-01-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q max , on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q o e t/T , with periods, τ, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q max . Two main mechanisms of q max exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q max for long period range belonging to the former mechanism becomes longer and the q max mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q max for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling

  11. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  12. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    Science.gov (United States)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  13. Investigation of a solar heating system for space heating and domestic hot water supply for Sol&Træ A.m.b.a

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility.......A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility....

  14. A LCC model of renewal energy : the cases of water heating system in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.J. [Leader Univ., Tainan City, Taiwan (China). Dept. of Construction Technology; Huang, J.S. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Bioenvironmental Systems Engineering

    2007-07-01

    One of the most important renewable energy strategies being promoted by the Bureau of Energy, Ministry of Economic Affairs in Taiwan is the use of solar energy water heating systems. This paper presented the results of a study that examined whether these systems were a feasible alternative without governmental subsidies. Economic methods of investment analysis, such as net benefit analysis, the saving-to-investment ratio, the adjusted internal rate of return, the life cycle cost (LCC) analysis, and sensitivity analysis can be used to evaluate buildings and building systems. Comparing different kinds of energy consumption alternatives, the LCC method is particularly suitable for determining whether the higher initial cost of the systems is economically justified by reductions in future costs. This study used the LCC method to evaluate renewable energy alternatives in Taiwan using water heating systems in the National Taiwan University (NTU) Smart Home as illustrative examples. Three kinds of water heating systems are used in the NTU Smart Home, including the evacuated tubular collectors, heat pump water heating system and power-saving water heating system. This study assessed LCC using gas geyser heating as the contrast group. Sensitivity analysis was used to verify the major factors, and show how it influences life cycle costing. It was concluded that compared with the gas geyser water heating system, the power-saving water heating system was the inefficient scheme. 7 refs., 1 tab., 2 figs.

  15. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  16. Flow film boiling heat transfer in water and Freon-113

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Shiotsu, Masahiro; Sakurai, Akira

    2002-01-01

    Experimental apparatus and method for film boiling heat transfer measurement on a horizontal cylinder in forced flow of water and Freon-113 under pressurized and subcooled conditions were developed. The experiments of film boiling heat transfer from single horizontal cylinders with diameters ranging from 0.7 to 5 mm in saturated and subcooled water and Freon-113 flowing upward perpendicular to the cylinders were carried out for the flow velocities ranging from 0 to 1 m/s under system pressures ranging from 100 to 500 kPa. Liquid subcoolings ranged from 0 to 50 K, and the cylinder surface superheats were raised up to 800 K for water and 400 K for Freon-113. The film boiling heat transfer coefficients obtained were depended on surface superheats, flow velocities, liquid subcoolings, system pressures and cylinder diameters. The effects of these parameters were systematically investigated under wider ranges of experimental conditions. It was found that the heat transfer coefficients are higher for higher flow velocities, subcoolings, system pressures, and for smaller cylinder diameters. The observation results of film boiling phenomena were obtained by a high-speed video camera. A new correlation for subcooled flow film boiling heat transfer was derived by modifying authors' correlation for saturated flow film boiling heat transfer with authors' experimental data under wide subcooled conditions. (author)

  17. An experimental study of trans-critical CO2 water–water heat pump using compact tube-in-tube heat exchangers

    International Nuclear Information System (INIS)

    Jiang, Yuntao; Ma, Yitai; Li, Minxia; Fu, Lin

    2013-01-01

    Highlights: • Thermodynamic analyses of transcritical CO 2 cycle with and without IHX are provided. • A transcritical CO 2 heat pump system adopts compact tube-in-tube heat exchangers. • Experiment results of systems with and without IHX have been analyzed and compared. • IHX can improve the performance of the transcritical CO 2 heat pump system. - Abstract: A transcritical CO 2 water–water heat pump system is introduced in this study, which employs compact tube-in-tube evaporator and gas cooler. Its primary test standards and operating conditions are introduced. Under test conditions, experiments have been carried out with compression cycles with and without internal heat exchanger (IHX). Experiment results have been analyzed and compared, showing that IHX can improve the coefficient of performance of the system. The analyses are done mainly on the variations of outlet CO 2 temperature of the gas cooler, compressor discharge pressure, compressor lubricant temperature, hot water mass flow rate, etc. When the inlet water temperature of the gas cooler is 15 °C, 20 °C, 25 °C respectively, the hot water temperature ranges from 45 °C to 70 °C, the relative COP h (coefficient of performance when heating) change index (RCI COP ) of the heat pump system with IHX is about 3.5–8% higher than that without IHX. The relative capacity change index (RCI Q ) of the heat pump system with IHX is about 5–10% higher than that without IHX. Temperature of CO 2 increases at the outlet of the gas cooler when the outlet water temperature of the gas cooler increases. Lowering the outlet CO 2 temperature of the gas cooler is an important way to improve the performance of the system

  18. Optimization and Thermoeconomics Research of a Large Reclaimed Water Source Heat Pump System

    Directory of Open Access Journals (Sweden)

    Zi-ping Zhang

    2013-01-01

    Full Text Available This work describes a large reclaimed water source heat pump system (RWSHPS and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.

  19. Experimental and theoretical studies on water and gas release from heated concrete

    International Nuclear Information System (INIS)

    McCormack, J.D.; Postma, A.K.

    1977-01-01

    Procedures currently used in licensing of nuclear facilities require analysis of postulated accidents which are more severe than ''design basis'' events. For breeder program reactors, some accidents in this severe category involve spillage of sodium coolant onto concrete protected by a steel liner. Heat transfer through the liner heats the concrete, causing a part of the mixing water and other gases to be driven off. These gases would add to pressure in the containment atmosphere, and the water vapor can form hydrogen if it contacts sodium. Evaluations of containment integrity for such postulated accidents will be aided by knowledge of how much water and other gases are released from heated concrete. The report presents results of a research effort at Hanford Engineering Development Laboratory designed to improve understanding of the release of water and gases from heated concrete

  20. An Assessment of Subsurface Intake Systems: Planning and Impact on Feed Water Quality for SWRO Facilities

    KAUST Repository

    Dehwah, Abdullah

    2017-01-01

    Subsurface intake systems are known to improve the feed water quality for SWRO plants. However, a little is known about the feasibility of implementation in coastal settings, the degree of water quality improvements provided by these systems

  1. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    Science.gov (United States)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  2. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  3. The diet and feeding ecology of Conger conger (L. 1758 in the deep waters of the Eastern Ionian Sea

    Directory of Open Access Journals (Sweden)

    A. ANASTASOPOULOU

    2013-06-01

    Full Text Available The diet of the European conger eel Conger conger was investigated for the first time in the Eastern Mediterranean. Fish dominated the European conger eel diet in the deep waters of E. Ionian Sea. All other prey taxa were identified as accidental preys. However, intestine analysis showed that Natantia, Brachyura and Cephalopoda might have a more important contribution in the diet of the species. C. conger exhibited a benthopelagic feeding behavior as it preyed upon both demersal and mesopelagic taxa. The high vacuity index and the low stomach and intestine fullness indicated that the feeding intensity of the species in the deep waters of Eastern Ionian Sea was quite low. C. conger feeding strategy was characterised by specialisation in various resource items. A between-phenotype contribution to niche width was observed for some prey categories. European Conger eel feeding specialisation seemed to be an adaptation to a food-scarce environment, as typified in deep-water habitats

  4. Seasonal variability of heat flux divergence in the coastal waters of Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; Sadhuram, Y.

    Heat flux divergence (Qv) in the coastal waters of Visakhapatnam, Andhra, Pradesh, India during different seasons, was estimated for the period February 1980-January 1981. It is found that the water column (0-60 m) gains heat during winter...

  5. Effects of hydration level and heat stress on thermoregulatory responses, hematological and blood rheological properties in growing pigs.

    Science.gov (United States)

    Waltz, Xavier; Baillot, Michelle; Connes, Philippe; Bocage, Bruno; Renaudeau, David

    2014-01-01

    Heat stress is one of the major limiting factors of production efficiency in the swine industry. The aims of the present study were 1) to observe if hemorheological and hematological parameters could be associated to physiological acclimation during the first days of heat stress exposure and 2) to determine if water restriction could modulate the effect of thermal heat stress on physiological, hematological and hemorheological parameters. Twelve Large White male pigs were divided into an ad libitum and a water restricted group. All pigs were submitted to one week at 24 °C (D-7 to D-1). Then, at D0, temperature was progressively increased until 32 °C and maintained during one week (D1 to D7). We performed daily measurements of water and feed intake. Physiological (i.e., skin temperature, rectal temperature, respiratory rate), hematological and hemorheological parameters were measured on D-6, D-5, D0, D1, D2 and D7. Water restriction had no effect on physiological, hematological and hemorheological parameters. The first days of heat stress caused an increase in the three physiological parameters followed by a reduction of these parameters suggesting a successful acclimation of pigs to heat stress. We showed an increase in hematocrit, red blood cell aggregation and red blood cell aggregation strength during heat stress. Further, we observed an important release of reticulocytes, an increase of red blood cell deformability and a reduction of feed intake and blood viscosity under heat stress. This study suggests that physiological acute adaptation to heat stress is accompanied by large hematological and hemorheological changes.

  6. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  7. Exergy analysis of an experimental heat transformer for water purification

    International Nuclear Information System (INIS)

    Rivera, W.; Huicochea, A.; Martinez, H.; Siqueiros, J.; Juarez, D.; Cadenas, E.

    2011-01-01

    First and second law of thermodynamics have been used to analyze the performance of an experimental heat transformer used for water purification. The pure water is produced in the auxiliary condenser delivering an amount of heat, which is recycled into the heat transformer increasing the heat source temperatures and also the internal, external and exergy coefficients of performance. The theoretical and experimental study was divided into two parts. In the first part, a second law analysis was carried out to the experimental system showing that the absorber and the condenser are the components with the highest irreversibilities. In the second part, with the results obtained from the second law analysis, new test runs were carried out at similar conditions than the former but varying only one selected temperature at the time. Comparing the COP (coefficient of performance) between the old and new test runs, it was shown that higher internal, external and exergy coefficients of performance were obtained in all the new test runs. Also it was shown that the ECOP (exergy coefficient of performance) increases with an increment of the amount of the purified water produced and with the decrease of the flow ratio. -- Research highlights: → By the first time an experimental results of a heat transformer for water purification with heat recycling has been presented. → An exergy analysis has been carried out in order to identify the irreversibilities in the main components of the system. → With the results obtained of the second law analysis new experimental test runs were carried out minimizing the system irreversibilities and furthermore increasing the system efficiency.

  8. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    Science.gov (United States)

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  9. Effect of water activity and temperature on the growth of Eurotium species isolated from animal feeds.

    Science.gov (United States)

    Greco, Mariana; Pardo, Alejandro; Pose, Graciela; Patriarca, Andrea

    Xerophilic fungi represent a serious problem due to their ability to grow at low water activities causing the spoiling of low and intermediate moisture foods, stored goods and animal feeds, with the consequent economic losses. The combined effect of water activity and temperature of four Eurotium species isolated from animal feeds was investigated. Eurotium amstelodami, Eurotium chevalieri, Eurotium repens and Eurotium rubrum were grown at 5, 15, 25, 37 and 45°C on malt extract agar adjusted with glycerol in the range 0.710-0.993 of water activities. The cardinal model proposed by Rosso and Robinson (2001) was applied to fit growth data, with the variable water activity at fixed temperatures, obtaining three cardinal water activities (a wmin , a wmax , a wopt ) and the specific growth rate at the optimum a w (μ opt ). A probabilistic model was also applied to define the interface between growth and no-growth. The cardinal model provided an adequate estimation of the optimal a w to grow and the maximum growth rate. The probabilistic model showed a good performance to fit growth/no-growth cases in the predicted range. The results presented here could be applied to predict Eurotium species growth in animal feeds. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Potentials of heat recovery from 850C LEP cooling water

    International Nuclear Information System (INIS)

    Koelling, M.

    1982-06-01

    Most of the cooling water from LEP has a too low temperature (30 to 40 0 C) to be considered for economical recovery of energy. However, it is hoped that the heat from the klystrons be removed at a temperature of 85 0 C and that this part of the LEP cooling water might be used for saving primary energy. In this study different possibilities have been investigated to make use of the waste heat for heating purposes during winter time, for saving energy in the refrigeration process in summer and for power generation. Cost estimates for these installations are also given and show their economic drawbacks. (orig.)

  11. Liquid-Metal/Water Direct Contact Heat Exchange: Flow Visualization, Flow Stability, and Heat Transfer Using Real-Time X-Ray Imaging

    International Nuclear Information System (INIS)

    Abdulla, Sherif H.; Liu Xin; Anderson, Mark H.; Bonazza, Riccardo; Corradini, Michael L.; Cho, Dae; Page, Richard

    2005-01-01

    Advanced reactor system designs are being considered with liquid-metal cooling connected to a steam power cycle. In addition, current reactor safety systems are considering auxiliary cooling schemes that assure ex-vessel debris coolability utilizing direct water injection into molten material pools to achieve core quenching and eventual coolability. The phenomenon common in both applications is direct contact heat exchange. The current study focuses on detailed measurements of liquid-metal/water direct contact heat exchange that is directly applicable to improvements in effective heat transfer in devices that are being considered for both of these purposes.In this study, a test facility was designed at the University of Wisconsin-Madison to map the operating range of liquid-metal/water direct contact heat exchange. The test section (184-cm height, 45.75-cm width, and 10-cm depth) is a rectangular slice of a larger heat exchange device. This apparatus was used not only to provide measurements of integral thermal performance (i.e., volumetric heat transfer coefficient), but also local heat transfer coefficients in a bubbly flow regime with X-ray imaging based on measured parameters such as bubble formation time, bubble rise velocity, and bubble diameters.To determine these local heat transfer coefficients, a complete methodology of the X-ray radiography for two-phase flow measurement has been developed. With this methodology, a high-energy X-ray imaging system is optimized for our heat exchange experiments. With this real-time, large-area, high-energy X-ray imaging system, the two-phase flow was quantitatively visualized. An efficient image processing strategy was developed by combining several optimal digital image-processing algorithms into a software computational tool written in MATLAB called T-XIP. Time-dependent heat transfer-related variables such as bubble volumes and velocities, were determined. Finally, an error analysis associated with these measurements

  12. Experiences from degasification of condensate and water supply of a boiler machine

    International Nuclear Information System (INIS)

    Mladenovik, Slavko.

    1996-01-01

    Modern boilers need low oxygen and carbon dioxide in feed water to avoid corrosion. Deaeration is the process of removing from the feed water dissolved corrosive gases oxygen and carbon dioxide. The removal of oxygen only from the water is called deoxygenation. Water is deaerated by a thermal method, and deoxygenation by chemical techniques. Thermal deaeration of high - pressure boiler feed water has become a highly sophisticated and specialized branch of deaeration technology. This technology is based on the fact that solubility of gases in water decreases as their partial pressures drop off in the space above the water, for which purpose water is heated to the boiling point at the given pressure. This paper presents the basic requirements and limitations which are presented to the designer and all modern boiler users. (author). 3 refs.; 3 figs

  13. A passive emergency heat sink for water-cooled reactors with particular application to CANDU reactors

    International Nuclear Information System (INIS)

    Spinks, N.J.

    1996-01-01

    Water in an overhead pool can serve as a general-purpose passive emergency heat sink for water-cooled reactors. It can be used for containment cooling, for emergency depressurization of the heat transport-system, or to receive any other emergency heat, such as that from the CANDU moderator. The passive emergency water system provides in-containment depressurization of steam generators and no other provision is needed for supply of low-pressure emergency water to the steam generators. For containment cooling, the pool supplies water to the tube side of elevated tube banks inside containment. The elevation with respect to the reactor heat source maximizes heat transport, by natural convection, of hot containment gases. This effective heat transport combines with the large heat-transfer coefficients of tube banks, to reduce containment overpressure during accidents. Cooled air from the tube banks is directed past the break in the heat-transport system, to facilitate removal of hydrogen using passive catalytic recombiners. (author)

  14. Visualization of direct contact heat transfer between water and molten alloy

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi; Takenaka, Nobuyuki; Matsubayashi, Masahito.

    1996-01-01

    We have been developing an innovative Steam Generator concept of Fast Breeder Reactors by using liquid-liquid direct contact heat transfer. In this concept, the SG shell is filled with a molten alloys, which is heated by primary sodium. Water is fed into the high temperature molten alloy, and evaporates by direct contact heating. In order to obtain the fundamental information to discuss the heat transfer mechanisms of the direct contact between the water and the alloy, this phenomenon was visualized by real-time neutron radiography. JRR-3M real-time thermal neutron radiography in Japan Atomic Energy Research Institute was used. Followings are main results. (1) The vigorous evaporation occurs in the molten alloy. This phenomena is different from the known phenomenon such as the evaporation of refrigerant R-113 in the water. (2) The evaporation in the bubble has finished in a moment due to high heat transfer performance between the liquid and molten alloy. (3) It is confirmed that the velocity of bubble with the rapid evaporation and growth is about 50 cm/s. (author)

  15. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Fang, X.; Wilson, E.

    2013-05-01

    Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

  16. Energy Efficiency Modelling of Residential Air Source Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Cong Toan Tran

    2016-03-01

    Full Text Available The heat pump water heater is one of the most energy efficient technologies for heating water for household use. The present work proposes a simplified model of coefficient of performance and examines its predictive capability. The model is based on polynomial functions where the variables are temperatures and the coefficients are derived from the Australian standard test data, using regression technics. The model enables to estimate the coefficient of performance of the same heat pump water heater under other test standards (i.e. US, Japanese, European and Korean standards. The resulting estimations over a heat-up phase and a full test cycle including a draw off pattern are in close agreement with the measured data. Thus the model allows manufacturers to avoid the need to carry out physical tests for some standards and to reduce product cost. The limitations of the methodology proposed are also discussed.

  17. Heat pulse probe measurements of soil water evaporation in a corn field

    Science.gov (United States)

    Latent heat fluxes from cropped fields consist of soil water evaporation and plant transpiration. It is difficult to accurately separate evapotranspiration into evaporation and transpiration. Heat pulse probes have been used to measure bare field subsurface soil water evaporation, however, the appl...

  18. Solar water heating in the hotel industry

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, A

    1981-01-01

    There is an increasing number of hotels, pensions, guest-houses and boarding-houses whose owners attempt to lower their energy cost - especially for water heating in summer - by installing solar systems. The article presents some examples of buildings in West Germany.

  19. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  20. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Directory of Open Access Journals (Sweden)

    Jandačka J.

    2013-04-01

    Full Text Available Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe. Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  1. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Science.gov (United States)

    Kaduchová, K.; Lenhard, R.; Gavlas, S.; Jandačka, J.

    2013-04-01

    Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe). Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  2. The Utilisation of Solar System in Combined Heating System of Water

    Directory of Open Access Journals (Sweden)

    Ján Jobbágy

    2017-01-01

    Full Text Available The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic, on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L. The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014 operation process of boiler Tatramat VTS 200L (trivalent with 200 litres of volume (as a part of Thermosolar solar system. The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy. Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.

  3. Preventing damage in heating systems. Corrosion resulting from water in heating systems; Schaeden in Heizungsanlagen vermeiden. Korrosion in Verbindung mit Heizungswasser

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, M. [Hannemann Wassertechnik Deutschland, Erding (Germany)

    2004-02-01

    Nearly all heating systems today use water as heating fluid. It is therefore important to know about the properties of this heat carrier fluid and about its interactions with heating system materials. This contribution discusses the main characteristics of common types of water and their effects on the heating systems. (orig.) [German] Praktisch in jeder Heizungsanlage wird Wasser als Waermetraeger verwendet. Von daher ist es ratsam, Eigenschaften dieses Waermetraegers und seine Wechselwirkungen mit Heizungswerkstoffen zu kennen. Der nachfolgende Beitrag behandelt die wichtigsten Eigenschaften gebraeuchlicher Waesser und deren Auswirkungen auf die Heizungsanlagen. (orig.)

  4. Breastfeeding is best feeding.

    Science.gov (United States)

    Cutting, W

    1995-02-01

    The traditional practice of breast feeding is the best means to make sure infants grow up healthy. It costs nothing. Breast milk contains antibodies and other substances which defend against disease, especially those linked to poor food hygiene and inadequate water and sanitation. In developing countries, breast fed infants are at least 14 times less likely to die from diarrhea than those who are not breast fed. Urbanization and promotion of infant formula undermine breast feeding. Even though infants up to age 4-6 months should receive only breast milk to remain as healthy as possible, infants aged less than 4-6 months often receive other milks or gruels. Attendance of health workers at delivery and their contact with mother-infant pairs after delivery are ideal opportunities to encourage mothers to breast feed. In fact, if health workers provide mothers skilled support with breast feeding, mothers are more likely to breast feed well and for a longer time. Health workers need counseling skills and firm knowledge of techniques on breast feeding and of how to master common difficulties to help mothers with breast feeding. Listening skills and confidence building skills are also needed. Good family and work place support allows women in paid employment outside the home to continue breast feeding. Breast feeding is very important in emergency situations where access to water, sanitation, food, and health care is limited (e.g., refugee camps). In these situations, health workers should especially be aware of women's ability to breast feed and to support their breast feeding. HIV can be transmitted to nursing infants from HIV infected mothers. Yet one must balance this small risk against the possibility of contracting other serious infections (e.g., diarrhea) through alternative infant feeding, particularly if there is no access to potable water and sanitation.

  5. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  6. Heat Convection at the Density Maximum Point of Water

    Science.gov (United States)

    Balta, Nuri; Korganci, Nuri

    2018-01-01

    Water exhibits a maximum in density at normal pressure at around 4° degree temperature. This paper demonstrates that during cooling, at around 4 °C, the temperature remains constant for a while because of heat exchange associated with convective currents inside the water. Superficial approach implies it as a new anomaly of water, but actually it…

  7. WaterWatts : the world's only all-drainwater heat exchanger : introduction and test data

    Energy Technology Data Exchange (ETDEWEB)

    Richards, C. [Saskatchewan Univ., Saskatoon, SK (Canada). College of Engineering; MacKelvie, W. [Winston Works Inc., Knowlton, PQ (Canada)

    2005-05-02

    This document presented the innovative All-buildings, All-Drainwater Heat Exchanger, a new method of saving energy in buildings. Water heating is the second largest user of energy in buildings. The used hot water is typically just drained away to the sewer, resulting in a significant waste of energy and money. Winston Works developed and patented the WaterWatts product which uses the normally-wasted heat in the drainwater of showers, tubs and washing machines to preheat all of the cold water for the water heater. The result is greener hot water through a significant reduction in energy use and related emissions. Drainflow is not hindered in any way. The unit can be installed by removing a section of vertical or horizontal drainpipe and replacing it with WaterWatts. The water heater's cold water supply is then redirected to first go through WaterWatts. This type of drainwater heat recovery system has a drainwater heat exchanger (DWHEx) that cools the drainwater by transferring its heat to a cold water heat exchanger (CWHEx). In the horizontal WaterWatts, the DWHEx is hemicylindrical to provide a broad flat surface for the drainwater to transfer its heat to rapidly. The flat shape also provides an ideal outside surface for fins which keep the tube cold. The vertical DWHEx has the same large, straight copper tube as the competition. But unlike the competition, WaterWatts has no moving parts, uses no power, requires no maintenance, has an indefinitely long life and is easy to install with minimal capital investment. Every building where the cost of hot water is borne by the owner is a potential customer for this product, such as residences, laundromats and restaurants. This energy savings technology also works with industrial process drainwater of any composition and temperature. tabs., figs.

  8. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  9. Heat dissipation research on the water-cooling channel of HL-2M in-vessel coils

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J., E-mail: jiangjiaming@swip.ac.cn; Liu, Y.; Chen, Q.; Ji, X.Q.

    2017-04-15

    Highlights: • The joule heat of in-vessel coils is very difficult to dissipate inside HL-2M vacuum vessel. • Heat dissipation model of the coil includes the joule heat model, the heat conduction model and the heat transfer model. • The CFD analysis has been done for the coil-water cooling, with comparison with the date of theoretical analysis and experiment. • The result shows water-cooling channel is good for the joule heat transfer and taken away. - Abstract: HL-2M in-vessel coils are positioned in high vacuum circumstance, and they will generate joule heat when they carry 15 kA electrical current, but joule heat is very difficult to dissipate in vacuum, so a hollow cable with 8 mm inner diameter is design as water-cooling channel for heat convection. By using the methods of the theoretical derivation, together with CFD numeric simulation method and the experiment of the heat transfer, the water channel of HL-2M in-vessel coils has been studied, and the temperature of HL-2M in-vessel coils under different cooling water flow rates is obtained and acceptable. Simultaneously, the external cooling water supply system parameters for the water-cooling channel of the coils are estimated. Three methods’ results are in good agreement; the theoretical model is verified and could be popularized for predicting the temperature rise of HL-2M in-vessel coils.

  10. Techno-Economic Analysis of Solar Water Heating Systems inTurkey

    Directory of Open Access Journals (Sweden)

    Fatih Evrendilek

    2008-02-01

    Full Text Available In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber. Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type’s heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs of the galvanized absorber were lower, net present values (NPVs of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators.

  11. Optimal design and placement of serpentine heat exchangers for indirect heat withdrawal, inside flat plate integrated collector storage solar water heaters (ICSSWH)

    Energy Technology Data Exchange (ETDEWEB)

    Gertzos, K.P.; Caouris, Y.G.; Panidis, T. [Dept. of Mechanical Engineering and Aeronautics, University of Patras, 265 00 Patras (Greece)

    2010-08-15

    Parameters that affect the temperature at which service hot water (SHW) is offered by an immersed tube heat exchanger (HX), inside a flat plate Integrated Collector Storage Solar Water Heater (ICSSWH), are examined numerically, by means of Computational Fluid Dynamics (CFD) analysis. The storage water is not refreshed and serves for heat accumulation. Service hot water is drawn off indirectly, through an immersed serpentine heat exchanger. For the intensification of the heat transfer process, the storage water is agitated by recirculation through a pump, which goes on only when service water flows inside the heat exchanger. Three main factors, which influence the performance, are optimized: The position of the HX relative to tank walls, the HX length and the tube diameter. All three factors are explored so that to maximize the service water outlet temperature. The settling time of the optimum configuration is also computed. Various 3-D CFD models were developed using the FLUENT package. The heat transfer rate between the two circuits of the optimum configuration is maintained at high levels, leading to service water outlet temperatures by 1-7 C lower than tank water temperatures, for the examined SHW flow rates. The settling time is retained at sufficient law values, such as 20 s. The optimal position was found to lay the HX in contact with the front and back walls of the tank, with an optimum inner tube diameter of 16 mm, while an acceptable HX length was found to be about 21.5 m. (author)

  12. Feed-forward control of a solid oxide fuel cell system with anode offgas recycle

    Science.gov (United States)

    Carré, Maxime; Brandenburger, Ralf; Friede, Wolfgang; Lapicque, François; Limbeck, Uwe; da Silva, Pedro

    2015-05-01

    In this work a combined heat and power unit (CHP unit) based on the solid oxide fuel cell (SOFC) technology is analysed. This unit has a special feature: the anode offgas is partially recycled to the anode inlet. Thus it is possible to increase the electrical efficiency and the system can be operated without external water feeding. A feed-forward control concept which allows secure operating conditions of the CHP unit as well as a maximization of its electrical efficiency is introduced and validated experimentally. The control algorithm requires a limited number of measurement values and few deterministic relations for its description.

  13. Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions

    OpenAIRE

    Hossein Lotfizadeh; André McDonald; Amit Kumar

    2016-01-01

    Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (n...

  14. Combined Space and Water Heating: Next Steps to Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%-4.3% (20-40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes.

  15. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture

    Science.gov (United States)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  16. Solar heating and hot water system installed at Saint Louis, Missouri

    Science.gov (United States)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  17. Development of two-stage compression heat pump for hot water supply in commercial use. Establishment of design method for water and air heat source system; Gyomuyo nidan asshukushiki kyuto heat pump no kaihatsu. Suinetguen oyobi kuki netsugen sytem no sekkei hoho no kakuritsu

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H; Hashimoto, K; Saikawa, M; Iwatsubo, T; Mimaki, T [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1996-07-01

    The two-stage compression cascade heating heat pump cycle was devised for hot water supply in business use such as hotel and store use which allows hot water supply less in primary energy consumption than gas boilers, and higher in temperature than conventional heat pumps. This cycle heats water in cascade manner by two-stage compression using two compressors in both low- and high-stage refrigerant circuits, and two condensers different in condensation temperature (intermediate heat exchanger and condenser) to achieve higher hot water temperature and higher COP. For cost reduction, the new system design method was established which is possible to cope with conventional compressors such as screw and scroll ones with different theoretical suction volume for every one. System design parameters such as thermal output and COP of hot water supply were largely affected by theoretical suction volume ratio of low- and high-stage compressors dependent on combination of the compressors, and refrigerant condensing temperature in an intermediate heat exchanger as proper parameter. 4 refs., 17 figs., 13 tabs.

  18. Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Andersen, Elsa

    2012-01-01

    A number of heat storage modules for seasonal heat storages based on stable supercooling of a sodium acetate water mixture have been tested by means of experiments in a heat storage test facility. The modules had different volumes and designs. Further, different methods were used to transfer heat...... to and from the sodium acetate water mixture in the modules. By means of the experiments: • The heat exchange capacity rates to and from the sodium acetate water mixture in the heat storage modules were determined for different volume flow rates. • The heat content of the heat storage modules were determined....... • The reliability of the supercooling was elucidated for the heat storage modules for different operation conditions. • The reliability of a cooling method used to start solidification of the supercooled sodium acetate water mixture was elucidated. The method is making use of boiling CO2 in a small tank in good...

  19. The control of short-term feed intake by metabolic oxidation in late-pregnant and early lactating dairy cows exposed to high ambient temperatures.

    Science.gov (United States)

    Eslamizad, Mehdi; Lamp, Ole; Derno, Michael; Kuhla, Björn

    2015-06-01

    The objective of the present study was to integrate the dynamics of feed intake and metabolic oxidation in late pregnant and early lactating Holstein cows under heat stress conditions. On day 21 before parturition and again on day 20 after parturition, seven Holstein cows were kept for 7days at thermoneutral (TN) conditions (15°C; temperature-humidity-index (THI)=60) followed by a 7day heat stress (HS) period at 28°C (THI=76). On the last day of each temperature condition, gas exchange, feed intake and water intake were recorded every 6min in a respiration chamber. Pre- and post-partum cows responded to HS by decreasing feed intake. The reduction in feed intake in pre-partum cows was achieved through decreased meal size, meal duration, eating rate and daily eating time with no change in meal frequency, while post-partum cows kept under HS conditions showed variable responses in feeding behavior. In both pre- and post-partum cows exposed to heat stress, daily and resting metabolic heat production decreased while the periprandial respiratory quotient (RQ) increased. The prolonged time between meal and the postprandial minimum in fat oxidation and the postprandial RQ maximum, respectively, revealed that HS as compared to TN early-lactating cows have slower postprandial fat oxidation, longer feed digestion, and thereby showing a shift from fat to glucose utilization. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    Science.gov (United States)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  1. Using containment analysis to improve component cooling water heat exchanger limits

    International Nuclear Information System (INIS)

    Da Silva, H.C.; Tajbakhsh, A.

    1995-01-01

    The Comanche Peak Steam Electric Station design requires that exit temperatures from the Component Cooling Water Heat Exchanger remain below 330.37 K during the Emergency Core Cooling System recirculation stage, following a hypothetical Loss of Coolant Accident (LOCA). Due to measurements indicating a higher than expected combination of: (a) high fouling factor in the Component Cooling Water Heat Exchanger with (b) high ultimate heat sink temperatures, that might lead to temperatures in excess of the 330.37 K limit, if a LOCA were to occur, TUElectric adjusted key flow rates in the Component Cooling Water network. This solution could only be implemented with improvements to the containment analysis methodology of record. The new method builds upon the CONTEMPT-LT/028 code by: (a) coupling the long term post-LOCA thermohydraulics with a more detailed analytical model for the complex Component Cooling Water Heat Exchanger network and (b) changing the way mass and energy releases are calculated after core reflood and steam generator energy is dumped to the containment. In addition, a simple code to calculate normal cooldowns was developed to confirm RHR design bases were met with the improved limits

  2. Primary coolant feed and bleed operating regions for the Midland Plant

    International Nuclear Information System (INIS)

    Tsai, M.S.

    1985-01-01

    Operating regions for primary coolant feed and bleed cooling are developed for the Midland Plant using core decay heat, the high-pressure injection (HPI) system capacity, and flow rate relief through the power-operated relief valve (PORV). This mode of cooling is used for accident scenarios in which the normal core cooling means of a nuclear power plant is lost because of loss of water inventory in the steam generators. The HPI flow is based on the capacities of one and two pumps. Saturated steam, saturated water, and subcooled water are considered to be possible states of the fluid being relieved through the PORV. In estimating the PORV relief rate, flow equations are derived from the Electric Power Research Institute test data obtained from the same model and size valve that is used in the Midland Plant. For easy reference by operators, the operating region is displayed on a plane of reactor coolant system pressure and temperature. The technique developed for the Midland Plant provides a convenient method for examining the feed and bleed cooling capability for a nuclear power plant that employs a pressurized water reactor system

  3. An in situ postexposure feeding assay with Carcinus maenas for estuarine sediment-overlying water toxicity evaluations.

    Science.gov (United States)

    Moreira, Susana M; Moreira-Santos, Matilde; Guilhermino, Lúcia; Ribeiro, Rui

    2006-01-01

    This study developed and evaluated a short-term sublethal in situ toxicity assay for estuarine sediment-overlying waters, with the crab Carcinus maenas (L.) based on postexposure feeding. It consisted of a 48-h in situ exposure period followed by a short postexposure feeding period (30 min). A precise method for quantifying feeding, using the Polychaeta Hediste (Nereis) diversicolor Müller as food source, was first developed. The sensitivity of the postexposure feeding response was verified by comparing it to that of lethality, upon cadmium exposure. The influence of environmental conditions prevailing during exposure (salinity, temperature, substrate, light regime, and food availability) on postexposure feeding was also addressed. The potential of this in situ assay was then investigated by deploying organisms at ten sites, located in reference and contaminated Portuguese estuaries. Organism recovery ranged between 90% and 100% and a significant postexposure feeding depression (16.3-72.7%) was observed at all contaminated sites relatively to references.

  4. An in situ postexposure feeding assay with Carcinus maenas for estuarine sediment-overlying water toxicity evaluations

    International Nuclear Information System (INIS)

    Moreira, Susana M.; Moreira-Santos, Matilde; Guilhermino, Lucia; Ribeiro, Rui

    2006-01-01

    This study developed and evaluated a short-term sublethal in situ toxicity assay for estuarine sediment-overlying waters, with the crab Carcinus maenas (L.) based on postexposure feeding. It consisted of a 48-h in situ exposure period followed by a short postexposure feeding period (30 min). A precise method for quantifying feeding, using the Polychaeta Hediste (Nereis) diversicolor Mueller as food source, was first developed. The sensitivity of the postexposure feeding response was verified by comparing it to that of lethality, upon cadmium exposure. The influence of environmental conditions prevailing during exposure (salinity, temperature, substrate, light regime, and food availability) on postexposure feeding was also addressed. The potential of this in situ assay was then investigated by deploying organisms at ten sites, located in reference and contaminated Portuguese estuaries. Organism recovery ranged between 90% and 100% and a significant postexposure feeding depression (16.3-72.7%) was observed at all contaminated sites relatively to references. - A new sub-lethal toxicity assay is presented for marine invertebrates

  5. A study of a desuperheater heat recovery system complete with a reversibly used water cooling tower (RUWCT) for hot water supply

    Science.gov (United States)

    Tan, Kunxiong

    Recovering heat rejected from the condenser in a refrigeration system to generate service hot water for buildings is commonly seen in both tropics and subtropics. This study included a critical literature review on heat recovery from air-conditioning/refrigeration systems, with particular emphasis on the direct condenser heat recovery and its related mathematical simulation models. The review identified many applications of desuperheaters to small-scaled residential air-conditioning or heat pump units. The heat and mass transfer characteristics of a RUWCT have been studied in detail, which is based on the theory of direct contact heat and mass transfer between moist air and water. The thesis reports on the differences in the heat and mass transfer process that takes place in a RUWCT, a standard water cooling tower and a spray room. A corrective factor that accounts for the change of chilled water mass flow rate is incorporated into the theoretical analysis of a RUWCT. The algorithms developed from the theoretical analysis are capable of predicting the heat exchange capacity of a RUWCT at any operating conditions. This theoretical analysis is the first of its kind. Extensive field experimental work on the heat and mass transfer characteristics of a RUWCT has been carried out in a hotel building in Haikou, Hainan province of China, where the RUWCT is installed. Results from the experimental work indicate that the theoretical analysis can represent the heat and mass transfer characteristics in a RUWCT with an acceptable accuracy. A numerical analysis for a RUWCT is undertaken to determine both air and water states at intermediate horizontal sections along the tower height. Field experimental data confirm that the predicted air and water conditions at the tower inlet and outlet are of acceptable accuracy. A steady-state mathematical model is developed to simulate the operational performance of a water chiller plant complete with a desuperheater heat recovery system and

  6. High Efficiency Water Heating Technology Development Final Report, Part II: CO2 and Absorption-Based Residential Heat Pump Water Heater Development

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  7. Removal of Iron Oxide Scale from Feed-water in Thermal Power Plant by Using Magnetic Separation

    Science.gov (United States)

    Nakanishi, Motohiro; Shibatani, Saori; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    One of the factors of deterioration in thermal power generation efficiency is adhesion of the scale to inner wall in feed-water system. Though thermal power plants have employed All Volatile Treatment (AVT) or Oxygen Treatment (OT) to prevent scale formation, these treatments cannot prevent it completely. In order to remove iron oxide scale, we proposed magnetic separation system using solenoidal superconducting magnet. Magnetic separation efficiency is influenced by component and morphology of scale which changes their property depending on the type of water treatment and temperature. In this study, we estimated component and morphology of iron oxide scale at each equipment in the feed-water system by analyzing simulated scale generated in the pressure vessel at 320 K to 550 K. Based on the results, we considered installation sites of the magnetic separation system.

  8. Solar heating and hot water system installed at Cherry Hill, New Jersey

    Science.gov (United States)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  9. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  10. Heated water jet in coflowing turbulent stream

    International Nuclear Information System (INIS)

    Shirazi, M.A.; McQuivey, R.S.; Keefer, T.N.

    1974-01-01

    Effects of ambient turbulence on temperature and salinity distributions of heated water and neutrally buoyant saltwater jets were studied for a wide range of densimetric jet Froude numbers, jet discharge velocities, and ambient turbulence levels in a 4-ft-wide channel. Estimates of vertical and lateral diffusivity coefficients for heat and for salt were obtained from salinity and temperature distributions taken at several stations downstream of the injection point. Readily usable correlations are presented for plume center-line temperature, plume width, and trajectory. The ambient turbulence affects the gross behavior characteristics of the plume. The effects vary with the initial jet Froude number and the jet to ambient velocity ratio. Heat and salinity are transported similarly and the finite source dimensions and the initial jet characteristics alter the numerical value of the diffusivity

  11. Heat pump heating with heat pumps driven by combustion engines or turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K

    1977-01-27

    The heat pump described is driven by a gas Otto cycle engine, or a gas- or light- or heavy-oil fired Diesel engine. The claim refers to the use of waste heat of the engines by feeding into the input circuit of the heat pump. In addition, a drive by an electrical motor-generator or power production can be selected at times of peak load in the electrical supply network.

  12. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  13. Effect of heating and pore water salinity on the swelling characteristics of bentonite buffer

    International Nuclear Information System (INIS)

    Dhawan, Sarita; Rao, M. Sudhakar

    2010-01-01

    Document available in extended abstract form only. Changes in swell potential of bentonite-sand mixture as a function of temperature and pore water salinity were measured. Bentonite dried at 105 deg. C and sand was mixed in 50:50 ratio by weight for study. The bentonite sand mix was compacted to 1.83 Mg/m 3 dry density and 13.8% water content (mixed with distilled water) obtained from Modified proctor compaction test for all test conditions. For the first series, the mix was prepared using distilled water as molding fluid. The compacted samples were dried at temperatures 50 deg. C and 80 deg. C for time periods 2 to 45 days. Dried samples were assembled in oedometer cells and allowed to swell under load of 6.25 kPa. In second series, bentonite sand mixes were prepared with 1000 ppm Na, 1000 ppm K, 1000 ppm Ca and 1000 ppm Mg solutions using chloride salts to achieve water content of 13.8%. The mixes were then compacted and dried at 80 deg. C for 15 days and allowed to swell in oedometer assembly. In third series of experiments, bentonite sand mix were compacted with distilled water as molding fluid and heated at 80 deg. C for 15 days. The dried samples were then swollen inundating with solutions simulating less saline granitic ground water and a moderately saline groundwater. The swell behavior is compared with samples without heating treatment. For samples prepared with distilled water and heated, the swell potential reduced up to 10-28% on heating compared to sample without any heating. The swell reduction varied depending on temperature and time period. The volumetric shrinkage varied from 1.4 to 3.3% of original volume of compacted sample on heating. Addition of sand was found effective in controlling shrinkage caused by heating. For samples prepared with salt solutions with no heating and inundated with distilled water for swell, the swell potential reduced from 12-20% compared to sample mixed and inundated with distilled water. The reduction in swell

  14. The improvement of the heat transfer model for sodium-water reaction jet code

    International Nuclear Information System (INIS)

    Hashiguchi, Yoshirou; Yamamoto, Hajime; Kamoshida, Norio; Murata, Shuuichi

    2001-02-01

    For confirming the reasonable DBL (Design Base Leak) on steam generator (SG), it is necessary to evaluate phenomena of sodium-water reaction (SWR) in an actual steam generator realistically. The improvement of a heat transfer model on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.40) and application analysis to the water injection tests for confirmation of propriety for the code were performed. On the improvement of the code, the heat transfer model between a inside fluid and a tube wall was introduced instead of the prior model which was heat capacity model including both heat capacity of the tube wall and inside fluid. And it was considered that the fluid of inside the heat exchange tube was able to treat as water or sodium and typical heat transfer equations used in SG design were also introduced in the new heat transfer model. Further additional work was carried out in order to improve the stability of the calculation for long calculation time. The test calculation using the improved code (LEAP-JET ver.1.50) were carried out with conditions of the SWAT-IR·Run-HT-2 test. It was confirmed that the SWR jet behavior on the result and the influence to the result of the heat transfer model were reasonable. And also on the improved code (LEAP-JET ver.1.50), user's manual was revised with additional I/O manual and explanation of the heat transfer model and new variable name. (author)

  15. Heat transmission systems for heating and potable water. New requirements and problem solutions for hygiene, safety and improved heat utilization. Waermeuebertragungssysteme fuer Heizung und Trinkwasser. Neue Anforderungen und Problemloesungen bezueglich Hygiene, Sicherheit und besserer Waermenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, R

    1989-10-01

    In the past, additional demands were made on heat transmission systems regarding hygienic requirements in potable water heating plant for hospitals, hotels, sanatoriums and old-age homes, safety requirements to protect the potable water from the penetration of hazardous substances and requirements for improved heat utilization through return flow cooling and condensate cooling in the district heating. Where potable water heaters are concerned, safety radiators for heat transfer which comply with the requirements of DIN 1988 Part 2 and Part 4, as well as water heaters with permanent disinfection which are legionnaires' disease-proof, are now available for use in hospitals, old age homes and sanatoriums. For the district heating sector, improved range systems with low concentration in the hot water sector as well as condensate heat utilizing systems have been further developed in the steam heating sector. (orig.).

  16. Delay of turbulent by surface heating in water

    International Nuclear Information System (INIS)

    Arakeri, V.H.

    1980-01-01

    Boundary layer flow visualization studies in water on a 1.5 cal tangent ogive body with surface heating are reported. Existing laminar boundary layer separation was observed to be eliminated with sufficient surface heating. In addition, transition location was observed to be significantly delayed. With surface temperature difference of about 27 0 C no disturbances in the boundary layer could be detected up to (X/D) = 2.5 as compared to observed transition at about (X/D) = 1.32 under slightly heated conditions. Present observations are found to be in agreement with the theoretical computations of Wazzan et al. in a qualitative sense. (orig.)

  17. Reliability study of the auxiliary feed-water system of a pressurized water reactor by faults tree and Bayesian Network

    International Nuclear Information System (INIS)

    Lava, Deise Diana; Borges, Diogo da Silva; Guimarães, Antonio Cesar Ferreira; Moreira, Maria de Lourdes

    2017-01-01

    This paper aims to present a study of the reliability of the Auxiliary Feed-water System (AFWS) through the methods of Fault Tree and Bayesian Network. Therefore, the paper consists of a literature review of the history of nuclear energy and the methodologies used. The AFWS is responsible for providing water system to cool the secondary circuit of nuclear reactors of the PWR type when normal feeding water system failure. How this system operates only when the primary system fails, it is expected that the AFWS failure probability is very low. The AFWS failure probability is divided into two cases: the first is the probability of failure in the first eight hours of operation and the second is the probability of failure after eight hours of operation, considering that the system has not failed within the first eight hours. The calculation of the probability of failure of the second case was made through the use of Fault Tree and Bayesian Network, that it was constructed from the Fault Tree. The results of the failure probability obtained were very close, on the order of 10 -3 . (author)

  18. Reliability study of the auxiliary feed-water system of a pressurized water reactor by faults tree and Bayesian Network

    Energy Technology Data Exchange (ETDEWEB)

    Lava, Deise Diana; Borges, Diogo da Silva; Guimarães, Antonio Cesar Ferreira; Moreira, Maria de Lourdes, E-mail: deise_dy@hotmail.com, E-mail: diogosb@outlook.com, E-mail: tony@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This paper aims to present a study of the reliability of the Auxiliary Feed-water System (AFWS) through the methods of Fault Tree and Bayesian Network. Therefore, the paper consists of a literature review of the history of nuclear energy and the methodologies used. The AFWS is responsible for providing water system to cool the secondary circuit of nuclear reactors of the PWR type when normal feeding water system failure. How this system operates only when the primary system fails, it is expected that the AFWS failure probability is very low. The AFWS failure probability is divided into two cases: the first is the probability of failure in the first eight hours of operation and the second is the probability of failure after eight hours of operation, considering that the system has not failed within the first eight hours. The calculation of the probability of failure of the second case was made through the use of Fault Tree and Bayesian Network, that it was constructed from the Fault Tree. The results of the failure probability obtained were very close, on the order of 10{sup -3}. (author)

  19. Evaluation of a flue gas driven open absorption system for heat and water recovery from fossil fuel boilers

    International Nuclear Information System (INIS)

    Wang, Zhenying; Zhang, Xiaoyue; Li, Zhen

    2016-01-01

    Highlights: • Flue gas driven open absorption system that efficiently recovers total heat. • Efficient heat and water recovery for various kinds of fossil fuel boilers. • Heat and water recovery efficiencies increase with moisture content of flue gas. • Temperature requirements for district heat supply and domestic hot water were met. • Experimental system surpasses conventional condensing system in total heat recovery. - Abstract: This paper presents an open absorption system for total heat recovery from fossil fuel boilers using the high temperature flue gas as the regeneration heat source. In this system, liquid desiccant serves as the recycling medium, which absorbs waste heat and moisture contained in the low temperature flue gas in the packed tower and then regenerates in the regenerator by the high temperature flue gas. Water vapor generated in the regenerator gets condensed after releasing heat to the heating water system and the condensing water also gets recycled. The return water collects heat from the solution water heat exchanger, the flue gas water heat exchanger and the condenser respectively and is then used for district heating. Driven by the vapor pressure difference between high humidity flue gas and the liquid desiccant, the heat recovery efficiency of the system is not limited by the dew point of the flue gas, enabling a warmer water to be heated up than the conventional condensing boiler. The performance of this system was analyzed theoretically and experimentally and the results showed that the system operated well for both district heat supply and domestic hot water supply. The system efficiency increased with the moisture content of flue gas and the total heat recovery was about 8.5%, 17.2%, 21.2%, and 9.2% higher than the conventional condensing system in the case of coal fired boiler, fuel oil boiler, natural gas boiler, and coke oven gas boiler, respectively.

  20. Study of overall heat transfer coefficient from upper crust to overlaying water during MCCI

    International Nuclear Information System (INIS)

    Kondo, Masaya; Nishida, Ayumu; Sugimoto, Jun

    2015-01-01

    A model of the overall heat transfer between the molten core and the overlying coolant above crust during MCCI in severe accident is proposed and confirmed experimentally and analytically. The model assumes that the heat transferred from molten core to the overlaying water is proportional to the amount of water that reaches the molten core surface. The water flow to the molten core surface is assumes to be prevented by the CCFL in the porous crust. Thus, the steam flow and the non-condensable gas flow interact with the water flow. The present model describes the relationship between the overall heat transfer and the water flow, and furthermore, the CCFL effect on the water flow. The non-condensable gas effect on the overall heat transfer predicted by the present model agrees well with experiments. The effects of porosity and hole diameter on the amount of water, which reaches the molten core surface, has also been confirmed using RELAP5 code. (author)

  1. A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger

    Directory of Open Access Journals (Sweden)

    P. Shahmohammadi

    2016-01-01

    Full Text Available The effect of γ-Al2O3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-Al2O3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. Since the properties of γ-Al2O3-water nanofluids were variable, they were defined using the user define function. The results revealed that heat transfer and pressure drop were increased with mass flow rate as well as baffle numbers. Adding nanoparticles to the based fluid did not have a significant effect on pressure drop in the shell side. The best heat transfer performance of heat exchangers was for γ-Al2O3-water 1 vol.% and higher nanoparticles concentration was not suitable. The suitable baffle spacing was 43.4% of the shell diameter, showing a good agreement with Bell-Delaware method.

  2. Some features of an economical central heating water supply

    International Nuclear Information System (INIS)

    Glaeser, G.

    1990-01-01

    This paper is concerned with the necessary savings of energy and fuel as well as reduction of pollutant emission in the field of central district heat supply. Results of studies on solving these problems are presented. To provide thermal power based on heating water essential features of the district heating system in the GDR are outlined and advantages, resources and limits of specific solutions quantified. Finally, selected systems are evaluated as to energy and cost expenses, and some conclusions are drawn for future concepts. (author)

  3. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand

    Directory of Open Access Journals (Sweden)

    Shabbir H. Gheewala

    2014-06-01

    Full Text Available The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water and blue water (or irrigation water. Rice (paddy farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H2Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future.

  4. Solar pre-heating of water for steam generation in the friendship textile mill

    International Nuclear Information System (INIS)

    Sid -Ahmed, M.O.; Hussien, T.

    1994-01-01

    The technology of solar water heating is simple and can be used for pre-heating of water entering a boiler. In this paper the economics of solar pre-heating of water was calculated. The calculations were based on the performance and cost of a locally-made flat plate collector, and the performance and fuel consumption of a boiler in a textile mill. The results showed that a collector area of about 800 meter square with initial cost of about LS 5,000,000, could save annually about 130 tons of furnace oil. ( Author )

  5. Parental feeding styles, young children's fruit, vegetable, water and sugar-sweetened beverage consumption, and the moderating role of maternal education and ethnic background.

    Science.gov (United States)

    Inhulsen, Maj-Britt Mr; Mérelle, Saskia Ym; Renders, Carry M

    2017-08-01

    To examine the associations between parental feeding styles and children's dietary intakes and the modifying effect of maternal education and children's ethnicity on these associations. Cross-sectional study of parental feeding styles, assessed by the Parental Feeding Style Questionnaire, and children's dietary intakes. Multiple regression analyses were carried out to assess the associations between the parental feeding styles studied ('control', 'emotional feeding', 'encouragement to eat' and 'instrumental feeding') and children's dietary intakes (consumption of fruit, vegetables, water and sugar-sweetened beverages (SSB)). The modifying effect of maternal education and children's ethnicity on these associations was explored. North-western part of the Netherlands. Children aged 3-7 years (n 5926). Both 'encouragement' and 'control' were associated with higher consumption of vegetables and lower consumption of SSB, but only 'encouragement' was positively associated with fruit and water intakes. 'Instrumental feeding' showed a positive association with SSB and negative associations with fruit, vegetable and water consumption. No significant associations were found for 'emotional feeding'. Maternal educational level and children's ethnicity moderated some associations; for example, 'control' was beneficial for vegetable intake in all subgroups, whereas the association with SSB was beneficial only in highly educated mothers. The study shows that both encouraging and controlling feeding styles may improve children's dietary behaviour, while 'instrumental feeding' may have a detrimental effect. Furthermore, maternal educational level and children's ethnicity influence these associations. The study's findings could provide a basis for development of interventions to improve parental feeding styles.

  6. Dynamic study of steam generation from low-grade waste heat in a zeolite–water adsorption heat pump

    International Nuclear Information System (INIS)

    Xue, Bing; Meng, Xiangrui; Wei, Xinli; Nakaso, Koichi; Fukai, Jun

    2015-01-01

    A novel zeolite–water adsorption heat pump system based on a direct-contact heat exchange method to generate steam from low-grade waste gas and water has been proposed and examined experimentally. Superheated steam (200 °C, 0.1 MPa) is generated from hot water (70–80 °C) and dry air (100–130 °C). A dynamic model for steam generation process is developed to describe local mass and heat transfer. This model features a three-phase calculation and a moving water–gas interface. The calculations are carried out in the zeolite–water and zeolite–gas regions. Model outputs are compared with experimental results for validation. The thermal response inside the reactor and mass of steam generated is well predicted. Numerical results show that preheat process with low-temperature steam is an effective method to achieve local equilibrium quickly, thus generation process is enhanced by prolonging the time and increasing mass of the generated steam. Besides, high-pressure steam generation up to 0.5 MPa is possible from the validated dynamic model. Future work could be emphasized on enhancing high-pressure steam generation with preheat process or mass recovery operation

  7. Impact of water hardness on energy consumption of geyser heating ...

    African Journals Online (AJOL)

    Therefore, the Eskom Research, Testing, and Development Business Unit embarked on a study to examine total water hardness as a chemical parameter that may impact the power consumption of electrical geyser heating elements. An accelerated scaling method was developed to lime-scale the geyser heating elements ...

  8. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan

    2016-01-01

    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  9. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...

  10. Flow friction and heat transfer of ethanol–water solutions through silicon microchannels

    International Nuclear Information System (INIS)

    Wu Huiying; Wu Xinyu; Wei Zhen

    2009-01-01

    An experimental investigation was performed on the flow friction and convective heat transfer characteristics of the ethanol–water solutions flowing through five sets of trapezoidal silicon microchannels having hydraulic diameters ranging from 141.7 µm to 268.6 µm. Four kinds of ethanol–water solutions with the ethanol volume concentrations ranging from 0 to 0.8 were tested under different flow and heating conditions. It was found that the cross-sectional geometric parameters had great effect on the flow friction and heat transfer, and the microchannels with a larger W b /W t (bottom width-to-top width ratio) and a smaller H/W t (depth-to-top width ratio) usually had a larger friction constant and a higher Nusselt number. Entrance effects were significant for the flow friction and heat transfer in silicon microchannels, and decreased with the increase of dimensionless hydrodynamic length L and dimensionless thermal length L + h . When L > 1.0, the hydrodynamic entrance effect on the flow friction was ignorable. For the developed laminar flow in silicon microchannels, the Navier–Stokes equation was applicable. It was also found that the volume concentrations had different effects on the flow friction and heat transfer. Within the experimental range, the effect of volume concentrations on the flow friction was ignorable, and the friction constants of the ethanol–water solutions having different concentrations were the same as those of the pure water. However, volume concentrations had great effect on the convection heat transfer in silicon microchannels. With the increase of the volume concentrations, the Nusselt number of the ethanol–water solutions increased obviously, which was attributed to the combination effect of the increase in the Prantdtl number as well as the volatilization effect of the ethanol. Based on the experimental data, the dimensionless correlations for the flow friction and heat transfer of the ethanol–water solutions in the silicon

  11. Functional systems of a pressurized water reactor

    International Nuclear Information System (INIS)

    Heinzel, V.

    1982-01-01

    The main topics, discussed in the present paper, are: - Principle design of the reactor coolant system - reactor pressure vessel with internals - containment design - residual heat removal and emergency cooling systems - nuclear component cooling systems - emergency feed water systems - plant electric power supply system. (orig./RW)

  12. Safety analysis of a high temperature supercritical pressure light water cooled and moderated reactor

    International Nuclear Information System (INIS)

    Ishiwatari, Y.; Oka, Y.; Koshizuka, S.

    2002-01-01

    A safety analysis code for a high temperature supercritical pressure light water cooled reactor (SCLWR-H) with water rods cooled by descending flow, SPRAT-DOWN, is developed. The hottest channel, a water rod, down comer, upper and lower plenums, feed pumps, etc. are modeled as junction of nodes. Partial of the feed water flows downward from the upper dome of the reactor pressure vessel to the water rods. The accidents analyzed here are total loss of feed water flow, feed water pump seizure, and control rods ejection. All the accidents satisfy the criteria. The accident event at which the maximum cladding temperature is the highest is total loss of feedwater flow. The transients analyzed here are loss of feed water heating, inadvertent start-up of an auxiliary water supply system, partial loss of feed water flow, loss of offsite power, loss of load, and abnormal withdrawal of control rods. All the transients satisfied the criteria. The transient event for which the maximum cladding temperature is the highest is control rod withdrawal at normal operation. The behavior of loss of load transient is different from that of BWR. The power does not increase because loss of flow occurs and the density change is small. The sensitivities of the system behavior to various parameters during transients and accidents are analyzed. The parameters having strong influence are the capacity of the auxiliary water supply system, the coast down time of the main feed water pumps, and the time delay of the main feed water pumps trip. The control rod reactivity also has strong influence. (authors)

  13. Liquid over-feeding air conditioning system and method

    Science.gov (United States)

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  14. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 1

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Madsen, C.; Elmegaard, Brian

    2014-01-01

    The purpose of the Isolated System Energy Charging (ISEC) is to provide a high-efficient ammonia heat pump system for hot water production. The ISEC concept uses two storage tanks for the water, one discharged and one charged. The charged tank is used for the industrial process while the discharged...... tank, is charging. Charging is done by circulating the water in the tank through the condenser several times and thereby gradually heats the water. This result in a lower condensing temperature than if the water was heated in one step. A dynamic model of the system, implemented in Dymola, is used...... to investigate the performance of the ISEC system. The ISEC concept approaches the efficiency of a number of heat pumps in series and the COP of the system may reach 6.8, which is up to 25 % higher than a conventional heat pump heating water in one step....

  15. Experimental investigation of an active magnetic regenerative heat circulator applied to self-heat recuperation technology

    International Nuclear Information System (INIS)

    Kotani, Yui; Kansha, Yasuki; Ishizuka, Masanori; Tsutsumi, Atsushi

    2014-01-01

    An experimental investigation into an active magnetic regenerative (AMR) heat circulator based on self-heat recuperation technology, was conducted to evaluate its energy saving potential in heat circulation. In an AMR heat circulator, magnetocaloric effect is applied to recuperate the heat exergy of the process fluid. The recuperated heat can be reused to heat the feed process fluid and realize self-heat recuperation. In this paper, AMR heat circulator has newly been constructed to determine the amount of heat circulated when applied to self-heat recuperation and the energy consumption of the heat circulator. Gadolinium and water was used as the magnetocaloric working material and the process fluid, respectively. The heat circulated amount was determined by measuring the temperature of the process fluid and gadolinium. The net work input for heat circulation was obtained from the magnetizing and demagnetizing forces and the distance travelled by the magnetocaloric bed. The results were compared with the minimum work input needed for heat circulation derived from exergy loss during heat exchange. It was seen that the experimentally obtained value was close to the minimum work input needed for heat circulation. - Highlights: • AMR heat circulator has newly been constructed for experimental evaluation. • Heat circulation in the vicinity of Curie temperature was observed. • Energy consumption of an AMR heat circulator has been measured. • Energy saving for processes near Curie temperature of working material was seen

  16. Water and sediment temperature dynamics in shallow tidal environments: The role of the heat flux at the sediment-water interface

    Science.gov (United States)

    Pivato, M.; Carniello, L.; Gardner, J.; Silvestri, S.; Marani, M.

    2018-03-01

    In the present study, we investigate the energy flux at the sediment-water interface and the relevance of the heat exchanged between water and sediment for the water temperature dynamics in shallow coastal environments. Water and sediment temperature data collected in the Venice lagoon show that, in shallow, temperate lagoons, temperature is uniform within the water column, and enabled us to estimate the net heat flux at the sediment-water interface. We modeled this flux as the sum of a conductive component and of the solar radiation reaching the bottom, finding the latter being negligible. We developed a "point" model to describe the temperature dynamics of the sediment-water continuum driven by vertical energy transfer. We applied the model considering conditions characterized by negligible advection, obtaining satisfactory results. We found that the heat exchange between water and sediment is crucial for describing sediment temperature but plays a minor role on the water temperature.

  17. Influence of Water Activated by Far infrared Porous Ceramics on Nitrogen Absorption in the Pig Feed.

    Science.gov (United States)

    Meng, Junping; Liu, Jie; Liang, Jinsheng; Zhang, Hongchen; Ding, Yan

    2016-04-01

    Under modern and, intensive feeding livestock and poultry density has increased, and brought a deterioration of the farm environment. The livestock and their excrement generate harmful gases such as ammonia, etc. which restricted the sustainable development and improvement of production efficiency of animal husbandry. In this paper, a new kind of far infrared porous ceramics was prepared to activate, the animal drinking water. The activated water and common water were then supplied to pigs, and the fresh pig feces of experimental group and:control group were collected on a regular basis. The residual protein content in feces was tested by Kjeldahl nitrogen method to study the influence law of the porous ceramics on absorbing nitrogen element in animal feces. The results showed that compared with the control group, the protein content in the experimental group decreased on average by 39.2%. The activated drinking water was conducive to the absorption of nitrogen in pig feed. The clusters of water molecules became smaller under the action of the porous ceramics. Hence, they were easy to pass through the water protein channel on the cell membrane for speeding up the metabolism.

  18. Solar heating and hot water system installed at Listerhill, Alabama

    Science.gov (United States)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  19. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    Science.gov (United States)

    Roy, Robert J.; Wilson, Mark E.; Diderich, Greg S.; Steele, John W.

    2011-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell concentration overpotential resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid-cathode feed water electrolysis cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  20. Integrated solar-assisted heat pumps for water heating coupled to gas burners; control criteria for dynamic operation

    International Nuclear Information System (INIS)

    Scarpa, F.; Tagliafico, L.A.; Tagliafico, G.

    2011-01-01

    A direct expansion integrated solar-assisted heat pump (ISAHP) is compared to a traditional flat plate solar panel for low temperature (45 deg. C) water heating applications. The (simulated) comparison is accomplished assuming both the devices are energy supplemented with an auxiliary standard gas burner, to provide the typical heat duty of a four-member family. Literature dynamical models of the systems involved have been used to calculate the main performance figures in a context of actual climatic conditions and typical stochastic user demand. The paper highlights new heat pump control concepts, needed when maximum energy savings are the main goal of the apparatus for given user demand. Simulations confirm the high collector efficiency of the ISAHP when its panel/evaporator works at temperature close to the ambient one. The device, with respect to a flat plate solar water heater, shows a doubled performance, so that it can do the same task just using an unglazed panel with roughly half of the surface.

  1. Finishing and upgrading of heavy water

    International Nuclear Information System (INIS)

    Butler, J.P.; Hammerli, M.

    1981-01-01

    This invention provides a process and apparatus for deuterium enrichment as a final stage in a heavy water plant, for continuous on-line enrichment of the heavy water in moderator and heat transfer systems in heavy water nuclear reactors, and for enrichment of hevy water that has been downgraded with natural water during the course of operating a heavy water nuclear reactor. The method comprises contacting partially-enriched heavy water feed in a catalyst column with hydrogen gas (essentially D 2 ) orginating in an electrolysis cell so as to enrich the feed water with deuterium extracted from the electrolytic hydrogen gas and passing the deuterium-enriched water to the electrolysis cell. The apparatus comprises a catalyst isotope exchange column with hydrogen gas and liquid water passing through in countercurrent isotope exchange, an electrolysis cell, a dehumidifer-scrubber; and means for passing the liquid water enriched in deuterium from the catalyst column through the dehumidifer-scrubber to the electrolysis cell, for passing the hydrogen gas evolved in the cathode side of the cell through the dehumidifier-scrubber to the catalyst column, for passing the hydrogen gas from the catalyst column to an output, for introducing an input water feed to the upper portion of the catalyst column, and for taking a product enriched in deuterium from the system. (LL)

  2. Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2001-01-01

    Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective disinfection was observed even when the water temperature did not reach 60 degrees C. Finally, the hydrogen sulphide test is a simple and reliable test that householders can use to determine whether their water had been sufficiently disinfected.

  3. Feed and organic matter

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang

    2011-01-01

    impact on the receiving water body by reducing dissolved oxygen concentrations and increasing sedimentation. Within aquaculture systems, a high organic load may affect fish health and performance directly (e.g., gill disease) as well as indirectly (proliferation of pathogenic bacteria and parasites......, reduction of dissolved oxygen concentrations, etc.). In recirculating aquaculture systems (RAS), a high organic load caused by limited water exchange may affect biofilter performance by favouring heterotrophic bacteria at the expense of autotrophic, nitrifying bacteria. Organic waste in RAS primarily...... originates from undigested feed, but also metabolic losses, mucus, dead tissue, feed waste and intake water may contribute. The nutrient composition of the feed affects the quantity and composition of the organic (undigested) waste, and including for example plant protein ingredients may affect...

  4. Seasonal performance evaluation of electric air-to-water heat pump systems

    International Nuclear Information System (INIS)

    Dongellini, Matteo; Naldi, Claudia; Morini, Gian Luca

    2015-01-01

    A numerical model for the calculation of the seasonal performance of different kinds of electric air-to-water heat pumps is presented. The model is based on the procedure suggested by the European standard EN 14825 and the Italian standard UNI/TS 11300-4, which specify the guidelines for calculation of the seasonal performance of heat pumps during the heating season (SCOP), the cooling season (SEER) and for the production of domestic hot water. In order to consider the variation of outdoor conditions the developed model employs the bin-method. Different procedures are proposed in the paper for the analysis of the seasonal performance of mono-compressor, multi-compressor and variable speed compressor air-to-water heat pumps. The numerical results show the influence of the effective operating mode of the heat pumps on the SCOP value and put in evidence the impact of the design rules on the seasonal energy consumption of these devices. The study also highlights the importance of the correct sizing of the heat pump in order to obtain high seasonal efficiency and it shows that, for a fixed thermal load, inverter-driven and multi-compressor heat pumps have to be slightly oversized with respect to mono-compressor ones in order to obtain for the same building the highest SCOP values. - Highlights: • A model for the prediction of seasonal performance of HPs has been developed. • The model considers mono-compressor, multi-compressor and inverter-driven HPs. • The procedure takes into account HPs performances at partial load. • Optimization of heat pump sizing depending on its control system.

  5. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  6. Solar Hot Water Heating by Natural Convection.

    Science.gov (United States)

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  7. Estimation of Scale Deposition in the Water Walls of an Operating Indian Coal Fired Boiler: Predictive Modeling Approach Using Artificial Neural Networks

    Science.gov (United States)

    Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar

    2016-04-01

    Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.

  8. Dynamic Modeling and Control of Distributed Heat Transfer Mechanisms: Application to a Membrane Distillation Module

    KAUST Repository

    Eleiwi, Fadi

    2015-12-01

    Sustainable desalination technologies are the smart solution for producing fresh water and preserve the environment and energy by using sustainable renewable energy sources. Membrane distillation (MD) is an emerging technology which can be driven by renewable energy. It is an innovative method for desalinating seawater and brackish water with high quality production, and the gratitude is to its interesting potentials. MD includes a transfer of water vapor from a feed solution to a permeate solution through a micro-porous hydrophobic membrane, rejecting other non-volatile constituents present in the influent water. The process is driven by the temperature difference along the membrane boundaries. Different control applications and supervision techniques would improve the performance and the efficiency of the MD process, however controlling the MD process requires comprehensive mathematical model for the distributed heat transfer mechanisms inside the process. Our objective is to propose a dynamic mathematical model that accounts for the time evolution of the involved heat transfer mechanisms in the process, and to be capable of hosting intermittent energy supplies, besides managing the production rate of the process, and optimizing its energy consumption. Therefore, we propose the 2D Advection-Diffusion Equation model to account for the heat diffusion and the heat convection mechanisms inside the process. Furthermore, experimental validations have proved high agreement between model simulations and experiments with less than 5% relative error. Enhancing the MD production is an anticipated goal, therefore, two main control strategies are proposed. Consequently, we propose a nonlinear controller for a semi-discretized version of the dynamic model to achieve an asymptotic tracking for a desired temperature difference. Similarly, an observer-based feedback control is used to track sufficient temperature difference for better productivity. The second control strategy

  9. Effect of heat stress and genotype on water turnover in pregnant and lactating sheep

    International Nuclear Information System (INIS)

    Benlamlih, S.

    1988-01-01

    Studies on the effect of acute heat stress and on the influence of genotype on water turnover of pregnant and lactating ewes are described. Ewes exposed to acute heat stress during pregnancy and lactation maintained their body temperature within the same range as during the subsequent post-lactation period, but paradoxically the polypneic response was reduced during pregnancy. The drinking response to acute heat stress was markedly increased during pregnancy with a corresponding water diuresis. Thus, during acute heat stress, body temperature is maintained during pregnancy by the loss of heat to ingested water and probably also via increased sweating. Under natural environmental conditions, water turnover was higher in the sheep genotypes from the mountains (Timahdit) and the desert oases (Dman) than in the breeds from the Moroccan arid lands (Sardi and Beniguil). In all these genotypes, water turnover was lower during pregnancy than during lactation and the post-lactation period which occurred respectively in winter, spring and summer. Thus, the water demands during the summer are much higher than those for pregnancy during the winter months. (author). 7 refs, 3 figs, 1 tab

  10. Imitation experiment for water-treatment by heat of solar collector and hot pump

    International Nuclear Information System (INIS)

    Liao Yuanzong; Liu Shuqing; Pang Heding; Zhao Zhongxin; Zhang Biguang; Wang Xiping; Huo Guangqing

    1997-01-01

    The author presents an imitation experiment in which solar collector and hot pump are jointed for supplying heat to evaporate cleaned water and diffuse it into air. The effects of the temperature and the quantity of supplying air, and circumstance conditions on evaporation quantity are studied. The ratio of evaporating quantity to consuming energy, the efficiency of evaporation, average efficiency of solar collector and supplying heat coefficient of heat pump are measured. The experiment shows that this supplying heat model is practicable, economic and efficient for treating cleaned water

  11. Effect of water content on specific heat capacity of porcine septum cartilage

    Science.gov (United States)

    Chae, Yongseok; Lavernia, Enrique J.; Wong, Brian J.

    2002-06-01

    The effect of water content on specific heat capacity was examined using temperature modulated Differential Scanning Calorimetry (TMDSC). This research was motivated in part by the development laser cartilage reshaping operations, which use photothermal heating to accelerate stress relaxation and shape change. Deposition of thermal energy leads to mechanical stress relaxation and redistribution of cartilage internal stresses, which may lead to a permanent shape change. The specific heat of cartilage specimens (dia: 3 mm and thickness 1-2 mm) was measured using a heating rate of 2 degree(s)C/min for conventional DSC and 2 degree(s)C/min with an amplitude 0.38-0.45 degree(s)C and a period 60-100 sec for TMDSC. The amount of water in cartilaginous tissue was determined using thermogravimetry analysis (TGA) under ambient conditions. In order to correlate changes in heat flow with alterations in cartilage mechanical behavior, dynamic mechanical temperature analysis (DMTA) was used to estimate the specific transition temperatures where stress relaxation occurs. With decreasing water content, we identified a phase transition that shifted to a higher temperature after 35-45% water content was measured. The phase transition energy increased from 0.12 J/g to 1.68 J/g after a 45% weight loss. This study is a preliminary investigation focused on understanding the mechanism of the stress relaxation of cartilage during heating. The energy requirement of such a transition estimated using TMDSC and temperature range, where cartilage shape changes likely occur, was estimated.

  12. Twin cities institutional issues study cogenerated hot water district heating

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, R. E.; Leas, R.; Kolb, J. O.

    1979-01-01

    Community district heating, utilizing hot water produced through electrical/thermal cogeneration, is seen as an integral part of Minnesota's Energy Policy and Conservation Plan. Several studies have been conducted which consider the technical and institutional issues affecting implementation of cogenerated district heating in the Minneapolis and St. Paul Metropolitan Area. The state of the technical art of cogenerated hot water district heating is assumed to be transferable from European experience. Institutional questions relating to such factors as the form of ownership, financing, operation, regulation, and product marketability cannot be transferred from the European experience, and have been the subject of an extensive investigation. The form and function of the Institutional Issues Study, and some of the preliminary conclusions and recommendations resulting from the study are discussed.

  13. Dynamic Study of Feed-Effluent Heat Exchanger Addition on Double Bed Configuration Ammonia Reactor System within Varied Quenching Ratio

    Directory of Open Access Journals (Sweden)

    Adhi Tri Partono

    2018-01-01

    Full Text Available Ammonia is one of the most important industrial commodity due to its wide function. Ammonia synthesis reaction is an exotermic reaction. Therefore, Feed-Effluent Heat Exchanger (FEHE is added to increase thermal efficiency. However, FEHE could lead the process to experience hysteresis phenomenon due to interaction between equipments as one steady state T feed could result several T outlet. Hysteresis phenomenon may result asset losses like explosion, leakage, and loosing material integrity. Double bed reactor configuration allows us to use several operating parameters as variation to overcome hysteresis. In this review, quenching ratio was chosen to be that varied parameter. This study aims to determine how quenching ratio affects hysteresis zone by utilizing Aspen Hysys® V8.8 as simulation tool. Simulation showed that quenching ratio would narrow hysteresis zone yet increased extinction temperature that lower the conversion. Conversion profile showed that 0.2 quenching ratio got the highest conversion for system with bed volume ratio 2:1 while total volume was 30 m3. However, the feed temperature was fallen at hysteresis zone. Dynamic simulation showed that highest conversion feed temperature (10%ΔTf above extinct temperature was still able to preserve stability with descending temperature approach. Hysteresis itself started to occur at 1.7%ΔTf above extinct temperature

  14. Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes

    KAUST Repository

    Bundschuh, Jochen; Ghaffour, NorEddine; Mahmoudi, Hacè ne; Goosen, Mattheus F A; Mushtaq, Shahbaz; Hoinkis, Jan

    2015-01-01

    The study is dedicated to exploring different types of low-cost low-enthalpy geothermal and their potential integration with conventional thermal-based water desalination and treatment technologies to deliver energy efficient, environmentally friendly solutions for water desalination and treatment, addressing global water crises. Our in-depth investigation through reviews of various low-enthalpy geothermal and conventional thermal-based technologies suggest that the geothermal option is superior to the solar option if low-cost geothermal heat is available because it provides a constant heat source in contrast to solar. Importantly, the stable heat source further allows up-scaling (> 1000 m3/day), which is not currently possible with solar. Solar-geothermal hybrid constellations may also be suitable in areas where both sources are available. The review also discovers that the innovative Membrane distillation (MD) process is very promising as it can be used for many different water compositions, salinity and temperature ranges. Either the geothermal water itself can be desalinated/treated or the geothermal heat can be used to heat feed water from other sources using heat exchangers. However, there are only few economic analyses for large-scale MD units and these are based on theoretical models using often uncertain assumptions resulting in a large variety of results.

  15. Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes

    KAUST Repository

    Bundschuh, Jochen

    2015-03-01

    The study is dedicated to exploring different types of low-cost low-enthalpy geothermal and their potential integration with conventional thermal-based water desalination and treatment technologies to deliver energy efficient, environmentally friendly solutions for water desalination and treatment, addressing global water crises. Our in-depth investigation through reviews of various low-enthalpy geothermal and conventional thermal-based technologies suggest that the geothermal option is superior to the solar option if low-cost geothermal heat is available because it provides a constant heat source in contrast to solar. Importantly, the stable heat source further allows up-scaling (> 1000 m3/day), which is not currently possible with solar. Solar-geothermal hybrid constellations may also be suitable in areas where both sources are available. The review also discovers that the innovative Membrane distillation (MD) process is very promising as it can be used for many different water compositions, salinity and temperature ranges. Either the geothermal water itself can be desalinated/treated or the geothermal heat can be used to heat feed water from other sources using heat exchangers. However, there are only few economic analyses for large-scale MD units and these are based on theoretical models using often uncertain assumptions resulting in a large variety of results.

  16. Performance of a day/night water heat storage system for heating and cooling of semi-closed greenhouses in mild winter climate

    NARCIS (Netherlands)

    Baeza, E.J.; Pérez Parra, J.J.; López, J.C.; Gázquez, J.C.; Meca, D.E.; Stanghellini, C.; Kempkes, F.L.K.; Montero, J.I.

    2012-01-01

    A novel system for heating/cooling greenhouses based on air/water heat exchangers connected to a thermally stratified water storage tank was tested in a small greenhouse compartment at the Experimental Station of the Cajamar Foundation in Almería, Spain. The system maintained a closed greenhouse (no

  17. Theoretical and Numerical Study of Heat Transfer Deterioration in High Performance Light Water Reactor

    Directory of Open Access Journals (Sweden)

    David Palko

    2008-01-01

    Full Text Available A numerical investigation of the heat transfer deterioration (HTD phenomena is performed using the low-Re k-ω turbulence model. Steady-state Reynolds-averaged Navier-Stokes equations are solved together with equations for the transport of enthalpy and turbulence. Equations are solved for the supercritical water flow at different pressures, using water properties from the standard IAPWS (International Association for the Properties of Water and Steam tables. All cases are extensively validated against experimental data. The influence of buoyancy on the HTD is demonstrated for different mass flow rates in the heated pipes. Numerical results prove that the RANS low-Re turbulence modeling approach is fully capable of simulating the heat transfer in pipes with the water flow at supercritical pressures. A study of buoyancy influence shows that for the low-mass flow rates of coolant, the influence of buoyancy forces on the heat transfer in heated pipes is significant. For the high flow rates, buoyancy influence could be neglected and there are clearly other mechanisms causing the decrease in heat transfer at high coolant flow rates.

  18. Feasibility study on applicability of direct contact heat transfer SGs or FBRs

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro

    1997-01-01

    As a candidate of an innovative steam generator for fast breeder reactors, heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The objectives of this study are to obtain the technical feasibility of this concept, to evaluate the heat transfer characteristics of direct contact heat transfer and to estimate the size and volume of this SG. Followings are main results. (1) In the case of sodium tube failure, it is considered that steam and water will not enter into the primary sodium under appropriate countermeasures. (2) Under the condition of temperature and pressure of SG for FBRs, the phenomenon such as vapor explosion is not take place in this SG concept. (3) as a result of material compatibility test and analysis, it is considered that 9Cr-1Mo steel and 21/4cr-1Mo steel will be a candidate structural material. (4) It is considered that the production of oxides by the chemical reaction between melting alloy and water is mitigated by dissolving hydrogen gas in feed water. (5) The fundamental direct contact heat transfer characteristics between a melting alloy and water is obtained in following two regions. One is the evaporating region and the other is the superheating region. The effect of the system pressure on the heat transfer characteristics and the required degree of superheat of a melting alloy above the water saturation temperature are evaluated during direct contact heat transfer experiments by injecting water into a high temperature melting alloy. (6) Due to the high heat transfer performance of direct contact heat transfer, it is found that compact steam generation section will be expected. However, because of the characteristics of direct contact heat exchanger, achievement of high efficiency was difficult. In order to make a good use of this SG concept, improvement of efficiency is necessary. (author)